WorldWideScience

Sample records for nanoparticle-based fret platform

  1. Design challenges in nanoparticle-based platforms: Implications for targeted drug delivery systems

    Mullen, Douglas Gurnett

    Characterization and control of heterogeneous distributions of nanoparticle-ligand components are major design challenges for nanoparticle-based platforms. This dissertation begins with an examination of poly(amidoamine) (PAMAM) dendrimer-based targeted delivery platform. A folic acid targeted modular platform was developed to target human epithelial cancer cells. Although active targeting was observed in vitro, active targeting was not found in vivo using a mouse tumor model. A major flaw of this platform design was that it did not provide for characterization or control of the component distribution. Motivated by the problems experienced with the modular design, the actual composition of nanoparticle-ligand distributions were examined using a model dendrimer-ligand system. High Pressure Liquid Chromatography (HPLC) resolved the distribution of components in samples with mean ligand/dendrimer ratios ranging from 0.4 to 13. A peak fitting analysis enabled the quantification of the component distribution. Quantified distributions were found to be significantly more heterogeneous than commonly expected and standard analytical parameters, namely the mean ligand/nanoparticle ratio, failed to adequately represent the component heterogeneity. The distribution of components was also found to be sensitive to particle modifications that preceded the ligand conjugation. With the knowledge gained from this detailed distribution analysis, a new platform design was developed to provide a system with dramatically improved control over the number of components and with improved batch reproducibility. Using semi-preparative HPLC, individual dendrimer-ligand components were isolated. The isolated dendrimer with precise numbers of ligands were characterized by NMR and analytical HPLC. In total, nine different dendrimer-ligand components were obtained with degrees of purity ≥80%. This system has the potential to serve as a platform to which a precise number of functional molecules

  2. Broadband Light-Harvesting Molecular Triads with High FRET Efficiency Based on the Coumarin-Rhodamine-BODIPY Platform.

    He, Longwei; Zhu, Sasa; Liu, Yong; Xie, Yinan; Xu, Qiuyan; Wei, Haipeng; Lin, Weiying

    2015-08-17

    Broadband capturing and FRET-based light-harvesting molecular triads, CRBs, based on the coumarin-rhodamine-BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue-green to yellow-orange regions (330-610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one-step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two-step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Roughness Effects on Fretting Fatigue

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  4. Characteristic of fretting damage in metal material

    Li, D.; Zhi, F.

    1988-10-01

    The fretting fatigue experiment of LC4 high strength aluminum alloy is described. An SEM examination of the fractology and morphology of fretting damage is carried out as well as an EDAX analysis of the chemical composition of fretting particles. The results show that many loose oxide particles were produced and accumulated in the fretting damage region. 10 references.

  5. Platforms.

    Josko, Deborah

    2014-01-01

    The advent of DNA sequencing technologies and the various applications that can be performed will have a dramatic effect on medicine and healthcare in the near future. There are several DNA sequencing platforms available on the market for research and clinical use. Based on the medical laboratory scientist or researcher's needs and taking into consideration laboratory space and budget, one can chose which platform will be beneficial to their institution and their patient population. Although some of the instrument costs seem high, diagnosing a patient quickly and accurately will save hospitals money with fewer hospital stays and targeted treatment based on an individual's genetic make-up. By determining the type of disease an individual has, based on the mutations present or having the ability to prescribe the appropriate antimicrobials based on the knowledge of the organism's resistance patterns, the clinician will be better able to treat and diagnose a patient which ultimately will improve patient outcomes and prognosis.

  6. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  7. EXPERIMENTAL INVESTIGTION OF THE FRETTING PHENOMENON

    Ştefan GHIMISI

    2015-12-01

    Full Text Available Fretting is now fully identified as a small amplitude oscilatory motion which induces a harmonic tangential force between two surfaces in contact.It is related to three main loadings, i.e. fretting-wear, fretting-fatigue and fretting corrosion.Fretting regimes were first mapped by Vingsbo. In a similar way, three fretting regimes will be considered: stick regime,slip regime and mixed regime. The mixed regime was made up of initial gross slip followed by partial slip condition after a few hundred cycles. Obviously the partial slip transition develops the highest stress levels which can induce fatigue crack nucleation depending on the fatigue properties of the two contacting first bodies. Therefore prediction of the frontier between partial slip and gross slip is required.

  8. Standard guide for fretting fatigue testing

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide defines terminology and covers general requirements for conducting fretting fatigue tests and reporting the results. It describes the general types of fretting fatigue tests and provides some suggestions on developing and conducting fretting fatigue test programs. 1.2 Fretting fatigue tests are designed to determine the effects of mechanical and environmental parameters on the fretting fatigue behavior of metallic materials. This guide is not intended to establish preference of one apparatus or specimen design over others, but will establish guidelines for adherence in the design, calibration, and use of fretting fatigue apparatus and recommend the means to collect, record, and reporting of the data. 1.3 The number of cycles to form a fretting fatigue crack is dependent on both the material of the fatigue specimen and fretting pad, the geometry of contact between the two, and the method by which the loading and displacement are imposed. Similar to wear behavior of materials, it is important t...

  9. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  10. The Leakage determination on corrosion fretting machine

    Sriyono; Satmoko, Ari; Hafid, Abdul; Febrianto; Prasetio, Joko; Abtokhi; Sumarno, Edy; Handoyo, Ismu; Hidayati, Nur Rahmah; Histori

    1998-01-01

    Fretting machine is an experimental loop to learn fretting corrosion phenomena wich is caused by loading and vibration. On the steam generator, one of the corrosion process that's occurred, it can be caused by vibration between tubes and bending material. Because of high flow rate inside the tube, the high frequency vibration will appeared so it can make the corrosion on bending material more faster. This process can be simulate by fretting machine. This machine has already damage because of leakage. So it will be repaired by dismantling, radiography testing and redrawing. from the result of radiography, the leakage is caused by cracking on bellows seals of the dynamic main support

  11. Understanding and modeling Förster-type resonance energy transfer (FRET) introduction to FRET

    Govorov, Alexander; Demir, Hilmi Volkan

    2016-01-01

    This Brief presents a historical overview of the Förster-type nonradiative energy transfer and a compilation of important progress in FRET research, starting from Förster until today, along with a summary of the current state-of-the-art. Here the objective is to provide the reader with a complete account of important milestones in FRET studies and FRET applications as well as a picture of the current status.

  12. Les vicissitudes du fret ferroviaire

    DABLANC, L

    2010-01-01

    Dans beaucoup de pays européens, et plus encore en Amérique du Nord et en Asie, le transport de marchandises par le train a augmenté depuis dix ans. Cette activité réduit la part des marchandises acheminées par la route et contribue ainsi au développement durable : un camion émet 8 à 30 fois plus de dioxyde de carbone que le train, pour une distance et une quantité transportée équivalentes. Pourtant, la France a raté ce renouveau. Filiale du groupe public SNCF, la Société Fret SNCF, qui assur...

  13. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants

    Lafleur, Josiane P.; Senkbeil, Silja; Jensen, Thomas G.

    2012-01-01

    Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in......-field, detection of two important classes of environmental contaminants – heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L−1 and 16 μg L−1 could be obtained for the heavy metal mercury...... and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants....

  14. Prediction of fretting fatigue behavior under elastic-plastic conditions

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  15. Nanoparticle-based therapy for respiratory diseases

    ADRIANA L. DA SILVA

    2013-03-01

    Full Text Available Nanotechnology is an emerging science with the potential to create new materials and strategies involving manipulation of matter at the nanometer scale (<100 nm. With size-dependent properties, nanoparticles have introduced a new paradigm in pharmacotherapy – the possibility of cell-targeted drug delivery with minimal systemic side effects and toxicity. The present review provides a summary of published findings, especially regarding to nanoparticle formulations for lung diseases. The available data have shown some benefits with nanoparticle-based therapy in the development of the disease and lung remodeling in respiratory diseases. However, there is a wide gap between the concepts of nanomedicine and the published experimental data and clinical reality. In addition, studies are still required to determine the potential of nanotherapy and the systemic toxicity of nanomaterials for future human use.

  16. The Use of Two-Photon FRET-FLIM to Study Protein Interactions During Nuclear Envelope Fusion In Vivo and In Vitro.

    Byrne, Richard D; Larijani, Banafshé; Poccia, Dominic L

    2016-01-01

    FRET-FLIM techniques have wide application in the study of protein and protein-lipid interactions in cells. We have pioneered an imaging platform for accurate detection of functional states of proteins and their interactions in fixed cells. This platform, two-site-amplified Förster resonance energy transfer (a-FRET), allows greater signal generation while retaining minimal noise thus enabling application of fluorescence lifetime imaging microscopy (FLIM) to be routinely deployed in different types of cells and tissue. We have used the method described here, time-resolved FRET monitored by two-photon FLIM, to demonstrate the direct interaction of Phospholipase Cγ (PLCγ) by Src Family Kinase 1 (SFK1) during nuclear envelope formation and during male and female pronuclear membrane fusion in fertilized sea urchin eggs. We describe here a generic method that can be applied to monitor any proteins of interest.

  17. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.

    Aissaoui, Nesrine; Moth-Poulsen, Kasper; Käll, Mikael; Johansson, Peter; Wilhelmsson, L Marcus; Albinsson, Bo

    2017-01-05

    Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.

  18. CONSIDERATIONS REGARDING THE FRETTING PHENOMENON USING LEAF SPRINGS

    Stefan GHIMIȘI

    2015-05-01

    Full Text Available The fretting phenomenon represents particulary and complex form of wear who is; generaly, and/or weary of fretting who is produced on the load contact in a relative oscialatory movement lay small amplitude.A simultaneoustly applied tangential force and normal into contact appears a adhesion force

  19. Wave propagation in coated cylinders with reference to fretting fatigue

    is to study stress wave propagation in cylinders with reference to high frequency fretting. ... The motivation for studying of fretting fatigue at higher frequency is to investigate the ... Hence focus in this work is given to thin rods and cylinders. The.

  20. Probing protein-lipid interactions by FRET between membrane fluorophores

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  1. FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D

    Bruno, John G.

    2013-01-01

    called a "lights on" FRET response. The vitamin D aptamer beacon gives a "lights off" or inversely proportional fluorescence response to the amount of vitamin D present in diluted serum. These FRET-aptamer assays are rapid (<30 minutes), sensitive (low ng/mL detection limits), and quite easy to carry out (add sample, mix, and detect in the handheld reader). Benefits include the speed of the assays as well as the small amount of space taken up by the handheld reader and cuvette assays. The aptamer DNA sequences represent novel additional features of the existing (patent-pending) FRET-aptamer assay platform.

  2. Nuclear Fuel Fretting Mechanisms in a Room Temperature Unlubricated Condition

    Lee, Young Ho; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, efforts for evaluating the fretting wear mechanism have been carried out by many researchers in various conditions. In an unlubricated condition, especially, effects of a wear debris and/or its layer on the fretting wear behavior were proposed that the formation of a well-developed glaze layer has a beneficial effect for decreasing a friction coefficient. Otherwise, a wear rate was accelerated by a third-body abrasion. At this time, it is well known that wear debris behaviors are affected by test variables such as a temperature, environment, material characteristics, etc. In a nuclear fuel fretting, however, its contact condition is quite different when compared with general fretting wear studies and could be summarized as the following; first, a fuel rod is supported by spacer grid springs and dimples that were elastically deformable. This results in a unique friction loop and a different fretting mechanism when a fuel rod is vibrated due to a flow-induced vibration (FIV). Next, it is possible that some region of the wear scar area with a specific spring shape condition could be hidden due to different wear debris behavior. So, some of the wear debris layers could be found on the worn surfaces in previous studies even though fretting wear tests were performed in a water lubricated condition. Finally, initial contact condition could be changed both an actual operating condition in power plants (i.e. high temperature and pressurized water (HTHP) under severe irradiation conditions) and the fretting wear tests for evaluating the wear resistant spring in lab conditions (i.e. from room temperature to HTHP without irradiation conditions) due to material degradations and the formation of the wear scar, respectively. In summary, the spring shape effect and the variation of the contact condition with increasing fretting cycle should be evaluated in order to improve the wear resistance of the spacer grid spring. So, in this study, fretting wear tests have been

  3. Development of FRET biosensors for mammalian and plant systems

    Hamers, D.; van Voorst Vader, L.; Borst, J.W.; Goedhart, J.

    2014-01-01

    Genetically encoded biosensors are increasingly used in visualising signalling processes in different organisms. Sensors based on green fluorescent protein technology are providing a great opportunity for using Forster resonance energy transfer (FRET) as a tool that allows for monitoring dynamic

  4. Mechanisms of fretting-fatigue of titanium alloys

    Antoniou, R A; Radtke, T C [Defence Sci. and Technol. Organ., Melbourne, Vic. (Australia). Aeronautical and Maritime Res. Lab.

    1997-09-30

    The effect of continuous fretting in air at 20 C on fatigue performance has been studied for Ti-17 and Ti-6Al-4V, high strength titanium alloys used for gas-turbine fan and compressor disks and blades, respectively. The effect of fretting was to reduce the fatigue stress limit from 700 MPa for plain fatigue to 200 MPa for fretting-fatigue. A number of models, supported by metallographic and fractographic evidence, are proposed which explain (i) how the cyclic loading of individual asperities results in crack initiation; (ii) the formation of multiple cracks; (iii) the existence of non-propagating cracks; and (iv) how fretting influences crack propagation once fatigue cracks have formed. (orig.) 46 refs.

  5. Fluorescence resonance energy transfer (FRET) in chemistry and ...

    Förster distance dependence of the FRET rate. SANGEETA SAINI,1 HARJINDER SINGH2 and BIMAN BAGCHI1,*. 1Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012. 2Permanent address: Department of ...

  6. QD-Based FRET Probes at a Glance

    Armen Shamirian

    2015-06-01

    Full Text Available The unique optoelectronic properties of quantum dots (QDs give them significant advantages over traditional organic dyes, not only as fluorescent labels for bioimaging, but also as emissive sensing probes. QD sensors that function via manipulation of fluorescent resonance energy transfer (FRET are of special interest due to the multiple response mechanisms that may be utilized, which in turn imparts enhanced flexibility in their design. They may also function as ratiometric, or “color-changing” probes. In this review, we describe the fundamentals of FRET and provide examples of QD-FRET sensors as grouped by their response mechanisms such as link cleavage and structural rearrangement. An overview of early works, recent advances, and various models of QD-FRET sensors for the measurement of pH and oxygen, as well as the presence of metal ions and proteins such as enzymes, are also provided.

  7. a Study on the Fretting Fatigue Life of Zircaloy Alloys

    Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck

    Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.

  8. Fuel bundle to pressure tube fretting in Bruce and Darlington

    Norsworthy, A G; Ditschun, A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs.

  9. Fuel bundle to pressure tube fretting in Bruce and Darlington

    Norsworthy, A.G.; Ditschun, A.

    1995-01-01

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs

  10. A new trend to determine biochemical parameters by quantitative FRET assays.

    Liao, Jia-yu; Song, Yang; Liu, Yan

    2015-12-01

    Förster resonance energy transfer (FRET) has been widely used in biological and biomedical research because it can determine molecule or particle interactions within a range of 1-10 nm. The sensitivity and efficiency of FRET strongly depend on the distance between the FRET donor and acceptor. Historically, FRET assays have been used to quantitatively deduce molecular distances. However, another major potential application of the FRET assay has not been fully exploited, that is, the use of FRET signals to quantitatively describe molecular interactive events. In this review, we discuss the use of quantitative FRET assays for the determination of biochemical parameters, such as the protein interaction dissociation constant (K(d)), enzymatic velocity (k(cat)) and K(m). We also describe fluorescent microscopy-based quantitative FRET assays for protein interaction affinity determination in cells as well as fluorimeter-based quantitative FRET assays for protein interaction and enzymatic parameter determination in solution.

  11. Gold nanoparticle-based microfluidic sensor for mercury detection

    Lafleur, Josiane P.; Jensen, Thomas Glasdam; Kutter, Jörg Peter

    2011-01-01

    The contamination of natural resources by human activity can have severe socio-economical impacts. Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for remote/field sensing. A gold nanoparticle-based lab...

  12. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair

    Hsu, Y.-Y.; Liu, Y.-N.; Wang Wenyen; Kao, Fu-Jen; Kung, S.-H.

    2007-01-01

    An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP 2 )-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2A pro ) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2A pro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research

  13. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    Shaoying Lu

    2008-07-01

    Full Text Available Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP experiments, we have developed a finite element (FE method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2/sec than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2/sec and outside: 0.18+/-0.02 microm(2/sec. The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  14. Intonation and compensation of fretted string instruments

    Varieschi, Gabriele; Gower, Christina

    2011-04-01

    We discuss theoretical and physical models that are useful for analyzing the intonation of musical instruments such as guitars and mandolins and can be used to improve the tuning on these instruments. The placement of frets on the fingerboard is designed according to mathematical rules and the assumption of an ideal string. The analysis becomes more complicated when we include the effects of deformation of the string and inharmonicity due to other string characteristics. As a consequence, perfect intonation of all the notes on the instrument cannot be achieved, but complex compensation procedures can be introduced to minimize the problem. To test the validity of these procedures, we performed extensive measurements using standard monochord sonometers and other acoustical devices, confirming the correctness of our theoretical models. These experimental activities can be integrated into acoustics courses and laboratories and can become a more advanced version of basic experiments with monochords and sonometers. This work was supported by a grant from the Frank R. Seaver College of Science and Engineering, Loyola Marymount University.

  15. Assessment of fretting wear in Hanaro fuel

    Chae, Hee Taek; Lim, Kyeong Hwan; Kim, Hark Rho

    1999-06-01

    Since the first fuel loading on Feb. 1995, various zero-power tests were performed in HANARO and power ascending tests followed. After the initial fuel loading, Hanaro operation staffs inspected only two fuel bundles which were evaluated to have the highest power at the end of each cycle and they did not recognize anything peculiar in the inspected bundles. At the end of 1996, Hanaro staffs found severe wear damages in the fuel components. After that, the 4th cycle core was re-arranged with fresh fuels only to investigate wear phenomena on the fuel components. The fuel inspections have been performed 25 times periodically since the core re-configuration. In this report, fretting wear characteristics of the fuel assemblies were evaluated and summarized. Wear damages of the improved fuel assembly to resolve the wear problem were compared with those of the original fuel assembly. Based on the results of the fuel inspections, we suggest that fuel inspection need not be done for the first 60 pump operation days in order to reduce the potential of damage by a fuel handling error and an operator's burden of the fuel inspection. (author). 6 refs., 10 tabs., 5 figs

  16. Applicability of out-of-pile fretting wear tests to in-reactor fretting wear-induced failure time prediction

    Kim, Kyu-Tae

    2013-02-01

    In order to investigate whether or not the grid-to-rod fretting wear-induced fuel failure will occur for newly developed spacer grid spring designs for the fuel lifetime, out-of-pile fretting wear tests with one or two fuel assemblies are to be performed. In this study, the out-of-pile fretting wear tests were performed in order to compare the potential for wear-induced fuel failure in two newly-developed, Korean PWR spacer grid designs. Lasting 20 days, the tests simulated maximum grid-to-rod gap conditions and the worst flow induced vibration effects that might take place over the fuel life time. The fuel rod perforation times calculated from the out-of-pile tests are greater than 1933 days for 2 μm oxidized fuel rods with a 100 μm grid-to-rod gap, whereas those estimated from in-reactor fretting wear failure database may be about in the range of between 60 and 100 days. This large discrepancy in fuel rod perforation may occur due to irradiation-induced cladding oxide microstructure changes on the one hand and a temperature gradient-induced hydrogen content profile across the cladding metal region on the other hand, which may accelerate brittleness in the grid-contacting cladding oxide and metal regions during the reactor operation. A three-phase grid-to-rod fretting wear model is proposed to simulate in-reactor fretting wear progress into the cladding, considering the microstructure changes of the cladding oxide and the hydrogen content profile across the cladding metal region combined with the temperature gradient. The out-of-pile tests cannot be directly applicable to the prediction of in-reactor fretting wear-induced cladding perforations but they can be used only for evaluating a relative wear resistance of one grid design against the other grid design.

  17. Influence of Fretting on Flexural Fatigue of 304 Stainless Steel and Mild Steel

    Bill, Robert

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural-fatigue test arrangement with bolted-on fretting pads have demonstrated that fatigue life is reduced by at least a factor...

  18. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor

    Du, Mengyan; Yang, Fangfang; Mai, Zihao; Qu, Wenfeng; Lin, Fangrui; Wei, Lichun; Chen, Tongsheng

    2018-04-01

    We here introduce a fluorescence resonance energy transfer (FRET) two-hybrid assay method to measure the maximal donor(D)- and acceptor(A)-centric FRET efficiency (ED,max and EA,max) of the D-A complex and its stoichiometry by linearly fitting the donor-centric FRET efficiency (ED) to the acceptor-to-donor concentration ratio (RC) and acceptor-centric FRET efficiency (EA) to 1/RC, respectively. We performed this method on a wide-field fluorescence microscope for living HepG2 cells co-expressing FRET tandem constructs and free donor/acceptor and obtained correct ED, EA, and stoichiometry values of those tandem constructs. Evaluation on the binding of Bad with Bcl-XL in Hela cells showed that Bad interacted strongly with Bcl-XL to form a Bad-Bcl-XL complex on mitochondria, and one Bad interacted mainly with one Bcl-XL molecule in healthy cells, while with multiple (maybe 2) Bcl-XL molecules in apoptotic cells.

  19. One-step synthesis of DNA functionalized cadmium-free quantum dots and its application in FRET-based protein sensing

    Zhang, Cuiling, E-mail: clzhang@chem.ecnu.edu.cn [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Ding, Caiping [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Zhou, Guohua [School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048 (China); Xue, Qin [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Xian, Yuezhong, E-mail: yzxian@chem.ecnu.edu.cn [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China)

    2017-03-08

    DNA functionalized quantum dots (QDs) are promising nanoprobes for the fluorescence resonance energy transfer (FRET)-based biosensing. Herein, cadmium-free DNA functionalized Mn-doped ZnS (DNA-ZnS:Mn{sup 2+}) QDs were successfully synthesized by one-step route. As-synthesized QDs show excellent photo-stability with the help of PAA and DNA. Then, we constructed a novel FRET model based on the QDs and WS{sub 2} nanosheets as the energy donor-acceptor pairs, which was successfully applied for the protein detection through the terminal protection of small molecule-linked DNA assay. This work not only explores the potential bioapplication of the DNA-ZnS:Mn{sup 2+} QDs, but also provides a platform for the investigation of small molecule-protein interaction. - Highlights: • The stable and cadmium-free DNA functionalized ZnS:Mn{sup 2+} QDs were successfully synthesized through a facile one-step route. • We constructed a novel FRET system based on one-step synthesized DNA-ZnS:Mn{sup 2+} QDs (donor) and WS{sub 2} nanosheets (acceptor). • The FRET-based strategy was applied for the detection of streptavidin and folate receptor by combining TPSMLD and Exo III.

  20. Application of Influence Function Method to the Fretting Wear Problems

    Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck [Yeungnam University, Gyongsan (Korea, Republic of)

    2006-07-01

    Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems.

  1. Application of Influence Function Method to the Fretting Wear Problems

    Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck

    2006-01-01

    Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems

  2. DNA-conjugated gold nanoparticles based colorimetric assay to assess helicase activity: a novel route to screen potential helicase inhibitors

    Deka, Jashmini; Mojumdar, Aditya; Parisse, Pietro; Onesti, Silvia; Casalis, Loredana

    2017-03-01

    Helicase are essential enzymes which are widespread in all life-forms. Due to their central role in nucleic acid metabolism, they are emerging as important targets for anti-viral, antibacterial and anti-cancer drugs. The development of easy, cheap, fast and robust biochemical assays to measure helicase activity, overcoming the limitations of the current methods, is a pre-requisite for the discovery of helicase inhibitors through high-throughput screenings. We have developed a method which exploits the optical properties of DNA-conjugated gold nanoparticles (AuNP) and meets the required criteria. The method was tested with the catalytic domain of the human RecQ4 helicase and compared with a conventional FRET-based assay. The AuNP-based assay produced similar results but is simpler, more robust and cheaper than FRET. Therefore, our nanotechnology-based platform shows the potential to provide a useful alternative to the existing conventional methods for following helicase activity and to screen small-molecule libraries as potential helicase inhibitors.

  3. Application of FRET probes in the analysis of neuronal plasticity

    Yoshibumi eUeda

    2013-10-01

    Full Text Available Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since GFP was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET, which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.

  4. Approximate stresses in 2-D flat elastic contact fretting problems

    Urban, Michael Rene

    Fatigue results from the cyclic loading of a solid body. If the body subject to fatigue is in contact with another body and relative sliding motion occurs between these two bodies, then rubbing surface damage can accelerate fatigue failure. The acceleration of fatigue failure is especially important if the relative motion between the two bodies results in surface damage without excessive surface removal via wear. The situation just described is referred to as fretting fatigue. Understanding of fretting fatigue is greatly enhanced if the stress state associated with fretting can be characterized. For Hertzian contact, this can readily be done. Unfortunately, simple stress formulae are not available for flat body contact. The primary result of the present research is the development of a new, reasonably accurate, approximate closed form expression for 2-dimensional contact stresses which has been verified using finite element modeling. This expression is also combined with fracture mechanics to provide a simple method of determining when a crack is long enough to no longer be affected by the contact stress field. Lower bounds on fatigue life can then easily be calculated using fracture mechanics. This closed form expression can also be used to calculate crack propagation within the contact stress field. The problem of determining the cycles required to generate an initial crack and what to choose as an initial crack size is unresolved as it is in non-fretting fatigue.

  5. Characterizing single-molecule FRET dynamics with probability distribution analysis.

    Santoso, Yusdi; Torella, Joseph P; Kapanidis, Achillefs N

    2010-07-12

    Probability distribution analysis (PDA) is a recently developed statistical tool for predicting the shapes of single-molecule fluorescence resonance energy transfer (smFRET) histograms, which allows the identification of single or multiple static molecular species within a single histogram. We used a generalized PDA method to predict the shapes of FRET histograms for molecules interconverting dynamically between multiple states. This method is tested on a series of model systems, including both static DNA fragments and dynamic DNA hairpins. By fitting the shape of this expected distribution to experimental data, the timescale of hairpin conformational fluctuations can be recovered, in good agreement with earlier published results obtained using different techniques. This method is also applied to studying the conformational fluctuations in the unliganded Klenow fragment (KF) of Escherichia coli DNA polymerase I, which allows both confirmation of the consistency of a simple, two-state kinetic model with the observed smFRET distribution of unliganded KF and extraction of a millisecond fluctuation timescale, in good agreement with rates reported elsewhere. We expect this method to be useful in extracting rates from processes exhibiting dynamic FRET, and in hypothesis-testing models of conformational dynamics against experimental data.

  6. Rational design of FRET-based sensor proteins

    Merkx, M.

    2008-01-01

    Real-time imaging of molecular events inside living cells is important for understanding the basis of physiological processes and diseases. Genetically encoded sensors that use fluorescence resonance energy transfer (FRET) between two fluorescent proteins are attractive in this respect because they

  7. Uncovering Aberrant Mutant PKA Function with Flow Cytometric FRET

    Shin-Rong Lee

    2016-03-01

    Full Text Available Biology has been revolutionized by tools that allow the detection and characterization of protein-protein interactions (PPIs. Förster resonance energy transfer (FRET-based methods have become particularly attractive as they allow quantitative studies of PPIs within the convenient and relevant context of living cells. We describe here an approach that allows the rapid construction of live-cell FRET-based binding curves using a commercially available flow cytometer. We illustrate a simple method for absolutely calibrating the cytometer, validating our binding assay against the gold standard isothermal calorimetry (ITC, and using flow cytometric FRET to uncover the structural and functional effects of the Cushing-syndrome-causing mutation (L206R on PKA’s catalytic subunit. We discover that this mutation not only differentially affects PKAcat’s binding to its multiple partners but also impacts its rate of catalysis. These findings improve our mechanistic understanding of this disease-causing mutation, while illustrating the simplicity, general applicability, and power of flow cytometric FRET.

  8. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-01-01

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535

  9. Inferring properties of disordered chains from FRET transfer efficiencies

    Zheng, Wenwei; Zerze, Gül H.; Borgia, Alessandro; Mittal, Jeetain; Schuler, Benjamin; Best, Robert B.

    2018-03-01

    Förster resonance energy transfer (FRET) is a powerful tool for elucidating both structural and dynamic properties of unfolded or disordered biomolecules, especially in single-molecule experiments. However, the key observables, namely, the mean transfer efficiency and fluorescence lifetimes of the donor and acceptor chromophores, are averaged over a broad distribution of donor-acceptor distances. The inferred average properties of the ensemble therefore depend on the form of the model distribution chosen to describe the distance, as has been widely recognized. In addition, while the distribution for one type of polymer model may be appropriate for a chain under a given set of physico-chemical conditions, it may not be suitable for the same chain in a different environment so that even an apparently consistent application of the same model over all conditions may distort the apparent changes in chain dimensions with variation of temperature or solution composition. Here, we present an alternative and straightforward approach to determining ensemble properties from FRET data, in which the polymer scaling exponent is allowed to vary with solution conditions. In its simplest form, it requires either the mean FRET efficiency or fluorescence lifetime information. In order to test the accuracy of the method, we have utilized both synthetic FRET data from implicit and explicit solvent simulations for 30 different protein sequences, and experimental single-molecule FRET data for an intrinsically disordered and a denatured protein. In all cases, we find that the inferred radii of gyration are within 10% of the true values, thus providing higher accuracy than simpler polymer models. In addition, the scaling exponents obtained by our procedure are in good agreement with those determined directly from the molecular ensemble. Our approach can in principle be generalized to treating other ensemble-averaged functions of intramolecular distances from experimental data.

  10. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus.

    Shi, Jingyu; Chan, Chunyu; Pang, Yukting; Ye, Weiwei; Tian, Feng; Lyu, Jing; Zhang, Yu; Yang, Mo

    2015-05-15

    In this work, a novel fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) pairs was developed for Staphylococcus aureus specific gene sequence detection. This FRET biosensor platform was realized by immobilization of capture probes on GQDs and conjugation of reporter probes on AuNPs. Target oligos then co-hybridized with capture probes and reporter probes to form a sandwich structure which brought GQDs and AuNPs to close proximity to trigger FRET effect. The fluorescence signals before and after addition of targets were measured and the fluorescence quenching efficiency could reach around 87% with 100 nM target oligo. The limit of detection (LOD) of this FRET biosensor was around 1 nM for S.aureus gene detection. Experiments with both single-base mismatched oligos and double-base mismatched oligos demonstrated the good sequence selectivity of this FRET biosensor. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. rFRET: A comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments.

    Nagy, Peter; Szabó, Ágnes; Váradi, Tímea; Kovács, Tamás; Batta, Gyula; Szöllősi, János

    2016-04-01

    Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  12. Nanoparticle-based immunosensors and immunoassays for aflatoxins

    Wang, Xu; Niessner, Reinhard [Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München (Germany); Tang, Dianping [Key Laboratory of Analysis and Detection for Food Safety, MOE & Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Knopp, Dietmar, E-mail: dietmar.knopp@ch.tum.de [Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München (Germany)

    2016-03-17

    Aflatoxins are naturally existing mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus, present in a wide range of food and feed products. Because of their extremely high toxicity and carcinogenicity, strict control of maximum residue levels of aflatoxins in foodstuff is set by many countries. In daily routine, different chromatographic methods are used almost exclusively. As supplement, in several companies enzyme immunoassay-based sample testing as primary screening is performed. Recently, nanomaterials such as noble metal nanoparticles, magnetic particles, carbon nanomaterials, quantum dots, and silica nanomaterials are increasingly utilized for aflatoxin determination to improve the sensitivity and simplify the detection. They are employed either as supports for the immobilization of biomolecules or as electroactive or optical labels for signal transduction and amplification. Several nanoparticle-based electrochemical, piezoelectric, optical, and immunodipstick assays for aflatoxins have been developed. In this review, we summarize these recent advances and illustrate novel concepts and promising applications in the field of food safety. - Highlights: • Novel concepts and promising applications of nanoparticle-based immunological methods for the determination of aflatoxins. • Inclusion of most important nanomaterials and hybrid nanostructures. • Inclusion of electrochemical, optical and mass-sensitive biosensors as well as optical and immunochromatographic assays.

  13. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    Park, Young Woo; Ramesh Bapu, G.N.K.; Lee, Kang Yong

    2009-01-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at ±25 μm displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  14. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.

    Ruud G J Detert Oude Weme

    Full Text Available Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET. Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM. For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.

  15. Burst pressure and leak rate from fretted SG tubes

    Hwang, Seong Sik; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2005-01-01

    Steam generator(SG) tubes of a pressurized water reactor(PWR) have suffered from various types of corrosion, such as pitting, wastage and stress corrosion cracking (SCC) on both the primary and secondary side. Recently, fretting/wear degradation at the tube support region has been reported in some Korean nuclear power plants. In order to prevent the primary coolant from leaking to the secondary side, the tubes are repaired by a sleeving or plugging. It is important to establish the repair criteria to assure a reactor integrity and yet maintain the plugging ratio within the limits needed for an efficient operation. The objective of the burst test is to obtain a relationship between the burst/leak rate and the shape of the fretted flaws machined with an electro discharge machining (EDM)

  16. NIR FRET Fluorophores for Use as an Implantable Glucose Biosensor

    Majed DWEIK

    2008-12-01

    Full Text Available Development of an in vivo optical sensor requires the utilization of Near Infra Red (NIR fluorophores due to their ability to operate within the biological tissue window. Alexa Fluor 750 (AF750 and Alexa Fluor 680 (AF680 were examined as potential NIR fluorophores for an in vivo fluorescence resonance energy transfer (FRET glucose biosensor. AF680 and AF750 found to be a FRET pair and percent energy transfer was calculated. Next, the tested dye pair was utilized in a competitive binding assay in order to detect glucose. Concanavalin A (Con A and dextran have binding affinity, but in the presence of glucose, glucose displaces dextran due to its higher affinity to Con A than dextran. Finally, the percent signal transfer through porcine skin was examined. The results showed with approximately 4.0 mm porcine skin thickness, 1.98 % of the fluorescence was transmitted and captured by the detector.

  17. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors

    Jones, Alexander M; Danielson, Jonas ÅH; ManojKumar, Shruti N; Lanquar, Viviane; Grossmann, Guido; Frommer, Wolf B

    2014-01-01

    Cytosolic hormone levels must be tightly controlled at the level of influx, efflux, synthesis, degradation and compartmentation. To determine ABA dynamics at the single cell level, FRET sensors (ABACUS) covering a range ∼0.2–800 µM were engineered using structure-guided design and a high-throughput screening platform. When expressed in yeast, ABACUS1 detected concentrative ABA uptake mediated by the AIT1/NRT1.2 transporter. Arabidopsis roots expressing ABACUS1-2µ (Kd∼2 µM) and ABACUS1-80µ (Kd∼80 µM) respond to perfusion with ABA in a concentration-dependent manner. The properties of the observed ABA accumulation in roots appear incompatible with the activity of known ABA transporters (AIT1, ABCG40). ABACUS reveals effects of external ABA on homeostasis, that is, ABA-triggered induction of ABA degradation, modification, or compartmentation. ABACUS can be used to study ABA responses in mutants and quantitatively monitor ABA translocation and regulation, and identify missing components. The sensor screening platform promises to enable rapid fine-tuning of the ABA sensors and engineering of plant and animal hormone sensors to advance our understanding of hormone signaling. DOI: http://dx.doi.org/10.7554/eLife.01741.001 PMID:24737862

  18. Surveillance of siRNA integrity by FRET imaging

    Järve, Anne; Müller, Julius; Kim, Il-Han; Rohr, Karl; MacLean, Caroline; Fricker, Gert; Massing, Ulrich; Eberle, Florian; Dalpke, Alexander; Fischer, Roger; Trendelenburg, Michael F.; Helm, Mark

    2007-01-01

    Techniques for investigation of exogenous small interfering RNA (siRNA) after penetration of the cell are of substantial interest to the development of efficient transfection methods as well as to potential medical formulations of siRNA. A FRET-based visualization method including the commonplace dye labels fluorescein and tetramethylrhodamin (TMR) on opposing strands of siRNA was found compatible with RNA interference (RNAi). Investigation of spectral properties of three labelled siRNAs with differential FRET efficiencies in the cuvette, including pH dependence and FRET efficiency in lipophilic environments, identified the ratio of red and green fluorescence (R/G-ratio) as a sensitive parameter, which reliably identifies samples containing >90% un-degraded siRNA. Spectral imaging of siRNAs microinjected into cells showed emission spectra indistinguishable from those measured in the cuvette. These were used to establish a calibration curve for assessing the degradation state of siRNA in volume elements inside cells. An algorithm, applied to fluorescence images recorded in standard green and red fluorescence channels, produces R/G-ratio images of high spatial resolution, identifying volume elements in the cell with high populations of intact siRNA with high fidelity. To demonstrate the usefulness of this technique, the movement of intact siRNA molecules are observed after introduction into the cytosol by microinjection, standard transfection and lipofection with liposomes. PMID:17890733

  19. Experimental fretting-wear studies of steam generator materials

    Fisher, N.J.; Chow, A.B.; Weckwerth, M.K.

    1994-01-01

    Flow-induced vibration of steam generator tubes results in fretting-wear damage due to impacting and rubbing of the tubes against their supports. This damage can be predicted by computing tube response to flow-induced excitation forces using analytical techniques, and then relating this response to resultant wear damage using experimentally-derived wear coefficients. Fretting-wear of steam generator materials has been studied experimentally at Chalk River Laboratories for two decades. Tests are conducted in machines that simulate steam generator environmental conditions and tube-to-support dynamic interactions. Different tube and support materials, tube-to-support clearances and tube support geometries have been studied. As well, the effect of environmental conditions, such as temperature, oxygen content, pH and chemistry control additive, have been investigated. Early studies showed that damage was related to contact force as long as other parameters, such as geometry and motion were held constant. Later studies have shown that damage is related to a parameter called work-rate, which combines both contact force and sliding distance. Results of short- and long-term fretting-wear tests for CANDU steam generator materials at realistic environmental conditions are presented. These results demonstrate that work-rate is appropriate correlating parameter for impact-sliding interaction

  20. Aspects of fretting wear of sprayed cermet coatings

    Chivers, T.C.

    1985-01-01

    Two experimental fretting programmes which investigated aspects of fretting wear of sprayed cermet coatings are reviewed. These programmes were conducted in support of components used in the advanced gas-cooled reactor. It is speculated that the results from these programmes are compatible with a simple two-stage wear model. This model assumes that an initial wear process occurs which is dominated by an interlocking and removal of asperities. Such a phase will be dependent on the superficial contact areas and possibly the interfacial load, but the latter aspect is not considered. This initial wear is of very short duration and is followed by a mild, oxidative, wear mode. Coatings data are also compared with those for structural steels. In short-term low temperature tests it appears that structural steels have comparable performance with the cermet coatings but it is argued that this is an artefact of the wear process. However, at high temperatures (600 0 C) wear of stainless steel could not be determined, the specimens showing a net weight gain. It is concluded that for in-reactor fretting applications cermet coatings will have advantages over structural steels at low temperatures. Even in high temperature regions some operation at low temperatures is experienced and consequently cermet coatings may be useful here also. (orig.)

  1. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    Cole, Steven E.; Garner, Norman L.; Lippert, Hans-Joachim; Graebert, Rüdiger; Mollard, Pierre; Hahn, Gregory C.

    2014-01-01

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  2. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    Uhna Sung

    Full Text Available FRET (Förster Resonance Energy Transfer-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms and signal decay (~3 ms. We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP and mRuby2 (acceptor FP to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz.

  3. Fretting and wear of stainless and ferritic steels in LMFBR steam generators

    Lewis, M.W.J.; Campbell, C.S.

    1981-01-01

    Steam generators for LMFBR's may be subject to both fretting wear as a result of flow-induced vibrations and to wear from larger amplitude sliding movements from thermal changes. Results of tests simulating the latter are given for stainless and ferritic steels. For the assessment of fretting wear damage, vibration assessments must be combined with data on specific wear rates. Test mechanisms used to study fretting in sodium covering impact, impact-slide and pure rubbing are described and results presented. (author)

  4. Prediction of pressure tube fretting-wear damage due to fuel vibration

    Yetisir, M.; Fisher, N.J.

    1997-01-01

    Fretting marks between fuel bundle bearing pads and pressure tubes have been observed at the inlet end of some Darlington Nuclear Generating Station (NGS) and Bruce NGS fuel channels. The excitation mechanisms that lead to fretting are not fully understood. In this paper, the possibility of bearing pad-to-pressure tube fretting due to turbulence-induced motion of the fuel element is investigated. Numerical simulations indicate that this mechanism by itself is not likely to cause the level of fretting experienced in Darlington and Bruce NGSs. (orig.)

  5. Characteristics of CANDU fuel bundles that caused pressure tube fretting at the bundle midplane

    Dennier, D; Manzer, A M [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Koehn, E [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    Detailed measurements on new bundles, and those that caused fretting during in- and out-reactor tests, have given insight into the factors responsible for fretting at the midplane of the inlet bundle. Bottom fuel elements that were attached near radial endplate spokes and had inboard bearing pads in the rolled joint cavity produced a significant portion of the observed fret marks. These elements are influenced by several driving forces that deflect the centre bearing pads towards the pressure tube surface. The evidence suggests that slight changes in bundle design may be possible to reduce pressure tube fretting. (author). 4 refs., 3 tabs., 8 figs.

  6. Roughness Influence on Initiation of Fretting Fatigue Scar of Ti-6Al-4V Alloy

    Capitanu, L.; Badita, L. L.; Florescu, V.; Tiganesteanu, C.

    2018-01-01

    This paper reports on the experimental studies undertaken to detect the early stage when appears the fretting wear of the Ti-6Al-4V alloy used for the hip prostheses. Wear is a critical aspect for estimating the fretting fatigue. Studies were performed on samples of special shape, in order to be able to study the influence of in contact surfaces roughness on the durability to fretting. Fretting buffers, with roughnesses Ra of the contact surface of 0.015 and 0.045 μm, and Ti-6Al-4V samples with roughnesses Ra = 0.045 μm, Ra = 0.075 μm and Ra = 0.19 μm, were used. Testing periods of 3 seconds, 1 minute and 5 minutes were selected to capture the moment of the fretting scar appearance, long before these initiate the eventual fretting cracking. Simultaneously with fretting wear of the surface, the friction coefficient was also measured. From the in time evolution determinations of the fretting wear, it resulted that, under the experimental conditions used, the minimum wear occurs at a certain value of the roughness and not at the minimum roughness. Surprisingly, the minimum friction coefficient does not coincide with the minimum fretting wear.

  7. Prediction of pressure tube fretting-wear damage due to fuel vibration

    Yetisir, M; Fisher, N J [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    Fretting marks between fuel bundle bearing pads and pressure tubes have been observed at the inlet end of some Darlington NGS (nuclear generating station) and Bruce NGS fuel channels. The excitation mechanisms that lead to fretting are not fully understood. In this paper, the possibility of bearing pad-to-pressure tube fretting due to turbulence-induced motion of the fuel element is investigated. Numerical simulations indicate that this mechanism by itself is not likely to cause the level of fretting experienced in Darlington and Bruce NGS`s (nuclear generating stations). (author). 12 refs., 2 tabs., 11 figs.

  8. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.

  9. Understanding and modeling Förster-type resonance energy transfer (FRET)

    Hernández Martínez, Pedro Ludwig; Demir, Hilmi Volkan

    2017-01-01

    This Brief presents a complete study of the generalized theory of Förster-type energy transfer in nanostructures with mixed dimensionality. Here the aim is to obtain a generalized theory of FRET including a comprehensive set of analytical equations for all combinations and configurations of nanostructures and deriving generic expressions for the dimensionality involved. In this brief, the modification of FRET mechanism with respect to the nanostructure serving as the donor vs. the acceptor will be included, focusing on the rate’s distance dependency and the role of the effective dielectric function in FRET, which will be a unique, useful source for those who study and model FRET.

  10. Dual Mechanism of an Intramolecular Charge Transfer (ICT)-FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide.

    Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing

    2017-12-14

    A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. FRET based integrated pyrene-AgNPs system for detection of Hg (II) and pyrene dimer: Applications to environmental analysis

    Walekar, Laxman S.; Hu, Peidong; Vafaei Molamahmood, Hamed; Long, Mingce

    2018-06-01

    The integrated system of pyrene and cetyltrimethyl ammonium bromide (CTAB) capped silver nanoparticles (AgNPs) with a distance (r) of 2.78 nm has been developed for the detection of Hg (II) and pyrene dimer. The interaction between pyrene and AgNPs results in the fluorescence quenching of pyrene due to the energy transfer, whose mechanism can be attributed to the Forster Resonance Energy Transfer (FRET) supported by experimental observation and theoretical calculations. The developed probe shows a highly selective and sensitive response towards Hg (II) probably due to the amalgam formation, which results in the fluorescence recovery (90%) of pyrene and color change of solution from yellowish brown to colorless. The addition of Hg (II) may increase the distance between pyrene and AgNPs undergoes the 'FRET OFF' process. This system gives a selective response towards Hg (II) over other competing metal ions. Under the optimal condition, the system offers good linearity between 0.1 and 0.6 μg mL-1 with a detection limit of 62 ng mL-1. In addition, the system also provides an effective platform for detection of pyrene in its dimer form even at very low concentrations (10 ng mL-1) on the surface of AgNPs. Therefore, it could be used as effective alternatives for the detection of Hg (II) as well as pyrene simultaneously.

  12. Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols.

    Alexandre Bourdès

    Full Text Available Förster resonance energy transfer (FRET biosensors are powerful tools to detect biologically important ligands in real time. Currently FRET bisosensors are available for twenty-two compounds distributed in eight classes of chemicals (two pentoses, two hexoses, two disaccharides, four amino acids, one nucleobase, two nucleotides, six ions and three phytoestrogens. To expand the number of available FRET biosensors we used the induction profile of the Sinorhizobium meliloti transportome to systematically screen for new FRET biosensors.Two new vectors were developed for cloning genes for solute-binding proteins (SBPs between those encoding FRET partner fluorescent proteins. In addition to a vector with the widely used cyan and yellow fluorescent protein FRET partners, we developed a vector using orange (mOrange2 and red fluorescent protein (mKate2 FRET partners. From the sixty-nine SBPs tested, seven gave a detectable FRET signal change on binding substrate, resulting in biosensors for D-quinic acid, myo-inositol, L-rhamnose, L-fucose, β-diglucosides (cellobiose and gentiobiose, D-galactose and C4-dicarboxylates (malate, succinate, oxaloacetate and fumarate. To our knowledge, we describe the first two FRET biosensor constructs based on SBPs from Tripartite ATP-independent periplasmic (TRAP transport systems.FRET based on orange (mOrange2 and red fluorescent protein (mKate2 partners allows the use of longer wavelength light, enabling deeper penetration of samples at lower energy and increased resolution with reduced back-ground auto-fluorescence. The FRET biosensors described in this paper for four new classes of compounds; (i cyclic polyols, (ii L-deoxy sugars, (iii β-linked disaccharides and (iv C4-dicarboxylates could be developed to study metabolism in vivo.

  13. Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples

    Martinez, S.A.; Sathish, S.; Blodgett, M.P.; Mall, S.; Namjoshi, S.

    2005-01-01

    X-ray diffraction residual stress measurement has been utilized as nondestructive tool for the characterization of fretting fatigue damage in shot peened samples of Ti-6Al-4V. Prior to fretting fatigue damage, compressive residual stresses were found to be uniform over the entire face of the sample and independent of the measurement direction. After fretting fatigue, inside and in the vicinity of the fretting damage zone large relaxation of compressive residual stress was observed. An anisotropic residual stress distribution has been observed in the fretting fatigue damaged region. Residual stress measurements in interrupted fretting fatigue experiments showed that the relaxation of residual stress increases as the number of fretting fatigue cycles increase. The results are discussed in the light of their importance in establishing X-ray diffraction residual stress measurement technique as a nondestructive tool to characterize fretting fatigue damage

  14. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting

    Bajar, Bryce T.; Wang, Emily S.; Lam, Amy J.; Kim, Bongjae B.; Jacobs, Conor L.; Howe, Elizabeth S.; Davidson, Michael W.; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Many genetically encoded biosensors use F?rster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intra...

  15. Multi step FRET among three laser dyes Pyrene, Acriflavine and Rhodamine B

    Saha, Jaba; Dey, Dibyendu; Roy, Arpan Datta; Bhattacharjee, D.; Hussain, Syed Arshad

    2016-01-01

    Fluorescence Resonance Energy Transfer (FRET) system using three dyes has been demonstrated. It has been observed that multi step energy transfer occurred from Pyrene to Rhodamine B via Acriflavine. Here Acriflavine acts as an antenna to receive energy from Pyrene and transfer the same to Rhodamine B. This multi step FRET system is advantageous compared to the conventional FRET as this can be used to study molecular level interaction beyond conventional FRET distance (1–10 nm) as well as studying multi-branched macromolecules. The introduction of clay enhances the FRET efficiencies among the dye pair, which is an advantage to make the multi step system more useful. Similar approach can be used for increasing FRET efficiencies by using other dyes. - Highlights: • Multi-step FRET occurred from Pyrene (Py) to Rhodamine B (RhB) via Acriflavine (Acf). • Acf acts as an antenna to receive energy from Py and to transfer energy to RhB. • Multi-step FRET can be used to study molecular level interaction beyond 1–10 nm. • Incorporation of nanoclay laponite enhances the energy transfer efficiency.

  16. Nucleic Acid Base Analog FRET-Pair Facilitating Detailed Structural Measurements in Nucleic Acid Containing Systems

    Börjesson, Karl; Preus, Søren; El-Sagheer, Afaf

    2009-01-01

    We present the first nucleobase analog fluorescence resonance energy transfer (FRET)-pair. The pair consists of tCO, 1,3-diaza-2-oxophenoxazine, as an energy donor and the newly developed tC(nitro), 7-nitro-1,3-diaza-2-oxophenothiazine, as an energy acceptor. The FRET-pair successfully monitors d...

  17. Nanoparticle-based drug delivery systems: promising approaches against infections

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  18. Nanoparticle-based drug delivery systems: promising approaches against infections

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  19. Polymer Nanoparticle-Based Chemotherapy for Spinal Malignancies

    Hongyun Ma

    2016-01-01

    Full Text Available Malignant spinal tumors, categorized into primary and metastatic ones, are one of the most serious diseases due to their high morbidity and mortality rates. Common primary spinal tumors include chordoma, chondrosarcoma, osteosarcoma, Ewing’s sarcoma, and multiple myeloma. Spinal malignancies are not only locally invasive and destructive to adjacent structures, such as bone, neural, and vascular structures, but also disruptive to distant organs (e.g., lung. Current treatments for spinal malignancies, including wide resection, radiotherapy, and chemotherapy, have made significant progress like improving patients’ quality of life. Among them, chemotherapy plays an important role, but its potential for clinical application is limited by severe side effects and drug resistance. To ameliorate the current situation, various polymer nanoparticles have been developed as promising excipients to facilitate the effective treatment of spinal malignancies by utilizing their potent advantages, for example, targeting, stimuli response, and synergetic effect. This review overviews the development of polymer nanoparticles for antineoplastic delivery in the treatment of spinal malignancies and discusses future prospects of polymer nanoparticle-based treatment methods.

  20. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; De Biasi, Federico; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-07-13

    The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

  1. Tumor specific lung cancer diagnostics with multiplexed FRET immunoassays

    Geißler, D.; Hill, D.; Löhmannsröben, H.-G.; Thomas, E.; Lavigne, A.; Darbouret, B.; Bois, E.; Charbonnière, L. J.; Ziessel, R. F.; Hildebrandt, N.

    2010-02-01

    An optical multiplexed homogeneous (liquid phase) immunoassay based on FRET from a terbium complex to eight different fluorescent dyes is presented. We achieved highly sensitive parallel detection of four different lung cancer specific tumor markers (CEA, NSE, SCC and CYFRA21-1) within a single assay and show a proof-of-principle for 5- fold multiplexing. The method is well suited for fast and low-cost miniaturized point-of-care testing as well as for highthroughput screening in a broad range of in-vitro diagnostic applications.

  2. Polyfluorophore Excimers and Exciplexes as FRET Donors in DNA

    Teo, Yin Nah; Kool, Eric T.

    2009-01-01

    We describe studies aimed at testing whether oligomeric exciplex- and excimer fluorophores conjugated to DNA have the potential to act as donors for energy transfer by the Förster mechanism. Oligodeoxyfluorosides (ODFs) are composed of stacked, electronically interacting fluorophores replacing the bases on a DNA scaffold. The monomer chromophores in the twenty tetramer-length ODFs studied here include pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and a nonfluorescent spacer (S); these are conjugated in varied combinations at the 3’ end of a 14mer DNA probe sequence. In the absence of an acceptor chromophore, many of the ODF-DNAs show broad, unstructured long-wavelength emission peaks characteristic of excimer and exciplex excited states, similar to what has been observed for unconjugated ODFs. Although such delocalized excited states have been widely studied, we know of no prior report of their use in FRET. We tested the ability of the twenty ODFs to donate energy to Cy5 and TAMRA dyes conjugated to a complementary strand of DNA, with these acceptors oriented either at the near or far end of the ODF-conjugated probes. Results showed that a number of the ODF fluorophores exhibited relatively efficient energy transfer characteristic of the Förster mechanism, as judged by drops in donor emission quantum yield and fluorescence lifetime, accompanied by increases in intensity of acceptor emission bands. Excimer/exciplex bands in the donors were selectively quenched while shorter-wavelength monomer emission stayed relatively constant, consistent with the notion that the delocalized excited states, rather than individual fluorophores, are the donors. Interestingly, only specific sequences of ODFs were able to act as donors, while others did not, even though their emission wavelengths were similar. The new FRET donors possess large Stokes shifts, which can be beneficial for multiple applications. In addition, all ODFs can be excited at a single

  3. Electrophoresis- and FRET-Based Measures of Serpin Polymerization.

    Faull, Sarah V; Brown, Anwen E; Haq, Imran; Irving, James A

    2017-01-01

    Many serpinopathies, including alpha-1 antitrypsin (A1AT) deficiency, are associated with the formation of unbranched polymer chains of mutant serpins. In vivo, this deficiency is the result of mutations that cause kinetic or thermodynamic destabilization of the molecule. However, polymerization can also be induced in vitro from mutant or wild-type serpins under destabilizing conditions. The characteristics of the resulting polymers are dependent upon induction conditions. Due to their relationship to disease, serpin polymers, mainly those formed from A1AT, have been widely studied. Here, we describe Förster resonance energy transfer (FRET) and gel-based approaches for their characterization.

  4. Gold and silver nanoparticles based superquenching of fluorescence: A review

    Ghosh, Debanjana; Chattopadhyay, Nitin, E-mail: nitin.chattopadhyay@yahoo.com

    2015-04-15

    The short review highlights the recent advances on the gold and silver nanoparticles induced efficient quenching of fluorescence from various fluorophores looking at their promising use as optical rulers and chemo-/bio- sensors. The fluorescence quenching often leads to the increase in the Stern–Volmer constant (K{sub SV}~10{sup 7}–10{sup 10} mol{sup −1} dm{sup 3}) several orders of magnitude higher than the values observed for the normal photochemical quenching processes (~10{sup 2} mol{sup −1} dm{sup 3}). This amplified quenching has been termed as “super-quenching” or “hyper-quenching”. Energy transfer (ET) is established from the donor to the metal nanoparticles rationalizing these fast quenching processes. Considering the distance dependence of the ET process, Förster resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) are ascribed to take place. These sensitive distance dependent phenomena serve as the spectroscopic ruler to measure the intra- or intermolecular distances between the interacting partners. In this account focus has been laid on the size dependent energy transfer and super- and hyper- quenching of the fluorescence of the donor moieties by the nanometals and their probable applications in sensing. Rationalization has been made for the nanoparticle induced huge enhancement in the quenching efficiency. The impact of this review lies in the possible application of these amplified quenching processes in designing high sensitive chemical and biological sensors. - Highlights: • Super efficient quenching of fluorescence of probes by gold and silver nanoparticles is highlighted. • The amplified fluorescence quenching of dyes and polymers is rationalized. • Energy transfer is assigned to be responsible for the efficient quenching process. • Amplified quenching has its potential use in designing sensitive chemical/biological sensors.

  5. Gold and silver nanoparticles based superquenching of fluorescence: A review

    Ghosh, Debanjana; Chattopadhyay, Nitin

    2015-01-01

    The short review highlights the recent advances on the gold and silver nanoparticles induced efficient quenching of fluorescence from various fluorophores looking at their promising use as optical rulers and chemo-/bio- sensors. The fluorescence quenching often leads to the increase in the Stern–Volmer constant (K SV ~10 7 –10 10 mol −1 dm 3 ) several orders of magnitude higher than the values observed for the normal photochemical quenching processes (~10 2 mol −1 dm 3 ). This amplified quenching has been termed as “super-quenching” or “hyper-quenching”. Energy transfer (ET) is established from the donor to the metal nanoparticles rationalizing these fast quenching processes. Considering the distance dependence of the ET process, Förster resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) are ascribed to take place. These sensitive distance dependent phenomena serve as the spectroscopic ruler to measure the intra- or intermolecular distances between the interacting partners. In this account focus has been laid on the size dependent energy transfer and super- and hyper- quenching of the fluorescence of the donor moieties by the nanometals and their probable applications in sensing. Rationalization has been made for the nanoparticle induced huge enhancement in the quenching efficiency. The impact of this review lies in the possible application of these amplified quenching processes in designing high sensitive chemical and biological sensors. - Highlights: • Super efficient quenching of fluorescence of probes by gold and silver nanoparticles is highlighted. • The amplified fluorescence quenching of dyes and polymers is rationalized. • Energy transfer is assigned to be responsible for the efficient quenching process. • Amplified quenching has its potential use in designing sensitive chemical/biological sensors

  6. Simulations of the structure and dynamics of nanoparticle-based ionic liquids

    Hong, Bingbing; Chremos, Alexandros; Panagiotopoulos, Athanassios Z.

    2012-01-01

    We use molecular dynamics simulations over microsecond time scales to study the structure and dynamics of coarse-grained models for nanoparticle-based ionic liquids. The systems of interest consist of particles with charged surface groups and linear

  7. Studying DNA looping by single-molecule FRET.

    Le, Tung T; Kim, Harold D

    2014-06-28

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.

  8. Simulation of FRET dyes allows quantitative comparison against experimental data

    Reinartz, Ines; Sinner, Claude; Nettels, Daniel; Stucki-Buchli, Brigitte; Stockmar, Florian; Panek, Pawel T.; Jacob, Christoph R.; Nienhaus, Gerd Ulrich; Schuler, Benjamin; Schug, Alexander

    2018-03-01

    Fully understanding biomolecular function requires detailed insight into the systems' structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.

  9. Payment Platform

    Hjelholt, Morten; Damsgaard, Jan

    2012-01-01

    thoroughly and substitute current payment standards in the decades to come. This paper portrays how digital payment platforms evolve in socio-technical niches and how various technological platforms aim for institutional attention in their attempt to challenge earlier platforms and standards. The paper...... applies a co-evolutionary multilevel perspective to model the interplay and processes between technology and society wherein digital payment platforms potentially will substitute other payment platforms just like the credit card negated the check. On this basis this paper formulate a multilevel conceptual...

  10. Nanoparticle-Based Surface Modifications for Microtribology Control and Superhydrophobicity

    Hurst, Kendall Matthew

    2010-11-01

    contact" between two contacting surfaces. The studies found that AuNP thin films produced using the lowest initial concentrations of nanoparticles in solution produced estimated real contact areas of around 1%, reducing the adhesion of oxidized Si (100) surfaces from about 37 mJ/m2 down to 0.02 mJ/m 2. In addition, the reducing in real contact area effectively reduced the coefficient of static friction between silicon-based surfaces due to the extremely high dependence of stiction on friction and wear at the microscale. This work also investigated methods of permanently immobilizing AuNP-based films on the silicon surfaces of microstructures in order to create more mechanically robust coatings. The use of organic self-assembled monolayers (SAMs) functionalized with tail-groups known to bond to metallic surfaces were effective in producing much more durable coatings as opposed to non-immobilized AuNP films. Chemical vapor deposition (CVD) techniques were also used to coat rough AuNP films with very thin films of silica (SiO2) to create a robust, rough surface. This method was also very effective in creating a durable coating which is capable of reducing the adhesion energy and friction between two microscale surfaces for extended periods of time. Similar CVD techniques were also used to begin investigating the production of alumina nanoparticle-based superhydrophobic films for use in consumer electronics. Overall, the work presented in this dissertation illustrates that engineered nanoparticle-based surface modifications can be extremely effective in the reduction of the inherent interfacial phenomena that exist on microfabricated systems. This work is can potentially lead us into a new age of the miniaturization of mechanical and electronic devices.

  11. A framework for grouping nanoparticles based on their measurable characteristics.

    Sayes, Christie M; Smith, P Alex; Ivanov, Ivan V

    2013-01-01

    There is a need to take a broader look at nanotoxicological studies. Eventually, the field will demand that some generalizations be made. To begin to address this issue, we posed a question: are metal colloids on the nanometer-size scale a homogeneous group? In general, most people can agree that the physicochemical properties of nanomaterials can be linked and related to their induced toxicological responses. The focus of this study was to determine how a set of selected physicochemical properties of five specific metal-based colloidal materials on the nanometer-size scale - silver, copper, nickel, iron, and zinc - could be used as nanodescriptors that facilitate the grouping of these metal-based colloids. The example of the framework pipeline processing provided in this paper shows the utility of specific statistical and pattern recognition techniques in grouping nanoparticles based on experimental data about their physicochemical properties. Interestingly, the results of the analyses suggest that a seemingly homogeneous group of nanoparticles could be separated into sub-groups depending on interdependencies observed in their nanodescriptors. These particles represent an important category of nanomaterials that are currently mass produced. Each has been reputed to induce toxicological and/or cytotoxicological effects. Here, we propose an experimental methodology coupled with mathematical and statistical modeling that can serve as a prototype for a rigorous framework that aids in the ability to group nanomaterials together and to facilitate the subsequent analysis of trends in data based on quantitative modeling of nanoparticle-specific structure-activity relationships. The computational part of the proposed framework is rather general and can be applied to other groups of nanomaterials as well.

  12. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    Adam D Hoppe

    Full Text Available Fluorescence Resonance Energy Transfer (FRET microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  13. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  14. A Study on Fretting Behavior in Room Temperature for Inconel Alloy 690

    Kwon, Jae Do; Chai, Young Suck; Bae, Yong Tak; Choi, Sung Jong

    The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.

  15. Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

    Zhen-Bing Cai; Jin-Fang Peng; Hao Qian; Li-Chen Tang; Min-Hao Zhu

    2017-01-01

    The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibration,and it will take potential hazards to the service of the equipment.However,the present study focuses on the tangential fretting wear of alloy 690 tubes.Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent.Therefore,impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated.Deionized water is used to simulate the flow environment of the equipment,and the dry environment is used for comparison.Varied analytical techniques are employed to characterize the wear and tribochemical behavior during impact fretting wear.Characterization results indicate that cracks occur at high impact load in both water and dry equipment;however,the water as a medium can significantly delay the cracking time.The crack propagation behavior shows a jagged shape in the water,but crack extended disorderly in dry equipment because the water changed the stress distribution and retarded the friction heat during the wear process.The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatigue wear and friction oxidation.The effect of medium(water) on fretting wear is revealed,which plays a potential and promising role in the service of nuclear power device and other flow equipments.

  16. Intercalating dye as an acceptor in quantum-dot-mediated FRET

    Lim, Teck Chuan; Bailey, Vasudev J; Wang, T-H; Ho, Y-P

    2008-01-01

    Fluorescence resonance energy transfer (FRET) is a popular tool to study intermolecular distances and characterize structural or conformational changes of biological macromolecules. We investigate a novel inorganic/organic FRET pair with quantum dots (QDs) as donors and DNA intercalating dyes, BOBO-3, as acceptors by using DNA as a linker. Typically, FRET efficiency increases with the number of stained DNA linked to a QD. However, with the use of intercalating dyes, we demonstrate that FRET efficiency at a fixed DNA:QD ratio can be further enhanced by increasing the number of dyes stained to a DNA strand through the use of an increased staining dye/bp ratio. We exploit this flexibility in the staining ratio to maintain a high FRET efficiency of >0.90 despite a sixfold decrease in DNA concentration. Having characterized this new QD-mediated FRET system, we test this system in a cellular environment using nanocomplexes generated by encapsulating DNA with commercial non-viral gene carriers. Using this novel FRET pair, we are able to monitor the configuration changes and fate of the DNA nanocomplexes during intracellular delivery, thereby providing an insight into the mechanistic study of gene delivery

  17. MIL-L-87177 and CLT:X-10 Lubricants Improve Electrical Connector Fretting Corrosion Behavior

    AUKLAND, NEIL R.; HANLON, JAMES T.

    1999-01-01

    We have conducted a fretting research project using MIL-L-87177 and CLT: X-10 lubricants on Nano-miniature connectors. When they were fretted without lubricant, individual connectors first exceeded our 0.5 ohm failure criteria from 2,341 to 45,238 fretting cycles. With additional fretting, their contact resistance increased to more than 100,000 ohms. Unmodified MIL-L-87177 lubricant delayed the onset of first failure to between 430,000 and over 20,000,000 fretting cycles. MIL-L-87177 modified by addition of Teflon powder delayed first failure to beyond 5 million fretting cycles. Best results were obtained when Teflon was used and also when both the straight and modified lubricants were poured into and then out of the connector. CLT: X-10 lubricant delayed the onset of first failure to beyond 55 million cycles in one test where a failure was actually observed and to beyond 20 million cycles in another that was terminated without failure. CLT: X-10 recovered an unlubricated connector driven deeply into failure, with six failed pins recovering immediately and four more recovering during an additional 420 thousand fretting cycles. MIL-L-87177 was not able to recover a connector under similar conditions

  18. Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy

    Tang, Chang-bin, E-mail: tcbtop@126.com [School of Metallurgy and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055 (China); Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Liu, Dao-xin, E-mail: liudaox@nwpu.edu.cn [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Tang, Bin [Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024 (China); Zhang, Xiao-hua [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Qin, Lin [Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024 (China); Liu, Cheng-song [Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2016-12-30

    Highlights: • Plasma molybdenizing increases FW resistance of Ti6Al4V, but reduces its FF life. • Shot-peened plasmamolybdenizing surface enhances FW and FF resistance of Ti6Al4V. • Combined treatment yields low surface-roughness & high hardness gradient distribution. • Combined treatment yields beneficial residual compressive stress & good toughness. • Anti-wear & -fatigue performance improvements for surface engineering applications. - Abstract: Effect of plasma molybdenizing and shot-peening on fretting wear and fretting fatigue behaviors of Ti6Al4V alloy was investigated. The plasma molybdenized layer composed of a dense molybdenum deposition layer and a Mo–Ti solid–solution layer can increase surface hardness by 2.8 times and cause its volume loss by fretting wear to decrease to 1/14 compared with that of the substrate. Plasma molybdenized treatment results in a significant decrease in resistance of the substrate to fretting fatigue. It is ascribed that the molybdenized layer with high hardness yields a low toughness, and its high surface roughness leads to a micro-notched effect. However, proper combination plasma molybdenizing and subsequent shot-peening may enhance the simultaneous fretting fatigue and fretting wear resistance of Ti6Al4V significantly, which can decrease the fretting wear volume loss to 1/27, and may increase the fretting fatigue life by more than 69 times. A synergistic improvement in fretting fatigue of the titanium alloy by combining surface alloying with shot-peening can be achieved. The results indicate that a beneficial residual compressive stress distribution, high surface hardness with suitable hardness gradient distribution, good apparent toughness, relatively low surface roughness, and excellent surface integrity are achieved.

  19. Platform Constellations

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2016-01-01

    This research paper presents an initial attempt to introduce and explain the emergence of new phenomenon, which we refer to as platform constellations. Functioning as highly modular systems, the platform constellations are collections of highly connected platforms which co-exist in parallel and a......’ acquisition and users’ engagement rates as well as unlock new sources of value creation and diversify revenue streams....

  20. An overview of the Canadian program to investigate vibration and fretting in nuclear fuel assemblies

    Oldaker, I.E.; Lane, A.D.; Forrest, C.F.

    The development of a model that would allow the fuel designer to predict the occurrence of fretting could materially reduce the amount of development testing of a new fuel design. To achieve this, we are working in several areas: to identify and measure the phenomena that excite fuel to vibrate, and to study their relation to reactor design features; to predict the vibratory response of a fuel assembly as a function of its design and environment, and; to study the relationship between vibration and fretting to determine when vibration results in fretting. (author)

  1. Fretting wear damage of HexTOOL{sup TM} composite depending on the different fibre orientations

    Terekhina, S; Salvia, M; Fouvry, S [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS ECL ENISE ENSMSE 5513, Ecole Centrale de Lyon, 69134 Ecully cedex (France); Malysheva, G; Tarasova, T, E-mail: svetlana.terekhina@ec-lyon.fr, E-mail: svetlanaterekhina@yandex.ru [Bauman Moscow State Technical University, 105005 Moscow, 5, 2nd Baumanskaya str (Russian Federation)

    2009-09-15

    The composites have drawn considerable interest in the mould processes. The vibrations and fatigue stresses induced in the moulds made evident to characterize the composite HexTOOL{sup TM} under fretting conditions. Fretting is a small-amplitude oscillatory motion between contacting surfaces. The running conditions fretting maps (RCFM) of composite at ambient conditions were established. The influence of different fiber orientations of HexTOOL{sup TM} composite on the wear kinetics was shown. An energy wear approach was developed. According to results of dynamic mechanical analysis (DMA), the viscoelastic properties of composite material were obtained.

  2. Turbulence induced Fretting-wear characteristics of steam generator helical tubes

    Jhung, Myung Jo; Jo, Jong Chull; Kim, Hho Jung; Yune, Young Gill; Yu, Seon Oh

    2005-01-01

    This study addresses safety assessment of the potential for fretting-wear damages on steam generator helical tubes due to turbulence-induced vibration in operating nuclear power plants. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Special emphases are put on the effects of coil diameter and the number of turns on the modal and fretting wear characteristics of tubes. Also, investigated are the effects of external pressure on the tube modal characteristics as well as the effects of turbulence induced vibration on the fretting-wear characteristics of tubes

  3. Failure of fretted steam generator tubes under accident conditions

    Forrest, C.F.

    1996-10-01

    Tests were carried out with a bank of tubes in a water tunnel to determine the tolerance of flawed nuclear reactor steam generator tubes to accident conditions which would result in high cross-flow velocities. Fourteen specimen tubes were tested, each having one or two types of defect machined into the surface simulating fretting-wear type scars found in some operating steam generators. The tubes were tested at flow velocities sufficient to induce high fluid elastic-type vibrations. Seven of the tubes failed near the thinnest section of the defects during the one-hour tests, due to impacting and/or rubbing between the tube and the support. Strain gauges, displacement transducers, force gauges and an accelerometer were used on the target tube and/or the tube immediately downstream of it to measure their vibrational characteristics

  4. Fretting friction and wear characteristics of magnetorheological fluid under different magnetic field strengths

    Zhang, P.; Lee, K.H.; Lee, C.H.

    2017-01-01

    A magnetorheological fluid (MRF) performs differently under different magnetic field strength. This study examined the fretting friction and wear characteristics of MRFs under a range of magnetic field strengths and oscillation frequencies. The fretting friction and wear behaviors of MRF are investigated using a fretting friction and wear tester. The surfaces of specimen are examined by optical microscopy and 3D surface profilometer before and after the tests and wear surface profiles, the wear volume loss and wear coefficient for each magnetic field strength are evaluated. The results show that the friction and wear properties of MRF change according to the magnetic field strength and oscillation frequency. - Highlights: • Fretting friction and wear characteristics of MRF is examined. • The friction coefficients increased with increasing magnetic field strength. • The coefficient of friction decreased with increasing oscillation frequency. • Wear volume and coefficient become worse with increasing magnetic field strength.

  5. FLIM-FRET image analysis of tryptophan in prostate cancer cells

    Periasamy, Ammasi; Alam, Shagufta R.; Svindrych, Zdenek; Wallrabe, Horst

    2017-07-01

    A region of interest (ROI) based quantitative FLIM-FRET image analysis is developed to quantitate the autofluorescence signals of the essential amino acid tryptophan as a biomarker to investigate the metabolism in prostate cancer cells.

  6. Dichotomy Boundary at Aeolis Mensae, Mars: Fretted Terrain Developed in a Sedimentary Deposit

    Irwin, R. P., III; Watters, T. R.; Howard, A. D.; Maxwell, T. A.; Craddock, R. A.

    2003-03-01

    Fretted terrain in Aeolis Mensae, Mars, developed in a sedimentary deposit. A thick, massive unit with a capping layer or duricrust overlies a more durable layered sequence. Wind, collapse, and minor fluvial activity contributed to degradation.

  7. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.

    2012-02-01

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.

  8. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  9. Single-molecule three-color FRET with both negligible spectral overlap and long observation time.

    Sanghwa Lee

    Full Text Available Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF microscopy.

  10. Fretting corrosion tests on orthopedic plates and screws made of ASTM F138 stainless steel

    Santos,Claudio Teodoro dos; Barbosa,Cássio; Monteiro,Maurício de Jesus; Abud,Ibrahim de Cerqueira; Caminha,Ieda Maria Vieira; Roesler,Carlos Rodrigo de Mello

    2015-01-01

    Introduction Although there has been significant progress in the design of implants for osteosynthesis, the occurrence of failures in these medical devices are still frequent. These implants are prone to suffer from fretting corrosion due to micromotion that takes place between the screw heads and plate holes. Consequently, fretting corrosion has been the subject of research in order to understand its influence on the structural integrity of osteosynthesis implants. The aim of this paper is t...

  11. An experimental study on the key fretting variables for flexible marine risers

    O’Halloran, S.M.; Harte, A.M.; Shipway, P.H.; Leen, S.B.

    2018-01-01

    This paper presents an experimental investigation into the effects of contact conformity, contact pressure and displacement amplitude on the gross-slip fretting behaviour grease-lubricated cylinder-on-flat contacts in the context of flexible marine riser pressure armour wire, and compares behaviour with that observed in unlubricated conditions. Characterisation of friction and wear is critical to fretting fatigue life prediction in flexible risers since friction directly controls trailing-edg...

  12. EXPERIMENTAL INVESTIGTION OF THE FRETTING PHENOMENON-DEPENDENCE OF NUMBERS CYCLES

    Ştefan GHIMISI

    2014-12-01

    Full Text Available The present paper argues that adhesion forces and elastic deformation in the contact zone may contribute significantly to the relative displacement during fretting of metals. A simultaneously applied tangential force and normal into contact appears a adhesion force. A tangential force whose magnitude is less equal on greater than the force of limiting friction will not give rise on give rise to a sliding motion.It is determined the energy loss dissipated per fretting cycle.

  13. Two-dimensional Forster resonance energy transfer (2-D FRET) and the membrane raft hypothesis

    Acasandrei, Maria; Dale, Robert; VAN DE VEN, Martin; AMELOOT, Marcel

    2006-01-01

    A model for analyzing Forster resonance energy transfer (FRET) data in relation to the cell plasma membrane raft hypothesis is developed to take into account: (a) the distribution of FRET donors and acceptors at the surface of probing antibody fragments specific for a putative raft component; (b) partitioning of the raft component between raft and non-raft areas of the membrane; and (c) the dependence of the raft partition on the expression level of the considered component. Analysis of relev...

  14. Fretting wear characteristic tests of X2-GEN midgrid for SMART under a FIV rod trace

    Lee, Young Ho; Lee, Kang Hee; Kim, Jae Yong; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    The KEPCO Nuclear Fuel Co. requested the fretting wear characteristic tests of a X2-GEN midgrid under a FIV rod trace at room temperature air. The following results were obtained for the fretting wear test. {center_dot} Fretting wear tests under a FIV rod trace Based on the result of the fretting wear tests of the X2-GEN and 17ACE7 1x1 mid-grid under a FIV rod trace, X2-GEN mid-grid showed a slightly severe wear volume rather than 17ACE7 spring. But, maximum wear depth shows an opposite behavior. This is due to spring shape effect. The fretting wear mechanisms at each mid-grid were influenced by each spring shape, that are depended on the different impacting behavior under a FIV rod motion. Up to 5x105 cycles, wear characteristics of each mid-grid shows a relatively similar wear rate. Consequently, it is necessary to further study for examining exact fretting wear behavior under a FIV rod tra

  15. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections. © 2016 Society for Laboratory Automation and Screening.

  16. Standard test method for damage to contacting solid surfaces under fretting conditions

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the studying or ranking the susceptibility of candidate materials to fretting corrosion or fretting wear for the purposes of material selection for applications where fretting corrosion or fretting wear can limit serviceability. 1.2 This test method uses a tribological bench test apparatus with a mechanism or device that will produce the necessary relative motion between a contacting hemispherical rider and a flat counterface. The rider is pressed against the flat counterface with a loading mass. The test method is intended for use in room temperature air, but future editions could include fretting in the presence of lubricants or other environments. 1.3 The purpose of this test method is to rub two solid surfaces together under controlled fretting conditions and to quantify the damage to both surfaces in units of volume loss for the test method. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5...

  17. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  18. A combined wear-fatigue design methodology for fretting in the pressure armour layer of flexible marine risers

    O'Halloran, S.M.; Shipway, P.H.; Connaire, A.D.; Leen, Sean B.; Harte, A.M.

    2017-01-01

    This paper presents a combined experimental and computational methodology for fretting wear-fatigue prediction of pressure armour wire in flexible marine risers. Fretting wear, friction and fatigue parameters of pressure armour material have been characterised experimentally. A combined fretting wear-fatigue finite element model has been developed using an adaptive meshing technique and the effect of bending-induced tangential slip has been characterised. It has been shown that a surface dama...

  19. Recent Advances in Nanoparticle-Based Förster Resonance Energy Transfer for Biosensing, Molecular Imaging and Drug Release Profiling

    Nai-Tzu Chen

    2012-12-01

    Full Text Available Förster resonance energy transfer (FRET may be regarded as a “smart” technology in the design of fluorescence probes for biological sensing and imaging. Recently, a variety of nanoparticles that include quantum dots, gold nanoparticles, polymer, mesoporous silica nanoparticles and upconversion nanoparticles have been employed to modulate FRET. Researchers have developed a number of “visible” and “activatable” FRET probes sensitive to specific changes in the biological environment that are especially attractive from the biomedical point of view. This article reviews recent progress in bringing these nanoparticle-modulated energy transfer schemes to fruition for applications in biosensing, molecular imaging and drug delivery.

  20. Shape Effects in Nanoparticle-Based Imaging Agents

    Culver, Kayla Shani Brook

    residence times in the second coordination sphere. Here, we investigated in detail how the complex structure of the nanostars mediates these effects. By sorting the nanostars by shape, we found that relaxivity increases with increasing branch number. Thus, we hypothesize that the confinement of the Gd(III)-DNA in the regions of negative surface curvature between branches creates a dense hydrophilic environment that promotes relaxation of second-sphere water molecules. These results demonstrate that shape is a new parameter that can be tuned in the optimization of nanoparticle-based T1 MRI contrast agents. It is important to characterize the potential toxicity of nanomaterials that are intended for use in biomedical applications. Thus, I evaluated the in vivo biodistribution and acute toxicity in rats of gold nanostars functionalized with DNA. As expected for nanoparticles of this size (˜50 nm) and surface charge (negative), the primary clearance mechanism was through the liver and spleen. Importantly, even at the highest dose, no signs of acute toxicity were observed based on hematology, clinical chemistry, and histology, indicating that DNA-coated gold nanostars are highly biocompatible. Additionally, I exploited the high contrast of gold in electron microscopy to track the fate of the nanoconstructs within organs ex vivo. In the liver, the nanoconstructs were sequestered in lysosomes of Kupffer cells. The electron microscopy analysis also indicated that the branched structure of the nanostars was intact even after 2 weeks in the liver, which is important for shape-dependent applications.

  1. Residual stress relaxation due to fretting fatigue in shot peened surfaces of Ti-6Al-4V

    Martinez, S.A.; Blodgett, M.P.; Mall, S.; Sathish, S.; Namjoshi, S.

    2003-01-01

    Fretting fatigue occurs at locations where the materials are sliding against each other under load. In order to enhance the fatigue life under fretting conditions the surface of the component is shot peened. In general, the shot peening process produces a compressive stress on the surface of the material, thereby increasing the resistance of the material to crack initiation. This paper presents the relaxation of residual stress caused during fretting fatigue. X-ray diffraction has been utilized as the method to measure residual stress in fretting fatigued samples of Ti-6Al-4V

  2. Steam generator fretting-wear damage: A summary of recent findings

    Guerout, F.M.; Fisher, N.J.

    1999-01-01

    Flow-induced vibration of steam generator (SG) tubes may sometimes result in fretting-wear damage at the tube-to-support locations. Fretting-wear damage predictions are largely based on experimental data obtained at representative test conditions. Fretting-wear of SG materials has been studied at the Chalk River Laboratories for two decades. Tests are conducted in fretting-wear test machines that simulate SG environmental conditions and tube-to-support dynamic interactions. A new high-temperature force and displacement measuring system was developed to monitor tube-to-support interaction (i.e., work-rate) at operating conditions. This improvement in experimental fretting-wear technology was used to perform a comprehensive study of the effect of various environment and design parameters on SG tube wear damage. This paper summarizes the results of tests performed over the past 4 yr to study the effect of temperature, water chemistry, support geometry, and tube material on fretting-wear. The results show a significant effect of temperature on tube wear damage. Therefore, fretting-wear tests must be performed at operating temperatures in order to be relevant. No significant effect of the type of water treatment on tube wear damage was observed. For predominantly impacting motion, the wear of SG tubes in contact with 410 stainless steel is similar regardless of whether Alloy 690 or Alloy 800 is used as tubing material or whether lattice bars or broached hole supports are used. Based on results presented in this paper, an average wear coefficient value is recommended that is used for the prediction of SG tube wear depth versus time

  3. Determination of a Wear Initiation Cycle by using a Contact Resistance Measurement in Nuclear Fuel Fretting

    Lee, Young Ho; Kim, Hyung Kyu

    2008-01-01

    In nuclear fuel fretting, the improving of the contact condition with a modified spring shape is a useful method for increasing the wear resistance of the nuclear fuel rod. This is because the fretting wear resistance between the fuel rod and grid spring is mainly affected by the grid spring shape rather than the environment, the contact modes, etc. In addition, the wear resistance is affected by the wear debris behavior between contact surfaces. So, it is expected that the wear initiation of each spring shape should be determined in order to evaluate a wear resistance. However, it is almost impossible to measure the wear behavior in contact surfaces on a real time basis because the contact surfaces are always hidden. Besides, the results of the worn surface observation after the fretting wear tests are restricted to archive the information on the wear debris behavior and the formation mechanism of the wear scar. In order to evaluate the wear behavior during the fretting wear tests, it is proposed that the contact resistance measurement is a useful method for examining the wear initiation cycle and modes. Generally, fretting wear damages are rapidly progressed by a localized plastic deformation between the contact surfaces, crack initiation and fracture of the deformed surface with a strain hardening difference between a surface and a subsurface and finally a detachment of wear debris. After this, wear debris is easily oxidized by frictional heat, test environment, etc. At this time, a small amount of electric current applied between the contact surfaces will be influenced by the wear debris, which could be an obstacle to an electric current flow. So, it is possible to archive the information on the wear behavior by measuring the contact resistance. In order to determine the wear initiation cycle during the fretting wear tests, in this study, fretting wear tests have been performed by applying a constant electric current in room temperature air

  4. Effect of mixed alloy combinations on fretting corrosion performance of spinal screw and rod implants.

    Mali, Sachin A; Singh, Vaneet; Gilbert, Jeremy L

    2017-07-01

    Spinal implants are made from a variety of materials to meet the unique mechanical demands of each application. However, the medical device community has raised concern about mixing dissimilar metals in an implant because of fear of inducing corrosion. There is a lack of systematic studies on the effects of mixing metals on performance of spinal implants, especially in fretting corrosion conditions. Hence, the goal was to determine whether mixing stainless steel (SS316L), titanium alloy (Ti6Al4V) and cobalt chromium (CoCrMo) alloy components in a spinal implant leads to any increased risk of corrosion degradation. Spinal constructs consisting of single assembly screw-connector-rod components were tested using a novel short-term cyclic fretting corrosion test method. A total of 17 alloy component combinations (comprised of SS316L, Ti6Al4V-anodized and CoCrMo alloy for rod, screws and connectors) were tested under three anatomic orientations. Spinal constructs having all SS316L were most susceptible to fretting-initiated crevice corrosion attack and showed higher average fretting currents (∼25 - 30 µA), whereas constructs containing all Ti6Al4V components were less susceptible to fretting corrosion with average fretting currents in the range of 1 - 6 µA. Mixed groups showed evidence of fretting corrosion but they were not as severe as all SS316L group. SEM results showed evidence of severe corrosion attack in constructs having SS316L components. There also did not appear to be any galvanic effects of combining alloys together. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1169-1177, 2017. © 2016 Wiley Periodicals, Inc.

  5. Fretting and Corrosion Damage in Taper Adapter Sleeves for Ceramic Heads: A Retrieval Study.

    MacDonald, Daniel W; Chen, Antonia F; Lee, Gwo-Chin; Klein, Gregg R; Mont, Michael A; Kurtz, Steven M; Cates, Harold E; Kraay, Matthew J; Rimnac, Clare M

    2017-09-01

    During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. In vitro testing suggests that corrosion is not a concern in sleeved ceramic heads; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads in retrieved total hip arthroplasties. Thirty-seven sleeved ceramic heads were collected during revision. The femoral heads and sleeves were implanted 0.0-3.3 years. The implants were revised predominantly for instability, infection, and loosening. Fifty percent of the retrievals were implanted during a primary surgery. Fretting corrosion was assessed using the Goldberg-Higgs semiquantitative scoring system. Mild-to-moderate fretting corrosion scores (score = 2-3) were observed in 92% of internal tapers, 19% of external tapers, and 78% of the stems. Severe fretting corrosion was observed in 1 stem trunnion that was previously retained during revision surgery and none of the retrieved sleeves. There was no difference in corrosion damage of sleeves used in primary or revision surgery. The fretting corrosion scores in this study were predominantly mild and lower than reported fretting scores of cobalt-chrome heads in metal-on-polyethylene bearings. Although intended for use in revisions, we found that the short-term in vivo corrosion behavior of the sleeves was similar in both primary and revision surgery applications. From an in vivo corrosion perspective, sleeves are a reasonable solution for restoring the stem taper during revision surgery. Copyright © 2017. Published by Elsevier Inc.

  6. Quantitative Analysis of Tau-Microtubule Interaction Using FRET

    Isabelle L. Di Maïo

    2014-08-01

    Full Text Available The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αβ-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and β-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau.

  7. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands.

    Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir

    2017-01-01

    Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.

    Heidi J Chial

    2010-08-01

    Full Text Available Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR domain, a central pleckstrin homology (PH domain, and a C-terminal phosphotyrosine binding (PTB domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported.Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species.All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2 and heterotypic (i.e., APPL1-APPL2 manner on curved cell membranes. Furthermore, the results of our experiments

  9. A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity.

    Shi, Jingyu; Guo, Jiubiao; Bai, Gongxun; Chan, Chunyu; Liu, Xuan; Ye, Weiwei; Hao, Jianhua; Chen, Sheng; Yang, Mo

    2015-03-15

    Botulinum neurotoxins (BoNTs) are among the most potent toxic bacterial proteins for humans, which make them potential agents for bioterrorism. Therefore, an ultrasensitive detection of BoNTs and their active states is in great need as field-deployable systems for anti-terrorism applications. We report the construction of a novel graphene oxide (GO)-peptide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of the BoNT serotype A light chain (BoNT-LcA) protease activity. A green fluorescence protein (GFP) modified SNAP-25 peptide substrate (SNAP-25-GFP) was optimally designed and synthesized with the centralized recognition/cleavage sites. This FRET platform was constructed by covalent immobilization of peptide substrate on GO with BSA passivation which have advantages of low non-specific adsorption and high stability in protein abundant solution. BoNT-LcA can specifically cleave SNAP-25-GFP substrate covalently immobilized on GO to release the fragment with GFP. Based on fluorescence signal recovery measurement, the target BoNT-LcA was detected sensitively and selectively with the linear detection range from 1fg/mL to 1pg/mL. The limit of detection (LOD) for BoNT-LcA is around 1fg/mL. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin

    Xu, Zhifeng, E-mail: 897061147@qq.com [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Deng, Peihong; Li, Junhua [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Xu, Li [Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Tang, Siping [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China)

    2017-04-15

    Highlights: • FRET-based molecularly imprinted probe for detection of doxorubicin was prepared. • The detection limit of the probe was 13.8 nM for doxorubicin. • The FRET-based probe had a higher selectivity for the template than ordinary MIMs. - Abstract: In this work, a new type of fluorescent probe for detection of doxorubicin has been constructed by the combined use of fluorescence resonance energy transfer (FRET) technology and molecular imprinting technique (MIT). Using doxorubicin as the template, the molecularly imprinted polymer thin layer was fabricated on the surfaces of carbon dot (CD) modified silica by sol-gel polymerization. The excitation energy of the fluorescent donor (CDs) could be transferred to the fluorescent acceptor (doxorubicin). The FRET based fluorescent probe demonstrated high sensitivity and selectivity for doxorubicin. The detection limit was 13.8 nM. The fluorescent probe was successfully applied for detecting doxorubicin in doxorubicin-spiked plasmas with a recovery of 96.8–103.8%, a relative standard deviation (RSD) of 1.3–2.8%. The strategy for construction of FRET-based molecularly imprinted materials developed in this work is very promising for analytical applications.

  11. A Study on Surface Modification of Al7075-T6 Alloy against Fretting Fatigue Phenomenon

    E. Mohseni

    2014-01-01

    Full Text Available Aircraft engines, fuselage, automobile parts, and energy saving strategies in general have promoted the interest and research in the field of lightweight materials, typically on alloys based on aluminum. Aluminum alloy itself does not have suitable wear resistance; therefore, it is necessary to enhance surface properties for practical applications, particularly when aluminum is in contact with other parts. Fretting fatigue phenomenon occurs when two surfaces are in contact with each other and one or both parts are subjected to cyclic load. Fretting drastically decreases the fatigue life of materials. Therefore, investigating the fretting fatigue life of materials is an important subject. Applying surface modification methods is anticipated to be a supreme solution to gradually decreasing fretting damage. In this paper, the authors would like to review methods employed so far to diminish the effect of fretting on the fatigue life of Al7075-T6 alloy. The methods include deep rolling, shot peening, laser shock peening, and thin film hard coatings. The surface coatings techniques are comprising physical vapor deposition (PVD, hard anodizing, ion-beam-enhanced deposition (IBED, and nitriding.

  12. Experimental facility design for study of fretting in steam generator tubes

    Balbiani, J.P.; Bergant, M.; Yawny, A.

    2012-01-01

    The design of an experimental facility for fretting wear testing of steam generator tubes under pressurized water up to 340 o C, is presented. The main component of the device consists in an autoclave which permits to recreate steam generator operating conditions. CAD CATIA V5R18, CAE ABAQUS and ASME Sec. VII Div. 1 (Rules for Construction of Pressure Vessels) were used along the design process. The design of the autoclave included the pressure vessel itself and the necessary flanges and nozzles. In addition, an axial dynamic sealing system was designed to allow for actuation from outside the pressure boundary. Complementary, typical tube - support contact conditions were analyzed and the principal variables affecting their mutual interaction determined. In addition, a simple device which allows performing fretting wear testing on steam generator tubes in air at room temperature was fabricated and the feasibility of a quantitative assessment of different aspects related with the fretting induced damage was explored. Characterization techniques available at Centro Atomico Bariloche, like light microscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX) and surface damage analysis by optic profilometry were shown to be appropriate for this aim. The designed facility will allow evaluating fretting damage of tubes - support combinations that might be used on the steam generator of the prototype reactor CAREM-25. It is also expected it could be applied to characterize fretting severity in other applications (nuclear fuel elements) (author)

  13. 48-spot single-molecule FRET setup with periodic acceptor excitation

    Ingargiola, Antonino; Segal, Maya; Gulinatti, Angelo; Rech, Ivan; Labanca, Ivan; Maccagnani, Piera; Ghioni, Massimo; Weiss, Shimon; Michalet, Xavier

    2018-03-01

    Single-molecule Förster resonance energy transfer (smFRET) allows measuring distances between donor and acceptor fluorophores on the 3-10 nm range. Solution-based smFRET allows measurement of binding-unbinding events or conformational changes of dye-labeled biomolecules without ensemble averaging and free from surface perturbations. When employing dual (or multi) laser excitation, smFRET allows resolving the number of fluorescent labels on each molecule, greatly enhancing the ability to study heterogeneous samples. A major drawback to solution-based smFRET is the low throughput, which renders repetitive measurements expensive and hinders the ability to study kinetic phenomena in real-time. Here we demonstrate a high-throughput smFRET system that multiplexes acquisition by using 48 excitation spots and two 48-pixel single-photon avalanche diode array detectors. The system employs two excitation lasers allowing separation of species with one or two active fluorophores. The performance of the system is demonstrated on a set of doubly labeled double-stranded DNA oligonucleotides with different distances between donor and acceptor dyes along the DNA duplex. We show that the acquisition time for accurate subpopulation identification is reduced from several minutes to seconds, opening the way to high-throughput screening applications and real-time kinetics studies of enzymatic reactions such as DNA transcription by bacterial RNA polymerase.

  14. In Situ Probing Intracellular Drug Release from Redox-Responsive Micelles by United FRET and AIE.

    Wang, Xuelin; Li, Juanjuan; Yan, Qi; Chen, Yanrui; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-03-01

    Redox-responsive micelles are versatile nanoplatforms for on-demand drug delivery, but the in situ evaluation of drug release is challenging. Fluorescence resonance energy transfer (FRET) technique shows potential for addressing this, while the aggregation-caused quenching effect limits the assay sensitivity. The aim of the current work is to combine aggregation-induced emission (AIE) probe with FRET to realize drug release assessment from micelles. Tetraphenylethene (TPE) is selected as AIE dye and curcumin (Cur) is chosen as the model drug as well as FRET receptor. The drug is covalently linked to a block copolymer via the disulfide bond linker and TPE is also chemically linked to the polymer via an amide bond; the obtained amphiphilic polymer conjugate self-assembles into micelles with a hydrodynamic size of ≈125 nm. Upon the supplement of glutathione or tris(2-carboxyethyl)phosphine) trigger (10 × 10 -3 m), the drug release induces the fluorescence increase of both TPE and Cur. Accompanied with the FRET decay, absorption enhancement and particle size increase are observed. The same phenomenon is observed in MCF-7 cells. The FRET-AIE approach can be a useful addition to the spectrum of available methods for monitoring drug release from stimuli-responsive nanomedicine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Platform computing

    2002-01-01

    "Platform Computing releases first grid-enabled workload management solution for IBM eServer Intel and UNIX high performance computing clusters. This Out-of-the-box solution maximizes the performance and capability of applications on IBM HPC clusters" (1/2 page) .

  16. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    Norio Maruyama, Sachiko Hiromoto, Eiji Akiyama and Morihiko Nakamura

    2013-01-01

    Full Text Available Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-. For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR both in air and in PBS(-. A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR. The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  17. Branched DNA nanostructures efficiently stabilised and monitored by novel pyrene-perylene 2'-α-l-amino-LNA FRET pairs

    Astakhova, I Kira; Santhosh Kumar, T; Campbell, Meghan A

    2013-01-01

    Novel pyrene-perylene α-l-LNA FRET pairs described herein effectively detect assembly of 2- and 3-way branched DNA nanostructures prepared by postsynthetic microwave-assisted CuAAC click chemistry. The fluorescent signalling of assembly by internally positioned FRET pairs is achieved with low...

  18. Fluorophores, environments, and quantification techniques in the analysis of transmembrane helix interaction using FRET.

    Khadria, Ambalika S; Senes, Alessandro

    2015-07-01

    Förster resonance energy transfer (FRET) has been widely used as a spectroscopic tool in vitro to study the interactions between transmembrane (TM) helices in detergent and lipid environments. This technique has been instrumental to many studies that have greatly contributed to quantitative understanding of the physical principles that govern helix-helix interactions in the membrane. These studies have also improved our understanding of the biological role of oligomerization in membrane proteins. In this review, we focus on the combinations of fluorophores used, the membrane mimetic environments, and measurement techniques that have been applied to study model systems as well as biological oligomeric complexes in vitro. We highlight the different formalisms used to calculate FRET efficiency and the challenges associated with accurate quantification. The goal is to provide the reader with a comparative summary of the relevant literature for planning and designing FRET experiments aimed at measuring TM helix-helix associations. © 2015 Wiley Periodicals, Inc.

  19. Calculated and experimental research of WWER-1000 assembly vibration and fretting damage

    Drozdov, Y.; Afanasyev, A.; Makarov, V.; Tutnov, A.; Tutnov, A.; Alekseev, E.

    2008-01-01

    The report covers the methods and results of the latest analytical and experimental studies of fretting corrosion and natural vibrations of a WWER-1000 reactor fuel assemblies (FA). The process of fretting-corrosion was investigated using a multi-specimen facility that simulated fragments of fuel rod-to-spacer grid and lower support grid mating units. A computational model was developed for vibrations in the mechanical system of a fuel rod fragment and a spacer grid fragment. A calculational and experimental modal analysis of a FA was performed. Natural frequencies, modes and decrements of FA vibrations were determined and a satisfactory coincidence of analytical and experimental results was obtained. The assessment of fretting-corrosion process dynamics was made and its dependences on operational factors were obtained. (authors)

  20. Fretting Wear Behaviors of Aluminum Cable Steel Reinforced (ACSR Conductors in High-Voltage Transmission Line

    Xingchi Ma

    2017-09-01

    Full Text Available This work reports the fretting wear behavior of aluminum cable steel reinforced (ACSR conductors for use in high-voltage transmission line. Fretting wear tests of Al wires were conducted on a servo-controlled fatigue testing machine with self-made assistant apparatus, and their fretting process characteristics, friction force, wear damage, and wear surface morphology were detailed analyzed. The results show that the running regime of Al wires changes from a gross slip regime to a mixed regime more quickly as increasing contact load. With increasing amplitudes, gross slip regimes are more dominant under contact loads of lower than 30 N. The maximum friction force is relatively smaller in the NaCl solution than in a dry friction environment. The primary wear mechanisms in dry friction environments are abrasive wear and adhesive wear whereas abrasive wear and fatigue damage are dominant in NaCl solution.

  1. Fuel-element vibration and bearing pad to pressure tube fretting

    Fisher, N.J.; Taylor, C.E.; Pettigrew, M.J.

    1990-08-01

    Fuel channel operation under boiling condition results in increased flow velocities, which may lead to unacceptable fuel-element vibration and bearing pad to pressure tube fretting. The existing endurance test database does not fully cover the range of future channel operating conditions. In particular, after refuelling, some channels for future designs may operate with two-phase flow conditions outside the range of endurance test conditions. Full-scale endurance testing at realistic steam-water conditions involves substantial energy costs. Therefore, fundamental laboratory investigations were conducted to define and endurance test matrix which adequately envelops the future range of operating conditions while minimizing both the number of tests and the energy requirement of individual tests. The main focus of the laboratory investigations was to establish the relationships between: fuel channel flow conditions and fuel-element vibration; and fuel-element vibration and bearing pad to pressure tube fretting. The vibration response of a single fuel element was measured over a wide range of operating conditions covering realistic fuel channel conditions and simulated endurance testing conditions. For higher void fractions, the vibration amplitudes measured in air/water were much higher than in steam/water, while for low void fractions, the amplitudes were similar. The measured amplitudes in steam/water varied very little over the range of temperature and pressure investigated. The effects of temperature, pressure tube oxide thickness, vibration amplitude and bearing pad manufacturer on pressure tube fretting were investigated. The fretting rate is extremely temperature dependent. For vibration amplitudes about three or four times greater than expected in-reactor conditions, peak fretting rates were observed in the 225 to 286 degrees C temperature range. Fretting rates were seven times less at the higher temperatures of 300 and 315 degrees C, and the lower temperatures

  2. Fluorescence resonance energy transfer (FRET-based subcellular visualization of pathogen-induced host receptor signaling

    Zimmermann Timo

    2009-11-01

    Full Text Available Abstract Background Bacteria-triggered signaling events in infected host cells are key elements in shaping the host response to pathogens. Within the eukaryotic cell, signaling complexes are spatially organized. However, the investigation of protein-protein interactions triggered by bacterial infection in the cellular context is technically challenging. Here, we provide a methodological approach to exploit fluorescence resonance energy transfer (FRET to visualize pathogen-initiated signaling events in human cells. Results Live-cell microscopy revealed the transient recruitment of the Src family tyrosine kinase Hck upon bacterial engagement of the receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3. In cells expressing a CEACAM3 variant lacking the cytoplasmic domain, the Src homology 2 (SH2 domain of Hck (Hck-SH2 was not recruited, even though bacteria still bound to the receptor. FRET measurements on the basis of whole cell lysates revealed intimate binding between Hck-SH2 (using enhanced yellow fluorescent protein (YPet-Hck-SH2 and the tyrosine-phosphorylated enhanced cyan fluorescent protein-labeled cytoplasmic domain of wild-type CEACAM3 (CEACAM3 WT-CyPet and a flow cytometry-based FRET approach verified this association in intact cells. Using confocal microscopy and acceptor photobleaching, FRET between Hck-SH2 and CEACAM3 was localized to the sites of bacteria-host cell contact. Conclusion These data demonstrate not only the intimate binding of the SH2 domain of Hck to the tyrosine-phosphorylated cytoplasmic domain of CEACAM3 in intact cells, but furthermore, FRET measurements allow the subcellular localization of this process during bacterial infection. FRET-based assays are valuable tools to resolve bacteria-induced protein-protein interactions in the context of the intact host cell.

  3. [Orange Platform].

    Toba, Kenji

    2017-07-01

    The Organized Registration for the Assessment of dementia on Nationwide General consortium toward Effective treatment in Japan (ORANGE platform) is a recently established nationwide clinical registry for dementia. This platform consists of multiple registries of patients with dementia stratified by the following clinical stages: preclinical, mild cognitive impairment, early-stage, and advanced-stage dementia. Patients will be examined in a super-longitudinal fashion, and their lifestyle, social background, genetic risk factors, and required care process will be assessed. This project is also notable because the care registry includes information on the successful, comprehensive management of patients with dementia. Therefore, this multicenter prospective cohort study will contribute participants to all clinical trials for Alzheimer's disease as well as improve the understanding of individuals with dementia.

  4. Uzawa algorithm to solve elastic and elastic-plastic fretting wear problems within the bipotential framework

    Ning, Po; Feng, Zhi-Qiang; Quintero, Juan Antonio Rojas; Zhou, Yang-Jing; Peng, Lei

    2018-03-01

    This paper deals with elastic and elastic-plastic fretting problems. The wear gap is taken into account along with the initial contact distance to obtain the Signorini conditions. Both the Signorini conditions and the Coulomb friction laws are written in a compact form. Within the bipotential framework, an augmented Lagrangian method is applied to calculate the contact forces. The Archard wear law is then used to calculate the wear gap at the contact surface. The local fretting problems are solved via the Uzawa algorithm. Numerical examples are performed to show the efficiency and accuracy of the proposed approach. The influence of plasticity has been discussed.

  5. A dansyl-rhodamine ratiometric fluorescent probe for Hg2+ based on FRET mechanism.

    Xie, Puhui; Guo, Fengqi; Wang, Lingyu; Yang, Sen; Yao, Denghui; Yang, Guoyu

    2015-03-01

    Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg(2+) through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg(2+) in a wide pH range. Hg(2+) induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg(2+).

  6. Fretting fatigue behavior of high-strength steel monostrands under bending load

    Winkler, Jan; Georgakis, Christos T.; Fischer, Gregor

    2015-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires...... along the length of the monostrand. Information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of a monostrand undergoing flexural deformations is provided. From the series of dynamic fatigue tests, a fretting fatigue spectrum is derived...

  7. Fretting wear damage of steam generator tubes and its prediction modeling

    Che Honglong; Lei Mingkai

    2013-01-01

    The steam generator is the key equipment used for the energy transition in nuclear power plant. Since the high-temperature and high-pressure fluid flows with high speed, the steam generator tubes will be excited and vibrate, leading to the tremendous fretting wear problem on the tubes, sometimes even leading to tube cracking. This paper introduces typical fretting wear cases, the result of corresponding simulation wear experiment and damage mechanism which combining mechanical wear and erosion-corrosion. Work rate model could give a reasonable life prediction about the steam generator tube, and this predictive model has been used in nuclear power plant safety assessment. (authors)

  8. Theoretical-experimental analysis of the fretting/impact wear in fuel rods

    Pecos, Luis F.

    2001-01-01

    Nuclear power plant fuel elements are subjected to flow induced vibrations. A consequence of these vibrations is impact/fretting wear in fuel rods or sliding shoes. Because of the difficulties to assert the mechanism of impact/fretting wear phenomenon it is necessary to use semiempirical formulations in order to predict the wear rate of the components. The results of a series of experiments with Zr-4 specimens are presented in this work. A parameter called 'work-rate' was used to normalize the wear rates and interpret the results in terms of wear coefficient. (author) [es

  9. The Necessity of a New Type Test Rig for the Development of an Evaluation Method in Grid Fretting Problems

    Lee, Young-Ho; Kim, Hyung-Kyu

    2007-01-01

    A grid fretting problem is recognized as one of the most important degradation mechanisms even though the examination results of fretting experiments could be applied to the development and design of spacer grid structures. This is because it is difficult to develop a fretting wear model for a grid fretting problem due to the various wear mechanisms involved according to the mechanical and environmental variables, the contact condition with a spring/dimple and the material properties. A number of spring shapes has been developed in KAERI and their performance tests such as fretting wear, flow-induced vibration (FIV) tests, etc. have been carried out from a part unit to a full assembly scale. From the unit part fretting test results, one of the noticeable results is that the contacting force (normal load) was gradually decreased with increasing number of fretting cycles due to a depth increase and this behavior was closely related to the contacting spring shape. When considering the actual contact condition between a fuel rod and a spring/dimple, if a fretting wear progresses due to a FIV under a specific normal load exerted on the fuel rod by an elastic deformation of the spring, the contacting force between the fuel rod and dimple that are located in the opposite side should be decreased. Consequently, an evaluation of developed spacer grids against fretting wear damage should be performed with the results of 1x1 cell unit experiments because a contacting force is one of the most important variables that influences a fretting wear mechanism. The discussion was focused on the development procedure of a new test rig and its performance by using a 1x1 cell unit test rig. (authors)

  10. Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges

    Anish Babu

    2013-01-01

    Full Text Available The last decade has witnessed enormous advances in the development and application of nanotechnology in cancer detection, diagnosis, and therapy culminating in the development of the nascent field of “cancer nanomedicine.” A nanoparticle as per the National Institutes of Health (NIH guidelines is any material that is used in the formulation of a drug resulting in a final product smaller than 1 micron in size. Nanoparticle-based therapeutic systems have gained immense popularity due to their ability to overcome biological barriers, effectively deliver hydrophobic therapies, and preferentially target disease sites. Currently, many formulations of nanocarriers are utilized including lipid-based, polymeric and branched polymeric, metal-based, magnetic, and mesoporous silica. Innovative strategies have been employed to exploit the multicomponent, three-dimensional constructs imparting multifunctional capabilities. Engineering such designs allows simultaneous drug delivery of chemotherapeutics and anticancer gene therapies to site-specific targets. In lung cancer, nanoparticle-based therapeutics is paving the way in the diagnosis, imaging, screening, and treatment of primary and metastatic tumors. However, translating such advances from the bench to the bedside has been severely hampered by challenges encountered in the areas of pharmacology, toxicology, immunology, large-scale manufacturing, and regulatory issues. This review summarizes current progress and challenges in nanoparticle-based drug delivery systems, citing recent examples targeted at lung cancer treatment.

  11. Iron Oxide Nanoparticle-Based Magnetic Ink Development for Fully Printed Tunable Radio-Frequency Devices

    Vaseem, Mohammad

    2018-01-30

    The field of printed electronics is still in its infancy and most of the reported work is based on commercially available nanoparticle-based metallic inks. Although fully printed devices that employ dielectric/semiconductor inks have recently been reported, there is a dearth of functional inks that can demonstrate controllable devices. The lack of availability of functional inks is a barrier to the widespread use of fully printed devices. For radio-frequency electronics, magnetic materials have many uses in reconfigurable components but rely on expensive and rigid ferrite materials. A suitable magnetic ink can facilitate the realization of fully printed, magnetically controlled, tunable devices. This report presents the development of an iron oxide nanoparticle-based magnetic ink. First, a tunable inductor is fully printed using iron oxide nanoparticle-based magnetic ink. Furthermore, iron oxide nanoparticles are functionalized with oleic acid to make them compatible with a UV-curable SU8 solution. Functionalized iron oxide nanoparticles are successfully embedded in the SU8 matrix to make a magnetic substrate. The as-fabricated substrate is characterized for its magnetostatic and microwave properties. A frequency tunable printed patch antenna is demonstrated using the magnetic and in-house silver-organo-complex inks. This is a step toward low-cost, fully printed, controllable electronic components.

  12. Nanoparticle-based photodynamic therapy on non-melanoma skin cancer

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2018-02-01

    There are several advantages of Photodynamic Therapy (PDT) for nonmelanoma skin cancer treatment compared to conventional treatment techniques such as surgery, radiotherapy or chemotherapy. Among these advantages its noninvasive nature, the use of non ionizing radiation and its high selectivity can be mentioned. Despite all these advantages, the therapeutic efficiency of the current clinical protocol is not complete in all the patients and depends on the type of pathology. An adequate dosimetry is needed in order to personalize the protocol. There are strategies that try to overcome the current PDT shortcomings, such as the improvement of the photosensitizer accumulation in the target tissue, optical radiation distribution optimization or photochemical reactions maximization. These strategies can be further complemented by the use of nanostructures with conventional PDT. Customized dosimetry for nanoparticle-based PDT requires models in order to adjust parameters of different nature to get an optimal tumor removal. In this work, a predictive model of nanoparticle-based PDT is proposed and analyzed. Dosimetry in nanoparticle-based PDT is going to be influenced by photosensitizer-nanoparticle distribution in the malignant tissue, its influence in the optical radiation distribution and the subsequent photochemical reactions. Nanoparticles are considered as photosensitizer carriers on several types of non-melanoma skin cancer. Shielding effects are taken into account. The results allow to compare the estimated treatment outcome with and without nanoparticles.

  13. Fretting wear simulation of press-fitted shaft with finite element analysis and influence function method

    Lee, Dong Hyong; Kwon, Seok Jin [Korea Railroad Research Institute, Uiwang (Korea, Republic of); Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of)

    2008-01-15

    In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge wear compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.

  14. Fretting wear simulation of press-fitted shaft with finite element analysis and influence function method

    Lee, Dong Hyong; Kwon, Seok Jin; Choi, Jae Boong; Kim, Young Jin

    2008-01-01

    In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge wear compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits

  15. Hyperspectral imaging for simultaneous measurements of two FRET biosensors in pancreatic β-cells.

    Elliott, Amicia D; Bedard, Noah; Ustione, Alessandro; Baird, Michelle A; Davidson, Michael W; Tkaczyk, Tomasz; Piston, David W

    2017-01-01

    Fluorescent protein (FP) biosensors based on Förster resonance energy transfer (FRET) are commonly used to study molecular processes in living cells. There are FP-FRET biosensors for many cellular molecules, but it remains difficult to perform simultaneous measurements of multiple biosensors. The overlapping emission spectra of the commonly used FPs, including CFP/YFP and GFP/RFP make dual FRET measurements challenging. In addition, a snapshot imaging modality is required for simultaneous imaging. The Image Mapping Spectrometer (IMS) is a snapshot hyperspectral imaging system that collects high resolution spectral data and can be used to overcome these challenges. We have previously demonstrated the IMS's capabilities for simultaneously imaging GFP and CFP/YFP-based biosensors in pancreatic β-cells. Here, we demonstrate a further capability of the IMS to image simultaneously two FRET biosensors with a single excitation band, one for cAMP and the other for Caspase-3. We use these measurements to measure simultaneously cAMP signaling and Caspase-3 activation in pancreatic β-cells during oxidative stress and hyperglycemia, which are essential components in the pathology of diabetes.

  16. Sensitivity-Enhancement of FRET Immunoassays by Multiple-Antibody Conjugation on Quantum Dots.

    Annio, Giacomo; Jennings, Travis; Tagit, Oya; Hildebrandt, Niko

    2018-05-23

    Quantum dots (QDs) are not only advantageous for color-tuning, improved brightness, and high stability, but their nanoparticle surfaces also allow for the attachment of many biomolecules. Because IgG antibodies (ABs) are in the same size range of biocompatible QDs and the AB orientation after conjugation to the QD is often random, it is difficult to predict if few or many ABs per QD will lead to an efficient AB-QD conjugate. This is particularly true for homogeneous Förster resonance energy transfer (FRET) sandwich immunoassays, for which the ABs on the QD must bind a biomarker that needs to bind a second AB-FRET-conjugate. Here, we investigate the performance of Tb-to-QD FRET immunoassays against total prostate specific antigen (TPSA) by changing the number of ABs per QD while leaving all the other assay components unchanged. We first characterize the AB-QD conjugation by various spectroscopic, microscopic, and chromatographic techniques and then quantify the TPSA immunoassay performance regarding sensitivity, limit of detection, and dynamic range. Our results show that an increasing conjugation ratio leads to significantly enhanced FRET immunoassays. These findings will be highly important for developing QD-based immunoassays in which the concentrations of both ABs and QDs can significantly influence the assay performance.

  17. Chemical synthesis of dual labeled proteins via differently protected alkynes enables intramolecular FRET analysis.

    Hayashi, Gosuke; Kamo, Naoki; Okamoto, Akimitsu

    2017-05-30

    We report a novel method for multisite protein conjugation by setting differently silyl-protected alkynes as conjugation handles, which can remain intact through the whole synthetic procedure and provide sequential and orthogonal conjugation. This strategy enables efficient preparation of a dual dye-labeled protein and structural analysis via an intramolecular FRET mechanism.

  18. FRET-based modified graphene quantum dots for direct trypsin quantification in urine

    Poon, Chung-Yan; Li, Qinghua [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Zhang, Jiali; Li, Zhongping [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Dong, Chuan [Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Lee, Albert Wai-Ming; Chan, Wing-Hong [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Li, Hung-Wing, E-mail: hwli@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong)

    2016-04-21

    A versatile nanoprobe was developed for trypsin quantification with fluorescence resonance energy transfer (FRET). Here, fluorescence graphene quantum dot is utilized as a donor while a well-designed coumarin derivative, CMR2, as an acceptor. Moreover, bovine serum albumin (BSA), as a protein model, is not only served as a linker for the FRET pair, but also a fluorescence enhancer of the quantum dots and CMR2. In the presence of trypsin, the FRET system would be destroyed when the BSA is digested by trypsin. Thus, the emission peak of the donor is regenerated and the ratio of emission peak of donor/emission peak of acceptor increased. By the ratiometric measurement of these two emission peaks, trypsin content could be determined. The detection limit of trypsin was found to be 0.7 μg/mL, which is 0.008-fold of the average trypsin level in acute pancreatitis patient's urine suggesting a high potential for fast and low cost clinical screening. - Highlights: • A FRET-based biosensor was developed for direct quantification of trypsin. • Fast and sensitive screening of pancreatic disease was facilitated. • The direct quantification of trypsin in urine samples was demonstrated.

  19. On the geometry of the fuel rod supports concerning a fretting wear failure

    Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Kang-Hee

    2008-01-01

    Geometrical conditions of spacer grid springs and dimples of a light water reactor fuel assembly are studied in this paper concerning a fuel rod's fretting wear failure. In this framework, the springs/dimples are categorized from the aspects of their orientation with respect to the fuel axis and the contact types. Possible motions on the contacts between the springs/dimples and fuel rods are estimated by conducting a flow-induced vibration test. Features of the wear scar and depth are investigated by independent fretting wear tests carried out with spring and dimple specimens of typical contact geometries. It is also attempted here to apply the contact mechanics theory to a fuel fretting wear analysis such as the prediction of a wear depth profile and its rate, which is influenced by the contact shape of the springs/dimples. It is shown that the theory can be applied to a dimensional control of a coining for the springs/dimples, which is usually carried out in a thin plate fabrication. From the results, the necessary conditions for a spring/dimple geometry for restraining a fretting wear failure are discussed

  20. An ad-hoc fretting wear tribotester design for thin steel wires

    Llavori Iñigo

    2018-01-01

    Full Text Available Steel wire ropes experience fretting wear damage when the rope runs over a sheave promoting an oscillatory motion between the wires. Consequently, wear scars appear between the contacting wires leading to an increase of the stress field and the following rupture of the wires due to fatigue. That is why the understanding and prediction of the fretting wear phenomena of thin wires is fundamental in order to improve the performance of steel wire ropes. The present research deals with the design of an ad-hoc fretting wear test machine for thin wires. The test apparatus is designed for testing thin wires with a maximum diameter of 1.0 mm, at slip amplitudes ranging from 5 to 300 μm, crossing angle between 0-90°, and contacting force ranging from 0,5 to 5 N. The working principle of displacement amplitude and contacting force as well as the crossing angle between the wires are described. Preliminary studies for understanding the fretting wear characteristics are presented, analysing 0.45 mm diameter cold-drawn eutectoid carbon steel (0.8% C wires (tensile strength higher than 3000 MPa.

  1. Homo-FRET imaging as a tool to quantify protein and lipid clustering.

    Bader, Arjen N; Hoetzl, Sandra; Hofman, Erik G; Voortman, Jarno; van Bergen en Henegouwen, Paul M P; van Meer, Gerrit; Gerritsen, Hans C

    2011-02-25

    Homo-FRET, Förster resonance energy transfer between identical fluorophores, can be conveniently measured by observing its effect on the fluorescence anisotropy. This review aims to summarize the possibilities of fluorescence anisotropy imaging techniques to investigate clustering of identical proteins and lipids. Homo-FRET imaging has the ability to determine distances between fluorophores. In addition it can be employed to quantify cluster sizes as well as cluster size distributions. The interpretation of homo-FRET signals is complicated by the fact that both the mutual orientations of the fluorophores and the number of fluorophores per cluster affect the fluorescence anisotropy in a similar way. The properties of the fluorescence probes are very important. Taking these properties into account is critical for the correct interpretation of homo-FRET signals in protein- and lipid-clustering studies. This is be exemplified by studies on the clustering of the lipid raft markers GPI and K-ras, as well as for EGF receptor clustering in the plasma membrane. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Homo-FRET Imaging as a tool to quantify protein and lipid clustering

    Bader, A.N.; Hoetzl, S.; Hofman, E.G.; Voortman, J.; van Bergen en Henegouwen, P.M.P.; van Meer, G.; Gerritsen, H.C.

    2010-01-01

    Homo-FRET, Förster resonance energy transfer between identical fluorophores, can be conveniently measured by observing its effect on the fluorescence anisotropy. This review aims to summarize the possibilities of fluorescence anisotropy imaging techniques to investigate clustering of identical

  3. Critical Shell Thickness of Core/Shell Upconversion Luminescence Nanoplatform for FRET Application

    Wang, Yu; Liu, Kai; Liu, Xiaomin; Dohnalova, Katerina; Gregorkiewicz, Tom; Kong, Xianggui; Aalders, Maurice C. G.; Buma, Wybren J.; Zhang, Hong

    2011-01-01

    Almost all the luminescence upconversion nanoparticles used for Forster resonant energy transfer (FRET) applications are bare cores based on the consideration that the energy transfer efficiency is optimized because the distance between energy donors and acceptors is minimized. On the other hand, it

  4. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET

    Hohlbein, J.; Kapanidis, A.N.

    2016-01-01

    Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open

  5. MnO2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA.

    Ou, Min; Huang, Jin; Yang, Xiaohai; Quan, Ke; Yang, Yanjing; Xie, Nuli; Wang, Kemin

    2017-01-01

    The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO 2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn 2+ ions by intracellular GSH. The results indicated that the MnO 2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO 2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.

  6. Influence of Heat Treatment on the Morphologies of Copper Nanoparticles Based Films by a Spin Coating Method

    Wei Liu

    2017-01-01

    Full Text Available We have investigated the influence of heat treatment on the morphologies of copper nanoparticles based films on glass slides by a spin coating method. The experiments show that heat treatment can modify the sizes and morphologies of copper nanoparticles based films on glass slides. We suggest that through changing the parameters of heat treatment process may be helpful to vary the scattering and absorbing intensity of copper nanoparticles when used in energy harvesting/conversion and optical devices.

  7. Simple estimation of Förster Resonance Energy Transfer (FRET) orientation factor distribution in membranes.

    Loura, Luís M S

    2012-11-19

    Because of its acute sensitivity to distance in the nanometer scale, Förster resonance energy transfer (FRET) has found a large variety of applications in many fields of chemistry, physics, and biology. One important issue regarding the correct usage of FRET is its dependence on the donor-acceptor relative orientation, expressed as the orientation factor k(2). Different donor/acceptor conformations can lead to k(2) values in the 0 ≤ k(2) ≤ 4 range. Because the characteristic distance for FRET, R(0), is proportional to (k(2))1/6, uncertainties in the orientation factor are reflected in the quality of information that can be retrieved from a FRET experiment. In most cases, the average value of k(2) corresponding to the dynamic isotropic limit ( = 2/3) is used for computation of R(0) and hence donor-acceptor distances and acceptor concentrations. However, this can lead to significant error in unfavorable cases. This issue is more critical in membrane systems, because of their intrinsically anisotropic nature and their reduced fluidity in comparison to most common solvents. Here, a simple numerical simulation method for estimation of the probability density function of k(2) for membrane-embedded donor and acceptor fluorophores in the dynamic regime is presented. In the simplest form, the proposed procedure uses as input the most probable orientations of the donor and acceptor transition dipoles, obtained by experimental (including linear dichroism) or theoretical (such as molecular dynamics simulation) techniques. Optionally, information about the widths of the donor and/or acceptor angular distributions may be incorporated. The methodology is illustrated for special limiting cases and common membrane FRET pairs.

  8. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells

    Goryashchenko, Alexander S.; Khrenova, Maria G.; Savitsky, Alexander P.

    2018-04-01

    Förster resonance energy transfer (FRET) sensors are widely used for the detection of protease activity in vitro and in vivo. Usually they consist of a FRET pair connected with a polypeptide linker containing a specific cleavage site for the relevant protease. Use of the fluorescent proteins as components of the FRET pair allows genetic encoding of such sensors and solves the problem of their delivery into live cells and animals. There are several ways to improve the properties of such sensors, mainly to increase FRET efficiency and therefore the dynamic range. One of the ways to achieve this is to use a non-fluorescent chromoprotein as an acceptor. Molecular dynamic simulations may assist in the construction of linker structures connecting donor and acceptor molecules. Estimation of the orientation factor κ 2 can be obtained by methods based on quantum theory and combined quantum mechanics/molecular mechanics approaches. The linker can be structured by hydrophobic interactions, bringing it into a closed conformation that shortens the distance between donor and acceptor and, consequently, increases FRET efficiency. We analyzed the effects of different linker structures on the detection of caspase-3 activity using a non-fluorescent acceptor. Also we have constructed the Tb3+- TagRFP sensor in which a complex of the terbium ion and terbium-binding peptide is used as a donor. This allowed us to use the unique property of lanthanide ions—fluorescence lifetime up to milliseconds—to perform measurements with time delay and exclude the nanosecond-order fluorescence. Using our systems as a starting point, by changing the recognition site in the linker it is possible to perform imaging of different protease activity in vitro or in vivo.

  9. Using Three-color Single-molecule FRET to Study the Correlation of Protein Interactions.

    Götz, Markus; Wortmann, Philipp; Schmid, Sonja; Hugel, Thorsten

    2018-01-30

    Single-molecule Förster resonance energy transfer (smFRET) has become a widely used biophysical technique to study the dynamics of biomolecules. For many molecular machines in a cell proteins have to act together with interaction partners in a functional cycle to fulfill their task. The extension of two-color to multi-color smFRET makes it possible to simultaneously probe more than one interaction or conformational change. This not only adds a new dimension to smFRET experiments but it also offers the unique possibility to directly study the sequence of events and to detect correlated interactions when using an immobilized sample and a total internal reflection fluorescence microscope (TIRFM). Therefore, multi-color smFRET is a versatile tool for studying biomolecular complexes in a quantitative manner and in a previously unachievable detail. Here, we demonstrate how to overcome the special challenges of multi-color smFRET experiments on proteins. We present detailed protocols for obtaining the data and for extracting kinetic information. This includes trace selection criteria, state separation, and the recovery of state trajectories from the noisy data using a 3D ensemble Hidden Markov Model (HMM). Compared to other methods, the kinetic information is not recovered from dwell time histograms but directly from the HMM. The maximum likelihood framework allows us to critically evaluate the kinetic model and to provide meaningful uncertainties for the rates. By applying our method to the heat shock protein 90 (Hsp90), we are able to disentangle the nucleotide binding and the global conformational changes of the protein. This allows us to directly observe the cooperativity between the two nucleotide binding pockets of the Hsp90 dimer.

  10. Parallel multispot smFRET analysis using an 8-pixel SPAD array

    Ingargiola, A.; Colyer, R. A.; Kim, D.; Panzeri, F.; Lin, R.; Gulinatti, A.; Rech, I.; Ghioni, M.; Weiss, S.; Michalet, X.

    2012-02-01

    Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for extracting distance information between two fluorophores (a donor and acceptor dye) on a nanometer scale. This method is commonly used to monitor binding interactions or intra- and intermolecular conformations in biomolecules freely diffusing through a focal volume or immobilized on a surface. The diffusing geometry has the advantage to not interfere with the molecules and to give access to fast time scales. However, separating photon bursts from individual molecules requires low sample concentrations. This results in long acquisition time (several minutes to an hour) to obtain sufficient statistics. It also prevents studying dynamic phenomena happening on time scales larger than the burst duration and smaller than the acquisition time. Parallelization of acquisition overcomes this limit by increasing the acquisition rate using the same low concentrations required for individual molecule burst identification. In this work we present a new two-color smFRET approach using multispot excitation and detection. The donor excitation pattern is composed of 4 spots arranged in a linear pattern. The fluorescent emission of donor and acceptor dyes is then collected and refocused on two separate areas of a custom 8-pixel SPAD array. We report smFRET measurements performed on various DNA samples synthesized with various distances between the donor and acceptor fluorophores. We demonstrate that our approach provides identical FRET efficiency values to a conventional single-spot acquisition approach, but with a reduced acquisition time. Our work thus opens the way to high-throughput smFRET analysis on freely diffusing molecules.

  11. Electroporation and microinjection successfully deliver single-stranded and duplex DNA into live cells as detected by FRET measurements.

    Rosemary A Bamford

    Full Text Available Förster resonance energy transfer (FRET technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5 complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin. Avoiding the endocytosis pathway is essential for efficient delivery of intact DNA probes into cells.

  12. Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors

    Kim, Jong Sung; Oh, Young Jin

    2014-01-01

    If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis

  13. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots

    Long, Yuchen; Stahl, Yvonne; Weidtkamp-Peters, Stefanie; Smet, Wouter; Du, Yujuan; Gadella, Theodorus W. J.; Goedhart, Joachim; Scheres, Ben; Blilou, Ikram

    2018-01-01

    Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living

  14. Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications.

    Tian, Feng; Lyu, Jing; Shi, Jingyu; Yang, Mo

    2017-03-15

    In the past decades, Förster resonance energy transfer (FRET) has been applied in many biological applications to reveal the biological information at the nanoscale. Recently, graphene and graphene-like two-dimensional (2D) nanomaterials started to be used in FRET assays as donors or acceptors including graphene oxide (GO), graphene quantum dot (GQD), graphitic-carbon nitride nanosheets (g-C 3 N 4 ) and transition metal dichalcogenides (e.g. MoS 2 , MnO 2, and WS 2 ). Due to the remarkable properties such as large surface to volume ratio, tunable energy band, photoluminescence and excellent biocompatibility, these 2D nanomaterials based FRET assays have shown great potential in various biological applications. This review summarizes the recent development of graphene and graphene-like 2D nanomaterials based FRET assays in applications of biosensing, bioimaging, and drug delivery monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Unlubricated Gross Slip Fretting Wear of Metallic Plasma Sprayed Coatings for Ti6A14V Surfaces

    Hager, Jr., Carl H; Sanders, Jeffrey H; Sharma, Shashi K

    2006-01-01

    ... to simulate cold engine startup. Alternative coatings such as plasma sprayed molybdenum and nickel were also evaluated because of their potential for reducing fretting wear under certain simulated engine conditions...

  16. Investigation of fretting behaviour in pressure armour layers of flexible pipes

    Don Rasika Perera, Solangarachchige

    The incidence of fretting damage in the pressure armour wires of flexible pipes used in offshore oil explorations has been investigated. A novel experimental facility which is capable of simulating nub and valley contact conditions of interlocking wire winding with dynamic slip, representative of actual pipe loading, has been developed. The test set-up is equipped with a state of the art data acquisition system and a controller with transducers to measure and control the normal load, slip amplitude and friction force at the contact, in addition to the hoop stress in the wire. Tests were performed with selected loading and the fretted regions were examined using optical microscopy techniques. Results show that the magnitude of contact loading and the slip amplitude have a distinct influence on surface damage. Surface cracks originated from a fretting scar were observed at high contact loads in mixed slip sliding while surface damage predominantly due to wear was observed under gross slip. The position of surface cracks and the wear profile have been related to the contact pressure distribution. The evolution of friction force and surface damage under different slip and normal pressure conditions has been analysed. A fracture mechanics based numerical procedure has been developed to analyse the fretting damage behaviour. A severity parameter is proposed in order to ascertain whether the crack growth is in mode I or mode II cracking. The analysis show the influence of mode II cracking in the early stages of crack growth following which the crack deviates in the mode I direction making mode I the dominant crack propagation mechanism. The crack path determined by the numerical procedure correlates well with the experimental results. A numerical analysis was carried out for the fretting fatigue condition where a cyclic bulk stress superimposes with the friction force. The analysis correlates well with short crack growth behaviour. The analysis confirms that fretting is a

  17. Fretting-corrosion behavior in hip implant modular junctions: The influence of friction energy and pH variation.

    Royhman, Dmitry; Patel, Megha; Runa, Maria J; Wimmer, Markus A; Jacobs, Joshua J; Hallab, Nadim J; Mathew, Mathew T

    2016-09-01

    Recently, there has been increasing concern in the orthopedic community over the use of hip implant modular devices due to an increasing number of reports of early failure, failure that has been attributed to fretting-corrosion at modular interfaces. Much is still unknown about the electrochemical and mechanical degradation mechanisms associated with the use of such devices. Accordingly, the purpose of our study was to develop a methodology for testing the fretting-corrosion behavior of modular junctions. A fretting-corrosion apparatus was used to simulate the fretting-corrosion conditions of a CoCrMo hip implant head on a Ti6Al4V hip implant stem. The device features two perpendicularly-loaded CoCrMo pins that articulated against a Ti6Al4V rod. A sinusoidal fretting motion was applied to the rod at various displacement amplitudes (25, 50, 100, 150 and 200μm) at a constant load of 200N. Bovine calf serum at two different pH levels (3.0 and 7.6) was used to simulate the fluid environment around the joint. Experiments were conducted in two modes of electrochemical control - free-potential and potentiostatic. Electrochemical impedance spectroscopy tests were done before and after the fretting motion to assess changes in corrosion kinetics. In free potential mode, differences were seen in change in potential as a function of displacement amplitude. In general, VDrop (the drop in potential at the onset of fretting), VFretting, (the average potential during fretting), ΔVFretting (the change in potential from the onset of fretting to its termination) and VRecovery (the change in potential from the termination of fretting until stabilization) appeared linear at both pH levels, but showed drastic deviation from linearity at 100μm displacement amplitude. Subsequent EDS analysis revealed a large number of Ti deposits on the CoCrMo pin surfaces. Potentiostatic tests at both pH levels generally showed increasing current with increasing displacement amplitude. Electrochemical

  18. Gold nanoparticle-based fluorescent sensor for the analysis of dithiocarbamate pesticides in water

    Senkbeil, Silja; Lafleur, Josiane P.; Jensen, Thomas Glasdam

    2012-01-01

    Pesticides play a key role in the high yields achieved in modern agricultural food production. Besides their positive effect on increasing productivity they are intentionally toxic, often towards non-target organisms and contaminated food products can have a serious impact on human...... and environmental health. This paper demonstrates the potential of a gold nanoparticle-based microfluidic sensor for in field detection of dithiocarbamate pesticides at remote locations. Combining the attractive optical properties of gold nanoparticles with on chip mixing and detection, using a simple digital...

  19. In vitro simulation of fretting-corrosion in hip implant modular junctions: The influence of pH.

    Royhman, Dmitry; Patel, Megha; Jacobs, Joshua J; Wimmer, Markus A; Hallab, Nadim J; Mathew, Mathew T

    2018-02-01

    The fretting-corrosion behavior of mixed metal contacts is affected by various mechanical and electrochemical parameters. Crevice conditions at the junction and patient-specific pathologies can affect the pH of the prosthetic environment. The main objective of this study is to understand the effect of pH variation at the stem/head junction of the hip implant under fretting corrosion exposure. We hypothesized that pH will have a significant influence on the fretting-corrosion behavior hip implant modular junctions. A custom-made setup was used to evaluate the fretting corrosion behavior of hip implant modular junctions. A Newborn calf serum solution (30 g/L protein content) was used to simulate the synovial fluid environment. A sinusoidal fretting motion, with a displacement amplitude of +50 µm, was applied to the Ti alloy rod. The effects of pathology driven, periprosthetic pH variation were simulated at four different pH levels (3.0, 4.5, 6.0 and 7.6). Electrochemical and mechanical properties were evaluated before, during, and after the applied fretting motion. The impedance of the system was increased in response to the fretting motion. The hysteresis tangential load/displacement behavior was not affected by pH level. The worn surfaces of CoCrMo pins exhibited the presence of tribolayer or organic deposits, in the pH 4.5 group, which may explain the lower drop in potential and mass loss observed in that group. Mechanically dominated wear mechanisms, namely, adhesive wear was shown in the pH 7.6 group, which may account for a higher potential drop and metal content loss. This study suggests that the fretting-corrosion mechanisms in hip implant are affected by the pH levels of the surrounding environment and patient-specific factors. Copyright © 2017. Published by Elsevier Ltd.

  20. Experimental and Numerical Investigations of Fretting Fatigue Behavior for Steel Q235 Single-Lap Bolted Joints

    Yazhou Xu

    2016-01-01

    Full Text Available This work aims to investigate the fretting fatigue life and failure mode of steel Q235B plates in single-lap bolted joints. Ten specimens were prepared and tested to fit the S-N curve. SEM (scanning electron microscope was then employed to observe fatigue crack surfaces and identify crack initiation, crack propagation, and transient fracture zones. Moreover, a FEM model was established to simulate the stress and displacement fields. The normal contact stress, tangential contact stress, and relative slipping displacement at the critical fretting zone were used to calculate FFD values and assess fretting fatigue crack initiation sites, which were in good agreement with SEM observations. Experimental results confirmed the fretting fatigue failure mode for these specimens. It was found that the crack initiation resulted from wear regions at the contact surfaces between plates, and fretting fatigue cracks occurred at a certain distance away from hole edges. The proposed FFD-N relationship is an alternative approach to evaluate fretting fatigue life of steel plates in bolted joints.

  1. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    Niko Hildebrandt

    2011-10-01

    Full Text Available Förster resonance energy transfer (FRET from luminescent terbium complexes (LTC as donors to semiconductor quantum dots (QDs as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.

  2. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting.

    Bajar, Bryce T; Wang, Emily S; Lam, Amy J; Kim, Bongjae B; Jacobs, Conor L; Howe, Elizabeth S; Davidson, Michael W; Lin, Michael Z; Chu, Jun

    2016-02-16

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.

  3. Extraction of information on macromolecular interactions from fluorescence micro-spectroscopy measurements in the presence and absence of FRET

    Raicu, Valerică

    2018-06-01

    Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information.

  4. Effect of different atmospheres on the electrical contact performance of electronic components under fretting wear

    Liu, Xin-Long; Cai, Zhen-Bing; Cui, Ye; Liu, Shan-Bang; Xu, Xiao-Jun; Zhu, Min-Hao

    2018-04-01

    The effects of oxide etch on the surface morphology of metals for industrial application is a common cause of electrical contacts failure, and it has becomes a more severe problem with the miniaturization of modern electronic devices. This study investigated the effects of electrical contact resistance on the contactor under three different atmospheres (oxygen, air, and nitrogen) based on 99.9% copper/pogo pins contacts through fretting experiments. The results showed the minimum and stable electrical contact resistance value when shrouded in the nitrogen environment and with high friction coefficient. The rich oxygen environment promotes the formation of cuprous oxide, thereby the electrical contact resistance increases. Scanning electron microscope microscopy and electron probe microanalysis were used to analyze the morphology and distribution of elements of the wear area, respectively. The surface product between contacts was investigated by x-ray photoelectron spectroscopy analysis to explain the different electrical contact properties of the three tested samples during fretting.

  5. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  6. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry

    Ouadahi, Karima; Sbargoud, Kamal; Allard, Emmanuel; Larpent, Chantal

    2012-01-01

    Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength.Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength. Electronic supplementary information (ESI) available: Experimental details and figures S1-S16 as mentioned in the text. See DOI: 10.1039/c2nr11413e

  7. Revisitation of FRET methods to measure intraprotein distances in Human Serum Albumin

    Santini, S.; Bizzarri, A.R.; Cannistraro, S., E-mail: cannistr@unitus.it

    2016-11-15

    We revisited the FRET methods to measure the intraprotein distance between Trp-214 (used as donor) of Human Serum Albumin and its Cys-34, labelled with 1.5-Iaedans (used as acceptor). Variation of Trp fluorescence emission in terms of both intensity and lifetime, as well the enhancement of the acceptor fluorescence emission upon Trp excitation, have been monitored. A careful statistical analysis of the fluorescence results from ten independently prepared samples, combined with suitable spectral corrections, provided reproducible distances estimations by each one of the three methods. Even if monitoring of the donor lifetime variation in the presence of the acceptor reproduces at the best the crystallographic data, by allowing even sub-nanometre distance variations to be appreciated, we suggest that a comparative analysis of all the three methods, applied with statistical significance, should be preferred to achieve a better reliability of the FRET technique.

  8. Fretting wear of steam generator tubes: high-temperature tests on AECL rig

    Guerout, F.; Zbinden, M.

    1993-07-01

    The R and DD has undertaken the study of fretting-wear of Alloy 600 S.G. tubes which occurs by contact with migrating items. The test series was performed in Canada at AECL Research (Atomic Energy of Canada Limited) as part of an exchange program. Four types of configuration were envisaged: a tube-to-drilled hole support contact which provides reference results and three types of tube-to-support contacts which simulate the tube fretting-wear induced by a welding rod, a threaded rod and a knife-edge rod support. This programme is completed by the study of the contact between a S.G. tube and a neighbouring S.G. tube which has been broken after plugging. (authors). 1 tab., 3 refs

  9. Ratiometric FRET-based detection of DNA and micro-RNA in solution

    Matveeva, Evgenia G.; Gryczynski, Zygmunt; Stewart, Donald R.; Gryczynski, Ignacy

    2009-01-01

    A ratiometric method for detecting DNA oligomers in bulk solution based on Foerster resonance energy transfer (FRET) is described. The two fluorescence signals (green and red), originating from Cy3 (donor, green) and Cy5 (acceptor, red) labels, are simultaneously detected from the pre-hybridized Cy3oligomerY:Cy5oligomerX system. The ratio of red to green intensities is sensitive to the presence of the single-stranded complimentary oligomer, which replaces single-stranded Cy3oligomerY in the donor:acceptor complex and perturbs the FRET. The detection scheme is generally applicable to the detection of DNA and RNA, and particularly micro-RNA. The proposed method is applicable to various double-stranded various lengths targets (manipulation of the sample preparation conditions, such as temperature, incubation time, denaturizing agent, may be needed).

  10. Efficient Fluorescence Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles Based on Porous Silicon Photonic Crystal for DNA Detection.

    Zhang, Hongyan; Lv, Jie; Jia, Zhenhong

    2017-05-10

    A novel assembled biosensor was prepared for detecting 16S rRNA, a small-size persistent specific for Actinobacteria. The mechanism of the porous silicon (PS) photonic crystal biosensor is based on the fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and gold nanoparticles (AuNPs) through DNA hybridization, where QDs act as an emission donor and AuNPs serve as a fluorescence quencher. Results showed that the photoluminescence (PL) intensity of PS photonic crystal was drastically increased when the QDs-conjugated probe DNA was adhered to the PS layer by surface modification using a standard cross-link chemistry method. The PL intensity of QDs was decreased when the addition of AuNPs-conjugated complementary 16S rRNA was dropped onto QDs-conjugated PS. Based on the analysis of different target DNA concentration, it was found that the decrease of the PL intensity showed a good linear relationship with complementary DNA concentration in a range from 0.25 to 10 μM, and the detection limit was 328.7 nM. Such an optical FRET biosensor functions on PS-based photonic crystal for DNA detection that differs from the traditional FRET, which is used only in liquid. This method will benefit the development of a new optical FRET label-free biosensor on Si substrate and has great potential in biochips based on integrated optical devices.

  11. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation.

    Renukaradhya, Gourapura J; Narasimhan, Balaji; Mallapragada, Surya K

    2015-12-10

    Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury

    Shi Riyi

    2010-01-01

    Full Text Available Abstract Background The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (CNS trauma and neurodegenerative diseases. Hydralazine is capable of inhibiting or reducing acrolein-induced damage. However, since hydralazine's principle activity is to reduce blood pressure as a common anti-hypertension drug, the possible problems encountered when applied to hypotensive trauma victims have led us to explore alternative approaches. This study aims to evaluate such an alternative - a chitosan nanoparticle-based therapeutic system. Results Hydralazine-loaded chitosan nanoparticles were prepared using different types of polyanions and characterized for particle size, morphology, zeta potential value, and the efficiency of hydralazine entrapment and release. Hydralazine-loaded chitosan nanoparticles ranged in size from 300 nm to 350 nm in diameter, and with a tunable, or adjustable, surface charge. Conclusions We evaluated the utility of chitosan nanoparticles with an in-vitro model of acrolein-mediated cell injury using PC -12 cells. The particles effectively, and statistically, reduced damage to membrane integrity, secondary oxidative stress, and lipid peroxidation. This study suggests that a chitosan nanoparticle-based therapy to interfere with "secondary" injury may be possible.

  13. Fretting wear of ZrN and Zr(21% Hf)N coatings

    Atar, E. [Gebze Inst. of Tech., Material Science and Engineering Dept., Kocaeli (Turkey); Cimenoglu, H.; Kayali, E.S. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Engineering, Istanbul (Turkey)

    2004-07-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  14. Fretting wear of ZrN and Zr(21% Hf)N coatings

    Atar, E.; Cimenoglu, H.; Kayali, E.S.

    2004-01-01

    In this study, the wear behaviours of ZrN and Zr(21% Hf)N coatings, deposited on hardened AISI D2 cold work tool steel were examined by a fretting wear tester. The hardness of ZrN and Zr(21% Hf)N coatings were almost the same, where as they exhibited different wear resistance. Addition of 21% Hf to ZrN coating achieved about 25% increase in the wear resistance. (orig.)

  15. Ratiometric Fluorescent Detection of Pb2+ by FRET-Based Phthalocyanine-Porphyrin Dyads.

    Zhang, Dongli; Zhu, Mengliang; Zhao, Luyang; Zhang, Jinghui; Wang, Kang; Qi, Dongdong; Zhou, Yang; Bian, Yongzhong; Jiang, Jianzhuang

    2017-12-04

    Sensitive and selective detection of Pb 2+ is a very worthwhile endeavor in terms of both human health and environmental protection, as the heavy metal is fairly ubiquitous and highly toxic. In this study, we designed phthalocyanine-porphyrin (Pc-Por) heterodyads, namely, H 2 Pc-α-ZnPor (1) and H 2 Pc-β-ZnPor (2), by connecting a zinc(II) porphyrin moiety to the nonperipheral (α) or peripheral (β) position of a metal-free phthalocyanine moiety. Upon excitation at the porphyrin Soret region (420 nm), both of the dyads exhibited not only a porphyrin emission (605 nm) but also a phthalocyanine emission (ca. 700 nm), indicating the occurrence of intramolecular fluorescence resonance energy transfer (FRET) processes from the porphyrin donor to the phthalocyanine acceptor. The dyads can selectively bind Pb 2+ in the phthalocyanine core leading to a red shift of the phthalocyanine absorption and thus a decrease of spectral overlap between the porphyrin emission and phthalocyanine absorption, which in turn suppresses the intramolecular FRET. In addition, the binding of Pb 2+ can highly quench the emission of phthalocyanine by heavy-metal ion effects. The synergistic coupled functions endow the dyads with remarkable ratiometric fluorescent responses at two distinct wavelengths (F 605 /F 703 for 1 and F 605 /F 700 for 2). The emission intensity ratio increased as a linear function to the concentration of Pb 2+ in the range of 0-4.0 μM, whereas the detection limits were determined to be 3.4 × 10 -9 and 2.2 × 10 -8 M for 1 and 2, respectively. Furthermore, by comparative study of 1 and 2, the effects of distance and relative orientation between Pc and ZnPor fluorophores on the FRET efficiency and sensing performance were highlighted, which is helpful for further optimizing such FRET systems.

  16. Correlative FRET: new method improves rigor and reproducibility in determining distances within synaptic nanoscale architecture

    Shinogle-Decker, Heather; Martinez-Rivera, Noraida; O'Brien, John; Powell, Richard D.; Joshi, Vishwas N.; Connell, Samuel; Rosa-Molinar, Eduardo

    2018-02-01

    A new correlative Förster Resonance Energy Transfer (FRET) microscopy method using FluoroNanogold™, a fluorescent immunoprobe with a covalently attached Nanogold® particle (1.4nm Au), overcomes resolution limitations in determining distances within synaptic nanoscale architecture. FRET by acceptor photobleaching has long been used as a method to increase fluorescence resolution. The transfer of energy from a donor to an acceptor generally occurs between 10-100Å, which is the relative distance between the donor molecule and the acceptor molecule. For the correlative FRET microscopy method using FluoroNanogold™, we immuno-labeled GFP-tagged-HeLa-expressing Connexin 35 (Cx35) with anti-GFP and with anti-Cx35/36 antibodies, and then photo-bleached the Cx before processing the sample for electron microscopic imaging. Preliminary studies reveal the use of Alexa Fluor® 594 FluoroNanogold™ slightly increases FRET distance to 70Å, in contrast to the 62.5Å using AlexaFluor 594®. Preliminary studies also show that using a FluoroNanogold™ probe inhibits photobleaching. After one photobleaching session, Alexa Fluor 594® fluorescence dropped to 19% of its original fluorescence; in contrast, after one photobleaching session, Alexa Fluor 594® FluoroNanogold™ fluorescence dropped to 53% of its original intensity. This result confirms that Alexa Fluor 594® FluoroNanogold™ is a much better donor probe than is Alexa Fluor 594®. The new method (a) creates a double confirmation method in determining structure and orientation of synaptic architecture, (b) allows development of a two-dimensional in vitro model to be used for precise testing of multiple parameters, and (c) increases throughput. Future work will include development of FluoroNanogold™ probes with different sizes of gold for additional correlative microscopy studies.

  17. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET

    Gopich, Irina V. [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-21

    Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.

  18. Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots

    Zekavati, Roya; Bayat, Mansour; Safi, Shahabeddin; Hashemi, Seyed Jamal; Rahmani-Cherati, Tavoos; Tabatabaei, Meisam; Mohsenifar, Afshin

    2013-01-01

    We report on a competitive immunoassay for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from anti-aflatoxin B1 antibody (immobilized on the shell of CdTe quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The highly specific immuno reaction between the antibody against aflatoxin B1 on the QDs and the labeled-aflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photoexcitation of the QDs. In the absence of unlabeled aflatoxin B1, the antigen-antibody complex is stable, and strong emission resulting from the FRET from QDs to labeled aflatoxin B1 is observed. In the presence of aflatoxin B1, it will compete with the labeled aflatoxin B1-albumin complex for binding to the antibody-QDs conjugate so that FRET will be increasingly suppressed. The reduction in the fluorescence intensity of the acceptor correlates well with the concentration of aflatoxin B1. The feasibility of the method was established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the increased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spike human serum, over the range of 0.1–0.6 μmol·mL −1 . The limit of detection is 2 × 10 −11 M. This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require excessive washing and separation steps. (author)

  19. Effects of Contact Load on the Fretting Fatigue Behavior of IN-100 at Elevated Temperature

    2009-03-01

    Effect of contact pressure on fretting fatigue of austenitic stainless steel ,” Tribology International, vol. 36, pp. 79-85, 2003. 155 [56] N.K. Naidu...austenitic stainless steel was presented. Like the studies in the previous section, this study investigated how a variably increased contact load...that their stainless steel specimens acted much in the same manner as the aluminum specimens presented in the previous section. It was observed

  20. Fluorescent protein pair emit intracellular FRET signal suitable for FACS screening

    Johansson, Daniel X.; Brismar, Hjalmar; Persson, Mats A.A.

    2007-01-01

    The fluorescent proteins ECFP and HcRed were shown to give an easily resolved FRET-signal when expressed as a fusion inside mammalian cells. HeLa-tat cells expressing ECFP, pHcRed, or the fusion protein pHcRed-ECFP were analyzed by flow cytometry after excitation of ECFP. Cells expressing HcRed-ECFP, or ECFP and HcRed, were mixed and FACS-sorted for FRET positive cells: HcRed-ECFP cells were greatly enriched (72 times). Next, cloned human antibodies were fused with ECFP and expressed anchored to the ER membrane. Their cognate antigens (HIV-1 gp120 or gp41) were fused to HcRed and co-expressed in the ER. An increase of 13.5 ± 1.5% (mean ± SEM) and 8.0 ± 0.7% in ECFP fluorescence for the specific antibodies reacting with gp120 or gp41, respectively, was noted after photobleaching. A positive control (HcRed-ECFP) gave a 14.8 ± 2.6% increase. Surprisingly, the unspecific antibody (anti-TT) showed 12.1 ± 1.1% increase, possibly because overexpression in the limited ER compartment gave false FRET signals

  1. FRET microscopy autologous tumor lysate processing in mature dendritic cell vaccine therapy

    Ridolfi Ruggero

    2010-06-01

    Full Text Available Abstract Background Antigen processing by dendritic cells (DC exposed to specific stimuli has been well characterized in biological studies. Nonetheless, the question of whether autologous whole tumor lysates (as used in clinical trials are similarly processed by these cells has not yet been resolved. Methods In this study, we examined the transfer of peptides from whole tumor lysates to major histocompatibility complex class II molecules (MHC II in mature dendritic cells (mDC from a patient with advanced melanoma. Tumor antigenic peptides-MHC II proximity was revealed by Förster Resonance Energy Transfer (FRET measurements, which effectively extends the application of fluorescence microscopy to the molecular level ( Results We detected significant energy transfer between donor and acceptor-labelled antibodies against HLA-DR at the membrane surface of mDC. FRET data indicated that fluorescent peptide-loaded MHC II molecules start to accumulate on mDC membranes at 16 hr from the maturation stimulus, steeply increasing at 22 hr with sustained higher FRET detected up to 46 hr. Conclusions The results obtained imply that the patient mDC correctly processed the tumor specific antigens and their display on the mDC surface may be effective for several days. These observations support the rationale for immunogenic efficacy of autologous tumor lysates.

  2. Experimental Simulation of Flow-Induced Vibration for Developing a Grid-to-Rod Fretting Model

    Lee, Youngho; Kim, Hyungkyu; Kang, Heungseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    GTRF margin was calculated based on the fuel reliabilities program of operating power plants. But they have not accumulated sufficient experience under challenging operating conditions to be considered proven solutions. In addition, GTRF behaviors were significantly differed according to the plant types, operating condition and fuel types. So, analytical methods to resolve GTRF degradations are considered as difficult procedures for actual application. One of the most important problems is that it is difficult to evaluate the GTRF resistance of new spacer grid under operating power plant condition. Up to now, as a consequence, compliance with the fretting wear limit (typically 10% of the cladding thickness) is checked a posteriori, through post-irradiation examination. Therefore, in this study, rod simulation method for determining GTRF resistance of new spacer grid was proposed with a specially designed wear tester. This simulator enables us to examine the spacer grid shape effect under relatively short development period. In addition, for developing GTRF model, flow-induced vibration (FIV) was measured with different major variables such as GTR clearance, flow rate, etc. Fretting wear tests of nuclear fuel rods (i. e. grid-to-rod fretting) have been performed to examine the flow rate effect by using a specially designed test section with a simulated primary coolant. Based on above results, developed FIV-wear simulator could be effective to examine the spacer grid shape effect with short development period. Further study will be discussed on the GTR clearance effect with various spacer grid shapes.

  3. Preliminary Study on the Fretting Wear Behaviors of a Duel Cooled Fuel Rod

    Lee, Y.H.; Lee, K.H.; Kim, H.K. [KAERI, 150 Dukjin-dong Yuseon-gu Daejeon, 305-353 (Korea, Republic of)

    2009-06-15

    Based on MIT's concept, an innovative fuel development project was launched by KAERI that a substantial power up-rating could be realized by introducing an internally and externally double cooled annular fuel for current PWR reactors. In order to apply this duel cooled fuel to an OPR 1000 reactor system, geometrical features of structural parts in a fuel assembly should be changed except an overall dimension of a fuel assembly. Typical changes are summarized as fuel rod diameter and weight, shape and position of a spacer grid spring, etc. When considering a duel cooled fuel rod, its vibration characteristic and fretting behavior should be verified because the modified shape and dimension of spacer grid spring, fuel rod diameter and weight, number of spacer grid assembly are closely related to a flow-induced vibration in a duel cooled fuel assembly. In this study, based on FIV test results of 4x4 fuel assembly, fretting wear tests of an outer duel cooled fuel rod were performed by using an embossing type spacer grid spring that could adjust its spring stiffness. The discussion was focused on the evaluation of the optimized spring stiffness and spring position in 1x1 cell by analyzing the fretting wear results. (authors)

  4. Fretting wear of Inconel 625 at high temperature and in high vacuum

    Iwabuchi, A.

    1985-01-01

    The purpose of this work was to investigate the fretting properties of Inconel 625 at high temperature and in high vacuum. Experiments were carried out under constant conditions with a normal load of 14 N and a peak-to-peak slip amplitude of 110 μm and through 6x10 4 cycles. Several environmental conditions were used. Pressure was varied between 10 -3 and 10 5 Pa at temperatures of 20 and 500 0 C. Temperatures up to 500 0 C were also used at pressures of 10 -3 and 10 5 Pa. At 10 -3 Pa and 500 0 C wear loss was negligible but wear scars showed severe damage consisting of deep cracks and accretion of transferred debris. The coefficient of friction then maintained a high value of 1.7 throughout the fretting test. The critical pressure below which oxidation rate becomes reduced is 10 Pa, a value independent of temperature. At pressures below this critical value the coefficient of friction increases steeply and the fretting mechanism changes from one of oxidative wear to one of adhesive wear. A compacted so-called 'glaze' oxide was formed at temperatures above 300 0 C in air (10 5 Pa) and at pressures above 10 3 Pa at 500 0 C. A comparison of results for Inconel 625 with those for S45C and SUS304 steels and Inconel 600 is given. (orig.)

  5. Stability Loss of the Cemented Stem of Hip Prosthesis due to Fretting Corrosion Fatigue

    L. Capitanu

    2017-12-01

    Full Text Available Aim of this project was to study the fretting behaviour of the cemented femoral stem fixation of a total hip prosthesis, trying to capture the loss of contact between the femoral stem and polymetylmethacrilate cement fixation. To have a landmark, studies were performed compared with cementless fixation, where no fretting phenomenon occurs, on real prostheses, under biological 3D loading conditions. A fatigue test device, installed on a servo-hydraulic triaxial dynamic testing machine was used. It allowed monitoring the flexion-extension, abduction-adduction, inner-outer rotation movements, and the variation of the torsional torque, depending on normal loading. The test ends when the sample does not fail after 2000000 cycles, or when it has reached a predetermined number of cycles. Test fluid medium used was NaCl mixed with distilled water, a favourable environment for appearance of fretting corrosion. After the failure of stem fixation at 2450000 cycles, the mantle of bone cement remaining adherent on femoral stem was removed. Microscopic inspection of the femoral stem and of the inner part of the polymetylmethacrilate mantle demonstrated the existence of corrosion of the femoral stem surface beneath the cement mantle, and Fe2O3 deposits on the femoral stem surface and on the inner part of the mantle.

  6. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  8. FRET analysis of CP12 structural interplay by GAPDH and PRK.

    Moparthi, Satish Babu; Thieulin-Pardo, Gabriel; de Torres, Juan; Ghenuche, Petru; Gontero, Brigitte; Wenger, Jérôme

    2015-03-13

    CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Fretting Wear Damage Mechanism of Uranium under Various Atmosphere and Vacuum Conditions

    Zhengyang Li

    2018-04-01

    Full Text Available A fretting wear experiment with uranium has been performed on a linear reciprocating tribometer with ball-on-disk contact. This study focused on the fretting behavior of the uranium under different atmospheres (Ar, Air (21% O2 + 78% N2, and O2 and vacuum conditions (1.05 and 1 × 10−4 Pa. Evolution of friction was assessed by coefficient of friction (COF and friction-dissipated energy. The oxide of the wear surface was evaluated by Raman spectroscopy. The result shows that fretting wear behavior presents strong atmosphere and vacuum condition dependence. With increasing oxygen content, the COF decreases due to abrasive wear and formation of oxide film. The COF in the oxygen condition is at least 0.335, and it has a maximum wear volume of about 1.48 × 107 μm3. However, the COF in a high vacuum condition is maximum about 1.104, and the wear volume is 1.64 × 106 μm3. The COF in the low vacuum condition is very different: it firstly increased and then decreased rapidly to a steady value. It is caused by slight abrasive wear and the formation of tribofilm after thousands of cycles.

  10. Directed Evolution to Engineer Monobody for FRET Biosensor Assembly and Imaging at Live-Cell Surface.

    Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao

    2018-04-19

    Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The role of FRET in solar concentrator efficiency and color tunability

    Balaban, Benjamin, E-mail: bbalaban@ucsc.edu; Doshay, Sage; Osborn, Melissa; Rodriguez, Yvonne; Carter, Sue A., E-mail: sacarter@ucsc.edu

    2014-02-15

    We demonstrate concentration-dependent Förster-type energy transfer in a luminescent solar concentrator (LSC) material containing two high quantum yield laser dyes in a PMMA matrix. FRET heterotransfer is shown to be approximately 50% efficient in the regime of 2×10{sup −3}molal acceptor dye by weight in the host polymer. The two dyes used have been well studied for solar concentrator applications: BASF's Lumogen Red 305, and Exciton Chemical Company's DCM both demonstrate desirable stability, quantum yield, and complementary absorption spectra. We demonstrate how multiple-dye LSC devices employing FRET increase the absorption of air mass 1.5 solar irradiance without affecting the self-absorption properties of the film. Color tunability may be achieved through the addition of additional absorbers while minimizing the impact on waveguide efficiency. -- Highlights: • Förster Resonance Energy Transfer is demonstrated in a two-dye luminescent solar concentrator. • Donor-acceptor pair distance is related to the dye concentration in PMMA. • FRET's benefit to waveguide transport losses and color tunability is discussed.

  12. Fretting Corrosion Behavior of Experimental Ti-20Cr Compared to Titanium.

    Sawada, Tomofumi; Schille, Christine; Almadani, Atif; Geis-Gerstorfer, Jürgen

    2017-02-17

    Experimental cast titanium alloys containing 20 mass% chromium (Ti-20Cr) show preferable mechanical properties and a good corrosion resistance. This study evaluated the fretting corrosion behavior of Ti-20Cr. Ti-20Cr ( n = 4) and commercially pure titanium (CP-Ti, n = 6) disk specimens were used. The fretting corrosion test was performed by electrochemical corrosion at 0.3 V in 0.9% saline solution and mechanical damage using 10 scratching cycles with three different scratching speeds (10-40 mm/s) at 10 N. After testing, the activation peak, repassivation time and surface morphology of each specimen were analyzed. The differences between the results were tested by parametric tests (α = 0.05). The average activation peaks were significantly higher in CP-Ti than in Ti-20Cr ( p Ti. Slight differences in the repassivation time were observed between the materials at every scratching speed; faster scratching speeds showed shorter repassivation times in both materials ( p Ti showed severe damage and significantly higher wear depth than Ti-20Cr ( p < 0.05). In conclusion, adding chromium to titanium reduced surface damage and improved the fretting corrosion resistance.

  13. A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid l-Lysine Analysis

    Victoria Steffen

    2016-09-01

    Full Text Available Background: The fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET-based biosensors, offer tremendous opportunities. As a proof-of-concept, we have created a toolbox of FRET-based biosensors for the ratiometric determination of l-lysine in fermentation broth. Methods: The sensor toolbox was constructed based on a sensor that consists of an optimized central lysine-/arginine-/ornithine-binding protein (LAO-BP flanked by two fluorescent proteins (enhanced cyan fluorescent protein (ECFP, Citrine. Further sensor variants with altered affinity and sensitivity were obtained by circular permutation of the binding protein as well as the introduction of flexible and rigid linkers between the fluorescent proteins and the LAO-BP, respectively. Results: The sensor prototype was applied to monitor the extracellular l-lysine concentration of the l-lysine producing Corynebacterium glutamicum (C. glutamicum strain DM1933 in a BioLector® microscale cultivation device. The results matched well with data obtained by HPLC analysis and the Ninhydrin assay, demonstrating the high potential of FRET-based biosensors for high-throughput microbial bioprocess optimization.

  14. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  15. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  16. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A

  17. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  18. Design improvement for fretting-wear reduction of HANARO fuel assembly

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  19. Design improvement for fretting-wear reduction of HANARO fuel assembly

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R.

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  20. Advanced KSNP fuel, plus7 : grid-to-rod fretting wear resistance of the plus7 spacer grids

    Kim, Kyu Tae; Kim, Yong Hwan; Jang, Young Ki; Choi, Joon Hyung

    2003-01-01

    Vibration-induced grid-to-rod fretting wear initiates at a certain critical gap correlated with a critical work rate. A critical gap between grid and rod forms due to in-reactor performance of fuel, thermal relaxation of grid spring and irradiation growth of grid strap, etc. A critical work rate may be generated by three vibration mechanisms proposed in this paper. Three vibration mechanisms have been derived with various fretting wear experience in commercial reactors as well as various out-of-pile hydraulic test results. The first active vibration mechanism is high turbulence-induced excessive fuel rod vibration with the combination of excessive grid-to-rod gap. The second active vibration mechanism is self-excited fuel assembly vibration in a low frequency range caused by hydraulically unbalanced mixing vanes of the spacer grid assembly. The third active vibration mechanism is self-excited spacer grid strap vibration in quite a high frequency range caused by some spacer grid designs. In this study, each vibration mechanism on the grid-to-rod fretting wear damage is discussed. On the other hand, the effects of various grid designs on the fretting wear damage in the commercial reactors are predicted using the long-term fretting wear test results. It is found that the larger grid-to-rod initial contact area generates the less fretting wear damage. Consequently the conformal spring of PLUS7 is superior to typical convex shaped spring with regard to fretting wear resistance since the former generates relatively larger contact area than the latter

  1. Förster Resonance Energy Transfer (FRET) from Triton X-100 to 4-benzothiazol-2-yl-phenol: Varying FRET efficiency with CMC of the donor (Triton X-100)

    Paul, Bijan Kumar; Ganguly, Aniruddha; Karmakar, Saswati; Guchhait, Nikhil

    2013-01-01

    A heterocyclic compound viz., 4-benzothiazol-2-yl-phenol (4B2YP) has been synthesized and its photophysics have been examined through steady-state absorption, emission and time resolved emission spectroscopic techniques, in brief. Then 4B2YP has been exploited as an acceptor in the Förster Resonance Energy Transfer (FRET) process from photoexcited benzene aromatic nucleus of Triton X-100 (TX-100) surfactant. Dependence of the energy transfer efficiency on the donor concentration with respect to its critical micelle concentration (CMC) is clearly reflected in the study. High values of Stern–Volmer constant (K SV ) for quenching of the donor fluorescence in the presence of the acceptor suggest the operation of long-range dipole–dipole interaction in the course of energy transfer process, while the inference is aptly supported from time resolved fluorescence decay results. Experimental results show maximum FRET efficiency at the CMC of the donor (TX-100). -- Highlights: • FRET from neutral surfactant Triton X-100 to chromophore 4-benzothiazol-2-yl-phenol. • Steady state and time resolved spectroscopy. • Long-range dipole–dipole interaction responsible for FRET. • FRET efficiency as a measure of CMC of surfactant

  2. Förster Resonance Energy Transfer (FRET) from Triton X-100 to 4-benzothiazol-2-yl-phenol: Varying FRET efficiency with CMC of the donor (Triton X-100)

    Paul, Bijan Kumar, E-mail: bijan.paul.chem.cu@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Ganguly, Aniruddha [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Karmakar, Saswati [Department of Chemistry, Sree Chaitanya College, Habra, North 24 Parganas (India); Guchhait, Nikhil, E-mail: nguchhait@yahoo.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India)

    2013-11-15

    A heterocyclic compound viz., 4-benzothiazol-2-yl-phenol (4B2YP) has been synthesized and its photophysics have been examined through steady-state absorption, emission and time resolved emission spectroscopic techniques, in brief. Then 4B2YP has been exploited as an acceptor in the Förster Resonance Energy Transfer (FRET) process from photoexcited benzene aromatic nucleus of Triton X-100 (TX-100) surfactant. Dependence of the energy transfer efficiency on the donor concentration with respect to its critical micelle concentration (CMC) is clearly reflected in the study. High values of Stern–Volmer constant (K{sub SV}) for quenching of the donor fluorescence in the presence of the acceptor suggest the operation of long-range dipole–dipole interaction in the course of energy transfer process, while the inference is aptly supported from time resolved fluorescence decay results. Experimental results show maximum FRET efficiency at the CMC of the donor (TX-100). -- Highlights: • FRET from neutral surfactant Triton X-100 to chromophore 4-benzothiazol-2-yl-phenol. • Steady state and time resolved spectroscopy. • Long-range dipole–dipole interaction responsible for FRET. • FRET efficiency as a measure of CMC of surfactant.

  3. A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Förster resonance energy transfer platform for hypochlorous acid and its application in living cells

    Liu, Ying; Zhao, Zhi-Min; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-01-01

    We have developed a ratiometric fluorescent probe BRT based on boron dipyrromethene (BODIPY) and rhodamine-thiohydrazide Förster resonance energy transfer (FRET) platform for sensing hypochlorous acid (HOCl) with high selectivity and sensitivity. The probe can detect HOCl in 15 s with the detection limit of 38 nM. Upon mixing with HOCl the fluorescence colour of probe BRT changed from green to orange. Moreover, probe BRT was applied to successfully monitor HOCl in living RAW 264.7 cells. - Highlights: • A probe based on BODIPY and rhodamine was developed for sensing HOCl. • The probe could sense HOCl in a ratiometric manner based on the FRET platform in PBS buffer solution. • The probe can detect HOCl in 15 s accompanied with a fluorescence colour change. • This probe was successfully used to monitor HOCl in living RAW 264.7 cells.

  4. Bulk and Thin film Properties of Nanoparticle-based Ionic Materials

    Fang, Jason

    2008-03-01

    Nanoparticle-based ionic materials (NIMS) offer exciting opportunities for research at the forefront of science and engineering. NIMS are hybrid particles comprised of a charged oligomeric corona attached to hard, inorganic nanoparticle cores. Because of their hybrid nature, physical properties --rheological, optical, electrical, thermal - of NIMS can be tailored over an unusually wide range by varying geometric and chemical characteristics of the core and canopy and thermodynamic variables such as temperature and volume fraction. On one end of the spectrum are materials with a high core content, which display properties similar to crystalline solids, stiff waxes, and gels. At the opposite extreme are systems that spontaneously form particle-based fluids characterized by transport properties remarkably similar to simple liquids. In this poster I will present our efforts to synthesize NIMS and discuss their bulk and surface properties. In particular I will discuss our work on preparing smart surfaces using NIMS.

  5. Comparison of different cationized proteins as biomaterials for nanoparticle-based ocular gene delivery.

    Zorzi, Giovanni K; Párraga, Jenny E; Seijo, Begoña; Sanchez, Alejandro

    2015-11-01

    Cationized polymers have been proposed as transfection agents for gene therapy. The present work aims to improve the understanding of the potential use of different cationized proteins (atelocollagen, albumin and gelatin) as nanoparticle components and to investigate the possibility of modulating the physicochemical properties of the resulting nanoparticle carriers by selecting specific protein characteristics in an attempt to improve current ocular gene-delivery approaches. The toxicity profiles, as well as internalization and transfection efficiency, of the developed nanoparticles can be modulated by modifying the molecular weight of the selected protein and the amine used for cationization. The most promising systems are nanoparticles based on intermediate molecular weight gelatin cationized with the endogenous amine spermine, which exhibit an adequate toxicological profile, as well as effective association and protection of pDNA or siRNA molecules, thereby resulting in higher transfection efficiency and gene silencing than the other studied formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A sight on the current nanoparticle-based gene delivery vectors

    Dizaj, Solmaz Maleki; Jafari, Samira; Khosroushahi, Ahmad Yari

    2014-05-01

    Nowadays, gene delivery for therapeutic objects is considered one of the most promising strategies to cure both the genetic and acquired diseases of human. The design of efficient gene delivery vectors possessing the high transfection efficiencies and low cytotoxicity is considered the major challenge for delivering a target gene to specific tissues or cells. On this base, the investigations on non-viral gene vectors with the ability to overcome physiological barriers are increasing. Among the non-viral vectors, nanoparticles showed remarkable properties regarding gene delivery such as the ability to target the specific tissue or cells, protect target gene against nuclease degradation, improve DNA stability, and increase the transformation efficiency or safety. This review attempts to represent a current nanoparticle based on its lipid, polymer, hybrid, and inorganic properties. Among them, hybrids, as efficient vectors, are utilized in gene delivery in terms of materials (synthetic or natural), design, and in vitro/ in vivo transformation efficiency.

  7. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery

    Ji Young Yhee

    2016-09-01

    Full Text Available Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD, cystic fibrosis (CF, idiopathic pulmonary fibrosis (IPF, and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed.

  8. Simulations of the structure and dynamics of nanoparticle-based ionic liquids

    Hong, Bingbing

    2012-01-01

    We use molecular dynamics simulations over microsecond time scales to study the structure and dynamics of coarse-grained models for nanoparticle-based ionic liquids. The systems of interest consist of particles with charged surface groups and linear or three-arm counterions, which also act as the solvent. A comparable uncharged model of nanoparticles with tethered chains is also studied. The pair correlation functions display a rich structure resulting from the packing of cores and chains, as well as electrostatic effects. Even though electrostatic interactions between oppositely charged ions at contact are much greater than the thermal energy, we find that chain dynamics at intermediate time scales are dominated by chain hopping between core particles. The uncharged core particles with tethered chains diffuse faster than the ionic core particles. © 2012 The Royal Society of Chemistry.

  9. Simulation of vibration modes of the fuel rod damaged due to the grid-to-rod fretting wear

    Kim, Kyu Tae; Kim, Kyeong Koo; Jang, Young Ki; Lee, Kyou Seok

    1997-01-01

    The flow-induced fuel fretting wear observed in some PWRs mainly proceeds in the grid-to-rod contact positions. The grid-to-rod fretting wear in the PWR fuel assembly depends on grid-to-rod gap size, its axial profile and flow-induced vibration. This paper describes the GRIDFORCE program which generates the axially dependent grid-to-rod gap size as a function of burnup. The axially dependent grid-to-rod gap profiles are employed to predict the fuel rod vibration mode shapes by the ANSYS code. With the help of the Paidousis empirical formula, this paper also calculates the fuel rod vibration amplitudes under various supporting conditions, which indicates that the increase of the number of unsupported mid-grids will increase the fuel rod vibration amplitude. On the other hand, the comparison of the predicted vibration mode shapes and the observed mid-grid fretting wear pattern indicates that the 1st and 6th vibration mode shapes under the supporting inactive condition at the mid-grids can simulate the observed mid-grid fretting wear profile. This paper also proposes design guidelines against the grid-to-rod fretting wear. (author). 3 refs., 8 figs

  10. Characterizing the interactions between prolyl isomerase pin1 and phosphatase inhibitor-2 in living cells with FRET and FCS

    Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi

    2012-03-01

    Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.

  11. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  12. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon

    2016-07-07

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

  13. Development of a Fluorescence Resonance Energy Transfer (FRET-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense

    Noremylia Mohd Bakhori

    2013-12-01

    Full Text Available An optical DNA biosensor based on fluorescence resonance energy transfer (FRET utilizing synthesized quantum dot (QD has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  14. Integration of Nanoparticle-Based Paper Sensors into the Classroom: An Example of Application for Rapid Colorimetric Analysis of Antioxidants

    Sharpe, Erica; Andreescu, Silvana

    2015-01-01

    We describe a laboratory experiment that employs the Nanoceria Reducing Antioxidant Capacity (or NanoCerac) Assay to introduce students to portable nanoparticle-based paper sensors for rapid analysis and field detection of polyphenol antioxidants. The experiment gives students a hands-on opportunity to utilize nanoparticle chemistry to develop…

  15. Reconstruction of calmodulin single-molecule FRET states, dye interactions, and CaMKII peptide binding by MultiNest and classic maximum entropy

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2013-08-01

    We analyzed single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  16. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy.

    Devore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2013-08-30

    We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca 2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  17. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  18. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement

    Bitter, T.; Khan, I.; Marriott, T.; Lovelady, E.; Verdonschot, N.J.; Janssen, D.W.

    2017-01-01

    Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental

  19. Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities

    Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.

    2009-07-01

    Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)

  20. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1.

    Shweta A Raina

    Full Text Available Fluorescent protein (FP insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET measurements were used to localize green fluorescent protein (GFP insertions within the ryanodine receptor type 1 (RyR1, a large intracellular Ca(2+ release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.

  1. Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements.

    Fuertes, Gustavo; Banterle, Niccolò; Ruff, Kiersten M; Chowdhury, Aritra; Mercadante, Davide; Koehler, Christine; Kachala, Michael; Estrada Girona, Gemma; Milles, Sigrid; Mishra, Ankur; Onck, Patrick R; Gräter, Frauke; Esteban-Martín, Santiago; Pappu, Rohit V; Svergun, Dmitri I; Lemke, Edward A

    2017-08-01

    Unfolded states of proteins and native states of intrinsically disordered proteins (IDPs) populate heterogeneous conformational ensembles in solution. The average sizes of these heterogeneous systems, quantified by the radius of gyration ( R G ), can be measured by small-angle X-ray scattering (SAXS). Another parameter, the mean dye-to-dye distance ( R E ) for proteins with fluorescently labeled termini, can be estimated using single-molecule Förster resonance energy transfer (smFRET). A number of studies have reported inconsistencies in inferences drawn from the two sets of measurements for the dimensions of unfolded proteins and IDPs in the absence of chemical denaturants. These differences are typically attributed to the influence of fluorescent labels used in smFRET and to the impact of high concentrations and averaging features of SAXS. By measuring the dimensions of a collection of labeled and unlabeled polypeptides using smFRET and SAXS, we directly assessed the contributions of dyes to the experimental values R G and R E For chemically denatured proteins we obtain mutual consistency in our inferences based on R G and R E , whereas for IDPs under native conditions, we find substantial deviations. Using computations, we show that discrepant inferences are neither due to methodological shortcomings of specific measurements nor due to artifacts of dyes. Instead, our analysis suggests that chemical heterogeneity in heteropolymeric systems leads to a decoupling between R E and R G that is amplified in the absence of denaturants. Therefore, joint assessments of R G and R E combined with measurements of polymer shapes should provide a consistent and complete picture of the underlying ensembles.

  2. Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions

    Benea, Lidia; Başa, Sorin-Bogdan; Dănăilă, Eliza; Caron, Nadège; Raquet, Olivier; Ponthiaux, Pierre; Celis, Jean-Pierre

    2015-01-01

    Highlights: • The friction and wear properties of Ni/nano-WC composite were studied. • Nano-WC reinforcement decreased friction coefficient in dry and wet conditions. • Nano-WC reinforcement fraction was seen to be 12 wt.%. • Nanohardness increased by 27% compared to nickel without WC reinforcements. • Ennoblement of OCP corresponding to the Ni/nano-WC composite coating. - Abstract: The fretting and wear behaviors of Ni/nano-WC composite coatings were studied by considering the effect of fretting frequency of 1 Hz during 10,000 cycles, at different applied loads in dry or wet conditions. The studies were performed on a ball-on-disk tribometer and the results were compared with pure Ni coating. The nanohardness of pure Ni and Ni/nano-WC composite coatings was tested by nanoindentation technique. To evaluate the wet wear (tribocorrosion) behavior the open circuit potential (OCP) was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors (PWRs). The results show that Ni/nano-WC composite coatings exhibited a low friction coefficient, high nanohardness and wear resistance compared with pure Ni coatings under similar experimental conditions. Ni/nano-WC composite coatings were obtained on stainless steel support by electrochemical codeposition of nano-sized WC particles (diameter size of ∼60 nm) with nickel, from a standard nickel Watts plating bath. The surface morphology and the composition of the coatings were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) respectively

  3. The synergy of corrosion and fretting wear process on Inconel 690 in the high temperature high pressure water environment

    Wang, Zihao; Xu, Jian; Li, Jie; Xin, Long; Lu, Yonghao; Shoji, Tetsuo; Takeda, Yoichi; Otsuka, Yuichi; Mutoh, Yoshiharu

    2018-04-01

    The synergistic effect of corrosion and fretting process of the steam generator (SG) tube was investigated by using a self-designed high temperature test rig in this paper. The experiments were performed at 100°C , 200°C and 288°C , respectively. The fretting corrosion damage was studied by optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy and auger electron spectroscopy (AES). The results demonstrated that the corrosion process in high temperature high pressure (HTHP) water environment had a distinct interaction with the fretting process of Inconel 690. With the increment of temperature, the damage mechanism changed from a simple mechanical process to a mechanochemical process.

  4. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.

    Viviane Devauges

    Full Text Available We present a novel imaging system combining total internal reflection fluorescence (TIRF microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.

  5. TECHNIQUE OF TESTING ON FRETTING AT THE SPHERE-TO-PLANE CONTACT

    А. Khimko

    2012-12-01

    Full Text Available  The methodology of conducting tests on fretting at the sphere-to-plane contact was developed for the wing mechanization unit, namely for screw-nut pair with intermediate balls. Wearability tests were conducted on a modified installation МФК-1, the feature of which is the designed holder that allows testing with real balls. It was found that at the dry contact of ШХ-15 and 30Х2НВФA materials, surface microcracks are formed due to welding of microasperities areas and their rupture under the influence of vibration.

  6. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren

    2015-01-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode...... polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm...

  7. Sub-ensemble monitoring of DNA strand displacement using multiparameter single-molecule FRET

    Baltierra Jasso, Laura; Morten, Michael; Magennis, Steven William

    2018-01-01

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constan...

  8. Experimental evaluation of the fretting fatigue behavior of high-strength steel monostrands

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2013-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. A method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires along the length of the monostrand. The experimental data....... Moreover, the paper provides relevant information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of the monostrand undergoing flexural deformations. The results presented herein are of special interest for the fatigue analysis of modern stay...

  9. Palladium Nanoparticles-Based Fluorescence Resonance Energy Transfer Aptasensor for Highly Sensitive Detection of Aflatoxin M₁ in Milk.

    Li, Hui; Yang, Daibin; Li, Peiwu; Zhang, Qi; Zhang, Wen; Ding, Xiaoxia; Mao, Jin; Wu, Jing

    2017-10-13

    A highly sensitive aptasensor for aflatoxin M₁ (AFM₁) detection was constructed based on fluorescence resonance energy transfer (FRET) between 5-carboxyfluorescein (FAM) and palladium nanoparticles (PdNPs). PdNPs (33 nm) were synthesized through a seed-mediated growth method and exhibited broad and strong absorption in the whole ultraviolet-visible (UV-Vis) range. The strong coordination interaction between nitrogen functional groups of the AFM₁ aptamer and PdNPs brought FAM and PdNPs in close proximity, which resulted in the fluorescence quenching of FAM to a maximum extent of 95%. The non-specific fluorescence quenching caused by PdNPs towards fluorescein was negligible. After the introduction of AFM₁ into the FAM-AFM₁ aptamer-PdNPs FRET system, the AFM₁ aptamer preferentially combined with AFM₁ accompanied by conformational change, which greatly weakened the coordination interaction between the AFM₁ aptamer and PdNPs. Thus, fluorescence recovery of FAM was observed and a linear relationship between the fluorescence recovery and the concentration of AFM₁ was obtained in the range of 5-150 pg/mL in aqueous buffer with the detection limit of 1.5 pg/mL. AFM₁ detection was also realized in milk samples with a linear detection range from 6 pg/mL to 150 pg/mL. The highly sensitive FRET aptasensor with simple configuration shows promising prospect in detecting a variety of food contaminants.

  10. Product Platform Performance

    Munk, Lone

    The aim of this research is to improve understanding of platform-based product development by studying platform performance in relation to internal effects in companies. Platform-based product development makes it possible to deliver product variety and at the same time reduce the needed resources...... engaging in platform-based product development. Similarly platform assessment criteria lack empirical verification regarding relevance and sufficiency. The thesis focuses on • the process of identifying and estimating internal effects, • verification of performance of product platforms, (i...... experienced representatives from the different life systems phase systems of the platform products. The effects are estimated and modeled within different scenarios, taking into account financial and real option aspects. The model illustrates and supports estimation and quantification of internal platform...

  11. Mobile platform security

    Asokan, N; Dmitrienko, Alexandra

    2013-01-01

    Recently, mobile security has garnered considerable interest in both the research community and industry due to the popularity of smartphones. The current smartphone platforms are open systems that allow application development, also for malicious parties. To protect the mobile device, its user, and other mobile ecosystem stakeholders such as network operators, application execution is controlled by a platform security architecture. This book explores how such mobile platform security architectures work. We present a generic model for mobile platform security architectures: the model illustrat

  12. Data Platforms and Cities

    Blok, Anders; Courmont, Antoine; Hoyng, Rolien

    2017-01-01

    This section offers a series of joint reflections on (open) data platform from a variety of cases, from cycling, traffic and mapping to activism, environment and data brokering. Data platforms play a key role in contemporary urban governance. Linked to open data initiatives, such platforms are of...

  13. Dynamic Gaming Platform (DGP)

    2009-04-01

    GAMING PLATFORM (DGP) Lockheed Martin Corporation...YYYY) APR 09 2. REPORT TYPE Final 3. DATES COVERED (From - To) Jul 07 – Mar 09 4. TITLE AND SUBTITLE DYNAMIC GAMING PLATFORM (DGP) 5a...CMU Carnegie Mellon University DGP Dynamic Gaming Platform GA Genetic Algorithm IARPA Intelligence Advanced Research Projects Activity LM ATL Lockheed Martin Advanced Technology Laboratories PAINT ProActive INTelligence

  14. ITS Platform North Denmark

    Lahrmann, Harry; Agerholm, Niels; Juhl, Jens

    2012-01-01

    This paper presents the project entitled “ITS Platform North Denmark” which is used as a test platform for Intelligent Transportation System (ITS) solutions. The platform consists of a newly developed GNSS/GPRS On Board Unit (OBU) to be installed in 500 cars, a backend server and a specially...

  15. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  16. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Noor, M. Omair; Hrovat, David; Moazami-Goudarzi, Maryam; Espie, George S.; Krull, Ulrich J.

    2015-01-01

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  17. Fretting Fatigue Behaviour of Pin-Loaded Thermoset Carbon-Fibre-Reinforced Polymer (CFRP Straps

    Fabio Baschnagel

    2016-04-01

    Full Text Available This paper focuses on the fretting fatigue behaviour of pin-loaded carbon-fibre-reinforced polymer (CFRP straps studied as models for rigging systems in sailing yachts, for suspenders of arch bridges and for pendent cables in cranes. Eight straps were subjected to an ultimate tensile strength test. In total, 26 straps were subjected to a fretting fatigue test, of which ten did not fail. An S–N curve was generated for a load ratio R of 0.1 and a frequency f of 10 Hz, showing a fatigue limit stress of the straps around the matrix fatigue limit, corresponding to 46% of the straps’ ultimate tensile strength (σUTS. The fatigue limit was defined as 3 million load cycles (N = 3 × 106, but tests were even conducted up to N = 11.09 × 106. Catastrophic failure of the straps was initiated in their vertex areas. Investigations on the residual strength and stiffness properties of straps tested around the fatigue limit stress (for N ≥ 1 × 106 showed little influence of the fatigue loading on these properties. Quasi-static finite element analyses (FEA were conducted. The results obtained from the FEA are in good agreement with the experiments and demonstrate a fibre parallel stress concentration in the vertex area of factor 1.3, under the realistic assumption of a coefficient of friction (cof between pin and strap of 0.5.

  18. [Detection of protein-protein interactions by FRET and BRET methods].

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  19. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET.

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-15

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe(3+) based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe(3+) to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe(3+). The association constant was estimated to be 2.72×10(3) M(-1) according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Study on Corrosion and Fretting Wear Resistance of Alloy 690 Tubes

    Won, Ju Jin; Min, Su Jung; Kim, Myeong Su; Kim, Kyu Tae [Dongguk Univ., Gyeongju (Korea, Republic of)

    2013-10-15

    In this article, the effects of such failures have on the materials of alloy 690 are assessed. The corroded volume variation and mass decreased continuously with time. However, the oxide volume changes in an irregular pattern since the oxide formed on the alloy 690 metal may be detached due to the flake formation. The amount of the fretting wear increased with time. It can be seen that the wear rate increased with time and reduced at the later time. The test results show that the ductility decreased as corrosion increases. Alloy 690 is broadly used as a material of nuclear power plant's steam generator tubes because of its excellent mechanical strength, corrosion properties, wear properties and stability at a high temperature. However, the tubes for nuclear power plant's steam generators become a major threat for lifetime management and efficient operation of nuclear power plant due to various corrosion and fretting wear failures caused by flow-induced vibration (FIV) that occurs between tubes.

  1. Efficient FRET-based fuorescent ratiometric chemosensors for Fe3+ and its application in living cells

    Wang, Cuicui; Liu, Yaqi; Cheng, Junye; Song, Jianhua; Zhao, Yufen; Ye, Yong

    2015-01-01

    A series of novel FRET-based fluorescent ratiometric chemosensors (L 1 –L 6 ) were designed and synthesized. Sensor L 2 showed reversible and the best selective recognition toward Fe 3+ over other metal ions with a detection limit of 0.418 ppm, which can meet the selective requirements for practical application. Experiment results showed that the response behavior of L 2 toward Fe 3+ is pH independent in weak acid condition (pH 4.0–6.0). In addition, sensor L 2 was successfully applied for ratiometric visualization of Fe 3+ in living cells. - Highlights: • The detection limit of a new FRET probe for Fe 3+ was 0.418 ppm. • The probe exhibited high selectivity and sensitivity detection to Fe 3+ with a pH span of 4.0–6.0. • The significant changes in color could be used for naked-eye detection • The fluorescence imaging experiment demonstrated its value of practical application

  2. Stem Migration and Fretting Corrosion of the Antirotation Pin in the K2/Apex Hip System.

    Kent, Michael; Edmondson, Mark; Ebert, Jay; Nivbrant, Nils; Kop, Alan; Wood, David; De Steiger, Richard

    2016-03-01

    Many exchangeable neck hip systems have been withdrawn because of fretting corrosion at the neck/stem coupling. Our prospective randomized study evaluating stem stability (Roentgen stereophotogrammetric analysis, dual-energy x-ray absorptiometry) and clinical outcomes between the K2/Apex hip systems was ceased early because of a withdrawal of the stems which had an unfavorably high early revision rate reported in the Australian Orthopaedic Association National Joint Registry (9.3% at 3 years). At 2 years, there are no clinical differences between the stems. Roentgen stereophotogrammetric analysis has identified a high proportion of potentially concerning subsidence and retroversion in both groups, more marked in the K2 stem, although mostly in asymptomatic patients. Dual-energy x-ray absorptiometry has shown similar bone density around the stems. Retrieval analysis of 3 study patients showed fretting corrosion of the antirotation pin and aseptic lymphocyte-dominated vasculitis-associated lesion, with no relationship to bearing type or size. Analysis of 7 further nonstudy K2/Apex stems confirmed similar corrosion. This study shows potentially concerning subsidence of both stems and is the first to describe corrosion at the neck-stem interface and a relationship to metal-related pathology. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  3. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    Watkins, Jennifer L.; Kim, Hanseong [Arizona State University, Tempe, AZ 85287-1604 (United States); Markwardt, Michele L. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Chen, Liqing; Fromme, Raimund [Arizona State University, Tempe, AZ 85287-1604 (United States); Rizzo, Mark A. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Wachter, Rebekka M., E-mail: rwachter@asu.edu [Arizona State University, Tempe, AZ 85287-1604 (United States)

    2013-05-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.

  4. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    Watkins, Jennifer L.; Kim, Hanseong; Markwardt, Michele L.; Chen, Liqing; Fromme, Raimund; Rizzo, Mark A.; Wachter, Rebekka M.

    2013-01-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed

  5. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-01

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe3+ based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe3+ to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe3+. The association constant was estimated to be 2.72 × 103 M-1 according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field.

  6. Medical diagnosis and remote sensing at fiber-tip: picosecond resolved FRET sensor

    Polley, Nabarun; Pal, Samir Kumar

    2016-03-01

    Förster Resonance Energy Transfer (FRET) strategy in popular in fiber-optic sensing. However, the steady state emission quenching of the donor is inadequate to conclude FRET. The resonance type energy transfer from one molecule (donor) to other (acceptor) should meet few key properties including donor to acceptor energy migration in non-radiative way. In the present study, we have coupled the evanescent field of an optical fiber to the covalently attached donor (dansyl) molecules at the fiber tip. By using picosecond resolved time correlated single photon counting (TCSPC) we have demonstrated that dansyl at the fiber tip transfers energy to a well known DNA-intercalating dye ethidium. Our ultrafast detection scheme selectively distinguishes the probe (dansyl) emission from the intrinsic emission of the fiber. We have also used the setup for the remote sensing of the dielectric constant (polarity) of an environment. We have finally implemented the detection mechanism to detect an industrial synthetic dye methylene blue (MB) in water.

  7. Assessment of Corrosion, Fretting, and Material Loss of Retrieved Modular Total Knee Arthroplasties.

    Martin, Audrey J; Seagers, Kirsten A; Van Citters, Douglas W

    2017-07-01

    Modular junctions in total hip arthroplasties have been associated with fretting, corrosion, and debris release. The purpose of this study is to analyze damage severity in total knee arthroplasties of a single design by qualitative visual assessment and quantitative material loss measurements to evaluate implant performance and patient impact via material loss. Twenty-two modular knee retrievals of the same manufacturer were identified from an institutional review board-approved database. Junction designs included tapers with an axial screw and tapers with a radial screw. Constructs consisted of 2 metal alloys: CoCr and Ti6Al4V. Components were qualitatively scored and quantitatively measured for corrosion and fretting. Negative values represent adhered material. Statistical differences were analyzed using sign tests. Correlations were tested with a Spearman rank order test (P corrosion than other components, suggesting preferential corrosion when interfacing with Ti6Al4V. Overall, although corrosion was noted in this series, material loss was low, and none were revised for clinical metal-related reaction. This suggests the clinical impact from corrosion in total knee arthroplasty is low. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Maximum likelihood-based analysis of photon arrival trajectories in single-molecule FRET

    Waligorska, Marta [Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland); Molski, Andrzej, E-mail: amolski@amu.edu.pl [Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer We study model selection and parameter recovery from single-molecule FRET experiments. Black-Right-Pointing-Pointer We examine the maximum likelihood-based analysis of two-color photon trajectories. Black-Right-Pointing-Pointer The number of observed photons determines the performance of the method. Black-Right-Pointing-Pointer For long trajectories, one can extract mean dwell times that are comparable to inter-photon times. -- Abstract: When two fluorophores (donor and acceptor) are attached to an immobilized biomolecule, anti-correlated fluctuations of the donor and acceptor fluorescence caused by Foerster resonance energy transfer (FRET) report on the conformational kinetics of the molecule. Here we assess the maximum likelihood-based analysis of donor and acceptor photon arrival trajectories as a method for extracting the conformational kinetics. Using computer generated data we quantify the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in selecting the true kinetic model. We find that the number of observed photons is the key parameter determining parameter estimation and model selection. For long trajectories, one can extract mean dwell times that are comparable to inter-photon times.

  9. FRET Response of a Modified Ribose Receptor Expressed in the Diatom Thalassiosira pseudonana

    Miller, Hanna

    2011-08-26

    The ability to insert complex proteins into silica has many applications including biosensing. Previous research has demonstrated how to direct proteins to the biosilica of diatoms [1]. Here, we show that a complex fusion protein that includes an enzyme, a bacterial ribose periplasmic binding protein, flanked by fluorescent proteins constituting a FRET pair can remain functional in the frustules of living diatoms. A Sil3 tag is attached to the N-terminal end to localize the fusion protein to frustules of the diatom Thalassiosira pseudonana. When ribose was applied, a larger decrease in FRET response was seen in transformed cells than in untransformed cells. Multiple forms of the expression vector were tested to find the optimal system; specifically, a one-vector system was compared to a two-vector system and the gDNA version of the Sil3 localization tag was compared to the cDNA version. The optimal system was found to be a one-vector system with the genomic version of the Sil3 tag to direct the protein to the frustules. Localization of the enzyme to the frustules was further confirmed through cell fluorescence imaging.

  10. Evaluation of a FRET-peptide substrate to predict virulence in Pseudomonas aeruginosa.

    Wendy E Kaman

    Full Text Available Pseudomonas aeruginosa produces a number of proteases that are associated with virulence and disease progression. A substrate able to detect P. aeruginosa-specific proteolytic activity could help to rapidly alert clinicians to the virulence potential of individual P. aeruginosa strains. For this purpose we designed a set of P. aeruginosa-specific fluorogenic substrates, comprising fluorescence resonance energy transfer (FRET-labeled peptides, and evaluated their applicability to P. aeruginosa virulence in a range of clinical isolates. A FRET-peptide comprising three glycines (3xGly was found to be specific for the detection of P. aeruginosa proteases. Further screening of 97 P. aeruginosa clinical isolates showed a wide variation in 3xGly cleavage activity. The absence of 3xGly degradation by a lasI knock out strain indicated that 3xGly cleavage by P. aeruginosa could be quorum sensing (QS-related, a hypothesis strengthened by the observation of a strong correlation between 3xGly cleavage, LasA staphylolytic activity and pyocyanin production. Additionally, isolates able to cleave 3xGly were more susceptible to the QS inhibiting antibiotic azithromycin (AZM. In conclusion, we designed and evaluated a 3xGly substrate possibly useful as a simple tool to predict virulence and AZM susceptibility.

  11. The role of two-phase coolant in moderating fretting in nuclear steam generators

    Dyke, J.M.

    2004-01-01

    This paper expands the principal of coolant-cushioning in Nuclear Steam Generators whereby the two-phase coolant, especially the bubble film on the tube surface, moderates the vibration of coolant tubes against their supports. The current paper addresses tube bundle and anti-vibration bars (AVB) geometry issues; examines the tube bundle-coolant-AVB interfaces and examines implications for recirculation flow, AVB design and boiler size. In a T(sat) fluid, the tube surface is uniformly coating with growing bubbles whose momentum is perpendicular to the surface at first, then they are swept away by the bulk flow. The combination of this momentum, the phase change and the water film remaining on the surface, counteract the vibration energy of the tube-AVB system, reducing the likelihood of metal-to-metal contact and consequent fretting. To maximize the benefit of the cushioning effect, the following design inputs are needed: 1) the AVB-tube interface should have sufficient clearance for the T(sat) solution to operate, 2) The AVB should be wide enough to generate the necessary cushioning force, and 3) the AVB should be thin enough to be flexible and absorb some of the transferred vibration energy. Furthermore, fretting and crude deposition at the AVB-tube interface can be reduced or eliminated by reducing the number of AVBs, increasing clearances and making the AVBs limber

  12. Modeling of fuel bundle vibration and the associated fretting wear in a CANDU fuel channel

    Mohany, A.; Hassan, M.

    2011-01-01

    In this paper a numerical model is developed to predict the vibration response of a CANDU® fuel bundle and the associated fretting wear in the surrounding pressure tube. One excitation mechanism is considered in this model; turbulence-induced excitation caused by coolant flow inside the fuel channel. The numerical model can be easily adapted to include the effects of seismic events, fuel bundle impact during refuelling and start-up of the reactor, and the acoustic pressure pulsations caused by the primary heat transport (PHT) pumps. The simulation is performed for a typical CANDU fuel bundle with 37 fuel elements. The clearances between the buttons of the inner fuel elements, and between the bearing pads of the outer fuel elements and the pressure tube were measured from an actual fuel bundle. Some variability among the measured clearance values was observed. Therefore, probability density functions of the measured clearance values were established and the simulation was performed for the probabilistic distribution of the clearance values. The contact between the fuel bundle and the pressure tube is modeled using pseudo-force contact method. The proposed modelling technique can be used in future CANDU reactors to avoid fuel and pressure tube fretting damage due to the aforementioned excitation mechanisms. (author)

  13. Continuous Platform Development

    Nielsen, Ole Fiil

    low risks and investments but also with relatively fuzzy results. When looking for new platform projects, it is important to make sure that the company and market is ready for the introduction of platforms, and to make sure that people from marketing and sales, product development, and downstream......, but continuous product family evolution challenges this strategy. The concept of continuous platform development is based on the fact that platform development should not be a one-time experience but rather an ongoing process of developing new platforms and updating existing ones, so that product family...

  14. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase

    Du, Dan; Chen, Aiqiong; Xie, Yunying; Zhang, Aidong; Lin, Yuehe

    2011-01-01

    A new sandwich-like electrochemical immunosensor has been developed for quantification of organophosphorylated acetylcholinesterase (OP-AChE), an exposure biomarker of organophosphate pesticides and nerve agents. Zirconia nanoparticles (ZrO2 NPs) were anchored on a screen printed electrode (SPE) to preferably capture OP-AChE adducts by metal chelation with phospho-moieties, which was selectively recognized by lead phosphate-apoferritin labeled anti-AChE antibody (LPA-anti-AChE). The sandwich-like immunoreactions were performed among ZrO2 NPs, OP-AChE and LPA-anti-AChE to form ZrO2/OP-AChE/LPA-anti-AChE complex and the released lead ions were detected on a disposable SPE. The binding affinity was investigated by both square wave voltammetry (SWV) and quartz crystal microbalance (QCM) measurements. The proposed immunosensor yielded a linear response current over a broad OP-AChE concentrations range from 0.05 nM to 10 nM, with detection limit of 0.02 nM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This method avoids the drawback of unavailability of commercial OP-specific antibody as well as amplifies detection signal by using apoferritin encoded metallic phosphate nanoparticle tags. This nanoparticle-based immunosensor offers a new method for rapid, sensitive, selective and inexpensive quantification of phosphorylated adducts for monitoring of OP pesticides and nerve agents exposures.

  15. Internal and External Triggering Mechanism of "Smart" Nanoparticle-Based DDSs in Targeted Tumor Therapy.

    Qiana, Xian-Ling; Li, Jun; Wei, Ran; Lin, Hui; Xiong, Li-Xia

    2018-05-09

    Anticancer chemotherapeutics have a lot of problems via conventional drug delivery systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: "passive", "active", and "smart" targeting. To summarize the mechanisms of various internal and external "smart" stimulating factors on the basis of findings from in vivo and in vitro studies. A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), "smart" DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. In this review article, we summarize and classify the internal and external triggering mechanism of "smart" nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase

    Du, Dan; Chen, Aiqiong; Xie, Yunying; Zhang, Aidong; Lin, Yuehe

    2011-05-15

    A new sandwich-like electrochemical immunosensor has been developed for quantification of organophosphorylated acetylcholinesterase (OP-AChE), an exposure biomarker of organophosphate pesticides and nerve agents. Zirconia nanoparticles (ZrO2 NPs) were anchored on a screen printed electrode (SPE) to preferably capture OP-AChE adducts by metal chelation with phospho-moieties, which was selectively recognized by lead phosphate-apoferritin labeled anti-AChE antibody (LPA-anti-AChE). The sandwich-like immunoreactions were performed among ZrO2 NPs, OP-AChE and LPA-anti-AChE to form ZrO2/OP-AChE/LPA-anti-AChE complex and the released lead ions were detected on a disposable SPE. The binding affinity was investigated by both square wave voltammetry (SWV) and quartz crystal microbalance (QCM) measurements. The proposed immunosensor yielded a linear response current over a broad OP-AChE concentrations range from 0.05 nM to 10 nM, with detection limit of 0.02 nM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This method avoids the drawback of unavailability of commercial OP-specific antibody as well as amplifies detection signal by using apoferritin encoded metallic phosphate nanoparticle tags. This nanoparticle-based immunosensor offers a new method for rapid, sensitive, selective and inexpensive quantification of phosphorylated adducts for monitoring of OP pesticides and nerve agents exposures.

  17. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  18. Evaluation of antioxidant activity of chrysanthemum extracts and tea beverages by gold nanoparticles-based assay.

    Liu, Quanjun; Liu, Haifang; Yuan, Zhiliang; Wei, Dongwei; Ye, Yongzhong

    2012-04-01

    A gold nanoparticles-based (GNPs-based) assay was developed for evaluating antioxidant activity of chrysanthemum extracts and tea beverages. Briefly, a GNPs growth system consisted of designated concentrations of hydrogen tetrachloroaurate, cetyltrimethyl ammonium bromide, sodium citrate, and phosphate buffer was designed, followed by the addition of 1 mL different level of test samples. After a 10-min reaction at 45°C, GNPs was formed in the reduction of metallic ions to zero valence gold by chrysanthemum extracts or tea beverages. And the resultant solution exhibited a characteristic surface plasmon resonance band of GNPs centered at about 545 nm, responsible for its vivid light pink or wine red color. The optical properties of GNPs formed correlate well with antioxidant activity of test samples. As a result, the antioxidant functional evaluation of chrysanthemum extracts and beverages could be performed by this GNPs-based assay with a spectrophotometer or in visual analysis to a certain extent. Our present method based on the sample-mediated generation and growth of GNPs is rapid, convenient, inexpensive, and also demonstrates a new possibility for the application of nanotechnology in food science. Moreover, this present work provides some useful information for in-depth research of involving chrysanthemum. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-01-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, ∼4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  20. A ferrite nano-particles based fully printed process for tunable microwave components

    Ghaffar, Farhan A.

    2016-08-15

    With the advent of nano-particles based metallic inks, inkjet printing emerged as an attractive medium for fast prototyping as well as for low cost and flexible electronics. However, at present, it is limited to printing of metallic inks on conventional microwave substrates. For fully printed designs, ideally, the substrate must also be printed. In this work, we demonstrate a fully printed process utilizing a custom Fe2O3 based magnetic ink for functional substrate printing and a custom silver-organo-complex (SOC) ink for metal traces printing. Due to the magnetic nature of the ink, this process is highly suitable for tunable microwave components. The printed magnetic substrate is characterized for the magnetostatic as well as microwave properties. The measured B(H) curve shows a saturation magnetization and remanence of 1560 and 350 Gauss respectively. As a proof of concept, a patch antenna is implemented in the proposed stack up which shows a tuning range of 4 % around the center frequency. © 2016 IEEE.

  1. Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications.

    Morral-Ruíz, Genoveva; Melgar-Lesmes, Pedro; García, María Luísa; Solans, Conxita; García-Celma, María José

    2014-01-30

    The design of new, safe and effective nanotherapeutic systems is an important challenge for the researchers in the nanotechnology area. This study describes the formation of biocompatible polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant formed from O/W nano-emulsions by polymerization at the droplet interfaces in systems composed by aqueous solution/Kolliphor(®) ELP/medium chain triglyceride suitable for intravenous administration. Initial nano-emulsions incorporating highly hydrophilic materials were prepared by the phase inversion composition (PIC) method. After polymerization, nanoparticles with a small particle diameter (25-55 nm) and low polydispersity index were obtained. Parameters such as concentration of monomer, O/S weight ratio as well as the polymerization temperature were crucial to achieve a correct formation of these nanoparticles. Moreover, FT-IR studies showed the full conversion of the monomer to polyurethane and polyurea polymers. Likewise the involvement of the surfactant in the polymerization process through their nucleophilic groups to form the polymeric matrix was demonstrated. This could mean a first step in the development of biocompatible systems formulated with polyoxyethylene castor oil derivative surfactants. In addition, haemolysis and cell viability assays evidenced the good biocompatibility of KELP polyurethane and polyurea nanoparticles thus indicating the potential of these nanosystems as promising drug carriers. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus.

    Yuan, Jinglei; Wu, Shijia; Duan, Nuo; Ma, Xiaoyuan; Xia, Yu; Chen, Jie; Ding, Zhansheng; Wang, Zhouping

    2014-09-01

    In this study, a gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus (S. aureus) using tyramine signal amplification (TSA) technology has been developed. First, the biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of the microtiter plate via biotin-avidin binding. Then, the target bacteria (S. aureus), biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and avidin-catalase were successively introduced into the wells of the microtiter plate. After that, the existing catalase consumed the hydrogen peroxide. Finally, the freshly prepared gold (III) chloride trihydrate was added, the color of the reaction production would be changed and the absorbance at 550 nm could be measured with a plate reader. Under optimized conditions, there was a linear relationship between the absorbance at 550 nm and the concentration of S. aureus over the range from 10 to 10(6) cfu mL(-1) (with an R² of 0.9947). The limit of the developed method was determined to be 9 cfu mL(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cross-Platform Technologies

    Maria Cristina ENACHE

    2017-04-01

    Full Text Available Cross-platform - a concept becoming increasingly used in recent years especially in the development of mobile apps, but this consistently over time and in the development of conventional desktop applications. The notion of cross-platform software (multi-platform or platform-independent refers to a software application that can run on more than one operating system or computing architecture. Thus, a cross-platform application can operate independent of software or hardware platform on which it is execute. As a generic definition presents a wide range of meanings for purposes of this paper we individualize this definition as follows: we will reduce the horizon of meaning and we use functionally following definition: a cross-platform application is a software application that can run on more than one operating system (desktop or mobile identical or in a similar way.

  4. Probing nucleic acid interactions and pre-mRNA splicing by Förster resonance energy transfer (FRET) microscopy

    Šimková, Eva; Staněk, David

    2012-01-01

    Roč. 13, č. 11 (2012), s. 14929-14945 E-ISSN 1422-0067 R&D Projects: GA AV ČR KAN200520801 Institutional support: RVO:68378050 Keywords : FRET * FLIM * acceptor photobleaching * RNA interactions * spliceosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.464, year: 2012

  5. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy

    Vermeer, J.E.M.; van Munster, E.B.; Vischer, N.O.; Gadella, T.

    2004-01-01

    Multimode fluorescence resonance energy transfer (FRET) microscopy was applied to study the plasma membrane organization using different lipidated green fluorescent protein (GFP)-fusion proteins co-expressed in cowpea protoplasts. Cyan fluorescent protein (CFP) was fused to the hyper variable region

  6. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2

    Mastop, M.; Bindels, D.S.; Shaner, N.C.; Postma, M.; Gadella, T.W.J.; Goedhart, J.

    2017-01-01

    The performance of Förster Resonance Energy Transfer (FRET) biosensors depends on brightness and photostability, which are dependent on the characteristics of the fluorescent proteins that are employed. Yellow fluorescent protein (YFP) is often used as an acceptor but YFP is prone to photobleaching

  7. Experimental studies of resistance fretting-wear of fuel rods for VVER-1000 and TVS-KVADRAT fuel assemblies

    Makarov, V.; Afanasiev, A.; Egorov, Yu.; Matvienko, I.

    2015-01-01

    The paper covers the results of the studies performed to justify the wear resistance of fuel rods in contact with the spacer grids of TVS VVER-1000 fuel assembly and TVS-KVADRAT square fuel assembly of Russian design for PWR-900 reactor. The presented results of three testing stages comprise: Testing of mockup fuel rods of VVER TVS fuel assembly for fretting wear under the conditions of the water chemistry of VVER reactor; Testing models of different design embodiments of the fuel rods for VVER TVS fuel assembly for fretting wear in still cold water; Testing mockup fuel rods of TVS-KVADRAT square fuel assembly for PWR reactor for frettingwear under the conditions of PWR water chemistry. The effect of structural and operational factors was determined (amplitudes, fuel rod vibration frequencies, values of cladding-to-spacer grid cell gap for the depth of fuel rod cladding wear etc.), an assessment was made of the threshold values of fuel rod vibration parameters, which, if not exceeded, provide the absence of the fuel rod cladding fretting wear in the fuel rod-to spacer grid contact area. Key words: fretting wear, fuel rod, spacer grid, VVER, PWR (author)

  8. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots

    Long, Yuchen

    2018-05-15

    Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living multicellular organism at single-cell resolution and under native condition is still difficult to achieve. Here we describe the optimization of the labeling conditions to detect FRET-FLIM in living plants. This study exemplifies optimization procedure involving the identification of the optimal position for the labels either at the N or C terminal region and the selection of the bright and suitable, fluorescent proteins as donor and acceptor labels for the FRET study. With an effective optimization strategy, we were able to detect the interaction between the stem cell regulators SHORT-ROOT and SCARECROW at endogenous expression levels in the root pole of living Arabidopsis embryos and developing lateral roots by FRET-FLIM. Using this approach we show that the spatial profile of interaction between two transcription factors can be highly modulated in reoccurring and structurally resembling organs, thus providing new information on the dynamic redistribution of nuclear protein complex configurations in different developmental stages. In principle, our optimization procedure for transcription factor complexes is applicable to any biological system.

  9. A Novel Water-soluble Ratiometric Fluorescent Probe Based on FRET for Sensing Lysosomal pH.

    Song, Guang-Jie; Bai, Su-Yun; Luo, Jing; Cao, Xiao-Qun; Zhao, Bao-Xiang

    2016-11-01

    A new ratiometric fluorescent probe based on Förster resonance energy transfer (FRET) for sensing lysosomal pH has been developed. The probe (RMPM) was composed of imidazo[1,5-α]pyridine quaternary ammonium salt fluorophore as the FRET donor and the rhodamine moiety as the FRET acceptor. It's the first time to report that imidazo[1,5-α]pyridine quaternary ammonium salt acts as the FRET donor. The ratio of fluorescence intensity of the probe at two wavelengths (I 424 /I 581 ) changed significantly and responded linearly toward minor pH changes in the range of 5.4-6.6. It should be noted that it's rare to report that a ratiometric pH probe could detect so weak acidic pH with pKa = 6.31. In addition, probe RMPM exhibited excellent water-solubility, fast-response, all-right selectivity and brilliant reversibility. Moreover, RMPM has been successfully applied to sensing lysosomal pH in HeLa cells and has low cytotoxicity.

  10. Fluorescence lifetime FRET imaging of receptor-ligand complexes in tumor cells in vitro and in vivo

    Rudkouskaya, Alena; Sinsuebphon, Nattawut; Intes, Xavier; Mazurkiewicz, Joseph E.; Barroso, Margarida

    2017-02-01

    To guide the development of targeted therapies with improved efficacy and accelerated clinical acceptance, novel imaging methodologies need to be established. Toward this goal, fluorescence lifetime Förster resonance energy transfer (FLIM-FRET) imaging assays capitalize on the ability of antibodies or protein ligands to bind dimerized membrane bound receptors to measure their target engagement levels in cancer cells. Conventional FLIM FRET microscopy has been widely applied at visible wavelengths to detect protein-protein interactions in vitro. However, operation at these wavelengths restricts imaging quality and ability to quantitate lifetime changes in in vivo small animal optical imaging due to high auto-fluorescence and light scattering. Here, we have analyzed the uptake of iron-bound transferrin (Tf) probes into human breast cancer cells using FLIM-FRET microscopy in the visible and near-infrared (NIR) range. The development of NIR FLIM FRET microscopy allows for the use of quantitative lifetime-based molecular assays to measure drug-target engagement levels at multiple scales: from in vitro microscopy to in vivo small animal optical imaging (macroscopy). This novel approach can be extended to other receptors, currently targeted in oncology. Hence, lifetime-based molecular imaging can find numerous applications in drug delivery and targeted therapy assessment and optimization.

  11. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET)

    Lidke, D.S.; Nagy, P.; Barisas, B.G.; Heintzmann, R.; Post, Janine Nicole; Lidke, K.A.; Clayton, A.H.A.; Arndt-jovin, D.J.; Jovin, T.M.

    2003-01-01

    We report the implementation and exploitation of fluorescence polarization measurements, in the form of anisotropy fluorescence lifetime imaging microscopy (rFLIM) and energy migration Förster resonance energy transfer (emFRET) modalities, for wide-field, confocal laser-scanning microscopy and flow

  12. Förster Resonance Energy Transfer (FRET) between Heterogeneously Distributed Probes: Application to Lipid Nanodomains and Pores

    Šachl, Radek; Johansson, L. B. A.; Hof, Martin

    2012-01-01

    Roč. 13, č. 12 (2012), s. 16141-16156 E-ISSN 1422-0067 R&D Projects: GA ČR GAP208/10/1090; GA ČR GAP208/10/0376 Institutional support: RVO:61388955 Keywords : FRET * lipid domains * pores Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.464, year: 2012

  13. Influence of thermal oxidation duration on the microstructure and fretting wear behavior of Ti6Al4V alloy

    Wang, Song [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Liu, Yuhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-06-01

    Thermal oxidation under water oxidizing atmosphere was performed on Ti6Al4V alloy under different durations from 2 h to 8 h. Surface characterizations were performed using X-ray diffractometery (XRD), scanning electron microscopy (SEM), Raman spectroscopy, nanoindentation and nano scratch testing. Fretting wear behaviors of untreated and oxidized samples were also examined. The formed oxide coating mainly included rutile TiO{sub 2} as well as a little alumina. The weight gain with respect to the oxidation duration obeyed the linear oxidation kinetics law. The growth of oxide grains was in inadequate growth state of incomplete scale coverage from 2nd to 4th hour duration, in normal growth state from 4th to 6th hour duration while in excessive growth state of oxide particle agglomeration and surface roughening from 6th to 8th (or more than 8th) hour duration. The coating thickness increased from 5 μm to 12 μm as oxidation duration increased from 2 h to 8 h. The increase in duration also increased surface roughness and nano hardness as well as adhesion strength of the film/substrate for oxidized samples. The nano hardness value was 10.06 ± 2.15 GPa and the critical load of failure during nano scratch testing was 554.3 ± 6.44 mN for 4 h treated sample. The untreated and oxidized samples showed a same fretting running status and fretting regime with a displacement amplitude of 200 μm while revealing different fretting failure mechanisms. It was mainly abrasive and adhesive wear under ploughing force for untreated sample, while a mix of 3-body abrasion by rolling oxide particles and severe plastic deformation under high contact stress between two ceramic materials for the oxidized samples. The oxide coating was not worn out and improved the fretting wear resistance of titanium alloy. - Highlights: • A thickness of 5–12 μm rutile TiO{sub 2} coating formed under different oxidation durations. • Weight gain with respect to oxidation duration obeyed linear

  14. Wide-field lifetime-based FRET imaging for the assessment of early functional distribution of transferrin-based delivery in breast tumor-bearing small animals

    Sinsuebphon, Nattawut; Rudkouskaya, Alena; Barroso, Margarida; Intes, Xavier

    2016-02-01

    Targeted drug delivery is a critical aspect of successful cancer therapy. Assessment of dynamic distribution of the drug provides relative concentration and bioavailability at the target tissue. The most common approach of the assessment is intensity-based imaging, which only provides information about anatomical distribution. Observation of biomolecular interactions can be performed using Förster resonance energy transfer (FRET). Thus, FRET-based imaging can assess functional distribution and provide potential therapeutic outcomes. In this study, we used wide-field lifetime-based FRET imaging for the study of early functional distribution of transferrin delivery in breast cancer tumor models in small animals. Transferrin is a carrier for cancer drug delivery. Its interaction with its receptor is within a few nanometers, which is suitable for FRET. Alexa Fluor® 700 and Alexa Fluor® 750 were conjugated to holo-transferrin which were then administered via tail vein injection to the mice implanted with T47D breast cancer xenografts. Images were continuously acquired for 60 minutes post-injection. The results showed that transferrin was primarily distributed to the liver, the urinary bladder, and the tumor. The cellular uptake of transferrin, which was indicated by the level of FRET, was high in the liver but very low in the urinary bladder. The results also suggested that the fluorescence intensity and FRET signals were independent. The liver showed increasing intensity and increasing FRET during the observation period, while the urinary bladder showed increasing intensity but minimal FRET. Tumors gave varied results corresponding to their FRET progression. These results were relevant to the biomolecular events that occurred in the animals.

  15. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  16. Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP.

    Murakoshi, Hideji; Lee, Seok-Jin; Yasuda, Ryohei

    2008-08-01

    Two-photon fluorescence lifetime imaging microscopy (TPFLIM) enables the quantitative measurements of fluorescence resonance energy transfer (FRET) in small subcellular compartments in light scattering tissue. We evaluated and optimized the FRET pair of mEGFP (monomeric EGFP with the A206K mutation) and REACh (non-radiative YFP variants) for TPFLIM. We characterized several mutants of REACh in terms of their "darkness," and their ability to act as a FRET acceptor for mEGFP in HeLa cells and hippocampal neurons. Since the commonly used monomeric mutation A206K increases the brightness of REACh, we introduced a different monomeric mutation (F223R) which does not affect the brightness. Also, we found that the folding efficiency of original REACh, as measured by the fluorescence lifetime of a mEGFP-REACh tandem dimer, was low and variable from cell to cell. Introducing two folding mutations (F46L, Q69M) into REACh increased the folding efficiency by approximately 50%, and reduced the variability of FRET signal. Pairing mEGFP with the new REACh (super-REACh, or sREACh) improved the signal-to-noise ratio compared to the mEGFP-mRFP or mEGFP-original REACh pair by approximately 50%. Using this new pair, we demonstrated that the fraction of actin monomers in filamentous and globular forms in single dendritic spines can be quantitatively measured with high sensitivity. Thus, the mEGFP-sREACh pair is suited for quantitative FRET measurement by TPFLIM, and enables us to measure protein-protein interactions in individual dendritic spines in brain slices with high sensitivity.

  17. Development of device for grid spring fatigue and a cell-based fuel rod fretting wear tests

    Kim, Hyung Kyu; Yoon, Kyung Ho; Kang, Heung Seok; Song, Kee Nam

    2001-05-01

    As an activity of experimental research on the cause and the remedy of LWR fuel fretting failure, developed is test equipment for fatigue of grid spring and cell-based fuel rod fretting wear test. The equipment enables to perform the fretting wear test in the case of gap existence between spring and cladding, which has not been possible by the previously developed one (KAERI/TR-1570/2000). It can also provide fatigue test capability with the frequency of more than 10 Hz. Used are a servo-motor, an eccentric cylinder and lever mechanism for driving system as was similarly used for the previous equipment. In fretting wear test, up to 2 span-length of a fuel cladding tube can be accommodated. For fatigue test, on the other hand, a device for clamping the spring fixture is installed additionally. As a feature of the present equipment, the gap or the contacting force between a spring and a tube can be adjusted during the fretting wear test, while an initial spring force can be simulated for the fatigue test. Tests will be conducted in air at room temperature. In this report, every part of the equipment is explained with photographs, which will provide an easy understanding. Test procedure such as specimen installation, sequence of operation and program handling is also given. As a performance test of the present equipment, displacement range is measured when the hinge of the lever locates at its maximum and minimum positions. This will be used as basic information when additional eccentric cylinder is necessary for different displacement ranges

  18. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a

  19. Molecularly imprinted polymer nanoparticle-based assay (MINA): application for fumonisin B1 determination.

    Munawar, Hasim; Smolinska-Kempisty, Katarzyna; Cruz, Alvaro Garcia; Canfarotta, Francesco; Piletska, Elena; Karim, Khalku; Piletsky, Sergey A

    2018-06-20

    The enzyme-linked immunosorbent assay (ELISA) has been used as a standard tool for monitoring food and animal feed contamination from the carcinogenic fumonisin B1 (FB1). Unfortunately, ELISA is not always efficient due to the instability of the antibody and enzyme components in the immunoassay, the presence of natural enzyme inhibitors in the samples and the high levels of non-specific protein binding. Additionally, the production of antibodies for ELISA can be time-consuming and costly, due to the involvement of animals in the manufacturing process. To overcome these limiting factors, a molecularly imprinted nanoparticle based assay (MINA) has been developed, where the molecularly imprinted nanoparticles (nanoMIPs) replace the primary antibody used in a competitive ELISA. Herein, computational modelling was used to design the nanoMIPs by selecting monomers that specifically interact with FB1. The affinity of the monomers to FB1 was verified by measuring their binding in affinity chromatography experiments. The nanoMIPs were produced by solid phase synthesis and the results showed that nanoMIPs had a hydrodynamic diameter of around 249 ± 29 nm. The assay tested in model samples is highly selective and does not show cross-reactivity with other mycotoxins such as fumonisin B2 (FB2), aflatoxin B1 (AFB1), citrinin (CTT), zearalenone (ZEA), and deoxynivalenol (DON). The MINA allows the detection of FB1 in the concentration range of 10 pM-10 nM with a detection limit of 1.9 pM and a recovery of 108.13-113.76%.

  20. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides

    Simonian, A.L.; Good, T.A.; Wang, S.-S.; Wild, J.R.

    2005-01-01

    Neurotoxic organophosphates (OP) have found widespread use in the environment for insect control. In addition, there is the increasing threat of use of OP based chemical warfare agents in both ground based warfare and terrorist attacks. Together, these trends necessitate the development of simple and specific methods for discriminative detection of ultra low quantities of OP neurotoxins. In our previous investigations a new biosensor for the direct detection of organophosphorus neurotoxins was pioneered. In this system, the enzymatic hydrolysis of OP neurotoxins by organophosphate hydrolase (OPH) generated two protons in each hydrolytic turnover through reactions in which P-X bonds are cleaved. The sensitivity of this biosensor was limited due to the potentiometric method of detection. Recently, it was reported that a change in fluorescence properties of a fluorophore in the vicinity of gold nanoparticles might be used for detection of nanomolar concentrations of DNA oligonucleotides. The detection strategy was based on the fact that an enhancement or quenching of fluorescence intensity is a function of the distances between the gold nanoparticle and fluorophore. While these reports have demonstrated the use of nanoparticle-based sensors for the detection of target DNA, we observed that the specificity of enzyme-substrate interactions could be exploited in similar systems. To test the feasibility of this approach, OPH-gold nanoparticle conjugates were prepared, then incubated with a fluorescent enzyme inhibitor or decoy. The fluorescence intensity of the decoy was sensitive to the proximity of the gold nanoparticle, and thus could be used to indicate that the decoy was bound to the OPH. Then different paraoxon concentrations were introduced to the OPH-nanoparticle-conjugate-decoy mixtures, and normalized ratio of fluorescence intensities were measured. The greatest sensitivity to paraoxon was obtained when decoys and OPH-gold nanoparticle conjugates were present at

  1. ADMS Evaluation Platform

    2018-01-23

    Deploying an ADMS or looking to optimize its value? NREL offers a low-cost, low-risk evaluation platform for assessing ADMS performance. The National Renewable Energy Laboratory (NREL) has developed a vendor-neutral advanced distribution management system (ADMS) evaluation platform and is expanding its capabilities. The platform uses actual grid-scale hardware, large-scale distribution system models, and advanced visualization to simulate realworld conditions for the most accurate ADMS evaluation and experimentation.

  2. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits

    Mattera, Lucia; Bhuckory, Shashi; Wegner, K. David; Qiu, Xue; Agnese, Fabio; Lincheneau, Christophe; Senden, Tim; Djurado, David; Charbonnière, Loïc J.; Hildebrandt, Niko; Reiss, Peter

    2016-05-01

    A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter coating for FRET could be demonstrated by an 6.2 and 2.5 fold improvement of the limit of detection (LOD) for PSA compared to commercially available hydrophilic QDs emitting at 605 and 705 nm, respectively. While the commercial QDs contain identical inorganic cores responsible for their fluorescence, they are coated with a comparably thick amphiphilic polymer layer leading to much larger hydrodynamic diameters (>26 nm without biomolecules). The LODs of 0.8 and 3.7 ng mL-1 obtained in 50 μL serum samples are below the clinical cut-off level of PSA (4 ng mL-1) and demonstrate their direct applicability in clinical diagnostics.A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post

  3. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules.

    Antonino Ingargiola

    Full Text Available We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions.

  4. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy

    Daniel Sultanov

    2017-01-01

    Full Text Available DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose polymerase 1 increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA.

  5. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  6. Flow-induced vibration and fretting-wear damage in a moisture separator reheater

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.

    1996-01-01

    Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operational changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem

  7. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide

    2018-01-12

    In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  8. Fretting-wear characteristics of steam generator tubes contacting with foreign object

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2003-01-01

    Fretting-wear characteristics of steam generator tubes contacting with foreign object has been investigated in this study. The operating steam generator shell-side flow field conditions are obtained from three-dimensional steam generator flow calculation using a well-validated steam generator thermal-hydraulic analysis computer code. Modal analyses are performed for the finite element modelings of tubes to get the natural frequency, corresponding mode shape and participation factor. The wear rate of a steam generator tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted. In addition, the effects of internal pressure and flow velocity on the remaining life of the tube are discussed in this paper

  9. Platform development supportedby gaming

    Mikkola, Juliana Hsuan; Hansen, Poul H. Kyvsgård

    2007-01-01

    The challenge of implementing industrial platforms in practice can be described as a configuration problem caused by high number of variables, which often have contradictory influences on the total performance of the firm. Consequently, the specific platform decisions become extremely complex......, possibly increasing the strategic risks for the firm. This paper reports preliminary findings on platform management process at LEGO, a Danish toy company.  Specifically, we report the process of applying games combined with simulations and workshops in the platform development. We also propose a framework...

  10. Omnidirectional holonomic platforms

    Pin, F.G.; Killough, S.M.

    1994-01-01

    This paper presents the concepts for a new family of wheeled platforms which feature full omnidirectionality with simultaneous and independently controlled rotational and translational motion capabilities. The authors first present the orthogonal-wheels concept and the two major wheel assemblies on which these platforms are based. They then describe how a combination of these assemblies with appropriate control can be used to generate an omnidirectional capability for mobile robot platforms. The design and control of two prototype platforms are then presented and their respective characteristics with respect to rotational and translational motion control are discussed

  11. Platform decommissioning costs

    Rodger, David

    1998-01-01

    There are over 6500 platforms worldwide contributing to the offshore oil and gas production industry. In the North Sea there are around 500 platforms in place. There are many factors to be considered in planning for platform decommissioning and the evaluation of options for removal and disposal. The environmental impact, technical feasibility, safety and cost factors all have to be considered. This presentation considers what information is available about the overall decommissioning costs for the North Sea and the costs of different removal and disposal options for individual platforms. 2 figs., 1 tab

  12. FRET measurements of kinesin neck orientation reveal a structural basis for processivity and asymmetry.

    Martin, Douglas S; Fathi, Reza; Mitchison, Timothy J; Gelles, Jeff

    2010-03-23

    As the smallest and simplest motor enzymes, kinesins have served as the prototype for understanding the relationship between protein structure and mechanochemical function of enzymes in this class. Conventional kinesin (kinesin-1) is a motor enzyme that transports cargo toward the plus end of microtubules by a processive, asymmetric hand-over-hand mechanism. The coiled-coil neck domain, which connects the two kinesin motor domains, contributes to kinesin processivity (the ability to take many steps in a row) and is proposed to be a key determinant of the asymmetry in the kinesin mechanism. While previous studies have defined the orientation and position of microtubule-bound kinesin motor domains, the disposition of the neck coiled-coil remains uncertain. We determined the neck coiled-coil orientation using a multidonor fluorescence resonance energy transfer (FRET) technique to measure distances between microtubules and bound kinesin molecules. Microtubules were labeled with a new fluorescent taxol donor, TAMRA-X-taxol, and kinesin derivatives with an acceptor fluorophore attached at positions on the motor and neck coiled-coil domains were used to reconstruct the positions and orientations of the domains. FRET measurements to positions on the motor domain were largely consistent with the domain orientation determined in previous studies, validating the technique. Measurements to positions on the neck coiled-coil were inconsistent with a radial orientation and instead demonstrated that the neck coiled-coil is parallel to the microtubule surface. The measured orientation provides a structural explanation for how neck surface residues enhance processivity and suggests a simple hypothesis for the origin of kinesin step asymmetry and "limping."

  13. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET

    Mengyi Yang

    2018-01-01

    Full Text Available Summary: Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox. : Yang et al. revealed significant conformational dynamics of Cas9 at global and local scales using single-molecule FRET. They uncovered surprising long-range allosteric communication between the HNH nuclease domain and the RNA/DNA heteroduplex at the PAM-distal end that serves as a proofreading checkpoint to govern the nuclease activity and specificity of Cas9. Keywords: CRISPR, Cas9, single-molecule, FRET, conformational dynamics, proofreading, off-target, allosteric communication, genome editing

  14. Groundwater Assessment Platform

    Podgorski, Joel; Berg, Michael

    2018-01-01

    The Groundwater Assessment Platform is a free, interactive online GIS platform for the mapping, sharing and statistical modeling of groundwater quality data. The modeling allows users to take advantage of publicly available global datasets of various environmental parameters to produce prediction maps of their contaminant of interest.

  15. EURESCOM Services Platform

    Nieuwenhuis, Lambertus Johannes Maria; van Halteren, Aart

    1999-01-01

    This paper presents the results of the EURESCOM Project 715. In February 1999, a large team of researchers from six European public network operators completed a two year period of cooperative experiments on a TINA-based environment, called the EURESCOM Services Platform (ESP). This platform

  16. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein.

    Chung, Hoi Sung; Gopich, Irina V; McHale, Kevin; Cellmer, Troy; Louis, John M; Eaton, William A

    2011-04-28

    Recently developed statistical methods by Gopich and Szabo were used to extract folding and unfolding rate coefficients from single-molecule Förster resonance energy transfer (FRET) data for proteins with kinetics too fast to measure waiting time distributions. Two types of experiments and two different analyses were performed. In one experiment bursts of photons were collected from donor and acceptor fluorophores attached to a 73-residue protein, α(3)D, freely diffusing through the illuminated volume of a confocal microscope system. In the second, the protein was immobilized by linkage to a surface, and photons were collected until one of the fluorophores bleached. Folding and unfolding rate coefficients and mean FRET efficiencies for the folded and unfolded subpopulations were obtained from a photon by photon analysis of the trajectories using a maximum likelihood method. The ability of the method to describe the data in terms of a two-state model was checked by recoloring the photon trajectories with the extracted parameters and comparing the calculated FRET efficiency histograms with the measured histograms. The sum of the rate coefficients for the two-state model agreed to within 30% with the relaxation rate obtained from the decay of the donor-acceptor cross-correlation function, confirming the high accuracy of the method. Interestingly, apparently reliable rate coefficients could be extracted using the maximum likelihood method, even at low (rate coefficients and mean FRET efficiencies were also obtained in an approximate procedure by simply fitting the FRET efficiency histograms, calculated by binning the donor and acceptor photons, with a sum of three-Gaussian functions. The kinetics are exposed in these histograms by the growth of a FRET efficiency peak at values intermediate between the folded and unfolded peaks as the bin size increases, a phenomenon with similarities to NMR exchange broadening. When comparable populations of folded and unfolded

  17. Product Platform Modeling

    Pedersen, Rasmus

    for customisation of products. In many companies these changes in the business environment have created a controversy between the need for a wide variety of products offered to the marketplace and a desire to reduce variation within the company in order to increase efficiency. Many companies use the concept...... other. These groups can be varied and combined to form different product variants without increasing the internal variety in the company. Based on the Theory of Domains, the concept of encapsulation in the organ domain is introduced, and organs are formulated as platform elements. Included......This PhD thesis has the title Product Platform Modelling. The thesis is about product platforms and visual product platform modelling. Product platforms have gained an increasing attention in industry and academia in the past decade. The reasons are many, yet the increasing globalisation...

  18. Product Platform Replacements

    Sköld, Martin; Karlsson, Christer

    2012-01-01

    . To shed light on this unexplored and growing managerial concern, the purpose of this explorative study is to identify operational challenges to management when product platforms are replaced. Design/methodology/approach – The study uses a longitudinal field-study approach. Two companies, Gamma and Omega...... replacement was chosen in each company. Findings – The study shows that platform replacements primarily challenge managers' existing knowledge about platform architectures. A distinction can be made between “width” and “height” in platform replacements, and it is crucial that managers observe this in order...... to challenge their existing knowledge about platform architectures. Issues on technologies, architectures, components and processes as well as on segments, applications and functions are identified. Practical implications – Practical implications are summarized and discussed in relation to a framework...

  19. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

    Miele E

    2012-07-01

    treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and promises; and to evaluate critically future perspectives and challenges in siRNA-based cancer therapy.Keywords: small interfering RNA, nanoparticles, cancer therapy, delivery strategies, biological barriers, clinical trials

  20. Förster Resonance Energy Transfer (FRET as a Tool for Dissecting the Molecular Mechanisms for Maturation of the Shigella Type III Secretion Needle Tip Complex

    William D. Picking

    2012-11-01

    Full Text Available Förster resonance energy transfer (FRET provides a powerful tool for monitoring intermolecular interactions and a sensitive technique for studying Å-level protein conformational changes. One system that has particularly benefited from the sensitivity and diversity of FRET measurements is the maturation of the Shigella type III secretion apparatus (T3SA needle tip complex. The Shigella T3SA delivers effector proteins into intestinal cells to promote bacterial invasion and spread. The T3SA is comprised of a basal body that spans the bacterial envelope and a needle with an exposed tip complex that matures in response to environmental stimuli. FRET measurements demonstrated bile salt binding by the nascent needle tip protein IpaD and also mapped resulting structural changes which led to the recruitment of the translocator IpaB. At the needle tip IpaB acts as a sensor for host cell contact but prior to secretion, it is stored as a heterodimeric complex with the chaperone IpgC. FRET analyses showed that chaperone binding to IpaB’s N-terminal domain causes a conformational change in the latter. These FRET analyses, with other biophysical methods, have been central to understanding T3SA maturation and will be highlighted, focusing on the details of the FRET measurements and the relevance to this particular system.

  1. Gold nanoparticle-based low limit of detection Love wave biosensor for carcinoembryonic antigens.

    Li, Shuangming; Wan, Ying; Su, Yan; Fan, Chunhai; Bhethanabotla, Venkat R

    2017-09-15

    In this work, a Love wave biosensing platform is described for detecting cancer-related biomarker carcinoembryonic antigen (CEA). An ST 90°-X quartz Love wave device with a layer of SiO 2 waveguide was combined with gold nanoparticles (Au NPs) to amplify the mass loading effect of the acoustic wave sensor to achieve a limit of detection of 37pg/mL. The strategy involves modifying the Au NPs with anti-CEA antibody conjugates to form nanoprobes in a sandwich immunoassay. The unamplified detection limit of the Love wave biosensor is 9.4ng/mL. This 2-3 order of magnitude reduction in the limit of detection brings the SAW platform into the range useful for clinical diagnosis. Measurement electronics and microfluidics are easily constructed for acoustic wave biosensors, such as the Love wave device described here, allowing for robust platforms for point of care applications for cancer biomarkers in general. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Theoretical-experimental assessment of the variables affecting fretting of Atucha I nuclear power plant utility steam generators tubes

    Kulichevsky, Raul M.

    1995-01-01

    Fretting wear of Steam Generator tubes caused by flow induced vibrations generates uncertainty on their integrity. The knowledge of the controlling variables of the wear process may give a criterion to evaluate the tubes residual life. Information on vibratory response and dynamic interaction between tubes and their supports are prerequisites for understanding the relationship between fretting wear and tube vibration. Experimental results of the vibratory response of an Atucha-I nuclear power plant type U-tube, the influence of tube/support clearance on this response and a study of tube/support dynamic interaction, which allow the verification of a finite element model of this type of tubes, are presented in this work. Also wear results for the Incoloy 800/DIN 1.4550 austenitic stainless steel pair of materials and a first evaluation of the wear constant of this pair are presented. (author)

  3. Regulatory assembly of the vacuolar proton pump VoV1-ATPase in yeast cells by FLIM-FRET

    Ernst, Stefan; Batisse, Claire; Zarrabi, Nawid; Böttcher, Bettina; Börsch, Michael

    2010-02-01

    We investigate the reversible disassembly of VOV1-ATPase in life yeast cells by time resolved confocal FRET imaging. VOV1-ATPase in the vacuolar membrane pumps protons from the cytosol into the vacuole. VOV1-ATPase is a rotary biological nanomotor driven by ATP hydrolysis. The emerging proton gradient is used for secondary transport processes as well as for pH and Ca2+ homoeostasis in the cell. The activity of the VOV1-ATPase is regulated through assembly / disassembly processes. During starvation the two parts of VOV1-ATPase start to disassemble. This process is reversed after addition of glucose. The exact mechanisms are unknown. To follow the disassembly / reassembly in vivo we tagged two subunits C and E with different fluorescent proteins. Cellular distributions of C and E were monitored using a duty cycle-optimized alternating laser excitation scheme (DCO-ALEX) for time resolved confocal FRET-FLIM measurements.

  4. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency.

    Bram Wallace

    Full Text Available Förster resonance energy transfer (FRET is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. However, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. We investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion of fluorophores, separation diffusion of fluorophores, and non-emitting quenching.

  5. Optical bar code recognition of methyl salicylate (MES) for environmental monitoring using fluorescence resonance energy transfer (FRET) on thin films

    Smith, Clint; Tatineni, Balaji; Anderson, John; Tepper, Gary

    2006-10-01

    Fluorescence resonance energy transfer (FRET) is a process in which energy is transferred nonradiatively from one fluorophore (the donor) in an excited electron state to another, the chromophore (the acceptor). FRET is distinctive in its ability to reveal the presence of specific recognition of select targets such as the nerve agent stimulant Methyl Salicylate (MES) upon spectroscopic excitation. We introduce a surface imprinted and non-imprinted thin film that underwent AC-Electrospray ionization for donor-acceptor pair(s) bound to InGaP quantum dots and mesoporous silicate nanoparticles. The donor-acceptor pair used in this investigation included MES (donor) and 6-(fluorescein-5-(and-6)- carboxamido) hexanoic acid, succinimidyl ester bound to InGaP quantum dots (acceptor). MES was then investigated as a donor to various acceptor fluorophore: InGaP: mesoporous silicate nanoparticle layers.

  6. The vacuum platform

    McNab, A.

    2017-10-01

    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  7. Towards understanding the E. coli PNP binding mechanism and FRET absence between E. coli PNP and formycin A.

    Prokopowicz, Małgorzata; Greń, Bartosz; Cieśla, Joanna; Kierdaszuk, Borys

    2017-11-01

    The aim of this study is threefold: (1) augmentation of the knowledge of the E. coli PNP binding mechanism; (2) explanation of the previously observed 'lack of FRET' phenomenon and (3) an introduction of the correction (modified method) for FRET efficiency calculation in the PNP-FA complexes. We present fluorescence studies of the two E. coli PNP mutants (F159Y and F159A) with formycin A (FA), that indicate that the aromatic amino acid is indispensable in the nucleotide binding, additional hydroxyl group at position 159 probably enhances the strength of binding and that the amino acids pair 159-160 has a great impact on the spectroscopic properties of the enzyme. The experiments were carried out in hepes and phosphate buffers, at pH7 and 8.3. Two methods, a conventional and a modified one, that utilizes the dissociation constant, for calculations of the energy transfer efficiency (E) and the acceptor-to-donor distance (r) between FA and the Tyr (energy donor) were employed. Total difference spectra were calculated for emission spectra (λ ex 280nm, 295nm, 305nm and 313nm) for all studied systems. Time-resolved techniques allowed to conclude the existence of a specific structure formed by amino acids at positions 159 and 160. The results showed an unexpected pattern change of FRET in the mutants, when compared to the wild type enzyme and a probable presence of a structure created between 159 and 160 residue, that might influence the binding efficiency. Additionally, we confirmed the indispensable role of the modification of the FRET efficiency (E) calculation on the fraction of enzyme saturation in PNP-FA systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. FRET-based biosensors for the detection and quantification of AI-2 class of quorum sensing compounds.

    Rajamani, Sathish; Sayre, Richard

    2011-01-01

    Intercellular small molecular weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum sensing molecules. These molecules mediate a variety of population-dependent responses, including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules has important practical implications. Until recently, the detection of QS molecules from Gram-negative bacteria has relied primarily on bacterial reporter systems. These bioassays though immensely useful are subject to interference by compounds that affect bacterial growth and metabolism. In addition, the reporter response is highly dependent on culture age and cell population density. To overcome such limitations, we developed an in vitro protein-based assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer-2 (AI-2) QS molecules. The biosensor is based on the interaction of BAI-2 with the Vibrio harveyi QS receptor LuxP. Conformation changes associated with BAI-2 binding to the LuxP receptor change the orientation of cyan and yellow variants of GFP (CFP and YFP) fused the N- and C-termini, respectively, of the LuxP receptor. LuxP-BAI2 binding induces changes in fluorescence resonance energy transfer (FRET) between CFP and YFP, whose magnitude of change is ligand concentration dependent. A set of ligand-insensitive LuxP-mutant FRET protein sensor was also developed for use as control biosensors. The FRET-based BAI-2 biosensor responds selectively to both synthetic and biologically derived BAI-2compounds. This report describes the use of the LuxP-FRET biosensor for the detection and quantification of

  9. The use of Fluorescence Resonance Energy Transfer (FRET peptidesfor measurement of clinically important proteolytic enzymes

    Adriana K. Carmona

    2009-09-01

    Full Text Available Proteolytic enzymes have a fundamental role in many biological processes and are associated with multiple pathological conditions. Therefore, targeting these enzymes may be important for a better understanding of their function and development of therapeutic inhibitors. Fluorescence Resonance Energy Transfer (FRET peptides are convenient tools for the study of peptidases specificity as they allow monitoring of the reaction on a continuous basis, providing a rapid method for the determination of enzymatic activity. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that permits the measurement of the activity of nanomolar concentrations of the enzyme. The assays can be performed directly in a cuvette of the fluorimeter or adapted for determinations in a 96-well fluorescence plate reader. The synthesis of FRET peptides containing ortho-aminobenzoic acid (Abz as fluorescent group and 2, 4-dinitrophenyl (Dnp or N-(2, 4-dinitrophenylethylenediamine (EDDnp as quencher was optimized by our group and became an important line of research at the Department of Biophysics of the Federal University of São Paulo. Recently, Abz/Dnp FRET peptide libraries were developed allowing high-throughput screening of peptidases substrate specificity. This review presents the consolidation of our research activities undertaken between 1993 and 2008 on the synthesis of peptides and study of peptidases specificities.As enzimas proteolíticas têm um papel fundamental em muitos processos biológicos e estão associadas a vários estados patológicos. Por isso, o estudo da especificidade das peptidases pode ser importante para uma melhor compreensão da função destas enzimas e para o desenvolvimento de inibidores. Os substratos com supressão intramolecular de fluorescência constituem uma excelente ferramenta, pois permitem o monitoramento da reação de forma contínua, proporcionando um método prático e rápido para a determinação da

  10. Spectroscopic and theoretical investigation of conformational changes of proteins by synthesized pyrimidine derivative and its sensitivity towards FRET application

    Ghosh, Swadesh; Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2018-04-01

    Interest in synthesizing and characterizing (IR, NMR and HRMS spectroscopic methods) a pyrimidine based Schiff-base ligand, 2-(2-(Anthracen-9-ylmethylene) hydrazinyl)-4,6-dimethyl pyrimidine (ANHP) has been developed for its application to ascertain the conformational change of protein and sensitivity towards fluorescence resonance energy transfer (FRET) process. Location of ANHP in bovine serum albumin (BSA) and human serum albumin (HSA) proteins environment has been determined using different spectroscopic techniques. Weakly fluorescent ANHP have shown greater protein induced fluorescence enhancement (PIFE) in case of HSA than BSA, though in both cases energy transfer efficiency are almost same but difference in binding constant values encourages us to find the location of ANHP within the complex protein environment. From the FRET parameter and α-helicity change, it has been found that ANHP bound with Trp-214 of HSA and surface Trp-134 of BSA. Conformational changes of proteins have been observed more for HSA than BSA in presence of ANHP, which has confirmed the location of ANHP in both the protein environments. Coupled with experimental studies, molecular docking analysis has also been done to explain the locations and distance dependent FRET process of ANHP in both proteins.

  11. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor

    Potzkei Janko

    2012-03-01

    Full Text Available Abstract Background Molecular oxygen (O2 is one of the key metabolites of all obligate and facultative aerobic pro- and eukaryotes. It plays a fundamental role in energy homeostasis whereas oxygen deprivation, in turn, broadly affects various physiological and pathophysiological processes. Therefore, real-time monitoring of cellular oxygen levels is basically a prerequisite for the analysis of hypoxia-induced processes in living cells and tissues. Results We developed a genetically encoded Förster resonance energy transfer (FRET-based biosensor allowing the observation of changing molecular oxygen concentrations inside living cells. This biosensor named FluBO (fluorescent protein-based biosensor for oxygen consists of the yellow fluorescent protein (YFP that is sensitive towards oxygen depletion and the hypoxia-tolerant flavin-binding fluorescent protein (FbFP. Since O2 is essential for the formation of the YFP chromophore, efficient FRET from the FbFP donor domain to the YFP acceptor domain only occurs in the presence but not in the absence of oxygen. The oxygen biosensor was used for continuous real-time monitoring of temporal changes of O2 levels in the cytoplasm of Escherichia coli cells during batch cultivation. Conclusions FluBO represents a unique FRET-based oxygen biosensor which allows the non-invasive ratiometric readout of cellular oxygen. Thus, FluBO can serve as a novel and powerful probe for investigating the occurrence of hypoxia and its effects on a variety of (pathophysiological processes in living cells.

  12. Fretting-wear damage of heat exchanger tubes: a proposed damage criterion based on tube vibration response

    Yetisir, M.; McKerrow, E.; Pettigrew, M.J.

    1997-01-01

    A simple criterion is proposed to estimate fretting-wear damage in heat exchanger tubes with clearance supports. The criterion is based on parameters such as vibration frequency, mid-span vibration amplitude, span length, tube mass and an empirical wear coefficient. It is generally accepted that fretting-wear damage is proportional to a parameter called work-rate. Work-rate is a measure of the dynamic interaction between a vibrating tube and its supports. Due to the complexity of the impact-sliding behavior at the clearance-supports, work-rate calculations for heat exchanger tubes require specialized non-linear finite element codes. These codes include contact models for various clearance-support geometries. Such non-linear finite element analyses are complex, expensive and time consuming. The proposed criterion uses the results of linear vibration analysis (i.e., vibration frequency and mid-span vibration amplitude due to turbulence) and does not require a non-linear analysis. It can be used by non-specialists for a quick evaluation of the expected work-rate, and hence, the fretting-wear damage of heat exchanger tubes. The proposed criterion was obtained from an extensive parametric study that was conducted using a non-linear finite element program. It is shown that, by using the proposed work-rate criteria, work-rate can be estimated within a factor of two. This result, however, requires further testing with more complicated flow patterns. (author)

  13. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.

    Fujioka, Mari; Asano, Yumi; Nakada, Shigeyuki; Ohba, Yusuke

    2017-01-01

    Fluorescent proteins (FPs) displaying distinct spectra have shed their light on a wide range of biological functions. Moreover, sophisticated biosensors engineered to contain single or multiple FPs, including Förster resonance energy transfer (FRET)-based biosensors, spatiotemporally reveal the molecular mechanisms underlying a variety of pathophysiological processes. However, their usefulness for applied life sciences has yet to be fully explored. Recently, our research group has begun to expand the potential of FPs from basic biological research to the clinic. Here, we describe a method to evaluate the responsiveness of leukemia cells from patients to tyrosine kinase inhibitors using a biosensor based on FP technology and the principle of FRET. Upon phosphorylation of the tyrosine residue of the biosensor, binding of the SH2 domain to phosphotyrosine induces conformational change of the biosensor and brings the donor and acceptor FPs into close proximity. Therefore, kinase activity and response to kinase inhibitors can be monitored by an increase and a decrease in FRET efficiency, respectively. As in basic research, this biosensor resolves hitherto arduous tasks and may provide innovative technological advances in clinical laboratory examinations. State-of-the-art detection devices that enable such innovation are also introduced.

  14. Determination of Equilibrium Constant and Relative Brightness in FRET-FCS by Including the Third-Order Correlations.

    Meng, Lingyi; He, Shanshan; Zhao, Xin Sheng

    2017-12-21

    Fluorescence correlation spectroscopy (FCS) encodes the information on the equilibrium constant (K), the relative fluorescence brightness of fluorophore (Q), and the forward and backward reaction rate constants (k + and k - ) on a physical or chemical relaxation. However, it has been a long-standing problem to completely resolve the FCS data to get the thermodynamic and kinetic information. Recently, we have solved the problem for fluorescence autocorrelation spectroscopy (FACS). Here, we extend the method to fluorescence cross-correlation spectroscopy (FCCS), which appears when FCS is coupled with fluorescence resonance energy transfer (FRET). Among 12 total second-order and third-order pre-exponential factors in a relaxation process probed by the FRET-FCS technique, 3 are independent. We presented and discussed 3 sets of explicit solutions to use these pre-exponential factors to calculate K and Q. Together with the relaxation time, the acquired K will allow people to obtain k + and k - , so that the goal of deciphering the FRET-FCS data will be fully reached. The theory is verified by extensive computer simulations and tested experimentally on a system of oligonucleotide hybridization.

  15. Development of a pan-Babesia FRET-qPCR and a survey of livestock from five Caribbean islands.

    Li, Jing; Kelly, Patrick; Zhang, Jilei; Xu, Chuanling; Wang, Chengming

    2015-09-30

    Babesia spp. are tick-borne protozoan hemoparasites and the second most common blood-borne parasites of mammals, in particular domestic animals. We used the Clustal Multiple Alignment program and 18S rRNA gene sequences of 22 Babesia species from GenBank to develop a PCR that could detect a wide variety of Babesia spp. in a single reaction. The pan-Babesia FRET-qPCR we developed reliably detected B. gibsoni, B. canis, B. vogeli, B. microti, B. bovis, and B. divergens under controlled conditions but did not react with closely related species, mainly Hepatozoon americanum, Theileria equi, and Toxoplasma gondii. When we tested the pan-Babesia FRET-qPCR on DNA of whole blood from 752 cattle, sheep, goats, donkeys and horses from five Caribbean islands, we detected Babesia spp. expected to be present in the animals, mainly B. bovis and B. bigemina in cattle and B. caballi in horses and donkeys. Further, we found that animals were not uncommonly infected with species of Babesia usually associated with other hosts, mainly B. vogeli and B. gibsoni in cattle, sheep and goats, B. rossi in goats, and B. caballi in goats and sheep. Finally, the pan-Babesia FRET-qPCR enabled us to identify unknown species of Babesia in cattle, goats, sheep and donkeys. Overall, 70 % (525/752) of the animals we tested were positive confirming earlier limited studies that infections with Babesia spp. are common in livestock in the Caribbean.

  16. The universal modular platform

    North, R.B.

    1995-01-01

    A new and patented design for offshore wellhead platforms has been developed to meet a 'fast track' requirement for increased offshore production, from field locations not yet identified. The new design uses modular construction to allow for radical changes in the water depth of the final location and assembly line efficiency in fabrication. By utilizing high strength steels and structural support from the well conductors the new design accommodates all planned production requirements on a support structure significantly lighter and less expensive than the conventional design it replaces. Twenty two platforms based on the new design were ready for installation within 18 months of the project start. Installation of the new platforms began in 1992 for drilling support and 1993 for production support. The new design has become the Company standard for all future production platforms. Large saving and construction costs have been realized through its light weight, flexibility in both positioning and water depth, and its modular construction

  17. Identification of platform levels

    Mortensen, Niels Henrik

    2005-01-01

    reduction, ability to launch a wider product portfolio without increasing resources and reduction of complexity within the whole company. To support the multiple product development process, platform based product development has in many companies such as Philips, VW, Ford etc. proven to be a very effective...... product development in one step and therefore the objective of this paper is to identify levels of platform based product development. The structure of this paper is as follows. First the applied terminology for platforms will be briefly explained and then characteristics between single and multi product...... development will be examined. Based on the identification of the above characteristics five platform levels are described. The research presented in this paper is a result of MSc, Ph.D projects at the Technical University of Denmark and consultancy projects within the organisation of Institute of Product...

  18. Paper based electronics platform

    Nassar, Joanna Mohammad; Sevilla, Galo Andres Torres; Hussain, Muhammad Mustafa

    2017-01-01

    A flexible and non-functionalized low cost paper-based electronic system platform fabricated from common paper, such as paper based sensors, and methods of producing paper based sensors, and methods of sensing using the paper based sensors

  19. USA Hire Testing Platform

    Office of Personnel Management — The USA Hire Testing Platform delivers tests used in hiring for positions in the Federal Government. To safeguard the integrity of the hiring processes and ensure...

  20. National Community Solar Platform

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  1. Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells

    Dusica eMaysinger

    2015-12-01

    Full Text Available Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs, carbon-based structures (C-dots, graphene and nanodiamonds and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases, ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim Measure what is measurable, and make measurable what is not so (Galileo Galilei.

  2. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    John C. Leach

    2016-03-01

    Full Text Available The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA, was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells.

  3. A New Generation of FRET Sensors for Robust Measurement of Gαi1, Gαi2 and Gαi3 Activation Kinetics in Single Cells.

    Jakobus van Unen

    Full Text Available G-protein coupled receptors (GPCRs can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on Förster resonance energy transfer (FRET are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gαi1, Gαi2 and Gαi3 activation. To enable quantitative long-term imaging of FRET biosensors with high dynamic range, fluorescent proteins with enhanced photophysical properties are required. Therefore, we use the currently brightest and most photostable CFP variant, mTurquoise2, as donor fused to Gαi subunit, and cp173Venus fused to the Gγ2 subunit as acceptor. The Gαi FRET biosensors constructs are expressed together with Gβ1 from a single plasmid, providing preferred relative expression levels with reduced variation in mammalian cells. The Gαi FRET sensors showed a robust response to activation of endogenous or over-expressed alpha-2A-adrenergic receptors, which was inhibited by pertussis toxin. Moreover, we observed activation of the Gαi FRET sensor in single cells upon stimulation of several GPCRs, including the LPA2, M3 and BK2 receptor. Furthermore, we show that the sensors are well suited to extract kinetic parameters from fast measurements in the millisecond time range. This new generation of FRET biosensors for Gαi1, Gαi2 and Gαi3 activation will be valuable for live-cell measurements that probe Gαi activation.

  4. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET of Dihydropyridine Receptor (DHPR β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes.

    Dipankar Bhattacharya

    Full Text Available The dihydropyridine receptor (DHPR β1a subunit is essential for skeletal muscle excitation-contraction coupling, but the structural organization of β1a as part of the macromolecular DHPR-ryanodine receptor type I (RyR1 complex is still debatable. We used fluorescence resonance energy transfer (FRET to probe proximity relationships within the β1a subunit in cultured skeletal myotubes lacking or expressing RyR1. The fluorescein biarsenical reagent FlAsH was used as the FRET acceptor, which exhibits fluorescence upon binding to specific tetracysteine motifs, and enhanced cyan fluorescent protein (CFP was used as the FRET donor. Ten β1a reporter constructs were generated by inserting the CCPGCC FlAsH binding motif into five positions probing the five domains of β1a with either carboxyl or amino terminal fused CFP. FRET efficiency was largest when CCPGCC was positioned next to CFP, and significant intramolecular FRET was observed for all constructs suggesting that in situ the β1a subunit has a relatively compact conformation in which the carboxyl and amino termini are not extended. Comparison of the FRET efficiency in wild type to that in dyspedic (lacking RyR1 myotubes revealed that in only one construct (H458 CCPGCC β1a -CFP FRET efficiency was specifically altered by the presence of RyR1. The present study reveals that the C-terminal of the β1a subunit changes conformation in the presence of RyR1 consistent with an interaction between the C-terminal of β1a and RyR1 in resting myotubes.

  5. Materials for coatings against erosion, fretting, and high-temperature oxidation

    Feller, H.G.; Wienstroth, U.; Balke, C.

    1990-01-01

    This paper investigates the applicability of Co-Cr-W alloys (CoCr29W29, CoCr29W9Y1, CoCr29W9Fe3Y1, CoCr29W9Y1Al1) as coating materials for the substrates MA 6000 and MA 754. Their properties are compared with those of Amperit 410, which is the alloy NiCo23Cr17Al12.5Y0.5. Their isothermal oxidation behaviour at temperatures up to 1000deg C is found to be better for the most part than that of the commercially available Amperit 410. Furthermore, the oxide shows distinctly better adhesion, so that better results concerning resistance to hot-gas corrosion are expected. The fretting behaviour at room temperature is characterized by very low friction factors and a strong resistance to wear. A comparable behaviour is found for resistance to erosive wear. Specimens tested for 500 hours in the pressurised beam device exhibit only minimal changes of mass in the bond MA 600/coating. Single-particle impact tests reveal that exposure of specimens to high temperatures leads to an increase in mean hardness, which is caused by a solidification of the yttrium-containing phase. (orig./MM) [de

  6. Sub-Ensemble Monitoring of DNA Strand Displacement Using Multiparameter Single-Molecule FRET.

    Baltierra-Jasso, Laura E; Morten, Michael J; Magennis, Steven W

    2018-03-05

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here, we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constant of 10 m -1  s -1 . We also followed the displacement from a DNA three-way junction (3WJ) by ssDNA. The presence of three internal mismatched bases in the middle of the invading strand did not prevent displacement from the 3WJ, but reduced the second-order rate constant by about 50 %. We attribute strand exchange in the dsDNA and 3WJ to a zero-toehold pathway from the blunt-ended duplex arms. The single-molecule approach demonstrated here will be useful for studying complex DNA networks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Feedback-mediated cancer therapy: a FRET-based nanoreporter approach

    Sarkar, Suproteem K.; Khater, Yashika; Kulkarni, Ashish; Sengupta, Shiladitya

    2014-08-01

    A theranostic nanoparticle system was developed by integrating a chemotherapeutic agent with an "activatable" fluorescent tracer. The system signals tumor death by monitoring the activity of caspase-3, a product of apoptosis, and can therefore screen the treatment sensitivity of a particular tumor. The polymer nanoparticles (Poly [isobutylene-alt-maleic anhydride]) were formed through reprecipitation and contained paclitaxel, a chemotherapy drug, and fluorescein isothiocyanate, a fluorescent dye. The dye's fluorescence was quenched through Förster resonance energy transfer (FRET) by a quencher that was connected to the dye by a peptide chain. With sizes ranging from 200-250 nm, the nanoparticles were stable for two weeks. The nanoparticles were tested in vitro with responsive Lewis Lung Carcinoma (LLC) cells and taxane-resistant cells. Upon cell death by paclitaxel exposure, caspase-3 cleaved the peptide chain connecting the dye and the quencher, causing the system to fluoresce. When LLC cells were treated with the system, the nanoreporters fluoresced, but when resistant cells were tested, and when the drug was removed from the system, the nanoreporters did not fluoresce. Since the system screens if a drug can successfully kill a particular tumor, it offers a novel and promising approach to personalized medicine.

  8. Stabilization of Nucleosomes by Histone Tails and by FACT Revealed by spFRET Microscopy

    Maria E. Valieva

    2017-01-01

    Full Text Available A correct chromatin structure is important for cell viability and is tightly regulated by numerous factors. Human protein complex FACT (facilitates chromatin transcription is an essential factor involved in chromatin transcription and cancer development. Here FACT-dependent changes in the structure of single nucleosomes were studied with single-particle Förster resonance energy transfer (spFRET microscopy using nucleosomes labeled with a donor-acceptor pair of fluorophores, which were attached to the adjacent gyres of DNA near the contact between H2A-H2B dimers. Human FACT and its version without the C-terminal domain (CTD and the high mobility group (HMG domain of the structure-specific recognition protein 1 (SSRP1 subunit did not change the structure of the nucleosomes, while FACT without the acidic C-terminal domains of the suppressor of Ty 16 (Spt16 and the SSRP1 subunits caused nucleosome aggregation. Proteolytic removal of histone tails significantly disturbed the nucleosome structure, inducing partial unwrapping of nucleosomal DNA. Human FACT reduced DNA unwrapping and stabilized the structure of tailless nucleosomes. CTD and/or HMG domains of SSRP1 are required for this FACT activity. In contrast, previously it has been shown that yeast FACT unfolds (reorganizes nucleosomes using the CTD domain of SSRP1-like Pol I-binding protein 3 subunit (Pob3. Thus, yeast and human FACT complexes likely utilize the same domains for nucleosome reorganization and stabilization, respectively, and these processes are mechanistically similar.

  9. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. Copyright © 2016. Published by Elsevier B.V.

  10. Study of elastoplastic deformations self-fretting of flat cylinders by mandrelling

    Caron, Roger

    1974-04-01

    An application of the theory of thick tubes to the special case of flat cylinders which have been self-fretted by mandrelling, is presented. The following materials were used: 1 - a soft steel, XC 18 F, considered to be perfectly elastoplastic; 2 - an alloyed steel, 35 NCD 16, designated consolidable. In the first case, the slip trajectories observed on the polished cylinder surface enabled the plastic deformation region to be defined. It was found, in particular, that the average value of the mean boundary radius at the maximum pressure differs very little from that determined using basic formulas. In the second case, the plastic deformations uniformly affect the internal layers, and privileged trajectories do not exist in this region. On the other hand, the ε θ and ε r expansion curves (from deformation measurements), are continuous from the inner radius to the outer radius; the boundary radius was thus localized from considerations of its correspondence with the ε θ -ε r (shearing deformation) at the elastic limit of the material. This characteristic was determined from measurements made using a test piece provided for this purpose. The radii obtained with this method agree with the theoretical radii over only 4/5 of the total deformation, the uncertainty region being taken into consideration. The maximum value of this parameter was determined in such a way as to obtain a return to a completely elastic rest position. (author) [fr

  11. Conformational Analysis of Misfolded Protein Aggregation by FRET and Live-Cell Imaging Techniques

    Akira Kitamura

    2015-03-01

    Full Text Available Cellular homeostasis is maintained by several types of protein machinery, including molecular chaperones and proteolysis systems. Dysregulation of the proteome disrupts homeostasis in cells, tissues, and the organism as a whole, and has been hypothesized to cause neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS and Huntington’s disease (HD. A hallmark of neurodegenerative disorders is formation of ubiquitin-positive inclusion bodies in neurons, suggesting that the aggregation process of misfolded proteins changes during disease progression. Hence, high-throughput determination of soluble oligomers during the aggregation process, as well as the conformation of sequestered proteins in inclusion bodies, is essential for elucidation of physiological regulation mechanism and drug discovery in this field. To elucidate the interaction, accumulation, and conformation of aggregation-prone proteins, in situ spectroscopic imaging techniques, such as Förster/fluorescence resonance energy transfer (FRET, fluorescence correlation spectroscopy (FCS, and bimolecular fluorescence complementation (BiFC have been employed. Here, we summarize recent reports in which these techniques were applied to the analysis of aggregation-prone proteins (in particular their dimerization, interactions, and conformational changes, and describe several fluorescent indicators used for real-time observation of physiological states related to proteostasis.

  12. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes

    Peijian Huang

    2018-01-01

    Full Text Available In order to access the fretting damage of the steam generator tube (SGT, a fast fiber Fabry-Perot (F-P non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  13. The Platformization of the Web: Making Web Data Platform Ready

    Helmond, A.

    2015-01-01

    In this article, I inquire into Facebook’s development as a platform by situating it within the transformation of social network sites into social media platforms. I explore this shift with a historical perspective on, what I refer to as, platformization, or the rise of the platform as the dominant

  14. Transactional Network Platform: Applications

    Katipamula, Srinivas; Lutes, Robert G.; Ngo, Hung; Underhill, Ronald M.

    2013-10-31

    In FY13, Pacific Northwest National Laboratory (PNNL) with funding from the Department of Energy’s (DOE’s) Building Technologies Office (BTO) designed, prototyped and tested a transactional network platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). Initially, in FY13, the concept demonstrated transactions between packaged rooftop air conditioners and heat pump units (RTUs) and the electric grid using applications or "agents" that reside on the platform, on the equipment, on a local building controller or in the Cloud. The transactional network project is a multi-lab effort with Oakridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) also contributing to the effort. PNNL coordinated the project and also was responsible for the development of the transactional network (TN) platform and three different applications associated with RTUs. This document describes two applications or "agents" in details, and also summarizes the platform. The TN platform details are described in another companion document.

  15. Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles.

    Yu, Mengqun; Wang, Hong; Fu, Fei; Li, Linyao; Li, Jing; Li, Gan; Song, Yang; Swihart, Mark T; Song, Erqun

    2017-04-04

    The effective monitoring, identification, and quantification of pathogenic bacteria is essential for addressing serious public health issues. In this study, we present a universal and facile one-step strategy for sensitive and selective detection of pathogenic bacteria using a dual-molecular affinity-based Förster (fluorescence) resonance energy transfer (FRET) platform based on the recognition of bacterial cell walls by antibiotic and aptamer molecules, respectively. As a proof of concept, Vancomycin (Van) and a nucleic acid aptamer were employed in a model dual-recognition scheme for detecting Staphylococcus aureus (Staph. aureus). Within 30 min, by using Van-functionalized gold nanoclusters and aptamer-modified gold nanoparticles as the energy donor and acceptor, respectively, the FRET signal shows a linear variation with the concentration of Staph. aureus in the range from 20 to 10 8 cfu/mL with a detection limit of 10 cfu/mL. Other nontarget bacteria showed negative results, demonstrating the good specificity of the approach. When employed to assay Staph. aureus in real samples, the dual-recognition FRET strategy showed recoveries from 99.00% to the 109.75% with relative standard derivations (RSDs) less than 4%. This establishes a universal detection platform for sensitive, specific, and simple pathogenic bacteria detection, which could have great impact in the fields of food/public safety monitoring and infectious disease diagnosis.

  16. Platform-based production development

    Bossen, Jacob; Brunoe, Thomas Ditlev; Nielsen, Kjeld

    2015-01-01

    Platforms as a means for applying modular thinking in product development is relatively well studied, but platforms in the production system has until now not been given much attention. With the emerging concept of platform-based co-development the importance of production platforms is though...

  17. Reusable platform concepts

    Gudmestad, O.T.; Sparby, B.K.; Stead, B.L.

    1993-01-01

    There is an increasing need to reduce costs of offshore production facilities in order to make development of offshore fields profitable. For small fields with short production time there is in particular a need to investigate ways to reduce costs. The idea of platform reuse is for such fields particularly attractive. This paper will review reusable platform concepts and will discuss their range of application. Particular emphasis will be placed on technical limitations. Traditional concepts as jackups and floating production facilities will be discussed by major attention will be given to newly developed ideas for reuse of steel jackets and concrete structures. It will be shown how the operator for several fields can obtain considerable savings by applying such reusable platform concepts

  18. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  19. The Effect of Modulation Ratio of Cu/Ni Multilayer Films on the Fretting Damage Behaviour of Ti-811 Titanium Alloy.

    Zhang, Xiaohua; Liu, Daoxin; Li, Xiaoying; Dong, Hanshan; Xi, Yuntao

    2017-05-26

    To improve the fretting damage (fretting wear and fretting fatigue) resistance of Ti-811 titanium alloy, three Cu/Ni multilayer films with the same modulation period thickness (200 nm) and different modulation ratios (3:1, 1:1, 1:3) were deposited on the surface of the alloy via ion-assisted magnetron sputtering deposition (IAD). The bonding strength, micro-hardness, and toughness of the films were evaluated, and the effect of the modulation ratio on the room-temperature fretting wear (FW) and fretting fatigue (FF) resistance of the alloy was determined. The results indicated that the IAD technique can be successfully used to prepare Cu/Ni multilayer films, with high bonding strength, low-friction, and good toughness, which yield improved room-temperature FF and FW resistance of the alloy. For the same modulation period (200 nm), the micro-hardness, friction, and FW resistance of the coated alloy increased, decreased, and improved, respectively, with increasing modulation ratio of the Ni-to-Cu layer thickness. However, the FF resistance of the coated alloy increased non-monotonically with the increasing modulation ratio. Among the three Cu/Ni multilayer films, those with a modulation ratio of 1:1 can confer the highest FF resistance to the Ti-811 alloy, owing mainly to their unique combination of good toughness, high strength, and low-friction.

  20. Wireless sensor platform

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  1. Windows Azure Platform

    Redkar, Tejaswi

    2010-01-01

    The Azure Services Platform is a brand-new cloud-computing technology from Microsoft. It is composed of four core components-Windows Azure, .NET Services, SQL Services, and Live Services-each with a unique role in the functioning of your cloud service. It is the goal of this book to show you how to use these components, both separately and together, to build flawless cloud services. At its heart Windows Azure Platform is a down-to-earth, code-centric book. This book aims to show you precisely how the components are employed and to demonstrate the techniques and best practices you need to know

  2. Windows Azure Platform

    Redkar, Tejaswi

    2011-01-01

    The Windows Azure Platform has rapidly established itself as one of the most sophisticated cloud computing platforms available. With Microsoft working to continually update their product and keep it at the cutting edge, the future looks bright - if you have the skills to harness it. In particular, new features such as remote desktop access, dynamic content caching and secure content delivery using SSL make the latest version of Azure a more powerful solution than ever before. It's widely agreed that cloud computing has produced a paradigm shift in traditional architectural concepts by providin

  3. The Creative Platform

    Byrge, Christian; Hansen, Søren

    whether you consider thirdgrade teaching, human-resource development, or radical new thinking in product development in a company. The Creative Platform was developed at Aalborg University through a series of research-and-development activities in collaboration with educational institutions and private...

  4. Creative Platform Learning (CPL)

    Christensen, Jonna Langeland; Hansen, Søren

    Creative Platform Learning (CPL) er en pædagogisk metode, der skaber foretagsomme og innovative elever, der kan anvende deres kreativitet til at lære nyt. Ifølge den nye skolereform skal Innovation og entreprenørskab tydeliggøres i alle fag. I CPL er det en integreret del af undervisningen...

  5. Games and Platform Decisions

    Hansen, Poul H. Kyvsgård; Mikkola, Juliana Hsuan

    2007-01-01

    is the application of on-line games in order to provide training for decision makers and in order to generate overview over the implications of platform decisions. However, games have to be placed in a context with other methods and we argue that a mixture of games, workshops, and simulations can provide improved...

  6. Shot loading platform analysis

    Norman, B.F.

    1994-01-01

    This document provides the wind/seismic analysis and evaluation for the shot loading platform. Hand calculations were used for the analysis. AISC and UBC load factors were used in this evaluation. The results show that the actual loads are under the allowable loads and all requirements are met

  7. Brake for rollable platform

    Morris, A. L.

    1974-01-01

    Frame-mounted brake is independent of wheels and consists of simple lever-actuated foot. Brake makes good contact with surface even though foot pad is at higher or lower level than wheels, this is particularly important when a rollable platform is used on irregular surface.

  8. CERN Neutrino Platform Hardware

    Nelson, Kevin

    2017-01-01

    My summer research was broadly in CERN's neutrino platform hardware efforts. This project had two main components: detector assembly and data analysis work for ICARUS. Specifically, I worked on assembly for the ProtoDUNE project and monitored the safety of ICARUS as it was transported to Fermilab by analyzing the accelerometer data from its move.

  9. Time-resolved homo-FRET studies of biotin-streptavidin complexes.

    Andreoni, Alessandra; Nardo, Luca; Rigler, Rudolf

    2016-09-01

    Förster resonance energy transfer is a mechanism of fluorescence quenching that is notably useful for characterizing properties of biomolecules and/or their interactions. Here we study water-solutions of Biotin-Streptavidin complexes, in which Biotin is labeled with a rigidly-bound fluorophore that can interact by Förster resonance energy transfer with the fluorophores labeling the other, up to three, Biotins of the same complex. The fluorophore, Atto550, is a Rhodamine analogue. We detect the time-resolved fluorescence decay of the fluorophores with an apparatus endowed with single-photon sensitivity and temporal resolution of ~30ps. The decay profiles we observe for samples containing constant Biotin-Atto550 conjugates and varying Streptavidin concentrations are multi-exponential. Each decay component can be associated with the rate of quenching exerted on each donor by each of the acceptors that label the other Biotin molecules, depending on the binding site they occupy. The main features that lead to this result are that (i) the transition dipole moments of the up-to-four Atto550 fluorophores that label the complexes are fixed as to both relative positions and mutual orientations; (ii) the fluorophores are identical and the role of donor in each Biotin-Streptavidin complex is randomly attributed to the one that has absorbed the excitation light (homo-FRET). Obviously the high-temporal resolution of the excitation-detection apparatus is necessary to discriminate among the fluorescence decay components. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A comparative study on the fretting wear properties of advanced zirconium fuel cladding materials

    Lee, Young Ho; Kim, Hyung Kyu; Park, Jeong Yong; Kim, Jun Hwan

    2005-06-01

    Fretting wear tests were carried out in room and high temperature water in order to evaluate the wear properties of new zirconium nuclear fuel claddings (K2∼K6) and the commercial claddings (M5, zirlo and zircaloy-4). The objective is to compare the wear resistance of K2∼K6 claddings with that of the commercial ones at the same test condition. After the wear tests, the average wear volume and the maximum wear depth were evaluated and compared at each test condition. As a result, it is difficult to select the most wear-resistant cladding between the K2∼K6 claddings and the commercial ones. This is because the average wear volume and maximum depth of each cladding included between the scattering range of measured results. However, wear resistance of the tested claddings based on the average wear volume and maximum wear depth could be summarized as follows: K5 > zircaloy-4 > (K2,K3) > (K4,M5) > K6 > zirlo at room temperature, zircaloy-4 > K5 > (K3,K4,zirlo) > (K2,K6) > M5 at high temperature and pressure. Therefore, it is concluded that K5 cladding among the tested new zirconium alloys has relatively higher wear-resistance in room and high temperature condition. In order to examine the wear mechanism, it is necessary to systematically study with the consideration of the alloying element effect and test environment. In this report, the wear test procedure and the wear evaluation method are described in detail

  11. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A rhodamine–dansyl conjugate as a FRET based sensor for Fe{sup 3+} in the red spectral region

    Xie, Puhui, E-mail: pxie2007@yahoo.com.cn [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China); Guo, Fengqi, E-mail: fqguo@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xia, Ruirui; Wang, Yao [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China); Yao, Denghui [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Yang, Guoyu; Xie, Lixia [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China)

    2014-01-15

    A new fluorescent resonance energy transfer (FRET) based fluorescent probe (compound 1) containing a dansyl unit as a donor and rhodamine 101 as an acceptor was developed to detect Fe{sup 3+} from other transition metal ions through ratiometric sensing in organic-aqueous solutions. Fe{sup 3+} induced a ring-opening reaction of the spirolactam rhodamine moiety of 1 resulting in the formation of a fluorescent derivative that can serve as the FRET acceptor. Ratiometric sensing of Fe{sup 3+} was accomplished by plotting the fluorescence intensity ratio at 605 nm and 515 nm versus ferric ion concentration. The probe displayed a linear response to Fe{sup 3+} in the range of 5.5–25 μM with a detection limit of 0.64 μM. A 1:1 stoichiometry for the 1–Fe{sup 3+} complex was formed with an association constant of 1.74×10{sup 4} M{sup −1}. The probe also exhibited a large Stokes shift (225 nm) which can eliminate backscattering effects of excitation light. -- Highlights: • A new colorimetric and fluorescent “off–on” chemosensor for Fe{sup 3+} was synthesized. • It can respond to Fe{sup 3+} in the red spectral region based on a FRET mechanism. • Its ratiometric sensing for Fe{sup 3+} can be accomplished with a signal to noise ratio of 214. • The large Stokes shift (225 nm) can rule out the excitation backscattering effects.

  13. Forster Resonance Energy Transfer (FRET) Analysis of Dual CFP/YFP Labeled AMPA Receptors Reveals Structural Rearrangement within the C-Terminal Domain during Receptor Activation

    Zachariassen, Linda Grønborg; Katchan, Mila; Plested, Andrew

    2014-01-01

    that retain function and display intrareceptor FRET. This includes a construct (GluA2-6Y-10C) containing YFP in the intracellular loop between the M1 and M2 membrane-embedded segments and CFP inserted in the C-ter- minal domain (CTD). GluA2-6Y-10C displays FRET with an efficiency of 0.11 while retaining wild......-type receptor expression and kinetic properties. We have used GluA2-6Y-10C to study conformational changes in homomeric GluA2 receptors during receptor activation. Our results show that the FRET efficiency is dependent on functional state of GluA2-6Y-10C and hereby indi- cates that the intracellular CTD...

  14. A New FRET-Based Sensitive DNA Sensor for Medical Diagnostics using PNA Probe and Water-Soluble Blue Light Emitting Polymer

    Nidhi Mathur

    2008-01-01

    Full Text Available A reliable, fast, and low-cost biosensor for medical diagnostics using DNA sequence detection has been developed and tested for the detection of the bacterium “Bacillus anthracis.” In this sensor, Poly [9,9-di (6,6′- N, N′ trimethylammonium hexylfluorenyl-2, 7-diyl-alt-co- (1,4-phenylene] dibromide salt (PFP has been taken as cationic conjugated polymer (CCP and PNA attached with fluorescein dye (PNAC∗ as a probe. The basic principle of this sensor is that when a PNAC∗ probe is hybridized with a single strand DNA (ssDNA having complementary sequence, Forster resonance energy transfer (FRET may take place from PFP to the PNAC∗/DNA complex. If the FRET is efficient, the photoluminescence from the PFP will be highly quenched and that from PNAC∗ will be enhanced. On the other hand, if the DNA sequence is noncomplementary to PNA, FRET will not occur.

  15. Nonadhesive, silica nanoparticles-based brush-coated contact lens casesCompromising between ease of cleaning and microbial transmission to contact lenses

    Qu, Wenwen; Hooymans, Johanna M. M.; Qiu, Jun; de-Bont, Nik; Gelling, Onko-Jan; van der Mei, Henny C.; Busscher, Henk J.

    Surface properties of lens cases are determinant for their cleanability and for microbial transmission from lens cases to contact lenses (CLs). PEG-polymer-brush-coatings are known to decrease microbial adhesion more than other surface-coatings. Here, we applied a robust, silica nanoparticles-based

  16. Fretting fatigue cracking of a center guide bolt supporting the combustion chamber in a heavy-duty gas turbine engine

    Neidel, Andreas; Fischer, Boromir; Gaedicke, Tobias [Siemens AG, Energy Sector, Gasturbinenwerk Berlin (Germany). Werkstoffprueflabor

    2018-04-01

    The slotted center guide bolt of the center guide feature of the lower part of the outer shell of an annular combustion chamber was found fractured in a heavy-duty gas turbine engine used for power generation, after approximately 5.500 operating hours. The incident was a one-off event and not a recurring incident. No similar events were reported from the fleet; hence the failure was not considered a field issue. The metallurgical root cause investigation that was ordered to determine the failure mechanism revealed that the incident center guide bolt failed by fretting fatigue cracking, a high cycle fatigue (HCF) phenomenon.

  17. Mobile Platforms and Development Environments

    Helal, Sumi; Li, Wengdong

    2012-01-01

    Mobile platform development has lately become a technological war zone with extremely dynamic and fluid movement, especially in the smart phone and tablet market space. This Synthesis lecture is a guide to the latest developments of the key mobile platforms that are shaping the mobile platform industry. The book covers the three currently dominant native platforms -- iOS, Android and Windows Phone -- along with the device-agnostic HTML5 mobile web platform. The lecture also covers location-based services (LBS) which can be considered as a platform in its own right. The lecture utilizes a sampl

  18. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  19. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok

    2012-01-01

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  20. Platform Performance and Challenges - using Platforms in Lego Company

    Munk, Lone; Mortensen, Niels Henrik

    2009-01-01

    needs focus on the incentive of using the platform. This problem lacks attention in literature, as well as industry, where assessment criteria do not cover this aspect. Therefore, we recommend including user incentive in platform assessment criteria to these challenges. Concrete solution elements...... ensuring user incentive in platforms is an object for future research...

  1. Available: motorised platform

    The COMPASS collaboration

    2014-01-01

    The COMPASS collaboration would like to offer to a new owner the following useful and fully operational piece of equipment, which is due to be replaced with better adapted equipment.   Please contact Erwin Bielert (erwin.bielert@cern.ch or 160539) for further information.  Motorized platform (FOR FREE):   Fabricated by ACL (Alfredo Cardoso & Cia Ltd) in Portugal. The model number is MeXs 5-­‐30.  Specifications: 5 m wide, 1 m deep, adjustable height (1.5 m if folded). Maximum working floor height: 4 m. conforms to CERN regulations, number LV158. Type LD500, capacity 500 kg and weight 2000 kg.  If no interested party is found before December 2014, the platform will be thrown away.

  2. RemoteLabs Platform

    Nils Crabeel

    2012-03-01

    Full Text Available This paper reports on a first step towards the implementation of a framework for remote experimentation of electric machines – the RemoteLabs platform. This project was focused on the development of two main modules: the user Web-based and the electric machines interfaces. The Web application provides the user with a front-end and interacts with the back-end – the user and experiment persistent data. The electric machines interface is implemented as a distributed client server application where the clients, launched by the Web application, interact with the server modules located in platforms physically connected the electric machines drives. Users can register and authenticate, schedule, specify and run experiments and obtain results in the form of CSV, XML and PDF files. These functionalities were successfully tested with real data, but still without including the electric machines. This inclusion is part of another project scheduled to start soon.

  3. Common tester platform concept.

    Hurst, Michael James

    2008-05-01

    This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

  4. Online stock trading platform

    Ion LUNGU

    2006-01-01

    Full Text Available The Internet is the perfect tool that can assure the market’s transparency for any user who wants to trade on the stock market. The investor can have access to the market news, financial calendar or the press releases of the issuers. A good online trading platform also provides real-time intraday quotes, trading history and technical analysis giving the investor a clearer view of the supply and demand in the market. All this information provides the investor a good image of the market and encourages him to trade. This paper wishes to draft the pieces of an online trading platform and to analyze the impact of developing and implementing one in a brokerage firm.

  5. HPC - Platforms Penta Chart

    Trujillo, Angelina Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-08

    Strategy, Planning, Acquiring- very large scale computing platforms come and go and planning for immensely scalable machines often precedes actual procurement by 3 years. Procurement can be another year or more. Integration- After Acquisition, machines must be integrated into the computing environments at LANL. Connection to scalable storage via large scale storage networking, assuring correct and secure operations. Management and Utilization – Ongoing operations, maintenance, and trouble shooting of the hardware and systems software at massive scale is required.

  6. Cloud Robotics Platforms

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  7. The Prodiguer Messaging Platform

    Denvil, S.; Greenslade, M. A.; Carenton, N.; Levavasseur, G.; Raciazek, J.

    2015-12-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French global climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output are some of the complexities that CONVERGENCE aims to resolve.At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of French High Performance Computing (HPC) environments. The IPSL's simulation execution runtime libIGCM (library for IPSL Global Climate Modeling group) has recently been enhanced so as to support hitherto impossible realtime use cases such as simulation monitoring, data publication, metrics collection, simulation control, visualizations … etc. At the core of this enhancement is Prodiguer: an AMQP (Advanced Message Queue Protocol) based event driven asynchronous distributed messaging platform. libIGCM now dispatches copious amounts of information, in the form of messages, to the platform for remote processing by Prodiguer software agents at IPSL servers in Paris. Such processing takes several forms: Persisting message content to database(s); Launching rollback jobs upon simulation failure; Notifying downstream applications; Automation of visualization pipelines; We will describe and/or demonstrate the platform's: Technical implementation; Inherent ease of scalability; Inherent adaptiveness in respect to supervising simulations; Web portal receiving simulation notifications in realtime.

  8. Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy-bone cement interface.

    Zhang, Lanfeng; Ge, Shirong; Liu, Hongtao; Wang, Qingliang; Wang, Liping; Xian, Cory J

    2015-11-01

    Although cemented titanium alloy is not favored currently in the Western world for its poor clinical and radiography outcomes, its lower modulus of elasticity and good biocompatibility are instrumental for its ability supporting and transforming physical load, and it is more suitable for usage in Chinese and Japanese populations due to their lower body weights and unique femoral characteristics. Through various friction tests of different cycles, loads and conditions and by examining fretting hysteresis loops, fatigue process curves and wear surfaces, the current study investigated fretting wear characteristics and wear mechanism of titanium alloy stem-bone cement interface. It was found that the combination of loads and displacement affected the wear quantity. Friction coefficient, which was in an inverse relationship to load under the same amplitude, was proportional to amplitudes under the same load. Additionally, calf serum was found to both lubricate and erode the wear interface. Moreover, cement fatigue contact areas appeared black/oxidative in dry and gruel in 25% calf serum. Fatigue scratches were detected within contact areas, and wear scars were found on cement and titanium surfaces, which were concave-shaped and ring concave/ convex-shaped, respectively. The coupling of thermoplastic effect and minimal torque damage has been proposed to be the major reason of contact damage. These data will be important for further studies analyzing metal-cement interface failure performance and solving interface friction and wear debris production issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.; Juliano, Maria A.; Hayashi, Mirian A.F.; Oliveira, Vitor

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.

  10. Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics

    van der Ploeg, René; Goudelis, Spyridon Theodoros; den Blaauwen, Tanneke

    2015-01-01

    The increase in antibiotic resistant bacteria demands the development of new antibiotics against preferably new targets. The common approach is to test compounds for their ability to kill bacteria or to design molecules that inhibit essential protein activities in vitro. In the first case, the mode of action of the drug is unknown and in the second case, it is not known whether the compound will pass the impermeable barrier of the bacterial envelope. We developed an assay that detects the target of a compound, as well as its ability to pass the membrane(s) simultaneously. The Escherichia coli cytoskeletal protein MreB recruits protein complexes (elongasomes) that are essential for cell envelope growth. An in cell Förster Resonance Energy Transfer (FRET) assay was developed to detect the interaction between MreB molecules and between MreB and the elongasome proteins RodZ, RodA and PBP2. Inhibition of the polymerization of MreB by S-(3,4-dichlorobenzyl) isothiourea (A22) or of the activity of PBP2 by mecilinam resulted in loss or reduction of all measured interactions. This suggests that the interactions between the elongasome proteins are governed by a combination of weak affinities and substrate availability. This validated in cell FRET assay can be used to screen for cell envelope growth inhibitors. PMID:26263980

  11. Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics

    René van der Ploeg

    2015-07-01

    Full Text Available The increase in antibiotic resistant bacteria demands the development of new antibiotics against preferably new targets. The common approach is to test compounds for their ability to kill bacteria or to design molecules that inhibit essential protein activities in vitro. In the first case, the mode of action of the drug is unknown and in the second case, it is not known whether the compound will pass the impermeable barrier of the bacterial envelope. We developed an assay that detects the target of a compound, as well as its ability to pass the membrane(s simultaneously. The Escherichia coli cytoskeletal protein MreB recruits protein complexes (elongasomes that are essential for cell envelope growth. An in cell Förster Resonance Energy Transfer (FRET assay was developed to detect the interaction between MreB molecules and between MreB and the elongasome proteins RodZ, RodA and PBP2. Inhibition of the polymerization of MreB by S-(3,4-dichlorobenzyl isothiourea (A22 or of the activity of PBP2 by mecilinam resulted in loss or reduction of all measured interactions. This suggests that the interactions between the elongasome proteins are governed by a combination of weak affinities and substrate availability. This validated in cell FRET assay can be used to screen for cell envelope growth inhibitors.

  12. Fiber Fabry-Perot Force Sensor with Small Volume and High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie

    2017-12-13

    Measuring the radial collision force between the steam generator tube (SGT) and the tube support plate (TSP) is essential to assess the fretting damage of the SGT. In order to measure the radial collision force, a novel miniaturized force sensor based on fiber Fabry-Perot (F-P) was designed, and the principle and characteristics of the sensor were analyzed in detail. Then, the F-P force sensor was successfully fabricated and calibrated, and the overall dimensions of the encapsulated fiber F-P sensor were 17 mm × 5 mm × 3 mm (L × W × H). The sensor works well in humid, high pressure (10 MPa), high temperature (350 °C), and vibration (40 kHz) environments. Finally, the F-P force sensors were installed in a 1:1 steam generator test loop, and the radial collision force signals between the SGT and the TSP were obtained. The experiments indicated that the F-P sensor with small volume and high performance could help in assessing the fretting damage of the steam generator tubes.

  13. Design specifications to ensure flow-induced vibration and fretting-wear performance in CANDU steam generators and heat exchangers

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2009-01-01

    Preventing flow-induced vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. This paper outlines the steps required to generate and support such design specifications for CANDU nuclear steam generators and heat exchangers, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  14. Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes

    David Llères

    2017-02-01

    Full Text Available How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer-based fluorescence lifetime imaging microscopy (FLIM approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1 and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.

  15. Utilizing platforms in industrialized construction

    Bonev, Martin; Wörösch, Michael; Hvam, Lars

    2015-01-01

    platform strategies, this researchhighlights key aspects of adapting platform-based developed theory to industrialised construction.Building projects use different layers of product, process and logistics platforms to form the right cost– value ratio for the target market application, while modelling...

  16. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  17. A FRET-Based Approach for Quantitative Evaluation of Forskolin-Induced Pendrin Trafficking at the Plasma Membrane in Bronchial NCI H292 Cells

    Grazia Tamma

    2013-12-01

    Full Text Available Background: Human pendrin (SLC26A4, PDS is an integral membrane protein acting as an electroneutral anion exchanger. Loss of function mutations in pendrin protein cause Pendred syndrome, a disorder characterized by sensorineural deafness and a partial iodide organification defect that may lead to thyroid goiter. Additionally, pendrin up-regulation could play a role in the pathogenesis of several diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD. Therefore, monitoring the plasma membrane abundance and trafficking of pendrin in the context of a living cell is crucially important. Methods: Trafficking of pendrin to the plasma membrane was monitored by fluorescence resonance energy transfer (FRET, a physical phenomenon occurring between two fluorophores (the FRET donor and acceptor located in close spatial proximity. Because the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, FRET is extremely sensitive to small changes in distance between the donor and acceptor and is therefore a powerful tool to determine protein-protein interactions. Results: FRET studies revealed that forskolin-induced cAMP production is associated with a significant increase of pendrin expression at plasma membrane, which is paralleled by a decrease in intracellular pH. Pendrin transposition to the membrane is accompanied with a partial depolymerization of actin cytoskeleton via Rho-GTPase inhibition. Conclusion: Trafficking to the plasma membrane is critical in the regulation of pendrin activity. Therefore, reliable tools for monitoring and quantifying this phenomenon are highly desirable.

  18. A FRET-based approach for quantitative evaluation of forskolin-induced pendrin trafficking at the plasma membrane in bronchial NCI H292 cells.

    Tamma, Grazia; Ranieri, Marianna; Dossena, Silvia; Di Mise, Annarita; Nofziger, Charity; Svelto, Maria; Paulmichl, Markus; Valenti, Giovanna

    2013-01-01

    Human pendrin (SLC26A4, PDS) is an integral membrane protein acting as an electroneutral anion exchanger. Loss of function mutations in pendrin protein cause Pendred syndrome, a disorder characterized by sensorineural deafness and a partial iodide organification defect that may lead to thyroid goiter. Additionally, pendrin up-regulation could play a role in the pathogenesis of several diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD). Therefore, monitoring the plasma membrane abundance and trafficking of pendrin in the context of a living cell is crucially important. Trafficking of pendrin to the plasma membrane was monitored by fluorescence resonance energy transfer (FRET), a physical phenomenon occurring between two fluorophores (the FRET donor and acceptor) located in close spatial proximity. Because the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, FRET is extremely sensitive to small changes in distance between the donor and acceptor and is therefore a powerful tool to determine protein-protein interactions. FRET studies revealed that forskolin-induced cAMP production is associated with a significant increase of pendrin expression at plasma membrane, which is paralleled by a decrease in intracellular pH. Pendrin transposition to the membrane is accompanied with a partial depolymerization of actin cytoskeleton via Rho-GTPase inhibition. Trafficking to the plasma membrane is critical in the regulation of pendrin activity. Therefore, reliable tools for monitoring and quantifying this phenomenon are highly desirable. © 2014 S. Karger AG, Basel.

  19. Establishing a cellular FRET-based fluorescence plate reader assay to monitor proNGF-induced cross-linking of sortilin and the neurotrophin receptor p75(NTR)

    Skeldal, Sune; Kjaergaard, Maj M; Alwasel, Saleh

    2015-01-01

    the vps10p domain receptor sortilin and the neurotrophin receptor p75(NTR). However, proNGF-induced receptor complex formation has been difficult to directly assess other than by western blotting. We here describe a fluorescence resonance energy transfer (FRET) based fluorescence plate reader assay...

  20. Towards characterization of DNA structure under physiological conditions in vivo at the single-molecule level using single-pair FRET

    Fessl, Tomáš; Adamec, František; Polívka, Tomáš; Foldynová-Trantírková, Silvie; Vácha, František; Trantírek, L.

    2012-01-01

    Roč. 40, č. 16 (2012), s. 10 ISSN 0305-1048 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z60220518 Keywords : in-cell FRET * fluorescence * DNA * nucleic acid * ATTO * in vivo Subject RIV: BO - Biophysics Impact factor: 8.278, year: 2012

  1. Investigation of fretting corrosion of vacuum-chrome-plated vt3-1 titanium alloy in pair with unprotected vt3-1 alloy and 40khnma steel

    Rojkh, I.L.; Koltunova, L.N.; Vejtsman, M.G.; Birman, Ya.N.; Skosarev, A.V.; Kogan, I.S.

    1978-01-01

    The character of destruction of contacting surfaces in the process of fretting corrosion of titanium alloy VT3-1 chromized in vacuum in pair with unprotected alloy VT3-1 and steel 40KhNMA has been studied by scanning electron microscopy, electronography, and recording the surface profile. The specific load was 200 kg/cm 2 , vibration amplitude 50 mkm and frequency 500 Hz. It has been established that pairs unprotected with coating are subjected to intensive fretting corrosion especially when they are made of titanium alloy. For the pair chromized alloy VT3-1 - unprotected alloy VT3-1 no destruction of a chromized surface is observed. Vacuum chromium coating in the pair with steel 40KhNMA reveals similar properties as in pair with a titanium alloy. The surface of a steel sample is destroyed because of fretting corrosion, though the intensity of corrosion is lower than in the case of unprotected pairs. Vacuum chromium coating is recommended for protection of titanium alloy VT3-1 from fretting corrosion in pair with steel 40KhNMA or an alloy VT3-1 especially in those cases when various organic coatings are unsuitable

  2. Time resolved amplified FRET identifies protein kinase B activation state as a marker for poor prognosis in clear cell renal cell carcinoma

    James Miles

    2017-12-01

    General significance: The quantitative imaging technology based on Amplified-FRET can rapidly analyse protein activation states and molecular interactions. It could be used for prognosis and assess drug function during the early cycles of chemotherapy. It enables evaluation of clinical efficiency of personalised cancer treatment.

  3. FRET study of membrane proteins: determination of the tilt and orientation of the N-terminal domain of M13 major coat protein

    Nazarov, P.V.; Koehorst, R.B.M.; Vos, W.L.; Apanasovich, V.V.; Hemminga, M.A.

    2007-01-01

    A formalism for membrane protein structure determination was developed. This method is based on steady-state FRET data and information about the position of the fluorescence maxima on site-directed fluorescent labeled proteins in combination with global data analysis utilizing simulation-based

  4. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement.

    Bitter, Thom; Khan, Imran; Marriott, Tim; Lovelady, Elaine; Verdonschot, Nico; Janssen, Dennis

    2017-09-01

    Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental loading conditions to reproduce clinically relevant fretting corrosion features observed in retrieved components, (2) to develop a finite element model consistent with the fretting experiments and (3) to apply more complicated loading conditions of activities of daily living to the finite element model to study the taper mechanics. The experiments showed similar wear patterns on the taper surface as observed in retrievals. The finite element wear score based on Archard's law did not correlate well with the amount of material loss measured in the experiments. However, similar patterns were observed between the simulated micromotions and the experimental wear measurements. Although the finite element model could not be validated, the loading conditions based on activities of daily living demonstrate the importance of assembly load on the wear potential. These findings suggest that finite element models that do not incorporate geometry updates to account for wear loss may not be appropriate to predict wear volumes of taper connections.

  5. A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example.

    Gerard N M van der Krogt

    Full Text Available We recently reported on CFP-Epac-YFP, an Epac-based single polypeptide FRET reporter to resolve cAMP levels in living cells. In this study, we compared and optimized the fluorescent protein donor/acceptor pairs for use in biosensors such as CFP-Epac-YFP. Our strategy was to prepare a wide range of constructs consisting of different donor and acceptor fluorescent proteins separated by a short linker. Constructs were expressed in HEK293 cells and tested for FRET and other relevant properties. The most promising pairs were subsequently used in an attempt to improve the FRET span of the Epac-based cAMP sensor. The results show significant albeit not perfect correlation between performance in the spacer construct and in the Epac sensor. Finally, this strategy enabled us to identify improved sensors both for detection by sensitized emission and by fluorescent lifetime imaging. The present overview should be helpful in guiding development of future FRET sensors.

  6. Recent Trends in Rapid Environmental Monitoring of Pathogens and Toxicants: Potential of Nanoparticle-Based Biosensor and Applications

    Koedrith, Preeyaporn; Thasiphu, Thalisa; Weon, Jong-Il; Boonprasert, Rattana; Tuitemwong, Kooranee; Tuitemwong, Pravate

    2015-01-01

    Of global concern, environmental pollution adversely affects human health and socioeconomic development. The presence of environmental contaminants, especially bacterial, viral, and parasitic pathogens and their toxins as well as chemical substances, poses serious public health concerns. Nanoparticle-based biosensors are considered as potential tools for rapid, specific, and highly sensitive detection of the analyte of interest (both biotic and abiotic contaminants). In particular, there are several limitations of conventional detection methods for water-borne pathogens due to low concentrations and interference with various enzymatic inhibitors in the environmental samples. The increase of cells to detection levels requires long incubation time. This review describes current state of biosensor nanotechnology, the advantage over conventional detection methods, and the challenges due to testing of environmental samples. The major approach is to use nanoparticles as signal reporter to increase output rather than spending time to increase cell concentrations. Trends in future development of novel detection devices and their advantages over other environmental monitoring methodologies are also discussed. PMID:25884032

  7. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells.

    Ashok, Aditya; Vijayaraghavan, S N; Unni, Gautam E; Nair, Shantikumar V; Shanmugam, Mariyappan

    2018-04-27

    The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO 2 ) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO 2 show a distribution of ∼10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO 2 , is observed to be imposed by trapping and de-trapping processes via SnO 2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO 2 . The photo-generated charge carriers are captured and released by the SnO 2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.

  8. Mannosylated Chitosan Nanoparticles Based Macrophage-Targeting Gene Delivery System Enhanced Cellular Uptake and Improved Transfection Efficiency.

    Peng, Yixing; Yao, Wenjun; Wang, Bo; Zong, Li

    2015-04-01

    Gene transfer mediated by mannosylated chitosan (MCS) is a safe and promising approach for gene and vaccine delivery. MCS nanoparticles based gene delivery system showed high in vivo delivery efficiency and elicited strong immune responses in mice. However, little knowledge about the cell binding, transfection efficiency and intracellular trafficking of MCS nanoparticles had been acquired. In this study, using gastrin-releasing peptide as a model plasmid (pGRP), the binding of MCS/pGRP nanoparticles to macrophages and the intracellular trafficking of MCS/pGRP nanoparticles in macrophages were investigated. MCS-mediated transfection efficiency in macrophages was also evaluated using pGL-3 as a reporter gene. The results showed that the binding and transfection efficiency of MCS nanoparticles in macrophages was higher than that of CS, which was attributed to the interaction between mannose ligands in MCS and mannose receptors on the surface of macrophages. Observation with a confocal laser scanning microscope indicated the cellular uptake of MCS/pGRP nanoparticles were more than that of CS/pGRP nanoparticles in macrophages. MCS/pGRP nanoparticles were taken up by macrophages and most of them were entrapped in endosomal/lysosomal compartments. After the nanoparticles escaping from endosomal/lysosomal compartments, naked pGRP entered the nucleus, and a few MCS might enter the nucleus in terms of nanoparticles. Overall, MCS has the potential to be an excellent macrophage-targeting gene delivery carrier.

  9. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells

    Ashok, Aditya; Vijayaraghavan, S. N.; Unni, Gautam E.; Nair, Shantikumar V.; Shanmugam, Mariyappan

    2018-04-01

    The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO2) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO2 show a distribution of ˜10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO2, is observed to be imposed by trapping and de-trapping processes via SnO2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO2. The photo-generated charge carriers are captured and released by the SnO2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.

  10. Modeling of various contact theories for the manipulation of different biological micro/nanoparticles based on AFM

    Korayem, M. H.; Taheri, M.

    2014-01-01

    In this article, the modeling of various contact theories to be applied in the biomanipulation of different micro/nanoparticles based on the atomic force microscope has been studied, and the effect of adhesion force in different contact models on indentation depth and contact angle between tip and substrate has been explored for the target biological micro/nanoparticle. The contact models used in this research include the Hertz, JKR, DMT, BCP, COS, PT, and the SUN models. Also, the target particles comprise the biological micro/nanoparticles of DNA, yeast, platelet, and nanobacterium. Previous research works have investigated the contact models for the manipulation of non-biological gold micro/nanoparticles in the air environment. Since in a real biomanipulation situation, the biological micro/nanoparticles are displaced in biological environments; in this article, various contact theories for the biomanipulation of biological micro/nanoparticles in different biological environments have been modeled and compared for the first time. The results of modeling indicate that the use of Hertz contact model in analyzing the biomanipulation of biological nanoparticles is not appropriate, because it does not take the adhesion force into consideration and thus produces a significant error. Also, all the six contact models developed in this article show larger deformations for studied bionanoparticles in comparison to the gold nanoparticles, which can be justified with regards to the mechanical properties of gold.

  11. Stable and pH-responsive core-shell nanoparticles based on HEC and PMAA networks via template copolymerization

    Zhang, Y.; Jin, Q.; Chen, Y.; Zhao, J.

    2011-10-01

    Taking advantage of the specific hydrogen bonding interactions, stable and pH-responsive core-shell nanoparticles based on hydroxyethyl cellulose (HEC) and polymethacrylic acid (PMAA) networks, with a size ranging from 190 to 250 nm, can be efficiently prepared via facile one-step co-polymerization of methacrylic acid (MAA) and N, N'-methylenebisacrylamide (MBA) on HEC template in water. Using dynamic light scattering, electrophoretic light scattering, fluorescence spectrometry, thermo-gravimetric analysis, TEM, and AFM observations, the influence of crosslinker MBA as well as the reaction parameters were studied. The results show that after the introduction of crosslinker MBA, the nanoparticles became less compact; their size exhibited a smaller pH sensitivity, and their stability against pH value was improved greatly. Furthermore, the size, structure, and pH response of the nanoparticles can be adjusted via varying the reaction parameters: nanoparticles of smaller size, more compact structure, and higher swelling capacity were produced as pH value of the reaction medium increased or the HEC/MAA ratio decreased; while nanoparticles of smaller size, less compact structure and smaller swelling capacity were produced as the total feeding concentration increased.

  12. Ag Nanoparticle-Based Triboelectric Nanogenerator To Scavenge Wind Energy for a Self-Charging Power Unit.

    Jiang, Qiang; Chen, Bo; Zhang, Kewei; Yang, Ya

    2017-12-20

    Li-ion batteries are a green energy storage technology with advantages of high energy density, long lifetime, and sustainability, but they cannot generate electric energy by themselves. As a novel energy-harvesting technology, triboelectric nanogenerators (TENGs) are a promising power source for supplying electronic devices, however it is difficult to directly use their high output voltage and low output current. Here, we designed a Ag nanoparticle-based TENG for scavenging wind energy. After including a transformer and a power management circuit into the system, constant output voltages such as 3.6 V and a pulsed current of about 100 mA can be obtained, which can be used to directly light up a light-emitting diode. Furthermore, the produced electric energy can be effectively stored in a WO 3 /LiMn 2 O 4 electrode based Li-ion battery. Our present work provides a new approach to effectively scavenge wind energy and store the obtained electric energy, which is significant for exploring self-charging power units.

  13. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells

    Chang, Hong-Wei; Lee, Jonghee; Hofmann, Simone; Hyun Kim, Yong; Müller-Meskamp, Lars; Lüssem, Björn; Wu, Chung-Chih; Leo, Karl; Gather, Malte C.

    2013-05-01

    The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W-1 and external quantum efficiencies of 33% (both at 1000 cd m-2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W-1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.

  14. The CERN Neutrino Platform

    Bordoni, Stefania

    2018-01-01

    The long-baseline neutrino programme has been classified as one of the four highest-priority sci- entific objectives in 2013 by the European Strategy for Particle Physics. The Neutrino Platform is the CERN venture to foster and support the next generation of accelerator-based neutrino os- cillation experiments. Part of the present CERN Medium-Term Plan, the Neutrino Platform provide facilities to develop and prototype the next generation of neutrino detectors and contribute to unify the European neu- trino community towards the US and Japanese projects. A significative effort is made on R&D; for LAr TPC technologies: two big LAr TPC prototypes for the DUNE far detector are under con- struction at CERN. Those detectors will be exposed in 2018 to an entirely new and NP-dedicated beam-line from the SPS which will provide electron, muon and hadron beams with energies in the range of sub-GeV to a few GeV. Other projects are also presently under development: one can cite the refurbishing and shipping to the US ...

  15. Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms.

    Andrea M Binnebose

    Full Text Available Filarial diseases represent a significant social and economic burden to over 120 million people worldwide and are caused by endoparasites that require the presence of symbiotic bacteria of the genus Wolbachia for fertility and viability of the host parasite. Targeting Wolbachia for elimination is a therapeutic approach that shows promise in the treatment of onchocerciasis and lymphatic filariasis. Here we demonstrate the use of a biodegradable polyanhydride nanoparticle-based platform for the co-delivery of the antibiotic doxycycline with the antiparasitic drug, ivermectin, to reduce microfilarial burden and rapidly kill adult worms. When doxycycline and ivermectin were co-delivered within polyanhydride nanoparticles, effective killing of adult female Brugia malayi filarial worms was achieved with approximately 4,000-fold reduction in the amount of drug used. Additionally the time to death of the macrofilaria was also significantly reduced (five-fold when the anti-filarial drug cocktail was delivered within polyanhydride nanoparticles. We hypothesize that the mechanism behind this dramatically enhanced killing of the macrofilaria is the ability of the polyanhydride nanoparticles to behave as a Trojan horse and penetrate the cuticle, bypassing excretory pumps of B. malayi, and effectively deliver drug directly to both the worm and Wolbachia at high enough microenvironmental concentrations to cause death. These provocative findings may have significant consequences for the reduction in the amount of drug and the length of treatment required for filarial infections in terms of patient compliance and reduced cost of treatment.

  16. Continuous throughput and long-term observation of single-molecule FRET without immobilization.

    Tyagi, Swati; VanDelinder, Virginia; Banterle, Niccolò; Fuertes, Gustavo; Milles, Sigrid; Agez, Morgane; Lemke, Edward A

    2014-03-01

    We present an automated microfluidic platform that performs multisecond observation of single molecules with millisecond time resolution while bypassing the need for immobilization procedures. With this system, we confine biomolecules to a thin excitation field by reversibly collapsing microchannels to nanochannels. We demonstrate the power of our method by studying a variety of complex nucleic acid and protein systems, including DNA Holliday junctions, nucleosomes and human transglutaminase 2.

  17. Fast-NPS-A Markov Chain Monte Carlo-based analysis tool to obtain structural information from single-molecule FRET measurements

    Eilert, Tobias; Beckers, Maximilian; Drechsler, Florian; Michaelis, Jens

    2017-10-01

    The analysis tool and software package Fast-NPS can be used to analyse smFRET data to obtain quantitative structural information about macromolecules in their natural environment. In the algorithm a Bayesian model gives rise to a multivariate probability distribution describing the uncertainty of the structure determination. Since Fast-NPS aims to be an easy-to-use general-purpose analysis tool for a large variety of smFRET networks, we established an MCMC based sampling engine that approximates the target distribution and requires no parameter specification by the user at all. For an efficient local exploration we automatically adapt the multivariate proposal kernel according to the shape of the target distribution. In order to handle multimodality, the sampler is equipped with a parallel tempering scheme that is fully adaptive with respect to temperature spacing and number of chains. Since the molecular surrounding of a dye molecule affects its spatial mobility and thus the smFRET efficiency, we introduce dye models which can be selected for every dye molecule individually. These models allow the user to represent the smFRET network in great detail leading to an increased localisation precision. Finally, a tool to validate the chosen model combination is provided. Programme Files doi:http://dx.doi.org/10.17632/7ztzj63r68.1 Licencing provisions: Apache-2.0 Programming language: GUI in MATLAB (The MathWorks) and the core sampling engine in C++ Nature of problem: Sampling of highly diverse multivariate probability distributions in order to solve for macromolecular structures from smFRET data. Solution method: MCMC algorithm with fully adaptive proposal kernel and parallel tempering scheme.

  18. Preparing for a Product Platform

    Fiil-Nielsen, Ole; Munk, Lone; Mortensen, Niels Henrik

    2005-01-01

    on commonalities and similarities in the product family, and variance should be based on customer demands. To relate these terms and to improve the basis on which decisions are made, we need a way of visualizing the hierarchy of the product family as well as the commonality and variance. This visualization method...... of the platform or ensuring that the platform can meet future demands will be very useful in the preparation process of a platform synthesis as well as in the updating or reengineering of an existing product development platform.......Experience in the industry as well as recent related scientific publications show the benefits of product development platforms. Companies use platforms to develop not a single but multiple products (i.e. a product family) simultaneously. When these product development projects are coordinated...

  19. Adoption of Mobile Payment Platforms

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2016-01-01

    Numerous mobile payment solutions, which rely on new disruptive technologies, have been launched on the payment market in recent years. But despite the growing number of mobile payment apps, very few solutions have turned to be successful as the majority of them fail to gain a critical mass...... of users. In this paper, we investigate successful platform adoption strategies by using the Reach and Range Framework for Multi-Sided Platforms as a strategic tool to which mobile payment providers can adhere in order to tackle some of the main challenges they face throughout the evolution...... of their platforms. The analysis indicates that successful mobile payment solutions tend to be launched as one-sided platforms and then gradually be expanded into being two-sided. Our study showcases that the success of mobile payment platforms lies with the ability of the platform to balance the reach (number...

  20. Web Platform Application

    Paulsworth, Ashley [Sunvestment Group, Frederick, MD (United States); Kurtz, Jim [Sunvestment Group, Frederick, MD (United States); Brun de Pontet, Stephanie [Sunvestment Group, Frederick, MD (United States)

    2016-06-15

    Sunvestment Energy Group (previously called Sunvestment Group) was established to create a web application that brings together site hosts, those who will obtain the energy from the solar array, with project developers and funders, including affinity investors. Sunvestment Energy Group (SEG) uses a community-based model that engages with investors who have some affinity with the site host organization. In addition to a financial return, these investors receive non-financial value from their investments and are therefore willing to offer lower cost capital. This enables the site host to enjoy more savings from solar through these less expensive Community Power Purchase Agreements (CPPAs). The purpose of this award was to develop an online platform to bring site hosts and investors together virtually.

  1. Mobile4D platform

    Botha, Adèle

    2010-05-01

    Full Text Available and share their own Internet/Telco service Mashups. digm. This all 2.1.2  SPICE   Service Platform for Innovative Communication Environment was also a European Union’s Sixth Framework Programme (FP6) funded project, which formed a consortium consisting...  OPUCE  SPICE  Twisted   Mobicents  Telco  specific  Minimal Total Life cycle cost  ?  ?  ?  ?  ?  Standards Compliant Solution  ?  ?  ?  ?  ?  Bearer & Device Agnostic  ?  ?  ?  ?  ?  Ease of use and accessibility  ?  ?  ?  ?  ?  Synergies...

  2. Geometric information provider platform

    Meisam Yousefzadeh

    2015-07-01

    Full Text Available Renovation of existing buildings is known as an essential stage in reduction of the energy loss. Considerable part of renovation process depends on geometric reconstruction of building based on semantic parameters. Following many research projects which were focused on parameterizing the energy usage, various energy modelling methods were developed during the last decade. On the other hand, by developing accurate measuring tools such as laser scanners, the interests of having accurate 3D building models are rapidly growing. But the automation of 3D building generation from laser point cloud or detection of specific objects in that is still a challenge.  The goal is designing a platform through which required geometric information can be efficiently produced to support energy simulation software. Developing a reliable procedure which extracts required information from measured data and delivers them to a standard energy modelling system is the main purpose of the project.

  3. Energy Tracking Software Platform

    Ryan Davis; Nathan Bird; Rebecca Birx; Hal Knowles

    2011-04-04

    Acceleration has created an interactive energy tracking and visualization platform that supports decreasing electric, water, and gas usage. Homeowners have access to tools that allow them to gauge their use and track progress toward a smaller energy footprint. Real estate agents have access to consumption data, allowing for sharing a comparison with potential home buyers. Home builders have the opportunity to compare their neighborhood's energy efficiency with competitors. Home energy raters have a tool for gauging the progress of their clients after efficiency changes. And, social groups are able to help encourage members to reduce their energy bills and help their environment. EnergyIT.com is the business umbrella for all energy tracking solutions and is designed to provide information about our energy tracking software and promote sales. CompareAndConserve.com (Gainesville-Green.com) helps homeowners conserve energy through education and competition. ToolsForTenants.com helps renters factor energy usage into their housing decisions.

  4. Application of contact mechanics for fretting damage of fuel rod: part 1 influence functions and numerical method

    Kim, H. K.; Yoon, K. H.; Kang, H. S.; Song, G. N.

    1998-01-01

    For the analysis of the fretting problem of the fuel rods, present paper(Part I) shows the numerical method developed for evaluating the stresses on the contact surfaces between the fuel rods and the spacer grids. Theory of Contact Mechanics was incorporated. Contact area was regarded as a plane strain condition, so plane problem was taken into consideration. Normal stress profile on the contact surface was assumed to be Hertzian. As for the direction of the shear load, a closed load path, e.g. load increase in transverse increase in axial decrease in transverse decrease in axial increase in transverse increase in axial direction was considered for simulating the rod vibration in a reactor core. Partial slip problem was consulted. As for the numerical method, a triangular traction element was utilized and the corresponding influence functions were evaluated. Numerical program has been implemented for the present analysis, of which the validity was verified by comparing the Mindlin-Cattaneo solution

  5. Direct Assessment of the Effect of the Gly380Arg Achondroplasia Mutation on FGFR3 Dimerization Using Quantitative Imaging FRET

    Placone, Jesse; Hristova, Kalina

    2012-01-01

    The Gly380Arg mutation in FGFR3 is the genetic cause for achondroplasia (ACH), the most common form of human dwarfism. The mutation has been proposed to increase FGFR3 dimerization, but the dimerization propensities of wild-type and mutant FGFR3 have not been compared. Here we use quantitative imaging FRET to characterize the dimerization of wild-type FGFR3 and the ACH mutant in plasma membrane-derived vesicles from HEK293T cells. We demonstrate a small, but statistically significant increase in FGFR3 dimerization due to the ACH mutation. The data are consistent with the idea that the ACH mutation causes a structural change which affects both the stability and the activity of FGFR3 dimers in the absence of ligand. PMID:23056398

  6. Direct assessment of the effect of the Gly380Arg achondroplasia mutation on FGFR3 dimerization using quantitative imaging FRET.

    Jesse Placone

    Full Text Available The Gly380Arg mutation in FGFR3 is the genetic cause for achondroplasia (ACH, the most common form of human dwarfism. The mutation has been proposed to increase FGFR3 dimerization, but the dimerization propensities of wild-type and mutant FGFR3 have not been compared. Here we use quantitative imaging FRET to characterize the dimerization of wild-type FGFR3 and the ACH mutant in plasma membrane-derived vesicles from HEK293T cells. We demonstrate a small, but statistically significant increase in FGFR3 dimerization due to the ACH mutation. The data are consistent with the idea that the ACH mutation causes a structural change which affects both the stability and the activity of FGFR3 dimers in the absence of ligand.

  7. Ratiometric FRET-based detection of DNA and micro-RNA on the surface using TIRF detection

    Matveeva, Evgenia G.; Gryczynski, Zygmunt; Stewart, Donald R.; Gryczynski, Ignacy

    2010-01-01

    A new FRET-based method for the ratiometric detection of DNA oligomers on a surface using TIRF detection mode is reported. The dual-labeled system consisting of two hybridized oligomers, Cy3oligoY:Cy5oligoX was immobilized on the surface, and the total internal reflection fluorescence (TIRF) was used to detect emission signals from the surface. Two signals, green and red, which originated from the green donor Cy3 and the red acceptor Cy5, have been simultaneously detected. When the target single-stranded complimentary oligomer was present in the solution, this oligomer replaced the Cy3oligoY in the donor:acceptor complex on the surface and the ratio of red-to-green signal was dramatically changed. This detection scheme is generally applicable to the detection of DNA or RNA on a surface.

  8. A Series of Fluorescent and Colorimetric Chemodosimeters for Selective Recognition of Cyanide Based on the FRET Mechanism.

    Hua, Ying-Xi; Shao, Yongliang; Wang, Ya-Wen; Peng, Yu

    2017-06-16

    A series of fluorescence "turn-on" probes (PY, AN, NA, B1, and B2) have been developed and successfully applied to detect cyanide anions based on the Michael addition reaction and FRET mechanism. These probes demonstrated good selectivity, high sensitivity, and very fast recognition for CN - . In particular, the fluorescence response of probe NA finished within 3 s. Low limits of detection (down to 63 nM) are also obtained in these probes with remarkable fluorescence enhancement factors. In addition, fluorescence colors of these probes turned to blue, yellow, or orange upon sensing CN - . In UV-vis mode, all of them showed ratiometric response for CN - . 1 H NMR titration experiments and TDDFT calculations were taken to verify the mechanism of the specific reaction and fluorescence properties of the corresponding compounds. Moreover, silica gel plates with these probes were also fabricated and utilized to detect cyanide.

  9. Safety assessment of the potential for foreign object - caused fretting - wear damages on PWR steam generator U-tubes

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2003-01-01

    This study investigates the safety assessment of the potential for fretting-wear damages on Steam Generator (SG) U-tubes caused by foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions are obtained from three-dimensional SG flow calculation using the ATHOS3 code. Modal analyses are performed for the finite element modelings of U-tubes to get the natural frequency, corresponding mode shape and participation factor. The wear rate of U-tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted. Also, discussed in this study are the effects of flow velocity, internal pressure, tube-to-foreign object contact angle, and vibration of the tube on the remaining life of the tube

  10. Life Estimation of PWR Steam Generator U-Tubes Subjected to Foreign Object-Induced Fretting Wear

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2005-01-01

    This paper presents an approach to the remaining life prediction of steam generator (SG) U-tubes, which are intact initially, subjected to fretting-wear degradation due to the interaction between a vibrating tube and a foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions are obtained from a three-dimensional SG flow calculation using the ATHOS3 code. Modal analyses are performed for the finite element models of U-tubes to get the natural frequency, corresponding mode shape, and participation factor. The wear rate of a U-tube caused by a foreign object is calculated using the Archard formula, and the remaining life of the tube is predicted. Also discussed in this study are the effects of the tube modal characteristics, external flow velocity, and tube internal pressure on the estimated results of the remaining life of the tube

  11. Sinking offshore platform. Nedsenkbar fralandsplatform

    Einstabland, T.B.; Olsen, O.

    1988-12-19

    The invention deals with a sinking offshore platform of the gravitational type designed for being installed on the sea bed on great depths. The platform consists of at least three inclining pillars placed on a foundation unit. The pillars are at the upper end connected to a tower structure by means of a rigid construction. The tower supports the platform deck. The rigid construction comprises a centre-positioned cylinder connected to the foundation. 11 figs.

  12. Subunit rotation in a single FoF1-ATP synthase in a living bacterium monitored by FRET

    Seyfert, K.; Oosaka, T.; Yaginuma, H.; Ernst, S.; Noji, H.; Iino, R.; Börsch, M.

    2011-03-01

    FoF1-ATP synthase is the ubiquitous membrane-bound enzyme in mitochondria, chloroplasts and bacteria which provides the 'chemical energy currency' adenosine triphosphate (ATP) for cellular processes. In Escherichia coli ATP synthesis is driven by a proton motive force (PMF) comprising a proton concentration difference ΔpH plus an electric potential ΔΨ across the lipid membrane. Single-molecule in vitro experiments have confirmed that proton-driven subunit rotation within FoF1-ATP synthase is associated with ATP synthesis. Based on intramolecular distance measurements by single-molecule fluorescence resonance energy transfer (FRET) the kinetics of subunit rotation and the step sizes of the different rotor parts have been unraveled. However, these experiments were accomplished in the presence of a PMF consisting of a maximum ΔpH ~ 4 and an unknown ΔΨ. In contrast, in living bacteria the maximum ΔpH across the plasma membrane is likely 0.75, and ΔΨ has been measured between -80 and -140 mV. Thus the problem of in vivo catalytic turnover rates, or the in vivo rotational speed in single FoF1-ATP synthases, respectively, has to be solved. In addition, the absolute number of functional enzymes in a single bacterium required to maintain the high ATP levels has to be determined. We report our progress of measuring subunit rotation in single FoF1-ATP synthases in vitro and in vivo, which was enabled by a new labeling approach for single-molecule FRET measurements.

  13. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System

    Doris E. Ramírez-Herrera

    2018-04-01

    Full Text Available In the present work, we synthesize Near Infrared (NIR-emitting alloyed mercaptopropionic acid (MPA-capped CdTeSe quantum dots (QDs in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608–750 nm by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5 dye as an energy acceptor with efficiency (E up to 95%. The distance between the QDs and dye (r, the Förster distance (R0, and the binding constant (K are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.

  14. Flow-induced vibration and fretting-wear specifications to ensure steam-generator and heat exchanger lifetime performance

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2008-01-01

    The current interest in refurbishment, life extension and new-build activity has meant a renewed emphasis on technical specifications that will ensure improved reliability and longer life. Preventing vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. The specifications must be firmly based on experimental data and field inspections. In addition, the specifications must be supported by theoretical analyses and fundamental scaling correlations, to cover conditions and geometries over the wide range applicable to existing components and probable future designs. The specifications are expected to evolve to meet changing industry requirements. This paper outlines the steps required to generate and support design specifications, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  15. Product Platform Screening at LEGO

    Mortensen, Niels Henrik; Steen Jensen, Thomas; Nielsen, Ole Fiil

    2012-01-01

    Product platforms offer great benefits to companies developing new products in highly competitive markets. Literature describes how a single platform can be designed from a technical point of view, but rarely mentions how the process begins. How do companies identify possible platform candidates...... after a few changes had been applied to the initial process layout. This case study shows how companies must focus on a limited selection of simultaneous projects in order to keep focus. Primary stakeholders must be involved from the very beginning, and short presentations of the platform concepts...

  16. Flexible experimental FPGA based platform

    Andersen, Karsten Holm; Nymand, Morten

    2016-01-01

    This paper presents an experimental flexible Field Programmable Gate Array (FPGA) based platform for testing and verifying digital controlled dc-dc converters. The platform supports different types of control strategies, dc-dc converter topologies and switching frequencies. The controller platform...... interface supporting configuration and reading of setup parameters, controller status and the acquisition memory in a simple way. The FPGA based platform, provides an easy way within education or research to use different digital control strategies and different converter topologies controlled by an FPGA...

  17. Introducing Platform Interactions Model for Studying Multi-Sided Platforms

    Staykova, Kalina; Damsgaard, Jan

    2018-01-01

    Multi-Sided Platforms (MSPs) function as socio-technical entities that facilitate direct interactions between various affiliated to them constituencies through developing and managing IT architecture. In this paper, we aim to explain the nature of the platform interactions as key characteristic o...

  18. A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films

    Revaux, Amelie; Dantelle, Geraldine; George, Nathan; Seshadri, Ram; Gacoin, Thierry; Boilot, Jean-Pierre

    2011-05-01

    A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 +/- 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing.A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous

  19. A practice scaffolding interactive platform

    Bundsgaard, Jeppe

    2009-01-01

    A Practice Scaffolding Interactive Platform (PracSIP) is a social learning platform which supports students in collaborative project based learning by simulating a professional practice. A PracSIP puts the core tools of the simulated practice at the students' disposal, it organizes collaboration...

  20. Paper based electronics platform

    Nassar, Joanna Mohammad

    2017-07-20

    A flexible and non-functionalized low cost paper-based electronic system platform fabricated from common paper, such as paper based sensors, and methods of producing paper based sensors, and methods of sensing using the paper based sensors are provided. A method of producing a paper based sensor can include the steps of: a) providing a conventional paper product to serve as a substrate for the sensor or as an active material for the sensor or both, the paper product not further treated or functionalized; and b) applying a sensing element to the paper substrate, the sensing element selected from the group consisting of a conductive material, the conductive material providing contacts and interconnects, sensitive material film that exhibits sensitivity to pH levels, a compressible and/or porous material disposed between a pair of opposed conductive elements, or a combination of two of more said sensing elements. The method of sensing can further include measuring, using the sensing element, a change in resistance, a change in voltage, a change in current, a change in capacitance, or a combination of any two or more thereof.

  1. Nanolubricant: magnetic nanoparticle based

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  2. Hydrogel nanoparticle based immunoassay

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  3. Stratospheric Platforms for Monitoring Purposes

    Konigorski, D.; Gratzel, U.; Obersteiner, M.; Schneidereit, M.

    2010-01-01

    Stratospheric platforms are emerging systems based on challenging technology. Goal is to create a platform, payload, and mission design which is able to complement satellite services on a local scale. Applications are close to traditional satellite business in telecommunication, navigation, science, and earth observation and include for example mobile telecommunications, navigation augmentation, atmospheric research, or border control. Stratospheric platforms could potentially support monitoring activities related to safeguards, e.g. by imagery of surfaces, operational conditions of nuclear facilities, and search for undeclared nuclear activities. Stratospheric platforms are intended to be flown in an altitude band between 16 and 30 km, above 16-20 km to take advantage of usually lower winds facilitating station keeping, below 30 km to limit the challenges to achieve a reasonable payload at acceptable platform sizes. Stratospheric platforms could substitute satellites which are expensive and lack upgrade capabilities for new equipment. Furthermore they have practically an unlimited time over an area of interest. It is intended to keep the platforms operational and maintenance free on a 24/7 basis with an average deployment time of 3 years. Geostationary satellites lack resolution. Potential customers like Armed Forces, National Agencies and commercial customers have indicated interest in the use of stratospheric platforms. Governmental entities are looking for cheaper alternatives to communications and surveillance satellites and stratospheric platforms could offer the following potential advantages: Lower operational cost than satellite or UAV (Unmanned Aerial Vehicles) constellation (fleet required); Faster deployment than satellite constellation; Repositioning capability and ability to loiter as required; Persistent long-term real-time services over a fairly large regional spot; Surge capability: Able to extend capability (either monitoring or communications

  4. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP.

    Romero, Francisco; Santana-Calvo, Carmen; Sánchez-Guevara, Yoloxochitl; Nishigaki, Takuya

    2017-09-01

    The cyclic nucleotide-binding domain (CNBD) functions as a regulatory domain of many proteins involved in cyclic nucleotide signalling. We developed a straightforward and reliable binding assay based on intermolecular fluorescence resonance energy transfer (FRET) between an adenosine-3', 5'-cyclic monophosphate analogue labelled with fluorescein and a recombinant CNBD of human EPAC1 tagged with a cyan fluorescence protein (CFP). The high FRET efficiency of this method (~ 80%) allowed us to perform several types of binding experiments with nanomolar range of sample using conventional equipment. In addition, the CFP tag on the CNBD enabled us to perform a specific binding experiment using an unpurified protein. Considering these advantages, this technique is useful to study poorly characterized CNBDs. © 2017 Federation of European Biochemical Societies.

  5. Contribution to the study of atmospheric projection and under partial vacuum of tungsten carbide particles with cobalt or nickel binder. Application to fretting coatings on steel

    Vinayo, Maria-Elena

    1985-01-01

    This research thesis addresses the plasma spraying (atmospheric, under controlled atmosphere, and under reduced pressure) of tungsten carbides with a metallic binder (WC/Co, WC/Ni; W 2 C/Co). This work comprised an optimisation of the spraying process under reduced pressure, the study of the influence of the powder production process on the physicochemical and micro-structural characteristics as well as on coating fretting properties, and a correlation between spraying parameters in a controlled atmosphere (power and pressure) and coating physico-chemical and micro-structural properties. Results show a high decarburization-oxidation of tungsten carbides during atmospheric spraying, as well as an important evaporation of cobalt. Under reduced pressure, high losses of carbides are noticed. These both phenomena strongly depend on the powder production process. Fretting results highlight remarkable performance of coatings obtained by atmospheric spraying [fr

  6. ICP (ITER Collaborative Platform)

    Capuano, C.; Carayon, F.; Patel, V. [ITER, 13 - St. Paul-Lez Durance (France)

    2009-07-01

    The ITER organization has the necessity to manage a massive amount of data and processes. Each team requires different process and databases often interconnected with those of others teams. ICP is the current central ITER repository of structured and unstructured data. All data in ICP is served and managed via a web interface that provides global accessibility with a common user friendly interface. This paper will explain the model used by ICP and how it serves the ITER project by providing a robust and agile platform. ICP is developed in ASP.NET using MSSQL Server for data storage. It currently houses 15 data driven applications, 150 different types of record, 500 k objects and 2.5 M references. During European working hours the system averages 150 concurrent users and 20 requests per second. ICP connects to external database applications to provide a single entry point to ITER data and a safe shared storage place to maintain this data long-term. The Core model provides an easy to extend framework to meet the future needs of the Organization. ICP follows a multi-tier architecture, providing logical separation of process. The standard three-tier architecture is expanded, with the data layer separated into data storage, data structure, and data access components. The business or applications logic layer is broken up into a common business functionality layer, a type specific logic layer, and a detached work-flow layer. Finally the presentation tier comprises a presentation adapter layer and an interface layer. Each layer is built up from small blocks which can be combined to create a wide range of more complex functionality. Each new object type developed gains access to a wealth of existing code functionality, while also free to adapt and extend this. The hardware structure is designed to provide complete redundancy, high availability and to handle high load. This document is composed of an abstract followed by the presentation transparencies. (authors)

  7. Platform Expansion Design as Strategic Choice

    Staykova, Kalina S.; Damsgaard, Jan

    2016-01-01

    In this paper, we address how the strategic choice of platform expansion design impacts the subse-quent platform strategy. We identify two distinct approaches to platform expansion – platform bun-dling and platform constellations, which currently co-exist. The purpose of this paper is to outline...

  8. A Typology of Multi-sided Platforms

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2015-01-01

    In this paper we address how the composition of a platform impacts the platform’s business model. By platform’s business model we mean platform features, platform architecture and platform governance. To this end, we construct the Platform Business Model Framework. We apply the framework to three...

  9. The European Photovoltaic Technology Platform

    Nowak, S.; Aulich, H.; Bal, J.L.; Dimmler, B.; Garnier, A.; Jongerden, G.; Luther, J.; Luque, A.; Milner, A.; Nelson, D.; Pataki, I.; Pearsall, N.; Perezagua, E.; Pietruszko, S.; Rehak, J.; Schellekens, E.; Shanker, A.; Silvestrini, G.; Sinke, W.; Willemsen, H.

    2006-05-01

    The European Photovoltaic Technology Platform is one of the European Technology Platforms, a new instrument proposed by the European Commission. European Technology Platforms (ETPs) are a mechanism to bring together all interested stakeholders to develop a long-term vision to address a specific challenge, create a coherent, dynamic strategy to achieve that vision and steer the implementation of an action plan to deliver agreed programmes of activities and optimise the benefits for all parties. The European Photovoltaic Technology Platform has recently been established to define, support and accompany the implementation of a coherent and comprehensive strategic plan for photovoltaics. The platform will mobilise all stakeholders sharing a long-term European vision for PV, helping to ensure that Europe maintains and improves its industrial position. The platform will realise a European Strategic Research Agenda for PV for the next decade(s). Guided by a Steering Committee of 20 high level decision-makers representing all relevant European PV Stakeholders, the European PV Technology Platform comprises 4 Working Groups dealing with the subjects policy and instruments; market deployment; science, technology and applications as well as developing countries and is supported by a secretariat

  10. Vertical Relationships within Platform Marketplaces

    Mark J. Tremblay

    2016-07-01

    Full Text Available In two-sided markets a platform allows consumers and sellers to interact by creating sub-markets within the platform marketplace. For example, Amazon has sub-markets for all of the different product categories available on its site, and smartphones have sub-markets for different types of applications (gaming apps, weather apps, map apps, ridesharing apps, etc.. The network benefits between consumers and sellers depend on the mode of competition within the sub-markets: more competition between sellers lowers product prices, increases the surplus consumers receive from a sub-market, and makes platform membership more desirable for consumers. However, more competition also lowers profits for a seller which makes platform membership less desirable for a seller and reduces seller entry and the number of sub-markets available on the platform marketplace. This dynamic between seller competition within a sub-market and agents’ network benefits leads to platform pricing strategies, participation decisions by consumers and sellers, and welfare results that depend on the mode of competition. Thus, the sub-market structure is important when investigating platform marketplaces.

  11. Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method.

    Kim, Eun-Young; Stanton, Jennifer; Korber, Bette T M; Krebs, Kendall; Bogdan, Derek; Kunstman, Kevin; Wu, Samuel; Phair, John P; Mirkin, Chad A; Wolinsky, Steven M

    2008-06-01

    Detection of HIV-1 in patients is limited by the sensitivity and selectivity of available tests. The nanotechnology-based bio-barcode-amplification method offers an innovative approach to detect specific HIV-1 antigens from diverse HIV-1 subtypes. We evaluated the efficacy of this protein-detection method in detecting HIV-1 in men enrolled in the Chicago component of the Multicenter AIDS Cohort Study (MACS). The method relies on magnetic microparticles with antibodies that specifically bind the HIV-1 p24 Gag protein and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the microparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes (hundreds per target) were identified by a nanoparticle-based detection method that does not rely on PCR. Of 112 plasma samples from HIV-1-infected subjects, 111 were positive for HIV-1 p24 Gag protein (range: 0.11-71.5 ng/ml of plasma) by the bio-barcode-amplification method. HIV-1 p24 Gag protein was detected in only 23 out of 112 men by the conventional ELISA. A total of 34 uninfected subjects were negative by both tests. Thus, the specificity of the bio-barcode-amplification method was 100% and the sensitivity 99%. The bio-barcode-amplification method detected HIV-1 p24 Gag protein in plasma from all study subjects with less than 200 CD4(+) T cells/microl of plasma (100%) and 19 out of 20 (95%) HIV-1-infected men who had less than 50 copies/ml of plasma of HIV-1 RNA. In a separate group of 60 diverse international isolates, representative of clades A, B, C and D and circulating recombinant forms CRF01_AE and CRF02_AG, the bio-barcode-amplification method identified the presence of virus correctly. The bio-barcode-amplification method was superior to the conventional ELISA assay for the detection of HIV-1 p24 Gag protein in plasma with a breadth of coverage for diverse

  12. Chitosan nanoparticle-based delivery of fused NKG2D–IL-21 gene suppresses colon cancer growth in mice

    Tan L

    2017-04-01

    Full Text Available Lunmei Tan,1 Sen Han,2 Shizhen Ding,2 Weiming Xiao,3,4 Yanbing Ding,3 Li Qian,2,4 Chenming Wang,1,5 Weijuan Gong1–5 1Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 2Department of Immunology, School of Medicine, 3Department of Gastroenterology, The Second Clinical Medical College, 4Department of Integrated Chinese and Western Medicine, School of Medicine, 5Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China Abstract: Nanoparticles can be loaded with exogenous DNA for the potential expression of cytokines with immune-stimulatory function. NKG2D identifies major histocompatibility complex class I chain-related protein in human and retinoic acid early induced transcript-1 in mouse, which acts as tumor-associated antigens. Biologic agents based on interleukin 21 (IL-21 have displayed antitumor activities through lymphocyte activation. The NKG2D–IL-21 fusion protein theoretically identifies tumor cells through NKG2D moiety and activates T cells through IL-21 moiety. In this study, double-gene fragments that encode the extracellular domains of NKG2D and IL-21 genes were connected and then inserted into the pcDNA3.1(– plasmid. PcDNA3.1–dsNKG2D–IL-21 plasmid nanoparticles based on chitosan were generated. Tumor cells pretransfected with dsNKG2D–IL-21 gene nanoparticles can activate natural killer (NK and CD8+ T cells in vitro. Serum IL-21 levels were enhanced in mice intramuscularly injected with the gene nanoparticles. DsNKG2D–IL-21 gene nanoparticles accumulated in tumor tissues after being intravenously injected for ~4–24 h. Treatment of dsNKG2D–IL-21 gene nanoparticles also retarded tumor growth and elongated the life span of tumor-bearing mice by activating NK and T cells in vivo. Thus, the dsNKG2D–IL-21 gene nanoparticles exerted efficient antitumor activities and would be potentially used for tumor therapy. Keywords: NKG2

  13. Quantum Dot Platform for Single-Cell Molecular Profiling

    Zrazhevskiy, Pavel S.

    In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe

  14. Platform decisions supported by gaming

    Hansen, Poul H. Kyvsgård; Mikkola, Juliana Hsuan

    2007-01-01

    Platform is an ambiguous multidisciplinary concept. The philosophy behind it is easy to communicate and makes intuitively sense. However, the ease in communication does overshadow the high complexity when the concept is implemented. The practical industrial platform implementation challenge can...... be described as being a configuration problem with a high number of variables. These variables are different in nature; they have contradictory influence on the total performance, and, their importance change over time. Consequently, the specific platform decisions become highly complex and the consequences...

  15. Investigation on ionic states of 1,2-Dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) using organic laser dyes: A FRET study

    Roy, Arpan Datta; Saha, Jaba; Dey, D.; Bhattacharjee, D.; Hussain, Syed Arshad, E-mail: sa_h153@hotmail.com

    2017-05-15

    Fluorescence Resonance Energy Transfer (FRET) between two organic dyes Fluorescein and Rhodamine 6G were successfully investigated in aqueous solution in presence and absence of 1,2-Dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) at different pH. Spectroscopic studies suggest that both the dyes were present mainly as monomer in solution. FRET occurred from Fluorescein to Rhodamine 6G in solutions. Energy transfer efficiency increases in presence of DPPC and the maximum efficiency was 59.3% when the concentration of DPPC was 1.4×10{sup −4} M at ambient condition. pH plays a crucial role in this investigation as the energy transfer efficiency was found to change in presence of DPPC at different pH. It has been demonstrated that with proper calibration it is possible to use the present system under investigation to realize various ionic states of DPPC by observing the change in FRET efficiency between these two dyes. - Graphical abstract: Electrostatic interaction between anionic Flu and cationic R6G molecules in presence and absence of DPPC at different pH. Here pH of DPPC was changed, not the pH of individual dyes.

  16. Expectation-maximization of the potential of mean force and diffusion coefficient in Langevin dynamics from single molecule FRET data photon by photon.

    Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei

    2013-12-12

    The dynamics of a protein along a well-defined coordinate can be formally projected onto the form of an overdamped Lagevin equation. Here, we present a comprehensive statistical-learning framework for simultaneously quantifying the deterministic force (the potential of mean force, PMF) and the stochastic force (characterized by the diffusion coefficient, D) from single-molecule Förster-type resonance energy transfer (smFRET) experiments. The likelihood functional of the Langevin parameters, PMF and D, is expressed by a path integral of the latent smFRET distance that follows Langevin dynamics and realized by the donor and the acceptor photon emissions. The solution is made possible by an eigen decomposition of the time-symmetrized form of the corresponding Fokker-Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this new method.

  17. Structural changes in the cytoplasmic pore of the Kir1.1 channel during pHi-gating probed by FRET.

    Lee, Jay-Ron; Shieh, Ru-Chi

    2009-03-06

    Kir1.1 channels are important in maintaining K+ homeostasis in the kidney. Intracellular acidification reversibly closes the Kir1.1 channel and thus decreases K+ secretion. In this study, we used Foster resonance energy transfer (FRET) to determine whether the conformation of the cytoplasmic pore changes in response to intracellular pH (pHi)-gating in Kir1.1 channels fused with enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP) (ECFP-Kir1.1-EYFP). Because the fluorescence intensities of ECFP and EYFP were affected at pHi pHi-gating occurs in the ECFP-Kir1.1-EYFP construct, we examined the FRET efficiencies of an ECFP-S219R-EYFP mutant, which is completed closed at pHi 7.4 and open at pHi 10.0. FRET efficiency was increased from 25% to 40% when the pHi was decreased from 10.0 to 7.4. These results suggest that the conformation of the cytoplasmic pore in the Kir1.1 channel changes in response to pHi gating such that the N- and C-termini move apart from each other at pHi 7.4, when the channel is open.

  18. One-pot fabrication of FRET-based fluorescent probe for detecting copper ion and sulfide anion in 100% aqueous media

    Lv, Kun; Chen, Jian; Wang, Hong; Zhang, Peisheng; Yu, Maolin; Long, Yunfei; Yi, Pinggui

    2017-04-01

    The design of effective tools for detecting copper ion (Cu2 +) and sulfide anion (S2 -) is of great importance due to the abnormal level of Cu2 + and S2 - has been associated with an increase in risk of many diseases. Herein, we report on the fabrication of fluorescence resonance energy transfer (FRET) based fluorescent probe PF (PEI-FITC) for detecting Cu2 + and S2 - in 100% aqueous media via a facile one-pot method by covalent linking fluorescein isothiocyanate (FITC) with branched-polyethylenimine (b-PEI). PF could selectively coordinate with Cu2 + among 10 metal ions to form PF-Cu2 + complex, resulting in fluorescence quenching through FRET mechanism. Furthermore, the in situ generated PF-Cu2 + complex can be used to selectively detect S2 - based on the displacement approach, resulting in an off-on type sensing. There is no obvious interference from other anions, such as Cl-, NO3-, ClO4-, SO42 -, HCO3-, CO32 -, Br-, HPO42 -, F- and S2O32 -. In addition, PF was successfully used to determine Cu2 + and S2 - in human serum and tap water samples. Therefore, the FRET-based probe PF may provide a new method for selective detection of multifarious analysts in biological and environmental applications, and even hold promise for application in more complicated systems.

  19. Inter-Dye Distance Distributions Studied by a Combination of Single-Molecule FRET-Filtered Lifetime Measurements and a Weighted Accessible Volume (wAV Algorithm

    Henning Höfig

    2014-11-01

    Full Text Available Förster resonance energy transfer (FRET is an important tool for studying the structural and dynamical properties of biomolecules. The fact that both the internal dynamics of the biomolecule and the movements of the biomolecule-attached dyes can occur on similar timescales of nanoseconds is an inherent problem in FRET studies. By performing single-molecule FRET-filtered lifetime measurements, we are able to characterize the amplitude of the motions of fluorescent probes attached to double-stranded DNA standards by means of flexible linkers. With respect to previously proposed experimental approaches, we improved the precision and the accuracy of the inter-dye distance distribution parameters by filtering out the donor-only population with pulsed interleaved excitation. A coarse-grained model is employed to reproduce the experimentally determined inter-dye distance distributions. This approach can easily be extended to intrinsically flexible proteins allowing, under certain conditions, to decouple the macromolecule amplitude of motions from the contribution of the dye linkers.

  20. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads.

    Tang, Dianping; Su, Biling; Tang, Juan; Ren, Jingjing; Chen, Guonan

    2010-02-15

    A novel nanoparticle-based electrochemical immunoassay of carbohydrate antigen 125 (CA125) as a model was designed to couple with a microfluidic strategy using anti-CA125-functionalized magnetic beads as immunosensing probes. To construct the immunoassay, thionine-horseradish peroxidase conjugation (TH-HRP) was initially doped into nanosilica particles using the reverse micelle method, and then HRP-labeled anti-CA125 antibodies (HRP-anti-CA125) were bound onto the surface of the synthesized nanoparticles, which were used as recognition elements. Different from conventional nanoparticle-based electrochemical immunoassays, the recognition elements of the immunoassay simultaneously contained electron mediator and enzyme labels and simplified the electrochemical measurement process. The sandwich-type immunoassay format was used for the online formation of the immunocomplex in an incubation cell and captured in the detection cell with an external magnet. The electrochemical signals derived from the carried HRP toward the reduction of H(2)O(2) using the doped thionine as electron mediator. Under optimal conditions, the electrochemical immunoassay exhibited a wide working range from 0.1 to 450 U/mL with a detection limit of 0.1 U/mL CA125. The precision, reproducibility, and stability of the immunoassay were acceptable. The assay was evaluated for clinical serum samples, receiving in excellent accordance with results obtained from the standard enzyme-linked immunosorbent assay (ELISA) method. Concluding, the nanoparticle-based assay format provides a promising approach in clinical application and thus represents a versatile detection method.

  1. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk

    Wang, Song; Wang, Fei; Liao, Zhenhua; Wang, Qingliang; Liu, Yuhong; Liu, Weiqiang

    2015-01-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~ 500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in

  2. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk

    Wang, Song [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Wang, Fei [School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Wang, Qingliang [School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Yuhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~ 500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in

  3. IRET: requirements for service platforms

    Baresi, Luciano; Ripa, Gianluca; Pasquale, Liliana

    2013-01-01

    peer-reviewed This paper describes IRENE (Indenica Requirements ElicitatioN mEthod), a methodology to elicit and model the requirements of service platforms, and IRET (IREne Tool), the Eclipse-based modeling framework we developed for IRENE

  4. Platform attitude data acquisition system

    Afzulpurkar, S.

    A system for automatic acquisition of underwater platform attitude data has been designed, developed and tested in the laboratory. This is a micro controller based system interfacing dual axis inclinometer, high-resolution digital compass...

  5. Microneedle Platforms for Cell Analysis

    Kavaldzhiev, Mincho

    2017-01-01

    to the development of micro-needle platforms that offer customized fabrication and new capabilities for enhanced cell analyses. The highest degree of geometrical flexibility is achieved with 3D printed micro-needles, which enable optimizing the topographical stress

  6. Elevated Fixed Platform Test Facility

    Federal Laboratory Consortium — The Elevated Fixed Platform (EFP) is a helicopter recovery test facility located at Lakehurst, NJ. It consists of a 60 by 85 foot steel and concrete deck built atop...

  7. Radiographic inspection on offshore platforms

    Soares, Sergio Damasceno; Sperandio, Augusto Gasparoni

    1994-01-01

    One of the great challenges for non-destructive inspection is on offshore platforms, where safety is a critical issue. Inspection by gammagraphy is practically forbidden on the platform deck due to problems to personnel safety and radiological protection. Ir-192 sources are used and the risk of an accident with loss of radioisotope must be considered. It is unfeasible to use gammagraphy, because in case of an accident the rapid evacuation from the platform would be impossible. This problem does not occur when X-ray equipment is used as the radiation source. The limited practicality and portability of the X-ray equipment have prevented its use as a replacement for the gammagraphy. This paper presents the preliminary tests to see the viable use of radiographic tests with constant potential on offshore platforms. (author). 2 refs., 1 fig., 2 tabs, 3 photos

  8. Bioma platform advancements during 2017

    FUMAGALLI DAVIDE; NIEMEYER STEFAN

    2017-01-01

    In this report we describe the advancements on the Bioma Framework developed during year 2017. Given that the Bioma platform is quite mature, its core was not recently changed. So that the majority of changes concerns the implementation of the models developed in the platform. Moreover, during 2017 we also set up an alternative version of the framework itself, based on a new developing framework called .NET Core, with the purpose of being able to create a version of Bioma runnable on Linux. ...

  9. The COMET Sleep Research Platform.

    Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A

    2014-01-01

    The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.

  10. Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS2: An Effective Platform for in Situ pH Sensing and Photothermal Heating.

    Park, Chan Ho; Lee, Sangmin; Pornnoppadol, Ghasidit; Nam, Yoon Sung; Kim, Shin-Hyun; Kim, Bumjoon J

    2018-03-14

    We report the design of a novel microcapsule platform for in situ pH sensing and photothermal heating, which involves the encapsulation of pH-responsive polymer-coated molybdenum disulfide (MoS 2 ) nanosheets (NSs) in microcapsules with an aqueous core and a semipermeable polymeric shell. The MoS 2 NSs were functionalized with pH-responsive polymers having fluorescent groups at the distal end to provide pH-sensitive Förster resonance energy transfer (FRET) effect. The pH-responsive polymers were carefully designed to produce a dramatic change in the polymer conformation, which translated to a change in the FRET efficiency near pH 7.0 in response to subtle pH changes, enabling the detection of cancer cells. The pH-sensitive MoS 2 NSs were microfluidically encapsulated within semipermeable membranes to yield microcapsules with a uniform size and composition. The microcapsules retained the MoS 2 NSs without leakage while allowing the diffusion of small ions and water through the membrane. At the same time, the membranes excluded adhesive proteins and lipids in the surrounding media, protecting the encapsulated MoS 2 NSs from deactivation and enabling in situ pH monitoring. Moreover, the encapsulated MoS 2 NSs showed high-performance photothermal heating, rendering the dual-functional microcapsules highly suitable for cancer diagnosis and treatment.

  11. Development of the vibration analysis technique of fuel rod and research on the methodology of fuel fretting wear analysis

    Kang, Heung Seok; Kim, Kyung Kyu; Yoon, Hyung Hoo; Song, Ki Nam

    1998-12-01

    The FEM program has been developed to predict the natural frequencies, the FEM program has been developed to predict the natural frequencies, and mode shapes of fuel rod subjected to axial force and continuously supported by a rotational and vent spring system, and to calculate the minimum reaction forces of the spacer grid spring when the maximum vibration amplitude of fuel rod is known. This program has been verified by commercial ANSYS program and the vibration test of dummy rods in air. The test equipment were set to get the fifth modes of test rods. Partial slip problem has been studied for the analysis of fuel fretting problem. Firstly, the assumption of semi-infiniteness of the contact bodies were validated by finite element (FE) analysis. From FE results, a classical bodies were validated by finite element (FE) analysis. From FE results, aclassical theory of elasticity was utilized with regarding the problem as a plane problem. Secondly, the Mindlin-Cattaneo problem was re-evaluated, which gave the fundamental idea for developing the numerical tool for the shear traction on the contact. Shear force of sequentially-changing directions was considered and the corresponding shear traction was evaluated by extending the numerical tool for the Mindlin-Cattaneo problem.

  12. Development of the vibration analysis technique of fuel rod and research on the methodology of fuel fretting wear analysis

    Kang, Heung Seok; Kim, Kyung Kyu; Yoon, Hyung Hoo; Song, Ki Nam

    1998-12-01

    The FEM program has been developed to predict the natural frequencies, the FEM program has been developed to predict the natural frequencies, and mode shapes of fuel rod subjected to axial force and continuously supported by a rotational and vent spring system, and to calculate the minimum reaction forces of the spacer grid spring when the maximum vibration amplitude of fuel rod is known. This program has been verified by commercial ANSYS program and the vibration test of dummy rods in air. The test equipment were set to get the fifth modes of test rods. Partial slip problem has been studied for the analysis of fuel fretting problem. Firstly, the assumption of semi-infiniteness of the contact bodies were validated by finite element (FE) analysis. From FE results, a classical bodies were validated by finite element (FE) analysis. From FE results, a classical theory of elasticity was utilized with regarding the problem as a plane problem. Secondly, the Mindlin-Cattaneo problem was re-evaluated, which gave the fundamental idea for developing the numerical tool for the shear traction on the contact. Shear force of sequentially-changing directions was considered and the corresponding shear traction was evaluated by extending the numerical tool for the Mindlin-Cattaneo problem

  13. A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts

    Max Nobis

    2017-10-01

    Full Text Available The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time.

  14. Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET

    Hardin, John W.; Warnasooriya, Chandani; Kondo, Yasushi; Nagai, Kiyoshi; Rueda, David

    2015-01-01

    In large ribonucleoprotein machines, such as ribosomes and spliceosomes, RNA functions as an assembly scaffold as well as a critical catalytic component. Protein binding to the RNA scaffold can induce structural changes, which in turn modulate subsequent binding of other components. The spliceosomal U4/U6 di-snRNP contains extensively base paired U4 and U6 snRNAs, Snu13, Prp31, Prp3 and Prp4, seven Sm and seven LSm proteins. We have studied successive binding of all protein components to the snRNA duplex during di-snRNP assembly by electrophoretic mobility shift assay and accompanying conformational changes in the U4/U6 RNA 3-way junction by single-molecule FRET. Stems I and II of the duplex were found to co-axially stack in free RNA and function as a rigid scaffold during the entire assembly, but the U4 snRNA 5′ stem-loop adopts alternative orientations each stabilized by Prp31 and Prp3/4 binding accounting for altered Prp3/4 binding affinities in presence of Prp31. PMID:26503251

  15. Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue.

    Ruminot, Iván; Schmälzle, Jana; Leyton, Belén; Barros, L Felipe; Deitmer, Joachim W

    2017-01-01

    The potassium ion, K + , a neuronal signal that is released during excitatory synaptic activity, produces acute activation of glucose consumption in cultured astrocytes, a phenomenon mediated by the sodium bicarbonate cotransporter NBCe1 ( SLC4A4). We have explored here the relevance of this mechanism in brain tissue by imaging the effect of neuronal activity on pH, glucose, pyruvate and lactate dynamics in hippocampal astrocytes using BCECF and FRET nanosensors. Electrical stimulation of Schaffer collaterals produced fast activation of glucose consumption in astrocytes with a parallel increase in intracellular pyruvate and biphasic changes in lactate . These responses were blocked by TTX and were absent in tissue slices prepared from NBCe1-KO mice. Direct depolarization of astrocytes with elevated extracellular K + or Ba 2+ mimicked the metabolic effects of electrical stimulation. We conclude that the glycolytic pathway of astrocytes in situ is acutely sensitive to neuronal activity, and that extracellular K + and the NBCe1 cotransporter are involved in metabolic crosstalk between neurons and astrocytes. Glycolytic activation of astrocytes in response to neuronal K + helps to provide an adequate supply of lactate, a metabolite that is released by astrocytes and which acts as neuronal fuel and an intercellular signal.

  16. Characterisation of the surface topography, tomography and chemistry of fretting corrosion product found on retrieved polished femoral stems.

    Bryant, M; Ward, M; Farrar, R; Freeman, R; Brummitt, K; Nolan, J; Neville, A

    2014-04-01

    This study presents the characterisation of the surface topography, tomography and chemistry of fretting corrosion product found on retrieved polished femoral stems. Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FI-IR) were utilised in order to assess the surface morphology of retrieved Metal-on-Metal Total Hip Replacements and surface chemistry of the films found on the surface. Gross slip, plastic deformation and directionality of the surface were extensively seen on the proximal surfaces of the retrievals. A more corrosive phenomenon was observed in the distal regions of the stem, demonstrating a seemingly intergranular attack. Tribochemical reactions were seen to occur within the stem-cement interfaces with tribofilms being observed on the femoral stem and counterpart PMMA bone cement. XPS, TEM-EDX and FT-IR analyses demonstrated that the films present in the stem surfaces were a complex mixture of chromium oxide and amorphous organic material. A comparison between current experimental and clinical literature has been conducted and findings from this study demonstrate that the formation and chemistry of films are drastically influenced by the type of wear or degradation mechanism. Films formed in the stem-cement interface are thought to further influence the biological environment outside the stem-cement interface due to the formation of Cr and O rich films within the interface whilst Co is free to migrate away. © 2013 Elsevier Ltd. All rights reserved.

  17. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET.

    Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-01-18

    Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nonadhesive, silica nanoparticles-based brush-coated contact lens cases--compromising between ease of cleaning and microbial transmission to contact lenses.

    Qu, Wenwen; Hooymans, Johanna M M; Qiu, Jun; de-Bont, Nik; Gelling, Onko-Jan; van der Mei, Henny C; Busscher, Henk J

    2013-05-01

    Surface properties of lens cases are determinant for their cleanability and for microbial transmission from lens cases to contact lenses (CLs). PEG-polymer-brush-coatings are known to decrease microbial adhesion more than other surface-coatings. Here, we applied a robust, silica nanoparticles-based brush-coating to polypropylene cases to evaluate their ease of cleaning and probability of bacterial transmission to CLs. Adhesion forces of nine bacterial strains (Pseudomonas, Staphylococci, and Serratia) to rigid CLs, polypropylene, and silica nanoparticles-based brush-coated polypropylene were measured using atomic-force-microscopy and subjected to Weibull analyses to yield bacterial transmission probabilities. Biofilms of each strain were grown in coated and uncoated cases and rinsed with a NaCl or antimicrobial lens care solution. Residual, viable organisms were quantified. Bacterial adhesion forces of all strains were significantly, up to tenfold smaller on brush-coated than on uncoated polypropylene. This yielded, higher transmission probabilities to a CL, but mild-rinsing yielded 10-100 fold higher removal of bacteria from brush-coated than from polypropylene cases. Moreover, due to weak adhesion forces, bacteria on brush-coated cases were two-to-three fold more susceptible to an antimicrobial lens care solution than on polypropylene cases. Therewith, the design of lens case surfaces is a compromise between ease of cleaning and transmission probability to CLs. Copyright © 2013 Wiley Periodicals, Inc.

  19. Rationalization of a nanoparticle-based nicotine nanovaccine as an effective next-generation nicotine vaccine: A focus on hapten localization.

    Zhao, Zongmin; Hu, Yun; Harmon, Theresa; Pentel, Paul; Ehrich, Marion; Zhang, Chenming

    2017-09-01

    A lipid-polymeric hybrid nanoparticle-based next-generation nicotine nanovaccine was rationalized in this study to combat nicotine addiction. A series of nanovaccines, which had nicotine-haptens localized on carrier protein (LPKN), nanoparticle surface (LPNK), or both (LPNKN), were designed to study the impact of hapten localization on their immunological efficacy. All three nanovaccines were efficiently taken up and processed by dendritic cells. LPNKN induced a significantly higher immunogenicity against nicotine and a significantly lower anti-carrier protein antibody level compared to LPKN and LPNK. Meanwhile, it was found that the anti-nicotine antibodies elicited by LPKN and LPNKN bind nicotine stronger than those elicited by LPKN, and LPNK and LPNKN resulted in a more balanced Th1-Th2 immunity than LPKN. Moreover, LPNKN exhibited the best ability to block nicotine from entering the brain of mice. Collectively, the results demonstrated that the immunological efficacy of the hybrid nanoparticle-based nicotine vaccine could be enhanced by modulating hapten localization, providing a promising strategy to combatting nicotine addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Potential of nanoparticles for allergen-specific immunotherapy - use of silica nanoparticles as vaccination platform.

    Scheiblhofer, Sandra; Machado, Yoan; Feinle, Andrea; Thalhamer, Josef; Hüsing, Nicola; Weiss, Richard

    2016-12-01

    Allergen-specific immunotherapy is the only curative approach for the treatment of allergies. There is an urgent need for improved therapies, which increase both, efficacy and patient compliance. Novel routes of immunization and the use of more advanced vaccine platforms have gained heightened interest in this field. Areas covered: The current status of allergen-specific immunotherapy is summarized and novel routes of immunization and their challenges in the clinics are critically discussed. The use of nanoparticles as novel delivery system for allergy vaccines is comprehensively reviewed. Specifically, the advantages of silica nanoparticles as vaccine carriers and adjuvants are summarized. Expert opinion: Future allergen-specific immunotherapy will combine engineered hypoallergenic vaccines with novel routes of administration, such as the skin. Due to their biodegradability, and the easiness to introduce surface modifications, silica nanoparticles are promising candidates for tailor-made vaccines. By covalently linking allergens and polysaccharides to silica nanoparticles, a versatile vaccination platform can be designed to specifically target antigen-presenting cells, render the formulation hypoallergenic, and introduce immunomodulatory functions. Combining potent skin vaccination methods, such as fractional laser ablation, with nanoparticle-based vaccines addresses all the requirements for safe and efficient therapy of allergic diseases.

  1. Stratifying the Develoment of Product Platforms

    Sköld, Martin; Karlsson, Christer

    2013-01-01

    companies develop platforms for different aims, purposes, and product scopes. Following on from this, the requirements for platform development resources, the ways of organizing platform development, and the implications for management styles have not been explored and are presumably varying. To start...... influencing the project length, requirements for platform development resources, principles for organizing, and implications for management styles....

  2. The Educational Platform: Constructing Conceptual Frameworks.

    Peca, Kathy; Isham, Mark

    2001-01-01

    The education faculty at Eastern New Mexico University used educational platforms as a means of developing the unit's conceptual framework. Faculty members developed personal platforms, then synthesized them into one curricular area platform. The resultant unit educational platform became the basis for the unit's conceptual framework, which…

  3. New offshore platform in the Mexican Gulf

    Beisel, T.

    1982-04-01

    After a construction period of only 10 months, the second steel Offshore platform was recently completed in the Mexican Gulf. The pattern for this structure was the Cognac platform. The erection of the new platform, called the 'Cerveza' platform, is described in the article.

  4. The Dynamics of Digital Platform Innovation

    Eaton, Ben

    2016-01-01

    Curated platforms provide an architectural basis for third parties to develop platform complements and for platform owners to control their implementation as a form of open innovation. The refusal to implement complements as innovations can cause tension between platform owners and developers. Th...

  5. Disentangling Competition Among Platform Driven Strategic Groups

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric

    2015-01-01

    In platform-driven markets, competitive advantage is derived from superior platform design and configurations. For this reason, platform owners strive to create unique and inimitable platform configurals to maintain and extend their competitiveness within network economies. To disentangle firm...... competition within platform-driven markets, we opted for the UK mobile payment market as our empirical setting. By embracing the theoretical lens of strategic groups and digital platforms, this study supplements prior research by deriving a taxonomy of platform-driven strategic groups that is grounded...

  6. Microneedle Platforms for Cell Analysis

    Kavaldzhiev, Mincho

    2017-11-01

    Micro-needle platforms are the core components of many recent drug delivery and gene-editing techniques, which allow for intracellular access, controlled cell membrane stress or mechanical trapping of the nucleus. This dissertation work is devoted to the development of micro-needle platforms that offer customized fabrication and new capabilities for enhanced cell analyses. The highest degree of geometrical flexibility is achieved with 3D printed micro-needles, which enable optimizing the topographical stress environment for cells and cell populations of any size. A fabrication process for 3D-printed micro-needles has been developed as well as a metal coating technique based on standard sputter deposition. This extends the functionalities of the platforms by electrical as well as magnetic features. The micro-needles have been tested on human colon cancer cells (HCT116), showing a high degree of biocompatibility of the platform. Moreover, the capabilities of the 3D-printed micro-needles have been explored for drug delivery via the well-established electroporation technique, by coating the micro-needles with gold. Antibodies and fluorescent dyes have been delivered to HCT116 cells and human embryonic kidney cells with a very high transfection rate up to 90%. In addition, the 3D-printed electroporation platform enables delivery of molecules to suspended cells or adherent cells, with or without electroporation buffer solution, and at ultra-low voltages of 2V. In order to provide a micro-needle platform that exploits existing methods for mass fabrication a custom designed template-based process has been developed. It has been used for the production of gold, iron, nickel and poly-pyrrole micro-needles on silicon and glass substrates. A novel delivery method is introduced that activates the micro-needles by electromagnetic induction, which enables to wirelessly gain intracellular access. The method has been successfully tested on HCT116 cells in culture, where a time

  7. Moodle vs. Social Media Platforms

    Gulieva, Valeria

    Given the competition coming from various social media platforms, it is explored in this paper how students could be encouraged to use Moodle more proactively during their studies. Moodle is a course management system for online learning. It is designed to be a flexible template-based system, which......, known and widely used social platforms. It might be also due to the fact that students do not see the benefits in investing time and efforts in learning the new system. Another reason might be the mandatory nature of Moodle, i.e., it is imposed on students, rather than a free choice – and this might...

  8. Towards a Framework of Digital Platform Competition

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    2016-01-01

    between monopolistic (i.e., Pingit) and federated (i.e., Paym) mobile payment platforms to illustrate its applicability and yield principles on the nature and impact of competition among platform-driven ubiquitous systems. Preliminary findings indicate that monopolistic mobile digital platforms attempt...... to create unique configurals to obtain monopolistic power by tightly coupling platform layers, which are difficult to replicate. Conversely, federated digital platforms compete by dispersing the service layer to harness the collective resources from individual firms. Furthermore, the interaction...

  9. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes

    Tran, Lam Dai; Nguyen, Binh Hai; Van Hieu, Nguyen; Tran, Hoang Vinh; Nguyen, Huy Le; Nguyen, Phuc Xuan

    2011-01-01

    In this study, a novel CS/Fe 3 O 4 nanobiocomposite-based platform for electrochemical detection of HIV-1 was developed. The most attractive feature of this system is a suitable microenvironment (Fe 3 O 4 nanoparticles) which could contribute to electron transfer and thus sensitivity enhancement when using methylene blue (MB) as an external mediator and Square Wave Voltammetry (SWV), Electrochemical Impedance Spectroscopy (EIS) techniques. The proposed screen printed electrode (SPE) had a low detection limit (as low as 50 pM), acceptable stability and good reproducibility, which would be valuable for clinical diagnosis. In addition, this sensing interface may be feasibly adapted for multiplexed detection of other species of bacterial pathogens.

  10. FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca(2+)/PKA crosstalk.

    Schott, Micah B; Gonowolo, Faith; Maliske, Benjamin; Grove, Bryon

    2016-04-01

    Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca(2+)]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium "switch" that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca(2+) and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca(2+)/PKA crosstalk was not observed in cells expressing a gravin mutant that resisted calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca(2+) and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may

  11. FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca2+/PKA crosstalk

    Schott, Micah; Gonowolo, Faith; Maliske, Ben; Grove, Bryon

    2016-01-01

    Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca2+]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium “switch” that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca2+ and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca2+/PKA crosstalk was not observed in cells expressing a gravin mutant that resists calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca2+ and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may

  12. Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET with Fluorescent Materials

    Hongyan Xia

    2017-12-01

    Full Text Available Studies on the following were reviewed: (1 the structure of spiropyrans and spirooxazines (two kinds of spiro compounds under external stimuli and (2 the construction and applications of composite systems based on fluorescence resonance energy transfer (FRET with fluorescent materials. When treated with different stimuli (light, acids and bases, solvents, metal ions, temperature, redox potential, and so on, spiropyrans/spirooxazines undergo transformations between the ring-closed form (SP, the ring-opened merocyanine (MC form, and the protonated ring-opened form (MCH. This is due to the breakage of the spiro C–O bond and the protonation of MC, along with a color change. Various novel, multifunctional materials based on photochromic spiropyrans and spirooxazines have been successfully developed because of the vastly differently physiochemical properties posssed by the SP, MC and MCH forms. Among the three different structural forms, the MC form has been studied most extensively. The MC form not only gives complexes with various inorganic particles, biological molecules, and organic chemicals but also acts as the energy acceptor (of energy from fluorescent molecules during energy transfer processes that take place under proper conditions. Furthermore, spiropyran and spirooxazine compounds exhibit reversible physicochemical property changes under proper stimuli; this provides more advantages compared with other photochromic compounds. Additionally, the molecular structures of spiropyrans and spirooxazines can be easily modified and extended, so better compounds can be obtained to expand the scope of already known applications. Described in detail are: (1 the structural properties of spiropyrans and spirooxazines and related photochromic mechanisms; (2 composite systems based on spiropyrans and spirooxazines, and (3 fluorescent materials which have potential applications in sensing, probing, and a variety of optical elements.

  13. Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy

    Li, G., E-mail: ligang_scut@outlook.com; Qu, S.G., E-mail: qusg@scut.edu.cn; Pan, Y.X.; Li, X.Q.

    2016-12-15

    Highlights: • Effects of MUSR frequency and load on surface properties of HIP Ti-6Al-4V investigated. • The grains in surface-modified layer were refined and appeared twins and many dense dislocations. • The hardened layer depth and surface residual stress of MUSR- treated samples were significantly improved. • MUSR- treated samples showed the good fretting friction and wear resistance. • The best microstructure and properties of surface-modified layer obtained by sample treated by 30 kHz and 900 N. - Abstract: The main purpose of this paper was to investigate the effects of the different frequencies and loads of multi-pass ultrasonic surface rolling (MUSR) on surface layer mechanical properties, microstructure and fretting friction and wear characteristics of HIP (hot isostatic pressing) Ti–6Al–4 V alloy. Some microscopic analysis methods (SEM, TEM and EDS) were used to characterize the modified surface layer of material after MUSR treatment. The results indicated that the material in sample surface layer experienced a certain extent plastic deformation, and accompanied by some dense dislocations and twins generation. Moreover surface microhardness and residual stress of samples treated by MUSR were also greatly improved compared with the untreated. The fretting friction and wear properties of samples treated by MUSR in different conditions are tested at 10 and 15 N in dry friction conditions. It could be found that friction coefficient and wear volume loss were significantly declined in the optimal result. The main wear mechanism of MUSR-treated samples included abrasive wear, adhesion and spalling.

  14. Verkenning locatiegegevens en sociale platforms

    van Loenen, B.; Kilic, Deniz; Van de Velde, Rob

    2017-01-01

    In deze rapportage hebben we ons verdiept in de wereld van de commerciële toepassingen van sensordata, waarin locatiegegevens van smartphones op grote schaal worden vastgelegd. Een beter inzicht in de wereld van de sociale en commerciële platforms zou ervoor moeten zorgen dat deze beter begrepen

  15. 2009 Analysis Platform Review Report

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Analysis platform review meeting, held on February 18, 2009, at the Marriott Residence Inn, National Harbor, Maryland.

  16. 2009 Feedstocks Platform Review Report

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  17. Platform pricing in matching markets

    Goos, M.; van Cayseele, P.; Willekens, B.

    2011-01-01

    This paper develops a simple model of monopoly platform pricing accounting for two pertinent features of matching markets. 1) The trading process is characterized by search and matching frictions implying limits to positive cross-side network effects and the presence of own-side congestion.

  18. Towards trustworthy health platform cloud

    Deng, M.; Nalin, M.; Petkovic, M.; Baroni, I.; Marco, A.; Jonker, W.; Petkovic, M.

    2012-01-01

    To address today’s major concerns of health service providers regarding security, resilience and data protection when moving on the cloud, we propose an approach to build a trustworthy healthcare platform cloud, based on a trustworthy cloud infrastructure. This paper first highlights the main

  19. 2009 Infrastructure Platform Review Report

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass program‘s Infrastructure platform review meeting, held on February 19, 2009, at the Marriott Residence Inn, National Harbor, Maryland.

  20. DNA tetrahedral scaffolds-based platform for the construction of electrochemiluminescence biosensor.

    Feng, Qiu-Mei; Zhou, Zhen; Li, Mei-Xing; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-04-15

    Proximal metallic nanoparticles (NPs) could quench the electrochemiluminescence (ECL) emission of semiconductor quantum dots (QDs) due to Förster energy transfer (FRET), but at a certain distance, the coupling of light-emission with surface plasmon resonance (SPR) result in enhanced ECL. Thus, the modification strategies and distances control between QDs and metallic NPs are critical for the ECL intensity of QDs. In this strategy, a SPR enhanced ECL sensor based on DNA tetrahedral scaffolds modified platform was reported for the detection of telomerase activity. Due to the rigid three-dimensional structure, DNA tetrahedral scaffolds grafting on the electrode surface could accurately modulate the distance between CdS QDs and luminol labelled gold nanoparticles (L-Au NPs), meanwhile provide an enhanced spatial dimension and accessibility for the assembly of multiple L-Au NPs. The ECL intensities of both CdS QDs (-1.25V vs. SCE) and luminol (+0.33V vs. SCE) gradually increased along with the formation of multiple L-Au NPs at the vertex of DNA tetrahedral scaffolds induced by telomerase, bringing in a dual-potential ECL analysis. The proposed method showed high sensitivity for the identification of telomerase and was successfully applied for the differentiation of cancer cells from normal cells. This work suggests that DNA tetrahedral scaffolds could serve as an excellent choice for the construction of SPR-ECL system. Copyright © 2016 Elsevier B.V. All rights reserved.