WorldWideScience

Sample records for nanoparticle-aided radiation therapy

  1. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    Directory of Open Access Journals (Sweden)

    Daniel R. Cooper

    2014-10-01

    Full Text Available Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79. However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  2. The synergistic effect of nanoparticles in photodynamic therapy and radiation therapy

    International Nuclear Information System (INIS)

    Chen Na; Tu Yu; Zhang Xuguang

    2010-01-01

    This paper describes a novel treatment: based on nanoparticles that combines radiotherapy and photodynamic therapy. With this approach, the application of traditional photodynamic therapies only to surface treatment can be solved, so that the therapeutic effect can be improved; the approach also could guarantee the effectiveness of treatment and reduce radiation doses, so it can effectively control the complications of radiotherapy, This new modality will open a new chapter for cancer therapy. (authors)

  3. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy

    Directory of Open Access Journals (Sweden)

    Paro AD

    2016-09-01

    Full Text Available Autumn D Paro,1 Mainul Hossain,2 Thomas J Webster,1,3,4 Ming Su1,4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2NanoScience Technology Center and School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA; 3Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou Medical University, Zhejiang, People’s Republic of China Abstract: Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy. Keywords: nanoparticle, dose enhancement, Monte Carlo simulation, analytical simulation, radiation therapy, tumor cell, X-ray 

  4. Low Z target switching to increase tumor endothelial cell dose enhancement during gold nanoparticle-aided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, Ross I., E-mail: rberbeco@partners.org; Detappe, Alexandre [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Tsiamas, Panogiotis [Department of Radiation Oncology, St. Jude Children’s Hospital, Memphis, Tennessee 38105 (United States); Parsons, David; Yewondwossen, Mammo; Robar, James [Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 1V7 (Canada)

    2016-01-15

    Purpose: Previous studies have introduced gold nanoparticles as vascular-disrupting agents during radiation therapy. Crucial to this concept is the low energy photon content of the therapy radiation beam. The authors introduce a new mode of delivery including a linear accelerator target that can toggle between low Z and high Z targets during beam delivery. In this study, the authors examine the potential increase in tumor blood vessel endothelial cell radiation dose enhancement with the low Z target. Methods: The authors use Monte Carlo methods to simulate delivery of three different clinical photon beams: (1) a 6 MV standard (Cu/W) beam, (2) a 6 MV flattening filter free (Cu/W), and (3) a 6 MV (carbon) beam. The photon energy spectra for each scenario are generated for depths in tissue-equivalent material: 2, 10, and 20 cm. The endothelial dose enhancement for each target and depth is calculated using a previously published analytic method. Results: It is found that the carbon target increases the proportion of low energy (<150 keV) photons at 10 cm depth to 28% from 8% for the 6 MV standard (Cu/W) beam. This nearly quadrupling of the low energy photon content incident on a gold nanoparticle results in 7.7 times the endothelial dose enhancement as a 6 MV standard (Cu/W) beam at this depth. Increased surface dose from the low Z target can be mitigated by well-spaced beam arrangements. Conclusions: By using the fast-switching target, one can modulate the photon beam during delivery, producing a customized photon energy spectrum for each specific situation.

  5. WE-FG-BRA-07: Theranostic Nanoparticles Improve Clinical MR-Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Detappe, A [Dana-Farber Cancer Institute, Boston, MA (United States); Institut Lumiere-Matiere, Lyon, FR (France); Kunjachan, S; Berbeco, R [Dana-Farber Cancer Institute, Boston, MA (United States); Sancey, L; Motto-Ros, V; Tillement, O [Institut Lumiere-Matiere, Lyon, FR (France)

    2016-06-15

    Purpose: MR-guided radiation therapy is a current and emerging clinical reality. We have designed and tested a silica-based gadolinium chelates nanoparticle (AGuIX) for integration with MR-guided radiation therapy. The AGuIX nanoparticles used in this study are a dual-modality probe with radiosensitization properties and better MRI contrast than current FDA-approved gadolinium chelates. In advance of an approved Phase I clinical trial, we report on the efficacy and safety in multiple animal models and clinically relevant radiation conditions. By modeling our study on current clinic workflows, we show compatibility with modern patient care, thus heightening the translational significance of this research. Methods: The dual imaging and therapy functionality of AGuIX was investigated in mice with clinical radiation beams while safety was evaluated in mice, and nonhuman primates after systemic injection of 0.25 mg/g of nanoparticles. MRI/ICP-MS were used to measure tumor uptake and biodistribution. Due to their small size (2–3 nm), AGuIX have good renal clearance (t1/2=19min). We performed in vitro cell uptake quantification and radiosensitization studies (clonogenic assays and DNA damage quantification). In vivo radiation therapy studies were performed with both 6MV and 6MV-FFF clinical radiation beams. Histology was performed to measure the increase in DNA damage in the tumor and to evaluate the toxicity in healthy tissues. Results: In vitro and in vivo results demonstrate statistically significant increase (P < 0.01) in DNA damage, tumor growth supression and survival (+100 days) compared to radiation alone. Negligible toxicity was observed in all of the animal models. The combination of 6MV-FFF/AGuIX demonstrated a substantial dose enhancement compared to 6MV/AGuIX (DEF = 1.36 vs. 1.22) due to the higher proportion of low energy photons. Conclusion: With demonstrated efficacy and negligible toxicity in mice and non-human primates, AGuIX is a biocompatible

  6. WE-FG-BRA-07: Theranostic Nanoparticles Improve Clinical MR-Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Detappe, A; Kunjachan, S; Berbeco, R; Sancey, L; Motto-Ros, V; Tillement, O

    2016-01-01

    Purpose: MR-guided radiation therapy is a current and emerging clinical reality. We have designed and tested a silica-based gadolinium chelates nanoparticle (AGuIX) for integration with MR-guided radiation therapy. The AGuIX nanoparticles used in this study are a dual-modality probe with radiosensitization properties and better MRI contrast than current FDA-approved gadolinium chelates. In advance of an approved Phase I clinical trial, we report on the efficacy and safety in multiple animal models and clinically relevant radiation conditions. By modeling our study on current clinic workflows, we show compatibility with modern patient care, thus heightening the translational significance of this research. Methods: The dual imaging and therapy functionality of AGuIX was investigated in mice with clinical radiation beams while safety was evaluated in mice, and nonhuman primates after systemic injection of 0.25 mg/g of nanoparticles. MRI/ICP-MS were used to measure tumor uptake and biodistribution. Due to their small size (2–3 nm), AGuIX have good renal clearance (t1/2=19min). We performed in vitro cell uptake quantification and radiosensitization studies (clonogenic assays and DNA damage quantification). In vivo radiation therapy studies were performed with both 6MV and 6MV-FFF clinical radiation beams. Histology was performed to measure the increase in DNA damage in the tumor and to evaluate the toxicity in healthy tissues. Results: In vitro and in vivo results demonstrate statistically significant increase (P < 0.01) in DNA damage, tumor growth supression and survival (+100 days) compared to radiation alone. Negligible toxicity was observed in all of the animal models. The combination of 6MV-FFF/AGuIX demonstrated a substantial dose enhancement compared to 6MV/AGuIX (DEF = 1.36 vs. 1.22) due to the higher proportion of low energy photons. Conclusion: With demonstrated efficacy and negligible toxicity in mice and non-human primates, AGuIX is a biocompatible

  7. Gold Nanoparticle Mediated Phototherapy for Cancer

    International Nuclear Information System (INIS)

    Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z.

    2016-01-01

    Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations

  8. MO-FG-BRA-07: Theranostic Gadolinium-Based AGuIX Nanoparticles for MRI-Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Detappe, A; Rottmann, J; Kunjachan, S; Berbeco, R; Tillement, O

    2015-01-01

    Purpose: AGuIX are gadolinium-based nanoparticles, initially developed for MRI, that have a potential role in radiation therapy as a radiosensitizer. Our goal is to demonstrate that these nanoparticles can both be used as an MRI contrast agent, as well as to obtain local dose enhancement in a pancreatic tumor when delivered in combination with an external beam irradiation. Methods: We performed in vitro cell uptake and radiosensitization studies of a pancreatic cancer cell line in a low energy (220kVp) beam, a standard clinical 6MV beam (STD) and a flattening filter free clinical 6MV beam (FFF). After injection of 40mM of nanoparticles, a biodistribution study was performed in vivo on mice with subcutaneous xenograft pancreatic tumors. In vivo radiation therapy studies were performed at the time point of maximum tumor uptake. Results: The concentration of AGuIX nanoparticles in Panc-1 pancreatic cancer cells, determined in vitro by MRI and ICPMS, peaks after 30 minutes with 0.3% of the initial concentration (5mg/g). Clonogenic assays show a significant effect (p<0.05) when the AGuIX are coupled with MV photon irradiation (DEF20%=1.31). Similar AGuIX tumor uptake is found in vivo by both MRI and ICPMS 30 minutes after intravenous injection. For long term survival studies, the choice of the radiation dose is determined with 5 control groups (3mice/group) irradiated with 0, 5, 10, 15, and 20Gy. Afterwards, 4 groups (8mice/group) are used to evaluate the effect of the nanoparticles. A Logrank test is performed as a statistical test to evaluate the effect of the nanoparticles. Conclusion: The combination of the MRI contrast and radiosensitization properties of gadolinium nanoparticles reveals a strong potential for usage with MRI-guided radiation therapy

  9. Radiation therapy of Kaposi's sarcoma in AIDS: Memorial Sloan-Kettering experience

    International Nuclear Information System (INIS)

    Nisce, L.Z.; Safai, B.

    1985-01-01

    In 1980 the authors reported their experience in the management of Kaposi's sarcoma (KS) affecting elderly men of Jewish or Italian descent. Since the outbreak of KS in 1981 among young male homosexuals with acquired immune deficiency syndrome (AIDS) the KS in the elderly has been subsequently called classical Kaposi's sarcome (CKS) in order to differentiate it from the KS in AIDS. The radiosensitivity of CKS is well documented. This report describes the authors' early experience in the radiation therapy of KS in AIDS compared with CKS and also discusses the problems related to the irradiation of the immunocompromised patient

  10. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Francisco J.; Manohar, Nivedh [Nuclear/Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Krishnan, Sunil [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cho, Sang Hyun, E-mail: scho@mdanderson.org [Department of Radiation Physics and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-10-15

    Purpose: To find an optimum design of a new high-dose rate ytterbium (Yb)-169 brachytherapy source that would maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT), while meeting practical constraints for manufacturing a clinically relevant brachytherapy source. Methods: Four different Yb-169 source designs were considered in this investigation. The first three source models had a single encapsulation made of one of the following materials: aluminum, titanium, and stainless steel. The last source model adopted a dual encapsulation design with an inner aluminum capsule surrounding the Yb-core and an outer titanium capsule. Monte Carlo (MC) simulations using the Monte Carlo N-Particle code version 5 (MCNP5) were conducted initially to investigate the spectral changes caused by these four source designs and the associated variations in macroscopic dose enhancement across the tumor loaded with gold nanoparticles (GNPs) at 0.7% by weight. Subsequent MC simulations were performed using the EGSnrc and NOREC codes to determine the secondary electron spectra and microscopic dose enhancement as a result of irradiating the GNP-loaded tumor with the MCNP-calculated source spectra. Results: Effects of the source filter design were apparent in the current MC results. The intensity-weighted average energy of the Yb-169 source varied from 108.9 to 122.9 keV, as the source encapsulation material changed from aluminum to stainless steel. Accordingly, the macroscopic dose enhancement calculated at 1 cm away from the source changed from 51.0% to 45.3%. The sources encapsulated by titanium and aluminum/titanium combination showed similar levels of dose enhancement, 49.3% at 1 cm, and average energies of 113.0 and 112.3 keV, respectively. While the secondary electron spectra due to the investigated source designs appeared to look similar in general, some differences were noted especially in the low energy region (<50 keV) of the spectra suggesting the

  11. Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy

    Science.gov (United States)

    Yang, C.; Bromma, Kyle; Chithrani, B. D.

    2018-02-01

    Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.

  12. Gel Dosimetry Analysis of Gold Nanoparticle Application in Kilovoltage Radiation Therapy

    International Nuclear Information System (INIS)

    Marques, T; Schwarcke, M; Garrido, C; Zucolot, V; Baffa, O; Nicolucci, P

    2010-01-01

    In this work gold nanoparticles (AuNP) were embedded in MAGIC-f gel and irradiated in a 250 kV x-ray clinical beam. The signal of non-irradiated gel samples containing AuNPs showed maximum difference of 0.5% related to gel without nanoparticles. Different AuNPs concentrations were studied: 0.10 mM, 0.05 mM and 0.02 mM, presenting dose enhancements of 106%, 90% and 77% respectively. Monte Carlo spectrometry was performed to quantify theoretical changes in photon energy spectrums due to AuNPs presence. Concordance between simulated dose enhancements and gel dosimetry measurements was better than 97% to all concentrations studied. This study evidences that polymer gel dosimetry as a suitable tool to perform dosimetric investigations of nanoparticle applications in Radiation Therapy.

  13. Nanoparticles as multimodal photon transducers of ionizing radiation

    Science.gov (United States)

    Pratt, Edwin C.; Shaffer, Travis M.; Zhang, Qize; Drain, Charles Michael; Grimm, Jan

    2018-05-01

    In biomedical imaging, nanoparticles combined with radionuclides that generate Cerenkov luminescence are used in diagnostic imaging, photon-induced therapies and as activatable probes. In these applications, the nanoparticle is often viewed as a carrier inert to ionizing radiation from the radionuclide. However, certain phenomena such as enhanced nanoparticle luminescence and generation of reactive oxygen species cannot be completely explained by Cerenkov luminescence interactions with nanoparticles. Herein, we report methods to examine the mechanisms of nanoparticle excitation by radionuclides, including interactions with Cerenkov luminescence, β particles and γ radiation. We demonstrate that β-scintillation contributes appreciably to excitation and reactivity in certain nanoparticle systems, and that excitation by radionuclides of nanoparticles composed of large atomic number atoms generates X-rays, enabling multiplexed imaging through single photon emission computed tomography. These findings demonstrate practical optical imaging and therapy using radionuclides with emission energies below the Cerenkov threshold, thereby expanding the list of applicable radionuclides.

  14. Effect of Photon Beam Energy, Gold Nanoparticle Size and Concentration on the Dose Enhancement in Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Nahideh Gharehaghaji

    2013-02-01

    Full Text Available Introduction: Gold nanoparticles have been used as radiation dose enhancing materials in recent investigations. In the current study, dose enhancement effect of gold nanoparticles on tumor cells was evaluated using Monte Carlo (MC simulation. Methods: We used MCNPX code for MC modeling in the current study. A water phantom and a tumor region with a size of 1×1×1 cm3 loaded with gold nanoparticles were simulated. The macroscopic dose enhancement factor was calculated for gold nanoparticles with sizes of 30, 50, and 100 nm. Also, we simulated different photon beams including mono-energetic beams (50-120 keV, a Cobalt-60 beam, 6 & 18 MV photon beams of a conventional linear accelerator. Results: We found a dose enhancement factor (DEF of from 1.4 to 3.7 for monoenergetic kilovoltage beams, while the DEFs for megavoltage beams were negligible and less than 3% for all GNP sizes and concentrations. The optimum energy for higher DEF was found to be the 90 keV monoenergetic beam. The effect of GNP size was not considerable, but the GNP concentration had a substantial impact on achieved DEF in GNP-based radiation therapy. Conclusion: The results were in close agreement with some previous studies considering the effect of photon energy and GNP concentration on observed DEF. Application of GNP-based radiation therapy using kilovoltage beams is recommended.

  15. Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Spiridon V. Spirou

    2018-05-01

    Full Text Available Magnetic nanoparticle (MNP-mediated hyperthermia (MH coupled with radiation therapy (RT is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (“Radiomag”. The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a in vitro evaluation of MNPs; (b in vitro evaluation of MNP-cell interactions; (c in vivo evaluation of the MNPs; (d MH combined with RT; and (e pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.

  16. Melanin-Covered Nanoparticles for Protection of Bone Marrow During Radiation Therapy of Cancer

    International Nuclear Information System (INIS)

    Schweitzer, Andrew D.; Revskaya, Ekaterina; Chu, Peter; Pazo, Valeria; Friedman, Matthew; Nosanchuk, Joshua D.; Cahill, Sean; Frases, Susana; Casadevall, Arturo; Dadachova, Ekaterina

    2010-01-01

    Purpose: Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's 'self-sieving' ability, protecting it against ionizing radiation. Methods and Materials: The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plain silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of 188 Re-labeled 6D2 melanin-binding antibody. Results: Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. Conclusions: MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation based

  17. TH-E-BRD-01: Innovation in (gold) Nanoparticle-Enhanced Therapy

    International Nuclear Information System (INIS)

    Krishnan, S; Chithrani, B; Berbeco, R

    2014-01-01

    Radiation therapy relies on the concept of delivering high dose to tumor volumes whilst simultaneously aiming to minimize irradiation of healthy tissue. Gold and other metallic nanoparticles (GNPs) have the potential to greatly enhance dose depositions in their close proximity. While it was originally thought that this effect would only be significant for kV photon beams, it has been shown that GNPs also enhance dose and increase cell killing and survival fraction for MV photons as well as protons. GNPs have been shown to be preferentially taken up in tumors, depending on the GNP properties either internalized in the tumor cells or clustering in the tumor vasculature. Therefore GNPs offer an intriguing additional option to target the tumor while sparing healthy tissue. While a growing amount of research shows GNP induced enhancement factors in the order of 1.5 and higher, GNPs have not yet entered into clinical routine. In this symposium we will have three presentations discussing the current status of GNP based research, the potential to include GNPs in radiation therapy and the limitations and problems to use GNPs in the clinic. Physical and biological underpinnings of radiosensitization with gold nano particles An evolving body of recent literature alludes to the potential to sensitize tumors to radiation therapy using metallic nanoparticles. In preclinical studies, the techniques that hold promise for eventual clinical deployment are nanoparticle-assisted radiation dose enhancement and hyperthermic radiosensitization. To understand the underlying nanoparticle-radiation interactions, computational techniques offer an explanation for and predict the biophysical consequences at a nano-/meso-scopic scale. Nonetheless, there are persisting gaps in knowledge relating to the molecular mechanism of action of these radiosensitization approaches — some of these issues will be addressed. Since the literature relating to the diverse disciplines involved in these efforts

  18. TH-E-BRD-01: Innovation in (gold) Nanoparticle-Enhanced Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S; Chithrani, B; Berbeco, R [Brigham and Women' s Hospital, Boston, MA (United States)

    2014-06-15

    Radiation therapy relies on the concept of delivering high dose to tumor volumes whilst simultaneously aiming to minimize irradiation of healthy tissue. Gold and other metallic nanoparticles (GNPs) have the potential to greatly enhance dose depositions in their close proximity. While it was originally thought that this effect would only be significant for kV photon beams, it has been shown that GNPs also enhance dose and increase cell killing and survival fraction for MV photons as well as protons. GNPs have been shown to be preferentially taken up in tumors, depending on the GNP properties either internalized in the tumor cells or clustering in the tumor vasculature. Therefore GNPs offer an intriguing additional option to target the tumor while sparing healthy tissue. While a growing amount of research shows GNP induced enhancement factors in the order of 1.5 and higher, GNPs have not yet entered into clinical routine. In this symposium we will have three presentations discussing the current status of GNP based research, the potential to include GNPs in radiation therapy and the limitations and problems to use GNPs in the clinic. Physical and biological underpinnings of radiosensitization with gold nano particles An evolving body of recent literature alludes to the potential to sensitize tumors to radiation therapy using metallic nanoparticles. In preclinical studies, the techniques that hold promise for eventual clinical deployment are nanoparticle-assisted radiation dose enhancement and hyperthermic radiosensitization. To understand the underlying nanoparticle-radiation interactions, computational techniques offer an explanation for and predict the biophysical consequences at a nano-/meso-scopic scale. Nonetheless, there are persisting gaps in knowledge relating to the molecular mechanism of action of these radiosensitization approaches — some of these issues will be addressed. Since the literature relating to the diverse disciplines involved in these efforts

  19. SU-C-303-01: Activation-Induced Cytidine Deaminase Confers Cancer Resistance to Radiation Therapy

    International Nuclear Information System (INIS)

    Yi, S; La Count, S; Liu, J; Bai, X; Lu, L

    2015-01-01

    Purpose: To study the role of activation-induced cytidine deaminase (AID) in malignant cell resistance to radiation therapy. Methods: We first developed several small devices that could be used to adopt radiation beams from clinical high dose rate brachy therapy (HDR) or linac-based megavoltage machines to perform pre-clinical cell and mouse experiments. Then we used these devices to deliver radiation to AID-positive and AID-silenced cancer cells or tumors formed by these cells in mice. Cells and mice bearing tumors received the same dose under the same experimental conditions. For cells, we observed the apoptosis and the cell survival rate over time. For mice bearing tumors, we measured and recorded the tumor sizes every other day for 4 weeks. Results: For cell experiments, we found that the AID-positive cells underwent much less apoptosis compared with AID-silenced cells upon radiation. And for mouse experiments, we found that AID-positive tumors grew significantly faster than the AID-silenced tumors despite of receiving the same doses of radiation. Conclusion: Our study suggests that AID may confer cancer resistance to radiation therapy, and AID may be a significant biomarker predicting cancer resistance to radiation therapy for certain cancer types

  20. MO-FG-BRC-01: MR-Guided Radiation Therapy with Gadolinium Nanoparticles: From Chalkboard to First Clinical Trials

    International Nuclear Information System (INIS)

    Sancey, L.

    2016-01-01

    Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and the implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.

  1. Local dose enhancement in radiation therapy: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Silva, Laura E. da; Nicolucci, Patricia

    2014-01-01

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  2. Source book of educational materials for radiation therapy. Final report

    International Nuclear Information System (INIS)

    Pijar, M.L.

    1979-08-01

    The Source Book is a listing of educational materials in radiation therapy technology. The first 17 sections correspond to the subjects identified in the ASRT Curriculum Guide for schools of radiation therapy. Each section is divided into publications and in some sections audiovisuals and training aids. Entries are listed without endorsement

  3. Radiation therapy of thoracic and abdominal tumors

    International Nuclear Information System (INIS)

    LaRue, S.M.; Gillette, S.M.; Poulson, J.M.

    1995-01-01

    Until recently, radiotherapy of thoracic and abdominal tumors in animals has been limited. However, the availability of computerized tomography and other imaging techniques to aid in determining the extent of tumor, an increase in knowledge of dose tolerance of regional organs, the availability of isocentrically mounted megavoltage machines, and the willingness of patients to pursue more aggressive treatment is making radiation therapy of tumors in these regions far more common. Tumor remission has been reported after radiation therapy of thymomas. Radiation therapy has been used to treat mediastinal lymphoma refractory to chemotherapy, and may be beneficial as part of the initial treatment regimen for this disease. Chemodectomas are responsive to radiation therapy in human patients, and favorable response has also been reported in dogs. Although primary lung tumors in dogs are rare, in some cases radiation therapy could be a useful primary or adjunctive therapy. Lung is the dose-limiting organ in the thorax. Bladder and urethral tumors in dogs have been treated using intraoperative and external-beam radiation therapy combined with chemotherapy. These tumors are difficult to control locally with surgery alone, although the optimal method of combining treatment modalities has not been established. Local control of malignant perianal tumors is also difficult to achieve with surgery alone, and radiation therapy should be used. Intraoperative radiation therapy combined with external-beam radiation therapy has been used for the management of metastatic carcinoma to the sublumbar lymph nodes. Tolerance of retroperitoneal tissues may be decreased by disease or surgical manipulation

  4. Nanoparticle-based photodynamic therapy on non-melanoma skin cancer

    Science.gov (United States)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2018-02-01

    There are several advantages of Photodynamic Therapy (PDT) for nonmelanoma skin cancer treatment compared to conventional treatment techniques such as surgery, radiotherapy or chemotherapy. Among these advantages its noninvasive nature, the use of non ionizing radiation and its high selectivity can be mentioned. Despite all these advantages, the therapeutic efficiency of the current clinical protocol is not complete in all the patients and depends on the type of pathology. An adequate dosimetry is needed in order to personalize the protocol. There are strategies that try to overcome the current PDT shortcomings, such as the improvement of the photosensitizer accumulation in the target tissue, optical radiation distribution optimization or photochemical reactions maximization. These strategies can be further complemented by the use of nanostructures with conventional PDT. Customized dosimetry for nanoparticle-based PDT requires models in order to adjust parameters of different nature to get an optimal tumor removal. In this work, a predictive model of nanoparticle-based PDT is proposed and analyzed. Dosimetry in nanoparticle-based PDT is going to be influenced by photosensitizer-nanoparticle distribution in the malignant tissue, its influence in the optical radiation distribution and the subsequent photochemical reactions. Nanoparticles are considered as photosensitizer carriers on several types of non-melanoma skin cancer. Shielding effects are taken into account. The results allow to compare the estimated treatment outcome with and without nanoparticles.

  5. Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models.

    Science.gov (United States)

    Koonce, Nathan A; Quick, Charles M; Hardee, Matthew E; Jamshidi-Parsian, Azemat; Dent, Judith A; Paciotti, Giulio F; Nedosekin, Dmitry; Dings, Ruud P M; Griffin, Robert J

    2015-11-01

    Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. In the 4T1 murine breast tumor model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose-notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Our results have demonstrated that TNF-labeled gold nanoparticles combined with single or fractionated high-dose radiation therapy is effective in reducing IFP and tumor growth and shows promise for clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Nanoparticle delivered vascular disrupting agents (VDAs): use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy.

    Science.gov (United States)

    Shenoi, Mithun M; Iltis, Isabelle; Choi, Jeunghwan; Koonce, Nathan A; Metzger, Gregory J; Griffin, Robert J; Bischof, John C

    2013-05-06

    Surgery, radiation and chemotherapy remain the mainstay of current cancer therapy. However, treatment failure persists due to the inability to achieve complete local control of the tumor and curtail metastatic spread. Vascular disrupting agents (VDAs) are a class of promising systemic agents that are known to synergistically enhance radiation, chemotherapy or thermal treatments of solid tumors. Unfortunately, there is still an unmet need for VDAs with more favorable safety profiles and fewer side effects. Recent work has demonstrated that conjugating VDAs to other molecules (polyethylene glycol, CNGRCG peptide) or nanoparticles (liposomes, gold) can reduce toxicity of one prominent VDA (tumor necrosis factor alpha, TNF-α). In this report, we show the potential of a gold conjugated TNF-α nanoparticle (NP-TNF) to improve multimodal cancer therapies with VDAs. In a dorsal skin fold and hindlimb murine xenograft model of prostate cancer, we found that NP-TNF disrupts endothelial barrier function and induces a significant increase in vascular permeability within the first 1-2 h followed by a dramatic 80% drop in perfusion 2-6 h after systemic administration. We also demonstrate that the tumor response to the nanoparticle can be verified using dynamic contrast-enhanced magnetic resonance imaging (MRI), a technique in clinical use. Additionally, multimodal treatment with thermal therapies at the perfusion nadir in the sub- and supraphysiological temperature regimes increases tumor volumetric destruction by over 60% and leads to significant tumor growth delays compared to thermal therapy alone. Lastly, NP-TNF was found to enhance thermal therapy in the absence of neutrophil recruitment, suggesting that immune/inflammatory regulation is not central to its power as part of a multimodal approach. Our data demonstrate the potential of nanoparticle-conjugated VDAs to significantly improve cancer therapy by preconditioning tumor vasculature to a secondary insult in a targeted

  7. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    Science.gov (United States)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  8. Music therapy CD creation for initial pediatric radiation therapy: a mixed methods analysis.

    Science.gov (United States)

    Barry, Philippa; O'Callaghan, Clare; Wheeler, Greg; Grocke, Denise

    2010-01-01

    A mixed methods research design was used to investigate the effects of a music therapy CD (MTCD) creation intervention on pediatric oncology patients' distress and coping during their first radiation therapy treatment. The music therapy method involved children creating a music CD using interactive computer-based music software, which was "remixed" by the music therapist-researcher to extend the musical material. Eleven pediatric radiation therapy outpatients aged 6 to 13 years were randomly assigned to either an experimental group, in which they could create a music CD prior to their initial treatment to listen to during radiation therapy, or to a standard care group. Quantitative and qualitative analyses generated multiple perceptions from the pediatric patients, parents, radiation therapy staff, and music therapist-researcher. Ratings of distress during initial radiation therapy treatment were low for all children. The comparison between the two groups found that 67% of the children in the standard care group used social withdrawal as a coping strategy, compared to 0% of the children in the music therapy group; this trend approached significance (p = 0.076). MTCD creation was a fun, engaging, and developmentally appropriate intervention for pediatric patients, which offered a positive experience and aided their use of effective coping strategies to meet the demands of their initial radiation therapy treatment.

  9. Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models

    Energy Technology Data Exchange (ETDEWEB)

    Koonce, Nathan A. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Quick, Charles M. [Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hardee, Matthew E.; Jamshidi-Parsian, Azemat; Dent, Judith A. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Paciotti, Giulio F. [CytImmune Sciences, Rockville, Maryland (United States); Nedosekin, Dmitry [Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Dings, Ruud P.M. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Griffin, Robert J., E-mail: RJGriffin@uams.edu [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States)

    2015-11-01

    Purpose: Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. Methods and Materials: The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. Results: In the 4T1 murine breast tumor model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P<.05 vs control). In contrast, radiation alone (12 Gy) had a negligible effect on the IFP. In the SCCVII head and neck tumor model, the baseline IFP was not markedly elevated, and little additional change occurred in the IFP after single-dose radiation or combined therapy (P>.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose—notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Conclusions: Our results have demonstrated that TNF-labeled gold

  10. A dual energy CT study on vascular effects of gold nanoparticles in radiation therapy

    Science.gov (United States)

    Ashton, Jeffrey R.; Hoye, Jocelyn; Deland, Katherine; Whitley, Melodi; Qi, Yi; Moding, Everett; Kirsch, David G.; West, Jennifer; Badea, Cristian T.

    2016-03-01

    Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and CT imaging. AuNPs are delivered to tumors via the enhanced permeability and retention effect and they preferentially accumulate in close proximity to the tumor blood vessels. AuNPs produce low-energy, short-range photoelectrons during external beam radiation therapy (RT), boosting dose. This work is focused on understanding how tumor vascular permeability is influenced by AuNP-augmented radiation therapy (RT), and how this knowledge can potentially improve the delivery of additional nanoparticle-based chemotherapeutics. We use dual energy (DE) CT to detect accumulation of AuNPs and increased vascular permeability to liposomal iodine (i.e. a surrogate for chemotherapeutics with liposome encapsulation) following RT. We used sarcoma tumors generated in LSL-KrasG12D; p53FL/FL conditional mutant mice. A total of n=37 mice were used in this study. The treated mice were injected with 20 mg AuNP (0.1 ml/25 g mouse) 24 hours before delivery of 5 Gy RT (n=5), 10 Gy RT (n=3) or 20 Gy RT (n=6). The control mice received no AuNP injection and either no RT (n=6), 5 Gy RT (n=3), 10 Gy RT (n=3), 20 Gy RT (n=11). Twenty four hours post-RT, the mice were injected with liposomal iodine (0.3 ml/25 mouse) and imaged with DE-CT three days later. The results suggest that independent of any AuNP usage, RT levels of 10 Gy and 20 Gy increase the permeability of tumor vasculature to liposomal iodine and that the increase in permeability is dose-dependent. We found that the effect of RT on vasculature may already be at its maximum response i.e. saturated at 20 Gy, and therefore the addition of AuNPs had almost no added benefit. Similarly, at 5 Gy RT, our data suggests that there was no effect of AuNP augmentation on tumor vascular permeability. However, by using AuNPs with 10 Gy RT, we observed an increase in the vascular permeability, however this is not yet statistically significant due to the small

  11. Implementation of nanoparticles in therapeutic radiation oncology

    Science.gov (United States)

    Beeler, Erik; Gabani, Prashant; Singh, Om V.

    2017-05-01

    Development and progress of cancer is a very complex disease process to comprehend because of the multiple changes in cellular physiology, pathology, and pathophysiology resulting from the numerous genetic changes from which cancer originates. As a result, most common treatments are not directed at the molecular level but rather at the tissue level. While personalized care is becoming an increasingly aim, the most common cancer treatments are restricted to chemotherapy, radiation, and surgery, each of which has a high likelihood of resulting in rather severe adverse side effects. For example, currently used radiation therapy does not discriminate between normal and cancerous cells and greatly relies on the external targeting of the radiation beams to specific cells and organs. Because of this, there is an immediate need for the development of new and innovative technologies that help to differentiate tumor cells and micrometastases from normal cells and facilitate the complete destruction of those cells. Recent advancements in nanoscience and nanotechnology have paved a way for the development of nanoparticles (NPs) as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery, and improve the therapeutic index of radiation and tumor response to the treatment. The application of NPs in radiation therapy has aimed to improve outcomes in radiation therapy by increasing therapeutic effect in tumors and reducing toxicity on normal tissues. Because NPs possess unique properties, such as preferential accumulation in tumors and minimal uptake in normal tissues, it makes them ideal for the delivery of radiotherapy. This review provides an overview of the recent development of NPs for carrying and delivering therapeutic radioisotopes for systemic radiation treatment for a variety of cancers in radiation oncology.

  12. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment.

    Science.gov (United States)

    Chen, Min-Hua; Hanagata, Nobutaka; Ikoma, Toshiyuki; Huang, Jian-Yuan; Li, Keng-Yuan; Lin, Chun-Pin; Lin, Feng-Huei

    2016-06-01

    Recently, photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. However, the optical approach of PDT is limited by tissue penetration depth of visible light. In this study, we propose that a ROS-enhanced nanoparticle, hafnium-doped hydroxyapatite (Hf:HAp), which is a material to yield large quantities of ROS inside the cells when the nanoparticles are bombarded with high penetrating power of ionizing radiation. Hf:HAp nanoparticles are generated by wet chemical precipitation with total doping concentration of 15mol% Hf(4+) relative to Ca(2+) in HAp host material. The results show that the HAp particles could be successfully doped with Hf ions, resulted in the formation of nano-sized rod-like shape and with pH-dependent solubility. The impact of ionizing radiation on Hf:HAp nanoparticles is assessed by using in-vitro and in-vivo model using A549 cell line. The 2',7'-dichlorofluorescein diacetate (DCFH-DA) results reveal that after being exposed to gamma rays, Hf:HAp could significantly lead to the formation of ROS in cells. Both cell viability (WST-1) and cytotoxicity (LDH) assay show the consistent results that A549 lung cancer cell lines are damaged with changes in the cells' ROS level. The in-vivo studies further demonstrate that the tumor growth is inhibited owing to the cells apoptosis when Hf:HAp nanoparticles are bombarded with ionizing radiation. This finding offer a new therapeutic method of interacting with ionizing radiation and demonstrate the potential of Hf:HAp nanoparticles in tumor treatment, such as being used in a palliative treatment after lung surgical procedure. Photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. Unfortunately, the approach of PDT is usually limited to the treatment of systemic disease and deeper tumor, due to the limited tissue penetration depth of visible

  13. Mesoporous silica nanoparticles as vectors for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Crapina, Laura Cipriano; Bizeto, Marcos, E-mail: lauracrapina@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil)

    2016-07-01

    Full text: Mesoporous silica nanoparticles present unique physical-chemical properties, such as high surface area, tunable pore size, easy surface chemical modification, good biocompatibility and low toxicology. Those properties make this class of inorganic materials promising for several potential applications in the biomedical field. This work seeks to develop mesoporous silica nanoparticles with characteristics suitable to the transport of nucleic acids, such as plasmid DNA and microRNA, with the aim of substituting viral vectors in gene therapy. A successful nanocarrier must have positive charge at physiological conditions and pore diameter larger than 30 Å. The mesoporous silica was synthesized according to the method described by Bein and collaborators [1]. Based on a cocondensation synthetic route, positively charged nanoparticles were obtained through the insertion of N-3-(trimethoxysilyl)propyldiethylenetriamine in the silica walls. Pore expansion was achieved through the incorporation of 1,2,4- trimethylbenzene into the hexadecyltrimethylammonium micellar aggregates, which are a structure-directing agent for the mesopores. The resulting nanoparticles were characterized by DLS, ζ potential, XRD, FTIR, SEM, TEM, TGA and elemental analysis. In addition, the capability of nucleic acid adsorption was tested and confirmed by gel electrophoresis. Discovery of a non-viral therapeutic agent would aid the viability of gene therapy, which is a treatment for chronic ischemia, metabolic and genetic disorders. Reference: [1] K. Moeller, J. Kobler, T. Bein, Journal of Materials Chemistry, 17, 624-631, (2007). (author)

  14. RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA Are Resistant to I-125 and Cs-131 Radiation

    Science.gov (United States)

    Li, Hui; Rychahou, Piotr G.; Cui, Zheng; Pi, Fengmei; Evers, B. Mark; Shu, Dan

    2015-01-01

    Radiation reagents that specifically target tumors are in high demand for the treatment of cancer. The emerging field of RNA nanotechnology might provide new opportunities for targeted radiation therapy. This study investigates whether chemically modified RNA nanoparticles derived from the packaging RNA (pRNA) three-way junction (3WJ) of phi29 DNA-packaging motor are resistant to potent I-125 and Cs-131 radiation, which is a prerequisite for utilizing these RNA nanoparticles as carriers for targeted radiation therapy. pRNA 3WJ nanoparticles were constructed and characterized, and the stability of these nanoparticles under I-125 and Cs-131 irradiation with clinically relevant doses was examined. RNA nanoparticles derived from the pRNA 3WJ targeted tumors specifically and they were stable under irradiation of I-125 and Cs-131 with clinically relevant doses ranging from 1 to 90 Gy over a significantly long time up to 20 days, while control plasmid DNA was damaged at 20 Gy or higher. PMID:26017686

  15. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα prevents radiation-induced fibrosis

    International Nuclear Information System (INIS)

    Nawroth, Isabel; Alsner, Jan; Behlke, Mark A.; Besenbacher, Flemming; Overgaard, Jens; Howard, Kenneth A.; Kjems, Jorgen

    2010-01-01

    Background and purpose: One of the most common and dose-limiting long-term adverse effects of radiation therapy is radiation-induced fibrosis (RIF), which is characterized by restricted tissue flexibility, reduced compliance or strictures, pain and in severe cases, ulceration and necrosis. Several strategies have been proposed to ameliorate RIF but presently no effective one is available. Recent studies have reported that tumor necrosis factor-α (TNFα) plays a role in fibrogenesis. Material and methods: Male CDF1 mice were radiated with a single dose of 45 Gy. Chitosan/DsiRNA nanoparticles targeting TNFα were intraperitoneal injected and late radiation-induced fibrosis (RIF) was assessed using a modification of the leg contracture model. Additionally, the effect of these nanoparticles on tumor growth and tumor control probability in the absence of radiation was examined in a C3H mammary carcinoma model. Results: We show in this work, that targeting TNFα in macrophages by intraperitoneal administration of chitosan/DsiRNA nanoparticles completely prevented radiation-induced fibrosis in CDF1 mice without revealing any cytotoxic side-effects after a long-term administration. Furthermore, such TNFα targeting was selective without any significant influence on tumor growth or irradiation-related tumor control probability. Conclusion: This nanoparticle-based RNAi approach represents a novel approach to prevent RIF with potential application to improve clinical radiation therapeutic strategies.

  16. Current perspectives of radiation therapy. History of radiation therapy

    International Nuclear Information System (INIS)

    Itami, Jun

    2011-01-01

    More than 100 years have passed since the discovery of X-Strahlen by Roentgen. The history of radiation therapy has evolved under mutual stimulating relationships of the external beam radiation therapy by X-ray tubes and accelerators, and the internal radiation therapy employing radium and other radionuclides. The currently employed technologies in radiation therapy have its origin already till nineteen sixties and the development of physics and engineering have realized the original concept. (author)

  17. Cu₂-xSe@mSiO₂-PEG core-shell nanoparticles: a low-toxic and efficient difunctional nanoplatform for chemo-photothermal therapy under near infrared light radiation with a safe power density.

    Science.gov (United States)

    Liu, Xijian; Wang, Qian; Li, Chun; Zou, Rujia; Li, Bo; Song, Guosheng; Xu, Kaibing; Zheng, Yun; Hu, Junqing

    2014-04-21

    A low-toxic difunctional nanoplatform integrating both photothermal therapy and chemotherapy for killing cancer cells using Cu₂-xSe@mSiO₂-PEG core-shell nanoparticles is reported. Silica coating and further PEG modification improve the hydrophilicity and biocompatibility of copper selenide nanoparticles. As-prepared Cu₂-xSe@mSiO₂-PEG nanoparticles not only display strong near infrared (NIR) region absorption and good photothermal effect, but also exhibit excellent biocompatibility. The mesoporous silica shell is provided as the carrier for loading the anticancer drug, doxorubicin (DOX). Moreover, the release of DOX from Cu₂-xSe@mSiO₂-PEG core-shell nanoparticles can be triggered by pH and NIR light, resulting in a synergistic effect for killing cancer cells. Importantly, the combination of photothermal therapy and chemotherapy driven by NIR radiation with safe power density significantly improves the therapeutic efficacy, and demonstrates better therapeutic effects for cancer treatment than individual therapy.

  18. Radiation Emergency Preparedness Tools: Psychological First Aid

    Centers for Disease Control (CDC) Podcasts

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: Practical Tools for Radiation Emergency Preparedness. A specialist working with CDC's Radiation Studies Branch describes Psychological First Aid and a newly developed multimedia training program, entitled "Psychological First Aid in Radiation Disasters."

  19. Nanoparticle-Based Brachytherapy Spacers for Delivery of Localized Combined Chemoradiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajiv, E-mail: r.kumar@neu.edu [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States); Belz, Jodi [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Markovic, Stacey [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts (United States); Jadhav, Tej; Fowle, William [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Niedre, Mark [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts (United States); Cormack, Robert; Makrigiorgos, Mike G. [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States); Sridhar, Srinivas [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Methods and Materials: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. Results: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. Conclusions: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when

  20. Nanoparticle-Based Brachytherapy Spacers for Delivery of Localized Combined Chemoradiation Therapy

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Belz, Jodi; Markovic, Stacey; Jadhav, Tej; Fowle, William; Niedre, Mark; Cormack, Robert; Makrigiorgos, Mike G.; Sridhar, Srinivas

    2015-01-01

    Purpose: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Methods and Materials: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. Results: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. Conclusions: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when

  1. Advanced Small Animal Conformal Radiation Therapy Device.

    Science.gov (United States)

    Sharma, Sunil; Narayanasamy, Ganesh; Przybyla, Beata; Webber, Jessica; Boerma, Marjan; Clarkson, Richard; Moros, Eduardo G; Corry, Peter M; Griffin, Robert J

    2017-02-01

    We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made "gantry" and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.

  2. Generation of polypeptide-templated gold nanoparticles using ionizing radiation.

    Science.gov (United States)

    Walker, Candace Rae; Pushpavanam, Karthik; Nair, Divya Geetha; Potta, Thrimoorthy; Sutiyoso, Caesario; Kodibagkar, Vikram D; Sapareto, Stephen; Chang, John; Rege, Kaushal

    2013-08-13

    Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.

  3. Biosensor-controlled gene therapy/drug delivery with nanoparticles for nanomedicine

    Science.gov (United States)

    Prow, Tarl W.; Rose, William A.; Wang, Nan; Reece, Lisa M.; Lvov, Yuri; Leary, James F.

    2005-04-01

    Nanomedicine involves cell-by-cell regenerative medicine, either repairing cells one at a time or triggering apoptotic pathways in cells that are not repairable. Multilayered nanoparticle systems are being constructed for the targeted delivery of gene therapy to single cells. Cleavable shells containing targeting, biosensing, and gene therapeutic molecules are being constructed to direct nanoparticles to desired intracellular targets. Therapeutic gene sequences are controlled by biosensor-activated control switches to provide the proper amount of gene therapy on a single cell basis. The central idea is to set up gene therapy "nanofactories" inside single living cells. Molecular biosensors linked to these genes control their expression. Gene delivery is started in response to a biosensor detected problem; gene delivery is halted when the cell response indicates that more gene therapy is not needed. Cell targeting of nanoparticles, both nanocrystals and nanocapsules, has been tested by a combination of fluorescent tracking dyes, fluorescence microscopy and flow cytometry. Intracellular targeting has been tested by confocal microscopy. Successful gene delivery has been visualized by use of GFP reporter sequences. DNA tethering techniques were used to increase the level of expression of these genes. Integrated nanomedical systems are being designed, constructed, and tested in-vitro, ex-vivo, and in small animals. While still in its infancy, nanomedicine represents a paradigm shift in thinking-from destruction of injured cells by surgery, radiation, chemotherapy to cell-by-cell repair within an organ and destruction of non-repairable cells by natural apoptosis.

  4. Nanoparticle augmented radiation treatment decreases cancer cell proliferation.

    Science.gov (United States)

    Townley, Helen E; Rapa, Elizabeth; Wakefield, Gareth; Dobson, Peter J

    2012-05-01

    We report significant and controlled cell death using novel x-ray-activatable titania nanoparticles (NPs) doped with lanthanides. Preferential incorporation of such materials into tumor tissue can enhance the effect of radiation therapy. Herein, the incorporation of gadolinium into the NPs is designed to optimize localized energy absorption from a conventional medical x-ray. This result is further optimized by the addition of other rare earth elements. Upon irradiation, energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species (ROS). The authors report significant and controlled cell death using x-ray-activated titania nanoparticles doped with lanthanides as enhancers. Upon irradiation X-ray energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Radiation Emergency Preparedness Tools: Psychological First Aid

    Centers for Disease Control (CDC) Podcasts

    2010-12-30

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: Practical Tools for Radiation Emergency Preparedness. A specialist working with CDC's Radiation Studies Branch describes Psychological First Aid and a newly developed multimedia training program, entitled "Psychological First Aid in Radiation Disasters.".  Created: 12/30/2010 by National Center for Environmental Health (NCEH) Radiation Studies Branch and Emergency Risk Communication Branch (ERCB)/Joint Information Center (JIC); Office of Public Health Preparedness and Response (OPHPR).   Date Released: 1/13/2011.

  6. AGuIX, a theranostic nano-particle to improve image-guided radiation therapy: a proof of concept in pancreatic cancer

    International Nuclear Information System (INIS)

    Detappe, Alexandre

    2017-01-01

    Previous studies demonstrated AGuIX ability to act as an efficient radiosensitizer under the presence of preclinical radiations or monoenergetic radiation beams for multiple cancer models. The preclinical irradiation (220 kV) has been shown effective in activating high atomic number (Z) nanoparticles. The energy peak is close to the k-edge of the different high-Z elements used (50.2 keV for the gadolinium), leading to a strong photoelectric effect. Auger electrons generation and biological effects occur afterwards creating a local dose enhancement. However, clinical treatments use a higher energy beam (≥6 MV). At these energy ranges, the photoelectric probability is less important, decreasing the direct interaction of the nanoparticles with the incoming photons. We performed a proof of concept on a pancreatic tumor model, known for its low survival rates, with preclinical and clinical radiation beams to evaluate the efficacy of the AGuIX. To increase the efficacy of the clinical radiation beam without modifying the nanoparticle structure in order to obtain a dose enhancement close to the one observed with the preclinical beam, we evaluated key clinical beam parameters to understand and increase the mechanisms of interaction between the incident photons and the high-Z nanoparticles. Hence, we evaluated analytically the impact of the radiation beam under different conditions of irradiation, confirming the potential of the AGuIX with a preclinical beam, and finally shown their significant efficacy under a clinical setup. This study is the first to evaluate the potential of a high-Z nanoparticle to act as radiosensitizer following low dose intravenous injections. (author)

  7. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M [Sandia Park, NM; Powers, Dana A [Albuquerque, NM; Zhang, Zhenyuan [Durham, NC

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  8. Hendee's radiation therapy physics

    CERN Document Server

    Pawlicki, Todd; Starkschall, George

    2016-01-01

    The publication of this fourth edition, more than ten years on from the publication of Radiation Therapy Physics third edition, provides a comprehensive and valuable update to the educational offerings in this field. Led by a new team of highly esteemed authors, building on Dr Hendee’s tradition, Hendee’s Radiation Therapy Physics offers a succinctly written, fully modernised update. Radiation physics has undergone many changes in the past ten years: intensity-modulated radiation therapy (IMRT) has become a routine method of radiation treatment delivery, digital imaging has replaced film-screen imaging for localization and verification, image-guided radiation therapy (IGRT) is frequently used, in many centers proton therapy has become a viable mode of radiation therapy, new approaches have been introduced to radiation therapy quality assurance and safety that focus more on process analysis rather than specific performance testing, and the explosion in patient-and machine-related data has necessitated an ...

  9. Patterns of care study and evidence based medicine for radiation therapy. Prostate cancer

    International Nuclear Information System (INIS)

    Nakamura, Katsumasa; Mitsuhashi, Norio

    2002-01-01

    In Japan, where the mortality rate of prostate cancer is lower than in Western countries, there is little evidence of radiation therapy for prostate cancer. Therefore, we have to refer to the evidence of radiation therapy from Western countries, but we should pay attention to the differences of cultural, racial, or social background between Japan and Western countries. The Patterns of Care Study (PCS) was conducted in Japan and extramural audits were performed for 50 randomly selected institutions. Detailed information of 311 prostate cancer patients without distant metastases and other cancers, who were treated with radiation therapy in 1996-1998, was collected. In this article, the results of PCS for primary prostate cancer were shown, with a review of literature for the appropriate choice of radiation therapy. This study was supported by the Grantin-Aid for Cancer Research from Ministry of Health, Labor and Welfare (10-17). (author)

  10. Risk management of radiation therapy. Survey by north Japan radiation therapy oncology group

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Abe, Yoshinao; Yamada, Shogo; Hareyama, Masato; Nakamura, Ryuji; Sugita, Tadashi; Miyano, Takashi

    2004-01-01

    A North Japan Radiation Oncology Group (NJRTOG) survey was carried out to disclose the risk management of radiation therapy. During April 2002, we sent questionnaires to radiation therapy facilities in northern Japan. There were 31 replies from 27 facilities. Many incidents and accidents were reported, including old cases. Although 60% of facilities had a risk management manual and/or risk manager, only 20% had risk management manuals for radiation therapy. Eighty five percent of radiation oncologists thought that incidents may be due to a lack of manpower. Ninety percent of radiation oncologists want to know the type of cases happened in other facilities. The risk management system is still insufficient for radiation therapy. We hope that our data will be a great help to develop risk management strategies for radiation therapy for all radiation oncologists in Japan. (author)

  11. TU-H-CAMPUS-TeP2-05: Selective Protection of Normal Tissue by Cerium Oxide Nanoparticles During Radiation Therapy

    International Nuclear Information System (INIS)

    Ouyang, Z; Ngwa, W; Yasmin-Karim, S; Strack, G; Sajo, E

    2016-01-01

    Purpose: Cerium oxide nanoparticles (CONPs) have unique pH dependent properties such that they act as a radical modulator. These properties may be used in radiation therapy (RT) to protect normal tissue. This work investigates the selective radioprotection of CONPs in-vitro and potential for in-situ delivery of CONPs in prostate cancer RT. Methods: i) Normal human umbilical vein endothelial cells (HUVEC) and human prostate cancer cells (PC-3) were treated with 0 or 2 ng/mL CONPs (NP size: 5 nm). 2 Gy of 100 kVp radiation was delivered to the cells 4 hours after the CONP treatment. Cell viability was checked 48 hours later using MTS assays. ii) A prostate tumor was modeled as a 2-cm diameter sphere. CONPs were proposed to be loaded in a hollow radiotherapy fiducial marker. The concentration profile for the CONPs within the tumor was modeled with a previously validated diffusion equation employed in other studies for nanoparticles 10 nm or less. Results: i) Without radiation, cell viability was above 90% when treated with 2 ng/mL CONPs for both HUVEC and PC-3. After irradiation, a slightly higher viability was observed in HUVEC with CONPs than the ones without CONPs, and this effect was not observed in PC-3. ii) Based on the calculations, 2 ng/mL of CONPs could be delivered to normal cells by diffusion with a 1 µg/mL initial concentration within two weeks. Conclusion: We conclude that CONPs can provide selective radioprotection. The delivery of needed concentrations of CONPs is feasible via in-situ release from radiotherapy biomaterials (e.g. fiducials) loaded with the CONPs.

  12. TU-H-CAMPUS-TeP2-05: Selective Protection of Normal Tissue by Cerium Oxide Nanoparticles During Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Z; Ngwa, W [University of Massachusetts Lowell, Lowell, MA (United States); Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Yasmin-Karim, S [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Strack, G; Sajo, E [University of Massachusetts Lowell, Lowell, MA (United States)

    2016-06-15

    Purpose: Cerium oxide nanoparticles (CONPs) have unique pH dependent properties such that they act as a radical modulator. These properties may be used in radiation therapy (RT) to protect normal tissue. This work investigates the selective radioprotection of CONPs in-vitro and potential for in-situ delivery of CONPs in prostate cancer RT. Methods: i) Normal human umbilical vein endothelial cells (HUVEC) and human prostate cancer cells (PC-3) were treated with 0 or 2 ng/mL CONPs (NP size: 5 nm). 2 Gy of 100 kVp radiation was delivered to the cells 4 hours after the CONP treatment. Cell viability was checked 48 hours later using MTS assays. ii) A prostate tumor was modeled as a 2-cm diameter sphere. CONPs were proposed to be loaded in a hollow radiotherapy fiducial marker. The concentration profile for the CONPs within the tumor was modeled with a previously validated diffusion equation employed in other studies for nanoparticles 10 nm or less. Results: i) Without radiation, cell viability was above 90% when treated with 2 ng/mL CONPs for both HUVEC and PC-3. After irradiation, a slightly higher viability was observed in HUVEC with CONPs than the ones without CONPs, and this effect was not observed in PC-3. ii) Based on the calculations, 2 ng/mL of CONPs could be delivered to normal cells by diffusion with a 1 µg/mL initial concentration within two weeks. Conclusion: We conclude that CONPs can provide selective radioprotection. The delivery of needed concentrations of CONPs is feasible via in-situ release from radiotherapy biomaterials (e.g. fiducials) loaded with the CONPs.

  13. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids.

    Science.gov (United States)

    Ngwa, Wilfred; Kumar, Rajiv; Moreau, Michele; Dabney, Raymond; Herman, Allen

    2017-01-01

    Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones) can now be constructed with capability to precisely target cancer cells and be remotely activated with radiation to emit micrometer-range missile-like electrons to destroy the tumor cells. These nanoparticle drones can also be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy. In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH) (air) versus traditional intravenous ("sea") routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects.

  14. SU-F-T-659: Nanoparticle-Aided Eye Plaque Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chin, J [University of Masschusetts-Lowell, Lowell, Massachusetts (United States); Ngwa, W [Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Eye plaque brachytherapy is one of the approaches for radiotherapy treatment for ocular cancers: retinoblastoma and choroidal melanoma. This study, investigates the potential benefits of using gold nanoparticles to enhance therapeutic efficacy during eye plaque brachytherapy. Methods: The EYE PHYSICS Inc. Plaque Simulator program distributed by IsoAid, LLC, Port Richey, Florida was used. It is based on the superposition of dose contributions from individual seeds following the TG–43 formalism. Dose enhancement factor (DEF) values for feasible nanoparticle concentrations from previous studies was used to investigate the benefit of using nanoparticles to enhance dose to tumour or reduce dose to healthy tissue. The dose enhancement factor (DEF) represents the ratio of the dose deposited in tumour with nanoparticles divided by dose deposited in the tumour without nanoparticles. The investigation was done for I–125 and Pd–103 typical sources employed for eye plaque brachytherapy. The prescription dose used is 85 Gy. Results: Lower dose enhancement values were obtained for Pd–103. With DEF of 2 due to gold nanoparticles, critical structure doses reduce by a factor of 2. Optic disc dose is 6.69 Gy and 4.571 Gy, opposite retina dose is 4.064 and 2.484 Gy, lens dose is 12.66 Gy and 9.870 Gy, and fovea dose is 9.85 Gy and 7.275 Gy. With DEF of 3 due to gold nanoparticles, critical structure doses reduce by a factor of 3. Optic disc dose is 4.352 Gy and 2.975 Gy, opposite retina dose is 2.644 Gy and 1.618 Gy, lens dose is 8.322 Gy and 6.427 Gy, and fovea dose is 4.815 Gy and 4.737 Gy. Conclusion: The results of this research predict that using gold nanoparticles will lead to major sparing of dose to critical structures. The finding provides more impetus for the development of nanoparticle–aided brachytherapy.

  15. SU-F-T-659: Nanoparticle-Aided Eye Plaque Radiotherapy

    International Nuclear Information System (INIS)

    Chin, J; Ngwa, W

    2016-01-01

    Purpose: Eye plaque brachytherapy is one of the approaches for radiotherapy treatment for ocular cancers: retinoblastoma and choroidal melanoma. This study, investigates the potential benefits of using gold nanoparticles to enhance therapeutic efficacy during eye plaque brachytherapy. Methods: The EYE PHYSICS Inc. Plaque Simulator program distributed by IsoAid, LLC, Port Richey, Florida was used. It is based on the superposition of dose contributions from individual seeds following the TG–43 formalism. Dose enhancement factor (DEF) values for feasible nanoparticle concentrations from previous studies was used to investigate the benefit of using nanoparticles to enhance dose to tumour or reduce dose to healthy tissue. The dose enhancement factor (DEF) represents the ratio of the dose deposited in tumour with nanoparticles divided by dose deposited in the tumour without nanoparticles. The investigation was done for I–125 and Pd–103 typical sources employed for eye plaque brachytherapy. The prescription dose used is 85 Gy. Results: Lower dose enhancement values were obtained for Pd–103. With DEF of 2 due to gold nanoparticles, critical structure doses reduce by a factor of 2. Optic disc dose is 6.69 Gy and 4.571 Gy, opposite retina dose is 4.064 and 2.484 Gy, lens dose is 12.66 Gy and 9.870 Gy, and fovea dose is 9.85 Gy and 7.275 Gy. With DEF of 3 due to gold nanoparticles, critical structure doses reduce by a factor of 3. Optic disc dose is 4.352 Gy and 2.975 Gy, opposite retina dose is 2.644 Gy and 1.618 Gy, lens dose is 8.322 Gy and 6.427 Gy, and fovea dose is 4.815 Gy and 4.737 Gy. Conclusion: The results of this research predict that using gold nanoparticles will lead to major sparing of dose to critical structures. The finding provides more impetus for the development of nanoparticle–aided brachytherapy.

  16. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, Jan, E-mail: jschuemann@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States); Chithrani, Devika B. [Department of Physics, Ryerson University, Toronto, Ontario (Canada); Cho, Sang Hyun [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kumar, Rajiv [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts (United States); McMahon, Stephen J. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Sridhar, Srinivas [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts (United States); Krishnan, Sunil [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-01-01

    The past decade has seen a dramatic increase in interest in the use of gold nanoparticles (GNPs) as radiation sensitizers for radiation therapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs' efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X rays as well as charged particles. Despite this experimental validation, there has been limited translation of GNP-mediated radiation sensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes, and preparations. As a result, mechanisms of uptake and radiation sensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiation sensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage.

  18. Iron oxide and gold nanoparticles in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Lozhkomoev, Aleksandr S. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  19. Injectable Colloidal Gold for Use in Intrafractional 2D Image-Guided Radiation Therapy

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Rydhog, Jonas S.; Christensen, Anders Nymark

    2015-01-01

    radio-opacity, which allows for marker-based image guidance in 2D and 3D X-ray imaging during radiation therapy. This is achieved by surface-engineering gold nanoparticles to be highly compatible with a carbohydrate-based gelation matrix. The new fiducial marker is investigated in mice where...

  20. Nano-scale Radiotherapy-NBTXR3 Hafnium Oxide Nanoparticles as Promising Cancer Therapy

    International Nuclear Information System (INIS)

    Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Levy, L.; Deutsch, E.; Bourhis, J.; Borghi, E.

    2011-01-01

    specific growth delay and local control in A673 and HT1080 human tumour models. Changing radiotherapy benefit-risk ratio is challenging. These data are supportive for the first clinical development of hafnium oxide nanoparticles, with an on/off mode of action through successive fractions of radiation therapy using current equipment available in hospitals

  1. Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice †

    Directory of Open Access Journals (Sweden)

    Spiridon V. Spirou

    2018-06-01

    Full Text Available Hyperthermia, though by itself generally non-curative for cancer, can significantly increase the efficacy of radiation therapy, as demonstrated by in vitro, in vivo, and clinical results. Its limited use in the clinic is mainly due to various practical implementation difficulties, the most important being how to adequately heat the tumor, especially deep-seated ones. In this work, we first review the effects of hyperthermia on tissue, the limitations of radiation therapy and the radiobiological rationale for combining the two treatment modalities. Subsequently, we review the theory and evidence for magnetic hyperthermia that is based on magnetic nanoparticles, its advantages compared with other methods of hyperthermia, and how it can be used to overcome the problems associated with traditional techniques of hyperthermia.

  2. Radiation therapy for digestive tumors

    International Nuclear Information System (INIS)

    Piedbois, P.; Levy, E.; Thirion, P.; Martin, L.; Calitchi, E.; Otmezguine, Y.; Le Bourgeois, J.P.

    1995-01-01

    This brief review of radiation therapy of digestive tumors in 1994 seeks to provide practical answers to the most commonly asked questions: What is the place of radiation therapy versus chemotherapy for the treatment of these patients ? What are the approved indications of radiation therapy and which avenues of research are being explored ? Radiation therapy is used in over two-thirds of patients referred to an oncology department for a gastrointestinal tract tumor. The main indications are reviewed: cancer of the rectum and anal canal and, to a lesser extent, cancer of the esophagus and pancreas. The main focuses of current research include radiation therapy-chemotherapy combinations, intraoperative radiation therapy, and radiation therapy of hepatobiliary tumors. (authors). 23 refs., 1 fig

  3. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    Science.gov (United States)

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  4. Radiation therapy for Kaposi's sarcoma associated with acquired immunodeficiency syndrome. Tokyo Metropolitan Komagome Hospital experience

    International Nuclear Information System (INIS)

    Ebara, Takeshi; Karasawa, Katsuyuki; Maebayashi, Katsuya; Kurosaki, Hiromasa; Ishikawa, Hitoshi; Kaizu, Toshihide; Tanaka, Yoshiaki; Akagi, Kumiko; Masuda, Gota

    2000-01-01

    Kaposi's sarcoma is frequently found in association with acquired immunodeficiency syndrome (AIDS). We report on radiotherapy for patients with AIDS-related Kaposi's sarcoma at Tokyo Metropolitan Komagome Hospital. Between April 1991 and May 1997, radiotherapy was given to 11 lesions in eight men with AIDS-related Kaposi's sarcoma to relieve their symptoms. The lesions involved the head and neck region, the legs, and the gastrointestinal tract. Radiotherapy was carried out with 4-MV photon through parallel opposed field or high energy electrons. Total doses ranged from 20 to 38 Gy, with a median of 30 Gy, delivered in 2- to 3-Gy fractions. Four patients were given other treatments prior to the radiotherapy. Acute reaction was evaluated according to the modified acute radiation morbidity scoring criteria of the Radiation Therapy Oncology Group (RTOG). Radiotherapy had relieved the symptoms in all patients at completion of this therapy. Lesions that involved the hard palate and vocal cords had completely disappeared. The lesions that received radiotherapy were controlled without symptoms until the patients died. Patients who had the head and neck region treated exhibited severe acute mucosal reaction (at a dose of 30 Gy, there was grade 2 morbidity by modified RTOG criteria, in two patients, and grade 3 in three patients) although the radiation therapy was completed for these patients. Radiotherapy promises a favorable outcome for symptom relief in AIDS-related Kaposi's sarcoma. (author)

  5. Palliative radiation therapy for AIDS-associated Kaposi's sarcoma by using a single fraction of 800 cGy

    NARCIS (Netherlands)

    de Wit, R.; Smit, W. G.; Veenhof, K. H.; Bakker, P. J.; Oldenburger, F.; González, D. G.

    1990-01-01

    A single radiation fraction of 800 cGy was used in the treatment of acquired immunodeficiency syndrome (AIDS)-associated Kaposi's sarcoma (KS). A total of 74 radiation treatments was given to a total of 31 patients. Of all 74 evaluable treatments, there were 25 objective major responses (6 complete,

  6. Medical aid in the initial period of radiation accident

    International Nuclear Information System (INIS)

    Selidovkin, G.D.

    1995-01-01

    The main tasks of medical arrangements on the initial stage of rendering aid after radiation accident are the prime medical classification of the injured persons among the personnel of the plant and population, and realization of measures to avoid the increase of doses. The volume of medical aid depends on the type of accident, on the after-accident radiation situation, on the influence of hazardous factors, on the number of people involved in accident situation and the spectrum of sanitary losses, etc., which is to be predicted in advance and to be taken into consideration when rendering aid. The proper and sufficient aid on the initial stage will build the foundation of the ultimate efficiency of medical aid after radiation accident. 14 refs

  7. Curcumin Nanoparticle Therapy for Gulf War Illness

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0480 TITLE: Curcumin Nanoparticle Therapy for Gulf War Illness PRINCIPAL INVESTIGATOR: Ashok K. Shetty, Ph.D...Nanoparticle Therapy for Gulf War Illness 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0480 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Ashok K...biodegradable polymer nanosystems (nCUR) for alleviating cognitive, memory and mood impairments in a rat model of gulf war illness (GWI). Specific

  8. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids

    Directory of Open Access Journals (Sweden)

    Wilfred Ngwa

    2017-09-01

    Full Text Available Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones can now be constructed with capability to precisely target cancer cells and be remotely activated with radiation to emit micrometer-range missile-like electrons to destroy the tumor cells. These nanoparticle drones can also be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy. In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH (air versus traditional intravenous (“sea” routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects.

  9. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids

    Science.gov (United States)

    Ngwa, Wilfred; Kumar, Rajiv; Moreau, Michele; Dabney, Raymond; Herman, Allen

    2017-01-01

    Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones) can now be constructed with capability to precisely target cancer cells and be remotely activated with radiation to emit micrometer-range missile-like electrons to destroy the tumor cells. These nanoparticle drones can also be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy. In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH) (air) versus traditional intravenous (“sea”) routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects. PMID:28971063

  10. Animal experiments to investigate biological-chemical radiation protection and the therapy of radiolesions

    International Nuclear Information System (INIS)

    Brueckner, V.

    1974-01-01

    The influence of a combined therapy of radiation protection agents and erythropoetin on the radiation-induced suppression of erythropoiesis in mice is studied with the aid of the radioiron utilization test. After whole-body irradiation with 500 R, the erythropoietic system is so severely affected that erythropoetin application alone does not yield any results. AET (significant) and Cysteamin (insignificant), on the other hand, protect the bone marrow to a certain degree. The protected bone marrow provides a better base for erythropoetin therapy than the bone marrow of the irradiated and unprotected animals. Compared to the application of radiation protection agents alone, the combined therapy with AET and erythropoetin increases the radioiron incorporation in the erythrocytes by 7.5% while the therapy with Cysteamin and erythropoetin results in a 19.3% increase. In spite of these methods, however, the radioiron incorporation rate of the control animals was not reached. (BSC/AK) [de

  11. Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy

    Science.gov (United States)

    Hedayatnasab, Z.; Abnisa, F.; Daud, W. M. A. Wan

    2018-03-01

    The application of superparamagnetic nanoparticles as heating agents in hyperthermia therapy has made a therapeutic breakthrough in cancer treatment. The high efficiency of this magnetic hyperthermia therapy has derived from a great capability of superparamagnetic nanoparticles to generate focused heat in inaccessible tumors being effectively inactivated. The main challenges of this therapy are the improvement of the induction heating power of superparamagnetic nanoparticles and the control of the hyperthermia temperature in a secure range of 42 °C to 47 °C, at targeted area. The variation of these hyperthermia properties is principally dependent on the magnetic nanoparticles as well as the magnetic field leading to enhance the efficiency of magnetic hyperthermia therapy at targeted area and also avoid undue heating to healthy cells. The present study evaluates the magnetic hyperthermia therapy through the determination of superparamagnetic nanoparticles properties and magnetic field’ parameters.

  12. Biodegradable nanoparticles for gene therapy technology

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-01-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes

  13. Radiation induced structural and magnetic transformations in nanoparticle MnxZn(1−x)Fe2O4 ferrites

    International Nuclear Information System (INIS)

    Naik, P.P.; Tangsali, R.B.; Sonaye, B.; Sugur, S.

    2015-01-01

    Nanoparticle magnetic materials are suitable for multiple modern high end medical applications like targeted drug delivery, gene therapy, hyperthermia and MR thermometry imaging. Majority of these applications are confined to use of Mn–Zn ferrite nanoparticles. These nanoparticles are normally left in the body after their requisite application. Preparing these nanoparticles is usually a much involved job. However with the development of the simple technique Mn x Zn 1−x Fe 2 O 4 nanoparticles could be prepared with much ease. The nanoparticles of Mn x Zn 1−x Fe 2 O 4 with (x=1.0, 0.7, 0.5, 0.3, 0.0) were prepared and irradiated with gamma radiation of various intensities ranging between 500 R to 10,000 R, after appropriate structural and magnetic characterization. Irradiated samples were investigated for structural and magnetic properties, as well as for structural stability and cation distribution. The irradiated nanoparticles exhibited structural stability with varied cation distribution and magnetic properties, dependent on gamma radiation dose. Surprisingly samples also exhibited quenching of lattice parameter and particle size. The changes introduced in the cation distribution, lattice constant, particle size and magnetic properties were found to be irreversible with time lapse and were of permanent nature exhibiting good stability even after several months. Thus the useful properties of nanoparticles could be enhanced on modifying the cation distribution inside the nanoparticles by application of gamma radiation. - Highlights: • Mn x Zn 1−x Fe 2 O 4 nanoparticles were synthesized using auto combustion method. • The irradiated samples showed a change in cation distribution. • Lattice shrinkage observed due to radiation induced change in cation distribution. • Reduction in particle size was also observed due to gamma exposure. • An enhancement in saturation magnetization was observed in irradiated samples

  14. Bone Marrow Gene Therapy for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Elena Herrera-Carrillo

    2015-07-01

    Full Text Available Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS caused by human immunodeficiency virus (HIV. This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.

  15. Development and Characterization of VEGF165-Chitosan Nanoparticles for the Treatment of Radiation-Induced Skin Injury in Rats

    Directory of Open Access Journals (Sweden)

    Daojiang Yu

    2016-10-01

    Full Text Available Radiation-induced skin injury, which remains a serious concern in radiation therapy, is currently believed to be the result of vascular endothelial cell injury and apoptosis. Here, we established a model of acute radiation-induced skin injury and compared the effect of different vascular growth factors on skin healing by observing the changes of microcirculation and cell apoptosis. Vascular endothelial growth factor (VEGF was more effective at inhibiting apoptosis and preventing injury progression than other factors. A new strategy for improving the bioavailability of vascular growth factors was developed by loading VEGF with chitosan nanoparticles. The VEGF-chitosan nanoparticles showed a protective effect on vascular endothelial cells, improved the local microcirculation, and delayed the development of radioactive skin damage.

  16. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    Science.gov (United States)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  17. Basic principles of medical aid in cases of radiation accidents

    International Nuclear Information System (INIS)

    Andreev, E.; Mikhajlov, M.A.; Bliznakov, V.

    1979-01-01

    A model scheme has been presented of medical aid organization in emergency cases of irradiation. The tasks of medical service have been pointed out in connection with evacuation stages, bulk of medical aid depending on the natur of radiation damages, first aid and some general principles of radiation sickness treatment. (author)

  18. Oligonucleotide-based theranostic nanoparticles in cancer therapy

    Science.gov (United States)

    Shahbazi, Reza; Ozpolat, Bulent; Ulubayram, Kezban

    2016-01-01

    Theranostic approaches, combining the functionality of both therapy and imaging, have shown potential in cancer nanomedicine. Oligonucleotides such as small interfering RNA and microRNA, which are powerful therapeutic agents, have been effectively employed in theranostic systems against various cancers. Nanoparticles are used to deliver oligonucleotides into tumors by passive or active targeting while protecting the oligonucleotides from nucleases in the extracellular environment. The use of quantum dots, iron oxide nanoparticles and gold nanoparticles and tagging with contrast agents, like fluorescent dyes, optical or magnetic agents and various radioisotopes, has facilitated early detection of tumors and evaluation of therapeutic efficacy. In this article, we review the advantages of theranostic applications in cancer therapy and imaging, with special attention to oligonucleotide-based therapeutics. PMID:27102380

  19. The physics of radiation therapy

    CERN Document Server

    Khan, Faiz M

    2009-01-01

    Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout.

  20. Radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Nakamura, Katsumasa

    2001-01-01

    In Japan, where the mortality rate of prostate cancer is lower than in Western countries, radical prostatectomy or hormonal therapy has been applied more frequently than radiation therapy. However, the number of patients with prostate cancer has been increasing recently and the importance of radiation therapy has rapidly been recognized. Although there have been no randomized trials, results from several institutions in Western countries suggest that similar results of cancer control are achieved with either radiation therapy or radical prostatectomy. For higher-risk cases, conformal high-dose therapy or adjuvant hormonal therapy is more appropriate. In this article, the results of radiation therapy for prostate cancer were reviewed, with a view to the appropriate choice of therapy in Japan. (author)

  1. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; Chen Yiru; He Wenjie; Hong Poda; Yu, Dah-Shyong; Domb, Abraham J.

    2013-01-01

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe 2+ solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  2. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Hossein, E-mail: hosseinkhani@yahoo.com [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Chen Yiru [National Yang-Ming University, Department of Biomedical Engineering (China); He Wenjie; Hong Poda [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem (Israel)

    2013-01-15

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe{sup 2+} solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  3. Radiation therapy for Kaposi's sarcoma associated with acquired immunodeficiency syndrome. Tokyo Metropolitan Komagome Hospital experience

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, Takeshi [Municipal Kanbara General Hospital, Fujikawa, Shizuoka (Japan); Karasawa, Katsuyuki; Maebayashi, Katsuya; Kurosaki, Hiromasa; Ishikawa, Hitoshi; Kaizu, Toshihide; Tanaka, Yoshiaki; Akagi, Kumiko; Masuda, Gota

    2000-12-01

    Kaposi's sarcoma is frequently found in association with acquired immunodeficiency syndrome (AIDS). We report on radiotherapy for patients with AIDS-related Kaposi's sarcoma at Tokyo Metropolitan Komagome Hospital. Between April 1991 and May 1997, radiotherapy was given to 11 lesions in eight men with AIDS-related Kaposi's sarcoma to relieve their symptoms. The lesions involved the head and neck region, the legs, and the gastrointestinal tract. Radiotherapy was carried out with 4-MV photon through parallel opposed field or high energy electrons. Total doses ranged from 20 to 38 Gy, with a median of 30 Gy, delivered in 2- to 3-Gy fractions. Four patients were given other treatments prior to the radiotherapy. Acute reaction was evaluated according to the modified acute radiation morbidity scoring criteria of the Radiation Therapy Oncology Group (RTOG). Radiotherapy had relieved the symptoms in all patients at completion of this therapy. Lesions that involved the hard palate and vocal cords had completely disappeared. The lesions that received radiotherapy were controlled without symptoms until the patients died. Patients who had the head and neck region treated exhibited severe acute mucosal reaction (at a dose of 30 Gy, there was grade 2 morbidity by modified RTOG criteria, in two patients, and grade 3 in three patients) although the radiation therapy was completed for these patients. Radiotherapy promises a favorable outcome for symptom relief in AIDS-related Kaposi's sarcoma. (author)

  4. Near-field radiative heat transfer between clusters of dielectric nanoparticles

    International Nuclear Information System (INIS)

    Dong, J.; Zhao, J.M.; Liu, L.H.

    2017-01-01

    In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension. - Highlights: • Near-field radiative heat transfer between clusters of nanoparticles is studied. • The many-body radiative heat transfer theory is applied for rigorous analysis. • The accuracy of equivalent volume spheres approximation is examined. • Clusters with larger fractal dimension have larger radiative thermal conductance. • Many-body interaction inhibits the total radiative thermal conductance.

  5. Radiation therapy

    International Nuclear Information System (INIS)

    Bader, J.L.; Glatstein, E.

    1987-01-01

    The radiation oncologist encounters the critically ill immunosuppressed patient in four settings. First, the newly diagnosed cancer patient presents for initial evaluation and treatment, with immunosuppression from the cancer itself, malnutrition, concomitant infectious disease, prior drug or alcohol abuse or other medical problems. Second, the previously treated cancer patient presents with metastatic or recurrent primary cancer causing local symptoms. Immune dysfunction in this setting may be due to prior chemotherapy and/or radiation as well as any of the original factors. Third, the patient previously treated with radiation presents with a life-threatening problem possibly due to complications of prior therapy. In this setting, the radiation oncologist is asked to evaluate the clinical problem and to suggest whether radiation might be causing part or all of the problem and what can be done to treat these sequelae of radiation. Fourth, the patient with a benign diagnosis (not cancer) is seen with a problem potentially emeliorated by radiation (e.g., kidney transplant rejection, preparation for transplant, or intractable rheumatoid arthritis). This chapter reviews these four issues and presents clinical and radiobiologic principles on which recommendations for therapy are based

  6. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Shamsuddin, Shaharum [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  7. Multifunctional nanoparticles for prostate cancer therapy.

    Science.gov (United States)

    Chandratre, Shantanu S; Dash, Alekha K

    2015-02-01

    The relapse of cancer after first line therapy with anticancer agents is a common occurrence. This recurrence is believed to be due to the presence of a subpopulation of cells called cancer stem cells in the tumor. Therefore, a combination therapy which is susceptible to both types of cells is desirable. Delivery of this combinatorial approach in a nanoparticulate system will provide even a better therapeutic outcome in tumor targeting. The objective of this study was to develop and characterize nanoparticulate system containing two anticancer agents (cyclopamine and paclitaxel) having different susceptibilities toward cancer cells. Both drugs were entrapped in glyceryl monooleate (GMO)-chitosan solid lipid as well as poly(glycolic-lactic) acid (PLGA) nanoparticles. The cytotoxicity studies were performed on DU145, DU145 TXR, and Wi26 A4 cells. The particle size of drug-loaded GMO-chitosan nanoparticles was 278.4 ± 16.4 nm with a positive zeta potential. However, the PLGA particles were 234.5 ± 6.8 nm in size with a negative zeta potential. Thermal analyses of both nanoparticles revealed that the drugs were present in noncrystalline state in the matrix. A sustained in vitro release was observed for both the drugs in these nanoparticles. PLGA blank particles showed no cytotoxicity in all the cell lines tested, whereas GMO-chitosan blank particles showed substantial cytotoxicity. The types of polymer used for the preparation of nanoparticles played a major role and affected the in vitro release, cytotoxicity, and uptake of nanoparticles in the all the cell lines tested.

  8. Massage therapy for people with HIV/AIDS.

    Science.gov (United States)

    Hillier, Susan L; Louw, Quinette; Morris, Linzette; Uwimana, Jeanine; Statham, Sue

    2010-01-20

    Infection with human immunodeficency virus (HIV) and acquired immunodeficency syndrome (AIDS) is a pandemic that has affected millions of people globally. Although major research and clinical initiatives are addressing prevention and cure strategies, issues of quality of life for survivors have received less attention. Massage therapy is proposed to have a positive effect on quality of life and may also have a positive effect on immune function through stress mediation. The objective of this systematic review was to examine the safety and effectiveness of massage therapy on quality of life, pain and immune system parameters in people living with HIV/AIDS. A comprehensive search strategy was devised incorporating appropriate terms for HIV/AIDS, randomised controlled trials (RCTs), massage therapy and the pertinent measures of benefit. All electronic databases identified were searched in November 2008, including Cochrane Group Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, SCIENCE CITATION INDEX, AIDSLINE, AIDSearch, CINAHL, HEALTHSTAR, PsycLIT, AMED, Current Contents, AMI, NLM GATEWAY, LILACS, IndMed, SOCIOFILE, SCI, SSCI, ERIC and DAI. We also reviewed relevant published and unpublished conference abstracts and proceedings and scrutinised reference lists from pertinent journals. There were no language or date restrictions. Studies were identified by two reviewers based on trial design (RCTs) and participants (ie, people of any age with HIV/AIDS, at any stage of the disease) who had undergone an intervention that included massage therapy for the identified aims of improving quality of life and activity and participation levels, improving immune function, reducing pain and improving other physiological or psychological impairments. Two reviewers independently identified included studies and extracted relevant data. Two other reviewers independently reviewed the included studies for risk of bias. All data and risk of bias

  9. Radiation therapy in old patients. Side effects and results of radiation therapy in old patients

    International Nuclear Information System (INIS)

    Geinitz, H.; Zimmermann, F.B.; Molls, M.

    1999-01-01

    Background: Despite a growing number of elderly patients receiving radiation therapy little is known about side effects and outcome of irradiation in this section of the population. Methods: In a review article epidemiologic data, aspects of radiation-biology as well as side effects and outcome of radiation therapy of elderly patients are discussed. Results: Cancer incidence rises with age and is exceeding 3.5% for males older than 85 years. With a life expectancy of more than 4 years, curative therapy is indicated even at this age. Furthermore, several retrospective studies indicate that local control and disease-Specific survival after radiation therapy of elderly patients is comparable with that of younger persons. The exception contains elderly patients with grade-III to IV gliomas or with rectal carcinoma who show a reduced survival which is perhaps caused by less aggressive combined treatment (tumor resection). Although some biological and molecular data indicate a rise in radiation sensitivity with growing age like the reduction of the capacity of some DNA-repair enzymes, there is no convincing evidence in animal studies or in retrospective clinical studies that radiation therapy is generally less well tolerated by older individuals. Some age-depending differences in organ toxicities are described in 3 large studies, which evaluate the data of patients who were enrolled in different EORTC-trials: Older patients suffer more of functional mucositis in case of radiation therapy to the head and neck, they have an increased weight loss and a higher frequency of late esophageal damage when irradiated in the thorax, and they show a higher prevalence of sexual dysfunction when treated with radiation therapy to the pelvis. On the other hand younger patients suffer more from acute toxicity like skin damage, nausea, and deterioration of the performance status during pelvic radiotherapy. When discussing the dose intensity of radiation therapy concomitant disease which

  10. Radiation therapy

    International Nuclear Information System (INIS)

    Peschel, R.E; Fisher, J.J.

    1986-01-01

    The new insights and controversies concerning the radiobiological properties of malignant melanoma and how these relate to new clinical approaches are reviewed. The recent clinical experience with large individual fraction sizes is analyzed. The treatment of malignant melanoma in certain specialized sites is also described. An attempt is made to place in perspective the usefulness of radiation therapy in the treatment of this complex disease. Finally, certain new applications for radiation therapy both alone and in combustion with other treatment modalities are proposed that may ultimately prove appropriate for clinical trials

  11. Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles

    Science.gov (United States)

    Mehrmohammadi, Mohammad; Ma, Li L.; Chen, Yun-Sheng; Qu, Min; Joshi, Pratixa; Chen, Raeanna M.; Johnston, Keith P.; Emelianov, Stanislav

    2010-02-01

    Photothermal therapy is a laser-based non-invasive technique for cancer treatment. Photothermal therapy can be enhanced by employing metal nanoparticles that absorb the radiant energy from the laser leading to localized thermal damages. Targeting of nanoparticles leads to more efficient uptake and localization of photoabsorbers thus increasing the effectiveness of the treatment. Moreover, efficient targeting can reduce the required dosage of photoabsorbers; thereby reducing the side effects associated with general systematic administration of nanoparticles. Magnetic nanoparticles, due to their small size and response to an external magnetic field gradient have been proposed for targeted drug delivery. In this study, we investigate the applicability of multifunctional nanoparticles (e.g., magneto-plasmonic nanoparticles) and magneto-motive ultrasound imaging for image-guided photothermal therapy. Magneto-motive ultrasound imaging is an ultrasound based imaging technique capable of detecting magnetic nanoparticles indirectly by utilizing a high strength magnetic field to induce motion within the magnetically labeled tissue. The ultrasound imaging is used to detect the internal tissue motion. Due to presence of the magnetic component, the proposed multifunctional nanoparticles along with magneto-motive ultrasound imaging can be used to detect the presence of the photo absorbers. Clearly the higher concentration of magnetic carriers leads to a monotonic increase in magneto-motive ultrasound signal. Thus, magnetomotive ultrasound can determine the presence of the hybrid agents and provide information about their location and concentration. Furthermore, the magneto-motive ultrasound signal can indicate the change in tissue elasticity - a parameter that is expected to change significantly during the photothermal therapy. Therefore, a comprehensive guidance and assessment of the photothermal therapy may be feasible through magneto-motive ultrasound imaging and

  12. Local dose enhancement in radiation therapy: Monte Carlo simulation study; Reforco local de dose em radioterapia utilizando nanoparticulas: estudo por simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Laura E. da; Nicolucci, Patricia, E-mail: laura.emilia.fm@gmail.com [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras

    2014-04-15

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  13. Chemotherapy and molecular target therapy combined with radiation therapy

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo

    2012-01-01

    Combined chemotherapy and radiation therapy has been established as standard treatment approach for locally advanced head and neck cancer, esophageal cancer and so on through randomized clinical trials. However, radiation-related morbidity such as acute toxicity also increased as treatment intensity has increased. In underlining mechanism for enhancement of normal tissue reaction in chemo-radiation therapy, chemotherapy enhanced radiosensitivity of normal tissues in addition to cancer cells. Molecular target-based drugs combined with radiation therapy have been expected as promising approach that makes it possible to achieve cancer-specific enhancement of radiosensitivity, and clinical trials using combined modalities have been performed to evaluate the feasibility and efficacy of this approach. In order to obtain maximum radiotherapeutic gain, a detailed understanding of the mechanism underlying the interaction between radiation and Molecular target-based drugs is indispensable. Among molecular target-based drugs, inhibitors targeting epidermal growth factor receptor (EGFR) and its signal transduction pathways have been vigorously investigated, and mechanisms regarding the radiosensitizing effect have been getting clear. In addition, the results of randomized clinical trials demonstrated that radiation therapy combined with cetuximab resulted in improvement of overall and disease-specific survival rate compared with radiation therapy in locally advanced head and neck cancer. In this review, clinical usefulness of chemo-radiation therapy and potential molecular targets for potentiation of radiation-induced cell killing are summarized. (author)

  14. Preparation of nanoparticles from acrylated palm oil microemulsion using radiation technique

    International Nuclear Information System (INIS)

    Rida Tajau; Wan Mohd Zin Wan Yunus; Khairul Zaman Mohd Dahlan; Mohd Hilmi Mahmood; Kamaruddin Hashim; Mohd Yusof Hamzah

    2011-01-01

    The use of microemulsion in the development of nanoparticle based on acrylated palm oil product is demonstrated. Acrylated palm oil microemulsions were prepared using ionic surfactant. Combination methods of emulsion polymerization and radiation crosslinking were applied to the microemulsion system for synthesizing nanoparticle. The ionizing radiation technique was introduced to generate a crosslinking reaction in the development of nanoparticle. The nanoparticle was evaluated in terms of particle diameter, surface charge, pH and conductance. Their image was captured using Transmission electron microscopy (TEM). Results show that the size, charge and shape of the particles are influenced by concentration of surfactants, monomer concentration, radiation dose and time of storage. The study showed a promising method to produced nanoparticle. This nano-sized product has the potential to be utilized as controlled-drug-release-carrier. (Author)

  15. A computer aided treatment event recognition system in radiation therapy

    International Nuclear Information System (INIS)

    Xia, Junyi; Mart, Christopher; Bayouth, John

    2014-01-01

    Purpose: To develop an automated system to safeguard radiation therapy treatments by analyzing electronic treatment records and reporting treatment events. Methods: CATERS (Computer Aided Treatment Event Recognition System) was developed to detect treatment events by retrieving and analyzing electronic treatment records. CATERS is designed to make the treatment monitoring process more efficient by automating the search of the electronic record for possible deviations from physician's intention, such as logical inconsistencies as well as aberrant treatment parameters (e.g., beam energy, dose, table position, prescription change, treatment overrides, etc). Over a 5 month period (July 2012–November 2012), physicists were assisted by the CATERS software in conducting normal weekly chart checks with the aims of (a) determining the relative frequency of particular events in the authors’ clinic and (b) incorporating these checks into the CATERS. During this study period, 491 patients were treated at the University of Iowa Hospitals and Clinics for a total of 7692 fractions. Results: All treatment records from the 5 month analysis period were evaluated using all the checks incorporated into CATERS after the training period. About 553 events were detected as being exceptions, although none of them had significant dosimetric impact on patient treatments. These events included every known event type that was discovered during the trial period. A frequency analysis of the events showed that the top three types of detected events were couch position override (3.2%), extra cone beam imaging (1.85%), and significant couch position deviation (1.31%). The significant couch deviation is defined as the number of treatments where couch vertical exceeded two times standard deviation of all couch verticals, or couch lateral/longitudinal exceeded three times standard deviation of all couch laterals and longitudinals. On average, the application takes about 1 s per patient when

  16. A computer aided treatment event recognition system in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Junyi, E-mail: junyi-xia@uiowa.edu; Mart, Christopher [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Bayouth, John [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Human Oncology, University of Wisconsin - Madison, 600 Highland Avenue, K4/B55, Madison, Wisconsin 53792-0600 (United States)

    2014-01-15

    Purpose: To develop an automated system to safeguard radiation therapy treatments by analyzing electronic treatment records and reporting treatment events. Methods: CATERS (Computer Aided Treatment Event Recognition System) was developed to detect treatment events by retrieving and analyzing electronic treatment records. CATERS is designed to make the treatment monitoring process more efficient by automating the search of the electronic record for possible deviations from physician's intention, such as logical inconsistencies as well as aberrant treatment parameters (e.g., beam energy, dose, table position, prescription change, treatment overrides, etc). Over a 5 month period (July 2012–November 2012), physicists were assisted by the CATERS software in conducting normal weekly chart checks with the aims of (a) determining the relative frequency of particular events in the authors’ clinic and (b) incorporating these checks into the CATERS. During this study period, 491 patients were treated at the University of Iowa Hospitals and Clinics for a total of 7692 fractions. Results: All treatment records from the 5 month analysis period were evaluated using all the checks incorporated into CATERS after the training period. About 553 events were detected as being exceptions, although none of them had significant dosimetric impact on patient treatments. These events included every known event type that was discovered during the trial period. A frequency analysis of the events showed that the top three types of detected events were couch position override (3.2%), extra cone beam imaging (1.85%), and significant couch position deviation (1.31%). The significant couch deviation is defined as the number of treatments where couch vertical exceeded two times standard deviation of all couch verticals, or couch lateral/longitudinal exceeded three times standard deviation of all couch laterals and longitudinals. On average, the application takes about 1 s per patient when

  17. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Science.gov (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  18. Study on external beam radiation therapy

    International Nuclear Information System (INIS)

    Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung

    1999-04-01

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT

  19. Study on external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung

    1999-04-01

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT.

  20. Radiation therapy for operable rectal cancer

    International Nuclear Information System (INIS)

    Bondar, G.V.; Semikoz, N.G.; Bashejev, V.Kh.; Borota, O.V.; Bondarenko, M.V.; Kiyashko, O.Yu.

    2012-01-01

    The authors present a review of the literature on modern tendencies of radiation therapy application to treatment of operable rectal cancer. Many randomized control studies compared the efficacy of combination of radiation therapy (pre-operative or post-operative) and surgery versus surgery only demonstrating various results. Meta-analysis of the data on efficacy of combination of radiation therapy and standard surgery revealed 22 randomized control studies (14 with pre-operative radiation therapy and 8 with post-operative radiation therapy) with total number of 8507 patients (Colorectal Cancer Collaborative Group, 2000). The use of combination treatment reduced the number of isolated locoregional relapses both with pre-operative (22.5 - 12.5 %; p < 0.00001) and post-operative radiation therapy (25.8 - 16.7 %; p - 0.00001). The influence on total survival was not significant (62 % vs. 63 %; p - 0.06).

  1. Job satisfaction among radiation therapy educators.

    Science.gov (United States)

    Swafford, Larry G; Legg, Jeffrey S

    2007-01-01

    Job satisfaction is one of the most consistent variables related to employee retention and is especially relevant considering the shortage of radiation therapists and radiation therapy educators in the United States. To investigate job satisfaction levels among radiation therapy educators certified by the American Registry of Radiologic Technologists and employed in programs accredited by the Joint Review Committee on Education in Radiologic Technology. The long form of the Minnesota Satisfaction Questionnaire (MSQ) was mailed to 158 radiation therapy educators to measure job satisfaction. Overall job satisfaction and subscales were calculated based on MSQ methodology. A total of 90 usable surveys were returned for a 56.9% response rate. With a "general satisfaction" score of 69.64, radiation therapy educators ranked in the lowest 25th percentile of the nondisabled norm scale for job satisfaction. Respondents reported higher degrees of job satisfaction on the moral values, social service and achievement subscales. Lower job satisfaction levels were associated with the company policies and practices, advancement and compensation subscales. Radiation therapy educators report low job satisfaction. Educational institutions must tailor recruitment and retention efforts to better reflect the positive aspects of being a radiation therapy educator. Furthermore, improving retention and recruitment efforts might help offset the current shortages of radiation therapy educators and, ultimately, clinical radiation therapists.

  2. Preparation of copper nanoparticles by radiation

    International Nuclear Information System (INIS)

    Liu Yajian; Guo Xiongbin; Li Zhaolong; Fu Junjie; Tan Yuanyuan; Zhou Xinyao; Xu Furong

    2013-01-01

    Copper nanoparticles were successfully synthesized by 60 Co-γ radiation with aqueous solution of cupric sulfate under inert nitrogen-purged conditions. Cu nanoparticles were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), laser particle size distribution analyzer (LSPSDA) and differential scanning calorimeter (DSC) techniques, respectively. The effects of solution system, pH, additive of surfactant and absorbed doses on the particle size and its distribution as well as stored stability of Cu naoparticles were investigated. High resolution TEM pictures showed the formation of homogeneous cubic-structured copper nanoparticles with different sizes depends on the synthetic conditions. This new kind of synthesis method shows the excellent stability, which may provide an efficient way to improve the fine tuning of the structure and size of copper nanoparticles. (authors)

  3. AIDS and Occupational Therapy

    Directory of Open Access Journals (Sweden)

    Ruiz Garrós, MC

    2004-12-01

    Full Text Available "When my first hospitalization took place, I must recognize I was plunged into the mistake of identifying AIDS with death, together with the depression, uneasiness, unsecurity and the feeling of inability to plan my life in the short and long term to the point of refusing in my mind to organize things as simple as future holidays or improvements at home".Thanks to retroviral treatments, the initially mortal HIV/AIDS infection has become a chronic disease as it can be today thediabetes, allowing objectives in the short, medium and long term. Here is where the occupational therapy operates as an instrument to improve, keep or rehabilitate the occupational areas of this group which has a series of special features to be borne in mind when working with them.I seek to reflect my 8 months experience working as an occupational therapist in a Refuge Centre for AIDS ill people, and how throughout this experience I changed several of my initial approaches and working methods too.

  4. Radiation Synthesis of Nanoparticles

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan; Jamaliah Sharif; Nik Ghazali Nik Salleh; Dahlan Mohd; Kamaruddin Hashim

    2011-01-01

    Radiation processing of nano materials is one of the many applications of ionising radiation. It has the advantages of cold process, fast, homogeneous and clean processing without using chemicals, heat and no release of any volatile organic compounds. Hence, radiation processing can be categorised as a green process. The applications of ionising radiation for materials processing are well established and commercialized by way of crosslinking, grafting, curing and degradation. However, the materials use, condition of processing and the end products varies and radiation processing is continue to be developed for various applications in industry, agriculture, health care and environment. The new and emerging development of nano materials has also being incorporated in radiation processing whereby we can see the convergence of radiation and nano technology, to take advantages of the inherent properties of nano size particles. Nowadays many works are being carried out on radiation processing of nano materials. The incorporation of such nanoparticles in polymeric materials will render specific properties that find several advantages compare to conventional composites such as increase heat resistant, improve abrasion and scratch resistant and enhance mechanical properties. In recent years, polymer/clay nano composites has attracted the interest of industry because of its major improvements in physical and mechanical properties, heat stability, reduce flammability and provide enhanced barrier properties at low clay contents. In many applications, crosslinking of polymer matrix is necessary that can further improved the mechanical and physical properties of the composites. Similar research has been extended to electron beam crosslinking of electromagnetic nano composites which comprise of high volume fraction of inorganic fillers in elastomeric matrix. The effect of radiation on inorganic fillers is believed to has influence on the overall radiation crosslinking of the

  5. Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy

    Directory of Open Access Journals (Sweden)

    Wang Q

    2012-08-01

    Full Text Available Qian Wang,1 Liping Xie,1 Zhizhu He,2 Derui Di,2 Jing Liu1,21Department of Biomedical Engineering, School of Medicine, Tsinghua University, 2Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of ChinaBackground: Recently, nanoparticles have been demonstrated to have tremendous merit in terms of improving the treatment specificity and thermal ablation effect on tumors. However, the potential toxicity and long-term side effects caused by the introduced nanoparticles and by expelling them out of the body following surgery remain a significant challenge. Here, we propose for the first time to directly adopt magnesium nanoparticles as the heating enhancer in laser thermal ablation to avoid these problems by making full use of the perfect biodegradable properties of this specific material.Methods: To better understand the new nano “green” hyperthermia modality, we evaluated the effects of magnesium nanoparticles on the temperature transients inside the human body subject to laser interstitial heating. Further, we experimentally investigated the heating enhancement effects of magnesium nanoparticles on a group of biological samples: oil, egg white, egg yolk, in vitro pig tissues, and the in vivo hind leg of rabbit when subjected to laser irradiation.Results: Both the theoretical simulations and experimental measurements demonstrated that the target tissues injected with magnesium nanoparticles reached much higher temperatures than tissues without magnesium nanoparticles. This revealed the enhancing behavior of the new nanohyperthermia method.Conclusion: Given the unique features of magnesium nanoparticles – their complete biological safety and ability to enhance heating – which most other advanced metal nanoparticles do not possess, the use of magnesium nanoparticles in hyperthermia therapy offers an important “green” nanomedicine modality for treating tumors

  6. Development and characterization of acrylated palm oil nanoparticles using ionizing radiation

    International Nuclear Information System (INIS)

    Tajau, Rida; Yunus, Wan Md Zin Wan; Dahlan, Khairul Zaman Mohd; Mahmood, Mohd Hilmi; Hashim, Kamaruddin

    2012-01-01

    In this study, the utilization of radiation crosslinking methods which are known as intermolecular and intramolecular crosslinking for the formation of nanoparticles of Acrylated Palm Oil (APO) in the microemulsion system that also consists of Pluronic F-127 (PF-127) surfactant was demonstrated. This microemulsion system was subjected to the ionizing radiation i.e. gamma irradiation at different doses to form the crosslinked APO nanoparticles. The effects of radiation doses on the size of APO nanoparticles were investigated using the Dynamic Light Scattering (DLS) method and their images were viewed using the Transmission Electron Microcrospy (TEM). The Fourier Transform Infra-Red (FTIR) spectroscopy was used to characterize the chemical structure and the crosslinking conversion of carbon-carbon double bond (-C = C-) of the APO nanoparticles after irradiation. As a result, the size of the APO nanoparticle decreased when the irradiation dose increased. Reduce in size might be due to the effect of intramolecular crosslinking reaction of the APO nanoparticles during irradiation process. Meanwhile, the intramolecular -C C- crosslinking conversion percentage was increased at doses below 1kGy before decreasing at the higher dose that might due to the intermolecular crosslinking of the macromolecules. This study showed that radiation crosslinking methods of polymerization and crosslinking in the microemulsion were found to be promising for the synthesis of nanoparticles.

  7. Development and characterization of acrylated palm oil nanoparticles using ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida; Yunus, Wan Md Zin Wan; Dahlan, Khairul Zaman Mohd; Mahmood, Mohd Hilmi; Hashim, Kamaruddin [Malaysian Nuclear Agency (Nuclear Malaysia), Radiation Processing Technology Division (BTS), Bangi, 43000 Kajang, Selangor (Malaysia); Chemistry Department, Faculty of Science, University Putra Malaysia (UPM), 43400 UPM Serdang, Selangor (Malaysia); Malaysian Nuclear Agency (Nuclear Malaysia), Radiation Processing Technology Division (BTS), Bangi, 43000 Kajang, Selangor (Malaysia)

    2012-11-27

    In this study, the utilization of radiation crosslinking methods which are known as intermolecular and intramolecular crosslinking for the formation of nanoparticles of Acrylated Palm Oil (APO) in the microemulsion system that also consists of Pluronic F-127 (PF-127) surfactant was demonstrated. This microemulsion system was subjected to the ionizing radiation i.e. gamma irradiation at different doses to form the crosslinked APO nanoparticles. The effects of radiation doses on the size of APO nanoparticles were investigated using the Dynamic Light Scattering (DLS) method and their images were viewed using the Transmission Electron Microcrospy (TEM). The Fourier Transform Infra-Red (FTIR) spectroscopy was used to characterize the chemical structure and the crosslinking conversion of carbon-carbon double bond (-C = C-) of the APO nanoparticles after irradiation. As a result, the size of the APO nanoparticle decreased when the irradiation dose increased. Reduce in size might be due to the effect of intramolecular crosslinking reaction of the APO nanoparticles during irradiation process. Meanwhile, the intramolecular -C C- crosslinking conversion percentage was increased at doses below 1kGy before decreasing at the higher dose that might due to the intermolecular crosslinking of the macromolecules. This study showed that radiation crosslinking methods of polymerization and crosslinking in the microemulsion were found to be promising for the synthesis of nanoparticles.

  8. Basal cell carcinoma after radiation therapy

    International Nuclear Information System (INIS)

    Shimbo, Keisuke; Terashi, Hiroto; Ishida, Yasuhisa; Tahara, Shinya; Osaki, Takeo; Nomura, Tadashi; Ejiri, Hirotaka

    2008-01-01

    We reported two cases of basal cell carcinoma (BCC) that developed after radiation therapy. A 50-year-old woman, who had received an unknown amount of radiation therapy for the treatment of intracranial germinoma at the age of 22, presented with several tumors around the radiation ulcer. All tumors showed BCC. A 33-year-old woman, who had received an unknown amount of radiation therapy on the head for the treatment of leukemia at the age of 2, presented with a black nodule within the area of irradiation. The tumor showed BCC. We discuss the occurrence of BCC after radiation therapy. (author)

  9. WE-G-BRE-07: Proton Therapy Enhanced by Tumor-Targeting Gold Nanoparticles: A Pilot in Vivo Experiment at The Proton Therapy Center at MD Anderson Cancer Center

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, T; Grant, J; Wolfe, A; Gillin, M; Krishnan, S [MD Anderson Cancer Ctr., Houston, TX (United States)

    2014-06-15

    Purpose: Assess tumor-growth delay and survival in a mouse model of prostate cancer treated with tumor-targeting gold nanoparticles (AuNPs) and proton therapy. Methods: We first examined the accumulation of targeting nanoparticles within prostate tumors by imaging AuNPs with ultrasound-guided photoacoustics at 24h after the intravenous administration of goserelin-conjugated AuNPs (gAuNP) in three mice. Nanoparticles were also imaged at the cellular level with TEM in PC3 cells incubated with gAuNP for 24h. Pegylated AuNPs (pAuNP) were also imaged in vivo and in vitro for comparison. PC3 cells were then implanted subcutaneously in nude mice; 51mice with 8–10mm tumors were included. AuNPs were injected intravenously at 0.2%w/w final gold concentration 24h before irradiation. A special jig was designed to facilitate tumor irradiation perpendicular to the proton beam. Proton energy was set to 180MeV, the radiation field was 18×18cm{sup 2}, and 9cm or 13.5cm thick solid-water compensators were used to position the tumors at either the beam entrance (BE) or the SOBP. Physical doses of 5Gy were delivered to all tumors on a patient beam line at MD Anderson's Proton Therapy Center. Results: The photoacoustic experiment reveled that our nanoparticles leak from the tumor-feeding vasculature and accumulate within the tumor volume over time. Additionally, TEM images showed gAuNP are internalized in cancer cells, accumulating within the cytoplasm, whereas pAuNP are not. Tumor-growth was delayed by 11 or 32days in mice receiving gAuNP irradiated at the BE or the SOBP, relative to proton radiation alone. Survival curves (ongoing experiment) reveal that gAuNPs improved survival by 36% or 74% for tumors irradiated at the BE or SOBP. Conclusion: These important, albeit preliminary, in vivo findings reveal nanoparticles to be potent sensitizers to proton therapy. Further, conjugation of AuNPs to tumor-specific antigens that promote enhanced cellular internalization improved

  10. Technical advances in radiation therapy

    International Nuclear Information System (INIS)

    Sause, W.T.

    1986-01-01

    Substantial advances have been made in radiation therapy. Many of these advances can be applied in most radiation therapy departments without expensive improvements in equipment. Changes in radiation fractionation, chemotherapeutic sensitization, intraoperative radiation, and interstitial implants can be performed with experience and improved physician training in most medium-sized departments. Advances that require investments in expensive equipment such as particle radiation and hyperthermia will need to be evaluated at designated treatment centers. 106 references

  11. Interactive Decision-Support Tool for Risk-Based Radiation Therapy Plan Comparison for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Brodin, N. Patrik; Maraldo, Maja V.; Aznar, Marianne C.

    2014-01-01

    PURPOSE: To present a novel tool that allows quantitative estimation and visualization of the risk of various relevant normal tissue endpoints to aid in treatment plan comparison and clinical decision making in radiation therapy (RT) planning for Hodgkin lymphoma (HL). METHODS AND MATERIALS...... and a volumetric modulated arc therapy plan for a patient with mediastinal HL. CONCLUSION: This multiple-endpoint decision-support tool provides quantitative risk estimates to supplement the clinical judgment of the radiation oncologist when comparing different RT options....... of dose-response curves to drive the reoptimization of a volumetric modulated arc therapy treatment plan for an HL patient with head-and-neck involvement. We also use this decision-support tool to visualize and quantitatively evaluate the trade-off between a 3-dimensional conformal RT plan...

  12. Synthesis of multifunctional gold nanoparticles for image guided therapy

    International Nuclear Information System (INIS)

    Laurent, Gautier

    2014-01-01

    The original properties of nanoparticles make them extremely attractive in the field of oncology. In fast, gold nanoparticles coated by macrocyclic ligands allow imaging and therapy with only one object. Therefore, multifunctional platforms are very promising for image-guided therapy, winch constitutes an important step towards personalization of treatment. This consists of stimulating the therapeutic activity of the nanoparticles when their accumulation is high within the tumor zone and low in healthy tissues. A higher selectivity of the treatment is therefore expected. Biodistribution study by SPECT/CT has shown free circulation, renal elimination and a moderate retention by the liver of the nanoparticles. However, this retention is not due to the opsonisation processes. The MRI study of rats' brain carrying a gliosarcoma has shown an accumulation of nanoparticles Au-at-FADOTAGA-Gd in the tumor. Moreover, the co-labeling of these nanoparticles by Ge and 64Cts2+ was successfully performed. As a result, PET/MRI images, a much researched combination but rarely achieved, were acquired on the same animal alter intravenous injection of the co-labeled nanoparticles. The radiosensitizing character of nanoparticles Au-at-TADOTAGA was confirmed by the follow up of tumor growth alter a treatment by MRT (microbeam irradiation) 15 minutes after intratumoral injection of nanoparticles. The therapeutic gain of this treatment has been validated by MRT 24 hours after intravenous injection of nanoparticles to rats carrying gliosarcoma (radioresistant tumor in radiosensitive organ). (author)

  13. Radiation therapy sources, equipment and installations

    International Nuclear Information System (INIS)

    2011-03-01

    The safety code for Telegamma Therapy Equipment and Installations, (AERB/SC/MED-1) and safety code for Brachytherapy Sources, Equipment and Installations, (AERB/SC/MED-3) were issued by AERB in 1986 and 1988 respectively. These codes specified mandatory requirements for radiation therapy facilities, covering the entire spectrum of operations ranging from the setting up of a facility to its ultimate decommissioning, including procedures to be followed during emergency situations. The codes also stipulated requirements of personnel and their responsibilities. With the advent of new techniques and equipment such as 3D-conformal radiation therapy, intensity modulated radiation therapy, image guided radiation therapy, treatment planning system, stereotactic radiosurgery, stereotactic radiotherapy, portal imaging, integrated brachytherapy and endovascular brachytherapy during the last two decades, AERB desires that these codes be revised and merged into a single code titled Radiation Therapy Sources, Equipment, and Installations

  14. Evaluation of Radiation Response and Gold Nanoparticle Enhancement in Drug-Resistant Pancreatic Cancer Cells

    Science.gov (United States)

    Abourabia, Assya

    Pancreatic cancer is a major cause of cancer-related death worldwide after lung cancer and colorectal cancer Pancreatic treatment modalities consist of surgery, chemotherapy, and radiation therapy or combination of these therapies. These modalities are good to some extents but they do have some limitations. For example, during the chemotherapy, tumor cells can develop some escape mechanisms and become chemoresistant to protect themselves against the chemo drugs and pass on theses escape mechanisms to their offspring, despite the treatment given. Cancer Cells can become chemoresistant by many mechanisms, for example, decreased drug influx mechanisms, decreased of drug transport molecules, decreased drug activation, altered drug metabolism that diminishes the capacity of cytotoxic drugs, and enhanced repair of DNA damage. Given that some of these chemoresistance mechanisms may impact sensitivity to radiation. Therefore, there is a strong need for a new alternative treatment option to amplify the therapeutic efficacy of radiotherapy and eventually increase the overall efficacy of cancer treatment. Nano-radiation therapy is an emerging and promising modality aims to enhance the therapeutic efficacy of radiotherapy through the use of radiosensitizing nanoparticles. The primary goal of using GNP-enhanced radiation is that GNPs are potent radiosensitizer agents that sensitize the tumor cells to radiation, and these agents promote generation of the free radicals produced by Photo- and Auger- electrons emission at the molecular level which can enhance the effectiveness of radiation-induced cancer cell death. The main aim of this research is to analyze and compare the response to radiation of pancreatic cancer cells, PANC-1, and PANC-1 cells that are resistant to oxaliplatin, PANC-1/OR, and investigate the radiation dose enhancement effect attributable to GNP when irradiating the cells with low-energy (220 kVp) beam at various doses. Based on evidence from the existing

  15. Potency preservation following stereotactic body radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Obayomi-Davies, Olusola; Pahira, John; McGeagh, Kevin G; Collins, Brian T; Kowalczyk, Keith; Bandi, Gaurav; Kumar, Deepak; Suy, Simeng; Dritschilo, Anatoly; Lynch, John H; Collins, Sean P; Chen, Leonard N; Bhagat, Aditi; Wright, Henry C; Uhm, Sunghae; Kim, Joy S; Yung, Thomas M; Lei, Siyuan; Batipps, Gerald P

    2013-01-01

    Erectile dysfunction after prostate radiation therapy remains an ongoing challenge and critical quality of life issue. Given the higher dose of radiation per fraction using stereotactic body radiation therapy (SBRT) there is concern that post-SBRT impotency would be higher than conventional radiation therapy approaches. This study sought to evaluate potency preservation and sexual function following SBRT for prostate cancer. Between February 2008 and March 2011, 216 men with clinically localized prostate cancer were treated definitively with SBRT monotherapy at Georgetown University Hospital. Potency was defined as the ability to have an erection firm enough for intercourse with or without sexual aids while sexual activity was defined as the ability to have an erection firm enough for masturbation and foreplay. Patients who received androgen deprivation therapy (ADT) were excluded from this study. Ninety-seven hormone-naïve men were identified as being potent at the initiation of therapy and were included in this review. All patients were treated to 35–36.25 Gy in 5 fractions delivered with the CyberKnife Radiosurgical System (Accuray). Prostate specific antigen (PSA) and total testosterone levels were obtained pre-treatment, every 3 months for the first year and every 6 months for the subsequent year. Sexual function was assessed with the Sexual Health Inventory for Men (SHIM), the Expanded Prostate Index Composite (EPIC)-26 and Utilization of Sexual Medication/Device questionnaires at baseline and all follow-up visits. Ninety-seven men (43 low-, 50 intermediate- and 4 high-risk) at a median age of 68 years (range, 48–82 years) received SBRT. The median pre-treatment PSA was 5.9 ng/ml and the minimum follow-up was 24 months. The median pre-treatment total serum testosterone level was 11.4 nmol/L (range, 4.4-27.9 nmol/L). The median baseline SHIM was 22 and 36% of patients utilized sexual aids prior to treatment. Although potency rates declined following

  16. Radiation Therapy Side Effects

    Science.gov (United States)

    Radiation therapy has side effects because it not only kills or slows the growth of cancer cells, it can also affect nearby healthy cells. Many people who get radiation therapy experience fatigue. Other side effects depend on the part of the body that is being treated. Learn more about possible side effects.

  17. The future of radiation therapy in the post-genomic era

    International Nuclear Information System (INIS)

    McBride, W. H.; Iwamoto, K. S.

    2003-01-01

    The cloning of the human genome has generated a tremendous resource of information that will improve treatment of cancer, and other diseases. Allied to these discoveries are powerful new investigative tools that have been, and are being, developed. These are being used to give a comprehensive biological profile of individuals and their cancer that will allow better classification, as well as identification of pathways that might be targeted with therapeutic benefit. The hope is that these approaches will allow intervention that is tailored to the needs of the individual patient and that the targeted cancer therapies will be associated with less toxicity than those currently used. This raises questions as to how best to use the new biotechnologies to predict responses to conventional therapies and indeed will conventional therapies, like radiation therapy, have a role in cancer treatment as specific biologically targeted drugs become commonplace. Here, it is argued that even the molecular staging of cancer that is currently being performed, if exploited correctly, will greatly aid patient selection for radiation therapy and that this should be the starting point for further studies aimed at developing predictive profiles for improving treatment outcome. It is also argued that because the biological anti-cancer agents target molecular pathways that overlap with those responsible for radiosensitivity, and because on their own they have little cytotoxic power, radiation therapists should incorporate biological agents into combined modality regimens and that this is likely to be a standard form of treatment in the next decade. (author)

  18. Internal Radiation Therapy for Cancer

    Science.gov (United States)

    When getting internal radiation therapy, a source of radiation is put inside your body, in either liquid or solid form. It can be used treat different kinds of cancer, including thyroid, head and neck, breast, cervix, prostate, and eye. Learn more about how what to expect when getting internal radiation therapy.

  19. Computer-aided beam arrangement based on similar cases in radiation treatment-planning databases for stereotactic lung radiation therapy

    International Nuclear Information System (INIS)

    Magome, Taiki; Shioyama, Yoshiyuki; Arimura, Hidetaka

    2013-01-01

    The purpose of this study was to develop a computer-aided method for determination of beam arrangements based on similar cases in a radiotherapy treatment-planning database for stereotactic lung radiation therapy. Similar-case-based beam arrangements were automatically determined based on the following two steps. First, the five most similar cases were searched, based on geometrical features related to the location, size and shape of the planning target volume, lung and spinal cord. Second, five beam arrangements of an objective case were automatically determined by registering five similar cases with the objective case, with respect to lung regions, by means of a linear registration technique. For evaluation of the beam arrangements five treatment plans were manually created by applying the beam arrangements determined in the second step to the objective case. The most usable beam arrangement was selected by sorting the five treatment plans based on eight plan evaluation indices, including the D95, mean lung dose and spinal cord maximum dose. We applied the proposed method to 10 test cases, by using an RTP database of 81 cases with lung cancer, and compared the eight plan evaluation indices between the original treatment plan and the corresponding most usable similar-case-based treatment plan. As a result, the proposed method may provide usable beam arrangements, which have no statistically significant differences from the original beam arrangements (P>0.05) in terms of the eight plan evaluation indices. Therefore, the proposed method could be employed as an educational tool for less experienced treatment planners. (author)

  20. Nonsurgical treatment for cancer using radiation therapy

    International Nuclear Information System (INIS)

    Ogi, Yasuo

    2012-01-01

    The number of people who are dying from cancer has been increasing in association with population aging. Radiation therapy is now one of the three major cancer treatment methods, along with surgery and chemotherapy. People used to consider radiation therapy only as a ''noninvasive cancer treatment''; however, with the ceaseless effort by medical experts and corporations, different radiation therapy types and techniques including the latest technical advances have come out one after another, and the improvements in radiation therapies have provided treatments that are not only less traumatizing to patients but also as effective and therapeutic as surgery in certain body regions. The importance of radiation therapy has become and will become even greater in the society with more elderly cancer patients who do not have the physical strength to undergo surgery. In this article, the history of radiation therapy, rapidly developed high-precision radiation therapy techniques, and unsolved issues are discussed, and then, ''MHI vero4DRT'', which is the high-precision image-guided radiation therapy equipment developed for solving such issues, is introduced. (author)

  1. Evaluation of cytotoxic and tumor targeting capability of (177)Lu-DOTATATE-nanoparticles: a trailblazing strategy in peptide receptor radionuclide therapy.

    Science.gov (United States)

    Arora, Geetanjali; Dubey, Priyanka; Shukla, Jaya; Ghosh, Sourabh; Bandopadhyaya, Gurupad

    2016-06-01

    We propose an innovative strategy of nanoparticle-mediated-peptide receptor radionuclide therapy (PRRT) employing PLGA-nanoparticles together with anti-β-hCG antibodies that can protect kidneys from radiation damage while simultaneously enhancing its tumor targeting and cytotoxic ability for somatostatin receptor (SSR) positive tumors. PEG-coated-(177)Lu-DOTATATE-PLGA-nanoparticles (PEG-LuD-NP) were formulated and characterized. In vitro toxicity of these particles was tested on human glioblastoma cell line U87MG over a radiation dose range of 19-78 Gy, using MTT assay and flow cytometry. To further enhance cytotoxicity and test the feasibility of active tumor targeting, apoptosis-inducing anti-β-hCG monoclonal antibodies were employed in vitro, after confirming expression of β-hCG on U87MG. In vivo tumor targeting ability of these particles, in comparison to uncoated particles and un-encapsulated (177)Lu-DOTATATE, was assessed by intravenous administration in tumor-induced wistar rats. Rats were first imaged in a gamma camera followed by euthanasia for organ extraction and counting in gamma counter. The particles were spherical in shape with mean diameter of 300 nm. Highest cytotoxicity that could be achieved with PEG-LuD-NP, on radio-resistant U87MG cells, was 35.8 % due to complex cellular response triggered by ionizing radiation. Interestingly, synergistic action of antibodies and PEG-LuD-NP doubled the cytotoxicity (80 %). PEG-LuD-NP showed the highest tumor uptake (4.3 ± 0.46 % ID/g) as compared to (177)Lu-DOTATATE (3.5 ± 0.31 %) and uncoated-(177)Lu-DOTATATE-nanoparticles (3.4 ± 0.35 %) in tumor-inoculated wistar rats (p targeting SSR positive tumors for enhanced cytoxicity and reduced renal radiation dose associated with conventional PRRT. To our knowledge of literature, this is the first study to establish in vitro and in vivo efficacy profile of nanoparticles in PRRT providing a stepping-stone for undergoing and future research

  2. Radiation Therapy - Multiple Languages

    Science.gov (United States)

    ... W XYZ List of All Topics All Radiation Therapy - Multiple Languages To use the sharing features on this page, ... Information Translations Vietnamese (Tiếng Việt) Expand Section Radiation Therapy - Tiếng Việt (Vietnamese) ... Health Information Translations Characters not displaying correctly on this page? See language display issues . Return to the MedlinePlus Health Information ...

  3. Ultrasmall lanthanide oxide nanoparticles for biomedical imaging and therapy

    CERN Document Server

    Lee, Gang Ho

    2014-01-01

    Most books discuss general and broad topics regarding molecular imagings. However, Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy, will mainly focus on lanthanide oxide nanoparticles for molecular imaging and therapeutics. Multi-modal imaging capabilities will discussed, along with up-converting FI by using lanthanide oxide nanoparticles. The synthesis will cover polyol synthesis of lanthanide oxide nanoparticles, Surface coatings with biocompatible and hydrophilic ligands will be discussed and TEM images and dynamic light scattering (DLS) patterns will be

  4. Different Approaches in Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Rolf-Dieter eKortmann

    2011-12-01

    Full Text Available Radiation therapy is a cornerstone in the therapeutic management of craniopharyngioma. The close proximity to neighbouring eloquent structures pose a particular challenge to radiation therapy. Modern treatment technologies including fractionated 3-d conformal radiotherapy, intensity modulated radiation therapy and recently proton therapy are able to precisely cover the target while preserving surrounding tissue,Tumour controls between 80 and in access of 90 % can be achieved. Alternative treatments consisting of radiosurgery, intracavitary application of isotopes and brachytherapy also offer an acceptable tumour control and might be given in selected cases. More research is needed to establish the role of each treatment modality.

  5. Quantitative status of resources for radiation therapy in Asia and Pacific region

    International Nuclear Information System (INIS)

    Tatsuzaki, Hideo; Levin, Cecil Victor

    2001-01-01

    Purpose: Resources for radiation therapy in Asian and Pacific countries were analyzed to obtain a better understanding of the status of radiation oncological practice in the region. Methods and Materials: The data were obtained mainly through surveys on the availability of major equipment and personnel which were conducted through an International Atomic Energy Agency regional project. The study included 17 countries in South Asia, South East Asia, East Asia and Australasia. Data were related to national populations and economic and a general health care indices. Results: Large differences in equipment and personnel among countries were demonstrated. The availability of both teletherapy and brachytherapy was related to the economic status of the countries. The shortage of teletherapy machines was evident in more countries than that of brachytherapy. Many departments were found to treat patients without simulators or treatment planning systems. The number of radiation oncologists standardized by cancer incidence of a country did not correlate well with economic status. Conclusions: There were significant deficiencies in the availability of all components of radiation therapy in the analyzed countries. The deficiencies were linked predominantly to the economic status of the country. Cognisance should be taken of the specific shortfalls in each country to ensure that expansion or any assistance offered appropriately match its needs and can be fully utilized. The information on the resources currently available for radiation oncological practice in the region presented in this paper provides a valuable basis for planning of development aid programs on radiation therapy

  6. Modern Radiation Therapy for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Specht, Lena; Yahalom, Joachim; Illidge, Tim

    2014-01-01

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced...... on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy......, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom...

  7. Radiation therapy for gastric cancer

    International Nuclear Information System (INIS)

    Dobelbower, R.R.; Bagne, F.; Ajlouni, M.I.; Milligan, A.J.

    1988-01-01

    Adenocarcinoma of the stomach is a moderately radioresponsive neoplasm. Attempts to treat patients with unresectable disease with external beam radiation therapy alone have generally failed because of problems with tumor localization and adequate dose delivery as well as the inherent radioresponsiveness of the gastric mucosa and the organs intimately related to the stomach. Combining external beam therapy and chemotherapy (acting as a systemic agent and as a radiosensitizer) seems to be of some (albeit limited) benefit in the management of unresectable adenocarcinoma of the stomach. Optimum combinations of radiation therapy, chemotherapy, and radiation sensitizers in this situation remain to be determined. The authors discuss strides which have been made in the treatment of gastric cancer. They also address the unanswered clinical questions which remain regarding the use of radiation therapy in the treatment of this highly lethal disease

  8. Why do patients drop out during radiation therapy?

    International Nuclear Information System (INIS)

    Huh, Seung Jae; Ahn, Yong Chan; Kim, Dae Yong; Shin, Kyung Hwan; Lee, Kyu Chan; Chong, Won A; Kim, Hyun Joo; Wu, Hong Gyun

    1998-01-01

    This study is to see how much proportion of the patients receiving radiation therapy drop out during radiation therapy and to analyze the reason for the incomplete treatment. The base population of this study was 1,100 patients with registration numbers 901 through 2,000 at Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea. Authors investigated the incidence of incomplete radiation therapy, which was defined as less than 95% of initially planned radiation dose, and the reasons for incomplete radiation therapy. One hundred and twenty eight patients (12%) did not complete the planned radiation therapy. The performance status of the incompletely treated patients was generally poorer than that of the base population, and the aim of radiation therapy was more commonly palliative. The most common reason for not completing the planned treatment was the patients' refusal of further radiation therapy because of the distrust of radiation therapy and/or the poor economic status. Careful case selection for radiation therapy with consideration of the socioeconomic status of the patients in addition to the clinical indication would be necessary for the reduction of incomplete treatment, especially in the palliative setting

  9. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy and...

  10. Radiation Therapy for Cancer

    Science.gov (United States)

    Radiation therapy is a type of cancer treatment that uses high doses of radiation to kill cancer cells and shrink tumors. Learn about the types of radiation, why side effects happen, which ones you might have, and more.

  11. Nanoparticle-based therapy for respiratory diseases

    Directory of Open Access Journals (Sweden)

    ADRIANA L. DA SILVA

    2013-03-01

    Full Text Available Nanotechnology is an emerging science with the potential to create new materials and strategies involving manipulation of matter at the nanometer scale (<100 nm. With size-dependent properties, nanoparticles have introduced a new paradigm in pharmacotherapy – the possibility of cell-targeted drug delivery with minimal systemic side effects and toxicity. The present review provides a summary of published findings, especially regarding to nanoparticle formulations for lung diseases. The available data have shown some benefits with nanoparticle-based therapy in the development of the disease and lung remodeling in respiratory diseases. However, there is a wide gap between the concepts of nanomedicine and the published experimental data and clinical reality. In addition, studies are still required to determine the potential of nanotherapy and the systemic toxicity of nanomaterials for future human use.

  12. Risk analysis of external radiation therapy

    International Nuclear Information System (INIS)

    Arvidsson, Marcus

    2011-09-01

    External radiation therapy is carried out via a complex treatment process in which many different groups of staff work together. Much of the work is dependent on and in collaboration with advanced technical equipment. The purpose of the research task has been to identify a process for external radiation therapy and to identify, test and analyze a suitable method for performing risk analysis of external radiation therapy

  13. Gene expression profiles in cervical cancer with radiation therapy alone and chemo-radiation therapy

    International Nuclear Information System (INIS)

    Lee, Kyu Chan; Kim, Joo Young; Hwang, You Jin; Kim, Meyoung Kon; Choi, Myung Sun; Kim, Chul Young

    2003-01-01

    To analyze the gene expression profiles of uterine cervical cancer, and its variation after radiation therapy, with or without concurrent chemotherapy, using a cDNA microarray. Sixteen patients, 8 with squamous cell carcinomas of the uterine cervix, who were treated with radiation alone, and the other 8 treated with concurrent chemo-radiation, were included in the study. Before the starting of the treatment, tumor biopsies were carried out, and the second time biopsies were performed after a radiation dose of 16.2-27 Gy. Three normal cervix tissues were used as a control group. The microarray experiments were performed with 5 groups of the total RNAs extracted individually and then admixed as control, pre-radiation therapy alone, during-radiation therapy alone, pre-chemoradiation therapy, and during chemoradiation therapy. The 33P-labeled cDNAs were synthesized from the total RNAs of each group, by reverse transcription, and then they were hybridized to the cDNA microarray membrane. The gene expression of each microarrays was captured by the intensity of each spot produced by the radioactive isotopes. The pixels per spot were counted with an Arrayguage, and were exported to Microsoft Excel. The data were normalized by the Z transformation, and the comparisons were performed on the Z-ratio values calculated. The expressions of 15 genes, including integrin linked kinase (ILK), CDC28 protein kinase 2, Spry 2, and ERK 3, were increased with the Z-ratio values of over 2.0 for the cervix cancer tissues compared to those for the normal controls. Those genes were involved in cell growth and proliferation, cell cycle control, or signal transduction. The expressions of the other 6 genes, including G protein coupled receptor kinase 6, were decreased with the Z-ratio values of below -2.0. After the radiation therapy, most of the genes, with a previously increase expressions, represented the decreased expression profiles, and the genes, with the Z-ratio values of over 2.0, were

  14. Three-dimensional conformal radiation therapy: the tomo-therapy approach

    International Nuclear Information System (INIS)

    Linthout, N.; Verellen, D.; Coninck, P. de; Bel, A.; Storme, G.

    2000-01-01

    Conformal radiation therapy allows the possibility of delivering high doses at the tumor volume whilst limiting the dose to the surrounding tissues and diminishing the secondary effects. With the example of the conformal radiation therapy used at the AZ VU8 (3DCRT and tomo-therapy), two treatment plans of a left ethmoid carcinoma will be evaluated and discussed in detail. The treatment of ethmoid cancer is technically difficult for both radiation therapy and surgery because of the anatomic constraints and patterns of local spread. A radiation therapy is scheduled to be delivered after surgical resection of the tumor. The treatment plan for the radiation therapy was calculated on a three-dimensional (3D) treatment planning system based on virtual simulation with a beam's eye view: George Sherouse's Gratis. An effort was made to make the plan as conformal and as homogeneous as possible to deliver a dose of 66 Gy in 33 fractions at the tumor bed with a maximum dose of 56 Gy to the right optic nerve and the chiasma. To establish the clinical utility and potential advantages of tomo-therapy over 3DCRT for ethmoid carcinoma, the treatment of this patient was also planned with Peacock Plant. For both treatment plans the isodose distributions and cumulative dose volume histograms (CDVH) were computed. Superimposing the CDVHs yielded similar curves for the target and an obvious improvement for organs at risk such as the chiasma, brainstem and the left eye when applying tomo-therapy. These results have also been reflected in the tumor control probabilities (equal for both plans) and the normal tissue complication probabilities (NTCP), yielding significant reductions in NTCP for tomo-therapy. The probability of uncomplicated tumor control was 52.7% for tomo-therapy against 38.3% for 3DCRT. (authors)

  15. Protection of the patient in radiation therapy

    International Nuclear Information System (INIS)

    1991-01-01

    In the ICRP report (ICRP-Pub-44) a broad picture of radiotheraphy is presented useful to all involved in the care of cancer patients, for instance to physicians, including medical oncologists, and to medical physicists, radiographers, dosimetrists, and administrators. Information is given on the general principles of radiation therapy including external beam therapy and brachytherapy; the accuracy of radiation delivery and quality assurance; the biological radiation response; the expected risk to specific organs or tissues from therapeutic irradiation; the absorbed dose to tissues inside and outside the useful radiation beams; the organization and planning of radiation oncology services; radiation therapy staff education, training and duties; and finally medical research involving the use of radiation therapy. (orig./HP) [de

  16. Radiation biology and radiation therapy

    International Nuclear Information System (INIS)

    Wideroee, R.

    1975-01-01

    Radiation biology and radiation therapy can be compared with investigations in different layers of earth. Radiation biology works upwards from the elementary foundations, therapy works downwards with roots to secure and improve the clinical 'surface work'. The Ellis formula (Strandquist), which is a collection of clinical experience, is suited to form connections with radiobiology in the middle layers, and cooperation can give impulses for research. The structure and conditions of tumours and the complicated problems met with are discussed, based on the Carmel symposium of 1969. The oxygen problem in anoxic tumours is not yet solved. Experimental investigations of the effect itself give partly contradictory results. From a clinical viewpoint reoxygenation is of the utmost significance for obtaining control over the primary tumour, and advanced irradiation programmes will here give better results than the traditional ones. New chemicals, e.g. R 0 -07-0582, appear to reduce the OER value to 1.5, thereby making neutron therapy superfluous. Finally a problem from fundamental research is dealt with, wherein two hypotheses explaining the β-effect are described. The repair hypothesis gives a simple explanation but leaves many questions unanswered. The other hypothesis explains the β-effect as two neighbouring single breaks of the DNA molecule. It still presents difficulties, and is scarcely the correct explanation. (JIW)

  17. Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Eiji; Kayano, Takeru; Sato, Suguru; Minagawa, Makoto; Yanagihara, Hideto; Kishimoto, Mikio [Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573 (Japan); Oda, Tatsuya; Hashimoto, Shinji; Yamada, Keiichi; Ohkohchi, Nobuhiro [Department of Surgery, Advanced Biomedical Applications, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba 305-8575 (Japan); Mitsumata, Chiharu, E-mail: kita@bk.tsukuba.ac.j [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2010-12-01

    The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g{sup -1} for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and MH curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g{sup -1} was obtained using an AMF at 117 kHz with H{sub 0} = 51.4 kA m{sup -1} (640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Moessbauer spectroscopy.

  18. Folate-targeted nanoparticles for rheumatoid arthritis therapy.

    Science.gov (United States)

    Nogueira, Eugénia; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2016-05-01

    Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. Although the cause of RA remains unknown, the complex interaction between immune mediators (cytokines and effector cells) is responsible for the joint damage that begins at the synovial membrane. Activated macrophages are critical in the pathogenesis of RA and showed specifically express a receptor for the vitamin folic acid (FA), folate receptor β (FRβ). This particular receptor allows internalization of FA-coupled cargo. In this review we will address the potential of nanoparticles as an effective drug delivery system for therapies that will directly target activated macrophages. Special attention will be given to stealth degree of the nanoparticles as a strategy to avoid clearance by macrophages of the mononuclear phagocytic system (MPS). This review summarizes the application of FA-target nanoparticles as drug delivery systems for RA and proposes prospective future directions. Rheumatoid arthritis is a debilitating autoimmune disease of the joints which affects many people worldwide. Up till now, there is a lack of optimal therapy against this disease. In this review article, the authors outlined in depth the current mechanism of disease for rheumatoid arthritis and described the latest research in using folic acid-targeted nanoparticles to target synovial macrophages in the fight against rheumatoid arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. External Beam Radiation Therapy for Cancer

    Science.gov (United States)

    External beam radiation therapy is used to treat many types of cancer. it is a local treatment, where a machine aims radiation at your cancer. Learn more about different types of external beam radiation therapy, and what to expect if you're receiving treatment.

  20. The effect of hypofractionated radiation and magnetic nanoparticle hyperthermia on tumor immunogenicity and overall treatment response

    Science.gov (United States)

    Hoopes, P. Jack; Wagner, Robert J.; Song, Ailin; Osterberg, Bjorn; Gladstone, David J.; Bursey, Alicea A.; Fiering, Steven N.; Giustini, Andrew J.

    2017-02-01

    It is now known that many tumors develop molecular signals (immune checkpoint modulators) that inhibit an effective tumor immune response. New information also suggest that even well-known cancer treatment modalities such as radiation and hyperthermia generate potentially beneficial immune responses that have been blocked or mitigated by such immune checkpoints, or similar molecules. The cancer therapy challenge is to; a) identify these treatment-based immune signals (proteins, antigens, etc.); b) the treatment doses or regimens that produce them; and c) the mechanisms that block or have the potential to promote them. The goal of this preliminary study, using the B6 mouse - B16 tumor model, clinically relevant radiation doses and fractionation schemes (including those used clinically in hypofractionated radiation therapy), magnetic nanoparticle hyperthermia (mNPH) and sophisticated protein, immune and tumor growth analysis techniques and modulators, is to determine the effect of specific radiation or hyperthermia alone and combined on overall treatment efficacy and immunologic response mechanisms. Preliminary analysis suggests that radiation dose (10 Gy vs. 2 Gy) significantly alters the mechanism of cell death (apoptosis vs. mitosis vs. necrosis) and the resulting immunogenicity. Our hypothesis and data suggest this difference is protein/antigen and immune recognition-based. Similarly, our evidence suggest that radiation doses larger than the conventional 2 Gy dose and specific hyperthermia doses and techniques (including mNP hyperthermia treatment) can be immunologically different, and potentially superior to, the radiation and heat therapy regimens that are typically used in research and clinical practice.

  1. Establish an e-learning system for radiation protection as a teaching aid at STTN

    International Nuclear Information System (INIS)

    Supriyono; Joko Susilo; Muhtadan

    2013-01-01

    A system e-learning of radiation protection lesson as a teaching aids has built, for lectures activities and teaching aids in deepening the course materials of radiation protection in STTN. This system contains learning materials of radiation protection lesson, they are : Basic radiation physics, Dosimetry, basic radiation protection, radiation measuring equipment, effects of radiation, radioactive waste management, transport of radioactive substances, etc. In building of this system, Moodle platform is used with the support from some softwares, they are : Apache web server, MySql, PHP in local host computer that use XAMPP 1.8.1. The one who has rights to access this system is an admin who has obligation to manage the system and to edit, add, and remove the materials and users that consist of teachers, students, and operators who have access to use that system, as a learning aids as well as teaching aids. The materials of E-learning displayed in the forms : lesson materials, animations, pictures, and simulations. The results of this system show that E-learning able to works well as a teaching aids. With this teaching aids, we hope it will increase the quality of learning and teaching process in STTN and also it will increase the accreditation of STTN. (author)

  2. Comparison of dose-volume histograms for Tomo therapy, linear accelerator-based 3D conformal radiation therapy, and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Choi, Seong-Kwan; Chung, Woon-Kwan; Lee, Jong-Woong

    2011-01-01

    Highlights: → Evaluation of DVH from 3D CRT, IMRT and Tomo therapy was conducted for tumor therapy. → The doses of GTV and CTV were compared using DVHs from 3D CRT, IMRT and Tomo therapy. → The GTV was higher when Tomo therapy was used, while the doses of critical organ were low. → They said that Tomo therapy satisfied the goal of radiation therapy more than the others. - Abstract: Evaluation of dose-volume histograms from three-dimensional conformal radiation therapy (3D CRT), intensity-modulated radiation therapy (IMRT), and Tomo therapy was conducted. These three modalities are among the diverse treatment systems available for tumor therapy. Three patients who received tumor therapy for a malignant oligodendroglioma in the cranium, nasopharyngeal carcinoma in the cervical neck, and prostate cancer in the pelvis were selected as study subjects. Therapy plans were made for the three patients before dose-volume histograms were obtained. The doses of the gross tumor volume (GTV) and the clinical target volume (CTV) were compared using the dose-volume histograms obtained from the LINAC-based 3D CRT, IMRT planning station (Varian Eclipse-Varian, version 8.1), and Tomo therapy planning station. In addition, the doses of critical organs in the cranium, cervix, and pelvis that should be protected were compared. The GTV was higher when Tomo therapy was used compared to 3D CRT and the LINAC-based IMRT, while the doses of critical organ tissues that required protection were low. These results demonstrated that Tomo therapy satisfied the ultimate goal of radiation therapy more than the other therapies.

  3. New developments in breast cancer therapy: role of iron oxide nanoparticles

    Science.gov (United States)

    Thoidingjam, Shivani; Bhan Tiku, Ashu

    2017-06-01

    Breast cancer is one of the leading causes of deaths in females worldwide. The high metastatic rate and drug resistance makes it one of the difficult cancers to treat. Early diagnosis and treatment are keys to better survival of breast cancer patients. Conventional treatment approaches like chemotherapy, radiotherapy and surgery suffer from major drawbacks. Novel approaches to improve cancer therapy with minimal damage to normal tissues and better quality of life for cancer patients need to be developed. Among various approaches used for treatment and diagnosis of breast cancer, use of nanoparticles (NPs) is coming up as a new and promising treatment regime. It can help overcome various limitations of conventional therapies like non-targeted effects, resistance to treatment, late diagnosis, etc. Among various nanoparticles studied for their biomedical applications, especially for breast cancer therapy, iron oxide nanoparticles (IONPs) are perhaps the most exciting due to their biocompatibility, biodegradability, size and properties like superparamagnetism. Besides, IONPs are also the only metal oxide nanoparticles approved for clinical use in magnetic resonance imaging (MRI) which is an added advantage for early detection. Therefore in this mini review, we are discussing the developments made in the use of IONPs for breast cancer therapy over the short span of the last five years i.e. 2010-2015. Since late diagnosis and therapy resistance are important drawbacks in breast cancer therapy, the potential of IONPs to overcome these limitations are also evaluated.

  4. Radiation therapy for metastatic spinal tumors

    International Nuclear Information System (INIS)

    Kida, Akio; Fukuda, Haruyuki; Taniguchi, Shuji; Sakai, Kazuaki

    2000-01-01

    The results of radiation therapy for metastatic spinal tumors were evaluated in terms of pain relief, improvement of neurological impairment, and survival. Between 1986 and 1995, 52 symptomatic patients with metastatic spinal tumors treated with radiation therapy were evaluated. The patients all received irradiation of megavoltage energy. Therapeutic efficacy was evaluated in terms of pain relief and improvement of neurological impairment. Pain relief was observed in 29 (61.7%) of 47 patients with pain. Therapy was effective for 17 (70.8%) of 24 patients without neurological impairment, and efficacy was detected in 12 (52.2%) of 23 patients with neurological impairment. Improvement of neurological symptoms was obtained in seven (25.0%) of 28 patients with neurological impairment. Radiation therapy was effective for pain relief in patients with metastatic spinal tumors. In patients with neurological impairment, less pain relief was observed than in those without impairment. Improvement of neurological impairment was restricted, but radiation therapy was thought to be effective in some cases in the early stage of neurological deterioration. Radiation therapy for metastatic spinal tumors contraindicated for surgery was considered effective for improvement of patients' activities of daily living. (author)

  5. Radiation therapy in the treatment of hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Jing Jin; Zhai Renyou

    2007-01-01

    The incidence of hilar cholangiocarcinoma is very rare worldwide. Radical resection is the only prognostic factor for long survival in patients with hilar cholangiocarcinoma. Postoperative radiation therapy can improve local control and survival rates for patients with palliative resection, but it remains controversial in patients with radical resection. Biliary drainage can effectively release bile duct obstruction for the majority of patients with locally advanced disease, and may even prolong survival when combined with radiation therapy. Radiation therapy includes extrernal beam therapy alone, external beam therapy with intraluminal brachytheapy and new radiation technique, such as three dimentional conformal therapy and intensity modulated radiation therapy. The propective randomized clinical study is needed for further investigation in the role of combined modality therapy especially for hilar cholangiocarcinoma. (authors)

  6. Magnetic nanoparticles for cancer therapy

    International Nuclear Information System (INIS)

    Bakuzis, Andris F.

    2014-01-01

    Full text: Magnetic nanoparticles have been used in several biomedical applications, spanning from cell separation, early diagnosis of metastasis to even the treatment of cancer via magnetic hyperthermia (MH). This last technique consists in the increase of temperature of nanoparticles when their magnetic moments interact with a magnetic alternating field. This effect has been suggested as an innovative therapy to cancer treatment, due to the delivery of heat or therapeutic agents, such as drugs, genes, and others. In addition, several clinical studies has demonstrated synergetic effects between hyperthermia and radiotherapy [1]. This indicates a great therapeutic potential for this noninvasive and targeted technique. In this talk we will discuss results from the literature and from our own group in the treatment of cancer via magnetic hyperthermia. Several types of magnetic nanoparticles suggested for this application will be discussed, as well as the historical evolution of this procedure, which although suggested in the late 50' only recently was approved in Europe for treatment of humans with brain tumors. (author) [pt

  7. Practical questions of organization of medical aid and treatment in specialized medical care facilities to the people exposed to radiation

    International Nuclear Information System (INIS)

    Baranov, A.E.; Bad'in, V.I.; Gasteva, G.N.

    1995-01-01

    Basing on the accident at the Chernobyl Nuclear Power Plant, the paper studied practical questions of organization of medical aid and treatment in specialized medical establishments prepared well in advance, and in temporary arranged specialized medical institutions. The requirements to such medical treatment establishments are studied herein: the aims and structure of the admission department; the measures of decontamination and emergency medical aid in case of acute intake of certain radionuclides; control of radioactive contamination of human organism of the injured persons and dosimetry of medical personnel; minimum degree of clinical examinations; schemes of therapy of various forms of acute radiation disease with combined effects. The authors indicated a list of the necessary drug preparations for treatment of patients with acute radiation disease of 3-4 degree of severity and the regulations of autopsy and taking samples for biophysical investigations of persons who died from radiation disease. 5 tabs

  8. Clinical experience of radiation therapy for Graves` ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takeo; Mitsuhashi, Norio; Nagashima, Hisako; Sakurai, Hideyuki; Murata, Osamu; Ishizeki, Kei; Shimaya, Sanae; Hayakawa, Kazushige; Niibe, Hideo [Gunma Univ., Maebashi (Japan). School of Medicine

    1996-11-01

    The effect of radiation therapy for Graves` ophthalmopathy was evaluated. Ten patients with Graves` ophthalmopathy were treated with radiation therapy between 1992 and 1993 in Gunma University Hospital. All patients had a past history of hyperthyroidism and received 2,000 cGy to the retrobulbar tissues in 20 fractions. Nine of ten patients were treated with radiation therapy after the failure of corticosteroids. Six patients (60%) showed good or excellent responses. The exophthalmos type was more responsive to radiation therapy than the double vision type in this series. Two of five patients with the exophthalmos type demonstrated excellent responses, and their symptoms disappeared almost completely. The improvement of symptoms appeared within 3-6 months, and obvious clinical effects were demonstrated after 6 months of radiotherapy. Radiation therapy was well tolerated, and we have not observed any side effects of radiation therapy. In conclusion, radiation therapy is effective treatment for Graves` ophthalmopathy. (author)

  9. Clinical experience of radiation therapy for Graves' ophthalmopathy

    International Nuclear Information System (INIS)

    Takahashi, Takeo; Mitsuhashi, Norio; Nagashima, Hisako; Sakurai, Hideyuki; Murata, Osamu; Ishizeki, Kei; Shimaya, Sanae; Hayakawa, Kazushige; Niibe, Hideo

    1996-01-01

    The effect of radiation therapy for Graves' ophthalmopathy was evaluated. Ten patients with Graves' ophthalmopathy were treated with radiation therapy between 1992 and 1993 in Gunma University Hospital. All patients had a past history of hyperthyroidism and received 2,000 cGy to the retrobulbar tissues in 20 fractions. Nine of ten patients were treated with radiation therapy after the failure of corticosteroids. Six patients (60%) showed good or excellent responses. The exophthalmos type was more responsive to radiation therapy than the double vision type in this series. Two of five patients with the exophthalmos type demonstrated excellent responses, and their symptoms disappeared almost completely. The improvement of symptoms appeared within 3-6 months, and obvious clinical effects were demonstrated after 6 months of radiotherapy. Radiation therapy was well tolerated, and we have not observed any side effects of radiation therapy. In conclusion, radiation therapy is effective treatment for Graves' ophthalmopathy. (author)

  10. Radiation therapy for carcinoma of the endometrium

    International Nuclear Information System (INIS)

    Potish, R.A.

    1987-01-01

    Carcinoma of the endometrium is the most common malignant tumor in the female genital tract. Radiation therapy continues to play a major role in the management of endometrial carcinoma, both as primary therapy and as adjuvant treatment. The utility of pelvic external beam therapy and intracavitary therapy is long established. However, the modern era of surgical staging has lead to an appreciation of the role of radiation therapy beyond the pelvis. Radiation therapy has been shown to be of particular benefit in peritoneal and nodal spread. The classic management of endometrial cancer is reviewed and relatively new and somewhat controversial topics, such as preoperative intracavitary therapy followed by external beam therapy are discussed

  11. Recent Advances in Cancer Therapy Based on Dual Mode Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ellas Spyratou

    2017-12-01

    Full Text Available Many tumor-targeted strategies have been used worldwide to limit the side effects and improve the effectiveness of therapies, such as chemotherapy, radiotherapy (RT, etc. Biophotonic therapy modalities comprise very promising alternative techniques for cancer treatment with minimal invasiveness and side-effects. These modalities use light e.g., laser irradiation in an extracorporeal or intravenous mode to activate photosensitizer agents with selectivity in the target tissue. Photothermal therapy (PTT is a minimally invasive technique for cancer treatment which uses laser-activated photoabsorbers to convert photon energy into heat sufficient to induce cells destruction via apoptosis, necroptosis and/or necrosis. During the last decade, PTT has attracted an increased interest since the therapy can be combined with customized functionalized nanoparticles (NPs. Recent advances in nanotechnology have given rise to generation of various types of NPs, like gold NPs (AuNPs, designed to act both as radiosensitizers and photothermal sensitizing agents due to their unique optical and electrical properties i.e., functioning in dual mode. Functionalized AuNPS can be employed in combination with non-ionizing and ionizing radiation to significantly improve the efficacy of cancer treatment while at the same time sparing normal tissues. Here, we first provide an overview of the use of NPs for cancer therapy. Then we review many recent advances on the use of gold NPs in PTT, RT and PTT/RT based on different types of AuNPs, irradiation conditions and protocols. We refer to the interaction mechanisms of AuNPs with cancer cells via the effects of non-ionizing and ionizing radiations and we provide recent existing experimental data as a baseline for the design of optimized protocols in PTT, RT and PTT/RT combined treatment.

  12. Advances in targeting strategies for nanoparticles in cancer imaging and therapy.

    Science.gov (United States)

    Yhee, Ji Young; Lee, Sangmin; Kim, Kwangmeyung

    2014-11-21

    In the last decade, nanoparticles have offered great advances in diagnostic imaging and targeted drug delivery. In particular, nanoparticles have provided remarkable progress in cancer imaging and therapy based on materials science and biochemical engineering technology. Researchers constantly attempted to develop the nanoparticles which can deliver drugs more specifically to cancer cells, and these efforts brought the advances in the targeting strategy of nanoparticles. This minireview will discuss the progress in targeting strategies for nanoparticles focused on the recent innovative work for nanomedicine.

  13. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

    Science.gov (United States)

    Khdair, Ayman; Chen, Di; Patil, Yogesh; Ma, Linan; Dou, Q Ping; Shekhar, Malathy P V; Panyam, Jayanth

    2010-01-25

    Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.

    Science.gov (United States)

    Li, Ranwei; Liu, Tiecheng; Wang, Ke

    2017-02-01

    Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.

  15. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    Science.gov (United States)

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment. Copyright © 2016. Published by Elsevier Ltd.

  16. DNA repair related to radiation therapy

    International Nuclear Information System (INIS)

    Klein, W.

    1979-01-01

    The DNA excision repair capacity of peripheral human lymphocytes after radiation therapy has been analyzed. Different forms of application of the radiation during the therapy have been taken into account. No inhibition of repair was found if cells were allowed a certain amount of accomodation to radiation, either by using lower doses or longer application times. (G.G.)

  17. Radiation therapy facilities in the United States

    International Nuclear Information System (INIS)

    Ballas, Leslie K.; Elkin, Elena B.; Schrag, Deborah; Minsky, Bruce D.; Bach, Peter B.

    2006-01-01

    Purpose: About half of all cancer patients in the United States receive radiation therapy as a part of their cancer treatment. Little is known, however, about the facilities that currently deliver external beam radiation. Our goal was to construct a comprehensive database of all radiation therapy facilities in the United States that can be used for future health services research in radiation oncology. Methods and Materials: From each state's health department we obtained a list of all facilities that have a linear accelerator or provide radiation therapy. We merged these state lists with information from the American Hospital Association (AHA), as well as 2 organizations that audit the accuracy of radiation machines: the Radiologic Physics Center (RPC) and Radiation Dosimetry Services (RDS). The comprehensive database included all unique facilities listed in 1 or more of the 4 sources. Results: We identified 2,246 radiation therapy facilities operating in the United States as of 2004-2005. Of these, 448 (20%) facilities were identified through state health department records alone and were not listed in any other data source. Conclusions: Determining the location of the 2,246 radiation facilities in the United States is a first step in providing important information to radiation oncologists and policymakers concerned with access to radiation therapy services, the distribution of health care resources, and the quality of cancer care

  18. First aid and subsequent measures after radiation accidents

    International Nuclear Information System (INIS)

    Flach, H.D.

    1980-01-01

    An organisation schedule and first aid measures after accidents involving ionizing radiation are presented, both in accordance with the current practice of the responsible professional associations. Optimum care also of persons with radiation injuries will be assured by cooperation between voluntary lay helpers, physicians, and regional centres in which failure symptons of the haematopoietic system can be treated. (DG) [de

  19. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder José, E-mail: ederguidelli@pg.ffclrp.usp.br; Baffa, Oswaldo, E-mail: ederguidelli@pg.ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP (Brazil)

    2014-11-07

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  20. Involved Node Radiation Therapy

    DEFF Research Database (Denmark)

    Maraldo, Maja V; Aznar, Marianne C; Vogelius, Ivan R

    2012-01-01

    PURPOSE: The involved node radiation therapy (INRT) strategy was introduced for patients with Hodgkin lymphoma (HL) to reduce the risk of late effects. With INRT, only the originally involved lymph nodes are irradiated. We present treatment outcome in a retrospective analysis using this strategy...... to 36 Gy). Patients attended regular follow-up visits until 5 years after therapy. RESULTS: The 4-year freedom from disease progression was 96.4% (95% confidence interval: 92.4%-100.4%), median follow-up of 50 months (range: 4-71 months). Three relapses occurred: 2 within the previous radiation field......, and 1 in a previously uninvolved region. The 4-year overall survival was 94% (95% confidence interval: 88.8%-99.1%), median follow-up of 58 months (range: 4-91 months). Early radiation therapy toxicity was limited to grade 1 (23.4%) and grade 2 (13.8%). During follow-up, 8 patients died, none from HL, 7...

  1. Theranostic Nanoseeds for Efficacious Internal Radiation Therapy of Unresectable Solid Tumors

    Science.gov (United States)

    Moeendarbari, Sina; Tekade, Rakesh; Mulgaonkar, Aditi; Christensen, Preston; Ramezani, Saleh; Hassan, Gedaa; Jiang, Ruiqian; Öz, Orhan K.; Hao, Yaowu; Sun, Xiankai

    2016-02-01

    Malignant tumors are considered “unresectable” if they are adhere to vital structures or the surgery would cause irreversible damages to the patients. Though a variety of cytotoxic drugs and radiation therapies are currently available in clinical practice to treat such tumor masses, these therapeutic modalities are always associated with substantial side effects. Here, we report an injectable nanoparticle-based internal radiation source that potentially offers more efficacious treatment of unresectable solid tumors without significant adverse side effects. Using a highly efficient incorporation procedure, palladium-103, a brachytherapy radioisotope in clinical practice, was coated to monodispersed hollow gold nanoparticles with a diameter about 120 nm, to form 103Pd@Au nanoseeds. The therapeutic efficacy of 103Pd@Au nanoseeds were assessed when intratumorally injected into a prostate cancer xenograft model. Five weeks after a single-dose treatment, a significant tumor burden reduction (>80%) was observed without noticeable side effects on the liver, spleen and other organs. Impressively, >95% nanoseeds were retained inside the tumors as monitored by Single Photon Emission Computed Tomography (SPECT) with the gamma emissions of 103Pd. These findings show that this nanoseed-based brachytherapy has the potential to provide a theranostic solution to unresectable solid tumors.

  2. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-02-01

    Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  3. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  4. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    International Nuclear Information System (INIS)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  5. External radiation therapy of prostatic carcinoma and its relationship to hormonal therapy

    International Nuclear Information System (INIS)

    Takada, Chitose; Ito, Koushiro; Nishi, Junko; Yamamoto, Toshihiro; Hatanaka, Yoshimi; Baba, Yuji; Takahashi, Mutsumasa.

    1995-01-01

    From 1980 to 1990, a total of 54 patients with prostatic carcinoma were treated with external radiation therapy at the Kumamoto National Hospital. Ten patients were classified as Stage B, 22 as Stage C, and another 22 as Stage D according to the American Urological Association Clinical Staging System. The 5-year survival for all 54 patients was 30%. The 5-year disease-specific survival was 67% for Stage B, 47% for Stage C, and 26% for Stage D. The 5-year survival was 43% for patients in whom radiation therapy was initiated immediately after the first diagnosis or with less than one year of hormonal therapy, while it was 0% for patients in whom radiation therapy was initiated after more than one year of hormonal therapy (p=0.01). The cause of intercurrent death was acute myocardial infarction in four patients and acute cardiac failure in one. Four of these patients received hormonal therapy for more than one year. The incidence of radiation-induced proctitis was not severe. This study suggests that long-term hormonal therapy prior to radiation therapy worsens the prognosis of patients with prostatic carcinoma. (author)

  6. Radiation-assisted synthesis of Prussian blue nanoparticles using sugar as stabilizer

    International Nuclear Information System (INIS)

    Ling Chang; Shuquan Chang; Wei Han; Zheng Li; Zheng Zhang; Yaodong Dai; Haiqian Zhang

    2017-01-01

    Prussian blue (PB) nanoparticles were successfully synthesized via a γ radiation route in aqueous solutions using sugar as stabilizer at room temperature and ambient pressure. The particle size and shape can be affected by stabilizer and radiation conditions. When the stabilizer was sucrose and the radiation dose was 30 kGy, well-dispersed and uniform PB nanoparticles were obtained, which are 100-200 nm in diameter. They exhibit good ions exchange properties and have maximal Cs + adsorption capacity of 125.8 mg g -1 , which may be applied in radioactive wastewater treatments, ion battery etc. (author)

  7. [Device-aided therapies in advanced Parkinson's disease].

    Science.gov (United States)

    Timofeeva, A A

    Advanced stages of Parkinson's disease (PD) is a consequence of the severe neurodegenerative process and are characterized by the development of motor fluctuations and dyskinesia, aggravation of non-motor symptoms. Treatment with peroral and transdermal drugs can't provide an adequate control of PD symptoms and quality-of-life of the patients at this stage of disease. Currently, three device-aided therapies: deep brain stimulation (DBS), intrajejunal infusion of duodopa, subcutaneous infusion of apomorphine can be used in treatment of patients with advanced stages of PD. Timely administration of device-aided therapies and right choice of the method determine, to a large extent, the efficacy and safety of their use. Despite the high efficacy of all three methods with respect to the fluctuation of separate symptoms, each method has its own peculiarities. The authors reviewed the data on the expediency of using each method according to the severity of motor and non-motor symptoms, patient's age, PD duration, concomitant pathology and social support of the patients.

  8. Investigation of thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles

    International Nuclear Information System (INIS)

    Pustovalov, V K; Astafyeva, L G

    2013-01-01

    Metallic nanoparticles have been actively investigated in recent years by different optical and laser methods with the purpose of their applications in optoelectronics and photonics, chemistry, laser nanobiomedicine, optical diagnostics, and other fields. A major role among metallic nanoparticles is played by nanoparticles from the noble metals (silver, gold, etc). These particles have unique plasmonic properties (resonances in the range of wavelength 400–540 nm), which can be used for the absorption, scattering and transformation of laser energy. Analysis of the thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles is carried out, taking into account absorption, scattering and extinction of laser radiation by nanoparticles, as well as the thermo-optical and other properties of nanoparticles. Estimations are made of the influence of these nanoparticle properties on the possible results of laser radiation interaction with silver nanoparticles, including heating, heat exchange, possible melting and evaporation, and processes in the ambient media. These results can be used in laser processing of silver nanoparticles and their applications in laser nanomedicine. (paper)

  9. Magnetic nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Krustev, P.; Ruskov, T.

    2007-01-01

    In this paper we describe different biomedical application using magnetic nanoparticles. Over the past decade, a number of biomedical applications have begun to emerge for magnetic nanoparticles of differing sizes, shapes, and compositions. Areas under investigation include targeted drug delivery, ultra-sensitive disease detection, gene therapy, high throughput genetic screening, biochemical sensing, and rapid toxicity cleansing. Magnetic nanoparticles exhibit ferromagnetic or superparamagnetic behavior, magnetizing strongly under an applied field. In the second case (superparamagnetic nanoparticles) there is no permanent magnetism once the field is removed. The superparamagnetic nanoparticles are highly attractive as in vivo probes or in vitro tools to extract information on biochemical systems. The optical properties of magnetic metal nanoparticles are spectacular and, therefore, have promoted a great deal of excitement during the last few decades. Many applications as MRI imaging and hyperthermia rely on the use of iron oxide particles. Moreover magnetic nanoparticles conjugated with antibodies are also applied to hyperthermia and have enabled tumor specific contrast enhancement in MRI. Other promising biomedical applications are connected with tumor cells treated with magnetic nanoparticles with X-ray ionizing radiation, which employs magnetic nanoparticles as a complementary radiate source inside the tumor. (authors)

  10. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy

    International Nuclear Information System (INIS)

    Sun Yun; Chen Zhilong; Yang Xiaoxia; Huang Peng; Zhou Xinping; Du Xiaoxia

    2009-01-01

    Photodynamic therapy (PDT) has become an increasingly recognized alternative to cancer treatment in clinic. However, PDT therapy agents, namely photosensitizer (PS), are limited in application as a result of prolonged cutaneous photosensitivity, poor water solubility and inadequate selectivity, which are encountered by numerous chemical therapies. Magnetic chitosan nanoparticles provide excellent biocompatibility, biodegradability, non-toxicity and water solubility without compromising their magnetic targeting. Nevertheless, no previous attempt has been reported to develop an in vivo magnetic drug delivery system with chitosan nanoparticles for magnetic resonance imaging (MRI) monitored targeting photodynamic therapy. In this study, magnetic targeting chitosan nanoparticles (MTCNPs) were prepared and tailored as a drug delivery system and imaging agents for PS, designated as PHPP. Results showed that PHPP-MTCNPs could be used in MRI monitored targeting PDT with excellent targeting and imaging ability. Non-toxicity and high photodynamic efficacy on SW480 carcinoma cells both in vitro and in vivo were achieved with this method at the level of 0-100 μM. Notably, localization of nanoparticles in skin and hepatic tissue was significantly less than in tumor tissue, therefore photosensitivity and hepatotoxicity can be attenuated.

  11. Communication skills training for radiation therapists: preparing patients for radiation therapy.

    Science.gov (United States)

    Halkett, Georgia; O'Connor, Moira; Aranda, Sanchia; Jefford, Michael; Merchant, Susan; York, Debra; Miller, Lisa; Schofield, Penelope

    2016-12-01

    Patients sometimes present for radiation therapy with high levels of anxiety. Communication skills training may assist radiation therapists to conduct more effective consultations with patients prior to treatment planning and treatment commencement. The overall aim of our research is to examine the effectiveness of a preparatory programme 'RT Prepare' delivered by radiation therapists to reduce patient psychological distress. The purpose of this manuscript was to describe the communication skills workshops developed for radiation therapists and evaluate participants' feedback. Radiation therapists were invited to participate in two communication skills workshops run on the same day: (1) Consultation skills in radiation therapy and (2) Eliciting and responding to patients' emotional cues. Evaluation forms were completed. Radiation therapists' consultations with patients were then audio-recorded and evaluated prior to providing a follow-up workshop with participants. Nine full day workshops were held. Sixty radiation therapists participated. Positive feedback was received for both workshops with 88% or more participants agreeing or strongly agreeing with all the statements about the different components of the two workshops. Radiation therapists highlighted participating in role play with an actor, discussing issues; receiving feedback; acquiring new skills and knowledge; watching others role play and practicing with checklist were their favourite aspects of the initial workshop. The follow-up workshops provided radiation therapists with feedback on how they identified and addressed patients' psychological concerns; time spent with patients during consultations and the importance of finding private space for consultations. Communication skills training consisting of preparing patients for radiation therapy and eliciting and responding to emotional cues with follow-up workshops has the potential to improve radiation therapists' interactions with patients undergoing

  12. New modalities in radiation therapy for treatment of cancer

    International Nuclear Information System (INIS)

    Kumar, Deepak

    2013-01-01

    Cancer is a generic term for a large group of diseases characterized by rapid creation of abnormal cells that grow beyond their usual boundaries, and which can then invade adjoining parts of the body and spread to other organs. Cancer mortality is the second and most common cause of death in the USA and in most European countries. In India, it is the fourth leading disease and the major cause of death. Cancer remains one of the most dreadful disease and approximately ten million cases of cancer occur in the world every year. The course of cancer treatment depends on the type of cancer, its location, and its state of advancement. Cancer is treated with surgery, chemotherapy, radiation therapy, hormone therapy, biological therapy and targeted therapy. Radiation therapy is an important an affordable modality for cancer treatment with minimal side effects. Radiation kills cancer cells with high-energy rays targeted directly to the tumor. Radiation therapy works by damaging the DNA and preventing its replication: therefore, it preferentially kills cancer cells, which rapidly divides. Radiation therapy is used for cure, control, and palliation of cancers in more than 60% of cancer patients. The goal of radiotherapy is to treat the cancer and spare the normal tissue as much as possible. Advances have been made in radiotherapy that allow delivery of higher doses of radiation to the tumor while sparing a greater amount of surrounding tissue, thus achieving more cures and fewer acute and long-term side effects. Technological advances and research are being continued to result in improvements in the field. Several new devices and techniques are used these days in radiotherapy for accurate treatment of cancer. Teletherapy (external radiation therapy) used focused radiation beams targeting well defined tumor through extremely detailed imaging scans. Conventional external beam radiation therapy (2DXRT) is delivered via two-dimensional beams using linear accelerator machines (X

  13. Pediatric radiation therapy. A Japanese nationwide survey

    International Nuclear Information System (INIS)

    Nemoto, Kenji; Nagata, Yasushi; Hirokawa, Yutaka

    2006-01-01

    A national survey on the current status of pediatric radiation therapy was performed in October 2004. We sent questionnaires to 638 radiotherapy facilities in Japan (except for Kansai area) and 245 responses were analyzed. According to the database of committee of Japanese Society of Therapeutic Radiology and Oncology (JASTRO), the number of pediatric patients who received radiation therapy during 2003 in Japan was 1,101. The most frequent pediatric malignancy was brain tumor, followed by leukemia and lymphoma. The total effort of radiation therapy for children was two to six times larger than that for adult patients. An additional fee seems to be necessary for the highly technical and laborious radiation therapy required for children. (author)

  14. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    Science.gov (United States)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  15. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma

    International Nuclear Information System (INIS)

    Bouchet, Audrey; Bräuer-Krisch, Elke; Prezado, Yolanda; El Atifi, Michèle; Rogalev, Léonid; Le Clec'h, Céline; Laissue, Jean Albert; Pelletier, Laurent; Le Duc, Géraldine

    2016-01-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Methods and Materials: Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control and on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. Results: MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. Conclusions: These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses.

  16. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, Audrey, E-mail: audrey.m.bouchet@gmail.com [Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble (France); Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France); Bräuer-Krisch, Elke; Prezado, Yolanda [Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France); El Atifi, Michèle [Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble (France); Grenoble University Hospital, Grenoble (France); Rogalev, Léonid; Le Clec' h, Céline [Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France); Laissue, Jean Albert [University of Bern, Bern (Switzerland); Pelletier, Laurent, E-mail: laurent.pelletier@ujf-grenoble.fr [Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble (France); Grenoble University Hospital, Grenoble (France); Le Duc, Géraldine [Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble (France)

    2016-08-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Methods and Materials: Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control and on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. Results: MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. Conclusions: These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses.

  17. Megavoltage radiation therapy: Meeting the technological needs

    International Nuclear Information System (INIS)

    Van Dyk, J.

    2002-01-01

    Full text: In its simplest description, the purpose of radiation therapy is to hit the target and to miss all other parts of the patient. While there are multiple technological methods available for doing this, the actual radiation treatment needs to be considered in the broader context of the total radiation treatment process. This process contains multiple steps, each of which has an impact on the quality of the treatment and on the possible clinical outcome. One crucial step in this process is the determination of the location and extent of the disease relative to the adjacent normal tissues. This can be done in a variety of ways, ranging from simple clinical examination to the use of complex 3-D imaging, sometimes aided by contrast agents. As part of this localization process, it is very important that patient immobilization procedures be implemented to ensure that the same patient position will be used during both the planning and the daily treatment stages. With the knowledge of the location of the target and the critical tissues, decisions can be made about the appropriate beam arrangements to provide adequate tumour coverage while sparing the healthy tissues. This beam arrangement may have to be confirmed on a therapy simulator prior to actual implementation of the radiation treatment. In summary, the treatment process includes diagnosis, patient immobilization, target and normal tissue localization, beam selection, beam shaping, dose calculation, technique optimization, simulation, prescription, treatment verification and, finally, treatment. Dependent on the type of disease, it is not necessary that every patient undergoes all of the steps in the process; however, it is necessary that each step of the process used for a particular patient be carried out with the greatest accuracy. Uncertainties at any stage of the process will be carried through to subsequent stages and have an impact on clinical outcome. It is, therefore, important to recognize, when

  18. Influence of radiation therapy on T-lymphocyte subpopulations

    International Nuclear Information System (INIS)

    Job, G.

    1984-01-01

    The author claims this to be the first time where monoclonal antibodies are used in a long-term study in order to determine the influence of radiation therapy on T-lymphozyte-subpopulations in patients suffering from malignant growths. The influence of radiation therapy on B-cells, T-cells and macrophages was also checked. Two groups of patients were given two different radiation doses, and examined separately in order to discover possible effects of the dosage. Radiation therapy reduced B- and T-lymphocytes to the same degree as the total lymphozyte population so that their shares in percent remained unchanged. The same was also found for macrophages. Determination of clones and suppressor T-lymphozytes before, during and after radiation showed T-lymphozytes to have a higher resistance against the influence of radiation than clones. Suppressor cells also regenerated more quickly than clones after the end of the therapy. While radiation therapy was applied the clone/suppressor cell ratio dropped to values lower than those of the healthy reference group. After the end of the therapy this quotient dropped even further in some cases while in others it began to rise slowly, but even 6 months after the end of the therapy it was still lower than normal. As a number of diseases show an increased 'immunoregulatory quotient' it would be conceivable to influence this quotient with radiation therapy in order to achieve a therapeutic effect. (orig./MG) [de

  19. Naked Gold Nanoparticles and hot Electrons in Water.

    Science.gov (United States)

    Ghandi, Khashayar; Wang, Furong; Landry, Cody; Mostafavi, Mehran

    2018-05-08

    The ionizing radiation in aqueous solutions of gold nanoparticles, stabilized by electrostatic non-covalent intermolecular forces and steric interactions, with antimicrobial compounds, are investigated with picosecond pulse radiolysis techniques. Upon pulse radiolysis of an aqueous solution containing very low concentrations of gold nanoparticles with naked surfaces available in water (not obstructed by chemical bonds), a change to Cerenkov spectrum over a large range of wavelengths are observed and pre-solvated electrons are captured by gold nanoparticles exclusively (not by ionic liquid surfactants used to stabilize the nanoparticles). The solvated electrons are also found to decay rapidly compared with the decay kinetics in water. These very fast reactions with electrons in water could provide an enhanced oxidizing zone around gold nanoparticles and this could be the reason for radio sensitizing behavior of gold nanoparticles in radiation therapy.

  20. External and internal radiation therapy: Past and future directions

    Directory of Open Access Journals (Sweden)

    Sadeghi Mahdi

    2010-01-01

    Full Text Available Cancer is a leading cause of morbidity and mortality in the modern world. Treatment modalities comprise radiation therapy, surgery, chemotherapy and hormonal therapy. Radiation therapy can be performed by using external or internal radiation therapy. However, each method has its unique properties which undertakes special role in cancer treatment, this question is brought up that: For cancer treatment, whether external radiation therapy is more efficient or internal radiation therapy one? To answer this question, we need to consider principles and structure of individual methods. In this review, principles and application of each method are considered and finally these two methods are compared with each other.

  1. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro.

    Science.gov (United States)

    Khdair, Ayman; Handa, Hitesh; Mao, Guangzhao; Panyam, Jayanth

    2009-02-01

    Drug resistance limits the success of many anticancer drugs. Reduced accumulation of the drug at its intracellular site of action because of overexpression of efflux transporters such as P-glycoprotein (P-gp) is a major mechanism of drug resistance. In this study, we investigated whether photodynamic therapy (PDT) using methylene blue, also a P-gp inhibitor, can be used to enhance doxorubicin-induced cytotoxicity in drug-resistant tumor cells. Aerosol OT (AOT)-alginate nanoparticles were used as a carrier for the simultaneous cellular delivery of doxorubicin and methylene blue. Methylene blue was photoactivated using light of 665 nm wavelength. Induction of apoptosis and necrosis following treatment with combination chemotherapy and PDT was investigated in drug-resistant NCI/ADR-RES cells using flow cytometry and fluorescence microscopy. Effect of encapsulation in nanoparticles on the intracellular accumulation of doxorubicin and methylene blue was investigated qualitatively using fluorescence microscopy and was quantitated using HPLC. Encapsulation in AOT-alginate nanoparticles significantly enhanced the cytotoxicity of combination therapy in resistant tumor cells. Nanoparticle-mediated combination therapy resulted in a significant induction of both apoptosis and necrosis. Improvement in cytotoxicity could be correlated with enhanced intracellular and nuclear delivery of the two drugs. Further, nanoparticle-mediated combination therapy resulted in significantly elevated reactive oxygen species (ROS) production compared to single drug treatment. In conclusion, nanoparticle-mediated combination chemotherapy and PDT using doxorubicin and methylene blue was able to overcome resistance mechanisms and resulted in improved cytotoxicity in drug-resistant tumor cells.

  2. TARGETED NANOPARTICLES FOR PEDIATRIC LEUKEMIA THERAPY

    Directory of Open Access Journals (Sweden)

    Riyaz eBasha

    2014-05-01

    Full Text Available The two major forms of leukemia, acute lymphoblastic leukemia (ALL and acute myeloid leukemia (AML account for about one third of the malignancies diagnosed in children. Despite the marked successes in ALL and AML treatment, concerns remain regarding the occurrence of resistant disease in subsets of patients the residual effects of therapy that often persist for decades beyond the cessation of treatment. Therefore, new approaches are needed to reduce or to avoid off target toxicities, associated with chemotherapy and their long term residual effects. Recently, nanotechnology has been employed to enhance cancer therapy, via improving the bioavailability and therapeutic efficacy of anti-cancer agents. While in the last several years, numerous review articles appeared detailing the size, composition, assembly and performance evaluation of different types of drug carrying nanoparticles, the description and evaluation of lipoprotein based drug carriers have been conspicuously absent from most of these major reviews. The current review focuses on such information regarding nanoparticles with an emphasis on high density lipoprotein (HDL-based drug delivery systems to examine their potential role(s in the enhanced treatment of children with leukemia.

  3. Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS.

    Science.gov (United States)

    Chung, Janet; DiGiusto, David L; Rossi, John J

    2013-03-01

    HIV/AIDS continues to be a worldwide health problem and viral eradication has been an elusive goal. HIV+ patients are currently treated with combination antiretroviral therapy (cART) which is not curative. For many patients, cART is inaccessible, intolerable or unaffordable. Therefore, a new class of therapeutics for HIV is required to overcome these limitations. Cell and gene therapy for HIV has been proposed as a way to provide a functional cure for HIV in the form of a virus/infection resistant immune system. In this review, the authors describe the standard therapy for HIV/AIDS, its limitations, current areas of investigation and the potential of hematopoietic stem cells modified with anti-HIV RNAs as a means to affect a functional cure for HIV. Cell and gene therapy for HIV/AIDS is a promising alternative to antiviral drug therapy and may provide a functional cure. In order to show clinical benefit, multiple mechanisms of inhibition of HIV entry and lifecycle are likely to be required. Among the most promising antiviral strategies is the use of transgenic RNA molecules that provide protection from HIV infection. When these molecules are delivered as gene-modified hematopoietic stem and progenitor cells, long-term repopulation of the patient's immune system with gene-modified progeny has been observed.

  4. Modern radiation therapy for extranodal lymphomas

    DEFF Research Database (Denmark)

    Yahalom, Joachim; Illidge, Tim; Specht, Lena

    2015-01-01

    Extranodal lymphomas (ENLs) comprise about a third of all non-Hodgkin lymphomas (NHL). Radiation therapy (RT) is frequently used as either primary therapy (particularly for indolent ENL), consolidation after systemic therapy, salvage treatment, or palliation. The wide range of presentations of ENL...... and treatment planning for the most frequently involved organs. Specifically, detailed recommendations for RT volumes are provided. We have applied the same modern principles of involved site radiation therapy as previously developed and published as guidelines for Hodgkin lymphoma and nodal NHL. We have...... there is a lack of guidelines for the use of RT in the management of ENL. This report presents an effort by the International Lymphoma Radiation Oncology Group (ILROG) to harmonize and standardize the principles of treatment of ENL, and to address the technical challenges of simulation, volume definition...

  5. Radiation Therapy for Cancer

    Science.gov (United States)

    ... can cause pain. Radiation given to shrink a tumor near the esophagus , which can interfere with a patient’s ability to eat and drink. How is radiation therapy planned for an individual ... show the location of a patient’s tumor and the normal areas around it. These scans ...

  6. Predicting Radiation Pneumonitis After Stereotactic Ablative Radiation Therapy in Patients Previously Treated With Conventional Thoracic Radiation Therapy

    International Nuclear Information System (INIS)

    Liu Hui; Zhang Xu; Vinogradskiy, Yevgeniy Y.; Swisher, Stephen G.; Komaki, Ritsuko; Chang, Joe Y.

    2012-01-01

    Purpose: To determine the incidence of and risk factors for radiation pneumonitis (RP) after stereotactic ablative radiation therapy (SABR) to the lung in patients who had previously undergone conventional thoracic radiation therapy. Methods and Materials: Seventy-two patients who had previously received conventionally fractionated radiation therapy to the thorax were treated with SABR (50 Gy in 4 fractions) for recurrent disease or secondary parenchymal lung cancer (T 10 and mean lung dose (MLD) of the previous plan and the V 10 -V 40 and MLD of the composite plan were also related to RP. Multivariate analysis revealed that ECOG PS scores of 2-3 before SABR (P=.009), FEV1 ≤65% before SABR (P=.012), V 20 ≥30% of the composite plan (P=.021), and an initial PTV in the bilateral mediastinum (P=.025) were all associated with RP. Conclusions: We found that severe RP was relatively common, occurring in 20.8% of patients, and could be predicted by an ECOG PS score of 2-3, an FEV1 ≤65%, a previous PTV spanning the bilateral mediastinum, and V 20 ≥30% on composite (previous RT+SABR) plans. Prospective studies are needed to validate these predictors and the scoring system on which they are based.

  7. AIDS-Related Lymphoma Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    AIDS-related lymphoma presents and is treated differently compared to lymphoma in non-HIV patients. Treatments include chemotherapy, radiation therapy, high-dose chemotherapy with stem cell transplant, and targeted therapy. Get detailed information about HIV-related lymphoma in this summary for clinicians.

  8. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Peng

    2008-10-01

    Full Text Available Xiang-Hong Peng1,4, Ximei Qian2,4, Hui Mao3,4, Andrew Y Wang5, Zhuo (Georgia Chen1,4, Shuming Nie2,4, Dong M Shin1,4*1Department of Medical Oncology/Hematology; 2Department of Biomedical Engineering; 3Department of Radiology; 4Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; 5Ocean Nanotech, LLC, Fayetteville, AR, USAAbstract: Magnetic iron oxide (IO nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI, which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.Keywords: iron oxide nanoparticles, tumor imaging, MRI, therapy

  9. TH-F-202-00: MRI for Radiation Therapy

    International Nuclear Information System (INIS)

    2016-01-01

    MRI has excellent soft tissue contrast and can provide both anatomical and physiological information. It is becoming increasingly important in radiation therapy for treatment planning, image-guided radiation therapy, and treatment assessment. It is critically important at this time point to educate and update our medical physicists about MRI to prepare for the upcoming surge of MRI applications in radiation therapy. This session will review important basics of MR physics, pulse sequence designs, and current radiotherapy application, as well as showcase exciting new developments in MRI that can be potentially useful in radiation therapy. Learning Objectives: To learn basics of MR physics and understand the differences between various pulse sequences To review current applications of MRI in radiation therapy.To discuss recent MRI advances for future MRI guided radiation therapy Partly supported by NIH (1R21CA165384).; W. Miller, Research supported in part by Siemens Healthcare; G. Li, My clinical research is in part supported by NIH U54CA137788. I have a collaborative research project with Philips Healthcare.; J. Cai, jing cai

  10. TH-F-202-00: MRI for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    MRI has excellent soft tissue contrast and can provide both anatomical and physiological information. It is becoming increasingly important in radiation therapy for treatment planning, image-guided radiation therapy, and treatment assessment. It is critically important at this time point to educate and update our medical physicists about MRI to prepare for the upcoming surge of MRI applications in radiation therapy. This session will review important basics of MR physics, pulse sequence designs, and current radiotherapy application, as well as showcase exciting new developments in MRI that can be potentially useful in radiation therapy. Learning Objectives: To learn basics of MR physics and understand the differences between various pulse sequences To review current applications of MRI in radiation therapy.To discuss recent MRI advances for future MRI guided radiation therapy Partly supported by NIH (1R21CA165384).; W. Miller, Research supported in part by Siemens Healthcare; G. Li, My clinical research is in part supported by NIH U54CA137788. I have a collaborative research project with Philips Healthcare.; J. Cai, jing cai.

  11. Oxygen and Perfusion Kinetics in Response to Fractionated Radiation Therapy in FaDu Head and Neck Cancer Xenografts Are Related to Treatment Outcome

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Fangyao [Department of Biomedical Engineering, Duke University, Durham, North Carolina (United States); Vishwanath, Karthik [Department of Physics, Miami University, Oxford, Ohio (United States); Salama, Joseph K. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Division of Radiation Oncology, Veterans Administration Medical Center, Durham, North Carolina (United States); Erkanli, Alaattin; Peterson, Bercedis [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Oleson, James R. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Division of Radiation Oncology, Veterans Administration Medical Center, Durham, North Carolina (United States); Lee, Walter T. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Division of Head and Neck Surgery and Communicative Sciences, Duke University Medical Center, Durham, North Carolina (United States); Section of Otolaryngology Head and Neck Surgery, Veterans Administration Medical Center, Durham, North Carolina (United States); Brizel, David M. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Division of Head and Neck Surgery and Communicative Sciences, Duke University Medical Center, Durham, North Carolina (United States); Ramanujam, Nimmi [Department of Biomedical Engineering, Duke University, Durham, North Carolina (United States); Dewhirst, Mark W., E-mail: mark.dewhirst@duke.edu [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States)

    2016-10-01

    Purpose: To test whether oxygenation kinetics correlate with the likelihood for local tumor control after fractionated radiation therapy. Methods and Materials: We used diffuse reflectance spectroscopy to noninvasively measure tumor vascular oxygenation and total hemoglobin concentration associated with radiation therapy of 5 daily fractions (7.5, 9, or 13.5 Gy/d) in FaDu xenografts. Spectroscopy measurements were obtained immediately before each daily radiation fraction and during the week after radiation therapy. Oxygen saturation and total hemoglobin concentration were computed using an inverse Monte Carlo model. Results: First, oxygenation kinetics during and after radiation therapy, but before tumor volumes changed, were associated with local tumor control. Locally controlled tumors exhibited significantly faster increases in oxygenation after radiation therapy (days 12-15) compared with tumors that recurred locally. Second, within the group of tumors that recurred, faster increases in oxygenation during radiation therapy (day 3-5 interval) were correlated with earlier recurrence times. An area of 0.74 under the receiver operating characteristic curve was achieved when classifying the local control tumors from all irradiated tumors using the oxygen kinetics with a logistic regression model. Third, the rate of increase in oxygenation was radiation dose dependent. Radiation doses ≤9.5 Gy/d did not initiate an increase in oxygenation, whereas 13.5 Gy/d triggered significant increases in oxygenation during and after radiation therapy. Conclusions: Additional confirmation is required in other tumor models, but these results suggest that monitoring tumor oxygenation kinetics could aid in the prediction of local tumor control after radiation therapy.

  12. Oxygen and Perfusion Kinetics in Response to Fractionated Radiation Therapy in FaDu Head and Neck Cancer Xenografts Are Related to Treatment Outcome

    International Nuclear Information System (INIS)

    Hu, Fangyao; Vishwanath, Karthik; Salama, Joseph K.; Erkanli, Alaattin; Peterson, Bercedis; Oleson, James R.; Lee, Walter T.; Brizel, David M.; Ramanujam, Nimmi; Dewhirst, Mark W.

    2016-01-01

    Purpose: To test whether oxygenation kinetics correlate with the likelihood for local tumor control after fractionated radiation therapy. Methods and Materials: We used diffuse reflectance spectroscopy to noninvasively measure tumor vascular oxygenation and total hemoglobin concentration associated with radiation therapy of 5 daily fractions (7.5, 9, or 13.5 Gy/d) in FaDu xenografts. Spectroscopy measurements were obtained immediately before each daily radiation fraction and during the week after radiation therapy. Oxygen saturation and total hemoglobin concentration were computed using an inverse Monte Carlo model. Results: First, oxygenation kinetics during and after radiation therapy, but before tumor volumes changed, were associated with local tumor control. Locally controlled tumors exhibited significantly faster increases in oxygenation after radiation therapy (days 12-15) compared with tumors that recurred locally. Second, within the group of tumors that recurred, faster increases in oxygenation during radiation therapy (day 3-5 interval) were correlated with earlier recurrence times. An area of 0.74 under the receiver operating characteristic curve was achieved when classifying the local control tumors from all irradiated tumors using the oxygen kinetics with a logistic regression model. Third, the rate of increase in oxygenation was radiation dose dependent. Radiation doses ≤9.5 Gy/d did not initiate an increase in oxygenation, whereas 13.5 Gy/d triggered significant increases in oxygenation during and after radiation therapy. Conclusions: Additional confirmation is required in other tumor models, but these results suggest that monitoring tumor oxygenation kinetics could aid in the prediction of local tumor control after radiation therapy.

  13. Care of the patient receiving radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yasko, J.M.

    1982-12-01

    External radiation therapy, or teletherapy, is the use of ionizing radiation to destroy cancer cells. Clinical use of ionizing radiation as treatment for cancer began with the discovery of x-rays in 1895, the identification of natural radioactivity (radium) in 1896, and the first reported cure of cancer, a basal cell epithelioma, induced by radiation in 1899. Initially, radiation was administered as a single large dose and produced severe, life-threatening side effects. The basis for the use of ionizing radiation in daily increments for a period of weeks was provided by Regaud in 1922; ten years later, Coutard clinically developed the method of dose fractionation, which remains in use today. Although the use of ionizing radiation as a treatment is over eighty years old, only in recent years have advancements in its clinical application been based on research related to the biologic effect of radiation on human cells. To effectively care for the patient prior to, during, and at the completion of external radiation therapy, the nurse must know the physical and biologic basis of external radiation therapy and its clinical application.

  14. Care of the patient receiving radiation therapy

    International Nuclear Information System (INIS)

    Yasko, J.M.

    1982-01-01

    External radiation therapy, or teletherapy, is the use of ionizing radiation to destroy cancer cells. Clinical use of ionizing radiation as treatment for cancer began with the discovery of x-rays in 1895, the identification of natural radioactivity (radium) in 1896, and the first reported cure of cancer, a basal cell epithelioma, induced by radiation in 1899. Initially, radiation was administered as a single large dose and produced severe, life-threatening side effects. The basis for the use of ionizing radiation in daily increments for a period of weeks was provided by Regaud in 1922; ten years later, Coutard clinically developed the method of dose fractionation, which remains in use today. Although the use of ionizing radiation as a treatment is over eighty years old, only in recent years have advancements in its clinical application been based on research related to the biologic effect of radiation on human cells. To effectively care for the patient prior to, during, and at the completion of external radiation therapy, the nurse must know the physical and biologic basis of external radiation therapy and its clinical application

  15. RADIATION THERAPY COMMUNICATION-REIRRADIATION OF A NASAL TUMOR IN A BRACHYCEPHALIC DOG USING INTENSITY MODULATED RADIATION THERAPY.

    Science.gov (United States)

    Rancilio, Nicholas J; Custead, Michelle R; Poulson, Jean M

    2016-09-01

    A 5-year-old spayed female Shih Tzu was referred for evaluation of a nasal transitional carcinoma. A total lifetime dose of 117 Gy was delivered to the intranasal mass in three courses over nearly 2 years using fractionated intensity modulated radiation therapy (IMRT) to spare normal tissues. Clinically significant late normal tissue side effects were limited to bilaterally diminished tear production. The patient died of metastatic disease progression 694 days after completion of radiation therapy course 1. This case demonstrates that retreatment with radiation therapy to high lifetime doses for recurrent local disease may be well tolerated with IMRT. © 2016 American College of Veterinary Radiology.

  16. Functionalized upconversion nanoparticles for cancer imaging and therapy

    NARCIS (Netherlands)

    Liu, K.

    2014-01-01

    Near infrared (NIR) light administrated fluorescence imaging and photodynamic therapy (PDT) have shown great promising in cancer diagnosis and treatment. Especially with the recent development of the rare earth ions doped upconversion nanoparticles (UCNPs), much attentions have been attracted in

  17. Clinical applications of continuous infusion chemotherapy ahd concomitant radiation therapy

    International Nuclear Information System (INIS)

    Rosenthal, C.J.; Rotman, M.

    1986-01-01

    This book presents information on the following topics: theoretical basis and clinical applications of 5-FU as a radiosensitizer; treatment of hepatic metastases from gastro intestingal primaries with split course radiation therapy; combined modality therapy with 5-FU, Mitomycin-C and radiation therapy for sqamous cell cancers; treatment of bladder carcinoma with concomitant infusion chemotherapy and irradiation; a treatment of invasiv bladder cancer by the XRT/5FU protocol; concomitant radiation therapy and doxorubicin by continuous infusion in advanced malignancies; cis platin by continuous infusion with concurrent radiation therapy in malignant tumors; combination of radiation with concomitant continuous adriamycin infusion in a patient with partially excised pleomorphic soft tissue sarcoma of the lower extremeity; treatment of recurrent carcinoma of the paranasal sinuses using concomitant infusion cis-platinum and radiation therapy; hepatic artery infusion for hepatic metastases in combination with hepatic resection and hepatic radiation; study of simultaneous radiation therapy, continuous infusion, 5FU and bolus mitomycin-C; cancer of the esophagus; continuous infusion VP-16, bolus cis-platinum and simultaneous radiation therapy as salvage therapy in small cell bronchogenic carcinoma; and concomitant radiation, mitomycin-C and 5-FU infusion in gastro intestinal cancer

  18. Effect of radiation therapy against intracranial hemangiopericytoma

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, Shozaburo; Kuratsu, Jun-ichi; Hamada, Jun-ichiro; Yoshioka, Susumu; Kochi, Masato; Ushio, Yukitaka [Kumamoto Univ. (Japan). School of Medicine; Nakahara, Tadashi; Kishida, Katsuaki

    1992-06-01

    Seven cases of intracranial hemangiopericytoma were studied retrospectively to investigate the efficacy of radiation therapy. Tumor response evaluated by computed tomography and magnetic resonance imaging was obvious after 20-30 Gy irradiation. The total reduction rate was 80-90% and continued as long as 5-7 months after treatment. In five patients receiving radiation therapy before radical removal, the tumors were easily removed without massive hemorrhage. Histological inspection of specimens after irradiation showed a significant disappearance of tumor cells. Pyknosis frequently occurred in endothelial cells, and proliferating vessels with hyalinoid degeneration were also seen. Reticulin fibers between tumor cells were fewer, split, or absent. Preoperative radiation therapy is useful in the treatment of hemangiopericytoma involving considerable surgical risk. Postoperative radiation therapy should be given even if removal is complete. (author).

  19. Effect of radiation therapy against intracranial hemangiopericytoma

    International Nuclear Information System (INIS)

    Uemura, Shozaburo; Kuratsu, Jun-ichi; Hamada, Jun-ichiro; Yoshioka, Susumu; Kochi, Masato; Ushio, Yukitaka; Nakahara, Tadashi; Kishida, Katsuaki.

    1992-01-01

    Seven cases of intracranial hemangiopericytoma were studied retrospectively to investigate the efficacy of radiation therapy. Tumor response evaluated by computed tomography and magnetic resonance imaging was obvious after 20-30 Gy irradiation. The total reduction rate was 80-90% and continued as long as 5-7 months after treatment. In five patients receiving radiation therapy before radical removal, the tumors were easily removed without massive hemorrhage. Histological inspection of specimens after irradiation showed a significant disappearance of tumor cells. Pyknosis frequently occurred in endothelial cells, and proliferating vessels with hyalinoid degeneration were also seen. Reticulin fibers between tumor cells were fewer, split, or absent. Preoperative radiation therapy is useful in the treatment of hemangiopericytoma involving considerable surgical risk. Postoperative radiation therapy should be given even if removal is complete. (author)

  20. Radiation therapy physics

    CERN Document Server

    1995-01-01

    The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.

  1. Modern radiation therapy for primary cutaneous lymphomas

    DEFF Research Database (Denmark)

    Specht, Lena; Dabaja, Bouthaina; Illidge, Tim

    2015-01-01

    Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment......, either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational...... meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era....

  2. Physics fundamentals and biological effects of synchrotron radiation therapy

    International Nuclear Information System (INIS)

    Prezado, Y.

    2010-01-01

    The main goal of radiation therapy is to deposit a curative dose in the tumor without exceeding the tolerances in the nearby healthy tissues. For some radioresistant tumors, like gliomas, requiring high doses for complete sterilization, the major obstacle for curative treatment with ionizing radiation remains the limited tolerance of the surrounding healthy tissue. This limitation is particularly severe for brain tumors and, especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restricted. One possible solution is the development of new radiation therapy techniques exploiting radically different irradiation modes and modifying, in this way, the biological equivalent doses. This is the case of synchrotron radiation therapy (SRT). In this work the three new radiation therapy techniques under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France) will be described, namely: synchrotron stereotactic radiation therapy (SSRT), microbeam radiation therapy (MRT) and minibeam radiation therapy. The promising results in the treatment of the high grade brain tumors obtained in preclinical studies have paved the way to the clinical trials. The first patients are expected in the fall of 2010. (Author).

  3. Radiation therapy and late reactions in normal tissues

    International Nuclear Information System (INIS)

    Aoyama, Takashi; Kuroda, Yasumasa

    1998-01-01

    Recent developments in cancer therapy have made us increasingly aware that the quality of life of a patient is as valuable as other benefits received from therapy. This awareness leads to an emphasis on organ and/or function preservation in the course of therapy. In line with this new thinking, greater consideration is placed on radiation therapy as an appropriate modality of cancer therapy. Possible complications in normal tissues, especially those of late reaction type after the therapy must be overcome. This review, therefore, focuses on recent progress of studies on mechanisms of the complications of the late reaction type. An observation of a clinical case concerning a late reaction of spinal cord (radiation myelopathy) and surveys of experimental studies on the mechanisms of late reactions (including radiation pneumonitis and lung fibrosis, and radiation response of vascular endothelial cells) provide a hypothesis that apoptosis through the pathway starting with radiation-induced sphingomyelin hydrolysis may play an important role in causing a variety of late reactions. This insight is based on the fact that radiation also activates protein kinase C which appears to block apoptosis. The mechanisms of late reactions, therefore, may involve a balance between radiation-induced apoptotic death and its down regulation by suppressor mechanisms through protein kinase C. (author)

  4. Selective use of adjuvant radiation therapy in resectable colorectal adenocarcinoma

    International Nuclear Information System (INIS)

    Cohen, A.M.; Gunderson, L.L.; Welch, C.E.

    1981-01-01

    Colorectal cancer recurs within the operative field in 10-20 per cent of patients undergoing potentially curative surgery. In certain subgroups, the recurrence rate is 20-50 per cent. There are some data to suggest either preoperative or postoperative radiation therapy as an adjuvant to potentially curative surgery can reduce the local operative failure rate. However, since radiation therapy has significant side effects, patient selection to maximize the therapeutic ratio is important. This report defines the criteria at the Massachusetts General Hospital for selection of patients with colorectal cancer for adjuvant radiation therapy, defines radiation therapy-surgery sequencing alternatives used, and describes techniques to reduce radiation side effects. Over a period of three and a half years, 196 patients received adjuvant radiation therapy: 51 patients received either moderate or low dose preoperative radiation therapy to rectal or rectosigmoid cancers, and 161 patients received postoperative radiation therapy to the pelvis or extrapelvic colonic tumor-lymph node beds. Some patients who received low-dose preoperative radiation therapy also received moderate-dose postoperative radiation therapy. We prefer moderate-dose postoperative radiation therapy as the approach most likely to decrease the local recurrence rate with minimal interference with surgical procedures and late small-bowel complications. Patients who received postoperative radiation therapy were those without distant metastases, whose primary tumor pathology revealed macroscopic or extensive microscopic transmural tumor penetration into extraperitoneal tissues. Careful case selection, multiple field techniques, the use of reperitonealization, omental flaps, and retroversion of the uterus into the pelvis were combined with postoperative small-bowel x-rays, bladder distention, and lateral portals to minimize radiation damage to normal structures

  5. Photothermal therapy of cancer cells using magnetic carbon nanoparticles

    Science.gov (United States)

    Vardarajan, V.; Gu, L.; Kanneganti, A.; Mohanty, S. K.; Koymen, A. R.

    2011-03-01

    Photothermal therapy offers a solution for the destruction of cancer cells without significant collateral damage to otherwise healthy cells. Several attempts are underway in using carbon nanoparticles (CNPs) and nanotubes due to their excellent absorption properties in the near-infrared spectrum of biological window. However, minimizing the required number of injected nanoparticles, to ensure minimal cytotoxicity, is a major challenge. We report on the introduction of magnetic carbon nanoparticles (MCNPs) onto cancer cells, localizing them in a desired region by applying an external magnetic field and irradiating them with a near-infrared laser beam. The MCNPs were prepared in Benzene, using an electric plasma discharge, generated in the cavitation field of an ultrasonic horn. The CNPs were made ferromagnetic by use of Fe-electrodes to dope the CNPs, as confirmed by magnetometry. Transmission electron microscopy measurements showed the size distribution of these MCNPs to be in the range of 5-10 nm. For photothermal irradiation, a tunable continuous wave Ti: Sapphire laser beam was weakly focused on to the cell monolayer under an inverted fluorescence microscope. The response of different cell types to photothermal irradiation was investigated. Cell death in the presence of both MCNPs and laser beam was confirmed by morphological changes and propidium iodide fluorescence inclusion assay. The results of our study suggest that MCNP based photothermal therapy is a promising approach to remotely guide photothermal therapy.

  6. Asymmetric active nano-particles for directive near-field radiation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Thorsen, Rasmus O.

    2016-01-01

    In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms...... of radiated power, near-field and power flow distributions as well as the far-field directivity....

  7. Extramammary Paget's disease: role of radiation therapy

    International Nuclear Information System (INIS)

    Guerrieri, M.; Back, M.F.

    2002-01-01

    Extra mammary Paget's disease (EMPD) is an uncommon premalignant skin condition that has been traditionally managed with surgery. A report of long-standing Paget's disease with transformation to invasive adenocarcinoma definitively managed with radiation therapy is presented. A review of cases of extramammary Paget's disease treated with radiation therapy is discussed. The use of radiation therapy should be considered in selected cases, as these studies demonstrate acceptable rates of local control when used as an adjunct to surgery, or as a definitive treatment modality. Copyright (2002) Blackwell Science Pty Ltd

  8. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Warangkana Lohcharoenkal

    2014-01-01

    Full Text Available Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  9. Protein nanoparticles as drug delivery carriers for cancer therapy.

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  10. Alternative therapies for the holistic care of the HIV / AIDS patient ...

    African Journals Online (AJOL)

    Alternative therapies that can be used for the holistic nursing care of HIV / AIDS infection include psychological, mental and emotional therapies, therapeutic touch, nutrition, vitamins, minerals and nutritional supplements, herbal medicine, Chinese medicine and homeopathy, traditional medicine, lifestyle changes and ...

  11. Scalp Dose Evaluation According Radiation Therapy Technique of Whole Brain Radiation Therapy

    International Nuclear Information System (INIS)

    Jang, Joon Yung; Park, Soo Yun; Kim, Jong Sik; Choi, Byeong Gi; Song, Gi Won

    2011-01-01

    Opposing portal irradiation with helmet field shape that has been given to a patient with brain metastasis can cause excess dose in patient's scalp, resulting in hair loss. For this reason, this study is to quantitatively analyze scalp dose for effective prevention of hair loss by comparing opposing portal irradiation with scalp-shielding shape and tomotherapy designed to protect patient's scalp with conventional radiation therapy. Scalp dose was measured by using three therapies (HELMET, MLC, TOMO) after five thermo-luminescence dosimeters were positioned along center line of frontal lobe by using RANDO Phantom. Scalp dose and change in dose distribution were compared and analyzed with DVH after radiation therapy plan was made by using Radiation Treatment Planning System (Pinnacle3, Philips Medical System, USA) and 6 MV X-ray (Clinac 6EX, VARIAN, USA). When surface dose of scalp by using thermo-luminescence dosimeters was measured, it was revealed that scalp dose decreased by average 87.44% at each point in MLC technique and that scalp dose decreased by average 88.03% at each point in TOMO compared with HELMET field therapy. In addition, when percentage of volume (V95%, V100%, V105% of prescribed dose) was calculated by using Dose Volume Histogram (DVH) in order to evaluate the existence or nonexistence of hotspot in scalp as to three therapies (HELMET, MLC, TOMO), it was revealed that MLC technique and TOMO plan had good dose coverage and did not have hot spot. Reducing hair loss of a patient who receives whole brain radiotherapy treatment can make a contribution to improve life quality of the patient. It is expected that making good use of opposing portal irradiation with scalp-shielding shape and tomotherapy to protect scalp of a patient based on this study will reduce hair loss of a patient.

  12. Scalp Dose Evaluation According Radiation Therapy Technique of Whole Brain Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Joon Yung; Park, Soo Yun; Kim, Jong Sik; Choi, Byeong Gi; Song, Gi Won [Dept. of Radiation Oncology, Samsung Medical Center, Seoul (Korea, Republic of)

    2011-09-15

    Opposing portal irradiation with helmet field shape that has been given to a patient with brain metastasis can cause excess dose in patient's scalp, resulting in hair loss. For this reason, this study is to quantitatively analyze scalp dose for effective prevention of hair loss by comparing opposing portal irradiation with scalp-shielding shape and tomotherapy designed to protect patient's scalp with conventional radiation therapy. Scalp dose was measured by using three therapies (HELMET, MLC, TOMO) after five thermo-luminescence dosimeters were positioned along center line of frontal lobe by using RANDO Phantom. Scalp dose and change in dose distribution were compared and analyzed with DVH after radiation therapy plan was made by using Radiation Treatment Planning System (Pinnacle3, Philips Medical System, USA) and 6 MV X-ray (Clinac 6EX, VARIAN, USA). When surface dose of scalp by using thermo-luminescence dosimeters was measured, it was revealed that scalp dose decreased by average 87.44% at each point in MLC technique and that scalp dose decreased by average 88.03% at each point in TOMO compared with HELMET field therapy. In addition, when percentage of volume (V95%, V100%, V105% of prescribed dose) was calculated by using Dose Volume Histogram (DVH) in order to evaluate the existence or nonexistence of hotspot in scalp as to three therapies (HELMET, MLC, TOMO), it was revealed that MLC technique and TOMO plan had good dose coverage and did not have hot spot. Reducing hair loss of a patient who receives whole brain radiotherapy treatment can make a contribution to improve life quality of the patient. It is expected that making good use of opposing portal irradiation with scalp-shielding shape and tomotherapy to protect scalp of a patient based on this study will reduce hair loss of a patient.

  13. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer.

    Science.gov (United States)

    Fazal, Sajid; Jayasree, Aswathy; Sasidharan, Sisini; Koyakutty, Manzoor; Nair, Shantikumar V; Menon, Deepthy

    2014-06-11

    Nanoparticles of varying composition, size, shape, and architecture have been explored for use as photothermal agents in the field of cancer nanomedicine. Among them, gold nanoparticles provide a simple platform for thermal ablation owing to its biocompatibility in vivo. However, the synthesis of such gold nanoparticles exhibiting suitable properties for photothermal activity involves cumbersome routes using toxic chemicals as capping agents, which can cause concerns in vivo. Herein, gold nanoparticles, synthesized using green chemistry routes possessing near-infrared (NIR) absorbance facilitating photothermal therapy, would be a viable alternative. In this study, anisotropic gold nanoparticles were synthesized using an aqueous route with cocoa extract which served both as a reducing and stabilizing agent. The as-prepared gold nanoparticles were subjected to density gradient centrifugation to maximize its NIR absorption in the wavelength range of 800-1000 nm. The particles also showed good biocompatibility when tested in vitro using A431, MDA-MB231, L929, and NIH-3T3 cell lines up to concentrations of 200 μg/mL. Cell death induced in epidermoid carcinoma A431 cells upon irradiation with a femtosecond laser at 800 nm at a low power density of 6 W/cm(2) proved the suitability of green synthesized NIR absorbing anisotropic gold nanoparticles for photothermal ablation of cancer cells. These gold nanoparticles also showed good X-ray contrast when tested using computed tomography (CT), proving their feasibility for use as a contrast agent as well. This is the first report on green synthesized anisotropic and cytocompatible gold nanoparticles without any capping agents and their suitability for photothermal therapy.

  14. Cancer of the larynx: radiation therapy. III

    International Nuclear Information System (INIS)

    Wang, C.C.

    1976-01-01

    Radiation therapy is the treatment of choice for a T1 and T2 tumor with normal cord mobility and/or an exophytic lesion. It not only provides excellent control of the disease, but also preserves a good, useful voice in approximately 90 percent of the irradiated patients. For a T2 lesion with impaired cord mobility and/or moderate ulceration, a trial course of radiotherapy is initially given. If the tumor shows good regression and/or a return of normal cord mobility after a dose of 4000 rads, radiation therapy may be continued to a curative dose level, about 6500 rads. Surgery is reserved for treating residual disease six to eight weeks after radiation therapy or for recurrence. A T3 lesion with complete cord fixation and/or deep ulceration with nodes does not respond favorably to radiation therapy, and a planned combination of irradiation and laryngectomy is advised. Disease that extends beyond the larynx, T4, is rarely curable by radiation therapy alone. If the lesion is still operable, a combined approach of radiation and surgery is preferred; if not, palliative radiation therapy is given. Lymph node metastases from laryngeal carcinoma indicate advanced disease and is managed by preoperative irradiation and radical neck dissection. Under a program of therapeutic individualization, two-thirds to three-quarters of patients with cancer of the larynx can be cured by irradiation with preservation of a good, useful voice. In the remainder, the larynx must be sacrificed to save the patient's life. The ultimate control of laryngeal cancer lies in eradicating the extensive primary lesion and metastatic nodes, a common problem in the management of squamous cell carcinoma elsewhere in the body

  15. A Nanotechnology-based Strategy to Increase the Efficiency of Cancer Diagnosis and Therapy: Folate-conjugated Gold Nanoparticles.

    Science.gov (United States)

    Beik, Jaber; Khademi, Sara; Attaran, Neda; Sarkar, Saeed; Shakeri-Zadeh, Ali; Ghaznavi, Habib; Ghadiri, Hossein

    2017-01-01

    Gold nanoparticles (AuNPs), owing to their elegant physicochemical properties, have recently been introduced as promising theranostic nanoparticles. Folic acid is a necessary vitamin for cell proliferation. Accordingly, the surface functionalization of AuNP with folic acid may offer a great potential for the development of a strategy to increase the efficiency of cancer diagnosis and therapy based on the new nanotechnology. In this study, we have reviewed the recent progress made in the design and the biomedical application of various folate-conjugated gold nanoparticles (FAuNPs). We performed a structured search in bibliographic databases and made a comprehensive list of relevant papers. The main subjects considered in this review included (1) methods for the preparation of F-AuNPs, (2) applications of F-AuNPs in computed tomography (CT), and (3) the use of F-AuNPs in targeted cancer therapy. As many as 96 papers were selected for the review. Accordingly, we explained the noncovalent and the covalent methods of fabricating the various types of F-AuNPs. Particular applications of F-AuNP in cancer diagnosis using the CT scan modality were described. In addition, the applications of F-AuNPs in targeted radiation therapy, chemotherapy, and hyperthermia were elucidated in depth. In the hyperthermia section, we presented certain extra explanations on F-AuNP-based laser, radiofrequency, and ultrasoundbased hyperthermia methods. This review identifies the important roles of F-AuNPs in current cancer studies that are being undertaken worldwide. The findings of this review confirm that F-AuNP is a new theranostic agent, which has a great potential for simultaneous cancer therapy and diagnosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Whole-brain radiation therapy for brain metastases: detrimental or beneficial?

    International Nuclear Information System (INIS)

    Gemici, Cengiz; Yaprak, Gokhan

    2015-01-01

    Stereotactic radiosurgery is frequently used, either alone or together with whole-brain radiation therapy to treat brain metastases from solid tumors. Certain experts and radiation oncology groups have proposed replacing whole-brain radiation therapy with stereotactic radiosurgery alone for the management of brain metastases. Although randomized trials have favored adding whole-brain radiation therapy to stereotactic radiosurgery for most end points, a recent meta-analysis demonstrated a survival disadvantage for patients treated with whole-brain radiation therapy and stereotactic radiosurgery compared with patients treated with stereotactic radiosurgery alone. However the apparent detrimental effect of adding whole-brain radiation therapy to stereotactic radiosurgery reported in this meta-analysis may be the result of inhomogeneous distribution of the patients with respect to tumor histologies, molecular histologic subtypes, and extracranial tumor stages between the groups rather than a real effect. Unfortunately, soon after this meta-analysis was published, even as an abstract, use of whole-brain radiation therapy in managing brain metastases has become controversial among radiation oncologists. The American Society of Radiation Oncology recently recommended, in their “Choose Wisely” campaign, against routinely adding whole-brain radiation therapy to stereotactic radiosurgery to treat brain metastases. However, this situation creates conflict for radiation oncologists who believe that there are enough high level of evidence for the effectiveness of whole-brain radiation therapy in the treatment of brain metastases

  17. Insufficiency fractures following radiation therapy for gynecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Hitoshi; Takegawa, Yoshihiro; Matsuki, Hirokazu; Yasuda, Hiroaki; Kawanaka, Takashi; Shiba, Atsushi; Kishida, Yoshiomi; Iwamoto, Seiji; Nishitani, Hiromu [Tokushima Univ. (Japan). School of Medicine

    2002-12-01

    The purpose of this study was to investigate the incidence, clinical and radiological findings of insufficiency fractures (IF) of the female pelvis following radiation therapy. We retrospectively reviewed the radiation oncology records of 108 patients with gynecologic malignancies who underwent external beam radiation therapy of the whole pelvis. All patients underwent conventional radiography and computed tomography (CT) scan every 6 months in follow-up after radiation therapy and magnetic resonance imaging (MRI) and radionuclide bone scan were added when the patients complained of pelvic pain. Thirteen of 108 patients (12%) developed IF in the irradiated field with a median interval of 6 months (range 3-51) from the completion of external beam radiation therapy. All patients who developed IF were postmenopausal women. Age of the patients who developed IF was significantly higher than that of the other patients. The parts of IF were sacroiliac joints, pubis, sacral body and 5th lumbar vertebra and six of 14 patients had multiple lesions. Treatment with rest and nonsteroidal anti-inflammatory drugs lead to symptomatic relief in all patients, although symptoms lasted from 3 to 20 months. Radiation-induced pelvic IF following radiation therapy for gynecologic malignancies were frequently observed in the post-menopausal patients within 1 year after external beam radiation therapy. Symmetrical fractures of the bilateral sacroiliac joint and pubis were the characteristic pattern of pelvic IF. All patients healed with conservative treatment, and nobody became non-ambulant. (author)

  18. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent.

    Science.gov (United States)

    Dewi, Novriana; Mi, Peng; Yanagie, Hironobu; Sakurai, Yuriko; Morishita, Yasuyuki; Yanagawa, Masashi; Nakagawa, Takayuki; Shinohara, Atsuko; Matsukawa, Takehisa; Yokoyama, Kazuhito; Cabral, Horacio; Suzuki, Minoru; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Nishiyama, Nobuhiro; Kataoka, Kazunori; Takahashi, Hiroyuki

    2016-04-01

    A more immediate impact for therapeutic approaches of current clinical research efforts is of major interest, which might be obtained by developing a noninvasive radiation dose-escalation strategy, and neutron capture therapy represents one such novel approach. Furthermore, some recent researches on neutron capture therapy have focused on using gadolinium as an alternative or complementary for currently used boron, taking into account several advantages that gadolinium offers. Therefore, in this study, we carried out feasibility evaluation for both single and multiple injections of gadolinium-based MRI contrast agent incorporated in calcium phosphate nanoparticles as neutron capture therapy agent. In vivo evaluation was performed on colon carcinoma Col-26 tumor-bearing mice irradiated at nuclear reactor facility of Kyoto University Research Reactor Institute with average neutron fluence of 1.8 × 10(12) n/cm(2). Antitumor effectivity was evaluated based on tumor growth suppression assessed until 27 days after neutron irradiation, followed by histopathological analysis on tumor slice. The experimental results showed that the tumor growth of irradiated mice injected beforehand with Gd-DTPA-incorporating calcium phosphate-based nanoparticles was suppressed up to four times higher compared to the non-treated group, supported by the results of histopathological analysis. The results of antitumor effectivity observed on tumor-bearing mice after neutron irradiation indicated possible effectivity of gadolinium-based neutron capture therapy treatment.

  19. Intensity-modulated radiation therapy: dynamic MLC (DMLC) therapy, multisegment therapy and tomotherapy. An example of QA in DMLC therapy

    International Nuclear Information System (INIS)

    Webb, S.

    1998-01-01

    Intensity-modulated radiation therapy will make a quantum leap in tumor control. It is the new radiation therapy for the new millennium. The major methods to achieve IMRT are: 1. Dynamic multileaf collimator (DMLC) therapy, 2. multisegment therapy, and 3. tomotherapy. The principles of these 3 techniques are briefly reviewed. Each technique presents unique QA issues which are outlined. As an example this paper will present the results of a recent new study of an important QA concern in DMLC therapy. (orig.) [de

  20. Study on dependence of dose enhancement on cluster morphology of gold nanoparticles in radiation therapy using a body-centred cubic model

    Science.gov (United States)

    Ahn, Sang Hee; Chung, Kwangzoo; Shin, Jung Wook; Cheon, Wonjoong; Han, Youngyih; Park, Hee Chul; Choi, Doo Ho

    2017-10-01

    Gold nanoparticles (GNPs) injected in a body for dose enhancement in radiation therapy are known to form clusters. We investigated the dependence of dose enhancement on the GNP morphology using Monte-Carlo simulations and compared the model predictions with experimental data. The cluster morphology was approximated as a body-centred cubic (BCC) structure by placing GNPs at the 8 corners and the centre of a cube with an edge length of 0.22-1.03 µm in a 4  ×  4  ×  4 µm3 water-filled phantom. We computed the dose enhancement ratio (DER) for 50 and 260 kVp photons as a function of the distance from the cube centre for 12 different cube sizes. A 10 nm-wide concentric shell shaped detector was placed up to 100 nm away from a GNP at the cube centre. For model validation, simulations based on BCC and nanoparticle random distribution (NRD) models were performed using parameters that corresponded to the experimental conditions, which measured increases in the relative biological effect due to GNPs. We employed the linear quadratic model to compute cell surviving fraction (SF) and sensitizer enhancement ratio (SER). The DER is inversely proportional to the distance to the GNPs. The largest DERs were 1.97 and 1.80 for 50 kVp and 260 kVp photons, respectively. The SF predicted by the BCC model agreed with the experimental value within 10%, up to a 5 Gy dose, while the NRD model showed a deviation larger than 10%. The SERs were 1.21  ±  0.13, 1.16  ±  0.11, and 1.08  ±  0.11 according to the experiment, BCC, and NRD models, respectively. We most accurately predicted the GNP radiosensitization effect using the BCC approximation and suggest that the BCC model is effective for use in nanoparticle dosimetry.

  1. Photon activated therapy (PAT) using monochromatic synchrotron X-rays and iron oxide nanoparticles in a mouse tumor model: feasibility study of PAT for the treatment of superficial malignancy.

    Science.gov (United States)

    Choi, Gi-Hwan; Seo, Seung-Jun; Kim, Ki-Hong; Kim, Hong-Tae; Park, Sung-Hwan; Lim, Jae-Hong; Kim, Jong-Ki

    2012-10-31

    X-rays are known to interact with metallic nanoparticles, producing photoelectric species as radiosensitizing effects, and have been exploited in vivo mainly with gold nanoparticles. The purpose of this study was to investigate the potential of sensitizing effect of iron oxide nanoparticles for photon activated therapy. X-rays photon activated therapy (PAT) was studied by treating CT26 tumor cells and CT26 tumor-bearing mice loaded with 13-nm diameter FeO NP, and irradiating them at 7.1 keV near the Fe K-edge using synchrotron x-rays radiation. Survival of cells was determined by MTT assay, and tumor regression assay was performed for in vivo model experiment. The results of PAT treated groups were compared with x-rays alone control groups. A more significant reduction in viability and damage was observed in the FeO NP-treated irradiated cells, compared to the radiation alone group (p X-rays. Since 7.1 keV X-rays is attenuated very sharply in the tissue, FeO NP-PAT may have promise as a potent treatment option for superficial malignancies in the skin, like chest wall recurrence of breast cancer.

  2. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects

    NARCIS (Netherlands)

    Dulkeith, E.; Morteani, A.C.; Niedereichholz, T.; Klar, T.A.; Feldman, J.; Levi, S.; van Veggel, F.C.J.M.; Reinhoudt, David; Möller, M.; Gittins, D.I.

    2002-01-01

    The radiative and nonradiative decay rates of lissamine dye molecules, chemically attached to differently sized gold nanoparticles, are investigated by means of time-resolved fluorescence experiments. A pronounced fluorescence quenching is observed already for the smallest nanoparticles of 1  nm

  3. Radiation therapy of Graves' ophthalmopathy. 2; Therapy started time

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Toshinori; Koga, Sukehiko (Fujita Health Univ., Toyoake, Aichi (Japan). School of Medicine)

    1994-04-01

    The difference in the improvement of exophthalmos according to the period of starting radiation therapy was investigated for 26 patients of thyroid ophthalmopathy, also taking thyroidism during radiation into consideration. A 4 MV X-ray was used to a total dose of 20 Gy per 2 weeks. The treatment value tended to be better for the patients in whom the period from the appearance of exophthalmos in an euthyroid condition to the start of radiation was less than 12 months; those of a longer period showed poorer improvement. Radiation treatment of a hyperthyroid condition also showed poor results and it was thought it was not an adequately long enough period for the radiation to take effect. As a result, it was considered that the radiation therapy shall be advantageous if started within 12 months after the appearance of exophthalmos in an euthyroid condition. (author).

  4. Radiation therapy among atomic bomb survivors, Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Pinkston, J.A.; Antoku, Shigetoshi; Russell, W.J.

    1980-10-01

    In the continuing evaluations of atomic bomb survivors for late radiation effects, not only doses from the A-bombs but those from other radiation sources must be considered, for the latter may be concomitantly acting factors causing bias among these investigations. In the present study, among 73 Hiroshima and 22 Nagasaki Adult Health Study (AHS) subjects who reported receiving radiation therapy, from 1970 through 1979, the medical records of 72 and 20, respectively, were reviewed, and 41 Hiroshima and 14 Nagasaki subjects were confirmed to have received radiation therapy. The data obtained in the present study were pooled with those of the previous investigation on radiation therapy exposures of AHS subjects prior to 1970. A total of 190 subjects have been documented as receiving radiation therapy and their doses were estimated. Energies used in treatments and diseases treated are discussed. Malignancies developed subsequent to radiation therapy in seven cases; five after treatment for malignancies and two after treatment for benign diseases. Neoplasms of 12 AHS subjects may have been induced by earlier radiation therapy; 5 in the earlier study and 7 in the present one. These investigations underscore the need for continued documentation of exposures to ionizing radiation for medical reasons, especially from sources incurring relatively high doses. Bias in assessments of late radiation effects among A-bomb survivors can thus be avoided. (author)

  5. Radiation scanning aids tower diagnosis at Arun LNG plant

    International Nuclear Information System (INIS)

    Naklie, M.M.; Pless, L.; Gurning, T.P.; Hyasak, M.

    1990-01-01

    Radiation scanning has been used effectively to troubleshoot the treating towers of the Arun LNG plant in Sumatra, Indonesia. The plant is one of the world's largest such facilities. The analysis was part of an investigation aimed at increasing the capacity of the treater section of the plant. Radiation scanning is a tool which, in addition to tower differential pressure and product purity, can aid in diagnosing tower performance

  6. Detoxication and antiproteolytic therapy of radiation complications

    International Nuclear Information System (INIS)

    Yakhontov, N.E.; Klimov, I.A.; Lavrikova, L.P.; Martynov, A.D.; Provorova, T.P.; Serdyukov, A.S.; Shestakov, A.F.

    1984-01-01

    49 patients with uterine cervix and ovarian carcinomas were treated with detoxication and antiproteolytic therapy of radiation-induced side-effects. The therapy permits to complete without interruption the remote gamma-therapy course and to reduce patients in-hospital periods by 10+- 1 days. The prescription of hemoder intravenous injection in a dose of 450 ml and contrical intramuscular injection (10000 AtrE) in cases of pronounced manifestations of radiation-induced side-effects (asthenia, leukopenia, enterocolitis) for 3 days should be considered an efficient therapy

  7. Increased non-AIDS mortality among persons with AIDS-defining events after antiretroviral therapy initiation

    DEFF Research Database (Denmark)

    Pettit, April C; Giganti, Mark J; Ingle, Suzanne M

    2018-01-01

    ) initiation. METHODS: We included HIV treatment-naïve adults from the Antiretroviral Therapy Cohort Collaboration (ART-CC) who initiated ART from 1996 to 2014. Causes of death were assigned using the Coding Causes of Death in HIV (CoDe) protocol. The adjusted hazard ratio (aHR) for overall and cause......-specific non-AIDS mortality among those with an ADE (all ADEs, tuberculosis (TB), Pneumocystis jiroveci pneumonia (PJP), and non-Hodgkin's lymphoma (NHL)) compared to those without an ADE was estimated using a marginal structural model. RESULTS: The adjusted hazard of overall non-AIDS mortality was higher...

  8. Radiation therapy in patients with hematologic diseases

    International Nuclear Information System (INIS)

    Hennequin, C.; Maylin, C.

    1995-01-01

    Radiation therapy has a significant place in the treatment of hematologic diseases. Irradiation is a key component of the treatment strategy for Hodgkin's disease and has benefited from clinical studies aimed at improving its therapeutic index. There have been many recent improvements, in particular with regard to accuracy of techniques, imagery, dosimetry, and implementation of quality-control procedures. In localized non-Hodgkin's lymphoma, the gold-standard treatment is radiation therapy coupled with a short course of chemotherapy. In contrast, the place of irradiation in disseminated lymphomas remains to be defined. Prophylactic irradiation of the brain is still used in patients with acute lymphoblastic leukemia. Radiation therapy is of value as palliative treatment of bone lesions of myeloma, in chemo-resistant lymphomas, and in relapses of leukemia. Total body irradiation is a cumbersome but irreplaceable method, which has also benefited from recent clinical and biological studies. Optimal radiation therapy with the best possible therapeutic index requires adequate technological and human resources. (authors). 30 refs., 1 tab

  9. Impact of radiation therapy on sexual life

    International Nuclear Information System (INIS)

    Leroy, T.; Gabelle Flandin, I.; Habold, D.; Hannoun-Levi, J.M.

    2012-01-01

    The aim of this study was to evaluate the impact of radiation therapy on sexual life. The analysis was based on a Pubmed literature review. The keywords used for this research were 'sexual, radiation, oncology, and cancer'. After a brief reminder on the anatomy and physiology, we explained the main complications of radiation oncology and their impact on sexual life. Preventive measures and therapeutic possibilities were discussed. Radiation therapy entails local, systematic and psychological after-effects. For women, vaginal stenosis and dyspareunia represent the most frequent side effects. For men, radiation therapy leads to erectile disorders for 25 to 75% of the patients. These complications have an echo often mattering on the patient quality of life of and on their sexual life post-treatment reconstruction. The knowledge of the indications and the various techniques of irradiation allow reducing its potential sexual morbidity. The information and the education of patients are essential, although often neglected. In conclusion, radiation therapy impacts in variable degrees on the sexual life of the patients. Currently, there are not enough preventive and therapeutic means. Patient information and the early screening of the sexual complications are at stake in the support of patients in the reconstruction of their sexual life. (authors)

  10. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    OpenAIRE

    Abedini, Alam; Daud, Abdul Razak; Abdul Hamid, Muhammad Azmi; Kamil Othman, Norinsan; Saion, Elias

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation ...

  11. Once-Daily Radiation Therapy for Inflammatory Breast Cancer

    International Nuclear Information System (INIS)

    Brown, Lindsay; Harmsen, William; Blanchard, Miran; Goetz, Matthew; Jakub, James; Mutter, Robert; Petersen, Ivy; Rooney, Jessica; Stauder, Michael; Yan, Elizabeth; Laack, Nadia

    2014-01-01

    Purpose: Inflammatory breast cancer (IBC) is a rare and aggressive breast cancer variant treated with multimodality therapy. A variety of approaches intended to escalate the intensity and efficacy of radiation therapy have been reported, including twice-daily radiation therapy, dose escalation, and aggressive use of bolus. Herein, we examine our outcomes for patients treated with once-daily radiation therapy with aggressive bolus utilization, focusing on treatment technique. Methods and Materials: A retrospective review of patients with nonmetastatic IBC treated from January 1, 2000, through December 31, 2010, was performed. Locoregional control (LRC), disease-free survival (DFS), overall survival (OS) and predictors thereof were assessed. Results: Fifty-two women with IBC were identified, 49 (94%) of whom were treated with neoadjuvant chemotherapy. All underwent mastectomy followed by adjuvant radiation therapy. Radiation was delivered in once-daily fractions of 1.8 to 2.25 Gy (median, 2 Gy). Patients were typically treated with daily 1-cm bolus throughout treatment, and 33 (63%) received a subsequent boost to the mastectomy scar. Five-year Kaplan Meier survival estimates for LRC, DFS, and OS were 81%, 56%, and 64%, respectively. Locoregional recurrence was associated with poorer OS (P<.001; hazard ratio [HR], 4.1). Extracapsular extension was associated with worse LRC (P=.02), DFS (P=.007), and OS (P=.002). Age greater than 50 years was associated with better DFS (P=.03). Pathologic complete response was associated with a trend toward improved LRC (P=.06). Conclusions: Once-daily radiation therapy with aggressive use of bolus for IBC results in outcomes consistent with previous reports using various intensified radiation therapy regimens. LRC remains a challenge despite modern systemic therapy. Extracapsular extension, age ≤50 years, and lack of complete response to chemotherapy appear to be associated with worse outcomes. Novel strategies are needed in IBC

  12. Targeted Radiation Therapy for Cancer Initiative

    Science.gov (United States)

    2017-11-01

    AWARD NUMBER: W81XWH-08-2-0174 TITLE: Targeted Radiation Therapy for Cancer Initiative PRINCIPAL INVESTIGATOR: Dusten Macdonald, MD...for Cancer Initiative 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dusten Macdonald, MD 5d. PROJECT NUMBER...Cancer Initiative Final Report INTRODUCTION: The full potential of radiation therapy has not been realized due to the inability to locate and

  13. Stereotactic body radiation therapy versus conventional radiation therapy in patients with early stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jeppesen, Stefan Starup; Schytte, Tine; Jensen, Henrik R

    2013-01-01

    Abstract Introduction. Stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) is now an accepted and patient friendly treatment, but still controversy exists about its comparability to conventional radiation therapy (RT). The purpose of this single...... and SBRT predicted improved prognosis. However, staging procedure, confirmation procedure of recurrence and technical improvements of radiation treatment is likely to influence outcomes. However, SBRT seems to be as efficient as conventional RT and is a more convenient treatment for the patients....

  14. Intensity-modulated radiation therapy.

    Science.gov (United States)

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns.

  15. Modern role and issues of radiation therapy for benign diseases

    International Nuclear Information System (INIS)

    Miyashita, Tsuguhiro; Tateno, Atsushi; Kumazaki, Tatsuo

    1999-01-01

    Cases of radiation therapy for benign diseases have diminished in number because of recent alternative methods and knowledge about radiation carcinogenesis. In contrast to this tendency, our cases of benign diseases have recently increased. The facts made us reconsider today's radiation therapy of benign diseases. We reviewed 349 patients who were diagnosed as having benign tumors or non-neoplastic conditions and treated by radiation therapy in the past sixteen years. Analyzed items were the annual transition of treatment number, sorts of diseases, patients' age and sex, and the goal of therapy. Of all radiation therapy patients, benign diseases account for 9.26%. The annual percentages were 0.5%, 6.0%, 11.2% and 13.7% at intervals of five years since 1982. The majority was 246 post-operative irradiation for keloids (71%) and 41 pituitary adenomas (12%). Compared with malignant tumors, benign disease patients were statistically younger and female-dominant. Applications of radiation therapy in keloids and pituitary adenomas had definite goals, but were unclear in other rare diseases. Benign diseases should be treated by radiation therapy as the second or third option, provided the patients have serious symptoms and their diseases do not respond to other modalities. It seems to be widely accepted that favorite cases such as keloids and pituitary adenomas are treated by radiation therapy. But, optimal radiation therapies for other rare benign diseases have not been established. Therefore, the building of databases on radiation therapy on benign diseases should be pursued. Since benign disease patients were young and female-dominant and had many remaining years, their carcinogenicity potential should be considered. (author)

  16. Stage IA non-Hodgkin's lymphoma of the Waldeyer's ring; Limited chemotherapy and radiation therapy versus radiation therapy alone

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Minoru (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology Dept. of Radiology, National Defense Medical College, Saitama (Japan)); Kondo, Makoto (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Hiramatsu, Hideko (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Ikeda, Yasuo (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Hematology); Mikata, Sumio (Chiba Univ. (Japan). School of Medicine); Katayama, Michiaki (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Ito, Hisao (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Kusano, Shoichi (Dept. of Radiology, National Defense Medical College, Saitama (Japan)); Kubo, Asuchishi (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology)

    1993-01-01

    Seventeen patients with stage IA non-Hodgkin's lymphoma of the Waldeyer's ring were treated with radiation therapy with or without chemotherapy. All lesions were judged as having intermediate grade malignancy in the Working Formulation. Eight patients received combined treatment with three cycles of cylcophosphamide, doxorubicin, vincristine and prednison (CHOP) and radiation therapy with 30 to 40 Gy. Another 9 patients were treated with radiation therapy 40 to 60 Gy alone. After a median follow-up of 69 months, all 8 patients, treated with combined modality were alive and relapse-free whereas 4 of the 9 treated with irradiation alone had relapsed. All relapses occurred transdiaphragmatically. Two of the 4 relapsing patients were saved, but the other two died of the disease. The 5-year relapse-free and cause-specific survival rates were 100% and 100% in the combined modality group, and 56% and 76% in the radiation therapy alone group (relapse-free: p=0.04, cause-specific: p=0.16). There were no serious complications related to treatment, although most patients complained of mouth dryness and most patients given CHOP had paresthesia. Our opinion was that the total impact of these two side-effects on quality of life was less pronounced after combined modality than after radiation therapy alone. Limited chemotherapy and radiation therapy seemed to be more beneficial than radiation therapy alone not only in relapse-free survival but also in quality of life after treatment. (orig.).

  17. CT follow-up after radiation therapy for pituitary adenomas

    International Nuclear Information System (INIS)

    Rush, S.C.; Newall, J.

    1988-01-01

    Between 1973 and 1985, 105 patients received radiation therapy as all or part of their treatment for pituitary tumor at the New York University Medical Center. Of these, 48 patients underwent computed tomography (CT) at a minimum of 2 years following treatment, with detailed reports available for analysis of tumor regression. There were 28 men with a median age of 46 years (range, 18-71 years) and 20 women with a median age of 53 years (range, 28-80 years). Tumors were classified as secretory in 23 patients, nonsecretory in 21, and undetermined in four. Sixteen patients were treated with radiation therapy alone, 23 patients with surgery and radiation therapy, and the other with bromocriptine and radiation therapy, with or without surgery. With a median follow-up of 5 years (range, 2-14 years), 16 patients developed an empty sella, 25 patients had residual sellar mass, and seven patients had persistent extrasellar components or no change in their intrasellar mass. Among patients who did not have hypopituitarism at the inception of radiation therapy, five of 13 with empty sellas and 12 of 22 with residual mass subsequently required therapy. The authors conclude that residual mass is commonly found in long-term follow-up after radiation therapy, that isolated imaging studies revealing such findings after treatment in no way herald a diagnosis of recurrence, and that hypopituitarism following pituitary radiation therapy does not correlate with the ablation or persistence of tissue within the sella

  18. Radiation therapy for hypopharyngeal carcinoma. Impact of fractionation on treatment outcome

    International Nuclear Information System (INIS)

    Niibe, Yuzuru; Karasawa, Katsuyuki; Igaki, Hiroshi; Miyashita, Hisao; Tanaka, Yoshiaki

    2003-01-01

    The purpose of the current study was to evaluate the impact of fractionation on the treatment outcome of radiation therapy for hypopharyngeal carcinoma. Thirty-six inoperable or operation-refused hypopharyngeal patients were treated with curative-intended radiation therapy between 1976 and May 2001. Seventeen patients were treated with conventional radiation therapy, 1.8-2.0 Gy per fraction, totaling 64.0 Gy (conventional fractionation (CF) group), and 19 were treated with hyperfractionated radiation therapy, 1.2 Gy per fraction, totaling 74.4 Gy (hyperfractionation (HF) group). The radiation response of the two groups at the end of radiation therapy was almost the same. However, the 2-year local control rates of the HF and CF groups were 59.0% and 26.1% (p=0.012), respectively, a statistically significant differences. Moreover, multivariate analysis showed that HF was an independent prognostic factor for local control. Hyperfractionated radiation therapy was superior to conventional radiation therapy for local control. Local control of hypopharyngeal carcinoma correlated with laryngeal preservation, suggesting that hyperfractionated radiation therapy for hypopharyngeal carcinoma could be beneficial for patient quality of life (QOL). (author)

  19. Gene therapy for C-26 colon cancer using heparin-polyethyleneimine nanoparticle-mediated survivin T34A

    Directory of Open Access Journals (Sweden)

    Zhang L

    2011-10-01

    Full Text Available Ling Zhang1,*, Xiang Gao1,2,*, Ke Men1, BiLan Wang1, Shuang Zhang1, Jinfeng Qiu1, Meijuan Huang1, MaLing Gou1, Ning Huang2, ZhiYong Qian1, Xia Zhao1, YuQuan Wei11State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, 2Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, People’s Republic of China*These authors contributed equally to this workBackground: Gene therapy provides a novel method for the prevention and treatment of cancer, but the clinical application of gene therapy is restricted, mainly because of the absence of an efficient and safe gene delivery system. Recently, we developed a novel nonviral gene carrier, ie, heparin-polyethyleneimine (HPEI nanoparticles for this purpose.Methods and results: HPEI nanoparticles were used to deliver plasmid-expressing mouse survivin-T34A (ms-T34A to treat C-26 carcinoma in vitro and in vivo. According to the in vitro studies, HPEI nanoparticles could efficiently transfect the pGFP report gene into C-26 cells, with a transfection efficiency of 30.5% ± 2%. Moreover, HPEI nanoparticle-mediated ms-T34A could efficiently inhibit the proliferation of C-26 cells by induction of apoptosis in vitro. Based on the in vivo studies, HPEI nanoparticles could transfect the Lac-Z report gene into C-26 cells in vivo. Intratumoral injection of HPEI nanoparticle-mediated ms-T34A significantly inhibited growth of subcutaneous C-26 carcinoma in vivo by induction of apoptosis and inhibition of angiogenesis.Conclusion: This research suggests that HPEI nanoparticle-mediated ms-T34A may have a promising role in C-26 colon carcinoma therapy.Keywords: gene therapy, mouse survivin-T34A, colon cancer, polyethyleneimine, nanoparticles, cancer therapy

  20. State of the art of radiation therapy for esophageal cancer

    International Nuclear Information System (INIS)

    Itasaka, Satoshi

    2014-01-01

    Radiation therapy has a critical role in the treatment of esophageal cancer. To improve the treatment outcome of radiotherapy, not only strengthening the treatment intensity but also decreasing the long term toxicity is needed. To reduce the long term cardiopulmonary toxicity of chemoradiation, JCOG is now running a clinical trial which combines three dimensional conformal radiation therapy (3D-CRT) and mild irradiation dose. New techniques of radiation therapy, such as intensity modulated radiation therapy (IMRT) or particle therapy are also promising in both treatment intensity and decreased toxicity. (author)

  1. Nursing care update: Internal radiation therapy

    International Nuclear Information System (INIS)

    Lowdermilk, D.L.

    1990-01-01

    Internal radiation therapy has been used in treating gynecological cancers for over 100 years. A variety of radioactive sources are currently used alone and in combination with other cancer treatments. Nurses need to be able to provide safe, comprehensive care to patients receiving internal radiation therapy while using precautions to keep the risks of exposure to a minimum. This article discusses current trends and issues related to such treatment for gynecological cancers.20 references

  2. The role of radiation therapy in the multidisciplinary treatment of patients with malignant tumors. Radiation pathological stand point

    International Nuclear Information System (INIS)

    Niibe, Hideo

    1998-01-01

    Estimations suggest that about 60% of all cancer patients will require some form of radiation therapy during their lifetime. Although 40 to 50% of cancer patients in Europe and the United States receive radiation therapy, only about 20% of patients with cancer in Japan undergo such treatment. This is largely due to the lack of understanding of the role of radiation therapy by many medical personnel in Japan, as well as to ''''radiation allergy'''' among many of the general population in Japan, a country that has been undergone atomic bombing. From our perspective as specialists in radiation therapy, the chronic shortage of radiation oncologist also poses a serious problem. Although there are approximately 700 hospitals throughout Japan where radiation therapy is available, no more than half this number of medical facilities have a full-time radiation oncologist. Perhaps the reason for this is that radiation therapy is perceived as unnecessary in Japan. However, it is absolutely essential. In our experience, the 5-year relative survival rate of patients with malignant tumors who have undergone radiation therapy in our clinic is 65 percent. Thus, radiation therapy has proven very useful in the treatment of malignant tumors. Moreover, better estimates of prognosis of cancer patients treated with radiation therapy are becoming possible. This article discusses the role of radiation therapy, from a radiation pathological perspective, in a multidisciplinary approach to treatment of cancer patients. I also emphasize the critical importance of training radiation oncologists who can function as part of multidisciplinary teams that care for patients with malignant tumors. (author). 50 refs

  3. Auger radiation targeted into DNA: a therapy perspective

    Energy Technology Data Exchange (ETDEWEB)

    Buchegger, Franz [University Hospital of Lausanne CHUV, Service of Nuclear Medicine, Lausanne (Switzerland); University Hospital of Lausanne, Service of Nuclear Medicine, Lausanne (Switzerland); Perillo-Adamer, Florence; Bischof Delaloye, Angelika [University Hospital of Lausanne CHUV, Service of Nuclear Medicine, Lausanne (Switzerland); Dupertuis, Yves M. [University Hospital of Geneva, Service of Nutrition, Geneva (Switzerland)

    2006-11-15

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of {alpha} particles. In contrast to {alpha} radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided {alpha} and {beta} radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation. (orig.)

  4. Auger radiation targeted into DNA: a therapy perspective

    International Nuclear Information System (INIS)

    Buchegger, Franz; Perillo-Adamer, Florence; Bischof Delaloye, Angelika; Dupertuis, Yves M.

    2006-01-01

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of α particles. In contrast to α radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided α and β radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation. (orig.)

  5. Breast conservation therapy for breast cancer. Radiation oncologist's point of view

    International Nuclear Information System (INIS)

    Hiraoka, Masahiro; Mitsumori, Michihide; Kokubo, Masaki; Fujishiro, Satsuki

    1998-01-01

    The roles and problems of radiation therapy in breast conserving therapy for breast cancer were presented. The roles of radiation therapy include decrease in breast recurrence, an alternative to axillary dissection for N0 cases, and neo-adjuvant radiation therapy. On the other hand, problems associated with radiation therapy are question of using radiation therapy for all cases, complications and worsening of cosmetics, and relatively high breast recurrence rates for margin-positive cases. The concept of breast conserving therapy is to improve QOL without decreasing treatment outcomes. It is considered that we should be more concentrated on the aspects of QOL because treatment outcomes of breast conserving therapy in Japan demonstrated sofar appear excellent. (author)

  6. Missed Radiation Therapy and Cancer Recurrence

    Science.gov (United States)

    Patients who miss radiation therapy sessions during cancer treatment have an increased risk of their disease returning, even if they eventually complete their course of radiation treatment, according to a new study.

  7. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical charged-particle radiation therapy system... equipment, patient and equipment supports, treatment planning computer programs, component parts, and...

  8. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Valicenti, Richard K., E-mail: Richard.valicenti@ucdmc.ucdavis.edu [Department of Radiation Oncology, University of California, Davis School of Medicine, Davis, California (United States); Thompson, Ian [Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States); Albertsen, Peter [Division of Urology, University of Connecticut Health Center, Farmington, Connecticut (United States); Davis, Brian J. [Department of Radiation Oncology, Mayo Medical School, Rochester, Minnesota (United States); Goldenberg, S. Larry [Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia (Canada); Wolf, J. Stuart [Department of Urology, University of Michigan, Ann Arbor, Michigan (United States); Sartor, Oliver [Department of Medicine and Urology, Tulane Medical School, New Orleans, Louisiana (United States); Klein, Eric [Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio (United States); Hahn, Carol [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Michalski, Jeff [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Roach, Mack [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Faraday, Martha M. [Four Oaks, Inc (United States)

    2013-08-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review.

  9. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    International Nuclear Information System (INIS)

    Valicenti, Richard K.; Thompson, Ian; Albertsen, Peter; Davis, Brian J.; Goldenberg, S. Larry; Wolf, J. Stuart; Sartor, Oliver; Klein, Eric; Hahn, Carol; Michalski, Jeff; Roach, Mack; Faraday, Martha M.

    2013-01-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review

  10. Fractionated photothermal antitumor therapy with multidye nanoparticles

    Directory of Open Access Journals (Sweden)

    Gutwein LG

    2012-01-01

    Full Text Available Luke G Gutwein1, Amit K Singh2, Megan A Hahn2, Michael C Rule3, Jacquelyn A Knapik4, Brij M Moudgil2, Scott C Brown2, Stephen R Grobmyer11Division of Surgical Oncology, Department of Surgery, College of Medicine, 2Particle Engineering Research Center, 3Cell and Tissue Analysis Core, McKnight Brain Institute, 4Department of Pathology, University of Florida, Gainesville, FL, USAPurpose: Photothermal therapy is an emerging cancer treatment paradigm which involves highly localized heating and killing of tumor cells, due to the presence of nanomaterials that can strongly absorb near-infrared (NIR light. In addition to having deep penetration depths in tissue, NIR light is innocuous to normal cells. Little is known currently about the fate of nanomaterials post photothermal ablation and the implications thereof. The purpose of this investigation was to define the intratumoral fate of nanoparticles (NPs after photothermal therapy in vivo and characterize the use of novel multidye theranostic NPs (MDT-NPs for fractionated photothermal antitumor therapy.Methods: The photothermal and fluorescent properties of MDT-NPs were first characterized. To investigate the fate of nanomaterials following photothermal ablation in vivo, novel MDT-NPs and a murine mammary tumor model were used. Intratumoral injection of MDT-NPs and real-time fluorescence imaging before and after fractionated photothermal therapy was performed to study the intratumoral fate of MDT-NPs. Gross tumor and histological changes were made comparing MDT-NP treated and control tumor-bearing mice.Results: The dual dye-loaded mesoporous NPs (ie, MDT-NPs; circa 100 nm retained both their NIR absorbing and NIR fluorescent capabilities after photoactivation. In vivo MDT-NPs remained localized in the intratumoral position after photothermal ablation. With fractionated photothermal therapy, there was significant treatment effect observed macroscopically (P = 0.026 in experimental tumor-bearing mice

  11. Thyroid dysfunction after radiation therapy to the neck

    International Nuclear Information System (INIS)

    Soejima, Toshinori; Hirota, Saeko; Obayashi, Kayoko; Takada, Yoshiki; Kimura, Shuji; Yoshida, Shoji.

    1993-01-01

    The effects of radiation on the thyroid were investigated in 102 patients treated by radiation therapy to the neck. All patients had radiation ports which included the thyroid gland. Serum thyroid stimulating hormone (TSH) levels were elevated in 41 cases and the cumulative elevation rate was 52.1% in 5 years. The high frequency of elevated serum TSH levels observed in patients whose thyroid glands were included within the radiation fields (74.1%) was statistically significant compared to those whose thyroid glands were only partially included (23.4%). Among the patients whose entire thyroid glands were included within the radiation field, combination with chemotherapy increased the frequency of elevated serum TSH levels, but the increase was not statistically significant. Among 36 laryngeal cancer patients treated by only radiation therapy through a portal encompassing part of the thyroid, 4 (14%) were found to have elevated serum TSH levels. We advocate routine monitoring of thyroid functions after radiation therapy to the neck. (author)

  12. Impaired skin integrity related to radiation therapy

    International Nuclear Information System (INIS)

    Ratliff, C.

    1990-01-01

    Skin reactions associated with radiation therapy require frequent nursing assessment and intervention. Preventive interventions and early management can minimize the severity of the skin reaction. With the understanding of the pathogenesis of radiation skin reactions, the ET nurse can determine who is at risk and then implement preventive measures. Because radiation treatment is fractionated, skin reactions do not usually occur until midway through the course of therapy and will subside within a few weeks after completion of radiation. Many patients and their families still fear that radiation causes severe burns. Teaching and anticipatory guidance by the ET nurse is needed to assist patients and their families to overcome this fear, and to educate them on preventive skin care regimens

  13. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  14. Medical emergency and first aid for radiation accident

    International Nuclear Information System (INIS)

    Suzuki-Yasumoto, Masashi

    1980-01-01

    The thinkings concerning the injuries to human beings in nuclear accidents differ somewhat between Japan and the U.S.A. and other European countries. In accordance with the historical evolution of nuclear power and the characteristics of medical system in respective countries, there are more or less modified measures in the scheme of three phases; i.e. first aid stations on the sites of nuclear facilities, support hospitals, and radiation injury centers, in order. So far, easy reliance on such as the National Institute of Radiological Sciences was large, but with the Three Mile Island nuclear plant accident as the turning point, the emergency and first aid systems are being studied intensively both in the Government and private nuclear power enterprises. The following matters are described: the differences in thinkings between Japan and other countries; fundamentals in the medical emergency scheme in radiation accidents; the systems in U.S.A., U.K., France and West Germany; and the problems and measures in the scheme of Japan. (J.P.N.)

  15. Sensitivity analysis of the parameters of an HIV/AIDS model with condom campaign and antiretroviral therapy

    Science.gov (United States)

    Marsudi, Hidayat, Noor; Wibowo, Ratno Bagus Edy

    2017-12-01

    In this article, we present a deterministic model for the transmission dynamics of HIV/AIDS in which condom campaign and antiretroviral therapy are both important for the disease management. We calculate the effective reproduction number using the next generation matrix method and investigate the local and global stability of the disease-free equilibrium of the model. Sensitivity analysis of the effective reproduction number with respect to the model parameters were carried out. Our result shows that efficacy rate of condom campaign, transmission rate for contact with the asymptomatic infective, progression rate from the asymptomatic infective to the pre-AIDS infective, transmission rate for contact with the pre-AIDS infective, ARV therapy rate, proportion of the susceptible receiving condom campaign and proportion of the pre-AIDS receiving ARV therapy are highly sensitive parameters that effect the transmission dynamics of HIV/AIDS infection.

  16. Radiation chemical route for preparation of metal nanoparticles

    International Nuclear Information System (INIS)

    Kapoor, S.; Mukherjee, T.

    2006-01-01

    Nanoparticles show properties that are neither seen in the bulk or at atomic level. The unusual properties are governed by quantum size effect. Due to this various methodologies have been endeavored to control the size of the particles. In the present work we show the use of two complimentary techniques (radiation and photo) to synthesize and control the size of the metal particles. In-situ synthesis of fine silver, thallium and cadmium particles has been carried out by gamma-irradiation and electron pulse irradiation at room temperature in the pre-organized gel of polyacrylamide or cyclodextrin cavity. The role of generation of nuclei in high concentrations in stabilization of metal nanoparticles in hydrophobic cavity is shown. Similarly the importance of entrapment of metal ions in the polymer matrix during its formation is highlighted. The work is further extended to exploit the microemulsion droplets for stabilization of Cd nanoparticles. Utility of pulse radiolysis in probing the mechanism of the formation of metal nanoparticles is also shown. Ultrafast laser pulses were employed to control the morphology of the pre-prepared Pt nanoparticles. The changes in reduction of shape and size are considered to occur through melting and vaporization of the nanoparticles. Pt nanoparticles were coated on the inner walls of the tubular pyrex reactor and tested for their catalytic activity for oxidation of CO. It was observed that Pt nanoparticles prepared in the presence of a stabilizer (gelatin) showed a higher tendency to adhere to the inner walls of the pyrex reactor as compared to that prepared in the presence of silica nanoparticles. The catalyst was found to be active at ≥150 degree C giving CO 2 . Chemically reduced Pt nanoparticles stabilized on silica nanoparticles gave ∼7% CO conversion per hr. However, radiolytically prepared Pt nanoaprticles stabilized by gelatin gave ∼10% conversion per hr. The data indicates that catalytic oxidation of CO takes place

  17. Prostate Cancer (Radiation Therapy)

    Science.gov (United States)

    ... be considered carefully, balancing the advantages against the disadvantages as they relate to the individual man's age, ... therapy with photon or x-rays: Uses advanced technology to tailor the x-ray or photon radiation ...

  18. WE-G-303-01: Physical Bases for Gold Nanoparticle Applications in Radiation Oncology and X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S. [UT MD Anderson Cancer Center (United States)

    2015-06-15

    Over the last decade, there has been a growing interest in applying nanotechnology to cancer detection, treatment, and treatment monitoring. Advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes and sizes. Nanoparticles can be accumulated preferentially within tumors by either “passive targeting” through a phenomenon typically known as “enhanced permeability and retention” or “active targeting” in which nanoparticles are conjugated with antibodies or peptides directed against tumor and/or stromal markers. The tumor specificity of nanoparticles in conjunction with their unique physicochemical properties offers many novel strategies for cancer treatment and detection. For example, notable approaches in the radiation oncology setting include the use of gold nanoparticles for radiation response modulation of tumor or normal tissue and thermal ablation or hyperthermia treatment of tumors. Some of these approaches are currently being tested either on humans or on animals and, very likely, will become the clinical reality in the near future. Various computational and experimental techniques have also been applied to address unique research issues associated with nanoparticles and may become the standard tools for future investigations and clinical translations. Therefore, both clinicians and researchers may need to be properly educated about the basic principles as well as the promise of nanoparticle-based applications with regard to the future of cancer diagnostics and therapeutics. This symposium will familiarize the audience with the potential applications of nanoparticles in oncologic imaging and therapy using specific illustrative examples. The audience will be properly oriented by these illustrative examples to the multiple avenues for collaborative research amongst interdisciplinary teams of physicists, clinicians, engineers, chemists, and biologists in industry and academia. Learning

  19. WE-G-303-01: Physical Bases for Gold Nanoparticle Applications in Radiation Oncology and X-Ray Imaging

    International Nuclear Information System (INIS)

    Cho, S.

    2015-01-01

    Over the last decade, there has been a growing interest in applying nanotechnology to cancer detection, treatment, and treatment monitoring. Advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes and sizes. Nanoparticles can be accumulated preferentially within tumors by either “passive targeting” through a phenomenon typically known as “enhanced permeability and retention” or “active targeting” in which nanoparticles are conjugated with antibodies or peptides directed against tumor and/or stromal markers. The tumor specificity of nanoparticles in conjunction with their unique physicochemical properties offers many novel strategies for cancer treatment and detection. For example, notable approaches in the radiation oncology setting include the use of gold nanoparticles for radiation response modulation of tumor or normal tissue and thermal ablation or hyperthermia treatment of tumors. Some of these approaches are currently being tested either on humans or on animals and, very likely, will become the clinical reality in the near future. Various computational and experimental techniques have also been applied to address unique research issues associated with nanoparticles and may become the standard tools for future investigations and clinical translations. Therefore, both clinicians and researchers may need to be properly educated about the basic principles as well as the promise of nanoparticle-based applications with regard to the future of cancer diagnostics and therapeutics. This symposium will familiarize the audience with the potential applications of nanoparticles in oncologic imaging and therapy using specific illustrative examples. The audience will be properly oriented by these illustrative examples to the multiple avenues for collaborative research amongst interdisciplinary teams of physicists, clinicians, engineers, chemists, and biologists in industry and academia. Learning

  20. Radiation therapy among A-bomb survivors, Hiroshima and Nagasaki

    Energy Technology Data Exchange (ETDEWEB)

    Russell, W J; Antoku, S

    1971-01-01

    The hospitals and clinics responsible for radiation therapy reported by ABCC-JNIH Adult Health Study subjects were surveyed to confirm treatment and estimate doses they received. Of 426 cases, 137 were documented by hospital records. Their ABCC medical records were also reviewed for pertinent clinical information. Excluding the cases not verified because of unavailability of records, confirmation rates were 0.46 in Hiroshima and 0.67 in Nagasaki. Radiation therapy doses according to date of treatment, diagnosis, body site, and source of exposure are included. These data are recorded routinely for future reference, along with doses from diagnostic roentgenology for evaluating overall ionizing radiation exposure of A-bomb survivors and their comparison subjects. Radiation therapy by source and by lesion treated is included. There were three cases with malignancies possibly related to their earlier radiation therapy. One was an A-bomb survivor with lung cancer previously reported as due to ionizing radiation from the A-bomb. Radiation therapy she received for breast cancer 11 years earlier was more likely the cause of the lung lesion than was her relatively small A-bomb dose. The importance of recording all diagnostic and therapeutic radiation, especially that received by those under continuing surveillance for late A-bomb effects, is stressed. (auth)

  1. Planning guide for radiologic installations. fascicle 1 -- radiation therapy installations

    International Nuclear Information System (INIS)

    Tuddenham, W.J.

    1976-01-01

    Five articles dealing with the development and operation of radiation therapy facilities present recommendations for the design of various types of radiation therapy facilities, including the university center, the free-standing private oncology center, and the community hospital radiation therapy department. Different concepts of department design are represented. In one article, the planning room is conceived to be the central feature of a facility; in another article, radiation therapy is designed around examination rooms. Shielding requirements are also discussed, as are the advantages and space and licensing requirements of various types of equipment. There is a need for planning appropriate computer facilities in conjunction with other equipment plans, and a critique of one radiation therapy unit is provided. The concept of a regional network for the delivery of radiation therapy services is then explored. The volume contains extensive illustrations in the form of floor plans, drawings, figures, and tables. Many of the articles include a bibliography. This is the first in a series of publications on radiation department design which will be useful to architects, engineers, and hospital planners

  2. Molecular image guided radiation therapy-MIGRT in radiobioluminescence and nanoradioguidance

    International Nuclear Information System (INIS)

    Rao, V.L. Papineni

    2014-01-01

    Accurate dose delivery to malignant tissue in radiotherapy is essential for enhancing the treatment efficacy while minimizing morbidity of surrounding normal tissues. Advances in therapeutic strategies and diagnosis technologies along with our understanding of the biology of tumor response to radiation therapy have paved way to allow nearly 60% of current cancer patients to be treated with Radiation Therapy. The confluence of molecular imaging and nanotechnology fields are bridging physics and medicine and are quickly making strides in opening new avenues and therapeutic strategies that complement radiation therapy - with a distinct footprint in immunotherapy, adoptive cell therapy, and targeted chemotherapy. Incorporating optical imaging in radiation therapy in my laboratory, endogenous bioluminescence resulting from whole body irradiation in different organs, and in different animals, which is distinct from the Cherenkov radiation. The endogenous bioluminescence in response to irradiation is coined recently as radiobioluminescence. Thus with the necessity, the design, construction, and validation of Molecular Image Guided Radiation Therapy (MIGRT) instrumentation for preclinical theragnostics is carried out

  3. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy.

    Directory of Open Access Journals (Sweden)

    Catarina Oliveira Silva

    Full Text Available The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100-200 nm showed a plasmon absorption band located within the near-infrared range (650-900 nm, optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0-25%. Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.

  4. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy

    Science.gov (United States)

    Silva, Catarina Oliveira; Petersen, Steffen B.; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C.; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue. PMID:27788212

  5. From idea to implementation: creation of an educational picture book for radiation therapy patients.

    Science.gov (United States)

    Osmar, Kari; Webb, Deborah

    2015-03-01

    Patient education is an integral part of the cancer patient's journey. Radiation therapists strive to provide timely, effective, and evidence-based information on care processes, side effects, and side effect management treatment strategies. Patient satisfaction surveys in health-care settings can guide new interventions and strategies to provide the right education to patients at the right time. Courses offered in adult education and patient education to practicing health-care providers allow for a unique opportunity to look at the current provision of health-care education to patients. This paper explores the development and implementation of a new visual aid for radiation therapy patients in an acute health-care setting with a diversity of languages spoken using principles of adult education.

  6. Applications of nanoparticle systems in drug delivery technology

    Directory of Open Access Journals (Sweden)

    Syed A.A. Rizvi

    2018-01-01

    Full Text Available The development of nanoparticle-based drug formulations has yielded the opportunities to address and treat challenging diseases. Nanoparticles vary in size but are generally ranging from 100 to 500 nm. Through the manipulation of size, surface characteristics and material used, the nanoparticles can be developed into smart systems, encasing therapeutic and imaging agents as well as bearing stealth property. Further, these systems can deliver drug to specific tissues and provide controlled release therapy. This targeted and sustained drug delivery decreases the drug related toxicity and increase patient’s compliance with less frequent dosing. Nanotechnology has proven beneficial in the treatment of cancer, AIDS and many other disease, also providing advancement in diagnostic testing.

  7. Multistage Targeting Strategy Using Magnetic Composite Nanoparticles for Synergism of Photothermal Therapy and Chemotherapy.

    Science.gov (United States)

    Wang, Yi; Wei, Guoqing; Zhang, Xiaobin; Huang, Xuehui; Zhao, Jingya; Guo, Xing; Zhou, Shaobing

    2018-03-01

    Mitochondrial-targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin-loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core-shell-SS-shell architecture are composed of a core of Fe 3 O 4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near-infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ionizing radiation effect on central venous catheters (CVC) of polyurethane coatings with silver nanoparticles

    International Nuclear Information System (INIS)

    Heilman, Sonia; Silva, Leonardo G.A.; Hewer, Thiago L.R.; Souza, Michele L.

    2015-01-01

    The present work aimed to study the use of ionizing radiation for coating of silver nanoparticles on central polyurethane catheters, providing reduction of infections associated with contamination of catheters introduced into the bloodstream. Silver nanoparticles have physical, chemical and biological properties only when compared to metal on a macroscopic scale, and have been used in the medical field because of its remarkable antimicrobial activity. Titanium dioxide nanoparticles obtained by the sol gel method were used as the coating catheters for subsequent impregnation of silver nanoparticles with ionizing radiation at doses of 25 and 50 kGy. A Raman spectrometry was used to identify the polymorph of titanium oxide, rutile. In trials with (ICP OES) were evaluated amounts of titanium and silver coated catheters in titanium oxide and silver.(author)

  9. Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Anish Babu

    2013-01-01

    Full Text Available The last decade has witnessed enormous advances in the development and application of nanotechnology in cancer detection, diagnosis, and therapy culminating in the development of the nascent field of “cancer nanomedicine.” A nanoparticle as per the National Institutes of Health (NIH guidelines is any material that is used in the formulation of a drug resulting in a final product smaller than 1 micron in size. Nanoparticle-based therapeutic systems have gained immense popularity due to their ability to overcome biological barriers, effectively deliver hydrophobic therapies, and preferentially target disease sites. Currently, many formulations of nanocarriers are utilized including lipid-based, polymeric and branched polymeric, metal-based, magnetic, and mesoporous silica. Innovative strategies have been employed to exploit the multicomponent, three-dimensional constructs imparting multifunctional capabilities. Engineering such designs allows simultaneous drug delivery of chemotherapeutics and anticancer gene therapies to site-specific targets. In lung cancer, nanoparticle-based therapeutics is paving the way in the diagnosis, imaging, screening, and treatment of primary and metastatic tumors. However, translating such advances from the bench to the bedside has been severely hampered by challenges encountered in the areas of pharmacology, toxicology, immunology, large-scale manufacturing, and regulatory issues. This review summarizes current progress and challenges in nanoparticle-based drug delivery systems, citing recent examples targeted at lung cancer treatment.

  10. Combined use of Dexa-Scheroson and Primobolan-Depot in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, J [Shizuoka Rosai Hospital (Japan)

    1976-05-01

    Dexa-Scheroson and Primobolan-Depot were used together with radiation therapy (Linac therapy) required in 13 cases. The following results were obtained. The decrease in white cell counts, which often occurs in radiation therapy, was inhibited by the drugs. There was no case in which radiation therapy should necessarily withdraw because the number of leuckocytes was decreased to less than 3,000. The patients whose liver function was poor should be treated with both drugs at the beginning of radiation therapy. It was found that the combined use of the drugs is effective in the prevention and the treatment of cerebral edema in radiation therapy of intracranial lesion.

  11. Three-dimensional printer-aided casting of soft, custom silicone boluses (SCSBs) for head and neck radiation therapy.

    Science.gov (United States)

    Chiu, Tsuicheng; Tan, Jun; Brenner, Mathew; Gu, Xuejun; Yang, Ming; Westover, Kenneth; Strom, Tobin; Sher, David; Jiang, Steve; Zhao, Bo

    Custom tissue compensators provide dosimetric advantages for treating superficial or complex anatomy, but currently available fabrication technology is expensive or impractical for most clinical operations and yields compensators that are difficult for patients to tolerate. We aimed to develop an inexpensive, clinically feasible workflow for generating patient-specific, soft, custom silicone boluses (SCSBs) for head-and-neck (HN) radiation therapy. We developed a method using 3-dimensional printed parts for generating SCSBs for the treatment of HN cancers. The clinical workflow for generation of SCSBs was characterized inclusive of patient simulation to treatment in terms of resource time and cost. Dosimetric properties such as percentage depth dose and dose profiles were measured for SCSBs using GaF films. Comprehensive measurements were also conducted on an HN phantom. SCSBs were generated and used for electron or photon based radiation treatments of 7 HN patients with lesions at nose, cheek, eye, or ears. In vivo dose measurements with optically simulated luminescence dosimeters were performed. Total design and fabrication time from patient simulation to radiation treatment start required approximately 1 week, with fabrication constituting 1 to 2 working days depending on bolus surface area, volume, and complexity. Computed tomography and dosimetric properties of the soft bolus were similar to water. In vivo dose measurements on 7 treated patients confirmed that the dose deposition conformed to planned doses. Material costs were lower than currently available hard plastic boluses generated with 3-dimensional printing technology. All treated patients tolerated SCSBs for the duration of therapy. Generation and use of SCSBs for clinical use is feasible and effective for the treatment of HN cancers. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  12. Treatment of Recurrent Chordomas by Percutaneous Ethanol Injection Therapy and Radiation Therapy

    International Nuclear Information System (INIS)

    Nakajo, M.; Ohkubo, K.; Fukukura, Y.; Nandate, T.; Nakajo, M.

    2006-01-01

    We report a case of recurrent sacral chordomas that have been successfully controlled by the combination therapy of percutaneous ethanol injection therapy (PEIT) and radiation therapy in a 71-year-old man. PEIT may be one of the adjuvant therapies for recurrent chordomas

  13. Open ear hearing aids in tinnitus therapy: An efficacy comparison with sound generators.

    Science.gov (United States)

    Parazzini, Marta; Del Bo, Luca; Jastreboff, Margaret; Tognola, Gabriella; Ravazzani, Paolo

    2011-08-01

    This study aimed to compare the effectiveness of tinnitus retraining therapy (TRT) with sound generators or with open ear hearing aids in the rehabilitation of tinnitus for a group of subjects who, according to Jastreboff categories, can be treated with both approaches to sound therapy (borderline of Category 1 and 2). This study was a prospective data collection with a parallel-group design which entailed that each subject was randomly assigned to one of the two treatments group: half of the subjects were fitted binaurally with sound generators, and the other half with open ear hearing aids. Both groups received the same educational counselling sessions. Ninety-one subjects passed the screening criteria and were enrolled into the study. Structured interviews, with a variety of measures evaluated through the use of visual-analog scales and the tinnitus handicap inventory self-administered questionnaire, were performed before the therapy and at 3, 6, and 12 months during the therapy. Data showed a highly significant improvement in both tinnitus treatments starting from the first three months and up to one year of therapy, with a progressive and statistically significant decrease in the disability every three months. TRT was equally effective with sound generator or open ear hearing aids: they gave basically identical, statistically indistinguishable results.

  14. Prototype demonstration of radiation therapy planning code system

    International Nuclear Information System (INIS)

    Little, R.C.; Adams, K.J.; Estes, G.P.; Hughes, L.S. III; Waters, L.S.

    1996-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). Radiation therapy planning is the process by which a radiation oncologist plans a treatment protocol for a patient preparing to undergo radiation therapy. The objective is to develop a protocol that delivers sufficient radiation dose to the entire tumor volume, while minimizing dose to healthy tissue. Radiation therapy planning, as currently practiced in the field, suffers from inaccuracies made in modeling patient anatomy and radiation transport. This project investigated the ability to automatically model patient-specific, three-dimensional (3-D) geometries in advanced Los Alamos radiation transport codes (such as MCNP), and to efficiently generate accurate radiation dose profiles in these geometries via sophisticated physics modeling. Modem scientific visualization techniques were utilized. The long-term goal is that such a system could be used by a non-expert in a distributed computing environment to help plan the treatment protocol for any candidate radiation source. The improved accuracy offered by such a system promises increased efficacy and reduced costs for this important aspect of health care

  15. Influence of radiation therapy on oral Candida albicans colonization: a quantitative assessment

    International Nuclear Information System (INIS)

    Rossie, K.M.; Taylor, J.; Beck, F.M.; Hodgson, S.E.; Blozis, G.G.

    1987-01-01

    An increase in quantity of oral Candida albicans was documented in patients receiving head and neck radiation therapy during and after therapy, as assessed by an oral-rinse culturing technique. The amount of the increase was greater in denture wearers and directly related to increasing radiation dose and increasing volume of parotid gland included in the radiation portal. A significant number of patients who did not carry C. albicans prior to radiation therapy developed positive cultures by 1 month after radiation therapy. The percentage of patients receiving head and neck radiation therapy who carried C. albicans prior to radiation therapy did not differ significantly from matched dental patient controls

  16. Late complications of radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Norie [Osaka Prefectural Center for Adult Diseases (Japan)

    1998-03-01

    There are cases in which, although all traces of acute radiation complications seem to have disappeared, late complications may appear months or years to become apparent. Trauma, infection or chemotherapy may sometimes recall radiation damage and irreversible change. There were two cases of breast cancer that received an estimated skin dose in the 6000 cGy range followed by extirpation of the residual tumor. The one (12 y.o.) developed atrophy of the breast and severe teleangiectasis 18 years later radiotherapy. The other one (42 y.o.) developed severe skin necrosis twenty years later radiotherapy after administration of chemotherapy and received skin graft. A case (52 y.o.) of adenoidcystic carcinoma of the trachea received radiation therapy. The field included the thoracic spinal cord which received 6800 cGy. Two years and 8 months after radiation therapy she developed complete paraplegia and died 5 years later. A truly successful therapeutic outcome requires that the patient be alive, cured and free of significant treatment-related morbidity. As such, it is important to assess quality of life in long-term survivors of cancer treatment. (author)

  17. Late complications of radiation therapy

    International Nuclear Information System (INIS)

    Masaki, Norie

    1998-01-01

    There are cases in which, although all traces of acute radiation complications seem to have disappeared, late complications may appear months or years to become apparent. Trauma, infection or chemotherapy may sometimes recall radiation damage and irreversible change. There were two cases of breast cancer that received an estimated skin dose in the 6000 cGy range followed by extirpation of the residual tumor. The one (12 y.o.) developed atrophy of the breast and severe teleangiectasis 18 years later radiotherapy. The other one (42 y.o.) developed severe skin necrosis twenty years later radiotherapy after administration of chemotherapy and received skin graft. A case (52 y.o.) of adenoidcystic carcinoma of the trachea received radiation therapy. The field included the thoracic spinal cord which received 6800 cGy. Two years and 8 months after radiation therapy she developed complete paraplegia and died 5 years later. A truly successful therapeutic outcome requires that the patient be alive, cured and free of significant treatment-related morbidity. As such, it is important to assess quality of life in long-term survivors of cancer treatment. (author)

  18. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended to... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical neutron radiation therapy system. 892.5300... analysis and display equipment, patient and equipment support, treatment planning computer programs...

  19. Development of local radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Lim, Sang Moo; Choi, Chang Woon; Chai, Jong Su; Kim, Eun Hee; Kim, Mi Sook; Yoo, Seong Yul; Cho, Chul Koo; Lee, Yong Sik; Lee, Hyun Moo

    1999-04-01

    The major limitations of radiation therapy for cancer are the low effectiveness of low LET and inevitable normal tissue damage. Boron Neutron Capture Therapy (BNCT) is a form of potent radiation therapy using Boron-10 having a high propensityof capturing theraml neutrons from nuclear reactor and reacting with a prompt nuclear reaction. Photodynamic therapy is a similiar treatment of modality to BNCT using tumor-seeking photosenistizer and LASER beam. If Boron-10 and photosensitizers are introduced selectively into tumor cells, it is theoretically possible to destroy the tumor and to spare the surrounding normal tissue. Therefore, BNCT and PDT will be new potent treatment modalities in the next century. In this project, we performed PDT in the patients with bladder cancers, oropharyngeal cancer, and skin cancers. Also we developed I-BPA, new porphyrin compounds, methods for estimation of radiobiological effect of neutron beam, and superficial animal brain tumor model. Furthermore, we prepared preclinical procedures for clinical application of BNCT, such as the macro- and microscopic dosimetry, obtaining thermal neutron flux from device used for fast neutron production in KCCH have been performed.

  20. Development of local radiation therapy

    International Nuclear Information System (INIS)

    Lee, Seung Hoon; Lim, Sang Moo; Choi, Chang Woon; Chai, Jong Su; Kim, Eun Hee; Kim, Mi Sook; Yoo, Seong Yul; Cho, Chul Koo; Lee, Yong Sik; Lee, Hyun Moo

    1999-04-01

    The major limitations of radiation therapy for cancer are the low effectiveness of low LET and inevitable normal tissue damage. Boron Neutron Capture Therapy (BNCT) is a form of potent radiation therapy using Boron-10 having a high propensityof capturing theraml neutrons from nuclear reactor and reacting with a prompt nuclear reaction. Photodynamic therapy is a similiar treatment of modality to BNCT using tumor-seeking photosenistizer and LASER beam. If Boron-10 and photosensitizers are introduced selectively into tumor cells, it is theoretically possible to destroy the tumor and to spare the surrounding normal tissue. Therefore, BNCT and PDT will be new potent treatment modalities in the next century. In this project, we performed PDT in the patients with bladder cancers, oropharyngeal cancer, and skin cancers. Also we developed I-BPA, new porphyrin compounds, methods for estimation of radiobiological effect of neutron beam, and superficial animal brain tumor model. Furthermore, we prepared preclinical procedures for clinical application of BNCT, such as the macro- and microscopic dosimetry, obtaining thermal neutron flux from device used for fast neutron production in KCCH have been performed

  1. Thyroid neoplasia following radiation therapy for Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    McHenry, C.; Jarosz, H.; Calandra, D.; McCall, A.; Lawrence, A.M.; Paloyan, E.

    1987-01-01

    The question of thyroid neoplasia following high-dose radiation treatment to the neck and mediastinum for malignant neoplasms such as Hodgkin's lymphoma in children and young adults has been raised recently. Five patients, 19 to 39 years old, were operated on for thyroid neoplasms that developed following cervical and mediastinal radiation therapy for Hodgkin's lymphoma. Three patients had papillary carcinomas and two had follicular adenomas. The latency period between radiation exposure and the diagnosis of thyroid neoplasm ranged from eight to 16 years. This limited series provided strong support for the recommendation that children and young adults who are to receive high-dose radiation therapy to the head, neck, and mediastinum should receive suppressive doses of thyroxine prior to radiation therapy in order to suppress thyrotropin (thyroid-stimulating hormone) and then be maintained on a regimen of suppression permanently

  2. Chondronecrosis of the cricoid cartilage following radiation therapy

    International Nuclear Information System (INIS)

    Tanabe, Masahiro; Isshiki, Nobuhiko; Kojima, Hisayoshi

    1979-01-01

    Chondronecrosis of the laryngeal cartilage following radiation therapy is a rare but serious complication. We report herein a case of post-radiation chondronecrosis and discuss factors predisposing to its development. A 67-year-old man received telecobalt therapy for cancer of the right vocal cord. A year after the radiation therapy given in a dose of 7,000r, the patient developed dysphagia and dyspnea. Following tracheotomy, he underwent total laryngectomy. The surgical specimen showed no cancer but chondronecrosis of the cricoid cartilage was present. After laryngectomy he developed progressive soft tissue necrosis of the neck and died following a carotid hemorrhage. (author)

  3. Radiation therapy quality control in MRCCC radiotherapy units

    International Nuclear Information System (INIS)

    Fielda Djuita; Rina Taurisia; Andreas Nainggolan

    2011-01-01

    Increasing cancer patients in Indonesia is not supported with the number of equipment that is able to treat cancer patients, especially in the radiation therapy field. Therefore, several private hospitals have joined to provide radiation therapy services and one of them is MRCCC. As a new hospital providing services in radiotherapy field, the writer tries to present our quality control program that we have done in our hospital. Purpose: As quality control to radiation therapy clinical practice. Methods: Descriptive essay of what we do in our institution. Conclusion: Average output photon and electron lower more than tolerance dose. (author)

  4. Evolution of radiation therapy: technology of today

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Mishra, Shagun

    2013-01-01

    The three well established arms of treatment are surgery, radiation therapy and chemotherapy. The management of cancer is multidisciplinary; Radiation Oncologists along with Surgical Oncologists and Medical Oncologists are responsible for cancer therapeutics. They all work in close collaboration with Pathologists and Radiologists for cancer diagnosis and staging and rely on Oncology Nurses, Physiotherapists, Occupational Therapists, Nutritionists and Social Workers for optimal treatment and rehabilitation of cancer patients. Therefore cancer management is a team work for getting the best results. Radiation therapy is one of the most effective methods of treating cancer

  5. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles.

    Science.gov (United States)

    Townley, Helen E; Kim, Jeewon; Dobson, Peter J

    2012-08-21

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.

  6. Calculation and measurement of radiation corrections for plasmon resonances in nanoparticles

    Science.gov (United States)

    Hung, L.; Lee, S. Y.; McGovern, O.; Rabin, O.; Mayergoyz, I.

    2013-08-01

    The problem of plasmon resonances in metallic nanoparticles can be formulated as an eigenvalue problem under the condition that the wavelengths of the incident radiation are much larger than the particle dimensions. As the nanoparticle size increases, the quasistatic condition is no longer valid. For this reason, the accuracy of the electrostatic approximation may be compromised and appropriate radiation corrections for the calculation of resonance permittivities and resonance wavelengths are needed. In this paper, we present the radiation corrections in the framework of the eigenvalue method for plasmon mode analysis and demonstrate that the computational results accurately match analytical solutions (for nanospheres) and experimental data (for nanorings and nanocubes). We also demonstrate that the optical spectra of silver nanocube suspensions can be fully assigned to dipole-type resonance modes when radiation corrections are introduced. Finally, our method is used to predict the resonance wavelengths for face-to-face silver nanocube dimers on glass substrates. These results may be useful for the indirect measurements of the gaps in the dimers from extinction cross-section observations.

  7. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    International Nuclear Information System (INIS)

    Nedyalkov, N.N.; Imamova, S.E.; Atanasov, P.A.; Toshkova, R.A.; Gardeva, E.G.; Yossifova, L.S.; Alexandrov, M.T.; Obara, M.

    2011-01-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  8. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    Science.gov (United States)

    Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  9. SU-G-TeP3-06: Nanoparticle-Aided External Beam Radiotherapy Leveraging the Cerenkov Effect

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Z; Ngwa, W [University of Massachusetts Lowell, Lowell, MA (United States); Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School (United States); Liu, B; Sajo, E [University of Massachusetts Lowell, Lowell, MA (United States); Yasmin-Karim, S [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School (United States)

    2016-06-15

    Purpose: This study investigates the feasibility of exploiting the Cerenkov radiation (CR) present during external beam radiotherapy (EBRT) for significant therapeutic gain, using titanium dioxide nanoparticles (titania) delivered via a new design of radiotherapy biomaterials. Methods: Recently published work has shown that CR generated by radionuclides during PET imaging could substantially enhance damage to cancer cells in the presence of 0.625 µg/g titania. We hypothesize that equal or greater damage can be achieved during EBRT. To test this hypothesis, Monte Carlo simulation was done using GEANT4 in order to get the total CR yield inside a tumor volume during EBRT compared to that of the radionuclides. We considered a novel approach where a sufficiently potent concentration of the titania was delivered directly into the tumor using radiotherapy biomaterials (e.g. fiducials) loaded with the titania. The intra-tumor distribution/diffusion of titania released from the fiducials was calculated. An in-vitro MTS assay experiment was also carried out to establish the relative non-toxicity of titania for concentrations of up to 1 µg/g. Results: For a radiotherapy biomaterial loaded with 15 µg/g of 2-nm titania, at least 0.625 µg/g could be delivered through out a tumor sub-volume of 2-cm diameter after 14 days. This concentration level could inflict substantial damage to tumor cells during EBRT. The Monte Carlo results showed the CR yield in tumor by 6 MV radiation was higher than the radionuclides and hence potentially greater damage may be obtained during EBRT. No significant cell viability change was observed for 1 µg/g titania. Conclusion: Altogether, these preliminary findings demonstrate a potential new approach that can be used to take advantage of the CR present during megavoltage EBRT to boost damage to tumor cells. The results provide significant impetus for further experimental studies towards development of nanoparticle-aided EBRT powered by the

  10. Guidelines for radiation therapy in clinical research on bladder cancer

    International Nuclear Information System (INIS)

    Shipley, W.U.; VanderSchueren, E.; Kitagawa, T.; Gospodarowicz, M.K.; Frommhold, H.; Magno, L.; Mochizuki, S.; VanderBogaert, W.; VanderWerf-Messing, B.

    1986-01-01

    Bladder cancer is a heterogeneous disease and that there are important tumor characteristics that will predict significant differences in radiation responsiveness. These should in all instances be well documented prospectively in any treatment protocol. However, in this chapter the authors stress a number of factors related to the tumor at presentation as well as the administration of the radiation therapy that can importantly affect the efficacy of the radiation on the patient's tumor, as well as on his or her normal tissues. As Radiation Oncologists, they are most interested in the conducting and reporting of prospective clinical investigations in the use of radiation therapy in the treatment of patients with bladder carcinoma who will be treated with planned preservation of their bladder, but whose radiation therapy may be combined with additional planned bladder-sparing surgery, intraoperative radiation therapy, or chemotherapy

  11. TH-F-202-03: Advances in MRI for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J. [Duke University Medical Center (United States)

    2016-06-15

    MRI has excellent soft tissue contrast and can provide both anatomical and physiological information. It is becoming increasingly important in radiation therapy for treatment planning, image-guided radiation therapy, and treatment assessment. It is critically important at this time point to educate and update our medical physicists about MRI to prepare for the upcoming surge of MRI applications in radiation therapy. This session will review important basics of MR physics, pulse sequence designs, and current radiotherapy application, as well as showcase exciting new developments in MRI that can be potentially useful in radiation therapy. Learning Objectives: To learn basics of MR physics and understand the differences between various pulse sequences To review current applications of MRI in radiation therapy.To discuss recent MRI advances for future MRI guided radiation therapy Partly supported by NIH (1R21CA165384).; W. Miller, Research supported in part by Siemens Healthcare; G. Li, My clinical research is in part supported by NIH U54CA137788. I have a collaborative research project with Philips Healthcare.; J. Cai, jing cai.

  12. TH-F-202-03: Advances in MRI for Radiation Therapy

    International Nuclear Information System (INIS)

    Cai, J.

    2016-01-01

    MRI has excellent soft tissue contrast and can provide both anatomical and physiological information. It is becoming increasingly important in radiation therapy for treatment planning, image-guided radiation therapy, and treatment assessment. It is critically important at this time point to educate and update our medical physicists about MRI to prepare for the upcoming surge of MRI applications in radiation therapy. This session will review important basics of MR physics, pulse sequence designs, and current radiotherapy application, as well as showcase exciting new developments in MRI that can be potentially useful in radiation therapy. Learning Objectives: To learn basics of MR physics and understand the differences between various pulse sequences To review current applications of MRI in radiation therapy.To discuss recent MRI advances for future MRI guided radiation therapy Partly supported by NIH (1R21CA165384).; W. Miller, Research supported in part by Siemens Healthcare; G. Li, My clinical research is in part supported by NIH U54CA137788. I have a collaborative research project with Philips Healthcare.; J. Cai, jing cai

  13. Gold Nanoparticles as a Photothermal Agent in Cancer Therapy: The Thermal Ablation Characteristic Length

    Directory of Open Access Journals (Sweden)

    Thomas Grosges

    2018-05-01

    Full Text Available In cancer therapy, the thermal ablation of diseased cells by embedded nanoparticles is one of the known therapies. It is based on the absorption of the energy of the illuminating laser by nanoparticles. The resulting heating of nanoparticles kills the cell where these photothermal agents are embedded. One of the main constraints of this therapy is preserving the surrounding healthy cells. Therefore, two parameters are of interest. The first one is the thermal ablation characteristic length, which corresponds to an action distance around the nanoparticles for which the temperature exceeds the ablation threshold. This critical geometric parameter is related to the expected conservation of the body temperature in the surroundings of the diseased cell. The second parameter is the temperature that should be reached to achieve active thermal agents. The temperature depends on the power of the illuminating laser, on the size of nanoparticles and on their physical properties. The purpose of this paper is to propose behavior laws under the constraints of both the body temperature at the boundary of the cell to preserve surrounding cells and an acceptable range of temperature in the target cell. The behavior laws are deduced from the finite element method, which is able to model aggregates of nanoparticles. We deduce sensitivities to the laser power and to the particle size. We show that the tuning of the temperature elevation and of the distance of action of a single nanoparticle is not significantly affected by variations of the particle size and of the laser power. Aggregates of nanoparticles are much more efficient, but represent a potential risk to the surrounding cells. Fortunately, by tuning the laser power, the thermal ablation characteristic length can be controlled.

  14. First aid in the case of increased exposure to ionizing radiation

    International Nuclear Information System (INIS)

    1976-07-01

    Describes first aid measures for persons who have been exposed to increased radiation, especially certain steps to be taken in the case of external exposure of the whole and/or the partial body, in the case of contamination and incorporation. The pamphlet not only includes definition of terms but also a list of regional radiation protection centres. (RW) [de

  15. Multifunctional gold nanoparticles for photodynamic therapy of cancer

    Science.gov (United States)

    Khaing Oo, Maung Kyaw

    As an important and growing branch of photomedicine, photodynamic therapy (PDT) is being increasingly employed in clinical applications particularly for the treatment of skin cancer. This dissertation focuses on the synthesis, characterization and deployment of gold nanoparticles for enhanced PDT of fibrosarcoma cancer cells. We have developed robust strategies and methods in fabrication of gold nanoparticles with positively- and negatively-tethered surface charges by photo-reduction of gold chloride salt using branched polyethyleneimine and sodium citrate respectively. An optimal concentration window of gold salt has been established to yield the most stable and monodispersed gold nanoparticles. 5-aminolevulinic acid (5-ALA), a photosensitizing precursor, has been successfully conjugated on to positively charged gold nanoparticles through electrostatic interactions. The 5-ALA/gold nanoparticle conjugates are biocompatible and have shown to be preferably taken up by cancer cells. Subsequent light irradiation results in the generation of reactive oxygen species (ROS) in cancer cells, leading to their destruction without adverse effects on normal fibroblasts. We have demonstrated for the first time that gold nanoparticles can enhance PDT efficacy by 50% compared to the treatment with 5-ALA alone. Collected evidence has strongly suggested that this enhancement stems from the elevated formation of ROS via the strongly localized electric field of gold nanoparticles. Through single cell imaging using surface-enhanced Raman scattering enabled by the very same gold nanoparticles, we have shown that multifunctionality of gold nanoparticles can be harvested concurrently for biomedical applications in general and for PDT in specific. In other words, gold nanoparticles can be used not only for targeted drug delivery and field-enhanced ROS formation, but also for monitoring cell destructions during PDT. Finally, our COMSOL Multiphysics simulation of the size-dependent electric

  16. Radiation therapy in the management of childhood cancer

    International Nuclear Information System (INIS)

    Kun, L.E.

    1987-01-01

    Over the past two decades, multimodality treatment regimens have produced significant improvement in survival rates for most types of childhood cancer. The role of radiation therapy has been critically evaluated in prospective clinical trials that established the importance of irradiation in assuring local and regional control of disease central to ultimate survival. Indications for cranial and craniospinal irradiation in acute lymphoblastic leukemia are reviewed, as is difficult technical factors important for successful management. The role of radiation therapy in neuroblastoma and Wilms tumor is reviewed in the context of tumor biology and increasing data from multi-institutional trials. Interactions of irradiation with surgery and chemotherapy are stressed in childhood rhabdomyosarcoma and Ewing sarcoma. Current results in the more common central nervous tumors of childhood are presented, including the central role of radiation therapy in medulloblastoma, astrocytoma, and craniopharyngioma. Concerns regarding late effects of radiation therapy are balanced with the importance of achieving disease control

  17. Outcome of radiation therapy for patients with Kasabach-Merritt syndrome

    International Nuclear Information System (INIS)

    Mitsuhashi, Norio; Furuta, Masaya; Sakurai, Hideyuki; Takahashi, Takeo; Kato, Shingo; Nozaki, Miwako; Saito, Yoshihiro; Hayakawa, Kazushige; Niibe, Hideo

    1997-01-01

    Purpose: The efficacy of radiation therapy for Kasabach-Merritt syndrome, which is characterized by a huge hemangioma with consumption coagulopathy, remains controversial. In this study, we retrospectively investigated the treatment outcome of radiation therapy for seven neonates with Kasabach-Merritt syndrome. Methods and Materials: During the past 25 years we have seen seven children with Kasabach-Merritt syndrome who were treated with radiation therapy. Their ages ranged from 1 day to 5 months, with a median age of 1 month. The hemangioma was located in the extremities in four of seven children. Tumor sizes ranged from 70 cm to more than 150 cm in greatest diameter. Initial platelet counts were all less than 40,000/mm 3 except for one patient. In principle, the total dose applied to the hemangioma was 8-10 Gy, with a daily dose of 1 Gy five times a week. Results: Four of seven hemangiomas responded dramatically, with a concomitant rise of the platelet count to radiation therapy. Although the remaining three hemangiomas, all of which were ill circumscribed by widespread overlying shiny, dusky purple skin, became less tense during radiation therapy. Disseminated intravascular coagulopathy was not improved, but they have responded favorably to two or three courses of radiation therapy with an extended radiation field by 1.5 years of age. As a result, all seven patients are now surviving with no evidence of hemangioma or hematological abnormalities. Shortening of the extremity was observed in three patients who received multiple courses of radiation therapy. Conclusions: Radiation therapy appears to be one of the effective treatment options for Kasabach-Merritt syndrome despite the risk of growth delay and malignancy

  18. Postoperative radiation therapy for adenoid cystic carcinoma

    International Nuclear Information System (INIS)

    Oguchi, Masahiko; Shikama, Naoto; Gomi, Koutarou; Shinoda, Atsunori; Nishikawa, Atsushi; Arakawa, Kazukiyo; Sasaki, Shigeru; Takei, Kazuyoshi; Sone, Syusuke

    2000-01-01

    The authors retrospectively assessed the usefulness of postoperative radiation therapy after local resection of adenoid cystic carcinoma, with emphasis on organ-conserving treatment and the cosmetic results. Between 1985 and 1995, 32 patients underwent local resection followed by postoperative radiation therapy with curative and organ-conserving intent. None of patients received any form of chemotherapy as part of their initial treatment. Radiation therapy was carried out by techniques that were appropriate for the site and extension of each tumor. The 5-year local control, disease-free, and overall survival rates of all patients were 76%, 68%, and 86%, respectively. The 5-year local control rate and disease-free survival rate of patients with microscopically positive margins were 89% and 75%, respectively, and higher than in patients with macroscopically residual disease, but no significant difference in 5-year overall survival rate was observed. The postoperative cosmetic results in 29 patients with head and neck lesions were evaluated. No difference was documented between the cosmetic results postoperatively setting and after postoperative radiotherapy, and no significant differences in cosmetic results were observed according to radiation dose. The combination of local resection with organ-conserving intent and postoperative radiation therapy provided good cosmetic results in patients with T1 or T2 lesions. Postoperative radiation therapy with smaller fractions is useful, because good local control can be achieved in patients with adenoid cystic carcinoma having microscopically positive margins without inducing any late adverse reactions. However, the number of patients was too small and the follow-up period was too short to draw any definite conclusion in regard to fraction size. A much longer follow-up study with a larger number patients will be required to accurately determine the optimal treatment intensity and duration of treatment. (K.H.)

  19. Radiation synthesized protein-based nanoparticles: A technique overview

    International Nuclear Information System (INIS)

    Varca, Gustavo H.C.; Perossi, Gabriela G.; Grasselli, Mariano; Lugão, Ademar B.

    2014-01-01

    Seeking for alternative routes for protein engineering a novel technique – radiation induced synthesis of protein nanoparticles – to achieve size controlled particles with preserved bioactivity has been recently reported. This work aimed to evaluate different process conditions to optimize and provide an overview of the technique using γ-irradiation. Papain was used as model protease and the samples were irradiated in a gamma cell irradiator in phosphate buffer (pH=7.0) containing ethanol (0–35%). The dose effect was evaluated by exposure to distinct γ-irradiation doses (2.5, 5, 7.5 and 10 kGy) and scale up experiments involving distinct protein concentrations (12.5–50 mg mL −1 ) were also performed. Characterization involved size monitoring using dynamic light scattering. Bityrosine detection was performed using fluorescence measurements in order to provide experimental evidence of the mechanism involved. Best dose effects were achieved at 10 kGy with regard to size and no relevant changes were observed as a function of papain concentration, highlighting very broad operational concentration range. Bityrosine changes were identified for the samples as a function of the process confirming that such linkages play an important role in the nanoparticle formation. - Highlights: • Synthesis of protein-based nanoparticles by γ-irradiation. • Optimization of the technique. • Overview of mechanism involved in the nanoparticle formation. • Engineered papain nanoparticles for biomedical applications

  20. Acute toxicity in comprehensive head and neck radiation for nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    McDonald, Mark W.; Liu, Yuan; Moore, Michael G.; Johnstone, Peter A. S.

    2016-01-01

    To evaluate acute toxicity endpoints in a cohort of patients receiving head and neck radiation with proton therapy or intensity modulated radiation therapy (IMRT). Forty patients received comprehensive head and neck radiation including bilateral cervical nodal radiation, given with or without chemotherapy, for tumors of the nasopharynx, nasal cavity or paranasal sinuses, any T stage, N0-2. Fourteen received comprehensive treatment with proton therapy, and 26 were treated with IMRT, either comprehensively or matched to proton therapy delivered to the primary tumor site. Toxicity endpoints assessed included g-tube dependence at the completion of radiation and at 3 months after radiation, opioid pain medication requirement compared to pretreatment normalized as equivalent morphine dose (EMD) at completion of treatment, and at 1 and 3 months after radiation. In a multivariable model including confounding variables of concurrent chemotherapy and involved nodal disease, comprehensive head and neck radiation therapy using proton therapy was associated with a lower opioid pain requirement at the completion of radiation and a lower rate of gastrostomy tube dependence by the completion of radiation therapy and at 3 months after radiation compared to IMRT. Proton therapy was associated with statistically significant lower mean doses to the oral cavity, esophagus, larynx, and parotid glands. In subgroup analysis of 32 patients receiving concurrent chemotherapy, there was a statistically significant correlation with a greater opioid pain medication requirement at the completion of radiation and both increasing mean dose to the oral cavity and to the esophagus. Proton therapy was associated with significantly reduced radiation dose to assessed non-target normal tissues and a reduced rate of gastrostomy tube dependence and opioid pain medication requirements. This warrants further evaluation in larger studies, ideally with patient-reported toxicity outcomes and quality of life

  1. COMPARISON OF HYPOFRACTIONATED RADIATION THERAPY VERSUS CONVENTIONAL RADIATION THERAPY IN POST MASTECTOMY BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Abhilash

    2016-03-01

    Full Text Available INTRODUCTION Breast cancer is the most common cancer in women worldwide and a leading cause of cancer death in females and accounts for 1.8 million new cases and approximately 0.5 million deaths annually. Patients who present with locally advanced breast cancer (LABC require multidisciplinary team approach that incorporates diagnostic imaging, surgery, chemotherapy and histopathological assessment, including molecular-based studies, radiation, and, if indicated, biologic and hormonal therapies. Hypofractionated radiation therapy following mastectomy has been used in many institutions for several decades and have demonstrated equivalent local control, cosmetic and normal tissues between 50 Gy in 25 fractions and various hypofractionated radiotherapy prescriptions employing 13-16 fractions. Evidence suggests that hypofractionated radiotherapy may also be safe and effective for regional nodal disease. AIMS AND OBJECTIVES To compare the local control and side effects of hypofractionated radiation therapy with conventional radiation therapy in post mastectomy carcinoma breast with stage II and III and to compare the tolerability and compliance of both schedules. MATERIALS AND METHODS The study was conducted on 60 histopathologically proven patients of carcinoma of breast, treated surgically with modified radical mastectomy. Group I patients were given external radiation to chest flap and drainage areas, a dose of 39 Gy/13 fractions/3.1 weeks, a daily dose 3 Gy for 13 fractions in 4 days a week schedule and Group II patients were given external radiation to chest flap and drainage areas, a dose of 50 Gy/25 fractions/5 weeks, to receive a daily dose 2 Gy for 25 fractions in a 5 days a week schedule. RESULTS The median age at presentation in Group I and II was 48 and 50 years respectively. Locoregional control after completion of radiotherapy in Group I vs. Group II was 26/30 (86.7% vs. 27/30 (90% respectively. Acute reactions and their grades in Group

  2. Engineering liposomal nanoparticles for targeted gene therapy.

    Science.gov (United States)

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  3. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit an... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide radiation therapy system. 892.5750... patient's body. This generic type of device may include signal analysis and display equipment, patient and...

  4. DOE Research Contributions to Radiation and Cancer Therapy

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis DOE Research Contributions to Radiation and Cancer Therapy Possible: DOE Advanced Biomedical Technology Research, page 10 Over the time span of many years, DOE's research has made many contributions to radiation and cancer therapy, including PEREGRINE and Boron Neutron

  5. Radiation therapy for chordomas

    International Nuclear Information System (INIS)

    Ikeda, Hajime; Takahashi, Takeo; Nakamura, Yuji; Niibe, Hideo

    1995-01-01

    Chordomas are slow-growing primary malignant bone tumors which originate from remnants of the fetal notochordal system. They are difficult to control by surgery alone. Four patients with chordomas treated with radiation therapy were studied, and the effectiveness of radiotherapy was evaluated. These 4 (3.8%) patients were among 106 patients with primary malignant bone tumors referred to us from 1959 to 1987. Primary sites were the sacrococcygeal region in three patients and the clivus in one. The patients' ages ranged from 51 to 75 years. The male : female ratio was 1 : 1. Patients received 48 to 60 Gy of radiation to the primary sites. Because the radiosensitivity of the tumors was low, the responses were poor. The duration of survival was 6, 33, 68, and 125 months. The cause of death in each case was local recurrence of tumor. As a result, a dose greater than 60 Gy is thought to be necessary for curative radiotherapy. Proton beam therapy seems to be best choice for chordomas in the clivus, and mixed-beam (proton and megavolt age X-ray) therapy or multiportal irradiation, which gives an ideal spatial dose distribution, seems to be most suitable for sacrococcygeal chordomas. (author)

  6. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy

    Science.gov (United States)

    Meng, Qian-Fang; Rao, Lang; Zan, Minghui; Chen, Ming; Yu, Guang-Tao; Wei, Xiaoyun; Wu, Zhuhao; Sun, Yue; Guo, Shi-Shang; Zhao, Xing-Zhong; Wang, Fu-Bing; Liu, Wei

    2018-04-01

    Nanotechnology possesses the potential to revolutionize the diagnosis and treatment of tumors. The ideal nanoparticles used for in vivo cancer therapy should have long blood circulation times and active cancer targeting. Additionally, they should be harmless and invisible to the immune system. Here, we developed a biomimetic nanoplatform with the above properties for cancer therapy. Macrophage membranes were reconstructed into vesicles and then coated onto magnetic iron oxide nanoparticles (Fe3O4 NPs). Inherited from the Fe3O4 core and the macrophage membrane shell, the resulting Fe3O4@MM NPs exhibited good biocompatibility, immune evasion, cancer targeting and light-to-heat conversion capabilities. Due to the favorable in vitro and in vivo properties, biomimetic Fe3O4@MM NPs were further used for highly effective photothermal therapy of breast cancer in nude mice. Surface modification of synthetic nanomaterials with biomimetic cell membranes exemplifies a novel strategy for designing an ideal nanoplatform for translational medicine.

  7. Radiation Therapy and Hearing Loss

    International Nuclear Information System (INIS)

    Bhandare, Niranjan; Jackson, Andrew; Eisbruch, Avraham; Pan, Charlie C.; Flickinger, John C.; Antonelli, Patrick; Mendenhall, William M.

    2010-01-01

    A review of literature on the development of sensorineural hearing loss after high-dose radiation therapy for head-and-neck tumors and stereotactic radiosurgery or fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma is presented. Because of the small volume of the cochlea a dose-volume analysis is not feasible. Instead, the current literature on the effect of the mean dose received by the cochlea and other treatment- and patient-related factors on outcome are evaluated. Based on the data, a specific threshold dose to cochlea for sensorineural hearing loss cannot be determined; therefore, dose-prescription limits are suggested. A standard for evaluating radiation therapy-associated ototoxicity as well as a detailed approach for scoring toxicity is presented.

  8. The physical basis and future of radiation therapy.

    Science.gov (United States)

    Bortfeld, T; Jeraj, R

    2011-06-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued "fuelling" of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more "professionalism" in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics.

  9. The physical basis and future of radiation therapy

    Science.gov (United States)

    Bortfeld, T; Jeraj, R

    2011-01-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued “fuelling” of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more “professionalism” in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics. PMID:21606068

  10. Results of radiation therapy in periarthritis humeroscapularis

    International Nuclear Information System (INIS)

    Schultze, J.; Schlichting, G.; Galalae, R.; Kimmig, B.; Koltze, H.

    2004-01-01

    Background: radiation therapy is applied in painful degenerative shoulder diseases. Aim of this work was to evaluate the contribution of radiation therapy to symptomatic improvement in periarthritis humeroscapularis. Methods: ninety-four patients with periarthritis humeroscapularis were treated in two institutions. Mean age was 68 years, sex distribution were 32 men and 62 women. In 58 cases the right side was affected, left in 36 cases. At single doses of 0,75 Gy once a week a total dose of 6 Gy was applied The treatment effect was evaluated by the standardized von Pannewitz-score at the end of the treatment up to 6 months thereafter. Results: the treatment results of all the 94 patients were documentated at the end of therapy. Seventy-one patients were followed at least for further 4 months. Radiogenic side-effects were not noticed. The symptoms of 54 patients (57.4%) were improved or vanished, in 40 cases the symptoms were not significantly affected (42.6%). Four months after therapy 42 of 71 patients were improved (59.2%), 29 unchanged (40.8%). The treatment effect occured typically up to 2 months after therapy, there were no age-related differences. Also in recurrent radiation therapies the symptoms improved, in 80 percent after one preceding therapy, however only in 31.2 percent after multiple prior radiotherapies. (orig.)

  11. Two case reports of a cerebrovascular disorder after radiation therapy

    International Nuclear Information System (INIS)

    Ono, Jiro; Mimaki, Takashi; Tagawa, Tetsuzo

    1985-01-01

    The use of radiation therapy has significantly improved the prognosis of certain brain tumors. However, a few patients have been reported who developed cerebrovasculopathy accompanying transient ischemic attacks several months to several years after radiation therapy. The present report described cerebrovascular disorders after radiation therapy for brain tumors. The first case was an 8-year-6-month-old boy treated with a total dose of 5,200 rads after partial removal of a right periventricular astrocytoma extending into the thalamus. Two years and 7 months after completion of the radiation therapy, he showed transient ischemic attacks of numbness in the right upper limb and right hemiparesis. Arteriography revealed stenosis or occlusion of the anterior and middle cerebral arteries. Preoperative arteriography did not show occlusion nor narrowing of the cerebral arteries. The second case was a 2-year-8-month-old boy diagnosed as diencephalic syndrome, because of marked emaciation and a huge tumor mass expanding into the diencephalon and frontal lobe on the brain CT scan. He was irradiated with up to 5,000 rads. Seven months after radiation therapy, he developed transient right hemiparesis. Arteriography revealed stenosis or occlusion of the middle sized cerebral arteries. Although radiation therapy is acceptable in children with certain brain tumors, and very few patients develop postradiation vasculopathy, the risk of radiation therapy requires more careful consideration in the treatment of intracranial tumors. (author)

  12. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  13. System of regional centres of first aid in cases of radiation accidents in Germany

    International Nuclear Information System (INIS)

    Fehringer, F.; Seitz, G.

    1996-01-01

    When in the seventies the number of occupational radiation exposed persons in the Federal Republic of Germany increased from about 35,000 (1974) to about 160,000 (1978) the Industrial Injuries Insurance Institutes felt prompted to reflect about special measures to prevent radiation accidents and provide health care for this special cases. They did so without any actual occasion: accidents were persons have been exposed by ionizing radiation were in the seventies just as rare as today. But that fact does not allow the Industrial Injuries Insurance Institutes to neglect the existing potential for severe accidents. So the Industrial Injuries Insurance Institute for the Electrical Industry including Precision Mechanics and the Industrial Injuries Insurance Institute for the Chemical Industry created the Institute for Radiation Protection in 1978. The primary task of that Institute is to guarantee an effective first aid in the case of a radiation accident. To realize that task the Institute contracted 11 wellknown institutions like radiological departments of large hospitals or the medical departments of research centres where the i knowledge on diagnostic and therapy of radiation effects is present. They are called 'Regionale Strahlenschutzzentren', Regional Centres for Radiation Protection (RCRP). In the case of radiation accidents these RCRP are the logistical centres for all arising questions of treatment. They have facilities for reconstructing exposure situations and assessing and evaluating doses, including measurements of internal contamination as well as for medical inpatient or out-patient treating like internal or external decontamination. Another important task of the RCRP is to advise employers in ad radiation protection questions which arise with the industrial application of ionizing radiation. Of course the centres give also answer to many question from members of the public, for example the personal effects of the power plant accident at Chernobyl

  14. A case showing a blistering disorder in radiation dermatitis during radiation therapy

    International Nuclear Information System (INIS)

    Nonoshita, Takeshi; Nakamura, Katsumasa; Shioyama, Yoshiyuki

    2007-01-01

    We experienced a case showing a blistering disorder in radiation dermatitis during radiation therapy for thymic cancer. Application of steroid to the lesion improved blisters. The literature on bullous eruption including radiation-induced bullous pemhigoid was critically reviewed. (author)

  15. Radiation therapy for pleural mesothelioma

    International Nuclear Information System (INIS)

    Seydel, H.G.

    1986-01-01

    There is clear evidence that both pleural and peritoneal malignant mesothelioma are increasing in incidence in the United States. There is a recognized long period of latency from asbestos exposure to the emergence and diagnosis of tumor. Considering the levels of asbestos utilization in the mid-20th century, we must expect that the number of cases will continue to increase until the end of this century. Evaluation of treatment options is thus a critical issue in determining treatment approaches for this disease. Recognized only recently, mesothelioma has no effective treatment, and patients are reported only anecdotally as cured. Pleural mesothelioma is the more common presentation, but even here the reports are from small, uncontrolled series. Only one study is available in which a concomitant comparison of treatment methods was carried out. Randomized clinical studies regarding treatment of pleural mesothelioma have only recently been initiated by the clinical cooperative groups. There is thus a paucity of information on treatment in general and radiation therapy specifically for malignant mesothelioma. This chapter reviews the reported experience using radiation therapy alone and combined with other modalities for the treatment of malignant pleural mesothelioma and considers the potential for improvement of the results of current methods of radiation therapy

  16. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study

    International Nuclear Information System (INIS)

    Cho, S H

    2005-01-01

    A recent mice study demonstrated that gold nanoparticles could be safely administered and used to enhance the tumour dose during radiation therapy. The use of gold nanoparticles seems more promising than earlier methods because of the high atomic number of gold and because nanoparticles can more easily penetrate the tumour vasculature. However, to date, possible dose enhancement due to the use of gold nanoparticles has not been well quantified, especially for common radiation treatment situations. Therefore, the current preliminary study estimated this dose enhancement by Monte Carlo calculations for several phantom test cases representing radiation treatments with the following modalities: 140 kVp x-rays, 4 and 6 MV photon beams, and 192 Ir gamma rays. The current study considered three levels of gold concentration within the tumour, two of which are based on the aforementioned mice study, and assumed either no gold or a single gold concentration level outside the tumour. The dose enhancement over the tumour volume considered for the 140 kVp x-ray case can be at least a factor of 2 at an achievable gold concentration of 7 mg Au/g tumour assuming no gold outside the tumour. The tumour dose enhancement for the cases involving the 4 and 6 MV photon beams based on the same assumption ranged from about 1% to 7%, depending on the amount of gold within the tumour and photon beam qualities. For the 192 Ir cases, the dose enhancement within the tumour region ranged from 5% to 31%, depending on radial distance and gold concentration level within the tumour. For the 7 mg Au/g tumour cases, the loading of gold into surrounding normal tissue at 2 mg Au/g resulted in an increase in the normal tissue dose, up to 30%, negligible, and about 2% for the 140 kVp x-rays, 6 MV photon beam, and 192 Ir gamma rays, respectively, while the magnitude of dose enhancement within the tumour was essentially unchanged. (note)

  17. Optimization of adaptive radiation therapy in cervical cancer: Solutions for photon and proton therapy

    NARCIS (Netherlands)

    van de Schoot, A.J.A.J.

    2016-01-01

    In cervical cancer radiation therapy, an adaptive strategy is required to compensate for interfraction anatomical variations in order to achieve adequate dose delivery. In this thesis, we have aimed at optimizing adaptive radiation therapy in cervical cancer to improve treatment efficiency and

  18. Oral care of the cancer patient receiving radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Holtzhausen, T [Medical Univ. of Southern Africa, Pretoria (South Africa). Dept. of Community Dentistry

    1982-07-01

    Radiation therapy is frequently being used for the patient with oral cancer. The survival rate is increasing, due to more effective treatment technique. The question of whether any teeth should be extracted, the mode of therapy and the side effects of radiation like Xerostomia, caries, stomatitis, trismus and osteo-radionecrosis and also post radiation care are discussed.

  19. Radiation therapy: age-related macular degeneration.

    Science.gov (United States)

    Mendez, Carlos A Medina; Ehlers, Justis P

    2013-01-01

    Age-related macular degeneration (AMD) is the leading cause of severe irreversible vision loss in patients over the age of 50 years in the developed world. Neovascular AMD (NVAMD) is responsible for 90% of the cases with severe visual loss. In the last decade, the treatment paradigm for NVAMD has been transformed by the advent of anti-vascular endothelial growth factor therapy. Despite the excellent results of anti-vascular endothelial growth factor therapy, frequent injections remain a necessity for most patients. The burden of these frequent visits as well as the cumulative risks of indefinite intravitreal injections demand continued pursuit of more enduring therapy that provides similar functional results. Radiotherapy has been studied for two decades as a potential therapy for NVAMD. Because of its antiangiogenic properties, radiation therapy remains a promising potential adjunctive resource for the treatment of choroidal neovascularization secondary to NVAMD. This review considers the past, present and future of radiation as a treatment or combination treatment of NVAMD. Copyright © 2013 S. Karger AG, Basel.

  20. Computed tomography in radiation therapy planning: Thoracic region

    International Nuclear Information System (INIS)

    Seydel, H.G.; Zingas, A.; Haghbin, M.; Mondalek, P.; Smereka, R.

    1983-01-01

    With the explosive spread of computed tomographic (CT) scanning throughout the United States, one of the main applications has been in patients who are treated for cancer by surgery, radiation therapy, or chemotherapy. For the radiation oncologist, the desire to provide local tumor control and avoid geographic misses to achieve an expected prolongation of survival has led to the use of large radiation fields in the treatment of intrathoracic cancer, including bronchogenic carcinoma, cancer of the esophagus, and other malignant tumors. The optimal radiation therapy plan is a balance between local tumor control and the necessity to preserve normal structures by the use of directed and limited fields for bulk disease. CT scanning has been employed to accurately demonstrate the extent of tumor as well as to determine the isodose distribution of radiation, including the spatial distribution of radiation portals in single planar and three-dimensional aspects as well as consideration of tissue inhomogeneities. The accurate planning of the distribution of therapeutic irradiation includes both the tumor-bearing target volume and the critical normal tissues. This chapter provides information regarding these aspects of the application of CT scanning to radiation therapy for bronchogenic carcinoma and carcinoma of the esophagus

  1. Experience with first aid in radiation sources accidents

    International Nuclear Information System (INIS)

    Klener, V.

    1979-01-01

    More than 20 years of experience at the Radiation Hygiene Centre of the Prague Institute of Hygiene and Epidemiology with prevention of accidents involving sources of radiation and the Centre's participation in providing medical aid in such accidents are described. A list is given of major types of accidents over the past decade. Prevalent were accidents involving sealed gamma sources, resulting in excessive local irradiation with serious skin damage or injury to some of the deeper structures of the hands, requiring plastic operation. Chromosomal picture investigation allows the estimation of the equivalent body dose which only reached higher values in a single case recorded (1.5 Gy = 150 rad). Organisational measures are described for emergencies and the task is shown by radiation hygiene departments attached to regional hygiene stations. The present system is capable of providing adequate, prompt and effective assistance. (author)

  2. Radiation optic neuropathy after external beam radiation therapy for acromegaly: report of two cases

    International Nuclear Information System (INIS)

    Bergh, Alfons C.M. van den; Hoving, Marjanke A.; Links, Thera P.; Dullaart, Robin P.F.; Ranchor, Adelita V.; Weeme, Cees A. ter; Canrinus, Alof A.; Szabo, Ben G.; Pott, Jan-Willem R.

    2003-01-01

    For diagnosing radiation optic neuropathy (RON) ophthalmological and imaging data were evaluated from 63 acromegalic patients, irradiated between 1967 and 1998. Two patients developed RON: one patient in one optic nerve 10 years and another patient in both optic nerves 5 months after radiation therapy. RON is a rare complication after external beam radiation therapy for acromegaly, which can occur after a considerable latency period

  3. Modeling Internal Radiation Therapy

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Theo E.; Pellegrini, M.; Fred, A.; Filipe, J.; Gamboa, H.

    2011-01-01

    A new technique is described to model (internal) radiation therapy. It is founded on morphological processing, in particular distance transforms. Its formal basis is presented as well as its implementation via the Fast Exact Euclidean Distance (FEED) transform. Its use for all variations of internal

  4. Radiation Therapy of Suprasellar Germ Cell Tumors

    International Nuclear Information System (INIS)

    Park, Woo Yoon; Choi, Doo Ho; Choi, Eun Kyung; Kim, Il Han; Ha, Sung Whan; Park, Charn Il

    1988-01-01

    A retrospective study was performed on 15 patients with suprasellar germ cell tumors treated by megavoltage external beam irradiation between Feb. 1979 and Dec. 1985. Follow-up period of survivors was 30 to 91 months. Histologic diagnosis was obtained before radiation therapy in 10 patients (9 germinomas and 1 mixed). Five patients were treated without histologic verification. In 9 patients with biopsy-proven germinomas radiation therapy was delivered to the craniospinal axis in 6, to the whole brain in 3. In 5 patients with mixed germ cell tumor or elevated tumor marker, irradiation was delivered to the craniospinal axis in 2, to the whole brain in 2, and to the primary site only in 1. Total doses ranged from 5,000 to 5,500 cGy to the primary site, 3,000 to 4,400 cGy to the whole brain, and 1,300 to 3,000 cGy to the spine. In these 14, local tumor was controlled and primary or spinal failure was not observed. One patient without elevated tumor marker was treated to the whole brain, The tumor was not controlled and he had spinal recurrence. It is proven that radiation therapy is an effective treatment for suprasellar germ cell tumors. The neuroendocrinologic presentation, tumor marker status, early response to radiation measured on CT seem to be useful means for selecting patients for radiation therapy when tissue diagnosis is not available

  5. Radiation Therapy for Neovascular Age-related Macular Degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Kishan, Amar U. [Harvard Medical School, Boston, Massachusetts (United States); Modjtahedi, Bobeck S.; Morse, Lawrence S. [Department of Ophthalmology and Vision Sciences, University of California, Davis, Sacramento, California (United States); Lee, Percy, E-mail: percylee@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States)

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  6. Radiation Therapy of Pituitary Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon Baik; Hong, Seong Eong [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    Radiation treatment results were analyzed in a retrospective analysis of 47 patients with pituitary adenoma treated with radiation alone or combined with surgery from 1974 through 1987 at the Department of Therapeutic Radiology of Kyung Hee University. The 5-year overall survival rates for all patients was 80.4%. Radiation therapy was effective for improving visual symptoms and headache, but could not normalize amenorrhea and galactorrhoea. There was no difference of survival rate between radiation alone and combination with surgery. Prognostic factors such as age, sex, disease type, visual field, headache and surgical treatment were statistically no significant in survival rates of these patients.

  7. Radiation Therapy of Pituitary Tumors

    International Nuclear Information System (INIS)

    Park, Moon Baik; Hong, Seong Eong

    1989-01-01

    Radiation treatment results were analyzed in a retrospective analysis of 47 patients with pituitary adenoma treated with radiation alone or combined with surgery from 1974 through 1987 at the Department of Therapeutic Radiology of Kyung Hee University. The 5-year overall survival rates for all patients was 80.4%. Radiation therapy was effective for improving visual symptoms and headache, but could not normalize amenorrhea and galactorrhoea. There was no difference of survival rate between radiation alone and combination with surgery. Prognostic factors such as age, sex, disease type, visual field, headache and surgical treatment were statistically no significant in survival rates of these patients

  8. Radiation therapy of brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, R; Huenig, R [Kantonsspital Basel (Switzerland). Universitaetsinstitut fuer Medizinische Radiologie

    1975-08-01

    Experiences are reported obtained with radiation therapy of brain metastases in 121 patients during the last 15 years. The treatment to a lesser extent aimed at prolongation of survival but much more at the attempt to alleviate troubles and to spare pain. The indication thus involved medical points of view as well as ethical ones. The radiotherapy of cerebral metastases comprises the whole cranial volume and requires a focal dose of minimally 4,000 R within four weeks. In 53% of the patients, the regression of neurological symptoms was considerable, in 18% even complete, partly beginning already after a few days of treatment. The number of recurrences was small. Under conditions of rigorous indication, the radiation therapy of brain metastases offers a rewarding palliative measure.

  9. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy.

    Science.gov (United States)

    Xi, Juqun; Da, Lanyue; Yang, Changshui; Chen, Rui; Gao, Lizeng; Fan, Lei; Han, Jie

    2017-01-01

    Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn 2+ -coordinated doxorubicin (DOX)-loaded poly(lactic- co -glycolic acid) (PLGA) nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA) nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA) through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn 2+ ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn 2+ -PDA@DOX/PLGA nanoparticles. In our system, Mn 2+ -PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn 2+ could afford the high magnetic resonance (MR) imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn 2+ -PDA@ DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties.

  10. Some computer graphical user interfaces in radiation therapy.

    Science.gov (United States)

    Chow, James C L

    2016-03-28

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  11. Drug delivery system and radiation therapy

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2005-01-01

    This paper describes the review of radiation therapy, neutron capture therapy (NCT) and drug delivery system for the latter. In cancer radiation therapy, there are problems of body movement like breathing, needless irradiation of normal tissues, difficulty to decide the correct irradiation position and tumor morphology. NCT has advantages to overcome these, and since boron has a big cross section for thermal neutron, NPT uses the reaction 10 B(n, α) 7 Li in the target cancer which previously incorporated the boron-containing drug. During the period 1966-1996, 246 patients were treated with this in Japan and the treatment has been continued thereafter. The tasks for NCT are developments of drug delivery system efficient to deliver the drug into the tumor and of convenient neutron source like the accelerator. (S.I.)

  12. Computer models for optimizing radiation therapy

    International Nuclear Information System (INIS)

    Duechting, W.

    1998-01-01

    The aim of this contribution is to outline how methods of system analysis, control therapy and modelling can be applied to simulate normal and malignant cell growth and to optimize cancer treatment as for instance radiation therapy. Based on biological observations and cell kinetic data, several types of models have been developed describing the growth of tumor spheroids and the cell renewal of normal tissue. The irradiation model is represented by the so-called linear-quadratic model describing the survival fraction as a function of the dose. Based thereon, numerous simulation runs for different treatment schemes can be performed. Thus, it is possible to study the radiation effect on tumor and normal tissue separately. Finally, this method enables a computer-assisted recommendation for an optimal patient-specific treatment schedule prior to clinical therapy. (orig.) [de

  13. Radiation therapy of Graves' ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Toshiki; Koga, Sukehiko; Anno, Hirofumi; Komai, Satoshi (Fujita-Gakuen Health Univ., Toyoake, Aichi (Japan))

    1992-01-01

    During the decade from 1978 to 1987, 20 patients with Graves' ophthalmopathy were treated with irradiation of 2000 cGy to the orbital tissue. We examined the effects of the therapy on 17 such patients. Exophthalmos tended to decrease. When the degree of deviation of the exophthalmic eye was small, the effect of therapy tended to be better than when it was large. Two cases that showed an increase in retrobulbar fatty tissue without thickening of the extraocular muscles did not respond as well as those that had thickening of the extraocular muscles. Diplopia tended to improve both subjectively and objectively. Ocular movement improved in 11 of the 17 patients. There were no serious radiation injuries after the radiation therapy, except for some transient swelling of the eyelid. (author).

  14. Radiation Therapy in Elderly Skin Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2008-06-15

    To evaluate the long term results (local control, survival, failure, and complications) after radiation therapy for skin cancer in elderly patients. The study spanned from January 1990 to October 2002. Fifteen elderly patients with skin cancer were treated by radiotherapy at the Keimyung University Dongsan Medical Center. The age distribution of the patients surveyed was 72 to 95 years, with a median age of 78.8 years. The pathologic classification of the 15 patients included squamous cell carcinoma (10 patients), basal cell carcinoma (3 patients), verrucous carcinoma (1 patient) and skin adnexal origin carcinoma (1 patient). The most common tumor location was the head (13 patients). The mean tumor diameter was 4.9 cm (range 2 to 9 cm). The radiation dose was delivered via an electron beam of 6 to 15 MeV. The dose range was adjusted to the tumor diameter and depth of tumor invasion. The total radiation dose ranged from 50{approx}80 Gy (mean: 66 Gy) with a 2 Gy fractional dose prescribed to the 80% isodose line once a day and 5 times a week. One patient with lymph node metastasis was treated with six MV photon beams boosted with electron beams. The length of the follow-up periods ranged from 10 to 120 months with a median follow-up period of 48 months. The local control rates were 100% (15/15). In addition, the five year disease free survival rate (5YDFS) was 80% and twelve patients (80%) had no recurrence and skin cancer recurrence occurred in 3 patients (20%). Three patients have lived an average of 90 months (68{approx}120 months) without recurrence or metastasis. A total of 9 patients who died as a result of other causes had a mean survival time of 55.8 months after radiation therapy. No severe acute or chronic complications were observed after radiation therapy. Only minor complications including radiation dermatitis was treated with supportive care. The results suggest that radiation therapy is an effective and safe treatment method for the treatment of skin

  15. Accompanying therapy with melatonin at radiation therapy for uterine body cancer

    International Nuclear Information System (INIS)

    Prokhach, N.E.; Sorochan, P.P.; Gromakova, Yi.A.; Krugova, M.; Sukhyin, V.S.

    2011-01-01

    The results of treatment for uterine body cancer using post-operative radiation therapy (RT) accompanied by melatonin administration are analyzed. Accompanying therapy with melatonin limited negative RT influence on hematological and immune indices and prevented aggravation of quality of life.

  16. Radiation Induced Rib Fractures on Bone Scan after Breast Cancer Surgery and Radiation Therapy

    International Nuclear Information System (INIS)

    Kim, Hae Won; Won, Kyoung Sook; Zeon, Seok Kil; Kim, Jin Hee

    2009-01-01

    This study is to evaluate rib fractures on bone scan in breast cancer patients treated with breast cancer surgery and radiation therapy and to evaluate its relation with radiation therapy and operation modality. Two hundred seventy cases that underwent serial bone scan after breast cancer surgery and radiation therapy were enrolled. Bone scan and chest CT findings of rib fracture were analyzed. The rib uptake was seen in 74 of 270 cases (27.4%) on bone scan and 50 cases (18.5%) were confirmed to have rib fracture by chest CT. The rate of modified radical mastectomy in patients with rib fracture was significantly higher than that in patients without rib fracture (66.0% vs. 27.0%, p=0.000). The rate of additional radiation therapy to axillar or supraclavicular regions in patients with rib fracture was significantly higher than that in patients without rib fracture (62.0% vs. 28.6%, p=0.000). Rib fracture was seen most frequently at 1-2 years after radiation therapy (51.9%) and single rib fracture was seen most frequently (55.2%). Of total 106 rib fractures, focal rib uptake was seen in 94 ribs (88.7%) and diffuse rib uptake was seen in 12 ribs (11.3%). On one year follow-up bone scan, complete resolution of rib uptake was seen in 15 ribs (14.2%). On chest CT, the rate of fracture line in ribs with intense uptake was significantly higher than that in ribs with mild or moderate uptake (p=0.000). The rate of presence of fracture line in ribs with focal uptake was significantly higher than that in ribs with diffuse uptake (p=0.001). Rib fracture in breast cancer patients after radiation therapy was related to radiation portal and operation modality. It should be interpreted carefully as a differential diagnosis of bone metastasis

  17. Radiation Induced Rib Fractures on Bone Scan after Breast Cancer Surgery and Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Won; Won, Kyoung Sook; Zeon, Seok Kil; Kim, Jin Hee [Keimyung University, School of Medicine, Daegu (Korea, Republic of)

    2009-08-15

    This study is to evaluate rib fractures on bone scan in breast cancer patients treated with breast cancer surgery and radiation therapy and to evaluate its relation with radiation therapy and operation modality. Two hundred seventy cases that underwent serial bone scan after breast cancer surgery and radiation therapy were enrolled. Bone scan and chest CT findings of rib fracture were analyzed. The rib uptake was seen in 74 of 270 cases (27.4%) on bone scan and 50 cases (18.5%) were confirmed to have rib fracture by chest CT. The rate of modified radical mastectomy in patients with rib fracture was significantly higher than that in patients without rib fracture (66.0% vs. 27.0%, p=0.000). The rate of additional radiation therapy to axillar or supraclavicular regions in patients with rib fracture was significantly higher than that in patients without rib fracture (62.0% vs. 28.6%, p=0.000). Rib fracture was seen most frequently at 1-2 years after radiation therapy (51.9%) and single rib fracture was seen most frequently (55.2%). Of total 106 rib fractures, focal rib uptake was seen in 94 ribs (88.7%) and diffuse rib uptake was seen in 12 ribs (11.3%). On one year follow-up bone scan, complete resolution of rib uptake was seen in 15 ribs (14.2%). On chest CT, the rate of fracture line in ribs with intense uptake was significantly higher than that in ribs with mild or moderate uptake (p=0.000). The rate of presence of fracture line in ribs with focal uptake was significantly higher than that in ribs with diffuse uptake (p=0.001). Rib fracture in breast cancer patients after radiation therapy was related to radiation portal and operation modality. It should be interpreted carefully as a differential diagnosis of bone metastasis.

  18. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles.

    Science.gov (United States)

    Wang, Mingxin; You, Chaoqun; Gao, Zhiguo; Wu, Hongshuai; Sun, Baiwang; Zhu, Xiaoli; Chen, Renjie

    2018-08-01

    The functionalized nanoparticles have been widely studied and reported as carriers of drug transport recently. Furthermore, many groups have focused more on developing novel and efficient treatment methods, such as photodynamic therapy and photothermal therapy, since both therapies have shown inspiring potential in the application of antitumor. The mentioned treatments exhibited the superiority of cooperative manner and showed the ability to compensate for the adverse effects caused by conventional monotherapy in proposed strategies. In view of the above descriptions, we formulated a thermosensitive drug delivery system, which achieved the enhanced delivery of cisplatin and two photosensitizers (ICG and Ce6) by dual-targeting traction. Drawing on the thin film hydration method, cisplatin and photosensitizers were encapsulated inside nanoparticles. Meanwhile, the targeting peptide cRGD and targeting molecule folate can be modified on the surface of nanoparticles to realize the active identification of tumor cells. The measurements of dynamic light scattering showed that the prepared nanoparticles had an ideal dispersibility and uniform particle size of 102.6 nm. On the basis of the results observed from confocal laser scanning microscope, the modified nanoparticles were more efficient endocytosed by MCF-7 cells as a contrast to SGC-7901 cells. Photothermal conversion-triggered drug release and photo-therapies produced a significant apoptosis rate of 85.9% on MCF-7 cells. The distinguished results made it believed that the formulated delivery system had conducted great efforts and innovations for the realization of concise collaboration and provided a promising strategy for the treatment of breast cancer.

  19. Spontaneous pneumothorax after upper mantle radiation therapy for Hodgkin disease

    International Nuclear Information System (INIS)

    Paszat, L.; Basrur, V.; Tadros, A.

    1986-01-01

    Between 1967 and 1981, 158 of 256 consecutive adult patients received upper mantle (UM) radiation therapy as part of initial treatment of Hodgkin disease at the Hamilton Regional Cancer Centre. Chemotherapy was also part of the initial treatment in 21 of 158 patients who received UM radiation therapy. Spontaneous pneumothorax was observed in six of 158 patients during remission after UM radiation therapy in this series. Three cases were incidental findings on follow-up radiographs, but three other patients were seen initially with symptoms of spontaneous pneumothorax. The entity occurred in three of 21 patients (14%) treated with UM radiation therapy and chemotherapy, and in three of 137 (2%) treated with UM radiation therapy (P < .05). Within the range of UM doses (3,500-4,000 cGy in 4 weeks), higher dose was not associated with higher risk of spontaneous pneumothorax. Although these cases of spontaneous pneumothorax are clustered in an age range classic for this entity, the incidence of spontaneous pneumothorax in this group of patients is higher than the anticipated lifetime incidence of 1:500 for the general population. This risk of spontaneous pneumothorax after UM radiation therapy may be even higher in patients who also receive chemotherapy

  20. Pharmacokinetic and toxicological evaluation of multi-functional thiol-6-fluoro-6-deoxy-d-glucose gold nanoparticles in vivo

    Science.gov (United States)

    Roa, Wilson; Xiong, Yeping; Chen, Jie; Yang, Xiaoyan; Song, Kun; Yang, Xiaohong; Kong, Beihua; Wilson, John; Xing, James Z.

    2012-09-01

    We synthesized a novel, multi-functional, radiosensitizing agent by covalently linking 6-fluoro-6-deoxy-d-glucose (6-FDG) to gold nanoparticles (6-FDG-GNPs) via a thiol functional group. We then assessed the bio-distribution and pharmacokinetic properties of 6-FDG-GNPs in vivo using a murine model. At 2 h, following intravenous injection of 6-FDG-GNPs into the murine model, approximately 30% of the 6-FDG-GNPs were distributed to three major organs: the liver, the spleen and the kidney. PEGylation of the 6-FDG-GNPs was found to significantly improve the bio-distribution of 6-FDG-GNPs by avoiding unintentional uptake into these organs, while simultaneously doubling the cellular uptake of GNPs in implanted breast MCF-7 adenocarcinoma. When combined with radiation, PEG-6-FDG-GNPs were found to increase the apoptosis of the MCF-7 breast adenocarinoma cells by radiation both in vitro and in vivo. Pharmacokinetic data indicate that GNPs reach their maximal concentrations at a time window of two to four hours post-injection, during which optimal radiation efficiency can be achieved. PEG-6-FDG-GNPs are thus novel nanoparticles that preferentially accumulate in targeted cancer cells where they act as potent radiosensitizing agents. Future research will aim to substitute the 18F atom into the 6-FDG molecule so that the PEG-6-FDG-GNPs can also function as radiotracers for use in positron emission tomography scanning to aid cancer diagnosis and image guided radiation therapy planning.

  1. Dose of radiation enhancement, using silver nanoparticles in a human tissue equivalent gel dosimeter.

    Science.gov (United States)

    Hassan, Muhammad; Waheed, Muhammad Mohsin; Anjum, Muhammad Naeem

    2016-01-01

    To quantify the radiation dose enhancement in a human tissue-equivalent polymer gel impregnated with silver nanoparticles. The case-control study was conducted at the Bahawalpur Institute of Nuclear Medicine and Oncology, Bahawalpur, Pakistan, in January 2014. Silver nanoparticles used in this study were prepared by wet chemical method. Polymer gel was prepared by known quantity of gelatine, methacrylic acid, ascorbic acid, copper sulphate pentahydrate, hydroquinone and water. Different concentrations of silver nanoparticles were added to the gel during its cooling process. The gel was cooled in six plastic vials of 50ml each. Two vials were used as a control sample while four vials were impregnated with silver nanoparticles. After 22 hours, the vials were irradiated with gamma rays by aCobalt-60 unit. Radiation enhancement was assessed by taking magnetic resonance images of the vials. The images were analysed using Image J software. The dose enhancement factor was 24.17% and 40.49% for 5Gy and 10Gy dose respectively. The dose enhancement factor for the gel impregnated with 0.10mM silver nanoparticles was 32.88% and 51.98% for 5Gy and 10Gy dose respectively. The impregnation of a tissue-equivalent gel with silver nanoparticles resulted in dose enhancement and this effect was magnified up to a certain level with the increase in concentration of silver nanoparticles.

  2. Palliative radiation therapy for overloading radiotherapy centre, especially for developing country

    International Nuclear Information System (INIS)

    Myo, M.; Susworo; San, T.

    2001-01-01

    In a developing country, most of the cancer cases are diagnosed in the advanced stages. So, the palliative radiation therapy is the only choice of therapy for these inoperable cases where chemotherapy is not effective or affordable. In conventional radiation therapy, a daily dose of 200 cGy for total 4000 cGy in more than 20 fractions (sometimes, up to 6000 cGy) is used. By using linear-quadratic model theory of cell killing by radiation, it can be calculated early and late effects by using alpha and beta ratio. This theory is still the best for radiation cell killing until the new detail one is discovered. These data are obtained by experimental as well as clinical results. The effective radiation dose can be calculated by using the data to different organs which is involved in the radiation fields. This can change the daily dose to palliative cases in which the late effect is unnecessary. The daily doses can be 300, 400, 500, and sometimes 1000 cGy per single fraction. These modalities are well documented. It is recommend to change the short term high-dose palliative radiation therapy instead of using conventional palliative radiation therapy in overloading radiotherapy centre, especially for developing country. The reasons are mainly radiation protection aspect, not only for the patients and those who involved with the radiation therapy but also to reduce the unnecessary radiation exposure to the environment. (author)

  3. Radiation therapy for children: evolving technologies in the era of ALARA

    International Nuclear Information System (INIS)

    Kun, Larry E.; Beltran, Chris

    2009-01-01

    The evolution of ever more sophisticated oncologic imaging and technologies providing far more precise radiation therapy have combined to increase the utilization of sophisticated radiation therapy in childhood cancer. For a majority of children with common central nervous system, soft tissue, bone, and dysontogenic neoplasms, local irradiation is fundamental to successful multi-disciplinary management. Along with more precise target volume definition and radiation delivery, new technologies provide added certainty of patient positioning (electronic portal imaging, cone beam CT) and conformality of dose delivery (3-D conformal irradiation, intensity modulated radiation therapy, proton beam therapy). Each of the major areas of technology development are able to better confine the high-dose region to the intended target, but they are also associated with the potential for larger volumes of uninvolved tissues being exposed to low radiation doses. The latter issue plays a role in documented levels of secondary carcinogenesis, sometimes with greater anticipated incidence than that seen in conventional radiation therapy. Parameters related to carcinogenesis, such as dose-volume relationships and neutron contamination that accompanies high-energy photon irradiation and proton therapy, can be identified, sometimes modulated, and accepted as part of the clinical decision process in fine tuning radiation therapy in this more vulnerable age group. (orig.)

  4. Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy.

    Science.gov (United States)

    Unterweger, Harald; Subatzus, Daniel; Tietze, Rainer; Janko, Christina; Poettler, Marina; Stiegelschmitt, Alfons; Schuster, Matthias; Maake, Caroline; Boccaccini, Aldo R; Alexiou, Christoph

    2015-01-01

    Combining the concept of magnetic drug targeting and photodynamic therapy is a promising approach for the treatment of cancer. A high selectivity as well as significant fewer side effects can be achieved by this method, since the therapeutic treatment only takes place in the area where accumulation of the particles by an external electromagnet and radiation by a laser system overlap. In this article, a novel hypericin-bearing drug delivery system has been developed by synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) with a hypericin-linked functionalized dextran coating. For that, sterically stabilized dextran-coated SPIONs were produced by coprecipitation and crosslinking with epichlorohydrin to enhance stability. Carboxymethylation of the dextran shell provided a functionalized platform for linking hypericin via glutaraldehyde. Particle sizes obtained by dynamic light scattering were in a range of 55-85 nm, whereas investigation of single magnetite or maghemite particle diameter was performed by transmission electron microscopy and X-ray diffraction and resulted in approximately 4.5-5.0 nm. Surface chemistry of those particles was evaluated by Fourier transform infrared spectroscopy and ζ potential measurements, indicating successful functionalization and dispersal stabilization due to a mixture of steric and electrostatic repulsion. Flow cytometry revealed no toxicity of pure nanoparticles as well as hypericin without exposure to light on Jurkat T-cells, whereas the combination of hypericin, alone or loaded on particles, with light-induced cell death in a concentration and exposure time-dependent manner due to the generation of reactive oxygen species. In conclusion, the combination of SPIONs' targeting abilities with hypericin's phototoxic properties represents a promising approach for merging magnetic drug targeting with photodynamic therapy for the treatment of cancer.

  5. Intensity-Modulated Radiation Therapy (IMRT)

    Science.gov (United States)

    ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: Thank ... Accelerator Prostate Cancer Treatment Head and Neck Cancer Treatment Introduction to Cancer Therapy (Radiation Oncology) ...

  6. Radiation therapy technology (radiation therapists) manpower needs 1992 comparison of radiation therapeutic technology education in Europe and the United States 1994

    International Nuclear Information System (INIS)

    Rominger, C. Jules; Owen, Jean; Thompson, Phyllis; Giordano, Patricia; Buck, Beverly; Hanks, Gerald

    1995-01-01

    The shortage of radiation therapists (radiation therapy technologists) has existed in the United States for many years. It now appears the supply may be matching the demand. This report analyzes the data from the most recent manpower study from ACR/ASTRO carried out in 1990 using the Patterns of Care Master Facility list. The report is a comparison of these figures with similar figures published in IJROBP in December, 1983. Between 1980 and 1990 the number of radiation therapists rose from 3096 to 5353, an increase of 72%. During this period of time, the number of radiation therapy machines increased 47%, and the number of patients being treated increased 30%. The total number of educational programs in radiation therapy technology increased from 101 in 1989 to 123 in 1993. The total enrollment in these programs grew from 806 in 1989 to 1591 in 1993. The number of first time examinees in radiation therapy technology by ARRT in 1983 was 387 and increased to 943 in 1994. It is apparent that as a result of the increase in the number of radiation therapy educational programs and the more effective recruitment into these program, the supply of graduating radiation therapists has reached the demand. The future needs for entry level radiation therapists should be based on current data as well as new Blue Book standards that are being developed

  7. PROTON RADIATION THERAPY: CLINICAL APPLICATION OPPORTUNITIES AND RESEARCH PROSPECTS

    Directory of Open Access Journals (Sweden)

    M. V. Zabelin

    2018-01-01

    Full Text Available This article is the review of literature concerning use of proton beam therapy in treatment of oncology. The staticized data on comparison of effi ciency of this method at an eye melanoma are lit. Advantages of proton therapy on the level of local control and depression of frequency of development of the radio induced cataract are refl ected in the provided data. In evident material the technology of preparation and carrying out radiation of an eye is shortly covered with a fascicle of protons. The experience of use of proton therapy of tumors of a skull base got for the last several decades, showed good results. Physical properties of a fascicle of protons allow to achieve the maximum dose conformality, having lowered, thereby, a radial load on the next crucial anatomical structures. The presented material on an oncopediatrics shows insuffi cient knowledge of scientists concerning advantage of a fascicle of protons over modern methods of photon radiation. There are only preliminary clinical results concerning generally of treatment of cranyopharyngiomas. At cancer therapy of a mammary gland, proton therapy showed the best local control of postoperative recurrent tumors, and also depression of a dose load on the contralateral party. The available results of the retrospective analysis of clinical data in the University medical center of Lome Linda, testify to advantages of proton therapy of the localized prostate cancer. The lack of a biochemical recurrence and a local tumoral progression within 5 years after radiation was shown. The data obtained from experience of use of proton radiation therapy with passively scattered fascicle for cancer therapy of a prostate at an early stage showed the admixed results in comparison with modern methods of radiation therapy with the modulated intensity. In treatment of non-small cell cancer of mild advantage of proton therapy aren’t absolutely proved yet. There are data on extreme toxicity of a combination

  8. The role of radiation therapy in the management of desmoid tumors

    International Nuclear Information System (INIS)

    Schulz-Ertner, D.; Zierhut, D.; Mende, U.; Harms, W.; Branitzki, P.; Wannenmacher, M.

    2002-01-01

    Purpose: To investigate the role of radiation therapy (RT) in the management of desmoid tumors. Patients and Methods: Retrospective analysis was performed on 28 patients with desmoid tumors treated with radiation therapy between March 1989 and March 1999. Tumor site was intraabdominal in three, abdominal wall in three and extraabdominal in 22 patients. Median tumor dose was 48 Gy (range 36-60 Gy). Radiation therapy was delivered postoperatively in 26 of 28 patients, two patients received radiation therapy for unresectable recurrent tumors. Results: Median follow-up was 46 months (range 13-108 months). Actuarial 5-year control rate was 73%. We observed six recurrences, located within the radiation field in one patient, out of field in two and at the field margin in three patients. All patients with intraabdominal tumors have been controlled without severe side effects. Conclusions: Radiation therapy is an effective treatment after incomplete resection of desmoid tumors. We did not observe a benefit for tumor doses exceeding 50 Gy. In some patients with circumscribed intraabdominal desmoid tumors, radiation therapy might be a treatment option with low toxicity, if 3-D treatment planning is utilized. (orig.) [de

  9. START: an advanced radiation therapy information system.

    Science.gov (United States)

    Cocco, A; Valentini, V; Balducci, M; Mantello, G

    1996-01-01

    START is an advanced radiation therapy information system (RTIS) which connects direct information technology present in the devices with indirect information technology for clinical, administrative, information management integrated with the hospital information system (HIS). The following objectives are pursued: to support decision making in treatment planning and functional and information integration with the rest of the hospital; to enhance organizational efficiency of a Radiation Therapy Department; to facilitate the statistical evaluation of clinical data and managerial performance assessment; to ensure the safety and confidentiality of used data. For its development a working method based on the involvement of all operators of the Radiation Therapy Department, was applied. Its introduction in the work activity was gradual, trying to reuse and integrate the existing information applications. The START information flow identifies four major phases: admission, visit of admission, planning, therapy. The system main functionalities available to the radiotherapist are: clinical history/medical report linking function; folder function; planning function; tracking function; electronic mail and banner function; statistical function; management function. Functions available to the radiotherapy technician are: the room daily list function; management function: to the nurse the following functions are available: patient directing function; management function. START is a departmental client (pc-windows)-server (unix) developed on an integrated database of all information of interest (clinical, organizational and administrative) coherent with the standard and with a modular architecture which can evolve with additional functionalities in subsequent times. For a more thorough evaluation of its impact on the daily activity of a radiation therapy facility, a prolonged clinical validation is in progress.

  10. Combinations of Radiation Therapy and Immunotherapy for Melanoma: A Review of Clinical Outcomes

    International Nuclear Information System (INIS)

    Barker, Christopher A.; Postow, Michael A.

    2014-01-01

    Radiation therapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiation therapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiation therapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiation therapy. The cytokines interferon-α and interleukin-2 have been combined with radiation therapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiation therapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested that radiation therapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiation therapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study

  11. Combinations of Radiation Therapy and Immunotherapy for Melanoma: A Review of Clinical Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Christopher A., E-mail: barkerc@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Postow, Michael A. [Department of Medicine, Melanoma and Sarcoma Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-04-01

    Radiation therapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiation therapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiation therapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiation therapy. The cytokines interferon-α and interleukin-2 have been combined with radiation therapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiation therapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested that radiation therapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiation therapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study.

  12. Temporary corneal stem cell dysfunction after radiation therapy

    International Nuclear Information System (INIS)

    Hiroshi, Fujishima; Kazuo, Tsubota

    1996-01-01

    Radiation therapy can cause corneal and conjuctival abnormalities that sometimes require surgical treatment. Corneal stem cell dysfunction is described, which recovered after the cessation of radiation. Methods - A 44-year-old man developed a corneal epithelial abnormality associated with conjuctival and corneal inflammation following radiation therapy for maxillary cancer. Examination of brush cytology samples showed goblet cells in the upper and lower parts of the cornea, which showed increased fluorescein permeability, and intraepithelial lymphocytes. Impression cytology showed goblet cells in the same part of the cornea. Specular microscopy revealed spindle type epithelial cells. Patient follow up included artificial tears and an antibiotic ophthalmic ointment. The corneal abnormalities resolved after 4 months with improved visual acuity without any surgical intervention, but the disappearance of the palisades of Vogt did not recover at 1 year after radiation. Radiation therapy in this patient caused temporary stem cell dysfunction which resulted in conjunctivalisation in a part of the cornea. Although limbal stem cell function did not fully recover, this rare case suggested that medical options should be considered before surgery. (Author)

  13. Porous Porphyrin-Based Organosilica Nanoparticles for NIR Two-Photon Photodynamic Therapy and Gene Delivery in Zebrafish

    KAUST Repository

    Mauriello Jimenez, Chiara; Aggad, Dina; Croissant, Jonas G.; Tresfield, Karen; Laurencin, Danielle; Berthomieu, Dorothé e; Cubedo, Nicolas; Rossel, Mireille; Alsaiari, Shahad K.; Anjum, Dalaver H.; Sougrat, Rachid; Roldan-Gutierrez, Manuel A.; Richeter, Sé bastien; Oliviero, Erwan; Raehm, Laurence; Charnay, Clarence; Cattoë n, Xavier; Clé ment, Sé bastien; Wong Chi Man, Michel; Maynadier, Marie; Chaleix, Vincent; Sol, Vincent; Garcia, Marcel; Gary-Bobo, Magali; Khashab, Niveen M.; Bettache, Nadir; Durand, Jean-Olivier

    2018-01-01

    functionalization of the nanoparticles with aminopropyltriethoxysilane, two-photon-excited photodynamic therapy in zebrafish is successfully achieved. Two-photon photochemical internalization in cancer cells of the nanoparticles loaded with siRNA is also performed

  14. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Neil B. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Stein, Nicholas F. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); LaQuaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled M. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goodman, Karyn [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  15. Radiation therapy

    International Nuclear Information System (INIS)

    Matsuura, Keiichi; Miyoshi, Makoto; Jinguu, Ken-ichi

    1982-01-01

    Of the cases of lung cancer in which radiation therapy was given between 1961 and November 1981, 399 cases for which histological type was confirmed, and irradiated as follows were reviewed. The cases of squamous cell carcinoma and adenocarcinoma irradiated with more than 5,000 rad or more, those of undifferentiated carcinoma irradiated with 3,000 rad or more, and those irradiated pre- and post-operatively with 3,000 rad or more. The actual 5 year survival rate for stages I, II, III and IV were 29.6, 9.3, 7.5 and 1.9% respectively, and the survival rate tended to be better for adenocarcinoma than squamous cell carcinoma at stages I, II and III, but not different at stage IV. There was no difference between large cell, small cell and squamous cell carcinomas. Irradiation with 200 rad every other day or 150 rad daily was better than that with 200 rad, and daily irradiation with 150 rad was used since 1976. The therapy of stage III small cell carcinoma at the age of up to 80 years was improved with the combination of anticancer agents, maintenance therapy and immunotherapy, but these combined therapies were not significantly effective for the cancers with other histological types or at other stages. Although there was no significant difference in statistics for resectable cases, clinically, the results were experienced to be better after resection, and surgery was done in combination as much as possible. (Kaihara, S.)

  16. Gold and gold-copper nanoparticles in 2-propanol: A radiation chemical study

    International Nuclear Information System (INIS)

    Dey, G.R.

    2011-01-01

    The studies on the reduction of Au 3+ to gold nanoparticles in presence and absence of Cu 2+ under deoxygenated conditions in 2-propanol by radiolytic method have been carried out. On γ-radiolysis, preliminary yellow colored solution of Au 3+ changed to purple color owing to gold nanoparticles formation, which exhibits an absorption peak at around 540 nm. In the presence of Cu 2+ , absorption of gold-copper nanoparticles, which was also produced during γ-radiolysis, was red shifted in contrast to the system containing no Cu 2+ . Under DLS studies the sizes of gold nanoparticles in the absence and the presence of Cu 2+ were found to be larger (>400 nm). However, in presence of polyethylene glycol, a stabilizer the nanoparticle sizes became smaller, sizes measured for gold and gold-copper nanoparticles are 40 and 140 nm, respectively. Moreover, the change in UV-vis spectra in the Cu 2+ and Au 3+ mixed system highlights the formation of gold-copper nanoparticles in core-shell type arrangement. - Highlights: → Present radiation chemical study highlights high reactivity of Au ·2+ with Cu 2+ . → Absorption of gold-copper nanoparticles is blue shifted as compared to copper nanoparticles. → Change in UV-vis spectra with dose emphasizes core-shell type arrangement of Au-Cu nanoparticles.

  17. Adjuvant Radiation Therapy Treatment Time Impacts Overall Survival in Gastric Cancer

    International Nuclear Information System (INIS)

    McMillan, Matthew T.; Ojerholm, Eric; Roses, Robert E.; Plastaras, John P.; Metz, James M.; Mamtani, Ronac; Karakousis, Giorgos C.; Fraker, Douglas L.; Drebin, Jeffrey A.; Stripp, Diana; Ben-Josef, Edgar; Datta, Jashodeep

    2015-01-01

    Purpose: Prolonged radiation therapy treatment time (RTT) is associated with worse survival in several tumor types. This study investigated whether delays during adjuvant radiation therapy impact overall survival (OS) in gastric cancer. Methods and Materials: The National Cancer Data Base was queried for patients with resected gastric cancer who received adjuvant radiation therapy with National Comprehensive Cancer Network–recommended doses (45 or 50.4 Gy) between 1998 and 2006. RTT was classified as standard (45 Gy: 33-36 days, 50.4 Gy: 38-41 days) or prolonged (45 Gy: >36 days, 50.4 Gy: >41 days). Cox proportional hazards models evaluated the association between the following factors and OS: RTT, interval from surgery to radiation therapy initiation, interval from surgery to radiation therapy completion, radiation therapy dose, demographic/pathologic and operative factors, and other elements of adjuvant multimodality therapy. Results: Of 1591 patients, RTT was delayed in 732 (46%). Factors associated with prolonged RTT were non-private health insurance (OR 1.3, P=.005) and treatment at non-academic facilities (OR 1.2, P=.045). Median OS and 5-year actuarial survival were significantly worse in patients with prolonged RTT compared with standard RTT (36 vs 51 months, P=.001; 39 vs 47%, P=.005); OS worsened with each cumulative week of delay (P<.0004). On multivariable analysis, prolonged RTT was associated with inferior OS (hazard ratio 1.2, P=.002); the intervals from surgery to radiation therapy initiation or completion were not. Prolonged RTT was particularly detrimental in patients with node positivity, inadequate nodal staging (<15 nodes examined), and those undergoing a cycle of chemotherapy before chemoradiation therapy. Conclusions: Delays during adjuvant radiation therapy appear to negatively impact survival in gastric cancer. Efforts to minimize cumulative interruptions to <7 days should be considered

  18. Adjuvant Radiation Therapy Treatment Time Impacts Overall Survival in Gastric Cancer

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Matthew T. [Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Ojerholm, Eric [Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Roses, Robert E., E-mail: Robert.Roses@uphs.upenn.edu [Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Plastaras, John P.; Metz, James M. [Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Mamtani, Ronac [Department of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Karakousis, Giorgos C.; Fraker, Douglas L.; Drebin, Jeffrey A. [Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Stripp, Diana; Ben-Josef, Edgar [Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Datta, Jashodeep [Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States)

    2015-10-01

    Purpose: Prolonged radiation therapy treatment time (RTT) is associated with worse survival in several tumor types. This study investigated whether delays during adjuvant radiation therapy impact overall survival (OS) in gastric cancer. Methods and Materials: The National Cancer Data Base was queried for patients with resected gastric cancer who received adjuvant radiation therapy with National Comprehensive Cancer Network–recommended doses (45 or 50.4 Gy) between 1998 and 2006. RTT was classified as standard (45 Gy: 33-36 days, 50.4 Gy: 38-41 days) or prolonged (45 Gy: >36 days, 50.4 Gy: >41 days). Cox proportional hazards models evaluated the association between the following factors and OS: RTT, interval from surgery to radiation therapy initiation, interval from surgery to radiation therapy completion, radiation therapy dose, demographic/pathologic and operative factors, and other elements of adjuvant multimodality therapy. Results: Of 1591 patients, RTT was delayed in 732 (46%). Factors associated with prolonged RTT were non-private health insurance (OR 1.3, P=.005) and treatment at non-academic facilities (OR 1.2, P=.045). Median OS and 5-year actuarial survival were significantly worse in patients with prolonged RTT compared with standard RTT (36 vs 51 months, P=.001; 39 vs 47%, P=.005); OS worsened with each cumulative week of delay (P<.0004). On multivariable analysis, prolonged RTT was associated with inferior OS (hazard ratio 1.2, P=.002); the intervals from surgery to radiation therapy initiation or completion were not. Prolonged RTT was particularly detrimental in patients with node positivity, inadequate nodal staging (<15 nodes examined), and those undergoing a cycle of chemotherapy before chemoradiation therapy. Conclusions: Delays during adjuvant radiation therapy appear to negatively impact survival in gastric cancer. Efforts to minimize cumulative interruptions to <7 days should be considered.

  19. WE-FG-BRA-11: Theranostic Platinum Nanoparticle for Radiation Sensitization in Breast Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Y; Wagner, S; Medina-Kauwe, L; Cui, X; Zhang, G; Shiao, S; Sandler, H; Fraass, B [Cedars Sinai Medical Center, Los Angeles, CA (United States)

    2016-06-15

    Purpose: We have developed a novel receptor-targeted theranostic platinum nanoparticle (HER-PtNP) for enhanced radiation sensitization in HER2-positive breast cancer radiation treatment. This study aims to evaluate receptor-targeting specificity, and radiation sensitization of the nanoparticle. Methods: The platinum nanoparticle (PtNP) was synthesized with the diameter of 2nm, and capped with cysteine. The nanoparticle was tagged with a fluorescent dye (cy5) for the fluoresence detection, and conjuated with HER2/3 targeted protein (HerPBK10) for HER2-targeting specificity. We evaluated the theranostic features using in vitro breast cancer cell models: HER2-positive BT-474, and HER2-negative MDA-MB-231. The HER2-targeting specificity was evaluated using immunofluorescence and confocal microscopy. For each cell line, three sets of samples, including non-stained control, fluorescence stained PtNP-cy5 treated, and HER-PtNP treated, were imaged by confocal microscopy. Two breast cancer cell lineages were incubated with PtNP and HER-PtNP at 10 µg/mL, and then irradiated with X-rays for 2 Gy dose at 50 kVp. A colonogenic assay was used to determine cellular survival fractions by immediately reseeding 300 cells after irradiation in growth media and allowing colonies to grow for 2 weeks. Results: The results of confocal images show that no apparent nanoparticle cellular uptake was observed in the HER2-(MDA-MB-231) cells with 1% for PtNP-cy5 and 0.5% for HER-PtNP. Similarly no apparent PtNP-cy5 uptake (<1%) for BT474 cells was observed. However, there was significant HER-PtNP uptake (73%) for the HER2+(BT474) cells. The clonogenic assay showed that BT474 cells treated with HER-PtNP had significantly lower survival compared to those treated with PtNP (32% vs 81%, p=0.01). However, no significant radiosensitivity enhancement was observed for MDA-MB-231 cell treated with PtNP and HER-PtNP (89% vs 92%, p=0.78). Conclusion: Our studies suggest that the HER2-targeted platinum

  20. WE-FG-BRA-11: Theranostic Platinum Nanoparticle for Radiation Sensitization in Breast Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Yue, Y; Wagner, S; Medina-Kauwe, L; Cui, X; Zhang, G; Shiao, S; Sandler, H; Fraass, B

    2016-01-01

    Purpose: We have developed a novel receptor-targeted theranostic platinum nanoparticle (HER-PtNP) for enhanced radiation sensitization in HER2-positive breast cancer radiation treatment. This study aims to evaluate receptor-targeting specificity, and radiation sensitization of the nanoparticle. Methods: The platinum nanoparticle (PtNP) was synthesized with the diameter of 2nm, and capped with cysteine. The nanoparticle was tagged with a fluorescent dye (cy5) for the fluoresence detection, and conjuated with HER2/3 targeted protein (HerPBK10) for HER2-targeting specificity. We evaluated the theranostic features using in vitro breast cancer cell models: HER2-positive BT-474, and HER2-negative MDA-MB-231. The HER2-targeting specificity was evaluated using immunofluorescence and confocal microscopy. For each cell line, three sets of samples, including non-stained control, fluorescence stained PtNP-cy5 treated, and HER-PtNP treated, were imaged by confocal microscopy. Two breast cancer cell lineages were incubated with PtNP and HER-PtNP at 10 µg/mL, and then irradiated with X-rays for 2 Gy dose at 50 kVp. A colonogenic assay was used to determine cellular survival fractions by immediately reseeding 300 cells after irradiation in growth media and allowing colonies to grow for 2 weeks. Results: The results of confocal images show that no apparent nanoparticle cellular uptake was observed in the HER2-(MDA-MB-231) cells with 1% for PtNP-cy5 and 0.5% for HER-PtNP. Similarly no apparent PtNP-cy5 uptake (<1%) for BT474 cells was observed. However, there was significant HER-PtNP uptake (73%) for the HER2+(BT474) cells. The clonogenic assay showed that BT474 cells treated with HER-PtNP had significantly lower survival compared to those treated with PtNP (32% vs 81%, p=0.01). However, no significant radiosensitivity enhancement was observed for MDA-MB-231 cell treated with PtNP and HER-PtNP (89% vs 92%, p=0.78). Conclusion: Our studies suggest that the HER2-targeted platinum

  1. Oray surgery and radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carl, W

    1975-07-01

    Clinical evidence seems to indicate that careful oral surgery after radiation therapy contributes little, if anything at all, to the onset of osteoradionecrosis. In many cases the process of bone dissolution has already well progressed before teeth have to be extracted. The bone changes can be demonstrated radiographically and clinically. The teeth in the immediate area become very mobile and cause severe pain during mastication. Whether this condition could have been prevented by extractions before radiation therapy is difficult to establish. Osteoradionecrosis may be encountered in edentulous jaws. It manifests itself clinically by bone segments which break loose and penetrate through the mucosa leaving a defect which does not heal over. More research and more comparative studies are needed in this area in order to make reasonably accurate predictions.

  2. A snapshot of radiation therapy techniques and technology in Queensland: An aid to mapping undergraduate curriculum

    International Nuclear Information System (INIS)

    Bridge, Pete; Carmichael, Mary-Ann; Brady, Carole; Dry, Allison

    2013-01-01

    Undergraduate students studying the Bachelor of Radiation Therapy at Queensland University of Technology (QUT) attend clinical placements in a number of department sites across Queensland. To ensure that the curriculum prepares students for the most common treatments and current techniques in use in these departments, a curriculum matching exercise was performed. A cross-sectional census was performed on a pre-determined “Snapshot” date in 2012. This was undertaken by the clinical education staff in each department who used a standardized proforma to count the number of patients as well as prescription, equipment, and technique data for a list of tumour site categories. This information was combined into aggregate anonymized data. All 12 Queensland radiation therapy clinical sites participated in the Snapshot data collection exercise to produce a comprehensive overview of clinical practice on the chosen day. A total of 59 different tumour sites were treated on the chosen day and as expected the most common treatment sites were prostate and breast, comprising 46% of patients treated. Data analysis also indicated that intensity-modulated radiotherapy (IMRT) use is relatively high with 19.6% of patients receiving IMRT treatment on the chosen day. Both IMRT and image-guided radiotherapy (IGRT) indications matched recommendations from the evidence. The Snapshot method proved to be a feasible and efficient method of gathering useful data to inform curriculum matching. Frequency of IMRT use in Queensland matches or possibly exceeds that indicated in the literature. It is recommended that future repetition of the study be undertaken in order to monitor trends in referral patterns and new technology implementation

  3. A snapshot of radiation therapy techniques and technology in Queensland: An aid to mapping undergraduate curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Pete; Carmichael, Mary-Ann [School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, 4001 (Australia); Brady, Carole [Radiation Oncology Mater Centre, Raymond Terrace, South Brisbane, Queensland, 4101 (Australia); Dry, Allison [Cancer Care Services Royal Brisbane Women' s Hospital Herston, Brisbane, Queensland, 4029 (Australia); School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, 4001 (Australia)

    2013-03-15

    Undergraduate students studying the Bachelor of Radiation Therapy at Queensland University of Technology (QUT) attend clinical placements in a number of department sites across Queensland. To ensure that the curriculum prepares students for the most common treatments and current techniques in use in these departments, a curriculum matching exercise was performed. A cross-sectional census was performed on a pre-determined “Snapshot” date in 2012. This was undertaken by the clinical education staff in each department who used a standardized proforma to count the number of patients as well as prescription, equipment, and technique data for a list of tumour site categories. This information was combined into aggregate anonymized data. All 12 Queensland radiation therapy clinical sites participated in the Snapshot data collection exercise to produce a comprehensive overview of clinical practice on the chosen day. A total of 59 different tumour sites were treated on the chosen day and as expected the most common treatment sites were prostate and breast, comprising 46% of patients treated. Data analysis also indicated that intensity-modulated radiotherapy (IMRT) use is relatively high with 19.6% of patients receiving IMRT treatment on the chosen day. Both IMRT and image-guided radiotherapy (IGRT) indications matched recommendations from the evidence. The Snapshot method proved to be a feasible and efficient method of gathering useful data to inform curriculum matching. Frequency of IMRT use in Queensland matches or possibly exceeds that indicated in the literature. It is recommended that future repetition of the study be undertaken in order to monitor trends in referral patterns and new technology implementation.

  4. Pullulan-coated phospholipid and Pluronic F68 complex nanoparticles for carrying IR780 and paclitaxel to treat hepatocellular carcinoma by combining photothermal therapy/photodynamic therapy and chemotherapy

    Directory of Open Access Journals (Sweden)

    Wang D

    2017-12-01

    Full Text Available Dan Wang,1,* Sipei Zhang,1,* Tao Zhang,1 Guoyun Wan,1 Bowei Chen,1 Qingqing Xiong,2 Jie Zhang,3 Wenxue Zhang,4 Yinsong Wang1 1Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics, School of Pharmacy, Tianjin Medical University, 2Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 3Surgery Department, 4Radiotherapy Department, Tianjin Medical University General Hospital, Tianjin, China *These authors contributed equally to this work Abstract: IR780, a near-infrared dye, can also be used as a photosensitizer both for photothermal therapy (PTT and photodynamic therapy (PDT. In this study, we designed a simple but effective nanoparticle system for carrying IR780 and paclitaxel, thus hoping to combine PTT/PDT and chemotherapy to treat hepatocellular carcinoma (HCC. This nanosystem, named PDF nanoparticles, consisted of phospholipid/Pluronic F68 complex nanocores and pullulan shells. IR780 and paclitaxel were loaded separately into PDF nanoparticles to form PDFI and PDFP nanoparticles, which had regular sphere shapes and relatively small sizes. Upon near-infrared laser irradiation at 808 nm, PDFI nanoparticles showed strong PTT/PDT efficacy both in vitro and in vivo. In MHCC-97H cells, the combined treatment of PDFI nanoparticles/laser irradiation and PDFP nanoparticles exhibited significant synergistic effects on inhibiting cell proliferation and inducing cell apoptosis and cell cycle arrest at G2/M phase. In MHCC-97H tumor-bearing mice, PDFI nanoparticles exhibited excellent HCC-targeting and accumulating capability after intravenous injection. Furthermore, the combined treatment of PDFI nanoparticles/laser irradiation and PDFP nanoparticles also effectively inhibited the tumor growth and the tumor angiogenesis in MHCC-97H tumor-bearing mice. In summary, we put forward a therapeutic

  5. Role of noble metal nanoparticles in DNA base damage and catalysis: a radiation chemical investigation

    International Nuclear Information System (INIS)

    Sharma, Geeta K.

    2011-01-01

    In the emerging field of nanoscience and nanotechnology, tremendous focus has been made by researcher to explore the applications of nanomaterials for human welfare by converting the findings into technology. Some of the examples have been the use of nanoparticles in the field of opto-electronic, fuel cells, medicine and catalysis. These wide applications and significance lies in the fact that nanoparticles possess unique physical and chemical properties very different from their bulk precursors. Numerous methods for the synthesis of noble nanoparticles with tunable shape and size have been reported in literature. The goal of our group is to use different methods of synthesis of noble metal nanoparticles (Au, Ag, Pt and Pd) and test their protective/damaging role towards DNA base damage induced by ionizing radiation (Au and Ag) and to test the catalytic activity of nanoparticles (Pt and Pd) in certain known organic synthesis/electron transfer reactions. Using radiation chemical techniques such as pulse radiolysis and steady state radiolysis complemented by the product analysis using HPLC/LC-MS, a detailed mechanism for the formation of transient species, kinetics leading to the formation of stable end products is studied in the DNA base damage induced by ionizing radiation in presence and absence of Au and Ag nanoparticles. Unraveling the complex interaction between catalysts and reactants under operando conditions is a key step towards gaining fundamental insight in catalysis. The catalytic activity of Pt and Pd nanoparticles in electron transfer and Suzuki coupling reactions has been determined. Investigations are currently underway to gain insight into the interaction between catalysts and reactants using time resolved spectroscopic measurements. These studies will be detailed during the presentation. (author)

  6. New three-dimensional moving field radiation therapy for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuyama, Fuyuki; Kanno, Tetsuo; Nagata, Yutaka; Koga, Sukehiko [Fujita-Gakuen Health Univ., Toyoake, Aichi (Japan); Jain, V K

    1992-06-01

    A new modified rotation radiation method called 'three-dimensional moving field radiation therapy' is described. The new method uses rotation in many planes while maintaining the same isocenter to achieve a good spatial dose distribution. This delivers a high dose to tumors and spares the surrounding normal structures. This easy method can be carried out using the equipment for conventional rotation radiation therapy. The new method was superior to the one plane rotation radiation therapy using a physical phantom with film, a chemical phantom using the iodine-starch reaction, and a new biological model using tumor cells. Treatment of six brain tumors irradiated with total air doses of 50-60 Gy caused no hair loss or radiation necrosis. (author).

  7. Some method for teaching physics to residents in radiation therapy

    International Nuclear Information System (INIS)

    Hughes, D.B.

    A method is presented for teaching physics to residents in radiation therapy. Some of the various responsabilities of a hospital physicist are listed, with particular reference to radiation therapy departments [pt

  8. Restoration of radiation therapy-induced salivary gland dysfunction in mice by post therapy IGF-1 administration

    International Nuclear Information System (INIS)

    Grundmann, Oliver; Fillinger, Jamia L; Victory, Kerton R; Burd, Randy; Limesand, Kirsten H

    2010-01-01

    Radiotherapy for head and neck cancer results in severe and chronic salivary gland dysfunction in most individuals. This results in significant side effects including xerostomia, dysphagia, and malnutrition which are linked to significant reductions in patients' quality of life. Currently there are few xerostomia treatment approaches that provide long-term results without significant side effects. To address this problem we investigated the potential for post-therapeutic IGF-1 to reverse radiation-induced salivary gland dysfunction. FVB mice were treated with targeted head and neck radiation and significant reductions in salivary function were confirmed 3 days after treatment. On days 4-8 after radiation, one group of mice was injected intravenously with IGF-1 while a second group served as a vehicle control. Stimulated salivary flow rates were evaluated on days 30, 60, and 90 and histological analysis was performed on days 9, 30, 60, and 90. Irradiated animals receiving vehicle injections have 40-50% reductions in stimulated salivary flow rates throughout the entire time course. Mice receiving injections of IGF-1 have improved stimulated salivary flow rates 30 days after treatment. By days 60-90, IGF-1 injected mice have restored salivary flow rates to unirradiated control mice levels. Parotid tissue sections were stained for amylase as an indicator of functioning acinar cells and significant reductions in total amylase area are detected in irradiated animals compared to unirradiated groups on all days. Post-therapeutic injections of IGF-1 results in increased amylase-positive acinar cell area and improved amylase secretion. Irradiated mice receiving IGF-1 show similar proliferation indices as untreated mice suggesting a return to tissue homeostasis. Post-therapeutic IGF-1 treatment restores salivary gland function potentially through normalization of cell proliferation and improved expression of amylase. These findings could aid in the rational design of

  9. Perspectives of radiation therapy in benign diseases

    International Nuclear Information System (INIS)

    Schultze, J.; Eilf, K.

    2006-01-01

    Purpose: the numbers of patients with nonmalignant diseases referred for radiation therapy had to be evaluated for the last 4 years. Patients and methods: in the years 2002, 2004, and 2005 radiation therapy was performed in 61, 40, and 26 patients, respectively. Regularly, more women than men were treated, median age annually was 57, 54, and 55 years, respectively (table 1). The radiotherapy scheme was not modified within the evaluated period. Results: the proportion of nonmalignant diseases among all patients treated decreased from 4.7% in 2002 to 3.3% in 2004 and 2.2% in 2005, respectively. A shift was noticed toward the treatment of four main diseases (endocrine orbitopathy, prevention of heterotopic ossification, meningeoma, tendinitis, table 2). The number of referring physicians decreased from 19 to six. Conclusion: due to administrative restrictions for treatment in hospitals, budget restrictions in private practices and lasting, insufficient revenues for radiotherapy in nonmalignant diseases, radiation therapy for the entire group of benign diseases is endangered. (orig.)

  10. Radiation therapy in pseudotumour haemarthrosis

    International Nuclear Information System (INIS)

    Lal, P.; Biswal, B.M.; Thulkar, S.; Patel, A.K.; Venkatesh, R.; Julka, P.K.

    1998-01-01

    Total or partial deficiency of factor VIII and IX in the coagulation cascade leads to haemophilia. Haemophilia affecting weight-bearing joints gives a 'pseudotumour' or haemarthrosis-like condition. Surgery and cryoprecipitate infusions have been the treatment for this condition. Radiocolloids and radiation therapy have been used with some benefit. One case of ankle pseudotumour which was treated by low-dose external beam radiation is presented here. Copyright (1998) Blackwell Science Pty Ltd

  11. Combined therapy of urinary bladder radiation injury

    International Nuclear Information System (INIS)

    Zaderin, V.P.; Polyanichko, M.F.

    1982-01-01

    A scheme of therapy of radiation cystitis is suggested. It was developed on the basis of evaluation of literature data and clinical of 205 patients with radiation injury of the urinary bladder. The method is based on general and local therapy of damaged tissues by antiinflammatory drugs, anesthetics and stimulators of reparative regeneration. Severe ulcerative and incrustation cystites, refractory to conservative therapy, were treated by surgery, using antiseptics and reparation stimulators before, during and after operation. As a result, there were hardly any complications after reconstruction of the bladder with intestinal and peritoneal tissues. 104 patients (96.1%) were cured completely and ability to work was restored in 70 patients (76.9%) [ru

  12. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy.

    Science.gov (United States)

    Jiang, Qin; Luo, Zimiao; Men, Yongzhi; Yang, Peng; Peng, Haibao; Guo, Ranran; Tian, Ye; Pang, Zhiqing; Yang, Wuli

    2017-10-01

    Photothermal therapy (PTT) has represented a promising noninvasive approach for cancer treatment in recent years. However, there still remain challenges in developing non-toxic and biodegradable biomaterials with high photothermal efficiency in vivo. Herein, we explored natural melanin nanoparticles extracted from living cuttlefish as effective photothermal agents and developed red blood cell (RBC) membrane-camouflaged melanin (Melanin@RBC) nanoparticles as a platform for in vivo antitumor PTT. The as-obtained natural melanin nanoparticles demonstrated strong absorption at NIR region, higher photothermal conversion efficiency (∼40%) than synthesized melanin-like polydopamine nanoparticles (∼29%), as well as favorable biocompatibility and biodegradability. It was shown that RBC membrane coating on melanin nanoparticles retained their excellent photothermal property, enhanced their blood retention and effectively improved their accumulation at tumor sites. With the guidance of their inherited photoacoustic imaging capability, optimal accumulation of Melanin@RBC at tumors was achieved around 4 h post intravenous injection. Upon irradiation by an 808-nm laser, the developed Melanin@RBC nanoparticles exhibited significantly higher PTT efficacy than that of bare melanin nanoparticles in A549 tumor-bearing mice. Given that both melanin nanoparticles and RBC membrane are native biomaterials, the developed Melanin@RBC platform could have great potential in clinics for anticancer PTT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Results of Radiation Therapy in Stage III Uterine Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Woo; Shin, Byung Chul; Yum, Ha Yong; Jeung, Tae Sig; Yoo, Myung Jin [Kosin University College of Medicine, Seoul (Korea, Republic of)

    1995-09-15

    Purpose : The aim of this study is to analyze the survival rate, treatment failure and complication of radiation therapy alone in stage III uterine cervical cancer. Materials and Methods : From January 1980 through December 1985, 227 patients with stage II uterine cervical cancer treated with radiation therapy at Kosin Medical Center were retrospectively studied. Among 227 patients, 72 patients(31.7%) were stage IIIa, and 155 patients(68.3%) were stage IIIb according to FIGO classification. Age distribution was 32-71 years(median: 62 years). Sixty nine patients(95.8%) in stage IIIa and 150 patients(96.8%) in stage IIIb were squamous cell carcinoma. Pelvic lymph node metastasis at initial diagnosis was 8 patients (11.1%) in stage IIIa and 29 patients(18.7%) in stage IIIb. Among 72 patients with stage IIIa, 36 patients(50%) were treated with external radiation therapy alone by conventional technique (180-200 cGy/fr). And 36 patients(50%) were treated with external radiation therapy with intracavitary radiotherapy(ICR) with Cs137 sources, and among 155 patients with stage IIIb, 80 patients(51.6%) were treated with external radiation therapy alone and 75 patients(48.4%) were treated with external radiation therapy with ICR. Total radiation doses of stage IIIa and IIIb were 65-105 Gy(median : 78.5 Gy) and 65-125.5 Gy (median :83.5 Gy). Survival rate was calculated by life-table method. Results : Complete response rates were 58.3% (42 patients) in state IIIa and 56.1%(87 patients) in stage Iiib. Overall 5 year survival rates were 57% in stage IIIa and 40% in stage IIIb. Five year survival rates by radiation technique in stage IIIa and IIIb were 64%, 40% in group treated in combination of external radiation and ICR, and 50%, 40% in the group of external radiation therapy alone(P=NS). Five year survival rates by response of radiation therapy in stage IIIa and IIIb were 90%, 66% in responder group, and 10%, 7% in non-responder group (P<0.01). There were statistically no

  14. Results of Radiation Therapy in Stage III Uterine Cervical Cancer

    International Nuclear Information System (INIS)

    Moon, Chang Woo; Shin, Byung Chul; Yum, Ha Yong; Jeung, Tae Sig; Yoo, Myung Jin

    1995-01-01

    Purpose : The aim of this study is to analyze the survival rate, treatment failure and complication of radiation therapy alone in stage III uterine cervical cancer. Materials and Methods : From January 1980 through December 1985, 227 patients with stage II uterine cervical cancer treated with radiation therapy at Kosin Medical Center were retrospectively studied. Among 227 patients, 72 patients(31.7%) were stage IIIa, and 155 patients(68.3%) were stage IIIb according to FIGO classification. Age distribution was 32-71 years(median: 62 years). Sixty nine patients(95.8%) in stage IIIa and 150 patients(96.8%) in stage IIIb were squamous cell carcinoma. Pelvic lymph node metastasis at initial diagnosis was 8 patients (11.1%) in stage IIIa and 29 patients(18.7%) in stage IIIb. Among 72 patients with stage IIIa, 36 patients(50%) were treated with external radiation therapy alone by conventional technique (180-200 cGy/fr). And 36 patients(50%) were treated with external radiation therapy with intracavitary radiotherapy(ICR) with Cs137 sources, and among 155 patients with stage IIIb, 80 patients(51.6%) were treated with external radiation therapy alone and 75 patients(48.4%) were treated with external radiation therapy with ICR. Total radiation doses of stage IIIa and IIIb were 65-105 Gy(median : 78.5 Gy) and 65-125.5 Gy (median :83.5 Gy). Survival rate was calculated by life-table method. Results : Complete response rates were 58.3% (42 patients) in state IIIa and 56.1%(87 patients) in stage Iiib. Overall 5 year survival rates were 57% in stage IIIa and 40% in stage IIIb. Five year survival rates by radiation technique in stage IIIa and IIIb were 64%, 40% in group treated in combination of external radiation and ICR, and 50%, 40% in the group of external radiation therapy alone(P=NS). Five year survival rates by response of radiation therapy in stage IIIa and IIIb were 90%, 66% in responder group, and 10%, 7% in non-responder group (P<0.01). There were statistically no

  15. Radiation Therapy for Lung Cancer

    Science.gov (United States)

    ... is almost always due to smoking. TREATING LUNG CANCER Lung cancer treatment depends on several factors, including the ... org TARGETING CANCER CARE Radiation Therapy for Lung Cancer Lung cancer is the second most common cancer in ...

  16. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    Science.gov (United States)

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Age Disparity in Palliative Radiation Therapy Among Patients With Advanced Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jonathan [University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii (United States); Xu, Beibei [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Yeung, Heidi N.; Roeland, Eric J. [Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Division of Palliative Medicine, Department of Internal Medicine, University of California San Diego, La Jolla, California (United States); Martinez, Maria Elena [Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Department of Family and Preventive Medicine, University of California San Diego, La Jolla, California (United States); Le, Quynh-Thu [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Mell, Loren K. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Murphy, James D., E-mail: j2murphy@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Moores Cancer Center, University of California San Diego, La Jolla, California (United States)

    2014-09-01

    Purpose/Objective: Palliative radiation therapy represents an important treatment option among patients with advanced cancer, although research shows decreased use among older patients. This study evaluated age-related patterns of palliative radiation use among an elderly Medicare population. Methods and Materials: We identified 63,221 patients with metastatic lung, breast, prostate, or colorectal cancer diagnosed between 2000 and 2007 from the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Receipt of palliative radiation therapy was extracted from Medicare claims. Multivariate Poisson regression analysis determined residual age-related disparity in the receipt of palliative radiation therapy after controlling for confounding covariates including age-related differences in patient and demographic covariates, length of life, and patient preferences for aggressive cancer therapy. Results: The use of radiation decreased steadily with increasing patient age. Forty-two percent of patients aged 66 to 69 received palliative radiation therapy. Rates of palliative radiation decreased to 38%, 32%, 24%, and 14% among patients aged 70 to 74, 75 to 79, 80 to 84, and over 85, respectively. Multivariate analysis found that confounding covariates attenuated these findings, although the decreased relative rate of palliative radiation therapy among the elderly remained clinically and statistically significant. On multivariate analysis, compared to patients 66 to 69 years old, those aged 70 to 74, 75 to 79, 80 to 84, and over 85 had a 7%, 15%, 25%, and 44% decreased rate of receiving palliative radiation, respectively (all P<.0001). Conclusions: Age disparity with palliative radiation therapy exists among older cancer patients. Further research should strive to identify barriers to palliative radiation among the elderly, and extra effort should be made to give older patients the opportunity to receive this quality of life-enhancing treatment at the end

  18. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    Science.gov (United States)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  19. Shape effects of nanoparticles on the squeezed flow between two Riga plates in the presence of thermal radiation

    Science.gov (United States)

    Ahmed, Naveed; Adnan; Khan, Umar; Tauseef Mohyud-Din, Syed; Waheed, Asif

    2017-07-01

    This paper aims to explore the flow of water saturated with copper nanoparticles of different shapes between parallel Riga plates. The plates are placed horizontally in the coordinate axis. Influence of the linear thermal radiation is also taken into account. The equations governing the flow have been transformed into a nondimensional form by employing a set of similarity transformations. The obtained system is solved analytically (variation-of-parameters method) and numerically (Runge-Kutta scheme). Under certain conditions, a special case of the model is also explored. Furthermore, influences of the physical quantities on velocity and thermal fields are discussed with the graphical aid over the domain of interest. The quantities of engineering and practical interest (skin friction coefficient and local rate of heat transfer) are also explored graphically.

  20. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Amini Arya

    2012-03-01

    Full Text Available Abstract Background While conventionally fractionated radiation therapy alone is an acceptable option for poor prognostic patients with unresectable stage III NSCLC, we hypothesized that accelerated hypofractionated radiotherapy will have similar efficacy without increasing toxicity. Methods This is a retrospective analysis of 300 patients diagnosed with stage III NSCLC treated between 1993 and 2009. Patients included in the study were medically or surgically inoperable, were free of metastatic disease at initial workup and did not receive concurrent chemotherapy. Patients were categorized into three groups. Group 1 received 45 Gy in 15 fractions over 3 weeks (Accelerated Radiotherapy (ACRT while group 2 received 60-63 Gy (Standard Radiation Therapy 1 (STRT1 and group 3 received > 63 Gy (Standard Radiation Therapy (STRT2. Results There were 119 (39.7% patients in the ACRT group, 90 (30.0% in STRT1 and 91 (30.3% in STRT2. More patients in the ACRT group had KPS ≤ 60 (p 5% (p = 0.002, and had stage 3B disease (p Conclusions Despite the limitations of a retrospective analysis, our experience of accelerated hypofractionated radiation therapy with 45 Gy in 15 fractions appears to be an acceptable treatment option for poor performance status patients with stage III inoperable tumors. Such a treatment regimen (or higher doses in 15 fractions should be prospectively evaluated using modern radiation technologies with the addition of sequential high dose chemotherapy in stage III NSCLC.

  1. Nanoparticles and nonlinear thermal radiation properties in the rheology of polymeric material

    Directory of Open Access Journals (Sweden)

    M. Awais

    2018-03-01

    Full Text Available The present analysis is related to the dynamics of polymeric liquids (Oldroyd-B model with the presence of nanoparticles. The rheological system is considered under the application of nonlinear thermal radiations. Energy and concentration equations are presented when thermophoresis and Brownian motion effects are present. Bidirectional form of stretching is considered to interpret the three-dimensional flow dynamics of polymeric liquid. Making use of the similarity transformations, problem is reduced into ordinary differential system which is approximated by using HAM. Influence of physical parameters including Deborah number, thermophoresis and Brownian motion on velocity, temperature and mass fraction expressions are plotted and analyzed. Numerical values for local Sherwood and Nusselt numbers are presented and discussed. Keywords: Nanoparticles, Polymeric liquid, Oldroyd-B model, Nonlinear thermal radiation

  2. Radiation therapy of 9L rat brain tumors

    International Nuclear Information System (INIS)

    Henderson, S.D.; Kimler, B.F.; Morantz, R.A.

    1981-01-01

    The effects of radiation therapy on normal rats and on rats burdened with 9L brain tumors have been studied. The heads of normal rats were x-irradiated with single exposures ranging from 1000 R to 2700 R. Following acute exposures greater than 2100 R, all animals died in 8 to 12 days. Approximately 30% of the animals survived beyond 12 days over the range of 1850 to 1950 R; following exposures less than 1850 R, all animals survived the acute radiation effects, and median survival times increased with decreasing exposure. Three fractionated radiation schedules were also studied: 2100 R or 3000 R in 10 equal fractions, and 3000 R in 6 equal fractions, each schedule being administered over a 2 week period. The first schedule produced a MST of greater than 1 1/2 years; the other schedules produced MSTs that were lower. It was determined that by applying a factor of 1.9, similar survival responses of normal rats were obtained with single as with fractionated radiation exposures. Animals burdened with 9L gliosarcoma brain tumors normally died of the disease process within 18 to 28 days ater tumor inoculation. Both single and fractionated radiation therapy resulted in a prolongation of survival of tumor-burdened rats. This prolongation was found to be linearly dependent upon the dose; but only minimally dependent upon the time after inoculation at which therapy was initiated, or upon the fractionation schedule that was used. As with normal animals, similar responses were obtained with single as with fractionated exposures when a factor (1.9) was applied. All tumor-bearing animals died prior to the time that death was observed in normal, irradiated rats. Thus, the 9L gliosarcoma rat brain tumor model can be used for the pre-clinical experimental investigation of new therapeutic schedules involving radiation therapy and adjuvant therapies

  3. Role of radiation therapy for stage III thymoma

    International Nuclear Information System (INIS)

    Chun, Ha Chung; Lee, Myung Za

    2001-01-01

    To evaluate the effectiveness and tolerance of the postoperative radiation therapy for patients with Stage III thymoma and to define the optimal radiotherapeutic regimen. We retrospectively analyzed the records of 24 patients with Stage III thymoma who were referred for postoperative radiation therapy in our institution from June, 1987 to May, 1999. Surgical therapy consisted of total resection in one patient, subtotal resection in seventeen, and biopsy alone in six patients. Age of the patients was ranged from 20 to 62 years with mean age of 47 years. Male to female ratio was 14 to 10. Radiation therapy was delivered with linear accelerator producing either 6 MeV or 10 MeV photons. The irradiated volume included anterior mediastinum and known residual disease. The supraclavicular fossae were not irradiated. The delivered total dose was ranged from 30 to 56 Gy. One patient received 30 Gy and eighteen patients received minimum of 50 Gy. Follow up period was ranged from 12 months to 8 years with median follow up of 40 months. The overall local control rate for entire group of patients was 67% at 5 years. The cumulative local failure rates at one, three and five year were 18%, 28% and 33%, respectively. In patients treated with subtotal resection and biopsy alone, local control rate was 76% and 33%, respectively. The actuarial observed survival rate at 5 years was 57%, and actuarial adjusted survival at 5 years was 72%. The difference between 5 year survival rates for patients treated with subtotal resection and biopsy alone was not statistically significant (62% vs 30%). We might conclude that postoperative radiation therapy was safe and effective treatment for patients with Stage III thymoma. Postoperative radiation therapy is recommended in cases where tumor margin is close or incomplete resection is accomplished

  4. Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ikehata, Tomohiro; Onodera, Yuji; Nunokawa, Takashi [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Hirano, Tomohisa; Ogura, Shun-ichiro; Kamachi, Toshiaki [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Odawara, Osamu [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Wada, Hiroyuki, E-mail: wada.h.ac@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-09-01

    Highlights: • Highly crystalline upconversion nanoparticles were prepared by laser ablation in liquid. • Highly transparent near-IR irradiation generated singlet oxygen. • Viability of cancer cells was significantly decreased by near-IR irradiation. - Abstract: Upconversion nanoparticles were prepared by laser ablation in liquid, and the potential use of the nanoparticles for cancer treatment was investigated. A Nd:YAG/SHG laser (532 nm, 13 ns, 10 Hz) was used for ablation, and the cancer treatment studied was photodynamic therapy (PDT). Morphology and crystallinity of prepared nanoparticles were examined by transmission electron microscopy and X-ray diffraction. Red and green emissions resulting from near-infrared excitation were observed by a fluorescence spectrophotometer. Generation of singlet oxygen was confirmed by a photochemical method using 1,3-diphenylisobenzofuran (DPBF). In vitro experiments using cultivated cancer cells were conducted to investigate PDT effects. Uptake of the photosensitizer by cancer cells and cytotoxicities of cancer cells were also examined. We conclude that the combination of PDT and highly crystalline nanoparticles, which were prepared by laser ablation in liquid, is an effective cancer treatment.

  5. Radiation therapy alone for adenocarcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Nakano, Takashi; Arai, Tatsuo; Morita, Shinroku; Oka, Kuniyuki

    1995-01-01

    Purpose: Radiation therapy alone for adenocarcinoma of the cervix is currently evaluated by the accumulation of long-term results because of the low incidence of this disease. Materials and Methods: Fifty-eight patients with adenocarcinoma of the cervix treated with radiation therapy alone between 1961 and 1988 were studied. The radiation therapy consisted of a combination of intracavitary and external pelvis irradiation. Intracavitary treatment was performed with low dose rate and/or high dose rate sources. Results: The 5-year survival rates for Stages I, II, III, and IV were 85.7%, 66.7%, 32.3%, and 9.1%, respectively, and the 10-year survival rates were 85.7%, 60.0%, 27.6%, and 9.1%, respectively. The local control rate with high dose rate treatment was 45.5%, significantly lower than 85.7% and 72.7% with low and mixed dose rate treatments, respectively. Five-year survival and local control rates by tumor volume were 68.6% and 80.0% for small tumors, 63.6% and 66.0% for medium tumors, and 14.4% and 18.2% for large tumors, respectively. The survival rate and local control rate for large tumors were significantly lower than those for small and medium tumors. Multiple regression analysis indicated that stage and tumor volume were independent variables for survival and local control, respectively. Isoeffective dose expressed by time dose fractionation (TDF) was not associated with local control. Radiation complications developed in 10 patients (17.2%), most of which were of moderate degree. Conclusion: Radiation therapy alone for adenocarcinoma of the cervix was regarded to be an effective treatment, comparable to combination therapy of surgery and radiation therapy

  6. Gold nanoparticles synthesized by gamma radiation and stabilized by bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Jessica; Silva, Andressa A.; Geraldes, Adriana N.; Lugao, Ademar B., E-mail: jessicaleal@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Grasselli, Mariano, E-mail: mariano.grasselli@gmail.com [Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Bernal (Argentina)

    2015-07-01

    Gold nanoparticles (AuNPs) are a new option for pharmaceutical and cosmetic industries due to their interesting chemical, electrical and catalytic properties. Research for cancer treatments have been developed using this promising radiotherapy agent. The challenge of gold nanoparticles is to keep them stable, due to metallic behavior. It is know that surface plasma resonance promotes agglomeration of metallic nanoparticles, but they are not stable. Stabilizers have been used to reduce agglomeration. The aim of this work is reduction of HAuCl{sub 4} salt to AuNPs performed by gamma radiation {sup 60}Co source and the stabilization of gold nanoparticles using bovine serum albumin (BSA) fraction V as stabilizer agent. AuNPs were characterized by UV-visible to verify the nanoparticles formation. Samples containing BSA and samples obtained by the conventional method (without stabilizer) were monitored for two weeks and analyzed. Results were compared. (author)

  7. Gold nanoparticles synthesized by gamma radiation and stabilized by bovine serum albumin

    International Nuclear Information System (INIS)

    Leal, Jessica; Silva, Andressa A.; Geraldes, Adriana N.; Lugao, Ademar B.; Grasselli, Mariano

    2015-01-01

    Gold nanoparticles (AuNPs) are a new option for pharmaceutical and cosmetic industries due to their interesting chemical, electrical and catalytic properties. Research for cancer treatments have been developed using this promising radiotherapy agent. The challenge of gold nanoparticles is to keep them stable, due to metallic behavior. It is know that surface plasma resonance promotes agglomeration of metallic nanoparticles, but they are not stable. Stabilizers have been used to reduce agglomeration. The aim of this work is reduction of HAuCl 4 salt to AuNPs performed by gamma radiation 60 Co source and the stabilization of gold nanoparticles using bovine serum albumin (BSA) fraction V as stabilizer agent. AuNPs were characterized by UV-visible to verify the nanoparticles formation. Samples containing BSA and samples obtained by the conventional method (without stabilizer) were monitored for two weeks and analyzed. Results were compared. (author)

  8. Radiation Synthesis of Functional Nanoparticles for Imaging, Sensing and Drug Delivery Applications

    International Nuclear Information System (INIS)

    Grasselli, M.; Soto Espinoza, S.; Risso, V.; Pawlak, E.; Smolko, E.E.

    2010-01-01

    In the present report we describe nanoparticle synthesis by ionizing radiation from globular proteins and methacrylate monomers. Dynamic light scattering and other spectroscopic methods were performed to characterize this new material

  9. Radiation Synthesis of Functional Nanoparticles for Imaging, Sensing and Drug Delivery Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grasselli, M.; Soto Espinoza, S.; Risso, V.; Pawlak, E.; Smolko, E.E., E-mail: mgrasse@unq.edu.ar, E-mail: mariano.grasselli@gmail.com [Quesada 2422, piso 11, dpto. C, C1429 Buenos Aires (Argentina)

    2010-07-01

    In the present report we describe nanoparticle synthesis by ionizing radiation from globular proteins and methacrylate monomers. Dynamic light scattering and other spectroscopic methods were performed to characterize this new material.

  10. Patient setup aid with wireless CCTV system in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Kyun; Cho, Woong; Park, Jong Min [Seoul National University Graduate School, Seoul (Korea, Republic of); Ha, Sung Whan; Ye, Sung Joon [Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Suk Won [Chung-Ang University Cellege of Medicine, Seoul (Korea, Republic of); Huh, Soon Nyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2006-12-15

    To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal ( {approx} 2.4 GHz and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images in investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of 1.5 {+-} 0.7 mm with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of {approx} 0.7 sec. The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful.

  11. Patient setup aid with wireless CCTV system in radiation therapy

    International Nuclear Information System (INIS)

    Park, Yang Kyun; Cho, Woong; Park, Jong Min; Ha, Sung Whan; Ye, Sung Joon; Park, Suk Won; Huh, Soon Nyung

    2006-01-01

    To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal ( ∼ 2.4 GHz and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images in investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of 1.5 ± 0.7 mm with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of ∼ 0.7 sec. The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful

  12. Vectorization of ultrasound-responsive nanoparticles in placental mesenchymal stem cells for cancer therapy.

    Science.gov (United States)

    Paris, Juan L; de la Torre, Paz; Victoria Cabañas, M; Manzano, Miguel; Grau, Montserrat; Flores, Ana I; Vallet-Regí, María

    2017-05-04

    A new platform constituted by engineered responsive nanoparticles transported by human mesenchymal stem cells is here presented as a proof of concept. Ultrasound-responsive mesoporous silica nanoparticles are coated with polyethylenimine to favor their effective uptake by decidua-derived mesenchymal stem cells. The responsive-release ability of the designed nanoparticles is confirmed, both in vial and in vivo. In addition, this capability is maintained inside the cells used as carriers. The migration capacity of the nanoparticle-cell platform towards mammary tumors is assessed in vitro. The efficacy of this platform for anticancer therapy is shown against mammary tumor cells by inducing the release of doxorubicin only when the cell vehicles are exposed to ultrasound.

  13. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy beam-shaping block. 892.5710 Section 892.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...

  14. Radiation therapy in pseudotumour haemarthrosis

    Energy Technology Data Exchange (ETDEWEB)

    Lal, P.; Biswal, B.M.; Thulkar, S.; Patel, A.K.; Venkatesh, R.; Julka, P.K. [Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi (India). Departments of Radiation Oncology, Radiodiagnosis and Haematology

    1998-11-01

    Total or partial deficiency of factor VIII and IX in the coagulation cascade leads to haemophilia. Haemophilia affecting weight-bearing joints gives a `pseudotumour` or haemarthrosis-like condition. Surgery and cryoprecipitate infusions have been the treatment for this condition. Radiocolloids and radiation therapy have been used with some benefit. One case of ankle pseudotumour which was treated by low-dose external beam radiation is presented here. Copyright (1998) Blackwell Science Pty Ltd 14 refs., 2 figs.

  15. Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy.

    Science.gov (United States)

    Yildirim, Adem; Chattaraj, Rajarshi; Blum, Nicholas T; Goodwin, Andrew P

    2016-08-23

    Ultrasound is widely applied in medical diagnosis and therapy due to its safety, high penetration depth, and low cost. In order to improve the contrast of sonographs and efficiency of the ultrasound therapy, echogenic gas bodies or droplets (with diameters from 200 nm to 10 µm) are often used, which are not very stable in the bloodstream and unable to penetrate into target tissues. Recently, it was demonstrated that nanobubbles stabilized by nanoparticles can nucleate ultrasound responsive microbubbles under reduced acoustic pressures, which is very promising for the development of nanoscale (ultrasound agents. However, there is still very little understanding about the effects of nanoparticle properties on the stabilization of nanobubbles and nucleation of acoustic cavitation by these nanobubbles. Here, a series of mesoporous silica nanoparticles with sizes around 100 nm but with different morphologies were synthesized to understand the effects of nanoparticle porosity, surface roughness, hydrophobicity, and hydrophilic surface modification on acoustic cavitation inception by porous nanoparticles. The chemical analyses of the nanoparticles showed that, while the nanoparticles were prepared using the same silica precursor (TEOS) and surfactant (CTAB), they revealed varying amounts of carbon impurities, hydroxyl content, and degrees of silica crosslinking. Carbon impurities or hydrophobic modification with methyl groups is found to be essential for nanobubble stabilization by mesoporous silica nanoparticles. The acoustic cavitation experiments in the presence of ethanol and/or bovine serum albumin (BSA) demonstrated that acoustic cavitation is predominantly nucleated by the nanobubbles stabilized at the nanoparticle surface not inside the mesopores. Finally, acoustic cavitation experiments with rough and smooth nanoparticles were suggested that a rough nanoparticle surface is needed to largely preserve surface nanobubbles after coating the surface with hydrophilic

  16. Three dimensional conformal radiation therapy may improve the therapeutic ratio of radiation therapy after pneumonectomy for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trouette, R; Causse, N; Elkhadri, M; Caudry, M; Maire, J P; Houlard, J P; Racaldini, L; Demeaux, H

    1995-12-01

    Three dimensional conformal radiation therapy would allow to decrease the normal tissue dose while maintaining the same target dose as standard treatment. To evaluate the feasibility of normal tissue dose reduction for ten patients with pneumonectomy for lung cancer, we determined the dose distribution to the normal tissue with 3-dimensional conformal radiation therapy (3-DCRT) and conventional treatment planning (CTP). Dose-volume histograms for target and normal tissue (lung, heart) were used for comparison of the different treatment planning. The mean percentages of lung and heart volumes which received 40 Gy with 3-DCRT were respectively 63% and 37% of the mean percentage of lung and volumes which received the same dose with CTP. These preliminary results suggest that conformal therapy may improve the therapeutic ratio by reducing risk to normal tissue.

  17. A case of sarcoma of the chest wall after radiation therapy for breast cancer

    International Nuclear Information System (INIS)

    Izumi, Junko; Nishi, Tsunehiro; Fukuuchi, Atsushi; Takanashi, Riichiro

    1998-01-01

    A case of radiation-induced sarcoma of the chest wall after radiation therapy for breast cancer is reported. A 69-year-old woman underwent mastectomy with axillary lymph node dissection followed by linac therapy of 50 Gy delivered to the left axilla, left supraclavicular area, and parasternal area. During therapy for bone and liver metastases, a tumor was noted in the left chest wall 15 years after radiation therapy. Incisional biopsy was performed. Histological diagnosis was spindle cell sarcoma. Radiation-induced sarcoma was suspected because the tumor developed 15 years after radiation therapy within the same area. Radiation-induced sarcoma is a rare tumor, but radiation therapy following breast-conserving therapy is widely employed. It is important to be aware of the possibility of radiation-induced sarcoma. (author)

  18. New Avenues for Nanoparticle-Related Therapies

    Science.gov (United States)

    Zhao, Michael; Liu, Mingyao

    2018-05-01

    Development of nanoparticle-based drug delivery systems has been attempted for the treatment of cancer over the past decade. The enhanced permeability and retention (EPR) effect is the major mechanism to passively deliver nanodrugs to tumor tissue. However, a recent systematic review demonstrated limited success of these studies, with the clearance of nanoparticles by the mononuclear phagocytic system (MPS) being a major hurdle. Herein, we propose that nanotechnologists should reconsider their research focuses, aiming for therapeutic targets other than cancer. Treatments for diseases that do not (or less) rely on EPR should be considered, such as active targeting or MPS evasion systems. For example, systemic delivery of drugs through intravenous injection can be used to treat sepsis, multi-organ failure, metabolic disorders, blood diseases, immune and autoimmune diseases, etc. Local delivery of nanodrugs to organs such as the lung, rectum, or bladder may enhance the local drug concentration with less clearance via MPS. In transplant settings, ex vivo organ perfusion provides a new route to repair injury of isolated organs in the absence of MPS. Based on a similar concept, chemotherapy with in vivo lung perfusion techniques and other isolated organ perfusion provides opportunities for cancer therapy.

  19. Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis

    Science.gov (United States)

    Sensakovic, William F.; Maxim, Peter; Diehn, Maximilian; Loo, Billy W.; Xing, Lei

    2018-01-01

    Purpose: The deformable registration of pulmonary computed tomography images before and after radiation therapy is challenging due to anatomic changes from radiation fibrosis. We hypothesize that a line-enhanced registration algorithm can reduce landmark error over the entire lung, including the irradiated regions, when compared to an intensity-based deformable registration algorithm. Materials: Two intensity-based B-spline deformable registration algorithms of pre-radiation therapy and post-radiation therapy images were compared. The first was a control intensity–based algorithm that utilized computed tomography images without modification. The second was a line enhancement algorithm that incorporated a Hessian-based line enhancement filter prior to deformable image registration. Registrations were evaluated based on the landmark error between user-identified landmark pairs and the overlap ratio. Results: Twenty-one patients with pre-radiation therapy and post-radiation therapy scans were included. The median time interval between scans was 1.2 years (range: 0.3-3.3 years). Median landmark errors for the line enhancement algorithm were significantly lower than those for the control algorithm over the entire lung (1.67 vs 1.83 mm; P 5 Gy (2.25 vs 3.31; P 5 Gy dose interval demonstrated a significant inverse relationship with post-radiation therapy fibrosis enhancement after line enhancement filtration (Pearson correlation coefficient = −0.48; P = .03). Conclusion: The line enhancement registration algorithm is a promising method for registering images before and after radiation therapy. PMID:29343206

  20. Hypothyroidism following surgery and radiation therapy for head and neck cancer

    International Nuclear Information System (INIS)

    Park, I. K.; Kim, J. C.

    1997-01-01

    Radiation therapy in combination with surgery has an important role in the therapy of the head and neck cancer. We conducted a prospective study for patients with head and neck cancer treated with surgery and radiation to evaluate the effect of therapies on the thyroid gland, and to identify the factors that might influence the development of hypothyroidism. From September 1986 through December 1994, 71 patients with head and cancer treated with surgery and radiation were included in this prospective study. Patients' age ranged from 32 to 73 years with a median age of 58 years. There were 12 women and 59 men. Total laryngectomy with neck dissection was carried out in 45 patients and neck dissection alone in 26 patients. All patients were serially monitored for thyroid function before and after radiation therapy. Radiation dose to the thyroid gland ranged from 40.6Gy to 60Gy with a median dose of 50Gy. The follow-up duration was 3 to 80 months. The overall incidence of hypothyroidism was 56.3% (40/71); 7 out of 71 patients (9.9%) developed clinical hypothyroidism and 33 patients (46.4%) developed subclinical hypothyroidism. No thyroid nodules, thyroid cancers, or hyperthyroidism was detected. The risk factor that significantly influenced the incidence of hypothyroidism was a combination of surgery (total laryngectomy with neck dissection) and radiation therapy (P=0.0000). Four of 26 patients (15.4%) with neck dissection alone developed hypothyroidism while 36 of 45 patients (80%) with laryngectomy and neck dissection developed hypothyroidism. The hypothyroidism following surgery and radiation therapy was a relatively common complication. The factor that significantly influenced the incidence of hypothyroidism was combination of surgery and radiation therapy. Evaluation of thyroid function before and after radiation therapy with periodic thyroid function tests is recommended for an early detection of hypothyroidism and thyroid hormone replacement therapy is

  1. Hypothyroidism following surgery and radiation therapy for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, I. K.; Kim, J. C. [Kyungpook National Univ., Taegu (Korea, Republic of). Coll. of Medicine

    1997-09-01

    Radiation therapy in combination with surgery has an important role in the therapy of the head and neck cancer. We conducted a prospective study for patients with head and neck cancer treated with surgery and radiation to evaluate the effect of therapies on the thyroid gland, and to identify the factors that might influence the development of hypothyroidism. From September 1986 through December 1994, 71 patients with head and cancer treated with surgery and radiation were included in this prospective study. Patients` age ranged from 32 to 73 years with a median age of 58 years. There were 12 women and 59 men. Total laryngectomy with neck dissection was carried out in 45 patients and neck dissection alone in 26 patients. All patients were serially monitored for thyroid function before and after radiation therapy. Radiation dose to the thyroid gland ranged from 40.6Gy to 60Gy with a median dose of 50Gy. The follow-up duration was 3 to 80 months. The overall incidence of hypothyroidism was 56.3% (40/71); 7 out of 71 patients (9.9%) developed clinical hypothyroidism and 33 patients (46.4%) developed subclinical hypothyroidism. No thyroid nodules, thyroid cancers, or hyperthyroidism was detected. The risk factor that significantly influenced the incidence of hypothyroidism was a combination of surgery (total laryngectomy with neck dissection) and radiation therapy (P=0.0000). Four of 26 patients (15.4%) with neck dissection alone developed hypothyroidism while 36 of 45 patients (80%) with laryngectomy and neck dissection developed hypothyroidism. The hypothyroidism following surgery and radiation therapy was a relatively common complication. The factor that significantly influenced the incidence of hypothyroidism was combination of surgery and radiation therapy. Evaluation of thyroid function before and after radiation therapy with periodic thyroid function tests is recommended for an early detection of hypothyroidism and thyroid hormone replacement therapy is

  2. Multifunctional nanoparticle-EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy.

    Science.gov (United States)

    Das, Manasi; Duan, Wei; Sahoo, Sanjeeb K

    2015-02-01

    The promising proposition of multifunctional nanoparticles for cancer diagnostics and therapeutics has inspired the development of theranostic approach for improved cancer therapy. Moreover, active targeting of drug carrier to specific target site is crucial for providing efficient delivery of therapeutics and imaging agents. In this regard, the present study investigates the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles, functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. A wide spectrum of in vitro analysis (cellular uptake study, cytotoxicity assay, cell cycle and apoptosis analysis, apoptosis associated proteins study) revealed superior therapeutic potentiality of targeted NPs over other formulations in EpCAM expressing cells. Moreover, our nanotheranostic system served as a superlative bio-imaging modality both in 2D monolayer culture and tumor spheroid model. Our result suggests that, these aptamer-guided multifunctional NPs may act as indispensable nanotheranostic approach toward cancer therapy. This study investigated the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. It was concluded that the studied multifunctional targeted nanoparticle may become a viable and efficient approach in cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. MO-FG-BRB-02: Uniform Access to Radiation Therapy by 2035: Global Task Force on Radiotherapy for Cancer Control

    International Nuclear Information System (INIS)

    Jaffray, D.

    2015-01-01

    The global burden of cancer is growing rapidly with an estimated 15 million new cases per year worldwide in 2015, growing to 19 million by 2025 and 24 million by 2035. The largest component of this growth will occur in low-to-middle income countries (LMICs). About half of these cases will require radiation treatment. The gap for available cancer treatment, including radiation therapy, between high-income countries (HICs) and LMICs is enormous. Accurate data and quantitative models to project the needs and the benefits of cancer treatment are a critical first step in closing the large cancer divide between LMICs and HICs. In this context, the Union for International Cancer Control (UICC) has developed a Global Task Force on Radiotherapy for Cancer Control (GTFRCC) with a charge to answer the question as to what it will take to close the gap between what exists today and reasonable access to radiation therapy globally by 2035 and what the potential clinical and economic benefits are for doing this. The Task Force has determined the projections of cancer incidence and the infrastructure required to provide access to radiation therapy globally. Furthermore it has shown that appropriate investment not only yields improved clinical outcomes for millions of patients but that it also provides an overall economic gain throughout all the income settings where this investment is made. This symposium will summarize the facets associated with this global cancer challenge by reviewing the cancer burden, looking at the requirements for radiation therapy, reviewing the benefits of providing such therapy both from a clinical and economic perspective and finally by looking at what approaches can be used to aid in the alleviation of this global cancer challenge. The speakers are world renowned experts in global public health issues (R. Atun), medical physics (D. Jaffray) and radiation oncology (N. Coleman). Learning Objectives: To describe the global cancer challenge and the

  4. MO-FG-BRB-02: Uniform Access to Radiation Therapy by 2035: Global Task Force on Radiotherapy for Cancer Control

    Energy Technology Data Exchange (ETDEWEB)

    Jaffray, D. [Princess Margaret Cancer Centre (Canada)

    2015-06-15

    The global burden of cancer is growing rapidly with an estimated 15 million new cases per year worldwide in 2015, growing to 19 million by 2025 and 24 million by 2035. The largest component of this growth will occur in low-to-middle income countries (LMICs). About half of these cases will require radiation treatment. The gap for available cancer treatment, including radiation therapy, between high-income countries (HICs) and LMICs is enormous. Accurate data and quantitative models to project the needs and the benefits of cancer treatment are a critical first step in closing the large cancer divide between LMICs and HICs. In this context, the Union for International Cancer Control (UICC) has developed a Global Task Force on Radiotherapy for Cancer Control (GTFRCC) with a charge to answer the question as to what it will take to close the gap between what exists today and reasonable access to radiation therapy globally by 2035 and what the potential clinical and economic benefits are for doing this. The Task Force has determined the projections of cancer incidence and the infrastructure required to provide access to radiation therapy globally. Furthermore it has shown that appropriate investment not only yields improved clinical outcomes for millions of patients but that it also provides an overall economic gain throughout all the income settings where this investment is made. This symposium will summarize the facets associated with this global cancer challenge by reviewing the cancer burden, looking at the requirements for radiation therapy, reviewing the benefits of providing such therapy both from a clinical and economic perspective and finally by looking at what approaches can be used to aid in the alleviation of this global cancer challenge. The speakers are world renowned experts in global public health issues (R. Atun), medical physics (D. Jaffray) and radiation oncology (N. Coleman). Learning Objectives: To describe the global cancer challenge and the

  5. Guidelines for safe practice of stereotactic body (ablative) radiation therapy

    International Nuclear Information System (INIS)

    Foote, Matthew; Barry, Tamara; Bailey, Michael; Smith, Leigh; Seeley, Anna; Siva, Shankar; Hegi-Johnson, Fiona; Booth, Jeremy; Ball, David; Thwaites, David

    2015-01-01

    The uptake of stereotactic ablative body radiation therapy (SABR) / stereotactic body radiation therapy (SBRT) worldwide has been rapid. The Australian and New Zealand Faculty of Radiation Oncology (FRO) assembled an expert panel of radiation oncologists, radiation oncology medical physicists and radiation therapists to establish guidelines for safe practice of SABR. Draft guidelines were reviewed by a number of international experts in the field and then distributed through the membership of the FRO. Members of the Australian Institute of Radiography and the Australasian College of Physical Scientists and Engineers in Medicine were also asked to comment on the draft. Evidence-based recommendations (where applicable) address aspects of departmental staffing, procedures and equipment, quality assurance measures, as well as organisational considerations for delivery of SABR treatments. Central to the guidelines is a set of key recommendations for departments undertaking SABR. These guidelines were developed collaboratively to provide an educational guide and reference for radiation therapy service providers to ensure appropriate care of patients receiving SABR.

  6. Technical basis of radiation therapy. Practical clinical applications. 5. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Seymour H. [Karolinska Institutet Stockholm (Sweden). Dept. of Oncol-Pathol; Perez, Carlos A. [Washington Univ. Medical Center, St. Louis, MO (United States). Dept. of Radiation Oncology; Purdy, James A. [California Univ., Sacramento, CA (United States). Dept. of Radiation Oncology; Poortmans, Philip [Institute Verbeeten, Tilburg (Netherlands). Dept. of Radiation Oncology

    2012-07-01

    This well-received book, now in its fifth edition, is unique in providing a detailed description of the technological basis of radiation therapy. Another novel feature is the collaborative writing of the chapters by North American and European authors. This considerably broadens the book's perspective and increases its applicability in daily practice throughout the world. The book is divided into two sections. The first covers basic concepts in treatment planning, including essential physics and biological principles related to time-dose-fractionation, and explains the various technological approaches to radiation therapy, such as intensity-modulated radiation therapy, tomotherapy, stereotactic radiotherapy, and high and low dose rate brachytherapy. Issues relating to quality assurance, technology assessment, and cost-benefit analysis are also reviewed. The second part of the book discusses in depth the practical clinical applications of the different radiation therapy techniques in a wide range of cancer sites. All of the chapters have been written by leaders in the field. This book will serve to instruct and acquaint teachers, students, and practitioners in the various fields of oncology with the basic technological factors and approaches in radiation therapy. (orig.)

  7. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy

    Directory of Open Access Journals (Sweden)

    Xi J

    2017-04-01

    Full Text Available Juqun Xi,1–3 Lanyue Da,1 Changshui Yang,1 Rui Chen,4 Lizeng Gao,2 Lei Fan,5 Jie Han5 1Pharmacology Department, Medical School, Yangzhou University, 2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, 3Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 4Department of Nephrology, Subei People’s Hospital, Yangzhou University, 5School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China Abstract: Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn2+-coordinated doxorubicin (DOX-loaded poly(lactic-co-glycolic acid (PLGA nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn2+ ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn2+-PDA@DOX/PLGA nanoparticles. In our system, Mn2+-PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn2+ could afford the high magnetic resonance (MR imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn2+-PDA@DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties. Keywords: PLGA nanoparticles, polydopamine, chemo-photothermal therapy, smart theranostic agent

  8. Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with 111In, 177Lu or 90Y incorporated into tissue implantable depots

    Science.gov (United States)

    Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.

    2017-11-01

    Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions

  9. 18F-FDG PET/CT-based early treatment response evaluation of nanoparticle-assisted photothermal cancer therapy

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Jørgensen, Jesper T.; Simón, Marina

    2017-01-01

    Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been on developing novel heat-generating nanoparticles with the right optical and dimensional properties. Comparison and evaluation of their performance in tumor-bearing animals are commonly assessed by change...

  10. The concept and evolution of involved site radiation therapy for lymphoma

    DEFF Research Database (Denmark)

    Specht, Lena; Yahalom, Joachim

    2015-01-01

    We describe the development of radiation therapy for lymphoma from extended field radiotherapy of the past to modern conformal treatment with involved site radiation therapy based on advanced imaging, three-dimensional treatment planning and advanced treatment delivery techniques. Today, radiation...... therapy is part of the multimodality treatment of lymphoma, and the irradiated tissue volume is much smaller than before, leading to highly significant reductions in the risks of long-term complications....

  11. Combined adjuvant radiation and interferon-alpha 2B therapy in high-risk melanoma patients: the potential for increased radiation toxicity

    International Nuclear Information System (INIS)

    Hazard, Lisa J.; Sause, William T.; Noyes, R. Dirk

    2002-01-01

    Purpose: Surgically resected melanoma patients with high-risk features commonly receive adjuvant therapy with interferon-alpha 2b combined with radiation therapy; the purpose of our study was to evaluate the potential enhancement of radiation toxicity by interferon. Methods and Materials: Patients at LDS Hospital and the University of Utah Medical Center in Salt Lake City treated with interferon during radiotherapy or within 1 month of its completion were retrospectively identified, and their charts were reviewed. If possible, the patients were asked to return to the LDS Hospital radiation therapy department for follow-up. Results: Five of 10 patients receiving interferon-alpha 2b therapy during radiation therapy or within 1 month of its completion experienced severe subacute/late complications of therapy. Severe subacute/late complications included two patients with peripheral neuropathy, one patient with radiation necrosis in the brain, and two patients with radiation necrosis in the s.c. tissue. One patient with peripheral neuropathy and one patient with radiation necrosis also developed lymphedema. Conclusions: In vitro studies have identified a radiosensitizing effect by interferon-alpha on certain cell lines, which suggests the possibility that patients treated with interferon and radiation therapy may experience more severe radiation toxicities. We have observed severe subacute/late complications in five of 10 patients treated with interferon-alpha 2b during radiation therapy or within 1 month of its completion. Although an observational study of 10 patients lacks the statistic power to reach conclusions regarding the safety and complication rates of combined interferon and radiation therapy, it is sufficient to raise concerns and suggest the need for prospective studies

  12. 5-aminolevulinic acid-incorporated nanoparticles of methoxy poly(ethylene glycol-chitosan copolymer for photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Chung CW

    2013-02-01

    Full Text Available Chung-Wook Chung,1,* Kyu-Don Chung,2,* Young-Il Jeong,1 Dae Hwan Kang,1 1National Research and Development Center for Hepatobiliary Disease, Pusan National University Yangsan Hospital, Gyeongnam, Republic of Korea; 2Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University, Seoul, Republic of Korea*These authors contributed equally to this workPurpose: The aim of this study was to make 5-aminolevulinic acid (5-ALA-incorporated nanoparticles using methoxy polyethylene glycol/chitosan (PEG-Chito copolymer for application in photodynamic therapy for colon cancer cells.Methods: 5-ALA-incorporated (PEG-Chito-5-ALA nanoparticles were prepared by ion complex formation between 5-ALA and chitosan. Protoporphyrin IX accumulation in the tumor cells and phototoxicity induced by PEG-Chito-5-ALA nanoparticles were assessed using CT26 cells in vitro.Results: PEG-Chito-5-ALA nanoparticles have spherical shapes with sizes diameters 200 nm. More specifically, microscopic observation revealed a core-shell structure of PEG-Chito-5-ALA nanoparticles. 1H NMR spectra showed that 5-ALA was incorporated in the core of the nanoparticles. In the absence of light irradiation, all components such as 5-ALA, empty nanoparticles, and PEG-Chito-5-ALA nanoparticles did not affect the viability of cells. However, 5-ALA or PEG-Chito-5-ALA nanoparticles induced tumor cell death under light irradiation, and the viability of tumor cells was dose-dependently decreased according to the increase in irradiation time. In particular, PEG-Chito-5-ALA nanoparticles induced increased phototoxicity and higher protoporphyrin IX accumulation into the tumor cells than did 5-ALA alone. Furthermore, PEG-Chito-5-ALA nanoparticles accelerated apoptosis/necrosis of tumor cells, compared to 5-ALA alone.Conclusion: PEG-Chito-5-ALA nanoparticles showed superior delivery capacity of 5-ALA and phototoxicity against tumor cells. These results show that PEG-Chito-5-ALA

  13. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

    Directory of Open Access Journals (Sweden)

    Miele E

    2012-07-01

    Full Text Available Evelina Miele,1,* Gian Paolo Spinelli,2,* Ermanno Miele,3 Enzo Di Fabrizio,3,6 Elisabetta Ferretti,4 Silverio Tomao,2 Alberto Gulino,1,5 1Department of Molecular Medicine, 2Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 3Nanostructures, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, 4Department of Experimental Medicine, Sapienza University of Rome, Rome, 5Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy, 6BIONEM lab, University of Magna Graecia, Campus S. Venuta, Viale Europa 88100 Catanzaro, Italy *These authors contributed equally to this workAbstract: During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi. RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current

  14. Review of Real-Time 3-Dimensional Image Guided Radiation Therapy on Standard-Equipped Cancer Radiation Therapy Systems: Are We at the Tipping Point for the Era of Real-Time Radiation Therapy?

    Science.gov (United States)

    Keall, Paul J; Nguyen, Doan Trang; O'Brien, Ricky; Zhang, Pengpeng; Happersett, Laura; Bertholet, Jenny; Poulsen, Per R

    2018-04-14

    To review real-time 3-dimensional (3D) image guided radiation therapy (IGRT) on standard-equipped cancer radiation therapy systems, focusing on clinically implemented solutions. Three groups in 3 continents have clinically implemented novel real-time 3D IGRT solutions on standard-equipped linear accelerators. These technologies encompass kilovoltage, combined megavoltage-kilovoltage, and combined kilovoltage-optical imaging. The cancer sites treated span pelvic and abdominal tumors for which respiratory motion is present. For each method the 3D-measured motion during treatment is reported. After treatment, dose reconstruction was used to assess the treatment quality in the presence of motion with and without real-time 3D IGRT. The geometric accuracy was quantified through phantom experiments. A literature search was conducted to identify additional real-time 3D IGRT methods that could be clinically implemented in the near future. The real-time 3D IGRT methods were successfully clinically implemented and have been used to treat more than 200 patients. Systematic target position shifts were observed using all 3 methods. Dose reconstruction demonstrated that the delivered dose is closer to the planned dose with real-time 3D IGRT than without real-time 3D IGRT. In addition, compromised target dose coverage and variable normal tissue doses were found without real-time 3D IGRT. The geometric accuracy results with real-time 3D IGRT had a mean error of real-time 3D IGRT methods using standard-equipped radiation therapy systems that could also be clinically implemented. Multiple clinical implementations of real-time 3D IGRT on standard-equipped cancer radiation therapy systems have been demonstrated. Many more approaches that could be implemented were identified. These solutions provide a pathway for the broader adoption of methods to make radiation therapy more accurate, impacting tumor and normal tissue dose, margins, and ultimately patient outcomes. Copyright © 2018

  15. Clinical significance of radiation therapy in breast recurrence and prognosis in breast-conserving surgery

    International Nuclear Information System (INIS)

    Nishimura, Reiki; Nagao, Kazuharu; Miyayama, Haruhiko

    1999-01-01

    Significant risk factors for recurrence of breast cancer after breast-conserving therapy, which has become a standard treatment for breast cancer, are positive surgical margins and the failure to perform radiation therapy. In this study, we evaluated the clinical significance of radiation therapy after primary surgery or breast recurrence. In 344 cases of breast-conserving surgery, disease recurred in 43 cases (12.5%), which were classified as follows: 17 cases of breast recurrence, 13 cases of breast and distant metastasis, and 13 cases of distant metastasis. Sixty-two patients (16.7%) received radiation therapy. A positive surgical margin and younger age were significant risk factors for breast recurrence in patients not receiving postoperative radiation therapy but not in patients receiving radiation therapy. Radiation therapy may be beneficial for younger patients with positive surgical margins. Furthermore, radiation therapy after recurrence was effective in the cases not treated with postoperative radiation but not in cases with inflammatory recurrence. Patients with breast recurrence alone had significantly higher survival rates than did patients with distant metastases regardless of breast recurrence. These findings suggest that the adaptation criteria of radiation therapy for local control must be clarified. (author)

  16. Clinical significance of radiation therapy in breast recurrence and prognosis in breast-conserving surgery

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Reiki; Nagao, Kazuharu; Miyayama, Haruhiko [Kumamoto City Hospital (Japan)] [and others

    1999-03-01

    Significant risk factors for recurrence of breast cancer after breast-conserving therapy, which has become a standard treatment for breast cancer, are positive surgical margins and the failure to perform radiation therapy. In this study, we evaluated the clinical significance of radiation therapy after primary surgery or breast recurrence. In 344 cases of breast-conserving surgery, disease recurred in 43 cases (12.5%), which were classified as follows: 17 cases of breast recurrence, 13 cases of breast and distant metastasis, and 13 cases of distant metastasis. Sixty-two patients (16.7%) received radiation therapy. A positive surgical margin and younger age were significant risk factors for breast recurrence in patients not receiving postoperative radiation therapy but not in patients receiving radiation therapy. Radiation therapy may be beneficial for younger patients with positive surgical margins. Furthermore, radiation therapy after recurrence was effective in the cases not treated with postoperative radiation but not in cases with inflammatory recurrence. Patients with breast recurrence alone had significantly higher survival rates than did patients with distant metastases regardless of breast recurrence. These findings suggest that the adaptation criteria of radiation therapy for local control must be clarified. (author)

  17. Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Chen Zhi-Long

    2009-01-01

    Full Text Available Abstract As a fast developing alternative of traditional therapeutics, photodynamic therapy (PDT is an effective, noninvasive, nontoxic therapeutics for cancer, senile macular degeneration, and so on. But the efficacy of PDT was compromised by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles (SMNPs were strategically designed and prepared as targeting drug delivery system to achieve higher specificity and better solubility. 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl-13,17-bis-(3-hydroxypropyl porphyrin, shorted as PHPP, was used as photosensitizer, which was first synthesized by our lab with good PDT effects. Magnetite nanoparticles (Fe3O4 and PHPP were incorporated into silica nanoparticles by microemulsion and sol–gel methods. The prepared nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The nanoparticles were approximately spherical with 20–30 nm diameter. Intense fluorescence of PHPP was monitored in the cytoplasm of SW480 cells. The nanoparticles possessed good biocompatibility and could generate singlet oxygen to cause remarkable photodynamic anti-tumor effects. These suggested that PHPP-SMNPs had great potential as effective drug delivery system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia therapy.

  18. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Hess, Clayton B.; Thompson, Holly M.; Benedict, Stanley H.; Seibert, J. Anthony; Wong, Kenneth; Vaughan, Andrew T.; Chen, Allen M.

    2016-01-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of “gentle IGRT.”

  19. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Clayton B. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Thompson, Holly M. [Department of Diagnostic Radiology, University of California Davis Medical Center, Sacramento, California (United States); Benedict, Stanley H. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Seibert, J. Anthony [Department of Diagnostic Radiology, University of California Davis Medical Center, Sacramento, California (United States); Wong, Kenneth [Department of Radiation Oncology, University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California David Geffen School of Medicine, Los Angeles, California (United States); Vaughan, Andrew T. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Chen, Allen M., E-mail: allenmchen@yahoo.com [Department of Radiation Oncology, University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California David Geffen School of Medicine, Los Angeles, California (United States)

    2016-04-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of “gentle IGRT.”.

  20. Nanoparticle targeted therapy against childhood acute lymphoblastic leukemia

    Science.gov (United States)

    Satake, Noriko; Lee, Joyce; Xiao, Kai; Luo, Juntao; Sarangi, Susmita; Chang, Astra; McLaughlin, Bridget; Zhou, Ping; Kenney, Elaina; Kraynov, Liliya; Arnott, Sarah; McGee, Jeannine; Nolta, Jan; Lam, Kit

    2011-06-01

    The goal of our project is to develop a unique ligand-conjugated nanoparticle (NP) therapy against childhood acute lymphoblastic leukemia (ALL). LLP2A, discovered by Dr. Kit Lam, is a high-affinity and high-specificity peptidomimetic ligand against an activated α4β1 integrin. Our study using 11 fresh primary ALL samples (10 precursor B ALL and 1 T ALL) showed that childhood ALL cells expressed activated α4β1 integrin and bound to LLP2A. Normal hematopoietic cells such as activated lymphocytes and monocytes expressed activated α4β1 integrin; however, normal hematopoietic stem cells showed low expression of α4β1 integrin. Therefore, we believe that LLP2A can be used as a targeted therapy for childhood ALL. The Lam lab has developed novel telodendrimer-based nanoparticles (NPs) which can carry drugs efficiently. We have also developed a human leukemia mouse model using immunodeficient NOD/SCID/IL2Rγ null mice engrafted with primary childhood ALL cells from our patients. LLP2A-conjugated NPs will be evaluated both in vitro and in vivo using primary leukemia cells and this mouse model. NPs will be loaded first with DiD near infra-red dye, and then with the chemotherapeutic agents daunorubicin or vincristine. Both drugs are mainstays of current chemotherapy for childhood ALL. Targeting properties of LLP2A-conjugated NPs will be evaluated by fluorescent microscopy, flow cytometry, MTS assay, and mouse survival after treatment. We expect that LLP2A-conjugated NPs will be preferentially delivered and endocytosed to leukemia cells as an effective targeted therapy.

  1. Alterations of nutritional status: impact of chemotherapy and radiation therapy

    International Nuclear Information System (INIS)

    Donaldson, S.S.; Lenon, R.A.

    1979-01-01

    The nutritional status of a cancer patient may be affected by the tumor, the chemotherapy and/or radiation therapy directed against the tumor, and by complications associated with that therapy. Chemotherpay-radiotherapy is not confined exclusively to malignant cell populations; thus, normal tissues may also be affected by the therapy and may contribute to specific nutritional problems. Impaired nutrition due to anorexia, mucositis, nausea, vomiting, and diarrhea may be dependent upon the specific chemotherapeutic agent, dose, or schedule utilized. Similar side effects from radiation therapy depend upon the dose, fractionation, and volume irradiated. When combined modality treatment is given the nutritional consequences may be magnified. Prospective, randomized clinical trials are underway to investigate the efficacy of nutritional support during chemotherapy-radiotherapy on tolerance to treatment, complications from treatment, and response rates to treatment. Preliminary results demonstrate that the administration of total parenteral nutrition is successful in maintaining weight during radiation therapy and chemotherapy, but that weight loss occurs after discontinuation of nutritional support. Thus, longterm evaluation is mandatory to learn the impact of nutritional support on survival, diease-free survival, and complication rates, as well as on the possible prevention of morbidity associated with aggressive chemotherapy-radiation therapy

  2. Development of drugs and technology for radiation theragnosis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwan Jeong [Dept. of Nuclear Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of); Lee, Byung Chul [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Ahn, Byeong Cheol [Dept. of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu (Korea, Republic of); Kang, Keon Wook [Dept. of Nuclear Medicine and Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-06-15

    Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

  3. Radiation therapy for head and neck cancers

    International Nuclear Information System (INIS)

    Gillette, S.M.; Gillette, E.L.

    1995-01-01

    Radiation therapy may be indicated for larger invasive tumors of the head and neck that may be difficult to surgically excise or for which surgery would be significantly disfiguring. Previous studies of oral squamous cell carcinomas indicate that it should be possible to control approximately 80% of all but the most advanced local or locoregional tumors. Aggressive radiation therapy to total doses of 56 Gy or greater may be required. That can be done by using smaller doses per fraction and gradually reducing the size of the field so that the highest dose is given only to the tumor with a relatively tight margin. Malignant melanomas can be controlled locally apparently with a few large fractions. Metastatic disease limits survival; therefore, some type of systemic therapy seems to be needed to improve survival of those patients. Canine oral fibrosarcomas require a very high dose for a reasonable probability of control. It seems that a dose of 56 Gy given in 3.3 Gy fractions might provide local control of 50% of the tumors. It is likely that a combination of surgery and radiation would significantly improve the probability for control. Oral squamous cell carcinomas of cats must also be treated very aggressively to improve local control. Tumors of the nasal cavity are usually very large and invasive at the time of diagnosis. Radiation therapy has been shown to be effective in some instances. It is possible that with better definition of the tumor through computerized tomography imaging and improved treatment planning, control of these difficult to manage nasal tumors can be improved

  4. Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory

    International Nuclear Information System (INIS)

    Roura, P.; Costa, J.

    2002-01-01

    Among the rush of papers published after the discovery of visible luminescence in porous silicon, a number of them claimed that an extraordinary behaviour had been found. However, after five years of struggling with increasingly sophisticated but not completely successful models, it was finally demonstrated that it was simply thermal radiation. Here, we calculate thermal radiation emitted by silicon nanoparticles when irradiated in vacuum with a laser beam. If one interprets this radiation as being photoluminescence, its properties appear extraordinary: non-exponential excitation and decay transients and a supralinear dependence on laser power. Within the (quantum) theory of photoluminescence, this behaviour can be interpreted as arising from a non-usual excitation mechanism known as multiphoton excitation. Although this erroneous interpretation has, to some extent, a predictive power, it is unable to give a sound explanation for the quenching of radiation when particles are not irradiated in vacuum but inside a gas. The real story of this error is presented both to achieve a deeper understanding of the radiative thermal emission of nanoparticles and as a matter of reflection on scientific activity. (author)

  5. Stroke After Radiation Therapy for Head and Neck Cancer: What Is the Risk?

    Energy Technology Data Exchange (ETDEWEB)

    Arthurs, Erin [Department of Public Health Sciences, Queen' s University, Kingston, Ontario (Canada); Hanna, Timothy P. [Division of Cancer Care and Epidemiology, Queen' s University, Kingston, Ontario (Canada); Department of Oncology, Queen' s University, Kingston, Ontario (Canada); Zaza, Khaled [Department of Oncology, Queen' s University, Kingston, Ontario (Canada); Peng, Yingwei [Department of Public Health Sciences, Queen' s University, Kingston, Ontario (Canada); Hall, Stephen F., E-mail: sfh@queensu.ca [Division of Cancer Care and Epidemiology, Queen' s University, Kingston, Ontario (Canada); Department of Otolaryngology, Queen' s University, Kingston, Ontario (Canada)

    2016-11-01

    Purpose: A retrospective population-based cohort study was conducted to determine the risk of ischemic stroke with respect to time, associated with curative radiation therapy in head and neck squamous cell carcinomas (HNSCC). Methods and Materials: On the basis of data from the Ontario Cancer Registry and regional cancer treatment centers, 14,069 patients were identified with diagnoses of squamous cell carcinoma of the oral cavity, larynx, and pharynx who were treated for cure between 1990 and 2010. Hazards of stroke and time to stroke were examined, accounting for the competing risk of death. Stroke risk factors identified through diagnostic and procedural administrative codes were adjusted for in the comparison between treatment regimens, which included surgery alone versus radiation therapy alone and surgery alone versus any exposure to radiation therapy. Results: Overall, 6% of patients experienced an ischemic stroke after treatment, with 5% experiencing a stroke after surgery, 8% after radiation therapy alone, and 6% after any exposure to radiation therapy. The cause-specific hazard ratios of ischemic stroke after radiation therapy alone and after any exposure to radiation therapy compared with surgery were 1.70 (95% confidence interval [CI]: 1.41-2.05) and 1.46 (95% CI: 1.23-1.73), respectively, after adjustment for stroke risk factors, patient factors, and disease-related factors. Conclusions: Radiation therapy was associated with an increased risk of ischemic stroke compared with surgery alone: for both radiation therapy alone and after all treatment modalities that included any radiation treatment were combined. Because of a shift toward a younger HNSCC patient population, our results speak to the need for adequate follow-up and survivorship care among patients who have been treated with radiation therapy. Advances in treatment that minimize chronic morbidity also require further evaluation.

  6. Oxygenation of spontaneous canine tumors during fractionated radiation therapy

    International Nuclear Information System (INIS)

    Achermann, R.E.; Ohlerth, S.M.; Bley, C.R.; Inteeworn, N.; Schaerz, M.; Wergin, M.C.; Kaser-Hotz, B.; Gassmann, M.; Roos, M.

    2004-01-01

    Background and purpose: tumor oxygenation predicts treatment outcome, and reoxygenation is considered important in the efficacy of fractionated radiation therapy. Therefore, the purpose of this study was to document the changes of the oxygenation status in spontaneous canine tumors during fractionated radiation therapy using polarographic needle electrodes. Material and methods: tumor oxygen partial pressure (pO 2 ) measurements were performed with the eppendorf-pO 2 -Histograph. The measurements were done under general anesthesia, and probe tracks were guided with ultrasound. pO 2 was measured before radiation therapy in all dogs. In patients treated with curative intent, measurements were done sequentially up to eight times (total dose: 45-59.5 Gy). Oxygenation status of the palliative patient group was examined before each fraction of radiation therapy up to five times (total dose: 24-30 Gy). Results: 15/26 tumors had a pretreatment median pO 2 ≤ 10 mmHg. The pO 2 values appeared to be quite variable in individual tumors during fractionated radiation therapy. The pO 2 of initially hypoxic tumors (pretreatment median pO 2 ≤ 10 mmHg) remained unchanged during fractionated radiotherapy, whereas in initially normoxic tumors the pO 2 decreased. Conclusion: hypoxia is common in spontaneous canine tumors, as 57.7% of the recorded values were ≥ 10 mmHg. The data of this study showed that initially hypoxic tumors remained hypoxic, whereas normoxic tumors became more hypoxic. (orig.)

  7. Afterglow properties of CaF2:Tm nanoparticles and its potential application in photodynamic therapy

    International Nuclear Information System (INIS)

    Zahedifar, M.; Sadeghi, E.; Shanei, M.M.; Sazgarnia, A.; Mehrabi, M.

    2016-01-01

    CaF 2 :Tm nanoparticles (NPs) were synthesized by the hydrothermal method. Intense afterglow emission with long life time was found for the produced NPs, so its applicability in photodynamic therapy was investigated. Since the wavelength of the afterglow emission of the NPs fairly matches with the absorption band of the PpIX sensitizer, especially in the red region, the Cystein mediator was used to bond NPs with the PpIX sensitizer. The CaF 2 :Tm NPs conjugated with PpIX was exposed to X-ray and by using the Antracene as detector, the production of the singlet oxygen was verified. Therefore, the produced NPs are recommended as a source of energy that improves photodynamic therapy beyond its current limitations. - Highlights: • Intense afterglow emission found for the synthesized CaF 2 :Tm nanoparticles. • CaF 2 :Tm emission band fairly matched with PpIX sensitizer's absorption band. • CaF 2 :Tm conjugated with the sensitized is a good candidate for photodynamic therapy. • The application of nanoparticles in producing singlet oxygen was verified.

  8. Proton Radiation Therapy for Pediatric Medulloblastoma and Supratentorial Primitive Neuroectodermal Tumors: Outcomes for Very Young Children Treated With Upfront Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Rachel B., E-mail: rbjimenez@partners.org [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Sethi, Roshan [Harvard Medical School, Boston, Massachusetts (United States); Depauw, Nicolas [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Pulsifer, Margaret B. [Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts (United States); Adams, Judith [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); McBride, Sean M. [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Ebb, David [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); Fullerton, Barbara C.; Tarbell, Nancy J.; Yock, Torunn I.; MacDonald, Shannon M. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To report the early outcomes for very young children with medulloblastoma or supratentorial primitive neuroectodermal tumor (SPNET) treated with upfront chemotherapy followed by 3-dimensional proton radiation therapy (3D-CPT). Methods and Materials: All patients aged <60 months with medulloblastoma or SPNET treated with chemotherapy before 3D-CPT from 2002 to 2010 at our institution were included. All patients underwent maximal surgical resection, chemotherapy, and adjuvant 3D-CPT with either craniospinal irradiation followed by involved-field radiation therapy or involved-field radiation therapy alone. Results: Fifteen patients (median age at diagnosis, 35 months) were treated with high-dose chemotherapy and 3D-CPT. Twelve of 15 patients had medulloblastoma; 3 of 15 patients had SPNET. Median time from surgery to initiation of radiation was 219 days. Median craniospinal irradiation dose was 21.6 Gy (relative biologic effectiveness); median boost dose was 54.0 Gy (relative biologic effectiveness). At a median of 39 months from completion of radiation, 1 of 15 was deceased after a local failure, 1 of 15 had died from a non-disease-related cause, and the remaining 13 of 15 patients were alive without evidence of disease recurrence. Ototoxicity and endocrinopathies were the most common long-term toxicities, with 2 of 15 children requiring hearing aids and 3 of 15 requiring exogenous hormones. Conclusions: Proton radiation after chemotherapy resulted in good disease outcomes for a small cohort of very young patients with medulloblastoma and SPNET. Longer follow-up and larger numbers of patients are needed to assess long-term outcomes and late toxicity.

  9. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy.

    Science.gov (United States)

    Zhu, Lei; Zhou, Zhiyang; Mao, Hui; Yang, Lily

    2017-01-01

    Recent advances in the development of magnetic nanoparticles (MNPs) have shown promise in the development of new personalized therapeutic approaches for clinical management of cancer patients. The unique physicochemical properties of MNPs endow them with novel multifunctional capabilities for imaging, drug delivery and therapy, which are referred to as theranostics. To facilitate the translation of those theranostic MNPs into clinical applications, extensive efforts have been made on designing and improving biocompatibility, stability, safety, drug-loading ability, targeted delivery, imaging signal and thermal- or photodynamic response. In this review, we provide an overview of the physicochemical properties, toxicity and theranostic applications of MNPs with a focus on magnetic iron oxide nanoparticles.

  10. Risk of secondary malignancies after radiation therapy for breast cancer: Comprehensive results.

    Science.gov (United States)

    Burt, Lindsay M; Ying, Jian; Poppe, Matthew M; Suneja, Gita; Gaffney, David K

    2017-10-01

    To assess risks of secondary malignancies in breast cancer patients who received radiation therapy compared to patients who did not. The SEER database was used to identify females with a primary diagnosis of breast cancer as their first malignancy, during 1973-2008. We excluded patients with metastatic disease, age breast cancer recurrence, or who developed a secondary malignancy within 1 year of diagnosis. Standardized incidence ratios and absolute excess risk were calculated using SEER*Stat, version 8.2.1 and SAS, version 9.4. There were 374,993 patients meeting the inclusion criteria, with 154,697 who received radiation therapy. With a median follow-up of 8.9 years, 13% of patients (49,867) developed a secondary malignancy. The rate of secondary malignancies was significantly greater than the endemic rate in breast cancer patients treated without radiation therapy, (O/E 1.2, 95% CI 1.19-1.22) and with radiation therapy (O/E 1.33, 95% CI 1.31-1.35). Approximately 3.4% of secondary malignancies were attributable to radiation therapy. The increased risk of secondary malignancies in breast cancer patients treated with radiation therapy compared to those without was significant regardless of age at breast cancer diagnosis (p breast cancer patients both with and without radiation therapy compared to the general population. There was an increased risk in specific sites for patients treated with radiation therapy. This risk was most evident in young patients and who had longer latency periods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Determinants of job satisfaction among radiation therapy faculty.

    Science.gov (United States)

    Swafford, Larry G; Legg, Jeffrey S

    2009-01-01

    Job satisfaction is one of the most significant predictors of employee retention in a variety of occupational settings, including health care and education. A national survey of radiation therapy educators (n = 90) has indicated that respondents are not satisfied with their jobs based on data collected using the Minnesota Satisfaction Questionnaire (MSQ). To predict the factors associated with job satisfaction or dissatisfaction, the authors used a nine-item questionnaire derived from the MSQ. Educators were grouped according to their job satisfaction scores, and multiple discriminant analysis was used to determine which factors were predictive of satisfaction among groups of educators. Statistical results indicate that ability utilization, institutional support, compensation, personnel, and job characteristics were key determinants of job satisfaction among radiation therapy educators. These results may better inform faculty and administration of important factors that can promote job satisfaction and retain faculty in radiation therapy education programs.

  12. A computer based learning program for radiation therapy

    International Nuclear Information System (INIS)

    Frenzel, T.; Kruell, A.; Schmidt, R.

    1999-01-01

    Many textbooks about radiation therapy for the education of medical, technical and scientific staff are available. But they are restricted to transfer of knowledge via text and figures. On the other hand movies and animated pictures can give you a more realistic impression of the procedures and technical equipment of a radiation therapy department. Therefore, an interactive multimedia teaching program was developed at the Universitaets-Krankenhaus Eppendorf for the department of radiation therapy. The electronic textbook runs under 'MS Windows 3.1 trademark ' (with multimedia extensions) and 'MS Windows 95 trademark ', contains eight chapters and can be used without any preliminary knowledge. The program has been tested by medical personnel, nurses, physicists and physicians and was generally welcome. The program was designed for people with different levels of education to reach as many users as possible. It was not created to replace textbooks but was designed for their supplement. (orig.) [de

  13. Radiation therapy apparatus having retractable beam stopper

    International Nuclear Information System (INIS)

    Coad, G.L.

    1983-01-01

    This invention relates to a radiation therapy apparatus which utilized a linear translation mechanism for positioning a beam stopper. An apparatus is described wherein the beam stopper is pivotally attached to the therapy machine with an associated drive motor in such a way that the beam stopper retracts linearly

  14. Preliminary results of the use of photon-magnetic therapy in prevention and treatment of skin radiation reactions of patients with breast cancer with adjuvant radiation therapy

    International Nuclear Information System (INIS)

    Syimonova, L.Yi.; Gertman, V.Z.; Byilogurova, L.V.; Kulyinyich, G.V.; Lavrik, V.P.

    2012-01-01

    The authors report preliminary findings of the investigation of the effect of combination photon-magnetic therapy with successive application of red and blue light to the skin of breast cancer patients during the course of post-operative radiation therapy. It was established that photonmagnetic therapy positively influenced the state of the skin in the irradiated areas. Addition of the magnetic factor significantly improved the efficacy of phototherapy. The patients receiving photon-magnetic therapy finished the course of radiation therapy with almost unchanged skin.

  15. Applications of lipid nanoparticles in gene therapy.

    Science.gov (United States)

    Del Pozo-Rodríguez, Ana; Solinís, María Ángeles; Rodríguez-Gascón, Alicia

    2016-12-01

    Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been recognized, among the large number of non-viral vectors for gene transfection, as an effective and safety alternative to potentially treat both genetic and not genetic diseases. A key feature is the possibility to be designed to overcome the numerous challenges for successful gene delivery. Lipid nanoparticles (LNs) are able to overcome the main biological barriers for cell transfection, including degradation by nucleases, cell internalization intracellular trafficking, and selectively targeting to a specific cell type. Additionally, they present important advantages: from a safety point of view LNs are prepared with well tolerated components, and from a technological point of view, they can be easily produced at large-scale, can be subjected to sterilization and lyophilization, and have shown good storage stability. This review focuses on the potential of SLNs and NLCs for gene therapy, including the main advances in their application for the treatment of ocular diseases, infectious diseases, lysosomal storage disorders and cancer, and current research for their future clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Radiation therapy for primary spinal cord tumors in adults

    International Nuclear Information System (INIS)

    Jeremic, B.; Grujicic, D.; Jovanovic, D.; Djuric, L.; Mijatovic, L.

    1990-01-01

    This paper evaluates the role of radiation therapy in management of primary spinal cord tumors in adults. Records of 21 patients with primary spinal cord tumors treated with radiation therapy after surgery were retrospectively reviewed. Histologic examination showed two diffuse and 10 localized ependymomas, six low-grade gliomas, and three malignant gliomas. Surgery consisted of gross tumor resection in six patients, subtotal resection in three patients, and biopsy in 12 patients. Three patients also received chemotherapy. Radiation dose range from 45 to 55 Cy

  17. Sequel of MgO nanoparticles in PLACL nanofibers for anti-cancer therapy in synergy with curcumin/β-cyclodextrin

    International Nuclear Information System (INIS)

    Sudakaran, Shruthi Vathaluru; Venugopal, Jayarama Reddy; Vijayakumar, Gnaneshwar Puvala; Abisegapriyan, Sivasubramanian; Grace, Andrews Nirmala; Ramakrishna, Seeram

    2017-01-01

    Pharmaceutical industries spend more money in developing new and efficient methods for delivering successful drugs for anticancer therapy. Electrospun nanofibers and nanoparticles loaded with drugs have versatile biomedical applications ranging from wound healing to anticancer therapy. We aimed to attempt for fabricating elastomeric poly (L-lactic acid-co-ε-caprolactone) (PLACL) with Aloe Vera (AV), magnesium oxide (MgO) nanoparticles, curcumin (CUR) and β-cyclodextrin (β-CD) composite nanofibers to control the growth of MCF-7 cells for breast cancer therapy. The study focused on the interaction of MgO nanoparticle with CUR and β-CD inhibiting the proliferation of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. FESEM micrographs of fabricated electrospun PLACL, PLACL/AV, PLACL/AV/MgO, PLACL/AV/MgO/CUR and PLACL/AV/MgO/β-CD nanofibrous scaffolds achieved bead free, random and uniform nanofibers with fiber diameter in the range of 786 ± 286, 507 ± 171, 334 ± 95, 360 ± 94 and 326 ± 80 nm respectively. Proliferation of MCF-7 cells was decreased by 65.92% in PLACL/AV/MgO/CUR with respect to PLACL/AV/MgO nanofibrous scaffolds on day 9. The obtained results proved that 1% CUR interacting with MgO nanoparticles showed higher inhibition of MCF-7 cells among all other nanofibrous scaffolds thus serving as a promising biocomposite material system for the breast cancer therapy. - Highlights: • Biocomposite nanofibrous scaffolds fabricated bead free, uniform and possess rough fiber surface • Aloe Vera and MgO nanoparticles initiates cell adhesion and proliferation • CUR (1%)/MgO nanoparticle showed higher level of cell inhibition of MCF-7 cells compared to all other nanofibrous scaffolds • PLACL/AV/MgO/CUR nanofibrous scaffolds proved to be a potential material system for cancer therapy

  18. Sequel of MgO nanoparticles in PLACL nanofibers for anti-cancer therapy in synergy with curcumin/β-cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Sudakaran, Shruthi Vathaluru [Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore (Singapore); The Centre for Nanotechnology Research, VIT University, Vellore (India); Venugopal, Jayarama Reddy, E-mail: mpejrv@nus.edu.sg [Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore (Singapore); Vijayakumar, Gnaneshwar Puvala [Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore (Singapore); Abisegapriyan, Sivasubramanian [Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore (Singapore); The Centre for Nanotechnology Research, VIT University, Vellore (India); Grace, Andrews Nirmala [The Centre for Nanotechnology Research, VIT University, Vellore (India); Ramakrishna, Seeram [Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore (Singapore)

    2017-02-01

    Pharmaceutical industries spend more money in developing new and efficient methods for delivering successful drugs for anticancer therapy. Electrospun nanofibers and nanoparticles loaded with drugs have versatile biomedical applications ranging from wound healing to anticancer therapy. We aimed to attempt for fabricating elastomeric poly (L-lactic acid-co-ε-caprolactone) (PLACL) with Aloe Vera (AV), magnesium oxide (MgO) nanoparticles, curcumin (CUR) and β-cyclodextrin (β-CD) composite nanofibers to control the growth of MCF-7 cells for breast cancer therapy. The study focused on the interaction of MgO nanoparticle with CUR and β-CD inhibiting the proliferation of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. FESEM micrographs of fabricated electrospun PLACL, PLACL/AV, PLACL/AV/MgO, PLACL/AV/MgO/CUR and PLACL/AV/MgO/β-CD nanofibrous scaffolds achieved bead free, random and uniform nanofibers with fiber diameter in the range of 786 ± 286, 507 ± 171, 334 ± 95, 360 ± 94 and 326 ± 80 nm respectively. Proliferation of MCF-7 cells was decreased by 65.92% in PLACL/AV/MgO/CUR with respect to PLACL/AV/MgO nanofibrous scaffolds on day 9. The obtained results proved that 1% CUR interacting with MgO nanoparticles showed higher inhibition of MCF-7 cells among all other nanofibrous scaffolds thus serving as a promising biocomposite material system for the breast cancer therapy. - Highlights: • Biocomposite nanofibrous scaffolds fabricated bead free, uniform and possess rough fiber surface • Aloe Vera and MgO nanoparticles initiates cell adhesion and proliferation • CUR (1%)/MgO nanoparticle showed higher level of cell inhibition of MCF-7 cells compared to all other nanofibrous scaffolds • PLACL/AV/MgO/CUR nanofibrous scaffolds proved to be a potential material system for cancer therapy.

  19. Radiation therapy for cancer in elderly patients over 80 years of age

    International Nuclear Information System (INIS)

    Nozaki, Miwako; Murakami, Yuko; Furuta, Masaya; Izawa, Yasuyuki; Iwasaki, Naoya

    1998-01-01

    The elderly population has recently increased, and the need for cancer care and treatment for the elderly is likely to grow. We report on radiation therapy for cancer in elderly patients over 80 years of age. During the period from 1985 to 1996, 90 elderly patients (54 men, 36 women) aged over 80 years were treated with radiation therapy. Many patients had primary tumors of the esophagus, head and neck, and lungs, in that order of frequency. Fifty-seven percent of the patients were treated with radical radiotherapy, and 70% were treated with radiotherapy alone. The rate of completion of radiation therapy was 90%, and the response rate was 82%. Radiation therapy played an important role in the treatment of the patients over 80 years of age. The half of our patients had concurrent medical problems, and were dependent on their home physicians both before and after radiation therapy. We consider that radiation oncologists should make an effort to form a good relationship with home physicians. (author)

  20. Mixed messages? A comparison between the perceptions of radiation therapy patients and radiation therapists regarding patients' educational needs

    International Nuclear Information System (INIS)

    Bolderston, Amanda

    2008-01-01

    Objectives: The purpose of this study was to discover and compare radiation therapy patients' and radiation therapists' perceptions of patients' educational topics of interest and methods of information delivery during a course of radiation therapy. Methods: Using Likert-type 4-point rating scales, 42 therapists and 183 radiation therapy patients were surveyed to rate the degree of importance of 15 informational items (for example, 'What it feels like to have treatment'). In addition, therapists and patients ranked 11 methods of informational delivery (for example, 'Watching video tapes') in order of preference. Results: Results indicated several differences in therapists' and patients' perceptions of both the educational topics of interest and methods of information delivery. Among other things, patients assigned high importance to after treatment issues ('What happens after radiation therapy is finished') and how radiation therapy works, these areas were not seen as important by the studied therapists. Patients expressed a strong preference for receiving information about radiation therapy from their family doctor (ranked third), therapists ranked this source of information as the least important. Conclusion: It is vital to tailor educational interventions according to the patient's preference to optimize both understanding and compliance. This study demonstrated noteworthy differences in several areas between therapists' and patients' perceptions. Recommendations therefore include raising therapist's awareness of topics that are important to patients and meaningful informational delivery methods

  1. Radiation therapy services in South Africa

    African Journals Online (AJOL)

    available were pooled according to health regions and related to population ... Megavoltage radiation therapy units in South Africa. Photon. Electron. Machine energy beam. Tvl .... Remote afrerloading brachytherapy devices have developed ...

  2. Results of Radiation Therapy for Squamous Cell Carcinoma of the Esophagus

    International Nuclear Information System (INIS)

    Chun, Ha Chung; Lee, Myung Za

    2009-01-01

    This study was designed to evaluate the effectiveness and prognostic factors for patients treated with postoperative radiation therapy following surgery or with radiation therapy alone for squamous cell carcinoma of the esophagus. We retrospectively analyzed 132 esophageal cancer patients treated with postoperative radiation therapy following surgery or patients who were treated with radiation therapy alone at our institution from 1989 to 2006. Thirty-five patients had stage II disease, 88 patients had stage III disease and nine patients had stage IV disease. Tumors were located at the upper esophagus in 18 patients, the mid esophagus in 81 patients and the distal esophagus in 33 patients. Sixty patients were treated with radiation therapy alone and 72 patients were treated with postoperative radiation therapy following surgery. Eight patients received a dose less than 40 Gy and 78 patients received a dose of 40 to 50 Gy. The remaining 46 patients received a dose of 50 to 60 Gy. The majority of patients who underwent postoperative radiation therapy received a dose of 45 Gy. Actuarial survival rates for all of the patients at two years and five years were 24% and 5%, respectively. The median survival time was 11 months. Survival rates for patients who underwent postoperative RT at two years and five years were 29% and 8%, respectively. The corresponding survival rates for patients who received radiation alone were 18% and 2%, respectively. Survival rates at two years and five years were 43% and 15% for stage II disease, 22% and 2% for stage III disease and 0% and 0% for stage IV disease, respectively; these findings were statistically significant. Two-year survival rates for patients with upper, middle and distal esophageal cancer were 19, 29% and 22%, respectively. Although there was a trend of slightly better survival for middle esophageal tumors, this finding was not statistically significant. Complete response to radiation was achieved in 13 patients (22%) and

  3. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles.

    Science.gov (United States)

    Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da

    2017-01-01

    Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.

  4. Trial Watch: Immunotherapy plus radiation therapy for oncological indications.

    Science.gov (United States)

    Vacchelli, Erika; Bloy, Norma; Aranda, Fernando; Buqué, Aitziber; Cremer, Isabelle; Demaria, Sandra; Eggermont, Alexander; Formenti, Silvia Chiara; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    Malignant cells succumbing to some forms of radiation therapy are particularly immunogenic and hence can initiate a therapeutically relevant adaptive immune response. This reflects the intrinsic antigenicity of malignant cells (which often synthesize a high number of potentially reactive neo-antigens) coupled with the ability of radiation therapy to boost the adjuvanticity of cell death as it stimulates the release of endogenous adjuvants from dying cells. Thus, radiation therapy has been intensively investigated for its capacity to improve the therapeutic profile of several anticancer immunotherapies, including (but not limited to) checkpoint blockers, anticancer vaccines, oncolytic viruses, Toll-like receptor (TLR) agonists, cytokines, and several small molecules with immunostimulatory effects. Here, we summarize recent preclinical and clinical advances in this field of investigation.

  5. Reversible brachial plexopathy following primary radiation therapy for breast cancer

    International Nuclear Information System (INIS)

    Salner, A.L.; Botnick, L.E.; Herzog, A.G.; Goldstein, M.A.; Harris, J.R.; Levene, M.B.; Hellman, S.

    1981-01-01

    Reversible brachial plexopathy has occurred in very low incidence in patients with breast carcinoma treated definitively with radiation therapy. Of 565 patients treated between January 1968 and December 1979 with moderate doses of supervoltage radiation therapy (average axillary dose of 5000 rad in 5 weeks), eight patients (1.4%) developed the characteristic symptoms at a median time of 4.5 months after radiation therapy. This syndrome consists of paresthesias in all patients, with weakness and pain less commonly seen. The symptom complex differs from other previously described brachial plexus syndromes, including paralytic brachial neuritis, radiation-induced injury, and carcinoma. A possible relationship to adjuvant chemotherapy exists, though the etiology is not well-understood. The cases described demonstrate temporal clustering. Resolution is always seen

  6. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    FitzGerald, Thomas J., E-mail: Thomas.Fitzgerald@umassmed.edu [Imaging and Radiation Oncology Core Rhode Island, University of Massachusetts Memorial Medical Center, University of Massachusetts Medical School, Worcester, Massachusetts (United States); Bishop-Jodoin, Maryann [Imaging and Radiation Oncology Core Rhode Island, University of Massachusetts Medical School, Worcester, Massachusetts (United States); Followill, David S. [Imaging and Radiation Oncology Core Houston, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Galvin, James [Imaging and Radiation Oncology Core Philadelphia, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Knopp, Michael V. [Imaging and Radiation Oncology Core Ohio, Wexner Medical Center, Ohio State University, Columbus, Ohio (United States); Michalski, Jeff M. [Imaging and Radiation Oncology Core St. Louis, Washington University School of Medicine, St. Louis, Missouri (United States); Rosen, Mark A. [Imaging and Radiation Oncology Core Philadelphia, University of Pennsylvania Health System, Philadelphia, Pennsylvania (United States); Bradley, Jeffrey D. [Washington University School of Medicine–Radiation Oncology, St. Louis, Missouri (United States); Shankar, Lalitha K. [National Cancer Institute, Clinical Radiation Oncology Branch, Rockville, Maryland (United States); Laurie, Fran [Imaging and Radiation Oncology Core Rhode Island, University of Massachusetts Medical School, Worcester, Massachusetts (United States); Cicchetti, M. Giulia; Moni, Janaki [Imaging and Radiation Oncology Core Rhode Island, University of Massachusetts Memorial Medical Center, University of Massachusetts Medical School, Worcester, Massachusetts (United States); Coleman, C. Norman; Deye, James A.; Capala, Jacek; Vikram, Bhadrasain [National Cancer Institute, Clinical Radiation Oncology Branch, Rockville, Maryland (United States)

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy quality assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.

  7. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy

    International Nuclear Information System (INIS)

    FitzGerald, Thomas J.; Bishop-Jodoin, Maryann; Followill, David S.; Galvin, James; Knopp, Michael V.; Michalski, Jeff M.; Rosen, Mark A.; Bradley, Jeffrey D.; Shankar, Lalitha K.; Laurie, Fran; Cicchetti, M. Giulia; Moni, Janaki; Coleman, C. Norman; Deye, James A.; Capala, Jacek; Vikram, Bhadrasain

    2016-01-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy quality assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.

  8. Factors influencing radiation therapy student clinical placement satisfaction

    Science.gov (United States)

    Bridge, Pete; Carmichael, Mary-Ann

    2014-01-01

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning. PMID:26229635

  9. Factors influencing radiation therapy student clinical placement satisfaction

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Pete; Carmichael, Mary-Ann [School of Clinical Sciences, Queensland University of Technology, Brisbane (Australia)

    2014-02-15

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning.

  10. Factors influencing radiation therapy student clinical placement satisfaction

    International Nuclear Information System (INIS)

    Bridge, Pete; Carmichael, Mary-Ann

    2014-01-01

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning

  11. The effect of radiation therapy on hemophilic arthropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin Oh; Hong, Seong Eon; Kim, Sang Gi; Shin, Dong Oh [School of Medicine, KyungHee University, Seoul (Korea, Republic of)

    2005-06-15

    Repetitive bleeding into the joint space is the cause of debilitative hemophilic arthropathy. To interrupt this process, we treated the hemophilic patients suffering from repetitive joint bleeding with radiation therapy. From 1997 to 2001, a total of 41 joints from 37 hemophilic arthropathy patients were treated with radiation therapy at KyungHee University Hospital. The treated joints were 35 ankles, 3 knees and 3 elbows, respectively. The age of the patients ranged from 4 to 27 years (median age: 11 years). The radiation dose ranged from 900 cGy to 2360 cGy (median dose: 900 cGy). The fraction size was 150 cGy, 180 cGy or 200 cGy. The number of bleeding in one year before and after radiotherapy was compared. There was a tendency of frequent bleeding for the patients younger than 11 ({rho} 0.051) but there was also a tendency for more improvement in this group ({rho} 0.057). The number of joint bleedings was related with joint pain ({rho} 0.012) and joint swelling ({rho} = 0.033) but not with the Arbold-Hilgartner stage ({rho} 0.739),cartilage destruction ({rho} = 0.718) and synovial hypertrophy ({rho} = 0.079). The number of bleeding was reduced in thirty-three cases, and eight cases showed no improvement after radiation therapy. The average number of bleeding in a month was 2.52 before radiotherapy, but this was reduced to 1.4 after radiotherapy ({rho} = 0.017). Radiation therapy was effective for the hemophilia patients with repetitive joint bleeding to decrease the bleeding frequency and to prevent hemophilic arthropathy.

  12. The effect of radiation therapy on hemophilic arthropathy

    International Nuclear Information System (INIS)

    Kang, Jin Oh; Hong, Seong Eon; Kim, Sang Gi; Shin, Dong Oh

    2005-01-01

    Repetitive bleeding into the joint space is the cause of debilitative hemophilic arthropathy. To interrupt this process, we treated the hemophilic patients suffering from repetitive joint bleeding with radiation therapy. From 1997 to 2001, a total of 41 joints from 37 hemophilic arthropathy patients were treated with radiation therapy at KyungHee University Hospital. The treated joints were 35 ankles, 3 knees and 3 elbows, respectively. The age of the patients ranged from 4 to 27 years (median age: 11 years). The radiation dose ranged from 900 cGy to 2360 cGy (median dose: 900 cGy). The fraction size was 150 cGy, 180 cGy or 200 cGy. The number of bleeding in one year before and after radiotherapy was compared. There was a tendency of frequent bleeding for the patients younger than 11 (ρ 0.051) but there was also a tendency for more improvement in this group (ρ 0.057). The number of joint bleedings was related with joint pain (ρ 0.012) and joint swelling (ρ = 0.033) but not with the Arbold-Hilgartner stage (ρ 0.739),cartilage destruction (ρ = 0.718) and synovial hypertrophy (ρ = 0.079). The number of bleeding was reduced in thirty-three cases, and eight cases showed no improvement after radiation therapy. The average number of bleeding in a month was 2.52 before radiotherapy, but this was reduced to 1.4 after radiotherapy (ρ = 0.017). Radiation therapy was effective for the hemophilia patients with repetitive joint bleeding to decrease the bleeding frequency and to prevent hemophilic arthropathy

  13. Nanoparticle Stabilized Liposomes for Acne Therapy

    Science.gov (United States)

    Fu, Victoria

    Acne vulgaris is a common skin disease that affects over 40 million people in the United States alone. The main cause of acne vulgaris is Propionibacterium acnes (P. acnes), resides deep in the pores and follicles of the skin in order to feed on oil produced by the sebaceous glands. The liposome is a lipid based nanoparticle with numerous advantages over free drug molecules as an acne treatment alternative. Bare liposomes loaded with lauric acid (LipoLA) were found to show strong antimicrobial activity against P. acnes while generating minimal toxicity. However, the platform is limited by the spontaneous tendency of liposomes to fuse with each other. Attaching nanoparticles to the surface of liposomes can overcome this challenge by providing steric repulsion and reduce surface tension. Thus, carboxyl-functionalized gold nanoparticles (AuC) were attached to the surface of liposomes (AuC-liposomes) loaded with doxycycline, a general tetracycline antibiotic. These particles were found to have a diameter of 120 nm and a zeta potential of 20.0 mV. Both fluorescent and antimicrobial studies demonstrated that based on electrostatic interaction, negatively charged AuC attached to the liposome's positively charged surface and stabilized liposomes in a neutral pH environment (pH = 7.4). Upon entering the skin's acidic environment (pH = 4), AuC detached from the liposome's surface and liposomes could fuse with P. acnes residing in the pores. Furthermore, toxicity studies showed that AuC-liposomes did not induce any significant toxicity, while two of the leading over-the-counter therapies, benzoyl peroxide and salicylic acid, generated substantial skin irritation.

  14. Quality of life of people living with HIV and AIDS and antiretroviral therapy

    OpenAIRE

    Oguntibeju, Oluwafemi

    2012-01-01

    Oluwafemi O OguntibejuOxidative Stress Research Centre, Cape Peninsula University of Technology, Bellville, South AfricaAbstract: The development of antiretroviral drugs has significantly changed the perception of HIV/AIDS from a very fatal to a chronic and potentially manageable disease, and the availability and administration of antiretroviral therapy (ART) has significantly reduced mortality and morbidity associated with HIV and AIDS. There is a relationship between ART and quality of life...

  15. Ag nanoparticle effects on the thermoluminescent properties of monoclinic ZrO2 exposed to ultraviolet and gamma radiation

    International Nuclear Information System (INIS)

    Villa-Sanchez, G; Mendoza-Anaya, D; Gutierrez-Wing, C; Perez-Hernandez, R; Gonzalez-MartInez, P R; Angeles-Chavez, C

    2007-01-01

    The goal of this work was to analyse ZrO 2 in the pure state and when doped with Ag nanoparticles, by electron microscopy, x-ray diffraction and thermoluminescence methods. According to the results obtained, Ag nanoparticles did not modify the morphology or the crystalline structure of the ZrO 2 . The thermoluminescent (TL) response of pure ZrO 2 showed two peaks, one at 334 K and the other at 417 K, when it was exposed to ultraviolet (UV) radiation, and at 342 and 397 K when gamma radiation was used. For ZrO 2 impregnated with Ag nanoparticles a diminished TL intensity due to nanoparticle shielding was observed, but the glow curve shape was similar. However, when Ag nanoparticles were added during the ZrO 2 synthesis, a shift of the TL peaks towards higher temperature values with reference to pure ZrO 2 was observed. A linear dependence of the integrated TL signal as a function of the irradiation dose was observed in all analysed samples. It was possible to determine some kinetic parameters, such as activation energy, kinetic order and frequency factor, using the sequential quadratic programming glow curve deconvolution; it was found that these values are highly dependent on the type of radiation used. Ag nanoparticles present in ZrO 2 also modified the kinetic parameters, mainly when they were added during the synthesis of ZrO 2 . Our results reinforce the possibilities of using pure and doped ZrO 2 as an appropriate dosimetric material in radiation physics

  16. Refusal of curative radiation therapy and surgery among patients with cancer.

    Science.gov (United States)

    Aizer, Ayal A; Chen, Ming-Hui; Parekh, Arti; Choueiri, Toni K; Hoffman, Karen E; Kim, Simon P; Martin, Neil E; Hu, Jim C; Trinh, Quoc-Dien; Nguyen, Paul L

    2014-07-15

    Surgery and radiation therapy represent the only curative options for many patients with solid malignancies. However, despite the recommendations of their physicians, some patients refuse these therapies. This study characterized factors associated with refusal of surgical or radiation therapy as well as the impact of refusal of recommended therapy on patients with localized malignancies. We used the Surveillance, Epidemiology, and End Results program to identify a population-based sample of 925,127 patients who had diagnoses of 1 of 8 common malignancies for which surgery and/or radiation are believed to confer a survival benefit between 1995 and 2008. Refusal of oncologic therapy, as documented in the SEER database, was the primary outcome measure. Multivariable logistic regression was used to investigate factors associated with refusal. The impact of refusal of therapy on cancer-specific mortality was assessed with Fine and Gray's competing risks regression. In total, 2441 of 692,938 patients (0.4%) refused surgery, and 2113 of 232,189 patients (0.9%) refused radiation, despite the recommendations of their physicians. On multivariable analysis, advancing age, decreasing annual income, nonwhite race, and unmarried status were associated with refusal of surgery, whereas advancing age, decreasing annual income, Asian American race, and unmarried status were associated with refusal of radiation (PRefusal of surgery and radiation were associated with increased estimates of cancer-specific mortality for all malignancies evaluated (hazard ratio [HR], 2.80, 95% confidence interval [CI], 2.59-3.03; Prefuse curative surgical and/or radiation-based oncologic therapy, raising concern that socioeconomic factors may drive some patients to forego potentially life-saving care. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Heavy ion facility for radiation therapy

    International Nuclear Information System (INIS)

    Leemann, C.; Alonso, J.; Clark, D.; Grunder, H.; Hoyer, E.; Lou, K.; Staples, J.; Voelker, F.

    1977-03-01

    The accelerator requirements of particle radiation therapy are reviewed and a preliminary design of a heavy ion synchrotron for hospital installation is presented. Beam delivery systems and multi-treatment room arrangements are outlined

  18. Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy

    International Nuclear Information System (INIS)

    Cho, Sungkoo; Jeong, Jonghwi; Kim, Chanhyeong; Yoon, Myonggeun

    2010-01-01

    Radiation dose enhancement by injection of a high atomic number (Z) material into tumor volumes has been studied for various radiation sources and different concentrations of gold nanoparticles. Brachytherapy employs low energy photons of less than ∼0.5 MeV, which indeed is the optimal energy range for radiation dose enhancement by introduction of high-Z material. The present study uses the MCNPX TM code to estimate the dose enhancement by gold nanoparticles for the four common brachytherapy sources ( 137 Cs, 192 Ir, 125 I, and 103 Pd). Additionally, cisplatin (H 6 Cl 2 N 2 Pt), a platinum-based chemotherapeutic drug, was used to evaluate the dose enhancement. The simulated source models were evaluated with reference to the calculated TG-43 parameter values. The dose enhancement in the tumor region due to the gold nanoparticles and cisplatin was evaluated according to the dose enhancement factor (DEF). The maximum values of the average DEFs were found to be 1.03, 1.11, 3.43, and 2.17 for the 137 Cs, 192 Ir, 125 I, and 103 Pd sources, respectively. The dose enhancement values for the low-energy sources were significantly higher than those for the high-energy sources. The dose enhancement due to cisplatin was calculated by using the same approach and was found to be comparable to that of the gold nanoparticles. The maximum value of the average DEF for cisplatin was 1.12 for the 5% concentration level in water and a 192 Ir source. We confirmed that cisplatin could be applied to cancer therapy that combines chemotherapeutic drugs with radiation therapy. The results presented herein will be used to study dose enhancement in tumor regions using various radiation modalities with high atomic number materials.

  19. Verrucous carcinoma of the cervix and vagina treated by radiation therapy

    International Nuclear Information System (INIS)

    Taylor, D.D.; Twiggs, L.B.; Okagaki, T.; Adcock, L.L.; Prem, K.A.; Potish, R.A.

    1986-01-01

    Seven cases of verrocous carcinoma of the uterine cervix (five) and vagina (two) were reviewed. Four of the five patients managed primarily with radiation therapy have survived a median of 10 years. Of the two patients managed primarily with surgery, one experienced recurrence and was then successfully treated with radiation therapy; the other died of metastatic carcinoma. No anaplastic transformation of lesions or distant metastases occurred in the patients treated with radiation therapy. Human papilloma virus was isolated in two patients

  20. Organization of medical aid and treatment of victims of mass ionizing radiation injuries

    International Nuclear Information System (INIS)

    Gus'kova, A.K.; Burenin, P.I.; Barabanova, A.V.

    1987-01-01

    General organization points on medical aid and treatment of mass ionizing radiation injuries in population are presented. Characteristic of losses and structure of injuries induced by a nuclear explosion are given. Destructions in a town caused by a nuclear explosion and medical aid conditions for patients are analysed. Main information about structure of medical surveillance of civil defence and criteria of medical classification and evacuation of the injured are presented

  1. Planning of radiation therapy for esophageal cancer

    International Nuclear Information System (INIS)

    Iwata, Takeo

    1981-01-01

    The esophageal malignant tumors occur mostly at the pulmonary esophagus, whereas such tumors also occur at the cervical and abdominal esophagus. Moreover, histologically, such malignant tumors are mostly carcinoma planocellulare and yet, there are not a few cases of adenomatous carcinoma and indifferentiated carcinoma. X-ray pictures reveal various types, such as infundibular, spiral and serrated forms, which are related to the radioactive therapuetic effects. However, the most difficult condition in radioactive therapies for the esophagus is that this organ is adjacent to important viscera at the surroundings, thus the most irradiating field covers the normal tissues. For such radiating sites, instead of the conventional simple radiation by 2 guns, a further progress was considered by trying to pursue more efficient and effective methods for radiating therapies in classfication by the generating or causing sites of carcinoma, in application of computers. (author)

  2. Principles of radiation therapy

    International Nuclear Information System (INIS)

    Richter, M.P.; Share, F.S.; Goodman, R.L.

    1985-01-01

    Radiation oncology now represents the integration of knowledge obtained over an 80-year period from the physics and biology laboratories and the medical clinic. Such integration is recent; until the supervoltage era following World War II, the chief developments in these three areas for the most part were realized independently. The physics and engineering laboratories have now developed a dependable family of sources of ionizing radiations that can be precisely directed at tumor volumes at various depths within the body. The biology laboratory has provided the basic scientific support underlying the intensive clinical experience and currently is suggesting ways of using ionizing radiations more effectively, such as modified fractionation schedules relating to cell cycle kinetics and the use of drugs and chemicals as modifiers of radiation response and normal tissue reaction. The radiation therapy clinic has provided the patient stratum on which the acute and chronic effects of irradiation have been assessed, and the patterns of treatment success and failure identified. The radiation therapist has shared with the surgeon and medical oncologist the responsibility for clarifying the natural history of a large number of human neoplasms, and through such clarifications, has developed more effective treatment strategies. Several examples of this include the improved results in the treatment of Hodgkin's disease, squamous cell carcinoma of the cervix, seminoma, and epithelial neoplasms of the upper aerodigestive tract

  3. Movie prediction of lung tumor for precise chasing radiation therapy

    International Nuclear Information System (INIS)

    Chhatkuli, Ritu Bhusal; Demachi, Kazuyuki; Kawai, Masaki; Sakakibara, Hiroshi; Uesaka, Mitsuru

    2012-01-01

    In recent years, precision for radiation therapy is a major challenge in the field of cancer treatment. When it comes to a moving organ like lungs, limiting the radiation to the target and sparing the surrounding healthy tissue is always a concern. It can induce the limit in the accuracy of area irradiated during lung cancer radiation therapy. Many methods have been introduced to compensate the motion in order to reduce the effect of radiation to healthy tissue due to respiratory motion. The motion of lung along with the tumor makes it very difficult to spare the healthy tissue during radiation therapy. The fear of this unintended damage to the neighboring tissue often limits the dose that can be applied to the tumor. The purpose of this research is the prediction of future motion images for the improvement of tumor tracking method. We predict the motion images by using principal component analysis (PCA) and multi-channel singular spectral analysis (MSSA) method. Time series x-ray images are used as training images. The motion images were successfully predicted and verified using the developed algorithm. The real time implementation of this method in future is believed to be significant for higher level of real time tumor tracking during radiation therapy. (author)

  4. Gelatin modified lipid nanoparticles for anti- viral drug delivery.

    Science.gov (United States)

    K S, Joshy; S, Snigdha; Kalarikkal, Nandakumar; Pothen, Laly A; Thomas, Sabu

    2017-10-01

    The major challenges to clinical application of zidovudine are its moderate aqueous solubility and relative short half-life and serious side effects due to frequent administrations. We investigated the preparation of zidovudine-loaded nanoparticles based on lipids which were further modified with the polymer gelatin. Formulation and stability of the modified nanoparticles were analysed from the physico-chemical characterizations. The interactions of nanoparticles with blood components were tested by haemolysis and aggregation studies. The drug content and entrapment efficiencies were assessed by UV analysis. The effect of nanoparticles on protein adsorption was assessed by native polyacrylamide gel electrophoresis (PAGE). In vitro release studies showed a sustained release profile of zidovudine. In vitro cytotoxicity and cellular uptake of the zidovudine-loaded nanoparticles were performed in MCF-7 and neuro 2a brain cells. The enhanced cellular internalization of drug loaded modified nanoparticles in both the cell lines were revealed by fluorescence microscopy. Hence the present study focuses on the feasibility of zidovudine-loaded polymer modified lipid nanoparticles as carriers for safe and efficient HIV/AIDS therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Urothelial cancers following radiation therapy for cervical cancer

    International Nuclear Information System (INIS)

    Nakata, Seiji; Hasumi, Masaru; Sato, Jin; Mayuzumi, Takuji; Kumasaka, Fuminari; Shimizu, Toshihiro.

    1996-01-01

    Some reports have indicated that bladder cancer is induced by radiation therapy for cervical cancer. We encountered 6 cases of urothelial cancer (5 cases of bladder cancer and 1 case of ureter cancer) following radiation therapy for cervical cancer. Age at the time of diagnosis of cervical cancer ranged from 38 to 66 years, and the average was 51.2±11.0 (S.D.) years old. Age at the time of diagnosis of urothelial cancer ranged from 53 to 83 years, and the average was 67.5±10.3 years old. The interval between the diagnosis of cervical cancer and urothelial cancer ranged from 3 to 25 years, averaging 16.3 years. It is impossible to evaluate the risk of development of urothelial cancer after radiation therapy based on our data. However, it is important to make an effort to diagnose urothelial cancer at an early stage by educating patients (e.g., advising regular urine tests) after the follow-up period to cervical cancer. (author)

  6. Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation

    Science.gov (United States)

    Hao, Yao; Altundal, Yucel; Moreau, Michele; Sajo, Erno; Kumar, Rajiv; Ngwa, Wilfred

    2015-09-01

    Nanoparticle-aided radiation therapy is emerging as a promising modality to enhance radiotherapy via the radiosensitizing action of high atomic number (Z) nanoparticles. However, the delivery of sufficiently potent concentrations of such nanoparticles to the tumor remain a challenge. This study investigates the dose enhancement to lung tumors due to high-Z nanoparticles (NPs) administered via inhalation during external beam radiotherapy. Here NPs investigated include: cisplatin nanoparticles (CNPs), carboplatin nanoparticles (CBNPs), and gold nanoparticles (GNPs). Using Monte Carlo-generated megavoltage energy spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumors due to radiation-induced photoelectrons from the NPs administered via inhalation route (IR) in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung via IV. Meanwhile recent experimental studies indicate that 3.5-14.6 times higher concentrations of NPs can reach the lung by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the radiotherapy dose with and without nanoparticles was calculated for a range of NPs concentrations and tumor sizes. The DEF for IR was then compared with that for IV. For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of up to 1.19, 1.26, and 1.51 were obtained for CNPs, CBNPs and GNPs. In comparison values of 1.06, 1.08, and 1.15 were obtained via IV administration. For IR with 14.6 times higher concentrations, even higher DEF values were obtained e.g. 1.81 for CNPs. Results also showed that the DEF increased with increasing field size or decreasing tumor volume, as expected. The results of this work indicate that IR administration of targeted high-Z CNPs/CBNPs/GNPs could enable clinically significant DEF to lung tumors compared to IV

  7. Role of radiation therapy for 'juvenile' angiofibroma

    Energy Technology Data Exchange (ETDEWEB)

    Gudea, F.; Vega, M.; Canals, E.; Montserrat, J.M.; Valdano, J. (Univ. Autonoma de Barcelona (Spain). Hospital de la Santa Creu i Sant Pau (Spain))

    1990-09-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a rare benign neoplasm which occurs primarily in male adolescents and is characterized by aggressive local growth. The controversy concerning appropriate treatment for patients with juvenile angiofibroma persists. Radiation therapy and survival resection have both been reported to be effective to control a high proportion of these tumours. The case reported here demonstrates a locally advanced JNA controlled by radiation therapy. (author).

  8. Radiation dermatitis and pneumonitis following breast conserving therapy

    International Nuclear Information System (INIS)

    Yoden, Eisaku; Hiratsuka, Junichi; Imajo, Yoshinari

    2000-01-01

    We investigated the frequency, degree and risk factors of radiation-induced dermatitis and pneumonitis in 255 patients receiving breast conserving therapy between April 1987 and April 1998. The majority of the patients underwent a wide excision or quadrantectomy with a level I, II axillary dissection, followed by radiotherapy consisting of 50 Gy/25 Fr/5 weeks to the preserved breast with a 4 MV beam by tangentially opposed portals using the half-field technique. Eleven patients received an additional 10 Gy/5 Fr of electron therapy to the tumor bed. Most of the patients developed radiation dermatitis which was limited to reddening or dry desquamation, with the exception of 14 patients with a localized moist reaction. The skin reaction was transient in all patients and improved with conservative treatments. Radiation pneumonitis appeared on chest X-rays in 30 patients, with a slight appearance in 21 and patchy appearance in 9. Three patients presented with persistent symptoms requiring medication. They were treated with steroids, resulting in complete resolution of the symptoms. A large volume of the chest wall within the irradiation field and a large area of irradiated skin were the risk factors of radiation dermatitis. The volume of irradiated lung significantly correlated with the frequency and degree of radiation pneumonitis. It was preferable that the maximum thickness of the involved lung should not exceed 3 cm. Complicated disease, adjuvant therapy and boost irradiation had no impact on the radiation dermatitis or pneumonitis. (author)

  9. Meningeal hemangiopericytoma treated with surgery and radiation therapy -case report-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Young; Oh, Yoon Kyeong [College of Medicine, Chosun University, Gwangju (Korea, Republic of)

    2006-06-15

    Meningeal hemangiopericytoma (HPC) is an uncommon dura-based tumor and can recur not only locally but also distantly in the neural axis or extraneural sites. We report our experience of radiation therapy, one preoperative and one elective postoperative, in two patients with meningeal HPC and reviewed the role of radiation therapy. A 41-year-old man (Case 1) presented with a 3-month history of headache and right hemiparesis. The mass was nearly unresectable at the first and second operation and diagnosed as meningeal HPC. Preoperative radiation therapy was given with a total dose of 55.8 Gy/31 fractions to the large residual mass of left frontoparietal area. Follow-up computerized tomography (CT) showed marked regression of tumor after radiation therapy. The third operation was performed to remove the residual tumor at 6 months after the radiation therapy and a 2 x 2 cm sized tumor was encountered. The mass was totally removed. The serial follow-up CT showed no evidence of recurrence and he is alive without distant metastasis for 4 years and 10 months after the first operation. A 45-year-old woman (Case 2) presented with suddenly developed headache and visual impairment. Tumor mass occupying right frontal lobe was removed with the preoperative diagnosis of meningioma. It was totally removed with attached sagittal sinus and diagnosed as meningeal HPC. Elective postoperative radiation therapy was performed to reduce local recurrence with a total dose of 54 Gy/30 fractions to the involved area of right frontal lobe. She is alive for 5 years maintaining normal activity without local recurrence and distant metastasis.

  10. Meningeal hemangiopericytoma treated with surgery and radiation therapy -case report-

    International Nuclear Information System (INIS)

    Jang, Ji Young; Oh, Yoon Kyeong

    2006-01-01

    Meningeal hemangiopericytoma (HPC) is an uncommon dura-based tumor and can recur not only locally but also distantly in the neural axis or extraneural sites. We report our experience of radiation therapy, one preoperative and one elective postoperative, in two patients with meningeal HPC and reviewed the role of radiation therapy. A 41-year-old man (Case 1) presented with a 3-month history of headache and right hemiparesis. The mass was nearly unresectable at the first and second operation and diagnosed as meningeal HPC. Preoperative radiation therapy was given with a total dose of 55.8 Gy/31 fractions to the large residual mass of left frontoparietal area. Follow-up computerized tomography (CT) showed marked regression of tumor after radiation therapy. The third operation was performed to remove the residual tumor at 6 months after the radiation therapy and a 2 x 2 cm sized tumor was encountered. The mass was totally removed. The serial follow-up CT showed no evidence of recurrence and he is alive without distant metastasis for 4 years and 10 months after the first operation. A 45-year-old woman (Case 2) presented with suddenly developed headache and visual impairment. Tumor mass occupying right frontal lobe was removed with the preoperative diagnosis of meningioma. It was totally removed with attached sagittal sinus and diagnosed as meningeal HPC. Elective postoperative radiation therapy was performed to reduce local recurrence with a total dose of 54 Gy/30 fractions to the involved area of right frontal lobe. She is alive for 5 years maintaining normal activity without local recurrence and distant metastasis

  11. Curative Radiation Therapy for T2N0M0

    International Nuclear Information System (INIS)

    Park, In Kyu; Kim, Jae Choel

    1995-01-01

    Purpose : Surgery is the treatment of choice for resectable non-small cell lung cancer. For patients who are medically unable to tolerate a surgical resection or who refuse surgery, radiation therapy is an acceptable alternative. A retrospective analysis of patients with stage I non-small cell lung cancer treated with curative radiation therapy was performed to determine the results of curative radiation therapy and patterns of failure, and to identify factors that may influence survival. Materials and Methods : From 1986 through 1993, 39 patients with T2N0M0 non-small cell lung cancer were treated with curative radiation therapy at department of radiation oncology, Kyungpook national university hospital All patients were not candidates for surgical resection because of either patient refusal (16 patients), poor pulmonary function (12 patients), old age (7 patients), poor performance (2 patients) or coexisting medical disease (2 patients). Median age of patients was 67 years. Histologic cell type was squamous cell carcinoma in 1. All patients were treated with megavoltage irradiation and radiation dose raged from 5000cGy to 6150 cGy with a median dose of 600cGy. The median follow-up was 17 months with a range of 4 to 82 months. Survival was measured from the date therapy initiated. Results : The overall survival rate for entire patients was 40.6% at 2 years and 27.7% at 3 years, with a median survival time of 21 months he disease-free survival at 2 and 3 years was 51.7% and 25.8%, respectively. Of evaluable 20 Patients with complete response, 15 Patients were considered to have failed. Of these, 13 patients showed local failure and 2 patients failed distantly. Response to treatment (p=0.0001), tumor size (p=0.0019) and age p=0.0247) were favorably associated with overall survival. Only age was predictive for disease-free survival (p=0.0452). Conclusion : Radiation therapy is an effective treatment for small (less than 3 cm) tumors, and should be offered as an

  12. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen, E-mail: stephen.avery@uphs.upenn.edu

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  13. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    International Nuclear Information System (INIS)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-01-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V 18 Gy ), stomach (mean and V 20 Gy ), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V 18 Gy ), liver (mean dose), total bowel (V 20 Gy and mean dose), and small bowel (V 15 Gy absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing

  14. Multiphonon scattering and non-radiative decay in ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, K.; Tokunaga, M.; Okamoto, H.; Fujita, Y. [Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Senthilkumar, O. [Research Project Promotion Institute, Shimane University, Matsue 690-8504 (Japan); Lin, J.; Urban, B.; Neogi, A. [Department of Physics, University of North Texas, Denton 76203 (United States)

    2010-06-15

    ZnO nanoparticles were prepared using a simple evaporation technique at pressures of 75 and 760 torr. A wide visible emission was recorded from both samples using photoluminescence spectroscopy. The presence of green emission at 530 nm is due to deep level defects of vacant zinc V{sub Zn}, and/or their complexes in the ZnO band gap. The fundamental optical phonon modes were identified in addition to multiphonon combination of optical and acoustical overtones and nitrogen related local vibrational modes using Raman backscattering. The existence of multiphonons induces the non-radiative processes. The life time of both the radiative and non-radiative processes is discussed using time resolved photoluminescence spectroscopic results (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    Science.gov (United States)

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Image-guided radiation therapy: physician's perspectives

    International Nuclear Information System (INIS)

    Gupta, T.; Anand Narayan, C.

    2012-01-01

    The evolution of radiotherapy has been ontogenetically linked to medical imaging. Over the years, major technological innovations have resulted in substantial improvements in radiotherapy planning, delivery, and verification. The increasing use of computed tomography imaging for target volume delineation coupled with availability of computer-controlled treatment planning and delivery systems have progressively led to conformation of radiation dose to the target tissues while sparing surrounding normal tissues. Recent advances in imaging technology coupled with improved treatment delivery allow near-simultaneous soft-tissue localization of tumor and repositioning of patient. The integration of various imaging modalities within the treatment room for guiding radiation delivery has vastly improved the management of geometric uncertainties in contemporary radiotherapy practice ushering in the paradigm of image-guided radiation therapy (IGRT). Image-guidance should be considered a necessary and natural corollary to high-precision radiotherapy that was long overdue. Image-guided radiation therapy not only provides accurate information on patient and tumor position on a quantitative scale, it also gives an opportunity to verify consistency of planned and actual treatment geometry including adaptation to daily variations resulting in improved dose delivery. The two main concerns with IGRT are resource-intensive nature of delivery and increasing dose from additional imaging. However, increasing the precision and accuracy of radiation delivery through IGRT is likely to reduce toxicity with potential for dose escalation and improved tumor control resulting in favourable therapeutic index. The radiation oncology community needs to leverage this technology to generate high-quality evidence to support widespread adoption of IGRT in contemporary radiotherapy practice. (author)

  17. In vivo dosimetry in radiation therapy in Sweden

    International Nuclear Information System (INIS)

    Eriksson, Jacob; Blomquist, Michael

    2010-07-01

    A prerequisite for achieving high radiation safety for patients receiving external beam radiation therapy is that the hospitals have a quality assurance program. The program should include include monitoring of the radiation dose given to the patient. Control measurements are performed both at the system level and at the individual level. Control measurement is normally performed using in vivo dosimetry, e.g. a method to measure the radiation dose at the individual level during the actual radiation treatment time. In vivo dosimetry has proven to be an important tool to detect and prevent serious errors in patient treatment. The purpose of this research project was to identify the extent to which vivo dosimetry is used and the methods available for this at Swedish radiation therapy clinics. The authority also wanted to get an overall picture of how hospitals manage results of in vivo dosimetry, and how clinics control radiation dose when using modern treatment techniques. The report reflects the situation in Swedish radiotherapy clinics 2007. The report shows that all hospitals use some form of in vivo dosimetry. The instruments used are mainly diodes and termoluminiscence dosimeters

  18. Radiation-induced crosslinking of polymeric micelles as nanoparticle for immobilization of bioactive compound

    International Nuclear Information System (INIS)

    Rida Tajau; Khairul Zaman Mohd Dahlan; Mohd Hilmi Mahmood; Wan Md Zin Wan Yunus; Kamaruddin Hashim; Nor Azowa Ibrahim; Maznah Ismail; Mek Zah Salleh

    2012-01-01

    The purpose of this study was to develop the bioactive-loaded polymeric nanoparticle by radiation-induced crosslinking technique. The polymeric micelles consist of acrylated palm oil (APO), anionic surfactant and aqueous solution was prepared for immobilization of bioactive compound for example the Thymoquinone (TQ). The TQ-loaded APO micelle was subjected to ionizing radiation to induce crosslinked polymeric structure of the TQ-loaded APO nanoparticle. The formation of TQ-loaded APO micro micelle and nano particle were evaluated by the Dynamic Light Scattering (DLS), the Fourier Transform Infrared (FTIR) Spectroscopy and the Transmission Electron Microscopy (TEM) for characterization the size, the shape, the chemical structure and the irradiation effect of the micelle and the nano particle. The results indicate that the size of APO micro and nano particles varies from 120 to 270 nanometer (nm) upon gamma irradiation at doses ranging from 1 to 25 kilo gray (kGy). In addition, size of the particle was found decreasing upon irradiation due to the crosslinking interaction. The study demonstrated that the APO micro-and nanoparticle can retained and controlled the release rate of the thymoquinone at up to 24 hours as determined using ultraviolet-visible (UV-Vis) spectrophotometer. These findings suggested that the ionizing radiation method can be utilized to prepare nano-size APO particles, with the presence of TQ. (author)

  19. The role of radiation therapy in childhood acute leukemia. A review from the viewpoint of basic and clinical radiation oncology

    International Nuclear Information System (INIS)

    Nozaki, Miwako

    2003-01-01

    Radiation therapy has been playing important roles in the treatment of childhood acute leukemia since the 1970s. The first is the preventive cranial irradiation for central nervous system therapy in acute lymphoblastic leukemia. The second is the total body irradiation as conditioning before bone marrow transplantation for children with acute myeloid leukemia in first remission and with acute lymphoblastic leukemia in second remission. Although some late effects have been reported, a part of them could be overcome by technical improvement in radiation and salvage therapy. Radiation therapy for children might have a successful outcome on a delicate balance between efficiencies and potential late toxicities. The role of radiation therapy for childhood acute leukemia was reviewed from the standpoint of basic and clinical radiation oncology in this paper. (author)

  20. Dose distribution following selective internal radiation therapy

    International Nuclear Information System (INIS)

    Fox, R.A.; Klemp, P.F.; Egan, G.; Mina, L.L.; Burton, M.A.; Gray, B.N.

    1991-01-01

    Selective Internal Radiation Therapy is the intrahepatic arterial injection of microspheres labelled with 90Y. The microspheres lodge in the precapillary circulation of tumor resulting in internal radiation therapy. The activity of the 90Y injected is managed by successive administrations of labelled microspheres and after each injection probing the liver with a calibrated beta probe to assess the dose to the superficial layers of normal tissue. Predicted doses of 75 Gy have been delivered without subsequent evidence of radiation damage to normal cells. This contrasts with the complications resulting from doses in excess of 30 Gy delivered from external beam radiotherapy. Detailed analysis of microsphere distribution in a cubic centimeter of normal liver and the calculation of dose to a 3-dimensional fine grid has shown that the radiation distribution created by the finite size and distribution of the microspheres results in an highly heterogeneous dose pattern. It has been shown that a third of normal liver will receive less than 33.7% of the dose predicted by assuming an homogeneous distribution of 90Y

  1. Radiation-induced pseudotumor following therapy for soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lacey F.; Kransdorf, Mark J. [Mayo Clinic, Department of Radiology, Jacksonville, FL (United States); Buskirk, Steven J. [Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL (United States); O' Connor, Mary I. [Mayo Clinic, Department of Orthopedic Surgery, Jacksonville, FL (United States); Menke, David M. [Mayo Clinic, Department of Pathology, Jacksonville, FL (United States)

    2009-06-15

    The purpose of this study was to describe the prevalence and imaging appearance of radiation induced pseudotumors in patients following radiation therapy for extremity soft tissue sarcomas. We retrospectively reviewed the serial magnetic resonance (MR) images of 24 patients following radiation therapy for extremity soft tissue sarcomas. A total of 208 exams were reviewed (mean, 8.7 exams per patient) and included all available studies following the start of radiation therapy. Exams were analyzed for the identification of focal signal abnormalities within the surgical bed suggesting local tumor recurrence. Histopathologic correlation was available in nine patients suspected of having local tumor recurrence. Additional information recorded included patient demographics, tumor type and location, radiation type, and dose. The study group consisted of 12 men and 12 women, having an average age of 63 years (range, 39-88 years). Primary tumors were malignant fibrous histiocytoma (n = 13), leiomyosarcoma (n = 6), liposarcoma (n = 3), synovial sarcoma (n = 1), and extraskeletal chondrosarcoma (n = 1). All lesions were high-grade sarcomas, except for two myxoid liposarcomas. Average patient radiation dose was 5,658 cGy (range, 4,500-8,040 cGy). Average follow-up time was 63 months (range, 3-204 months). Focal signal abnormalities suggesting local recurrence were seen in nine (38%) patients. Three of the nine patients with these signal abnormalities were surgically proven to have radiation-induced pseudotumor. The pseudotumors developed between 11 and 61 months following the initiation of radiation therapy (mean, 38 months), with an average radiation dose of 5,527 cGy (range, 5,040-6,500 cGy). MR imaging demonstrated a relatively ill-defined ovoid focus of abnormal signal and intense heterogeneous enhancement with little or no associated mass effect. MR imaging of radiation-induced pseudotumor typically demonstrates a relatively ill-defined ovoid mass-like focus of intense

  2. Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy.

    Science.gov (United States)

    Xu, Wujun; Thapa, Rinez; Liu, Dongfei; Nissinen, Tuomo; Granroth, Sari; Närvänen, Ale; Suvanto, Mika; Santos, Hélder A; Lehto, Vesa-Pekka

    2015-11-02

    In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.

  3. Development of Drugs and Technology for Radiation Theragnosis

    Directory of Open Access Journals (Sweden)

    Hwan-Jeong Jeong

    2016-06-01

    Full Text Available Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

  4. Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Noorden, Cornelis J. F.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumor in humans. Current GBM treatment includes surgery, radiation therapy, and chemotherapy, sometimes supplemented with novel therapies. Despite recent advances, survival of GBM patients remains poor.

  5. Refusal of Curative Radiation Therapy and Surgery Among Patients With Cancer

    International Nuclear Information System (INIS)

    Aizer, Ayal A.; Chen, Ming-Hui; Parekh, Arti; Choueiri, Toni K.; Hoffman, Karen E.; Kim, Simon P.; Martin, Neil E.; Hu, Jim C.; Trinh, Quoc-Dien; Nguyen, Paul L.

    2014-01-01

    Purpose: Surgery and radiation therapy represent the only curative options for many patients with solid malignancies. However, despite the recommendations of their physicians, some patients refuse these therapies. This study characterized factors associated with refusal of surgical or radiation therapy as well as the impact of refusal of recommended therapy on patients with localized malignancies. Methods and Materials: We used the Surveillance, Epidemiology, and End Results program to identify a population-based sample of 925,127 patients who had diagnoses of 1 of 8 common malignancies for which surgery and/or radiation are believed to confer a survival benefit between 1995 and 2008. Refusal of oncologic therapy, as documented in the SEER database, was the primary outcome measure. Multivariable logistic regression was used to investigate factors associated with refusal. The impact of refusal of therapy on cancer-specific mortality was assessed with Fine and Gray's competing risks regression. Results: In total, 2441 of 692,938 patients (0.4%) refused surgery, and 2113 of 232,189 patients (0.9%) refused radiation, despite the recommendations of their physicians. On multivariable analysis, advancing age, decreasing annual income, nonwhite race, and unmarried status were associated with refusal of surgery, whereas advancing age, decreasing annual income, Asian American race, and unmarried status were associated with refusal of radiation (P<.001 in all cases). Refusal of surgery and radiation were associated with increased estimates of cancer-specific mortality for all malignancies evaluated (hazard ratio [HR], 2.80, 95% confidence interval [CI], 2.59-3.03; P<.001 and HR 1.97 [95% CI, 1.78-2.18]; P<.001, respectively). Conclusions: Nonwhite, less affluent, and unmarried patients are more likely to refuse curative surgical and/or radiation-based oncologic therapy, raising concern that socioeconomic factors may drive some patients to forego potentially life

  6. Refusal of Curative Radiation Therapy and Surgery Among Patients With Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Aizer, Ayal A., E-mail: aaaizer@partners.org [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Chen, Ming-Hui [Department of Statistics, University of Connecticut, Storrs, Connecticut (United States); Parekh, Arti [Boston University School of Medicine, Boston, Massachusetts (United States); Choueiri, Toni K. [Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts (United States); Hoffman, Karen E. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kim, Simon P. [Department of Urology, Mayo Clinic, Rochester, Minnesota (United States); Martin, Neil E. [Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts (United States); Hu, Jim C. [Department of Urology, University of California, Los Angeles, California (United States); Trinh, Quoc-Dien [Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Center, Montreal, Quebec (Canada); Nguyen, Paul L. [Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts (United States)

    2014-07-15

    Purpose: Surgery and radiation therapy represent the only curative options for many patients with solid malignancies. However, despite the recommendations of their physicians, some patients refuse these therapies. This study characterized factors associated with refusal of surgical or radiation therapy as well as the impact of refusal of recommended therapy on patients with localized malignancies. Methods and Materials: We used the Surveillance, Epidemiology, and End Results program to identify a population-based sample of 925,127 patients who had diagnoses of 1 of 8 common malignancies for which surgery and/or radiation are believed to confer a survival benefit between 1995 and 2008. Refusal of oncologic therapy, as documented in the SEER database, was the primary outcome measure. Multivariable logistic regression was used to investigate factors associated with refusal. The impact of refusal of therapy on cancer-specific mortality was assessed with Fine and Gray's competing risks regression. Results: In total, 2441 of 692,938 patients (0.4%) refused surgery, and 2113 of 232,189 patients (0.9%) refused radiation, despite the recommendations of their physicians. On multivariable analysis, advancing age, decreasing annual income, nonwhite race, and unmarried status were associated with refusal of surgery, whereas advancing age, decreasing annual income, Asian American race, and unmarried status were associated with refusal of radiation (P<.001 in all cases). Refusal of surgery and radiation were associated with increased estimates of cancer-specific mortality for all malignancies evaluated (hazard ratio [HR], 2.80, 95% confidence interval [CI], 2.59-3.03; P<.001 and HR 1.97 [95% CI, 1.78-2.18]; P<.001, respectively). Conclusions: Nonwhite, less affluent, and unmarried patients are more likely to refuse curative surgical and/or radiation-based oncologic therapy, raising concern that socioeconomic factors may drive some patients to forego potentially life

  7. Image Guidance and Assessment of Radiation Induced Gene Therapy

    National Research Council Canada - National Science Library

    Pelizzari, Charles

    2004-01-01

    Image guidance and assessment techniques are being developed for combined radiation/gene therapy, which utilizes a radiation-inducible gene promoter to cause expression of tumor necrosis factor alpha...

  8. Evaluation on the Radiation Exposure of Radiation Workers in Proton Therapy

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Jang, Yo Jong; Kim, Tae Yoon; Jeong, Do Hyung; Choi, Gye Suk

    2012-01-01

    Unlike the existing linear accelerator with photon, proton therapy produces a number of second radiation due to the kinds of nuclide including neutron that is produced from the interaction with matter, and more attention must be paid on the exposure level of radiation workers for this reason. Therefore, thermoluminescence dosimeter (TLD) that is being widely used to measure radiation was utilized to analyze the exposure level of the radiation workers and propose a basic data about the radiation exposure level during the proton therapy. The subjects were radiation workers who worked at the proton therapy center of National Cancer Center and TLD Badge was used to compare the measured data of exposure level. In order to check the dispersion of exposure dose on body parts from the second radiation coming out surrounding the beam line of proton, TLD (width and length: 3 mm each) was attached to on the body spots (lateral canthi, neck, nipples, umbilicus, back, wrists) and retained them for 8 working hours, and the average data was obtained after measuring them for 80 hours. Moreover, in order to look into the dispersion of spatial exposure in the treatment room, TLD was attached on the snout, PPS (Patient Positioning System), Pendant, block closet, DIPS (Digital Image Positioning System), Console, doors and measured its exposure dose level during the working hours per day. As a result of measuring exposure level of TLD Badge of radiation workers, quarterly average was 0.174 mSv, yearly average was 0.543 mSv, and after measuring the exposure level of body spots, it showed that the highest exposed body spot was neck and the lowest exposed body spot was back (the middle point of a line connecting both scapula superior angles). Investigation into the spatial exposure according to the workers' movement revealed that the exposure level was highest near the snout and as the distance becomes distant, it went lower. Even a small amount of exposure will eventually increase

  9. Waiting Lists for Radiation Therapy: A Case Study

    Directory of Open Access Journals (Sweden)

    Singer Peter A

    2001-04-01

    Full Text Available Abstract Background Why waiting lists arise and how to address them remains unclear, and an improved understanding of these waiting list "dynamics" could lead to better management. The purpose of this study is to understand how the current shortage in radiation therapy in Ontario developed; the implications of prolonged waits; who is held accountable for managing such delays; and short, intermediate, and long-term solutions. Methods A case study of the radiation therapy shortage in 1998-99 at Princess Margaret Hospital, Toronto, Ontario, Canada. Relevant documents were collected; semi-structured, face-to-face interviews with ten administrators, health care workers, and patients were conducted, audio-taped and transcribed; and relevant meetings were observed. Results The radiation therapy shortage arose from a complex interplay of factors including: rising cancer incidence rates; broadening indications for radiation therapy; human resources management issues; government funding decisions; and responsiveness to previous planning recommendations. Implications of delays include poorer cancer control rates; patient suffering; and strained doctor-patient relationships. An incompatible relationship exists between moral responsibility, borne by government, and legal liability, borne by physicians. Short-term solutions include re-referral to centers with available resources; long-term solutions include training and recruiting health care workers, improving workload standards, increasing compensation, and making changes to the funding formula. Conclusion Human resource planning plays a critical role in the causes and solutions of waiting lists. Waiting lists have harsh implications for patients. Accountability relationships require realignment.

  10. Theoretical study of the generation of terahertz radiation by the interaction of two laser beams with graphite nanoparticles

    Science.gov (United States)

    Sepehri Javan, N.; Rouhi Erdi, F.

    2017-12-01

    In this theoretical study, we investigate the generation of terahertz radiation by considering the beating of two similar Gaussian laser beams with different frequencies of ω1 and ω2 in a spatially modulated medium of graphite nanoparticles. The medium is assumed to contain spherical graphite nanoparticles of two different configurations: in the first configuration, the electric fields of the laser beams are parallel to the normal vector of the basal plane of the graphite structure, whereas in the second configuration, the electric fields are perpendicular to the normal vector of the basal plane. The interaction of the electric fields of lasers with the electronic clouds of the nanoparticles generates a ponderomotive force that in turn leads to the creation of a macroscopic electron current in the direction of laser polarizations and at the beat frequency ω1-ω2 , which can generate terahertz radiation. We show that, when the beat frequency lies near the effective plasmon frequency of the nanoparticles and the electric fields are parallel to the basal-plane normal, a resonant interaction of the laser beams causes intense terahertz radiation.

  11. Radiation treatment and radiation reactions in dermatology. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Panizzon, Renato G. [Univ. Hospital CHUV, Lausanne (Switzerland). Dept. of Dermatology; Seegenschmiedt, M. Heinrich (ed.) [Strahlenzentrum Hamburg (Germany)

    2015-03-01

    Explains the use of radiation treatment in the full range of skin cancers and precancerous lesions. Covers physical and radiobiological principles, dose definitions, radiation reactions, and risk assessments. Revised and updated edition that includes new chapters and numerous additional figures. In this book, leading experts in the dermatological and oncological field describe the use of radiation therapy for the treatment of the full range of dermatological malignancies - including basal cell carcinoma, squamous cell carcinoma, cutaneous lymphomas, Kaposi's sarcoma, melanoma, and Merkel cell tumor - as well as those precancerous lesions and non-malignant dermatological disorders which are amenable to radiation therapy. In each case the specific indications for the use of radiotherapy and its application are clearly explained with the aid of numerous high-quality illustrations. In addition, the book provides a concise introduction to physical and radiobiological principles, selection of radiation factors, dose definitions, radiation reactions, and risk assessments. The new edition has been thoroughly revised and updated to reflect advances in practical knowledge and clinical practice. It will be an invaluable source of information on the management of skin tumors and related non-malignant disorders for both dermatologists, oncologists and radiation oncologists.

  12. Radiation treatment and radiation reactions in dermatology. 2. ed.

    International Nuclear Information System (INIS)

    Panizzon, Renato G.

    2015-01-01

    Explains the use of radiation treatment in the full range of skin cancers and precancerous lesions. Covers physical and radiobiological principles, dose definitions, radiation reactions, and risk assessments. Revised and updated edition that includes new chapters and numerous additional figures. In this book, leading experts in the dermatological and oncological field describe the use of radiation therapy for the treatment of the full range of dermatological malignancies - including basal cell carcinoma, squamous cell carcinoma, cutaneous lymphomas, Kaposi's sarcoma, melanoma, and Merkel cell tumor - as well as those precancerous lesions and non-malignant dermatological disorders which are amenable to radiation therapy. In each case the specific indications for the use of radiotherapy and its application are clearly explained with the aid of numerous high-quality illustrations. In addition, the book provides a concise introduction to physical and radiobiological principles, selection of radiation factors, dose definitions, radiation reactions, and risk assessments. The new edition has been thoroughly revised and updated to reflect advances in practical knowledge and clinical practice. It will be an invaluable source of information on the management of skin tumors and related non-malignant disorders for both dermatologists, oncologists and radiation oncologists.

  13. Adjuvant radiation therapy versus surgery alone in operable breast cancer

    International Nuclear Information System (INIS)

    Rutqvist, L.E.; Pettersson, D.; Johansson, H.

    1993-01-01

    This paper presents long-term results from a randomized trial of pre- or postoperative megavoltage radiation therapy versus surgery alone in pre- and postmenopausal women with operable breast cancer. Treatment outcome after relapse among patients who developed loco-regional recurrences was also analyzed. A total of 960 patients were included in the trial. The mean follow-up was 16 years (range: 13-19 years). The radiation therapy was individually planned. It included the chest wall (and the breast in the preoperative cases) and the regional lymph nodes. The tumor dose was 45 Gy/5 weeks. No adjuvant systemic therapy was used. The results showed a significant benefit with radiation therapy in terms of recurrence-free survival during the entire follow-up period. There was also an overall survival difference - corresponding to 16% reduction of deaths - in favour of the irradiated patients which, however, was not statistically significant (p=0.09). Among those 169 patients who developed loco-regional recurrences long-term control was only achieved in about one-third of the cases. This figure was similar among those who had received adjuvant radiation therapy (34%) compared to those initially treated with surgery alone (32%). This implied that the overall proportion of patients who eventually developed uncontrolled local disease was significantly higher among those initially allocated to surgery alone (16%) compared to those allocated to pre- or postoperative radiation therapy (6%, p<0.01). These results suggest that local undertreatment may be deleterious in subgroups of patients. (author) 5 tabs

  14. The effects of sequence and type of chemotherapy and radiation therapy on cosmesis and complications after breast conservation therapy

    International Nuclear Information System (INIS)

    Markiewicz, Deborah A.; Schultz, Delray J.; Haas, Jonathan A.; Harris, Eleanor E. R.; Fox, Kevin R.; Glick, John H.; Solin, Lawrence J.

    1996-01-01

    Purpose: Chemotherapy plays an increasingly important role in the treatment of both node-negative and node-positive breast cancer patients, but the optimal sequencing of chemotherapy and radiation therapy is not well established. The purpose of this study is to evaluate the interaction of sequence and type of chemotherapy and hormonal therapy given with radiation therapy on the cosmetic outcome and the incidence of complications of Stage I and II breast cancer patients treated with breast-conserving therapy. Methods and Materials: The records of 1053 Stage I and II breast cancer patients treated with curative intent with breast-conserving surgery, axillary dissection, and radiation therapy between 1977-1991 were reviewed. Median follow-up after treatment was 6.7 years. Two hundred fourteen patients received chemotherapy alone, 141 patients received hormonal therapy alone, 86 patients received both, and 612 patients received no adjuvant therapy. Patients who received chemotherapy ± hormonal therapy were grouped according to sequence of chemotherapy: (a) concurrent = concurrent chemotherapy with radiation therapy followed by chemotherapy; (b) sequential = radiation followed by chemotherapy or chemotherapy followed by radiation; and (c) sandwich = chemotherapy followed by concurrent chemotherapy and radiation followed by chemotherapy. Compared to node negative patients, node-positive patients more commonly received chemotherapy (77 vs. 9%, p < 0.0001) and/or hormonal therapy (40 vs. 14%, p < 0.0001). Among patients who received chemotherapy, the majority (243 patients) received concurrent chemotherapy and radiation therapy with two cycles of cytoxan and 5-fluorouracil (5-FU) administered during radiation followed by six cycles of chemotherapy with cytoxan, 5-fluorouracil and either methotrexate(CMF) or doxorubicin(CAF). For analysis of cosmesis, patients included were relapse free with 3 years minimum follow-up. Results: The use of chemotherapy had an adverse effect

  15. Craniopharyngioma: treatment by conservative surgery and radiation therapy.

    Directory of Open Access Journals (Sweden)

    Nagpal R

    1992-10-01

    Full Text Available Benign neoplasms are curable only when excised. This applies even to craniopharyngiomas. The proximity of craniopharyngiomas to the hypothalamus and neurovascular structures makes total excision difficult to achieve. Over the last 3-4 decades, it has become increasingly obvious that craniopharyngiomas respond to radiation therapy. Early, unhappy results with major excisions have prompted us to adopt a policy of conservative surgery and radiation therapy to the residual tumour. Preliminary results suggest a good outcome in 35 of the 63 patients so treated from 1981. Details of the study are presented.

  16. Quality of life of people living with HIV and AIDS and antiretroviral therapy.

    Science.gov (United States)

    Oguntibeju, Oluwafemi O

    2012-01-01

    The development of antiretroviral drugs has significantly changed the perception of HIV/AIDS from a very fatal to a chronic and potentially manageable disease, and the availability and administration of antiretroviral therapy (ART) has significantly reduced mortality and morbidity associated with HIV and AIDS. There is a relationship between ART and quality of life of people living with HIV and AIDS, and several studies have reported a strong positive association between ART and improved quality of life in different domains among people living with HIV and AIDS in both developed and developing countries. However, a few studies have reported on the negative effects of ART, which directly or indirectly relate to the quality of life and longevity of HIV-infected persons. In this review, the effects and benefits of ART on people living with HIV and AIDS based on studies done in developed and developing countries is examined.

  17. Quality of life of people living with HIV and AIDS and antiretroviral therapy

    Science.gov (United States)

    Oguntibeju, Oluwafemi O

    2012-01-01

    The development of antiretroviral drugs has significantly changed the perception of HIV/AIDS from a very fatal to a chronic and potentially manageable disease, and the availability and administration of antiretroviral therapy (ART) has significantly reduced mortality and morbidity associated with HIV and AIDS. There is a relationship between ART and quality of life of people living with HIV and AIDS, and several studies have reported a strong positive association between ART and improved quality of life in different domains among people living with HIV and AIDS in both developed and developing countries. However, a few studies have reported on the negative effects of ART, which directly or indirectly relate to the quality of life and longevity of HIV-infected persons. In this review, the effects and benefits of ART on people living with HIV and AIDS based on studies done in developed and developing countries is examined. PMID:22893751

  18. Effectiveness of Cepharanthin in decreasing interruptions during radiation therapy for oral cancer

    International Nuclear Information System (INIS)

    Uchiyama, Yuka; Murakami, Shumei; Kamimoto, Naoya; Nakatani, Atsutoshi; Furukawa, Souhei

    2005-01-01

    The objectives of this study was to examine the effectiveness of Cepharanthin (Kakensyoyaku, Tokyo, Japan) at decreasing side effects during radiation therapy for oral cancer and thereby allowing the completion of radiation therapy without interruption. Two hundred fifteen patients diagnosed with oral cancers were assigned to either Cepharanthin or control groups and underwent external beam irradiation. The completion of the course of radiation therapy and the occurrence of side effects such as mucositis, dysgeusia, and xerostomia during the radiation therapy were evaluated and compared. The completion rate was 87.4% for the Cepharanthin group versus 67.0% for the control group, and the difference was statistically significant (P<0.01). Mucositis did not appear in 58 of 127 cases (45.7%) in the Cepharanthin group or in 21 of 88 cases (23.9%) in the control group. Mucositis developed in 24.6% of the Cepharanthin group and 53.7% of the control group within 2 weeks of irradiation. There were significant relationships between the use of Cepharanthin and the development and timing of mucositis (both P<0.01). Cepharanthin improved the completion of radiation therapy without interruption and reduced or delayed the development of mucositis during radiation therapy for oral cancer. (author)

  19. Quality assurance for 3D conformal radiation therapy

    International Nuclear Information System (INIS)

    Purdy, J.A.; Harms, W.B.

    1998-01-01

    Three-dimensional conformal radiation therapy (3D CRT) can be considered as an integrated process of treatment planning, delivery, and verification that attempts to conform the prescription dose closely to the target volume while limiting dose to critical normal structures. Requiring the prescription dose to conform as closely as possible to the target volume raises the level of the precision and accuracy requirements generally found in conventional radiation therapy. 3D CRT treatment planning requires robust patient immobilization/repositioning systems and volumetric image data (CT and/or MR) acquired in the treatment position. 3D treatment planning more explicitly details the particular of a patient's treatment than was ever possible with 2D treatment planning. In 1992, we implemented a formal 3D treatment planning service in our clinic and at the same time instituted a formal quality assurance (QA) program addressing the individual procedures that make up the 3D CRT process. Our 3D QA program includes systematic testing of the hardware and software used in the 3D treatment planning process, careful review of each patient's treatment plan, careful review of the physical implementation of the treatment plan, a peer review 3D QA Case Conference, and a formal continuing education program in 3D CRT for our radiation therapy staff. This broad 3D QA program requires the involvement of physicians, physicists, dosimetrists, and the treating radiation therapists that complete the team responsible for 3D CRT.3D CRT capabilities change the kinds of radiation therapy treatments that are possible and that changes the process with which treatment planning and treatment delivery are performed. There is no question that 3D CRT shows significant potential for improving the quality of radiation therapy and improving the efficiency with which it can be delivered. However, its implementation and wide spread use is still in its initial stages. The techniques used for 3D treatment

  20. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.