WorldWideScience

Sample records for nanoparticle energy transfer

  1. Resonance energy transfer: Dye to metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R., E-mail: him-lax3@yahoo.com [Laser Spectroscopy Programme, Department of Physics, Karnatak University, Dharwad-580003 (India)

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  2. Exploiting energy transfer in hybrid metal and semiconductor nanoparticle systems for biosensing and energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Mayilo, Sergiy

    2009-06-19

    In this work, gold and semiconductor nanoparticles are used as building blocks for nanostructures, in which energy transfer is investigated. Fluorescence quenching by gold nanoparticles is investigated and used to develop novel immunoassays for medically relevant molecules. The influence of gold nanoparticles on radiative and non-radiative rates of Cy3 and Cy3B dyes is studied here. A competitive, homogeneous immunoassay for digoxigenin and digoxin, a drug used to cure heart diseases, is developed. The assay has a limit of detection of 0.5 nM in buffer and 50 nM in serum. Time resolved spectroscopy reveals that the quenching is due to energy transfer with an efficiency of 70%. A homogeneous sandwich immunoassay for cardiac troponin T, an indicator of damage to the heart muscle, is developed. Gold nanoparticles and fluorophores are functionalized with anti-troponin T antibodies. In the presence of troponin T the nanoparticles and fluorophores form a sandwich structure, in which the dye fluorescence is quenched by a gold nanoparticle. The limit of detection of the immunoassay in buffer is 0.02 nM and 0.11 nM in serum. Energy transfer is demonstrated in clusters of CdTe nanocrystals assembled using three methods. In the first method, clusters of differently-sized water soluble CdTe nanocrystals capped by negatively charged mercaptoacid stabilizers are produced through electrostatic interactions with positively charged Ca{sup 2+} cations. The two other methods employ covalent binding through dithiols and thiolated DNA as linkers between nanocrystals. Energy transfer from smaller nanocrystals to larger nanocrystals in aggregates is demonstrated by means of steady-state and time-resolved photoluminescence spectroscopy, paving the way for nanocrystal-based light harvesting structures in solution. Multi-shell onion-like CdSe/ZnS/CdSe/ZnS nanocrystals are presented. The shade of the white light can be controlled by annealing the particles. Evidence for intra

  3. Energy and charge transfer cascade in methylammonium lead bromide perovskite nanoparticle aggregates.

    Science.gov (United States)

    Bouduban, Marine E F; Burgos-Caminal, Andrés; Ossola, Rachele; Teuscher, Joël; Moser, Jacques-E

    2017-06-01

    Highly photoluminescent hybrid lead halide perovskite nanoparticles have recently attracted wide interest in the context of high-stake applications, such as light emitting diodes (LEDs), light emitting transistors and lasers. In addition, they constitute ideal model systems to explore energy and charge transport phenomena occurring at the boundaries of nanocrystalline grains forming thin films in high-efficiency perovskite solar cells (PSCs). Here we report a complete photophysical study of CH 3 NH 3 PbBr 3 perovskite nanoparticles suspended in chlorobenzene and highlight some important interaction properties. Colloidal suspensions under study were constituted of dispersed aggregates of quasi-2D platelets of a range of thicknesses, decorated with 3D-like spherical nanoparticles. These types of nanostructures possess different optical properties that afford a handle for probing them individually. The photophysics of the colloidal particles was studied by femtosecond pump-probe spectroscopy and time-correlated single-photon counting. We show here that a cascade of energy and exciton-mediated charge transfer occurs between nanostructures: upon photoexcitation, localized excitons within one nanostructure can either recombine on a ps timescale, yielding a short-lived emission, or form charge-transfer states (CTSs) across adjacent domains, resulting in longer-lived photoluminescence in the millisecond timescale. Furthermore, CTSs exhibit a clear signature in the form of a strong photoinduced electroabsorption evidenced in femtosecond transient absorption measurements. Charge transfer dynamics at the surface of the nanoparticles have been studied with various quenchers in solution. Efficient hole transfer to N , N , N ', N '-tetrakis(4-methoxyphenyl)benzidine (MeO-TPD) and 1,4-bis(diphenyl-amino)benzene (BDB) donors was attested by the quenching of the nanoparticles emission. The charge transfer rate was limited by the organic layer used to stabilize the nanoparticles

  4. Investigation of sensitizer ions tunable-distribution in fluoride nanoparticles for efficient accretive three-center energy transfer

    International Nuclear Information System (INIS)

    Guo, Hui; Yu, Hua; Lao, Aiqing; Chang, Lifen; Gao, Shaohua; Zhang, Haoxiong; Zhou, Taojie; Zhao, Lijuan

    2014-01-01

    Cooperative upconversion luminescence of Yb 3+ -Yb 3+ couples and three-center energy transfer mechanisms have been deeply investigated in Yb 3+ doped and Yb 3+ -Tb 3+ co-doped β-PbF 2 nanoparticles. As sensitizer ions, the distribution of Yb 3+ ions, which is a key factor that affects the cooperative upconversion luminescence and three-center energy transfer processes, can be tuned by the structure of nanoparticles. Based on the three-center distributions in tetragonal PbYb x Tb 1−x F 5 nanoparticles, two different energy transfer models, Cooperative Energy Transfer (CET) and Accretive Energy Transfer (AET) mechanisms were established. Especially, AET model is observed and verified in this work for the first time. Experimental results obtained from photoluminescence spectroscopy study are in agreement with the theoretical calculations by applying rate equations in these models, strongly supporting the proposed three-center energy transfer mechanisms. The sensitization between Yb 3+ ions only existing in AET process can greatly improve the energy transfer rates, further to enhance the quantum efficiency. The results that the calculated luminescence quantum efficiency in AET quantum cutting process is much higher than that in CET process (134% and 104%, respectively), can benefit for further increasing the conversion efficiency of c-Si solar cells.

  5. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  6. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    Directory of Open Access Journals (Sweden)

    Aleksandra Delplanque

    Full Text Available Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio probes in Förster Resonance Energy Transfer (FRET where trivalent lanthanide ions (La3+ act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5 modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+ and the acceptor (Cy5 with sensitivity at a nanometre scale.

  7. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    Science.gov (United States)

    Delplanque, Aleksandra; Wawrzynczyk, Dominika; Jaworski, Pawel; Matczyszyn, Katarzyna; Pawlik, Krzysztof; Buckle, Malcolm; Nyk, Marcin; Nogues, Claude; Samoc, Marek

    2015-01-01

    Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio) probes in Förster Resonance Energy Transfer (FRET) where trivalent lanthanide ions (La3+) act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm) NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA) by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5) modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+) and the acceptor (Cy5) with sensitivity at a nanometre scale.

  8. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  9. Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin

    Directory of Open Access Journals (Sweden)

    Tanujjal Bora

    2013-11-01

    Full Text Available In recent years, nanotechnology has gained significant interest for applications in the medical field. In this regard, a utilization of the ZnO nanoparticles for the efficient degradation of bilirubin (BR through photocatalysis was explored. BR is a water insoluble byproduct of the heme catabolism that can cause jaundice when its excretion is impaired. The photocatalytic degradation of BR activated by ZnO nanoparticles through a non-radiative energy transfer pathway can be influenced by the surface defect-states (mainly the oxygen vacancies of the catalyst nanoparticles. These were modulated by applying a simple annealing in an oxygen-rich atmosphere. The mechanism of the energy transfer process between the ZnO nanoparticles and the BR molecules adsorbed at the surface was studied by using steady-state and picosecond-resolved fluorescence spectroscopy. A correlation of photocatalytic degradation and time-correlated single photon counting studies revealed that the defect-engineered ZnO nanoparticles that were obtained through post-annealing treatments led to an efficient decomposition of BR molecules that was enabled by Förster resonance energy transfer.

  10. Recent Advances in Nanoparticle-Based Förster Resonance Energy Transfer for Biosensing, Molecular Imaging and Drug Release Profiling

    Directory of Open Access Journals (Sweden)

    Nai-Tzu Chen

    2012-12-01

    Full Text Available Förster resonance energy transfer (FRET may be regarded as a “smart” technology in the design of fluorescence probes for biological sensing and imaging. Recently, a variety of nanoparticles that include quantum dots, gold nanoparticles, polymer, mesoporous silica nanoparticles and upconversion nanoparticles have been employed to modulate FRET. Researchers have developed a number of “visible” and “activatable” FRET probes sensitive to specific changes in the biological environment that are especially attractive from the biomedical point of view. This article reviews recent progress in bringing these nanoparticle-modulated energy transfer schemes to fruition for applications in biosensing, molecular imaging and drug delivery.

  11. Spectroscopic studies of energy transfer in fluorene co-polymer blend nanoparticles

    Science.gov (United States)

    Gao, Jian; Grey, John K.

    2012-01-01

    Nanoparticles of poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) [PFB] and poly(9,9-dioctylfluorene-co-benzothiadiazole) [F8BT] (1:1 w/w) were studied using scanned probe and single particle spectroscopy techniques. Photoluminescence (PL spectra of ∼58 and ∼100 nm PFB/F8BT nanoparticles show efficient energy transfer from the PFB (donor) component to the F8BT (acceptor) component that is independent of particle size. We propose that nanoparticles are phase segregated into discrete PFB/F8BT nanodomains on the order of ∼20-40 nm for both particle sizes. Pressure-dependent nanoparticle PL spectra support this assignment where lineshape maxima of each component red-shift in a similar manner due to increased interchain packing within the single nanodomains.

  12. Transfer of energy between a pair of molecules near a plasmonic core-shell nanoparticle: Tunability and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Daneshfar, Nader, E-mail: ndaneshfar@gmail.com, E-mail: ndaneshfar@razi.ac.ir; Yavari, Asghar [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-05-15

    Our model is applied to the calculation of interaction energy between a pair of dipolar molecules (point dipoles) in the vicinity of a nanoshell monomer with core-shell structure, based on the dipole quasi-electrostatic theory of classical electrodynamics and using the Drude and Maxwell-Garnett model. In other words, this work discusses the intermolecular energy transfer from a donor molecule to an acceptor molecule near a spherical nanoparticle that is important for practical applications like sensing. It is shown that the proximity of plasmonic nanoparticles can have a strong effect on the energy transfer between molecules. In addition to the influence of the size, composition, embedding medium, and the filling fraction of doped particles on the interaction energy, the contribution of the dipolar, quadrupolar, octupolar, hexadecapolar, triakontadipolar, and higher order multipole interactions is presented and analyzed. Briefly, we will show that it is possible to achieve enhanced energy transfer by manipulation of different parameters as mentioned above.

  13. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.

    Science.gov (United States)

    Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel

    2013-03-11

    It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.

  14. Energy transfer in plasmonic systems

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N; Urbas, Augustine M; Shahbazyan, Tigran V

    2014-01-01

    We present our results on energy transfer between donor and acceptor molecules or quantum dots near a plasmonic nanoparticle. In such systems, the Förster resonance energy transfer is strongly modified due to plasmon-mediated coupling between donors and acceptors. The transfer efficiency is determined by a competition between transfer, radiation and dissipation that depends sensitively on system parameters. When donor and accepror spectral bands overlap with dipole surface plasmon resonance, the dominant transfer mechanism is through plasmon-enhanced radiative coupling. When transfer takes place from an ensemble of donors to an acceptor, a cooperative amplification of energy transfer takes place in a wide range of system parameters. (paper)

  15. Controlling energy transfer between multiple dopants within a single nanoparticle

    Science.gov (United States)

    DiMaio, Jeffrey R.; Sabatier, Clément; Kokuoz, Baris; Ballato, John

    2008-01-01

    Complex core-shell architectures are implemented within LaF3 nanoparticles to allow for a tailored degree of energy transfer (ET) between different rare earth dopants. By constraining specific dopants to individual shells, their relative distance to one another can be carefully controlled. Core-shell LaF3 nanoparticles doped with Tb3+ and Eu3+ and consisting of up to four layers were synthesized with an outer diameter of ≈10 nm. It is found that by varying the thicknesses of an undoped layer between a Tb3+-doped layer and a Eu3+-doped layer, the degree of ET can be engineered to allow for zero, partial, or total ET from a donor ion to an acceptor ion. More specifically, the ratio of the intensities of the 541-nm Tb3+ and 590 nm Eu3+ peaks was tailored from core-shell configuration that restricts ET is used. Beyond simply controlling ET, which can be limiting when designing materials for optical applications, this approach can be used to obtain truly engineered spectral features from nanoparticles and composites made from them. Further, it allows for a single excitation source to yield multiple discrete emissions from numerous lanthanide dopants that heretofore would have been quenched in a more conventional active optical material. PMID:18250307

  16. Influence of silver nanoparticles on relaxation processes and efficiency of dipole – dipole energy transfer between dye molecules in polymethylmethacrylate films

    Energy Technology Data Exchange (ETDEWEB)

    Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V [Immanuel Kant Baltic Federal University, Kaliningrad (Russian Federation); Konstantinova, E I; Slezhkin, V A [Kaliningrad State Technical University, Kaliningrad (Russian Federation)

    2015-10-31

    The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of the dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)

  17. Influence of silver nanoparticles on relaxation processes and efficiency of dipole – dipole energy transfer between dye molecules in polymethylmethacrylate films

    International Nuclear Information System (INIS)

    Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V; Konstantinova, E I; Slezhkin, V A

    2015-01-01

    The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of the dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)

  18. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  19. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine.

    Science.gov (United States)

    Gao, Feng; Ye, Qingqing; Cui, Peng; Zhang, Lu

    2012-05-09

    We here report an efficient and enhanced fluorescence energy transfer system between confined quantum dots (QDs) by entrapping CdTe into the mesoporous silica shell (CdTe@SiO₂) as donors and gold nanoparticles (AuNPs) as acceptors. At pH 6.50, the CdTe@SiO₂-AuNPs assemblies coalesce to form larger clusters due to charge neutralization, leading to the fluorescence quenching of CdTe@SiO₂ as a result of energy transfer. As compared with the energy transfer system between unconfined CdTe and AuNPs, the maximum fluorescence quenching efficiency of the proposed system is improved by about 27.0%, and the quenching constant, K(sv), is increased by about 2.4-fold. The enhanced quenching effect largely turns off the fluorescence of CdTe@SiO₂ and provides an optimal "off-state" for sensitive "turn-on" assay. In the present study, upon addition of melamine, the weak fluorescence system of CdTe@SiO₂-AuNPs is enhanced due to the strong interactions between the amino group of melamine and the gold nanoparticles via covalent bond, leading to the release of AuNPs from the surfaces of CdTe@SiO₂; thus, its fluorescence is restored. A "turn-on" fluorimetric method for the detection of melamine is proposed based on the restored fluorescence of the system. Under the optimal conditions, the fluorescence enhanced efficiency shows a linear function against the melamine concentrations ranging from 7.5 × 10⁻⁹ to 3.5 × 10⁻⁷ M (i.e., 1.0-44 ppb). The analytical sensitivity is improved by about 50%, and the detection limit is decreased by 5.0-fold, as compared with the analytical results using the CdTe-AuNPs system. Moreover, the proposed method was successfully applied to the determination of melamine in real samples with excellent recoveries in the range from 97.4 to 104.1%. Such a fluorescence energy transfer system between confined QDs and AuNPs may pave a new way for designing chemo/biosensing.

  20. Electron energy loss spectroscopy of gold nanoparticles on graphene

    International Nuclear Information System (INIS)

    DeJarnette, Drew; Roper, D. Keith

    2014-01-01

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports

  1. The effect of the silver nanoparticles on the dynamics of singlet-singlet energy transfer of luminophores in thin films of polyvinyl alcohol

    International Nuclear Information System (INIS)

    Bryukhanov, V.V.; Samusev, I.G.; Slezhkin, V.A.; Tsibul'nikova, A.V.

    2014-01-01

    The effect of ablated silver nanoparticles (ANP) on the dynamics of non-radiative inductance-resonance energy transfer and phosphorescence in the donor-acceptor pair of molecules of eosin and methylene blue (MB) luminophores embedded in thin films of polyvinyl alcohol have been investigated. Increased fluorescence intensity of donor (eosin) and acceptor (MB) molecules, as well as a growth of the dipole-dipole transfer efficiency have been obtained under the resonant excitation of the silver ANP surface plasmons in the absorption band of the donor energy. The luminescence quantum yields and the fluorescence lifetimes have been measured. The energy transfer constants, degree of polarization and fluorescence anisotropy have been determined. (authors)

  2. Luminescence resonance energy transfer (LRET) aptasensor for ochratoxin A detection using upconversion nanoparticles

    Science.gov (United States)

    Jo, Eun-Jung; Byun, Ju-Young; Mun, Hyoyoung; Kim, Min-Gon

    2017-07-01

    We report an aptasensor for homogeneous ochratoxin A (OTA) detection based on luminescence resonance energy transfer (LRET). This system uses upconversion nanoparticles (UCNPs), such as NaYF4:Yb3+, Er 3+, as the donor. The aptamer includes the optimum-length linker (5-mer-length DNA) and OTA-specific aptamer sequences. Black hole quencher 1 (BHQ1), as the acceptor, was modified at the 3' end of the aptamer sequence. BHQ1 plays as a quencher in LRET aptasensor and shows absorption at 543 nm, which overlaps with well the emission of the UCNPs. When OTA is added, the BHQ1-labeled OTA aptamer was folded due to the formation of the G-quadruplex-OTA complex, which induced the BHQ1 close to the UCNPs. Consequently, resonance energy transfer between UCNPs (donor) and BHQ1 (acceptor) enables quenching of upconversion luminescence signals under laser irradiation of 980 nm. Our results showed that the LRET-based aptasensor allows specific OTA analysis with a limit of detection of 0.03 ng/mL. These results demonstrated that the OTA in diverse foods can be detected specifically and sensitively in a homogeneous manner.

  3. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  4. Direct observation of triplet energy transfer from semiconductor nanocrystals.

    Science.gov (United States)

    Mongin, Cédric; Garakyaraghi, Sofia; Razgoniaeva, Natalia; Zamkov, Mikhail; Castellano, Felix N

    2016-01-22

    Triplet excitons are pervasive in both organic and inorganic semiconductors but generally remain confined to the material in which they originate. We demonstrated by transient absorption spectroscopy that cadmium selenide semiconductor nanoparticles, selectively excited by green light, engage in interfacial Dexter-like triplet-triplet energy transfer with surface-anchored polyaromatic carboxylic acid acceptors, extending the excited-state lifetime by six orders of magnitude. Net triplet energy transfer also occurs from surface acceptors to freely diffusing molecular solutes, further extending the lifetime while sensitizing singlet oxygen in an aerated solution. The successful translation of triplet excitons from semiconductor nanoparticles to the bulk solution implies that such materials are generally effective surrogates for molecular triplets. The nanoparticles could thereby potentially sensitize a range of chemical transformations that are relevant for fields as diverse as optoelectronics, solar energy conversion, and photobiology. Copyright © 2016, American Association for the Advancement of Science.

  5. Synthesis of indium nanoparticles at ambient temperature; simultaneous phase transfer and ripening

    Energy Technology Data Exchange (ETDEWEB)

    Aghazadeh Meshgi, Mohammad; Kriechbaum, Manfred [Graz University of Technology, Institute of Inorganic Chemistry (Austria); Biswas, Subhajit; Holmes, Justin D., E-mail: j.holmes@ucc.ie [University College Cork, Materials Chemistry and Analysis Group, Department of Chemistry and the Tyndall National Institute (Ireland); Marschner, Christoph, E-mail: christoph.marschner@tugraz.at [Graz University of Technology, Institute of Inorganic Chemistry (Austria)

    2016-12-15

    The synthesis of size-monodispersed indium nanoparticles via an innovative simultaneous phase transfer and ripening method is reported. The formation of nanoparticles occurs in a one-step process instead of well-known two-step phase transfer approaches. The synthesis involves the reduction of InCl{sub 3} with LiBH{sub 4} at ambient temperature and although the reduction occurs at room temperature, fine indium nanoparticles, with a mean diameter of 6.4 ± 0.4 nm, were obtained directly in non-polar n-dodecane. The direct synthesis of indium nanoparticles in n-dodecane facilitates their fast formation and enhances their size-monodispersity. In addition, the nanoparticles were highly stable for more than 2 months. The nanoparticles were characterised by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy to determine their morphology, structure and phase purity.

  6. Energy transfer of the quantum-cutter couple Pr{sup 3+}–Mn{sup 2+} in CaF{sub 2}:Pr{sup 3+}, Mn{sup 2+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanoski, Ana [Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstraße 15, D-76131 Karlsruhe (Germany); Pankratov, Vladimir, E-mail: vpank@latnet.lv [Research Center of Molecular Materials, University of Oulu, PO Box 3000, 90014 Oulu (Finland); Feldmann, Claus, E-mail: claus.feldmann@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstraße 15, D-76131 Karlsruhe (Germany)

    2016-11-15

    CaF{sub 2}:Pr (1 mol%), CaF{sub 2}:Mn (5 mol%) and CaF{sub 2}:Pr,Mn (1 mol%, 5 mol%) nanoparticles are prepared via a microwave-mediated synthesis in ionic liquids. The nanoparticles are highly crystalline and exhibit particle diameters <50 nm.In contrast to bulk-CaF{sub 2}:Pr,Mn,energy transfer between Pr{sup 3+}and Mn{sup 2+}under {sup 1}S{sub 0}→{sup 1}I{sub 6} relaxation on Pr{sup 3+} and {sup 4}G({sup 4}T{sub 1g})→{sup 6}S(A{sub 1g}) emission of Mn{sup 2+} is observed for the first time. Such energy transfer represents the essential first step of the quantum-cutting cascade via the Pr{sup 3+}–Mn{sup 2+} couple, which is most interesting as both expected photons – {sup 3}P{sub 0}→{sup 3}H{sub 4} emission of Pr{sup 3+}and {sup 4}G({sup 4}T{sub 1g})→{sup 6}S(A{sub 1g}) emission of Mn{sup 2+} – are emitted in the green spectral range. While bulk crystals were said not to show energy transfer due to prohibiting selection rules, vacuum ultraviolet (VUV) spectroscopy of CaF{sub 2}:Pr, Mn nanoparticles firstly proves efficient Pr{sup 3+}→Mn{sup 2+} energy transfer, which can be ascribed to the reduced site symmetry and considerable spin–orbit interaction in the nanocrystals.

  7. A study of the compartmentalization of core-shell nanoparticles through fluorescence energy transfer of dopants

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Jorge L; Jiang Hui; Duran, Randolph S, E-mail: rduran@lsu.edu [Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611 (United States)

    2010-02-05

    Hybrid organic-inorganic templates and core-shell nanoparticles were used as models to study the communication between fluorescent probes placed inside nanoparticles. The hybrid templates were prepared on the basis of a mixed-surfactant system using octadecyltrimethoxysilane as a reactive amphiphile. The core-shell particles were obtained after coating of the templates with a siloxane shell, using the silanol groups on their surface. Atomic force microscopy imaging showed that the templates were made of a flexible material that flattened significantly after deposition on a substrate and evaporation of the solvent. Pyrene was sequestered by the templates in an aqueous suspension, which placed it in a nonpolar environment, as observed by its fluorescence response. Subsequently, double-doped templates were prepared by sequestering coumarin 153 (C153), with pyrene-doped hybrid templates. The communication between these probes was studied on the basis of their spectral properties, by means of fluorescence resonance energy transfer (FRET). Energy transfer between the dyes with efficiencies up to 55% was observed. Similarly, double-doped core-shell particles prepared on the basis of the hybrid templates were doped with this pair of dyes. Despite the presence of the shell, which was intended to increment the average separation between the probes, interaction of the dyes was observed, although with lower efficiencies. A similar study was performed with C153 and 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM). FRET studies indicated that the probes were placed in proximity to each other. We confirmed these observations by means of fluorescence lifetime measurements, which showed a decrease in the lifetime of the donor upon addition of the acceptor.

  8. Near-field effects and energy transfer in hybrid metal-oxide nanostructures.

    Science.gov (United States)

    Herr, Ulrich; Kuerbanjiang, Balati; Benel, Cahit; Papageorgiou, Giorgos; Goncalves, Manuel; Boneberg, Johannes; Leiderer, Paul; Ziemann, Paul; Marek, Peter; Hahn, Horst

    2013-01-01

    One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu(3+), since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are

  9. Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia)

    International Nuclear Information System (INIS)

    Pakrashi, Sunandan; Dalai, Swayamprava; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2014-01-01

    Highlights: • Trophic transfer of alumina nanoparticles using Chlorella ellipsoides and Ceriodaphnia dubia. • Subtle alterations in the feeding behaviour of the daphnids. • Disruption the energy flow through the food chain. • Transmission electron microscopy validated the disrupted feeding behaviour. - Abstract: The transfer of nanoparticles through the food chain can lead to bioaccumulation and biomagnification resulting in a long term negative impact on the ecosystem functions. The primary objective of this study was evaluation of aluminium oxide nanoparticles transfer from primary producers to primary consumers. A simple set up consisting of a primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia) was used. Here, C. ellipsoides were exposed to the varying concentrations of the nanoparticles ranging from 20 to 120 μg/mL (196 to 1176 μM) for 48 h and the infested algal cells were used as the feed to C. dubia. The bioaccumulation of the nanoparticles into the daphnids was noted and the biomagnification factors were computed. The exposure was noted to cause subtle alterations in the feeding behaviour of the daphnids. This might have long term consequences in the energy flow through the food chain. The reproductive behaviour of the daphnids remained unaffected upon exposure to nanoparticle infested algal feed. Distinct observations at ultra-structural scale using transmission electron microscopy provided visual evidences for the disrupted feeding behaviour upon exposure to nanoparticle treated algae. Internalization of nanoparticle like inclusion bodies in the intracellular space of algae was also detected. The findings were further substantiated by a detailed analysis of hydrodynamic stability, bioavailability and dissolution of ions from the nanoparticles over the exposure period. Altogether, the study brings out the first of its kind of observation of trophic transfer potential/behaviour of aluminium oxide nanoparticles and

  10. Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia)

    Energy Technology Data Exchange (ETDEWEB)

    Pakrashi, Sunandan; Dalai, Swayamprava; Chandrasekaran, Natarajan; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com

    2014-07-01

    Highlights: • Trophic transfer of alumina nanoparticles using Chlorella ellipsoides and Ceriodaphnia dubia. • Subtle alterations in the feeding behaviour of the daphnids. • Disruption the energy flow through the food chain. • Transmission electron microscopy validated the disrupted feeding behaviour. - Abstract: The transfer of nanoparticles through the food chain can lead to bioaccumulation and biomagnification resulting in a long term negative impact on the ecosystem functions. The primary objective of this study was evaluation of aluminium oxide nanoparticles transfer from primary producers to primary consumers. A simple set up consisting of a primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia) was used. Here, C. ellipsoides were exposed to the varying concentrations of the nanoparticles ranging from 20 to 120 μg/mL (196 to 1176 μM) for 48 h and the infested algal cells were used as the feed to C. dubia. The bioaccumulation of the nanoparticles into the daphnids was noted and the biomagnification factors were computed. The exposure was noted to cause subtle alterations in the feeding behaviour of the daphnids. This might have long term consequences in the energy flow through the food chain. The reproductive behaviour of the daphnids remained unaffected upon exposure to nanoparticle infested algal feed. Distinct observations at ultra-structural scale using transmission electron microscopy provided visual evidences for the disrupted feeding behaviour upon exposure to nanoparticle treated algae. Internalization of nanoparticle like inclusion bodies in the intracellular space of algae was also detected. The findings were further substantiated by a detailed analysis of hydrodynamic stability, bioavailability and dissolution of ions from the nanoparticles over the exposure period. Altogether, the study brings out the first of its kind of observation of trophic transfer potential/behaviour of aluminium oxide nanoparticles and

  11. Pattern transfer with stabilized nanoparticle etch masks

    International Nuclear Information System (INIS)

    Hogg, Charles R; Majetich, Sara A; Picard, Yoosuf N; Narasimhan, Amrit; Bain, James A

    2013-01-01

    Self-assembled nanoparticle monolayer arrays are used as an etch mask for pattern transfer into Si and SiO x substrates. Crack formation within the array is prevented by electron beam curing to fix the nanoparticles to the substrate, followed by a brief oxygen plasma to remove excess carbon. This leaves a dot array of nanoparticle cores with a minimum gap of 2 nm. Deposition and liftoff can transform the dot array mask into an antidot mask, where the gap is determined by the nanoparticle core diameter. Reactive ion etching is used to transfer the dot and antidot patterns into the substrate. The effect of the gap size on the etching rate is modeled and compared with the experimental results. (paper)

  12. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles.

    Science.gov (United States)

    Sun, Xiangying; Liu, Bin; Li, Shuchun; Li, Fang

    2016-05-15

    In this work we designed a self-assembly multilayers, in which photoluminescent graphene oxide was employed as a fluorescence probe. This multilayers film can effectively recognize captopril by resonance energy transfer from graphite oxide to silver nanoparticles. A new interfacial sensing method for captopril with high signal to noise ratio was established, by means of that multilayers was quenched by silver nanoparticles and subsequently recovered by adding captopril. The linear relation between intensity and captopril concentration was good, and the detection limit was found to be 0.1578 μM. Also, this novel detection platform demonstrated intriguing reusable properties, and the sensor could be repeated more than ten times without obviously losing its sensing performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Influence of synthesis energy on physical properties of the oxide nanoparticles

    International Nuclear Information System (INIS)

    Medeiros, A.A.S.; Mello, V.S. e; Trajano, M.F.; Alves, S.M.

    2014-01-01

    Nanoparticles are present in many research areas giving a range of applications, one of them is lubricant technology. Oxide nanoparticles have been used as extreme pressure additives in boundary lubrication with good results. The great challenge of this technology is in control of the nanoparticles dispersion to ensure their actions as anti-wear additive. This study goal was to evaluate the influence of the amount of energy synthesis in the dispersive properties, size and shape of nanoparticles synthesized by microwave, varying the amount of energy transferred during the synthesis process. The morphology of the nanoparticles was evaluated by SEM and XRD spectrum was used to identify the crystallite size and the formation of copper oxides. The results showed that the size and shape of the particle, and consequently the dispersion, are directly related to amount of energy used in the synthesis are directly related. (author)

  14. Energy breathing of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dynich, Raman A., E-mail: dynich@solo.by [Institute of Social Educational Technologies (Belarus)

    2015-06-15

    The paper considers the energy exchange process of the electromagnetic wave with a spherical metal nanoparticle. Based on the account of the temporal dependencies of electric and magnetic fields, the author presents an analytical dependence of the energy flow passing through the spherical surface. It is shown that the electromagnetic energy, localized in metal nanoparticles, is not a stationary value and periodically varies with time. A consequence of the energy nonstationarity is a nonradiating exit of the electromagnetic energy out of the nanoparticle. During the time equal to the period of wave oscillations, the electromagnetic energy is penetrating twice into the particle and quits it twice. The particle warms up because of the difference in the incoming and outgoing energies. Such “energy breathing” is presented for spherical Ag and Au nanoparticles with radii of 10 and 33 nm, respectively. Calculations were conducted for these nanoparticles embedded into the cell cytoplasm near the frequencies of their surface plasmon resonances.

  15. Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd-Cu nanoparticles; size and alloying induced modifications in binding energy

    International Nuclear Information System (INIS)

    Sengar, Saurabh K.; Mehta, B. R.; Gupta, Govind

    2011-01-01

    In this letter, effect of size and alloying on the core and valence band shifts of Pd, Cu, and Pd-Cu alloy nanoparticles has been studied. It has been shown that the sign and magnitude of the binding energy shifts is determined by the contributions of different effects; with quantum confinement and lattice distortion effects overlapping for size induced shifts in case of core levels and lattice distortion and charge transfer effects overlapping for alloying induced shifts at smaller sizes. These results are important for understanding gas molecule-solid surface interaction in metal and alloy nanoparticles in terms of valance band positions.

  16. Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS.

    Science.gov (United States)

    Li, Guoliang; Cherqui, Charles; Bigelow, Nicholas W; Duscher, Gerd; Straney, Patrick J; Millstone, Jill E; Masiello, David J; Camden, Jon P

    2015-05-13

    Energy transfer from plasmonic nanoparticles to semiconductors can expand the available spectrum of solar energy-harvesting devices. Here, we spatially and spectrally resolve the interaction between single Ag nanocubes with insulating and semiconducting substrates using electron energy-loss spectroscopy, electrodynamics simulations, and extended plasmon hybridization theory. Our results illustrate a new way to characterize plasmon-semiconductor energy transfer at the nanoscale and bear impact upon the design of next-generation solar energy-harvesting devices.

  17. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-02-01

    Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  18. Photoluminescence enhancement of dye-doped nanoparticles by surface plasmon resonance effects of gold colloidal nanoparticles

    International Nuclear Information System (INIS)

    Chu, Viet Ha; Nghiem, Thi Ha Lien; Tran, Hong Nhung; Fort, Emmanuel

    2011-01-01

    Due to the energy transfer from surface plasmons, the fluorescence of fluorophores near metallic nanostructures can be enhanced. This effect has been intensively studied recently for biosensor applications. This work reports on the luminescence enhancement of 100 nm Cy3 dye-doped polystyrene nanoparticles by energy transfer from surface plasmons of gold colloidal nanoparticles with sizes of 20 and 100 nm. Optimal luminescence enhancement of the fluorophores has been observed in the mixture with 20 nm gold nanoparticles. This can be attributed to the resonance energy transfer from gold nanoparticles to the fluorophore beads. The interaction between the fluorophores and gold particles is attributed to far-field interaction

  19. Fluorescence resonance energy transfer between NaYF4:Yb,Tm upconversion nanoparticles and gold nanorods: Near-infrared responsive biosensor for streptavidin

    International Nuclear Information System (INIS)

    Zhang, Shuang; Wang, Jing; Xu, Wen; Chen, Boting; Yu, Wei; Xu, Lin; Song, Hongwei

    2014-01-01

    We represent a fluorescence resonance energy transfer (FRET) system using upconversion nanoparticles (UCNPs) and the gold nanorods (GNRs) as the energy donor–acceptor pair for directly determining streptavidin in near-infrared (NIR) region. NaYF 4 :Yb,Tm UCNPs, which had a strong emission at 800 nm under 980-nm excitation, were adopted as the energy donor. The GNRs, which demonstrated strong surface plasmon absorption around 800 nm, were chosen as acceptor to quench the 800 nm emissions of the UCNPs. There had the spectral overlap between the emission of the donor nanoparticles (UCNPs) and the absorption of the acceptor nanoparticles (GNRs). This UCNP-based FRET system was then used to determine the amount of streptavidin. In this system, NaYF 4 :Yb,Tm UCNPs conjugated with biotin, while GNRs conjugated with streptavidin. When added GNRs into UCNPs, the streptavidin were preferred to bind with biotin and decreased spacing between the donor and acceptor NPs. Consequently, FRET occurred and a linear relationship between the luminescence quenching efficiency and the concentration of streptavidin was obtained. Owing to the aforementioned merits of UCNPs as an energy donor and the strong quenching ability of GNRs, satisfactory analytical performances have been acquired. -- Highlights: • NaYF4:Yb,Tm and GNRs are as NIR energy donor and quenching acceptor for FRET. • Linkage between biotin and streptavidin make the distance between the donors and the acceptors short enough for FRET. • The FRET system in this work was applicable for the detection of streptavidin. • The donor and acceptor NPs can be modified by proper molecules for other biological molecules detection

  20. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles

    Science.gov (United States)

    Edwardson, Thomas G. W.; Lau, Kai Lin; Bousmail, Danny; Serpell, Christopher J.; Sleiman, Hanadi F.

    2016-02-01

    DNA nanotechnology offers unparalleled precision and programmability for the bottom-up organization of materials. This approach relies on pre-assembling a DNA scaffold, typically containing hundreds of different strands, and using it to position functional components. A particularly attractive strategy is to employ DNA nanostructures not as permanent scaffolds, but as transient, reusable templates to transfer essential information to other materials. To our knowledge, this approach, akin to top-down lithography, has not been examined. Here we report a molecular printing strategy that chemically transfers a discrete pattern of DNA strands from a three-dimensional DNA structure to a gold nanoparticle. We show that the particles inherit the DNA sequence configuration encoded in the parent template with high fidelity. This provides control over the number of DNA strands and their relative placement, directionality and sequence asymmetry. Importantly, the nanoparticles produced exhibit the site-specific addressability of DNA nanostructures, and are promising components for energy, information and biomedical applications.

  1. A high-throughput homogeneous immunoassay based on Förster resonance energy transfer between quantum dots and gold nanoparticles

    International Nuclear Information System (INIS)

    Qian, Jing; Wang, Chengquan; Pan, Xiaohu; Liu, Songqin

    2013-01-01

    Graphical abstract: A Förster resonance energy transfer system by using polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor for sensitive detection of tumor marker was proposed. Highlights: ► A homogeneous immunosensing strategy based on FRET for detection of tumor marker was proposed. ► Close of QDs and AuNPs allow the occurrence of quenching the photoluminescence of nano-bio-probes. ► Signal quenching was monitored by a self-developed image analyzer. ► The fluorometric assay format is attractive for widespread carcinoma screening and even field use. -- Abstract: A novel homogeneous immunoassay based on Förster resonance energy transfer for sensitive detection of tumor, e.g., marker with carcinoembryonic antigen (CEA), was proposed. The assay was consisted of polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor. In presence of CEA, the bio-affinity between antigen and antibody made the QDs and AuNPs close enough, thus the photoluminescence (PL) quenching of CdTe QDs occurred. The PL properties could be transformed into the fluorometric variation, corresponding to the target antigen concentration, and could be easily monitored and analyzed with the home-made image analysis software. The fluorometric results indicated a linear detection range of 1–110 ng mL −1 for CEA, with a detection limit of 0.3 ng mL −1 . The proposed assay configuration was attractive for carcinoma screening or single sample in point-of-care testing, and even field use. In spite of the limit of available model analyte, this approach could be easily extended to detection of a wide range of biomarkers

  2. A high-throughput homogeneous immunoassay based on Förster resonance energy transfer between quantum dots and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jing [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); School of Chemistry and Chemical Engineering, Jiangsu University, Zhengjiang 212013 (China); Wang, Chengquan [Changzhou College of Information Technology, Changzhou 213164 (China); Pan, Xiaohu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Liu, Songqin, E-mail: liusq@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)

    2013-02-06

    Graphical abstract: A Förster resonance energy transfer system by using polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor for sensitive detection of tumor marker was proposed. Highlights: ► A homogeneous immunosensing strategy based on FRET for detection of tumor marker was proposed. ► Close of QDs and AuNPs allow the occurrence of quenching the photoluminescence of nano-bio-probes. ► Signal quenching was monitored by a self-developed image analyzer. ► The fluorometric assay format is attractive for widespread carcinoma screening and even field use. -- Abstract: A novel homogeneous immunoassay based on Förster resonance energy transfer for sensitive detection of tumor, e.g., marker with carcinoembryonic antigen (CEA), was proposed. The assay was consisted of polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor. In presence of CEA, the bio-affinity between antigen and antibody made the QDs and AuNPs close enough, thus the photoluminescence (PL) quenching of CdTe QDs occurred. The PL properties could be transformed into the fluorometric variation, corresponding to the target antigen concentration, and could be easily monitored and analyzed with the home-made image analysis software. The fluorometric results indicated a linear detection range of 1–110 ng mL{sup −1} for CEA, with a detection limit of 0.3 ng mL{sup −1}. The proposed assay configuration was attractive for carcinoma screening or single sample in point-of-care testing, and even field use. In spite of the limit of available model analyte, this approach could be easily extended to detection of a wide range of biomarkers.

  3. Near-field radiative heat transfer between clusters of dielectric nanoparticles

    International Nuclear Information System (INIS)

    Dong, J.; Zhao, J.M.; Liu, L.H.

    2017-01-01

    In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension. - Highlights: • Near-field radiative heat transfer between clusters of nanoparticles is studied. • The many-body radiative heat transfer theory is applied for rigorous analysis. • The accuracy of equivalent volume spheres approximation is examined. • Clusters with larger fractal dimension have larger radiative thermal conductance. • Many-body interaction inhibits the total radiative thermal conductance.

  4. Fluorescence resonance energy transfer between NaYF{sub 4}:Yb,Tm upconversion nanoparticles and gold nanorods: Near-infrared responsive biosensor for streptavidin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Wang, Jing; Xu, Wen; Chen, Boting; Yu, Wei; Xu, Lin; Song, Hongwei, E-mail: songhw@jlu.edu.cn

    2014-03-15

    We represent a fluorescence resonance energy transfer (FRET) system using upconversion nanoparticles (UCNPs) and the gold nanorods (GNRs) as the energy donor–acceptor pair for directly determining streptavidin in near-infrared (NIR) region. NaYF{sub 4}:Yb,Tm UCNPs, which had a strong emission at 800 nm under 980-nm excitation, were adopted as the energy donor. The GNRs, which demonstrated strong surface plasmon absorption around 800 nm, were chosen as acceptor to quench the 800 nm emissions of the UCNPs. There had the spectral overlap between the emission of the donor nanoparticles (UCNPs) and the absorption of the acceptor nanoparticles (GNRs). This UCNP-based FRET system was then used to determine the amount of streptavidin. In this system, NaYF{sub 4}:Yb,Tm UCNPs conjugated with biotin, while GNRs conjugated with streptavidin. When added GNRs into UCNPs, the streptavidin were preferred to bind with biotin and decreased spacing between the donor and acceptor NPs. Consequently, FRET occurred and a linear relationship between the luminescence quenching efficiency and the concentration of streptavidin was obtained. Owing to the aforementioned merits of UCNPs as an energy donor and the strong quenching ability of GNRs, satisfactory analytical performances have been acquired. -- Highlights: • NaYF4:Yb,Tm and GNRs are as NIR energy donor and quenching acceptor for FRET. • Linkage between biotin and streptavidin make the distance between the donors and the acceptors short enough for FRET. • The FRET system in this work was applicable for the detection of streptavidin. • The donor and acceptor NPs can be modified by proper molecules for other biological molecules detection.

  5. Excitation energy transfer in molecular complexes: transport processes, optical properties and effects of nearby placed metal nano-particles

    Science.gov (United States)

    May, Volkhard; Megow, Jörg; Zelinskyi, Iaroslav

    2012-04-01

    Excitation energy transfer (EET) in molecular systems is studied theoretically. Chromophore complexes are considered which are formed by a butanediamine dendrimer with four pheophorbide-a molecules. To achieve a description with an atomic resolution and to account for the effect of an ethanol solvent a mixed quantum classical methodology is utilized. Details of the EET and spectra of transient anisotropy showing signatures of EET are presented. A particular control of intermolecular EET is achieved by surface plasmons of nearby placed metal nanoparticles (MNP). To attain a quantum description of the molecule-MNP system a microscopic theory is introduced. As a particular application surface plasmon affected absorption spectra of molecular complexes placed in the proximity of a spherical MNP are discussed.

  6. Trap characterization by photo-transferred thermoluminescence in MgO nanoparticles

    Science.gov (United States)

    Isik, M.; Gasanly, N. M.

    2018-05-01

    Shallow trapping centers in MgO nanoparticles were characterized using photo-transferred thermoluminescence (TL) measurements. Experiments were carried out in low temperature range of 10-280 K with constant heating rate. Shallow traps were filled with charge carriers firstly by irradiating the sample at room temperature using S90/Y90 source and then illuminating at 10 K using blue LED. TL glow curve exhibited one peak around 150 K. Curve fitting analyses showed that this peak is composed of two individual peaks with maximum temperatures of 149.0 and 155.3 K. The activation energies of corresponding trapping centers were revealed as 0.70 and 0.91 eV. The dominant mechanism for TL process was found as second order kinetics which represent that fast retrapping is effective transitions taking place within the band gap. Structural characterization of MgO nanoparticles were investigated using x-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. Analyses of experimental observations indicated that MgO nanoparticles show good crystallinity with particle size in nanometer scale.

  7. Nanoparticles for heat transfer and thermal energy storage

    Science.gov (United States)

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  8. A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles

    International Nuclear Information System (INIS)

    Yan, Yu-Qian; Tang, Xian; Wang, Yong-Sheng; Li, Ming-Hui; Cao, Jin-Xiu; Chen, Si-Han; Zhu, Yu-Feng; Wang, Xiao-Feng; Huang, Yan-Qin

    2015-01-01

    We report on a sensitive and selective strategy for the determination of metallothioneins (MTs). The assay is based on the suppression of the surface energy transfer that occurs between rhodamine 6G (Rh6G) and gold nanoparticles (AuNPs). If Rh6G is adsorbed onto the surface of AuNPs in water solution of pH 3.0, its fluorescence is quenched due to surface energy transfer. However, on addition of MTs to the Rh6G-AuNPs system, fluorescence is recovered owing to the formation of the MTs-AuNPs complex and the release of Rh6G into the solution. Under optimized conditions, the increase in fluorescence intensity is directly proportional to the concentration of the MTs in the range from 9.68 to 500 ng mL −1 , with a detection limit as low as 2.9 ng mL −1 . The possible mechanism of this assay is discussed. The method was successfully applied to the determination of MTs in (spiked) human urine. (author)

  9. Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Amoroso, Jake W.

    2013-06-20

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  10. The preparation, physicochemical properties, and the cohesive energy of liquid sodium containing titanium nanoparticles

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Itami, Toshio; Ara, Kuniaki

    2012-01-01

    Liquid sodium containing titanium nanoparticles (LSnanop) of 10-nm diameter was prepared by dispersing titanium nanoparticles (2 at.% Ti) into liquid sodium with the addition of stirring and ultrasonic sound wave. The titanium nanoparticles themselves were prepared by the vapor deposition method. This new liquid metal, LSnanop, shows a remarkable stability due to the Brownian motion of nanoparticles in liquid sodium medium. In addition, the difference of measured heat of reaction to water between this LSnanop and liquid sodium indicates the existence of cohesive energy between the liquid sodium medium and dispersed titanium nanoparticles. The origin of the cohesive energy, which serves to stabilize this new liquid metal, was explained by the model of screened nanoparticles in liquid sodium. In this model, negatively charged nanoparticles with transferred electrons from liquid sodium are surrounded by the positively charged screening shell, which may inhibit the gathering of nanoparticles by the “Coulombic repulsion coating.” The atomic volume of LSnanop shows the shrinkage from the linear law, which also suggests the existence of cohesive energy. The viscosity of LSnanop is almost the same as that of liquid sodium. This behavior was explained by the Einstein equation. The surface tension of LSnanop is 17 % larger than that of liquid sodium. The cohesive energy and the negative adsorption may be responsible to this increase. Titanium nanoparticles in liquid sodium seem to be free from the Coulomb fission. This new liquid metal containing nanoparticles suggests the possibility to prepare various stable suspensions with new properties.

  11. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khezri, Khezrollah, E-mail: kh.khezri@ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of); Roghani-Mamaqani, Hossein [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of)

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  12. Oxide-nitride-oxide dielectric stacks with Si nanoparticles obtained by low-energy ion beam synthesis

    International Nuclear Information System (INIS)

    Ioannou-Sougleridis, V; Dimitrakis, P; Vamvakas, V Em; Normand, P; Bonafos, C; Schamm, S; Mouti, A; Assayag, G Ben; Paillard, V

    2007-01-01

    Formation of a thin band of silicon nanoparticles within silicon nitride films by low-energy (1 keV) silicon ion implantation and subsequent thermal annealing is demonstrated. Electrical characterization of metal-insulator-semiconductor capacitors reveals that oxide/Si-nanoparticles-nitride/oxide dielectric stacks exhibit enhanced charge transfer characteristics between the substrate and the silicon nitride layer compared to dielectric stacks using unimplanted silicon nitride. Attractive results are obtained in terms of write/erase memory characteristics and data retention, indicating the large potential of the low-energy ion-beam-synthesis technique in SONOS memory technology

  13. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH.

    Science.gov (United States)

    Chen, Jian; Tang, Ying; Wang, Hong; Zhang, Peisheng; Li, Ya; Jiang, Jianhui

    2016-12-15

    The design of effective tools capable of sensing lysosome pH is highly desirable for better understanding its biological functions in cellular behaviors and various diseases. Herein, a lysosome-targetable ratiometric fluorescent polymer nanoparticle pH sensor (RFPNS) was synthesized via incorporation of miniemulsion polymerization and surface modification technique. In this system, the donor: 4-ethoxy-9-allyl-1,8-naphthalimide (EANI) and the acceptor: fluorescein isothiocyanate (FITC) were covalently linked to the polymer nanoparticle to construct pH-responsive fluorescence resonance energy transfer (FRET) system. The FITC moieties on the surface of RFPNS underwent structural and spectral transformation as the presence of pH changes, resulting in ratiometric fluorescent sensing of pH. The as-prepared RFPNS displayed favorable water dispersibility, good pH-induced spectral reversibility and so on. Following the living cell uptake, the as-prepared RFPNS with good cell-membrane permeability can mainly stain in the lysosomes; and it can facilitate visualization of the intracellular lysosomal pH changes. This nanosensor platform offers a novel method for future development of ratiometric fluorescent probes for targeting other analytes, like ions, metabolites,and other biomolecules in biosamples. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  15. Effects of Au nanoparticle addition to hole transfer layer in organic solar cells based on copper naphthalocyanine and fullerene

    Institute of Scientific and Technical Information of China (English)

    Akihiko Nagata; Takeo Okun; Tsuyoshi Akiyaman; Atsushi Suzuki

    2014-01-01

    Organic solar cells based on copper naphthalocyanine (CuNc) and fullerene (C60) were fabricated, and their photovoltaic properties were investigated. C60 and CuNc were used as n-type and p-type semiconductors, respectively. In addition, the effect of Au nanoparticle addition on a hole transfer layer was investigated, and the power conversion efficiency of the devices was improved after blending the Au nanoparticles into the hole transport layer. Nanostructures of Au nanoparticles were investigated by transmission electron microscopy and X-ray diffraction. Energy levels of molecules were calculated by molecular orbital calculations, and the nanostructure and electronic properties were discussed.

  16. Magnetic induced heating of nanoparticle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S. Hunyadi [Savannah River Site (SRS), Aiken, SC (United States); Univ. of Georgia, Athens, GA (United States); Brown, M. [Savannah River Site (SRS), Aiken, SC (United States); Coopersmith, K. [Savannah River Site (SRS), Aiken, SC (United States); Fulmer, S. [Savannah River Site (SRS), Aiken, SC (United States); Sessions, H. [Savannah River Site (SRS), Aiken, SC (United States); Ali, M. [Univ. of South Carolina, Columbia, SC (United States)

    2016-12-02

    Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.

  17. Photoinduced charge and energy transfer in phthalocyanine-functionalized gold nanoparticles

    NARCIS (Netherlands)

    Kotiaho, Anne; Lahtinen, Riikka; Efimov, Alexander; Metsberg, Hanna Kaisa; Sariola, Essi; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge

    2010-01-01

    Photoinduced processes in phthalocyanine-functionalized gold nanoparticles (Pc-AuNPs) have been investigated by spectroscopic measurements. The metal-free phthalocyanines used have two linkers with thioacetate groups for bonding to the gold nanoparticle surface, and the attachment was achieved using

  18. Dexter energy transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  19. Pleiotropic functions of magnetic nanoparticles for ex vivo gene transfer.

    Science.gov (United States)

    Kami, Daisuke; Kitani, Tomoya; Kishida, Tsunao; Mazda, Osam; Toyoda, Masashi; Tomitaka, Asahi; Ota, Satoshi; Ishii, Ryuga; Takemura, Yasushi; Watanabe, Masatoshi; Umezawa, Akihiro; Gojo, Satoshi

    2014-08-01

    Gene transfer technique has various applications, ranging from cellular biology to medical treatments for diseases. Although nonviral vectors, such as episomal vectors, have been developed, it is necessary to improve their gene transfer efficacy. Therefore, we attempted to develop a highly efficient gene delivery system combining an episomal vector with magnetic nanoparticles (MNPs). In comparison with the conventional method using transfection reagents, polyethylenimine-coated MNPs introduced episomal vectors more efficiently under a magnetic field and could express the gene in mammalian cells with higher efficiency and for longer periods. This novel in vitro separation method of gene-introduced cells utilizing the magnetic property of MNPs significantly facilitated the separation of cells of interest. Transplanted cells in vivo were detected using magnetic resonance. These results suggest that MNPs play multifunctional roles in ex vivo gene transfer, such as improvement of gene transfer efficacy, separation of cells, and detection of transplanted cells. This study convincingly demonstrates enhanced efficiency of gene transfer via magnetic nanoparticles. The method also enables magnetic sorting of cells positive for the transferred gene, and in vivo monitoring of the process with MRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2015-09-24

    Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs) as donors in luminescence resonance energy transfer (LRET). UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD) of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR) excitation.

  1. A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods

    International Nuclear Information System (INIS)

    Dai, Shaoliang; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2016-01-01

    The authors describe a turn-on luminescence resonance energy transfer (LRET) method for the detection of the mycotoxin Ochratoxin A (OTA). It utilizes upconversion nanoparticles (UCNPs) of the type NaYF_4: Yb, Er as the energy donor and gold nanorods (Au NRs) as the acceptor. Biotin-labeled OTA aptamers were bound to the surface of the avidin-functionalized UCNPs. The AuNRs, in turn, were modified with thiolated OTA aptamer cDNA via thiol chemistry. The emission band of the UCNPs under 980-nm laser excitation has a maximum peaking at 657 nm and overlaps the absorption band of the AuNRs which peaks at 660 nm. Quenching of luminescence occurs because the hybridization actions shorten the distance between UCNPs and AuNRs. If, however, OTA is added, the two kinds of particles separate again because of the high affinity between OTA and the OTA aptamer. As a result, luminescence is recovered. The calibration plot is linear in the 0.05 to 100 ng mL"−"1 OTA concentration range, and the limit of detection is 27 pg mL"−"1. The method was successfully applied to the determination of OTA in beer. (author)

  2. Effect of chaotic movements of nanoparticles for nanofluid heat transfer augmentation by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Cui, Wenzheng; Shen, Zhaojie; Yang, Jianguo; Wu, Shaohua

    2015-01-01

    Through Molecular Dynamics simulation, the chaotic movements of nanoparticles in base fluid are investigated. Based on the simulated results of translational and rotational velocities of nanoparticles, the effect of nanoparticle movements for heat transfer in nanofluids is discussed. Furthermore, the influence of nanoparticle movements for the base fluid is studied. The fluid near a nanoparticle is divided into three levels: (1) absorption layer, (2) rotating fluid, and (3) spherical existential space, or called rotating fluid element. And the microscopic structure of nanofluid which is composed of countless rotating fluid elements is proposed. - Highlights: • The orders of magnitude of translational and rotational motions for nanoparticles are given. • The microscopic structure around a nanoparticle is proposed. • Mechanisms of heat transfer enhancement in nanofluids are discussed

  3. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.

    Science.gov (United States)

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2016-02-23

    We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.

  4. Effect of Interface energy and electron transfer on shape, plasmon resonance and SERS activity of supported surfactant-free gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Dastmalchi, Babak [Ames Laboratory; Suvorova, Alexandra [University of Western Australia; Bianco, Giuseppe V. [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Hingerl, Kurt [Johannes Kepler University Linz; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP

    2014-01-01

    For device integration purposes plasmonic metal nanoparticles must be supported/deposited on substrates. Therefore, it is important to understand the interaction between surfactant-free plasmonic metal nanoparticles and different substrates, as well as to identify factors that drive nanoparticles nucleation and formation. Here we show that for nanoparticles grown directly on supports, the substrate/nanoparticle interfacial energy affects the equilibrium shape of nanoparticles. Therefore, oblate, spherical and prolate Au nanoparticles (NPs) with different shapes have been deposited by radiofrequency sputtering on substrates with different characteristics, namely a dielectric oxide Al2O3 (0001), a narrow bandgap semiconductor Si (100), and a polar piezoelectric wide bandgap semiconductor 4H–SiC (0001). We demonstrate that the higher the substrate surface energy, the higher the interaction with the substrate, resulting in flat prolate Au nanoparticles. The resulting localized surface plasmon resonance characteristics of Au NPs/Al2O3, Au NPs/Si and Au NPs/SiC have been determined by spectroscopic ellipsometry and correlated with their structure and shape studied by transmission electron microscopy. Finally, we have demonstrated the diverse response of the tailored plasmonic substrates as ultrasensitive SERS chemical sensors. Flat oblates Au NPs on SiC result in an enhanced and more stable SERS response. The experimental findings are validated by numerical simulations of electromagnetic fields.

  5. Carbon nanoparticle stabilised liquid|liquid micro-interfaces for electrochemically driven ion-transfer processes

    International Nuclear Information System (INIS)

    MacDonald, Stuart M.; Fletcher, Paul D.I.; Cui Zhenggang; Opallo, Marcin; Chen Jingyuan; Marken, Frank

    2007-01-01

    Stabilised liquid|liquid interfaces between an organic 4-(3-phenylpropyl)-pyridine (PPP) phase and an aqueous electrolyte phase are obtained in the presence of suitable nanoparticles. The use of nanoparticulate stabilisers (ca. 30 nm diameter laponite or 9-18 nm diameter carbon) in 'Pickering' emulsion systems allows stable organic microdroplets to be formed and these are readily deposited onto conventional tin-doped indium oxide (ITO) electrodes. In contrast to the electrically insulating laponite nanoparticles, conducting carbon nanoparticles are shown to effectively catalyse the simultaneous electron transfer and ion transfer process at triple phase boundary junctions. Anion transfer processes between the aqueous and organic phase are driven electrochemically at the extensive triple phase junction carbon nanoparticle|4-(3-phenylpropyl)-pyridine|aqueous electrolyte. The organic phase consists of a redox active reagent 5,10,15,20-tetraphenyl-21H,23H-porphinato manganese(III) (MnTPP + ), 5,10,15,20-tetraphenyl-21H,23H-porphinato iron(III) (FeTPP + ), or proto-porphyrinato-IX iron(III) (hemin) dissolved in 4-(3-phenylpropyl)-pyridine (PPP). The composition of the aqueous electrolyte phase determines the reversible potential for the Nernstian anion transfer process. The methodology is shown to be versatile and, in future, could be applied more generally in liquid|liquid electroanalysis

  6. Colloidal Nanoparticles of Ln3+-Doped LaVO4: Energy Transfer to Visible- and Near-Infrared-Emitting Lanthanide Ions

    NARCIS (Netherlands)

    Stouwdam, J.W.; Raudsepp, Mati; van Veggel, F.C.J.M.

    2005-01-01

    Colloidal, organic solvent-soluble Ln3+-doped LaVO4 nanoparticles have been synthesized by a precipitation reaction in the presence of (C18H37O)2PS2- as ligand, that coordinates to the surface of the nanoparticles. The materials are well soluble in chlorinated solvent such as chloroform. Energy

  7. Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel

    Energy Technology Data Exchange (ETDEWEB)

    Malvandi, A., E-mail: amirmalvandi@aut.ac.ir [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran (Iran, Islamic Republic of); Ganji, D.D., E-mail: ddg_davood@yahoo.com [Mechanical Engineering Department, Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of)

    2014-08-01

    The present study is a theoretical investigation of the laminar flow and convective heat transfer of water/alumina nanofluid inside a parallel-plate channel in the presence of a uniform magnetic field. A modified two-component, four-equation, nonhomogeneous equilibrium model was employed for the alumina/water nanofluid, which fully accounted for the effect of the nanoparticle volume fraction distribution. The no-slip condition of the fluid–solid interface is abandoned in favor of a slip condition which appropriately represents the non-equilibrium region near the interface at micro/nano channels. The results obtained indicated that nanoparticles move from the heated walls (nanoparticles depletion) toward the core region of the channel (nanoparticles accumulation) and construct a non-uniform nanoparticles distribution. Moreover, in the presence of the magnetic field, the near wall velocity gradients increase, enhancing the slip velocity and thus the heat transfer rate and pressure drop increase. - Highlights: • Force convection of alumina/water nanofluid inside a parallel-plate channel. • Magnetic field effects on nanoparticles' migration. • Effects of Brownian motion and thermophoresis diffusivities on nanoparticle migration. • Different mechanisms of heat transfer rate based on nanoparticles' diameter.

  8. Energy transfer properties and mechanisms

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the energy transfer mechanisms in azulene, benzene, toluene, and isotopomers. Also discussed is the coupled energy reservoirs model, quantum effects in energy transfer, NO 2 energy transfer, densities of states, the reactant states model, and O 3 excited electronic states

  9. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya [Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida 201308 (India)

    2016-05-28

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  10. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles.

    Science.gov (United States)

    Lee, Mi Gyoung; Moon, Cheon Woo; Park, Hoonkee; Sohn, Woonbae; Kang, Sung Bum; Lee, Sanghan; Choi, Kyoung Jin; Jang, Ho Won

    2017-10-01

    The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape-controlled Au NPs on bismuth vanadate (BiVO 4 ) are studied, and a largely enhanced photoactivity of BiVO 4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO 4 achieves 2.4 mA cm -2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO 4 . It is the highest value among the previously reported plasmonic Au NPs/BiVO 4 . Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape-controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Calculation of the surface free energy of fcc copper nanoparticles

    International Nuclear Information System (INIS)

    Jia Ming; Lai Yanqing; Tian Zhongliang; Liu Yexiang

    2009-01-01

    Using molecular dynamics simulations with the modified analytic embedded-atom method we calculate the Gibbs free energy and surface free energy for fcc Cu bulk, and further obtain the Gibbs free energy of nanoparticles. Based on the Gibbs free energy of nanoparticles, we have investigated the heat capacity of copper nanoparticles. Calculation results indicate that the Gibbs free energy and the heat capacity of nanoparticles can be divided into two parts: bulk quantity and surface quantity. The molar heat capacity of the bulk sample is lower compared with the molar heat capacity of nanoparticles, and this difference increases with the decrease in the particle size. It is also observed that the size effect on the thermodynamic properties of Cu nanoparticles is not really significant until the particle is less than about 20 nm. It is the surface atoms that decide the size effect on the thermodynamic properties of nanoparticles

  12. Trophic transfer of metal-based nanoparticles in aquatic environments

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal; Selck, Henriette; Winther-Nielsen, Margrethe

    2016-01-01

    Metal-containing engineered nanoparticles (Me-ENPs) are used in a wide range of products including inks, plastics, personal care products, clothing and electronic devices. The release of Me-ENPs has been demonstrated from some products, and thus, particles are likely to enter the aquatic environm......Metal-containing engineered nanoparticles (Me-ENPs) are used in a wide range of products including inks, plastics, personal care products, clothing and electronic devices. The release of Me-ENPs has been demonstrated from some products, and thus, particles are likely to enter the aquatic...... environment where they have been shown to be taken up by a variety of species. Therefore, there is a possibility that Me-ENPs will enter and pass through aquatic food webs, but research on this topic is limited. In this tutorial review, we discuss the factors contributing to trophic transfer of Me......-ENPs, and where this information is scarce, we utilize the existing literature on aqueous metal trophic transfer as a potential starting point for greater mechanistic insight and for setting directions for future studies. We identify four key factors affecting trophic transfer of Me-ENPs: (1) environmental...

  13. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng; Deng, Renren; Wang, Juan; Wang, Qingxiao; Han, Yu; Zhu, Haomiao; Chen, Xueyuan; Liu, Xiaogang

    2011-01-01

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  14. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng

    2011-10-23

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  15. Phase-transfer and film formation of silver nanoparticles.

    Science.gov (United States)

    Sarkar, Anjana; Chadha, Ridhima; Biswas, Nandita; Mukherjee, Tulsi; Kapoor, Sudhir

    2009-04-01

    In this article, a simple method for either transfer of silver nanoparticles from formamide to chloroform or to form a film at their interface is demonstrated. The transfer of the particles is a two-step size-dependent process. The size distribution of the colloidal hydrophobic silver particles in chloroform was almost the same as that before its transfer. Particles can be isolated by evaporation of chloroform. During evaporation, the hydrophobic particles become hydrophilic (charged) due to the formation of bilayer of CTAB over their surface. The isolated particles can be re-dispersed easily in polar solvents such as water and methanol. Nanocrystalline film of Ag is also prepared at the formamide-chloroform interface using suitable stabilizers in two immiscible layers. The nanocrystals have been characterized by various microscopic and spectroscopic techniques. The free standing film could be easily transferred on solid support.

  16. Green and energy-efficient methods for the production of metallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Mitra Naghdi

    2015-12-01

    Full Text Available In the last decade, researchers paid great attention to the concept of “Green Chemistry”, which aims at development of efficient methods for the synthesis of nanoparticles (NPs in terms of the least possible impact on human life and environment. Generally, several reagents including precursors, reducing agents, stabilizing agents and solvents are used for the production of NPs and in some cases, energy is needed to reach the optimum temperature for reduction. Therefore, to develop a green approach, researchers had the opportunity to investigate eco-friendly reagents and new energy transfer techniques. In order to substitute the harmful reagents with green ones, researchers worked on different types of saccharides, polyols, carboxylic acids, polyoxometalates and extracts of various plants that can play the role of reducers, stabilizers or solvents. Also, there are some reports on using ultraviolet (UV, gamma and microwave irradiation that are capable of reducing and provide uniform heating. According to the literature, it is possible to use green reagents and novel energy transfer techniques for production of NPs. However, these new synthesis routes should be optimized in terms of performance, cost, product quality (shape and size distribution and scale-up capability. This paper presents a review on most of the employed green reagents and new energy transfer techniques for the production of metallic NPs.

  17. Influence of synthesis energy on physical properties of the oxide nanoparticles; Influencia da energia de sintese nas propriedades fisicas de nanoparticulas de oxidos

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.A.S.; Mello, V.S. e; Trajano, M.F.; Alves, S.M., E-mail: alexandre_xb@hotmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2014-07-01

    Nanoparticles are present in many research areas giving a range of applications, one of them is lubricant technology. Oxide nanoparticles have been used as extreme pressure additives in boundary lubrication with good results. The great challenge of this technology is in control of the nanoparticles dispersion to ensure their actions as anti-wear additive. This study goal was to evaluate the influence of the amount of energy synthesis in the dispersive properties, size and shape of nanoparticles synthesized by microwave, varying the amount of energy transferred during the synthesis process. The morphology of the nanoparticles was evaluated by SEM and XRD spectrum was used to identify the crystallite size and the formation of copper oxides. The results showed that the size and shape of the particle, and consequently the dispersion, are directly related to amount of energy used in the synthesis are directly related. (author)

  18. Plasma Synthesis of Nanoparticles for Nanocomposite Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Alex W. Kawczak

    2008-09-01

    The nanocomposite energy applications for plasma reactor produced nanoparticles are reviewed. Nanoparticles are commonly defined as particles less than 100 nm in diameter. Due to this small size, nanoparticles have a high surface-to-volume ratio. This increases the surface energy compared to the bulk material. The high surface-to-volume ratio and size effects (quantum effects) give nanoparticles distinctive chemical, electronic, optical, magnetic and mechanical properties from those of the bulk material. Nanoparticles synthesis can be grouped into 3 broad approaches. The first one is wet phase synthesis (sol-gel processing), the second is mechanical attrition, and the third is gas-phase synthesis (aerosol). The properties of the final product may differ significantly depending on the fabrication route. Currently, there are no economical large-scale production processes for nanoparticles. This hinders the widespread applications of nanomaterials in products. The Idaho National Laboratory (INL) is engaging in research and development of advanced modular hybrid plasma reactors for low cost production of nanoparticles that is predicted to accelerate application research and enable the formation of technology innovation alliances that will result in the commercial production of nanocomposites for alternative energy production devices such as fuel cells, photovoltaics and electrochemical double layer capacitors.

  19. Near-field thermal upconversion and energy transfer through a Kerr medium.

    Science.gov (United States)

    Khandekar, Chinmay; Rodriguez, Alejandro W

    2017-09-18

    We present an approach for achieving large Kerr χ (3) -mediated thermal energy transfer at the nanoscale that exploits a general coupled-mode description of triply resonant, four-wave mixing processes. We analyze the efficiency of thermal upconversion and energy transfer from mid- to near-infrared wavelengths in planar geometries involving two slabs supporting far-apart surface plasmon polaritons and separated by a nonlinear χ (3) medium that is irradiated by externally incident light. We study multiple geometric and material configurations and different classes of intervening mediums-either bulk or nanostructured lattices of nanoparticles embedded in nonlinear materials-designed to resonantly enhance the interaction of the incident light with thermal slab resonances. We find that even when the entire system is in thermodynamic equilibrium (at room temperature) and under typical drive intensities ~ W/μm 2 , the resulting upconversion rates can approach and even exceed thermal flux rates achieved in typical symmetric and non-equilibrium configurations of vacuum-separated slabs. The proposed nonlinear scheme could potentially be exploited to achieve thermal cooling and refrigeration at the nanoscale, and to actively control heat transfer between materials with dramatically different resonant responses.

  20. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface

    International Nuclear Information System (INIS)

    Das, Sudev; Kumar, D.S.; Bhaumik, Swapan

    2016-01-01

    Highlights: • EBPVD approach was employed for fabrication of well-ordered nanoparticle coated micro/nanostructure on metal surface. • Nucleate boiling heat transfer performance on nanoparticle coated micro/nanostructure surface was experimentally studied. • Stability of nanoparticle coated surface under boiling environment was systematically studied. • 58% enhancement of boiling heat transfer coefficient was found. • Present experimental results are validated with well known boiling correlations. - Abstract: Electron beam physical vapor deposition (EBPVD) coating approach was employed for fabrication of well-ordered of nanoparticle coated micronanostructures on metal surfaces. This paper reports the experimental study of augmentation of pool boiling heat transfer performance and stabilities of silicon oxide nanoparticle coated surfaces with water at atmospheric pressure. The surfaces were characterized with respect to dynamic contact angle, surface roughness, topography, and morphology. The results were found that there is a reduction of about 36% in the incipience superheat and 58% enhancement in heat transfer coefficient for silicon oxide coated surface over the untreated surface. This enhancement might be the reason of enhanced wettability, enhanced surface roughness and increased number of a small artificial cavity on a heating surface. The performance and stability of nanoparticle coated micro/nanostructure surfaces were examined and found that after three runs of experiment the heat transfer coefficient with heat flux almost remain constant.

  1. Optical bar code recognition of methyl salicylate (MES) for environmental monitoring using fluorescence resonance energy transfer (FRET) on thin films

    Science.gov (United States)

    Smith, Clint; Tatineni, Balaji; Anderson, John; Tepper, Gary

    2006-10-01

    Fluorescence resonance energy transfer (FRET) is a process in which energy is transferred nonradiatively from one fluorophore (the donor) in an excited electron state to another, the chromophore (the acceptor). FRET is distinctive in its ability to reveal the presence of specific recognition of select targets such as the nerve agent stimulant Methyl Salicylate (MES) upon spectroscopic excitation. We introduce a surface imprinted and non-imprinted thin film that underwent AC-Electrospray ionization for donor-acceptor pair(s) bound to InGaP quantum dots and mesoporous silicate nanoparticles. The donor-acceptor pair used in this investigation included MES (donor) and 6-(fluorescein-5-(and-6)- carboxamido) hexanoic acid, succinimidyl ester bound to InGaP quantum dots (acceptor). MES was then investigated as a donor to various acceptor fluorophore: InGaP: mesoporous silicate nanoparticle layers.

  2. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles

    Science.gov (United States)

    Carles, R.; Bayle, M.; Bonafos, C.

    2018-04-01

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  3. Mathematical study of probe arrangement and nanoparticle injection effects on heat transfer during cryosurgery.

    Science.gov (United States)

    Mirkhalili, Seyyed Mostafa; Ramazani S A, Ahmad; Nazemidashtarjandi, Saeed

    2015-11-01

    Blood vessels, especially large vessels have a greater thermal effect on freezing tissue during cryosurgery. Vascular networks act as heat sources in tissue, and cause failure in cryosurgery and reappearance of cancer. The aim of this study is to numerically simulate the effect of probe location and multiprobe on heat transfer distribution. Furthermore, the effect of nanoparticles injection is studied. It is shown that the small probes location near large blood vessels could help to reduce the necessary time for tissue freezing. Nanoparticles injection shows that the thermal effect of blood vessel in tissue is improved. Using Au, Ag and diamond nanoparticles have the most growth of ice ball during cryosurgery. However, polytetrafluoroethylene (PTFE) nanoparticle can be used to protect normal tissue around tumor cell due to its influence on reducing heat transfer in tissue. Introduction of Au, Ag and diamond nanoparticles combined with multicryoprobe in this model causes reduction of tissue average temperature about 50% compared to the one probe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of carrier gas composition on transferred arc metal nanoparticle synthesis

    International Nuclear Information System (INIS)

    Stein, Matthias; Kiesler, Dennis; Kruis, Frank Einar

    2013-01-01

    Metal nanoparticles are used in a great number of applications; an effective and economical production scaling-up is hence desirable. A simple and cost-effective transferred arc process is developed, which produces pure metal (Zn, Cu, and Ag) nanoparticles with high production rates, while allowing fast optimization based on energy efficiency. Different carrier gas compositions, as well as the electrode arrangements and the power input are investigated to improve the production and its efficiency and to understand the arc production behavior. The production rates are determined by a novel process monitoring method, which combines an online microbalance method with a scanning mobility particle sizer for fast production rate and size distribution measurement. Particle characterization is performed via scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction measurements. It is found that the carrier gas composition has the largest impact on the particle production rate and can increase it with orders of magnitude. This appears to be not only a result of the increased heat flux and melt temperature but also of the formation of tiny nitrogen (hydrogen) bubbles in the molten feedstock, which impacts feedstock evaporation significantly in bi-atomic gases. A production rate of sub 200 nm particles from 20 up to 2,500 mg/h has been realized for the different metals. In this production range, specific power consumptions as low as 0.08 kWh/g have been reached.

  5. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj

    2013-12-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  6. Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging.

    Science.gov (United States)

    Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence

    2012-05-01

    Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.

  7. New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: Potential heat transfer fluid for energy management

    International Nuclear Information System (INIS)

    Manikandan, S.; Rajan, K.S.

    2017-01-01

    Highlights: • Hybrid nanofluid containing sand nanoparticles & encapsulated paraffin wax prepared. • Specific heat of hybrid nanofluid 9% greater than that of PG-water mixture. • Specific heat & thermal conductivity enhanced at optimum paraffin wax concentration. • Hybrid nanofluid with 1 wt.% paraffin wax & 1 vol% sand nanoparticles best suited. - Abstract: The reduction in specific heat commonly encountered due to the addition of nanoparticles to a heat transfer fluid such as propylene glycol-water mixture, can be overcome by co-dispersing surfactant-encapsulated paraffin wax, leading to formation of a hybrid nanofluid. Experimental investigations have been carried out on the preparation and evaluation of thermophysical properties of a hybrid nanofluid containing pluronic P-123 encapsulated paraffin wax (70–120 nm diameter, 1–5 wt.%) and sand nanoparticles (1 vol%) in propylene glycol-water mixture. The comparison of results of differential scanning calorimetry of pure paraffin wax and encapsulated paraffin wax revealed encapsulation efficiency of 84.4%. The specific heat of hybrid nanofluids monotonously increased with paraffin wax concentration, with 9.1% enhancement in specific heat for hybrid nanofluid containing 5 wt.% paraffin wax, in comparison to propylene glycol-water mixture. There exists an optimum paraffin wax concentration (1 wt.%) for the hybrid nanofluid at which the combination of various thermophysical properties such as specific heat, thermal conductivity and viscosity are favorable for use as heat transfer fluid. Such a hybrid nanofluid can be used as a substitute for propylene glycol-water mixture in solar thermal systems.

  8. Energy-transfer properties and mechanisms:

    International Nuclear Information System (INIS)

    Barker, J.R.

    1988-02-01

    This project continues the research on vibrational energy transfer involving large molecules. The motivation of the research is to advance knowledge concerning molecular energy in the electronic ground state so that meaningful predictions can be made. The experimental program will use several techniques on several different molecules with the aim of eliminating experimental artifacts and gaining more insight into energy transfer processes. The theoretical effort will be directed toward assessing the validity of the Biased Random Walk theory and toward developing simpler models that adequately describe the energy transfer process. 6 figs

  9. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Radka Gromnicova

    Full Text Available The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier.

  10. Surface energy of explosive nanoparticles

    Science.gov (United States)

    Pineau, Nicolas; Bidault, Xavier; Soulard, Laurent

    2017-06-01

    Recent experimental studies show that nanostructuration has a substantial impact on the detonation of high explosives: a nanostructured one leads to smaller nanodiamonds than a microstructured one. Whether it comes from a higher surface energy or from porosity, the origin of these different behaviors must be investigated. The surface energy of TATB nanoparticles with a radius from 2 nm upto 60 nm has been determined by means of ReaxFF-based simulations. Then, using the Rankine-Hugoniot relations and the equation of states of the bulk material, the contribution of this excess energy to the heating of a shock-compressed nanostructured (and porous) material is evaluated and compared to the thermal effect due to its porosity collapse. A maximum temperature increase of 50 K is found for 4-nm nanoparticles, which remains negligible when compared to the few hundred degrees induced by the compaction work.

  11. Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine)

    International Nuclear Information System (INIS)

    Ji Minglei; Yang Wuli; Ren Qingguang; Lu Daru

    2009-01-01

    In order to enhance the dispersion ability of hydrophobic nanoparticles in water while maintaining their unique properties, we utilized poly(ethylene glycol) grafted hyperbranched poly(amido amine) (h-PAMAM-g-PEG) to modify three types of hydrophobic nanoparticle, CdSe, Au, and Fe 3 O 4 , and transferred them into water to extend their applications in biology. Considering the large amounts of amino groups in hyperbranched poly(amido amine) (h-PAMAM) polymer, complexation interaction between h-PAMAM-g-PEG copolymer and nanoparticles was achieved and ligand exchange between the copolymers and original small molecules ligands occurred. The transferred nanoparticles could be easily dispersed in water with better stability, and their unique properties, such as fluorescence, surface plasmon resonance, and superparamagnetism, were well maintained in the ligand exchange process. In addition, increasing the number of grafted PEG showed a negative effect on the ligand exchange process. Due to the existence of h-PAMAM-g-PEG ligands, the stabilized nanoparticles have improved stability in aqueous and ionic solutions. In the case of CdSe nanoparticles, the h-PAMAM-g-PEG layer leads to a lower cytotoxicity when compared with bare CdSe particles, and they could be directly used in bioimaging.

  12. Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material

    Directory of Open Access Journals (Sweden)

    S F Hosseinizadeh

    2011-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.

  13. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    International Nuclear Information System (INIS)

    Goliney, I.Yu.; Sugakov, V.I.; Valkunas, L.; Vertsimakha, G.V.

    2012-01-01

    Highlights: ► Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. ► Light absorption of LH2 is enhanced by a metal nanoparticle. ► Using nanoshells allows reaching resonance between molecular and plasmons. ► Metal nanoparticles introduce additional channel of excitation decay. ► Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  14. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Goliney, I.Yu., E-mail: igoliney@kinr.kiev.ua [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Sugakov, V.I. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Valkunas, L. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Department of Theoretical Physics, Vilnius University, Sauletekio 9, Build. 3, 10222 Vilnius (Lithuania); Vertsimakha, G.V. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. Black-Right-Pointing-Pointer Light absorption of LH2 is enhanced by a metal nanoparticle. Black-Right-Pointing-Pointer Using nanoshells allows reaching resonance between molecular and plasmons. Black-Right-Pointing-Pointer Metal nanoparticles introduce additional channel of excitation decay. Black-Right-Pointing-Pointer Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  15. Energy transfer properties and mechanisms

    International Nuclear Information System (INIS)

    Barker, J.R.

    1993-01-01

    Since no single experimental technique is the best method for energy transfer experiments, we have used both time-dependent infrared fluorescence (IRF) and time-dependent thermal lensing (TDTL) to study energy transfer in various systems. We are investigating pump-probe techniques employing resonance enhanced multiphoton ionization (REMPI). IRF was used to study benzene, azulene, and toluene. TDTL was used to study CS 2 and SO 2 (data not given for latter). Large molecule energy transfer mechanisms are discussed. 10 figs

  16. Far-field RF energy transfer and harvesting

    NARCIS (Netherlands)

    Visser, H.J.; Vullers, R.; Briand, D.; Yeatman, E.; Roundy, S.

    2015-01-01

    This chapter deals with radio frequency (RF) energy transfer over a distance. After explaining the differences between nonradiative and radiative RF energy transfer, the chapter gives definitions for transfer and harvesting. Nonradiative RF energy transfer is mostly employed in inductive systems,

  17. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Energy Technology Data Exchange (ETDEWEB)

    Smolkova, Ilona S. [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G. Masaryk Sq. 275, 762 72 Zlin (Czech Republic); Kazantseva, Natalia E., E-mail: nekazan@yahoo.com [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Schneeweiss, Oldrich; Pizurova, Nadezda [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic)

    2015-01-15

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g{sup −1} to 48 emu g{sup −1}) but does not affect the heating ability of nanoparticles. A 2–7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g{sup −1}. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy. - Highlights: • Mixed phase iron oxide magnetic nanoparticles were obtained by coprecipitation. • A part of nanoparticles was annealed at 300 °C to achieve the single-phase γ-Fe{sub 2}O{sub 3}. • Nanoparticles revealed ferromagnetic-like behavior due to interparticle interactions. • Nanoparticles glycerol

  18. Nanoparticle mediated electron transfer across organic layers: from current understanding to applications

    Energy Technology Data Exchange (ETDEWEB)

    Gooding, J. Justin; Alam, Muhammad Tanzirul; Barfidokht, Abbas; Carter, Lachlan, E-mail: justin.gooding@unsw.edu.au [School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney (Australia)

    2014-03-15

    In the last few years electrode-organic layer-nanoparticle constructs have attracted considerable research interest for systems where in the absence of the nanoparticles the electrode is passivated. This is because it has been observed that if the organic layer is a good self-assembled monolayer that passivates the electrode, the presence of the nanoparticles 'switches on' faradaic electrochemistry and because electron transfer between the electrode and the nanoparticles is apparently independent of the thickness of the organic layer. This review 1) outlines the full extent of the experimental observations regarding this phenomenon, 2) discusses a recent theoretical description to explain the observations that have just been supported with experimental evidences and 3) provides an overview of the application of these systems in sensing and photovoltaic. (author)

  19. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline.

    Science.gov (United States)

    Zhang, Hui; Fang, Congcong; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2015-11-15

    In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  1. Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes.

    Science.gov (United States)

    Zhang, Xiaojian; Liu, Huan; Wang, Jinrong; Ren, Guangyuan; Xie, Beizhen; Liu, Hong; Zhu, Ying; Jiang, Lei

    2015-11-28

    Dissimilatory metal reducing bacteria are capable of extracellular electron transfer (EET) to insoluble metal oxides as external electron acceptors for their anaerobic respiration, which is recognized as an important energy-conversion process in natural and engineered environments, such as in mineral cycling, bioremediation, and microbial fuel/electrolysis cells. However, the low EET efficiency remains one of the major bottlenecks for its practical application. We report firstly that the microbial current generated by Shewanella loihica PV-4 (S. loihica PV-4) could be greatly improved that is up to ca. 115 fold, by adding antimony-doped tin oxide (ATO) nanoparticles in the electrochemical reactor. The results demonstrate that the biocompatible, electrically conductive ATO nanoparticles acted as active microelectrodes could facilitate the formation of a cells/ATO composite biofilm and the reduction of the outer membrane c-type cytochromes (OM c-Cyts) that are beneficial for the electron transfer from cells to electrode. Meanwhile, a synergistic effect between the participation of OM c-Cyts and the accelerated EET mediated by cell-secreted flavins may play an important role for the enhanced current generation in the presence of ATO nanoparticles. Moreover, it is worth noting that the TCA cycle in S. loihica PV-4 cells is activated by adding ATO nanoparticles, even if the potential is poised at +0.2 V, thereby also improving the EET process. The results presented here may provide a simple and effective strategy to boost the EET of S. loihica PV-4 cells, which is conducive to providing potential applications in bioelectrochemical systems.

  2. Palladium Nanoparticles-Based Fluorescence Resonance Energy Transfer Aptasensor for Highly Sensitive Detection of Aflatoxin M₁ in Milk.

    Science.gov (United States)

    Li, Hui; Yang, Daibin; Li, Peiwu; Zhang, Qi; Zhang, Wen; Ding, Xiaoxia; Mao, Jin; Wu, Jing

    2017-10-13

    A highly sensitive aptasensor for aflatoxin M₁ (AFM₁) detection was constructed based on fluorescence resonance energy transfer (FRET) between 5-carboxyfluorescein (FAM) and palladium nanoparticles (PdNPs). PdNPs (33 nm) were synthesized through a seed-mediated growth method and exhibited broad and strong absorption in the whole ultraviolet-visible (UV-Vis) range. The strong coordination interaction between nitrogen functional groups of the AFM₁ aptamer and PdNPs brought FAM and PdNPs in close proximity, which resulted in the fluorescence quenching of FAM to a maximum extent of 95%. The non-specific fluorescence quenching caused by PdNPs towards fluorescein was negligible. After the introduction of AFM₁ into the FAM-AFM₁ aptamer-PdNPs FRET system, the AFM₁ aptamer preferentially combined with AFM₁ accompanied by conformational change, which greatly weakened the coordination interaction between the AFM₁ aptamer and PdNPs. Thus, fluorescence recovery of FAM was observed and a linear relationship between the fluorescence recovery and the concentration of AFM₁ was obtained in the range of 5-150 pg/mL in aqueous buffer with the detection limit of 1.5 pg/mL. AFM₁ detection was also realized in milk samples with a linear detection range from 6 pg/mL to 150 pg/mL. The highly sensitive FRET aptasensor with simple configuration shows promising prospect in detecting a variety of food contaminants.

  3. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj; Verma, Mahendra K.; Samtaney, Ravi

    2013-01-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20

  4. Au@NaYF{sub 4}:Tb{sup 3+} core@shell nanostructures: Synthesis and construction of luminescence resonance energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yan; Liu, Guixia, E-mail: liuguixia22@163.com; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2016-03-15

    Luminescence resonance energy transfer (LRET) system can be constructed using NaYF{sub 4}:Tb{sup 3+} luminescence nanocrystals and gold nanoparticles (AuNPs) served as energy donor and acceptor, respectively. The AuNPs modified by cetyltrimethylammonium bromide (CTAB) were synthesized first and NaYF{sub 4}:Tb{sup 3+} shells encapsulated Au cores via a hydrothermal method. The synthesized materials were well characterized by X-ray diffraction (XRD), Fourier-transform infrared spectra (FT-IR), Transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), UV–vis absorption spectra (UV–vis) and photoluminescence (PL) measurement. The results indicate that the synthesized Au@NaYF{sub 4}:Tb{sup 3+} core–shell nanoparticles have spherical morphology with a size of 80–90 nm and the shell layers of NaYF{sub 4}:Tb{sup 3+} nanocrystals have pure cubic structure. The luminescence properties of Au@NaYF{sub 4}:Tb{sup 3+} core–shell nanoparticles are same as those of NaYF{sub 4}:Tb{sup 3+} particles. The LRET process was realized using the core–shell nanoarchitectures due to the absorption spectrum of AuNPs matches well with the major emission peaks of Tb{sup 3+} ions. The LRET experiments have successfully verified the energy transfer between NaYF{sub 4}:Tb{sup 3+} nanocrystals and AuNPs. Additionally, the emission intensities of Tb{sup 3+} ions and the content of AuNPs exhibited a fair linear correlation.

  5. Energy transfer dynamics in Light-Harvesting Dendrimers

    Science.gov (United States)

    Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.

    2002-03-01

    We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.

  6. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  7. Rotation and migration of nanoparticles for heat transfer augmentation in nanofluids by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Wenzheng Cui

    2015-09-01

    Full Text Available Nanofluids are a new generation of high-efficiency refrigerant with abnormal increased thermal conductivity and convective heat transfer properties. In view of the paucity of research work on the contribution of nanoparticle Brownian motion for the thermal conductivity augmentation, the present paper carries out a series of MD simulations to explorer the order of magnitude of nanoparticle Brownian motion and discusses the effect of nanoparticle Brownian motion for thermal conductivity enhancement of nanofluids. Various influence factors including nanoparticle shapes, sizes, and materials are considered. The Brownian motion of nanoparticles is decomposed into rotation and migration and calculated by MD simulation. By means of Peclet number, the effect of nanoparticle Brownian motion for thermal conductivity enhancement of nanofluids is discussed.

  8. Transfer of energy in an atom

    International Nuclear Information System (INIS)

    Chemin, J.F.

    2001-01-01

    In most cases the nucleus does not interact with the electron cloud because its energy range is far higher, but in some rare cases electrons from the electron cloud and the nucleus may exchange energy: an electron may de-excite by transferring a part of its energy to the nucleus that becomes itself excited (nuclear excitation by electronic transfer or NEET), conversely electrons can receive energy from the nucleus (bound internal conversion or BIC). For the first time both energy transfers have been observed: a BIC process on a tellurium-125 atom by a French team and a NEET process on a gold-197 atom by a Japanese team. (A.C.)

  9. Wireless energy transfer through non-resonant magnetic coupling

    DEFF Research Database (Denmark)

    Peng, Liang; Breinbjerg, Olav; Mortensen, Asger

    2010-01-01

    could be properly designed to minimize undesired energy dissipation in the source coil when the power receiver is out of the range. Our basic observation paves the way for more flexible design and fabrication of non-resonant mid-range wireless energy transfer systems, thus potentially impacting......We demonstrate by theoretical analysis and experimental verification that mid-range wireless energy transfer systems may take advantage of de-tuned coupling devices, without jeopardizing the energy transfer efficiency. Allowing for a modest de-tuning of the source coil, energy transfer systems...... practical implementations of wireless energy transfer....

  10. Gold and silver nanoparticles based superquenching of fluorescence: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debanjana; Chattopadhyay, Nitin, E-mail: nitin.chattopadhyay@yahoo.com

    2015-04-15

    The short review highlights the recent advances on the gold and silver nanoparticles induced efficient quenching of fluorescence from various fluorophores looking at their promising use as optical rulers and chemo-/bio- sensors. The fluorescence quenching often leads to the increase in the Stern–Volmer constant (K{sub SV}~10{sup 7}–10{sup 10} mol{sup −1} dm{sup 3}) several orders of magnitude higher than the values observed for the normal photochemical quenching processes (~10{sup 2} mol{sup −1} dm{sup 3}). This amplified quenching has been termed as “super-quenching” or “hyper-quenching”. Energy transfer (ET) is established from the donor to the metal nanoparticles rationalizing these fast quenching processes. Considering the distance dependence of the ET process, Förster resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) are ascribed to take place. These sensitive distance dependent phenomena serve as the spectroscopic ruler to measure the intra- or intermolecular distances between the interacting partners. In this account focus has been laid on the size dependent energy transfer and super- and hyper- quenching of the fluorescence of the donor moieties by the nanometals and their probable applications in sensing. Rationalization has been made for the nanoparticle induced huge enhancement in the quenching efficiency. The impact of this review lies in the possible application of these amplified quenching processes in designing high sensitive chemical and biological sensors. - Highlights: • Super efficient quenching of fluorescence of probes by gold and silver nanoparticles is highlighted. • The amplified fluorescence quenching of dyes and polymers is rationalized. • Energy transfer is assigned to be responsible for the efficient quenching process. • Amplified quenching has its potential use in designing sensitive chemical/biological sensors.

  11. Gold and silver nanoparticles based superquenching of fluorescence: A review

    International Nuclear Information System (INIS)

    Ghosh, Debanjana; Chattopadhyay, Nitin

    2015-01-01

    The short review highlights the recent advances on the gold and silver nanoparticles induced efficient quenching of fluorescence from various fluorophores looking at their promising use as optical rulers and chemo-/bio- sensors. The fluorescence quenching often leads to the increase in the Stern–Volmer constant (K SV ~10 7 –10 10 mol −1 dm 3 ) several orders of magnitude higher than the values observed for the normal photochemical quenching processes (~10 2 mol −1 dm 3 ). This amplified quenching has been termed as “super-quenching” or “hyper-quenching”. Energy transfer (ET) is established from the donor to the metal nanoparticles rationalizing these fast quenching processes. Considering the distance dependence of the ET process, Förster resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) are ascribed to take place. These sensitive distance dependent phenomena serve as the spectroscopic ruler to measure the intra- or intermolecular distances between the interacting partners. In this account focus has been laid on the size dependent energy transfer and super- and hyper- quenching of the fluorescence of the donor moieties by the nanometals and their probable applications in sensing. Rationalization has been made for the nanoparticle induced huge enhancement in the quenching efficiency. The impact of this review lies in the possible application of these amplified quenching processes in designing high sensitive chemical and biological sensors. - Highlights: • Super efficient quenching of fluorescence of probes by gold and silver nanoparticles is highlighted. • The amplified fluorescence quenching of dyes and polymers is rationalized. • Energy transfer is assigned to be responsible for the efficient quenching process. • Amplified quenching has its potential use in designing sensitive chemical/biological sensors

  12. Binding Energy, Vapor Pressure and Melting Point of Semiconductor Nanoparticles

    International Nuclear Information System (INIS)

    H. H. Farrell; C. D. Van Siclen

    2007-01-01

    Current models for the cohesive energy of nanoparticles generally predict a linear dependence on the inverse particle diameter for spherical clusters, or, equivalently, on the inverse of the cube root of the number of atoms in the cluster. Although this is generally true for metals, we find that for the group IV semiconductors, C, Si and Ge, this linear dependence does not hold. Instead, using first principles, density functional theory calculations to calculate the binding energy of these materials, we find a quadratic dependence on the inverse of the particle size. Similar results have also been obtained for the metallic group IV elements Sn and Pb. This is in direct contradiction to current assumptions. Further, as a consequence of this quadratic behavior, the vapor pressure of semiconductor nanoparticles rises more slowly with decreasing size than would be expected. In addition, the melting point of these nanoparticles will experience less suppression than experienced by metal nanoparticles with comparable bulk binding energies. This non-linearity also affects sintering or Ostwald ripening behavior of these nanoparticles as well as other physical properties that depend on the nanoparticle binding energy. The reason for this variation in size dependence involves the covalent nature of the bonding in semiconductors, and even in the 'poor' metals. Therefore, it is expected that this result will hold for compound semiconductors as well as the elemental semiconductors

  13. A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid: An application to solar energy

    Science.gov (United States)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Tlili, I.

    2018-06-01

    In this article the idea of Caputo time fractional derivatives is applied to MHD mixed convection Poiseuille flow of nanofluids with graphene nanoparticles in a vertical channel. The applications of nanofluids in solar energy are argued for various solar thermal systems. It is argued in the article that using nanofluids is an alternate source to produce solar energy in thermal engineering and solar energy devices in industries. The problem is modelled in terms of PDE's with initial and boundary conditions and solved analytically via Laplace transform method. The obtained solutions for velocity, temperature and concentration are expressed in terms of Wright's function. These solutions are significantly controlled by the variations of parameters including thermal Grashof number, Solutal Grashof number and nanoparticles volume fraction. Expressions for skin-friction, Nusselt and Sherwood numbers are also determined on left and right walls of the vertical channel with important numerical results in tabular form. It is found that rate of heat transfer increases with increasing nanoparticles volume fraction and Caputo time fractional parameters.

  14. A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors.

    Science.gov (United States)

    Doughan, Samer; Uddayasankar, Uvaraj; Krull, Ulrich J

    2015-06-09

    Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Luminescent properties and energy transfer of Gd{sup 3+}/Eu{sup 3+} co-doped cubic CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yidi; Zou, Haifeng; Zhang, Bowen; Zhou, Xiuqing; Song, Yanhua; Zheng, Keyan [College of Chemistry, Jilin University, Changchun 130012 (China); Shi, Zhan [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Sheng, Ye, E-mail: shengye@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2016-10-15

    Gd{sup 3+} and Eu{sup 3+} ions co-doped CaCO{sub 3} nanoparticles have been successfully synthesized via carbonization method. The emission spectra of co-doped CaCO{sub 3} phosphors in the range of VUV–vis spectral were studied. The results reveal that the co-doped CaCO{sub 3} phosphors show intense red emission in the VUV range because of the Gd{sup 3+} ions as sensitizers. The energy transfer process from Gd{sup 3+} to Eu{sup 3+} in CaCO{sub 3}:Gd{sup 3+}/Eu{sup 3+} phosphors was investigated and discussed in terms of the luminescence spectra and the decay curves, which demonstrated that the energy transfer of Gd{sup 3+}→Eu{sup 3+} is efficient. The mechanism of energy transfer from Gd{sup 3+} to Eu{sup 3+} is a resonant transfer, in which electric dipole–dipole interaction plays a leading role. Furthermore, the effect of doping concentration of Eu{sup 3+} ions on the energy transfer efficiency was also investigated. From the photoluminescence (PL) spectra, it was also found that the incorporation of Na{sup +} ions into CaCO{sub 3}:Gd{sup 3+}/Eu{sup 3+} could lead to a remarkable increase of luminescent intensity due to the charge compensation.

  16. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    Science.gov (United States)

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  17. Oral Gene Application Using Chitosan-DNA Nanoparticles Induces Transferable Tolerance

    Science.gov (United States)

    Ensminger, Stephan M.; Spriewald, Bernd M.

    2012-01-01

    Oral tolerance is a promising approach to induce unresponsiveness to various antigens. The development of tolerogenic vaccines could be exploited in modulating the immune response in autoimmune disease and allograft rejection. In this study, we investigated a nonviral gene transfer strategy for inducing oral tolerance via antigen-encoding chitosan-DNA nanoparticles (NP). Oral application of ovalbumin (OVA)-encoding chitosan-DNA NP (OVA-NP) suppressed the OVA-specific delayed-type hypersensitivity (DTH) response and anti-OVA antibody formation, as well as spleen cell proliferation following OVA stimulation. Cytokine expression patterns following OVA stimulation in vitro showed a shift from a Th1 toward a Th2/Th3 response. The OVA-NP-induced tolerance was transferable from donor to naïve recipient mice via adoptive spleen cell transfer and was mediated by CD4+CD25+ T cells. These findings indicate that nonviral oral gene transfer can induce regulatory T cells for antigen-specific immune modulation. PMID:22933401

  18. Stray energy transfer during endoscopy.

    Science.gov (United States)

    Jones, Edward L; Madani, Amin; Overbey, Douglas M; Kiourti, Asimina; Bojja-Venkatakrishnan, Satheesh; Mikami, Dean J; Hazey, Jeffrey W; Arcomano, Todd R; Robinson, Thomas N

    2017-10-01

    Endoscopy is the standard tool for the evaluation and treatment of gastrointestinal disorders. While the risk of complication is low, the use of energy devices can increase complications by 100-fold. The mechanism of increased injury and presence of stray energy is unknown. The purpose of the study was to determine if stray energy transfer occurs during endoscopy and if so, to define strategies to minimize the risk of energy complications. A gastroscope was introduced into the stomach of an anesthetized pig. A monopolar generator delivered energy for 5 s to a snare without contacting tissue or the endoscope itself. The endoscope tip orientation, energy device type, power level, energy mode, and generator type were varied to mimic in vivo use. The primary outcome (stray current) was quantified as the change in tissue temperature (°C) from baseline at the tissue closest to the tip of the endoscope. Data were reported as mean ± standard deviation. Using the 60 W coag mode while changing the orientation of the endoscope tip, tissue temperature increased by 12.1 ± 3.5 °C nearest the camera lens (p energy transfer (p = 0.04 and p = 0.002, respectively) as did utilizing the low-voltage cut mode (6.6 ± 0.5 °C, p energy transfer compared to a standard generator (1.5 ± 3.5 °C vs. 9.5 ± 0.8 °C, p energy is transferred within the endoscope during the activation of common energy devices. This could result in post-polypectomy syndrome, bleeding, or perforation outside of the endoscopist's view. Decreasing the power, utilizing low-voltage modes and/or an impedance-monitoring generator can decrease the risk of complication.

  19. The influence of nanoparticle migration on forced convective heat transfer of nanofluid under heating and cooling regimes.

    Science.gov (United States)

    Kozlova, Sofya V; Ryzhkov, Ilya I

    2014-09-01

    In this paper, laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux at the tube wall is investigated. The investigation is performed numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. Two thermal regimes at the tube wall, heating and cooling, are considered and the influence of nanoparticle migration on the heat transfer is analyzed comparatively. The intensity of thermophoresis is characterized by a new empirical model for thermophoretic mobility. It is shown that the nanoparticle volume fraction decreases (increases) in the boundary layer near the wall under heating (cooling) due to thermophoresis. The corresponding variations of nanofluid properties and flow characteristics are presented and discussed. The intensity of heat transfer for the model with thermophoresis in comparison to the model without thermophoresis is studied by plotting the dependence of the heat transfer coefficient on the Peclet number. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. The analysis of the results reveals that the water-alumina nanofluid shows better performance in the heating regime than in the cooling regime due to thermophoretic effect.

  20. Energy transfer in turbulence under rotation

    Science.gov (United States)

    Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz

    2018-03-01

    It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.

  1. Targeting Low-Energy Ballistic Lunar Transfers

    Science.gov (United States)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  2. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

    Science.gov (United States)

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash

    2016-05-01

    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.

  3. Nanoparticle augmented radiation treatment decreases cancer cell proliferation.

    Science.gov (United States)

    Townley, Helen E; Rapa, Elizabeth; Wakefield, Gareth; Dobson, Peter J

    2012-05-01

    We report significant and controlled cell death using novel x-ray-activatable titania nanoparticles (NPs) doped with lanthanides. Preferential incorporation of such materials into tumor tissue can enhance the effect of radiation therapy. Herein, the incorporation of gadolinium into the NPs is designed to optimize localized energy absorption from a conventional medical x-ray. This result is further optimized by the addition of other rare earth elements. Upon irradiation, energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species (ROS). The authors report significant and controlled cell death using x-ray-activated titania nanoparticles doped with lanthanides as enhancers. Upon irradiation X-ray energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Interfacial and thermal energy driven growth and evolution of Langmuir-Schaefer monolayers of Au-nanoparticles.

    Science.gov (United States)

    Mukhopadhyay, Mala; Hazra, S

    2018-01-03

    Structures of Langmuir-Schaefer (LS) monolayers of thiol-coated Au-nanoparticles (DT-AuNPs) deposited on H-terminated and OTS self-assembled Si substrates (of different hydrophobic strength and stability) and their evolution with time under ambient conditions, which plays an important role for their practical use as 2D-nanostructures over large areas, were investigated using the X-ray reflectivity technique. The strong effect of substrate surface energy (γ) on the initial structures and the competitive role of room temperature thermal energy (kT) and the change in interfacial energy (Δγ) at ambient conditions on the evolution and final structures of the DT-AuNP LS monolayers are evident. The strong-hydrophobic OTS-Si substrate, during transfer, seems to induce strong attraction towards hydrophobic DT-AuNPs on hydrophilic (repulsive) water to form vertically compact partially covered (with voids) monolayer structures (of perfect monolayer thickness) at low pressure and nearly covered buckled monolayer structures (of enhanced monolayer thickness) at high pressure. After transfer, the small kT-energy (in absence of repulsive water) probably fluctuates the DT-AuNPs to form vertically expanded monolayer structures, through systematic exponential growth with time. The effect is prominent for the film deposited at low pressure, where the initial film-coverage and film-thickness are low. On the other hand, the weak-hydrophobic H-Si substrate, during transfer, appears to induce optimum attraction towards DT-AuNPs to better mimic the Langmuir monolayer structures on it. After transfer, the change in the substrate surface nature, from weak-hydrophobic to weak-hydrophilic with time (i.e. Δγ-energy, apart from the kT-energy), enhances the size of the voids and weakens the monolayer/bilayer structure to form a similar expanded monolayer structure, the thickness of which is probably optimized by the available thermal energy.

  5. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  6. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  7. Laser induced energy transfer

    International Nuclear Information System (INIS)

    Falcone, R.W.

    1979-01-01

    Two related methods of rapidly transferring stored energy from one excited chemical species to another are described. The first of these, called a laser induced collision, involves a reaction in which the energy balance is met by photons from an intense laser beam. A collision cross section of ca 10 - 17 cm 2 was induced in an experiment which demonstrated the predicted dependence of the cross section on wavelength and power density of the applied laser. A second type of laser induced energy transfer involves the inelastic scattering of laser radiation from energetically excited atoms, and subsequent absorption of the scattered light by a second species. The technique of producing the light, ''anti-Stokes Raman'' scattering of visible and infrared wavelength laser photons, is shown to be an efficient source of narrow bandwidth, high brightness, tunable radiation at vacuum ultraviolet wavelengths by using it to excite a rare gas transition at 583.7 A. In addition, this light source was used to make the first measurement of the isotopic shift of the helium metastable level at 601 A. Applications in laser controlled chemistry and spectroscopy, and proposals for new types of lasers using these two energy transfer methods are discussed

  8. Energy transfer between Tb{sup 3+} and Eu{sup 3+} in co-doped Y{sub 2}O{sub 3} nanocrystals prepared by Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Back, M., E-mail: m.back@hotmail.it [Universita Ca' Foscari di Venezia and INSTM, Dipartimento di Scienze Molecolari e Nanosistemi (Italy); Boffelli, M. [Kyoto Institute of Technology and Research Institute for Nanoscience (Japan); Massari, A.; Marin, R. [Universita Ca' Foscari di Venezia and INSTM, Dipartimento di Scienze Molecolari e Nanosistemi (Italy); Enrichi, F. [Coordinamento Interuniversitario Veneto per le Nanotecnologie (CIVEN) (Italy); Riello, P., E-mail: riellop@unive.it [Universita Ca' Foscari di Venezia and INSTM, Dipartimento di Scienze Molecolari e Nanosistemi (Italy)

    2013-07-15

    Tb{sup 3+} and Eu{sup 3+} co-doped Y{sub 2}O{sub 3} nanoparticles with a volume-weighted average size of about 30 nm were synthesized via simple Pechini-type sol-gel process. The growth of monocrystalline nanoparticles is investigated via XRD and TEM analysis. The study of energy transfer between Tb{sup 3+} and Eu{sup 3+} ions was carried out by means of PL, PLE, and photoluminescence decay analyses. The energy transfer from Tb{sup 3+} to Eu{sup 3+} is efficient and we show how a resonant type via a dipole-dipole interaction is the most probable mechanism. We compared the energy-transfer efficiencies calculated from the intensities and from the lifetimes of {sup 5}D{sub 4}{yields}{sup 7}F{sub 5} transition of Tb, showing the presence of two populations of Tb, with different local surroundings, in the matrix. Furthermore, the critical distance between Tb{sup 3+} and Eu{sup 3+} ions has been calculated by means of different theories, from a new probabilistic approach based on the discretization of the theory of Chandrasekhar about the distribution of the nearest neighbors in a random distribution of particles, and from the PL data, suggesting a value of about 7 A.

  9. Influence of silver nanoparticles on spectroscopic properties of biologically active iodinated 4-aryloxymethyl coumarin dyes

    Energy Technology Data Exchange (ETDEWEB)

    Raghavendra, U.P. [Department of Physics, Bangalore Institute of Technology, Bangalore 560 004 (India); Thipperudrappa, J., E-mail: jtrphy2007@gmail.com [Department of Physics, B.N.M. Institute of Technology, Bangalore 560 070 (India); Basanagouda, Mahantesha [P.G. Department of Studies in Chemistry, K.L.E. Society' s P.C. Jabin Science College, Hubli 580 031 (India); Melavanki, R.M. [Department of Physics, M.S. Ramaiah Institute of Technology, Bangalore 560 054 (India)

    2016-04-15

    The interaction between silver nanoparticles and biologically active iodinated 4-aryloxymethyl coumarins4-(4-iodo-phenoxymethyl)-benzo[h]coumarin (4IPMBC) and 4-(4-iodo-phenoxymethyl)-6-methoxy coumarin (4IPMMC) has been studied using absorption and fluorescence spectroscopy. The absorption spectral changes of dyes with the addition of silver nanoparticles suggest their possible interaction with silver nanoparticles. Fluorescence quenching has been observed for both dyes with the addition of silver nanoparticles. The Stern–Volmer plots of fluorescence quenching are found to be nonlinear showing positive deviation. The magnitudes of quenching rate parameter and fluorescence lifetime measurements indicate the presence of static quenching mechanism. The binding constants and the number of binding sites have been estimated from fluorescence data. The role of diffusion, energy transfer and electron transfer processes in fluorescence quenching mechanism has been discussed. - Highlights: • The role of silver nanoparticles on biologically active coumarins is studied. • Fluorescence quenching is due to static mechanism. • Binding constant and the binding sites are estimated. • The role of Forster type energy transfer has been suggested. • Electron transfer is also playing a role in overall quenching mechanism.

  10. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deepak; Pandey, Krishna Murari [National Institute of Technology Silchar, Assam (India). Dept. of Mechanical Engineering

    2017-03-15

    A novel and facile approach for size-tunable synthesis of ZnO nanoparticle (NPs) is reported. Size-tuning was attained by using PEG (polyethylene glycol) of molecular weights 400 and 4000. ZnO NPs was synthesized using homogeneous chemical precipitation followed by hydrothermal. Here triethylamine (TEA) was used as a hydroxylating agent. As-synthesized ZnO NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) analysis. Synthesized ZnO nanoparticle was used for the preparation of ZnO-water based nanofluid and its application in heat transfer enhancement in light water nuclear reactor. In this work, ZnO-water based nanofluid of different volume concentration (1%, 2% and 3%) and particle size of 10 nm and 20 nm is used for enhancement in heat transfer in annular channel by using two phase approach. The particle size of 10 nm gives better result for enhancing the heat transfer rate in comparison to 20 nm particle size in nuclear reactor.

  11. Improving the Performance of Gold-Nanoparticle-Doped Solid-State Dye Laser Using Thermal Conversion Effect

    Science.gov (United States)

    An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Hoa, D. Q.

    2018-04-01

    Energy transfer between spherical gold nanoparticles with size of more than 15 nm and molecules of organic dye 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4 H-pyran (DCM) has been studied. Such radiative energy transfer led to high local temperature, giving rise to a bleaching effect that resulted in rapid degradation of the laser medium. Gold nanoparticles were dispersed at concentrations from 5 × 109 particles/mL to 5 × 1010 particles/mL in DCM polymethylmethacrylate polymer using a radical polymerization process with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. Using the fast thermoelectric cooling method, the laser medium stability was significantly improved. The output stability of a distributed feedback dye laser pumped by second-harmonic generation from a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was investigated. Moreover, bidirectional energy transfer between gold nanoparticles and dye molecules was observed.

  12. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  13. Europium(III) chelate-dyed nanoparticles as donors in a homogeneous proximity-based immunoassay for estradiol

    International Nuclear Information System (INIS)

    Kokko, Leena; Sandberg, Kaisa; Loevgren, Timo; Soukka, Tero

    2004-01-01

    Nanoparticles containing thousands of fluorescent europium(III) chelates have a very high specific activity compared to traditional lanthanide chelate labels. It can be assumed that if these particles are used in a homogeneous assay as donors, multiple chelates can excite a single acceptor in turns and the energy transfer to the acceptor is increased. The principle was employed in an immunoassay using luminescent resonance energy transfer from a long lifetime europium(III) chelate-dyed nanoparticle to a short lifetime, near-infrared fluorescent molecule. Due to energy transfer fluorescence lifetime of the sensitised emission was prolonged and fluorescence could be measured using a time-resolved detection. A competitive homogeneous immunoassay for estradiol was created using 92 nm europium(III) chelate-dyed nanoparticle coated with 17β-estradiol specific recombinant antibody Fab fragments as a donor and estradiol conjugated with near-infrared dye AlexaFluor 680 as an acceptor. The density of Fab fragments on the surface of the particle influenced the sensitivity of the immunoassay. The optimal Fab density was reached when the entire surface of the particle participated in the energy transfer, but the areas where the energy was transferred to a single acceptor, did not overlap. We were able to detect estradiol concentrations down to 70 pmol l -1 (3xSD of a standard containing 0 nmol l -1 of E2) using a 96-well platform. In this study we demonstrated that nanoparticles containing lanthanide chelates could be used as efficient donors in homogeneous assays

  14. Highly Sensitive Fluorescent Sensor for Cartap Based on Fluorescence Resonance Energy Transfer Between Gold Nanoparticles and Rhodamine B.

    Science.gov (United States)

    Dong, Liang; Hou, Changjun; Fa, Huanbao; Yang, Mei; Wu, Huixiang; Zhang, Liang; Huo, Danqun

    2018-04-01

    Cartap residue poses a great threat to human health and its derivatives would remain in soils, natural waters and other environmental domains for a long time. Herein, a simple, rapid and ultrasensitive analytical method for the determination of cartap based on fluorescence resonance energy transfer (FRET) between Au nanoparticles (AuNPs) and rhodamine B (RB) is first described. With the presence of citrate-stabilized AuNPs, the fluorescence of RB was remarkably quenched by AuNPs via FRET. The fluorescence of the AuNPs-RB system was recovered upon addition of cartap, cartap can be adsorbed on the surface of AuNPs due to its amino group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the FRET between AuNPs and RB was weakened and the PL intensity of RB was recovered accordingly. A good linear correlation for detection of RB was exhibited from 1 nM to 180 nM, and the detection limit reached 0.88 nM, which was much lower than the safety limit required by USA, UK and China. To the best of our knowledge, it has been the lowest detection ever without the aid of costly instrumentation. This method was successfully carried out for the assessment of cartap in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost and non-time-consuming compared with traditional methods.

  15. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna

    International Nuclear Information System (INIS)

    Lee, Woo-Mi; Yoon, Sung-Ji; Shin, Yu-Jin; An, Youn-Joo

    2015-01-01

    Understanding the trophic transfer of nanoparticles (NPs) is important because NPs are small enough to easily penetrate into organisms. In this study, we evaluated the trophic transfer of gold NPs (AuNPs) within the aquatic food chain. We observed AuNPs transfer from 2 species of primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna). Also, bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. The reasons for the difference in Au accumulation may be the physical structure of these organisms, and the surface area that is available for interaction with NPs. C. reinhardtii has a cell wall that may act as a barrier to the penetration of NPs. The size of E. gracilis is larger than that of C. reinhardtii. This study demonstrates the trophic transfer of AuNPs from a general producer to a consumer in an aquatic environment. - Highlights: • This study evaluated the trophic transfer of AuNPs in an aquatic food chain. • Chlamydomonas reinhardtii and Euglena gracilis were selected as the primary producers. • Daphnia magna was used as the primary consumer. • The bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. • AuNPs were transferred from C. reinhardtii and E. gracilis to D. magna. - Gold nanoparticles can transfer from primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna) in an aquatic environment

  16. Plasmon-mediated Energy Conversion in Metal Nanoparticle-doped Hybrid Nanomaterials

    Science.gov (United States)

    Dunklin, Jeremy R.

    Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was obtained between measured and estimated thermal profiles for AuNP-polymer dispersions. Concurrently, in situ reduction of AuNPs on two-dimensional semiconducting tungsten disulfide (WS2) addressed two current material limitations for efficient light harvesting: low monolayer content and lack of optoelectronic tunability. Order-of-magnitude increases in WS2 monolayer content, enhanced broadband optical extinction, and energetic electron injection were probed using a combination of spectroscopic techniques and continuum electromagnetic descriptions. Together, engineering these plasmon-mediated hybrid nanomaterials to facilitate local exchange of optical, thermal, and electronic energy supports design and implementation into several emerging sustainable water and energy applications.

  17. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  18. Visual prosthesis wireless energy transfer system optimal modeling.

    Science.gov (United States)

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  19. The security energy encryption in wireless power transfer

    Science.gov (United States)

    Sadzali, M. N.; Ali, A.; Azizan, M. M.; Albreem, M. A. M.

    2017-09-01

    This paper presents a concept of security in wireless power transfer (WPT) by applying chaos theory. Chaos theory is applied as a security system in order to safeguard the transfer of energy from a transmitter to the intended receiver. The energy encryption of the wireless power transfer utilizes chaos theory to generate the possibility of a logistic map for the chaotic security key. The simulation for energy encryption wireless power transfer system was conducted by using MATLAB and Simulink. By employing chaos theory, the chaotic key ensures the transmission of energy from transmitter to its intended receiver.

  20. Control of Electron Transfer from Lead-Salt Nanocrystals to TiO 2

    KAUST Repository

    Hyun, Byung-Ryool; Bartnik, A. C.; Sun, Liangfeng; Hanrath, Tobias; Wise, F. W.

    2011-01-01

    The roles of solvent reorganization energy and electronic coupling strength on the transfer of photoexcited electrons from PbS nanocrystals to TiO 2 nanoparticles are investigated. We find that the electron transfer depends only weakly

  1. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    Science.gov (United States)

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  2. Interactive Joint Transfer of Energy and Information

    DEFF Research Database (Denmark)

    Popovski, Petar; Fouladgar, A. M.; Simeone, Osvaldo

    2013-01-01

    In some communication networks, such as passive RFID systems, the energy used to transfer information between a sender and a recipient can be reused for successive communication tasks. In fact, from known results in physics, any system that exchanges information via the transfer of given physical...... key design insights. Index Terms— Two-way channel, interactive communication, energy transfer, energy harvesting....... resources, such as radio waves, particles and qubits, can conceivably reuse, at least part, of the received resources. This paper aims at illustrating some of the new challenges that arise in the design of communication networks in which the signals exchanged by the nodes carry both information and energy...

  3. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  4. Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles.

    Science.gov (United States)

    Wang, Zhijiang; Wu, Lina; Shen, Baozhong; Jiang, Zhaohua

    2013-09-30

    Fluorescent detection is an attractive method for the detection of toxic chemicals. However, most chemosensors that are currently utilized in fluorescent detection are based on organic dyes or quantum dots, which suffer from instability, high background noise and interference from organic impurities in solution, which can also be excited by UV radiation. In the present research, we developed a novel NaYF4:Yb,Ho/Au nanocomposite-based chemosensor with high sensitivity (10 ppb) and selectivity over competing analytes for the detection of the insecticide cartap. This nanosensor is excited with a 970-nm laser instead of UV radiation to give an emission peak at 541 nm. In the presence of cartap, the nanocomposites aggregate, resulting in enhanced luminescence resonance energy transfer between the NaYF4:Yb,Ho nanocrystals and the gold nanoparticles, which decreases the emission intensity at 541 nm. The relative luminescence intensity at 541 nm has a linear relationship with the concentration of cartap in the solution. Based on this behavior, the developed nanosensor successfully detected cartap in farm produce and water samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.

    Science.gov (United States)

    Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui

    2013-11-07

    We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.

  6. Intermolecular energy transfer in binary systems of dye polymers

    Science.gov (United States)

    Liu, Lin-I.; Barashkov, Nikolay N.; Palsule, Chintamani P.; Gangopadhyay, Shubhra; Borst, Walter L.

    2000-10-01

    We present results and physical interpretations for the energy transfer mechanisms in two-component dye polymer systems. The data consist of fluorescence emission spectra and decays. Two dyes were embedded in an epoxypolymer base, and only they participated in the energy transfer. Following pulsed laser excitation of the donor dye, energy transfer took place to the accept dye. The possible transfer paths considered here were nonradiative and radiative transfer. The latter involves two steps, emission and absorption of a photon, and therefore is relatively slow, while nonradiative transfer is a fast single step resulting from direct Coulomb interactions. A predominantly nonradiative transfer is desirable for applications, for instance in wavelength shifters in high energy particle detection. We studied the concentration effects of the dyes on the energy transfer and obtained the relative quantum efficiencies of various wavelength shifters from the fluorescence emission spectra. For low acceptor concentrations, radiative transfer was found to dominate, while nonradiative transfer became dominant at increasing dye concentrations. The fluorescence decays were analyzed with a sum-of-exponentials method and with Förster kinetics. The sum of exponential model yielded mean decay times of the dye polymers useful for a general classification. The decay times decreased as desired with increasing acceptor concentration. The samples, in which nonradiative energy transfer dominated, were analyzed with Förster kinetics. As a result, the natural decay times of the donor and acceptor dyes and the critical radii for nonradiative energy transfer were obtained from a global best fit.

  7. Energy transfer mechanism between manganese and neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R [Department of Physics, Government Raza Post-Graduate College, Rampur 244901, U.P., India

    1977-01-01

    The mechanism of energy transfer between Mn/sup 2 +/ ..-->.. Nd/sup 3 +/ in barium borate glass has been investigated. The change in emission intensities and lifetimes of Mn/sup 2 +/ (donor) due to the presence of Nd/sup 3 +/ (acceptor) are observed. It has been concluded that the mechanism of energy transfer involves a nonradiative resonance process. The electrostatic multiple interaction responsible for the transfer is dipole-dipole in nature.

  8. Magnetic nanoparticles stimulation to enhance liquid-liquid two-phase mass transfer under static and rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, Neda; Rahimi, Masoud, E-mail: masoudrahimi@yahoo.com

    2017-01-15

    Rotating magnetic field (RMF) was applied on a micromixer to break the laminar flow and induce chaotic flow to enhance mass transfer between two-immiscible organic and aqueous phases. The results of RMF were compared to those of static magnetic field (SMF). For this purpose, experiments were carried out in a T-micromixer at equal volumetric flow rates of organic and aqueous phases. Fe{sub 3}O{sub 4} nanoparticles were synthesized by co-precipitation technique and they were dissolved in organic phase. Results obtained from RMF and SMF were compared in terms of overall volumetric mass transfer coefficient (K{sub L}a) and extraction efficiency (E) at various Reynolds numbers. Generally, RMF showed higher effect in mass transfer characteristics enhancement compared with SMF. The influence of rotational speeds of magnets (ω) in RMF was investigated, and measurable enhancements of K{sub L}a and E were observed. In RMF, the effect of magnetic field induction (B) was investigated. The results reveal that at constant concentration of nanoparticles, by increasing of B, mass transfer characteristics will be enhanced. The effect of various nanoparticles concentrations (ϕ) within 0.002–0.01 (w/v) on K{sub L}a and E at maximum induction of RMF (B=76 mT) was evaluated. Maximum values of K{sub L}a (2.1±0.001) and E (0.884±0.001) were achieved for the layout of RMF (B=76 mT), ω=16 rad/s and MNPs concentration of 0.008–0.01 (w/v). - Highlights: • Magnetic nanoparticles used for mixing of two immiscible liquids in a micromixer. • Extraction efficiency of rotating magnetic field (RMF) is compared with static one. • In RMF, the effect of the angular speed on KLa and E enhancement is reported. • In RMF, at a selected magnet distance effect of nanoparticle concentration is reported.

  9. Risk transfer via energy savings insurance

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2001-10-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of $875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance

  10. Energy transfer during the hydroentanglement of fibres

    CSIR Research Space (South Africa)

    Moyo, D

    2012-10-01

    Full Text Available .kashan.co.za] ABSTRACT The hydroentanglement of fibres is achieved by the energy of the high-velocity waterjets. This method is highly energy intensive and costly, hence the attempt to study the energy transfer during the process. Generally, the amount of energy used... in the nonwoven fabric strength were studied. In the study, the energies of the waterjets transferred to every fabric sample as a function of the waterjet pressure, machine speed, machine efficiency and the web area weight were quantified, and the resultant...

  11. Resonant vibrational energy transfer in ice Ih

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Li, F.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  12. Pumped energy transfer stations (STEP)

    International Nuclear Information System (INIS)

    Tournery, Jean-Francois

    2015-12-01

    As objectives of development are high for renewable energies (they are supposed to cover 50 per cent of new energy needs by 2035), pumped energy transfer stations are to play an important role in this respect. The author first discusses the consequences of the development of renewable energies on the exploitation of electric grids: issue of intermittency for some of them, envisaged solutions. Then, he addresses one of the solutions: the storage of electric power. He notices that increasing the potential energy of a volume of water is presently the most mature solution to face massive needs of the power system. Dams and pumped energy transfer stations represent now almost the whole installed storage power in the world. The author then presents these pumped energy transfer stations: principle, brief history (the first appeared in Italy and Switzerland at the end of the 1890's). He indicates the various parameters of assessment of such stations: maximum stored energy, installed power in pumping mode and turbine mode, time constant, efficiency, level of flexibility. He discusses economic issues. He describes and comments the operation of turbine-pump groups: ternary groups, reversible binary groups. He discusses barriers to be overcome and technical advances to be made for varying speed groups and for marine stations. He finally gives an overview (table with number of stations belonging to different power ranges, remarkable installations) of existing stations in China, USA, Japan, Germany, Austria, Spain, Portugal, Italy, Switzerland, France and UK, and indicate predictions regarding storage needs at the world level. Some data are finally indicated for the six existing French installations

  13. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding

    Directory of Open Access Journals (Sweden)

    Zhang Dongkun

    2015-04-01

    Full Text Available Nanoparticles with the anti-wear and friction reducing features were applied as cooling lubricant in the grinding fluid. Dry grinding, flood grinding, minimal quantity of lubrication (MQL, and nanoparticle jet MQL were used in the grinding experiments. The specific grinding energy of dry grinding, flood grinding and MQL were 84, 29.8, 45.5 J/mm3, respectively. The specific grinding energy significantly decreased to 32.7 J/mm3 in nanoparticle MQL. Compared with dry grinding, the surface roughness values of flood grinding, MQL, and nanoparticle jet MQL were significantly reduced with the surface topography profile values reduced by 11%, 2.5%, and 10%, respectively, and the ten point height of microcosmic unflatness values reduced by 1.5%, 0.5%, and 1.3%, respectively. These results verified the satisfactory lubrication effects of nanoparticle MQL. MoS2, carbon nanotube (CNT, and ZrO2 nanoparticles were also added in the grinding fluid of nanoparticle jet MQL to analyze their grinding surface lubrication effects. The specific grinding energy of MoS2 nanoparticle was only 32.7 J/mm3, which was 8.22% and 10.39% lower than those of the other two nanoparticles. Moreover, the surface roughness of workpiece was also smaller with MoS2 nanoparticle, which indicated its remarkable lubrication effects. Furthermore, the role of MoS2 particles in the grinding surface lubrication at different nanoparticle volume concentrations was analyzed. MoS2 volume concentrations of 1%, 2%, and 3% were used. Experimental results revealed that the specific grinding energy and the workpiece surface roughness initially increased and then decreased as MoS2 nanoparticle volume concentration increased. Satisfactory grinding surface lubrication effects were obtained with 2% MoS2 nanoparticle volume concentration.

  14. SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Rajh, T.; Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Center for Nanoscale Materials

    2009-05-06

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  15. Electromagnetic Energy Absorption due to Wireless Energy Transfer: A Brief Review

    Directory of Open Access Journals (Sweden)

    Syafiq A.

    2016-01-01

    Full Text Available This paper reviews an implementation of evaluating compliance of wireless power transfer systems with respect to human electromagnetic exposure limits. Methods for both numerical analysis and measurements are discussed. The objective is to evaluate the rate of which energy is absorbed by the human body when exposed to a wireless energy transfer, although it can be referred to the absorption of other forms of energy by tissue. An exposure assessment of a representative wireless power transfer system, under a limited set of operating conditions, is provided in order to estimate the maximum SAR levels. The aim of this review is to conclude the possible side effect to the human body when utilizing wireless charging in daily life so that an early severe action can be taken when using wireless transfer.

  16. Efficient Fluorescence Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles Based on Porous Silicon Photonic Crystal for DNA Detection.

    Science.gov (United States)

    Zhang, Hongyan; Lv, Jie; Jia, Zhenhong

    2017-05-10

    A novel assembled biosensor was prepared for detecting 16S rRNA, a small-size persistent specific for Actinobacteria. The mechanism of the porous silicon (PS) photonic crystal biosensor is based on the fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and gold nanoparticles (AuNPs) through DNA hybridization, where QDs act as an emission donor and AuNPs serve as a fluorescence quencher. Results showed that the photoluminescence (PL) intensity of PS photonic crystal was drastically increased when the QDs-conjugated probe DNA was adhered to the PS layer by surface modification using a standard cross-link chemistry method. The PL intensity of QDs was decreased when the addition of AuNPs-conjugated complementary 16S rRNA was dropped onto QDs-conjugated PS. Based on the analysis of different target DNA concentration, it was found that the decrease of the PL intensity showed a good linear relationship with complementary DNA concentration in a range from 0.25 to 10 μM, and the detection limit was 328.7 nM. Such an optical FRET biosensor functions on PS-based photonic crystal for DNA detection that differs from the traditional FRET, which is used only in liquid. This method will benefit the development of a new optical FRET label-free biosensor on Si substrate and has great potential in biochips based on integrated optical devices.

  17. Integrated analysis of energy transfers in elastic-wave turbulence.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  18. Plasmonic energy transfer in periodically doped graphene

    International Nuclear Information System (INIS)

    Silveiro, I; Manjavacas, A; Thongrattanasiri, S; García de Abajo, F J

    2013-01-01

    We predict unprecedentedly large values of the energy-transfer rate between an optical emitter and a layer of periodically doped graphene. The transfer exhibits divergences at photon frequencies corresponding to the Van Hove singularities of the plasmonic band structure of the graphene. In particular, we find flat bands associated with regions of vanishing doping charge, which appear in graphene when it is patterned through gates of spatially alternating signs, giving rise to intense transfer rate singularities. Graphene is thus shown to provide a unique platform for fast control of optical energy transfer via fast electrostatic inhomogeneous doping. (paper)

  19. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

    Directory of Open Access Journals (Sweden)

    Tanujjal Bora

    2011-10-01

    Full Text Available Zinc oxide (ZnO nanorods decorated with gold (Au nanoparticles have been synthesized and used to fabricate dye-sensitized solar cells (DSSC. The picosecond-resolved, time-correlated single-photon-count (TCSPC spectroscopy technique was used to explore the charge-transfer mechanism in the ZnO/Au-nanocomposite DSSC. Due to the formation of the Schottky barrier at the ZnO/Au interface and the higher optical absorptions of the ZnO/Au photoelectrodes arising from the surface plasmon absorption of the Au nanoparticles, enhanced power-conversion efficiency (PCE of 6.49% for small-area (0.1 cm2 ZnO/Au-nanocomposite DSSC was achieved compared to the 5.34% efficiency of the bare ZnO nanorod DSSC. The TCSPC studies revealed similar dynamics for the charge transfer from dye molecules to ZnO both in the presence and absence of Au nanoparticles. A slower fluorescence decay associated with the electron recombination process, observed in the presence of Au nanoparticles, confirmed the blocking of the electron transfer from ZnO back to the dye or electrolyte by the Schottky barrier formed at the ZnO/Au interface. For large area DSSC (1 cm2, ~130% enhancement in PCE (from 0.50% to 1.16% was achieved after incorporation of the Au nanoparticles into the ZnO nanorods.

  20. The Grover energy transfer algorithm for relativistic speeds

    International Nuclear Information System (INIS)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro

    2010-01-01

    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log 2 (N) states of the quantum algorithm.

  1. New insight for enhancing photocatalytic activity of MWCNT/TiO{sub 2} by decorating palladium nanoparticles as charge-transfer channel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng-Jun, E-mail: zhang-fengjun@hotmail.com [School of Materials and Chemical Engineering, Anhui University of Architecture, Anhui Hefei 230022 (China); Department of Advanced Materials and Science Engineering, Hanseo University, Seosan-si, Chungnam-do 356-706 (Korea, Republic of); Oh, Won-Chun, E-mail: wc_oh@hanseo.ac.kr [Department of Advanced Materials and Science Engineering, Hanseo University, Seosan-si, Chungnam-do 356-706 (Korea, Republic of); Zhang, Kan [Department of Advanced Materials and Science Engineering, Hanseo University, Seosan-si, Chungnam-do 356-706 (Korea, Republic of); Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, Hyojadong, Namgu, Pohang 790-784 (Korea, Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A new insight for further improving photoactivity of MWCNT/TiO{sub 2} was reported. Black-Right-Pointing-Pointer The Pd as charge transfer channel trap electrons from MWCNT to TiO{sub 2} surface. Black-Right-Pointing-Pointer The Pd content can also influence photoactivity of MWCNT/TiO{sub 2} photocatalyst. Black-Right-Pointing-Pointer The approach is practically usable for other nanocarbon/semiconductor materials. -- Abstract: A surface bond-grafted multi-walled carbon nanotube (MWCNT)/TiO{sub 2} as supporter, palladium nanoparticles, approximately 3 nm in diameter, are uniformly deposited on the functional MWCNT surface in first, constructing a novel Pd-MWCNT/TiO{sub 2} photocatalyst for photocatalytic solar conversion. The characterization of photocatalysts by a series of joint techniques, including BET surface area, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), Raman spectroscopy and ultraviolet/visible (UV/vis) diffuse reflectance spectra, discloses that palladium nanoparticles has a crucial role in enhancement of photocatalytic activity of MWCNT/TiO{sub 2}, that is to act as a charge transfer channel, which helps to trap electrons from MWCNT to TiO{sub 2}.

  2. Atom Transfer Radical Polymerization of Styrene in Presence of Mesoporous Silica Nanoparticles: Application of Reverse, Simultaneous Reverse and Normal Initiation Techniques

    Directory of Open Access Journals (Sweden)

    Khezrollah Khezri

    2014-04-01

    Full Text Available Atom transfer radical polymerization (ATRP of styrene in presence of mesoporous silica nanoparticles was carried out at 110 °C. Reverse atom transfer radical polymerization (RATRP and simultaneous reverse and normal initiation for atom transfer radical polymerization (SR&NI ATRP techniques were used as two appropriate introduced techniques for circumventing oxidation problems. Usage of metal catalyst in its higher oxidation state was the main feature of these initiation techniques in which deficiencies of normal ATRP were circumvented. Structure, surface area and pore diameter of synthesized mesoporous silica nanoparticles were evaluated using X–ray diffraction and nitrogen adsorption/desorption isotherm analysis. Average particle size was estimated around 600 nm by electron microscopy images. In addition, according to these images, nanoparticles revealed an appropriate size distribution. Particles size and their distribution were examined using scanning. Final monomer conversion was determined by using gas chromatography. The number and weight average molecular weights (Mn and Mw and polydispersity indexes (PDI were also evaluated by gel permeation chromatography. According to the results obtained, addition of mesoporous silica nanoparticles in both RATRP and SR&NI ATRP systems revealed similar effects: decrement of conversion and Mn and also increment of PDI values observed by increasing of mesoporous silica nanoparticles content. Improvement in thermal stability of the nanocomposites in comparison with neat polystyrene was demonstrated by thermogravimetric analysis (TGA. Moreover, in case of nanocomposites, thermal stability was obtained by higher loading of nanoparticles. A decrease in glass transition temperature by higher content of mesoporous silica nanoparticles has been demonstrated by differential scanning calorimetry analysis.

  3. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    Science.gov (United States)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  4. Optical Energy Transfer and Conversion System

    Science.gov (United States)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2018-01-01

    An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.

  5. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    Science.gov (United States)

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-18

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  6. The Grover energy transfer algorithm for relativistic speeds

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro, E-mail: juagar@yllera.tel.uva.e [Dpto. de TeorIa de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI de Telecomunicacion, Campus Miguel Delibes, Paseo Belen 15, 47011 Valladolid (Spain)

    2010-11-12

    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log{sub 2}(N) states of the quantum algorithm.

  7. Investigation of the Energy Balance in the Spark Discharge Generator for Nanoparticles Synthesis

    Science.gov (United States)

    Mylnikov, D. A.; Efimov, A. A.; Ivanov, V. V.

    2017-07-01

    In this paper we investigate the balance of energy in the discharge circuit of a spark discharge generator (SDG) for nanoparticles synthesis. The released energy consists of several parts: the energy in a discharge gap and the energy dissipated in the other elements of the circuit. In turn, in the gap a one part of the energy releases in preanode and precathode regions and the other part in an arc between electrodes. We measured these parts and proposed ways to optimize energy efficiency of the nanoparticles production.

  8. SERS of semiconducting nanoparticles (TiO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N.; Mujica, V.; Martin, D.; Rajh, T. (Center for Nanoscale Materials)

    2009-04-13

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  9. Super-iron Nanoparticles with Facile Cathodic Charge Transfer

    Energy Technology Data Exchange (ETDEWEB)

    M Farmand; D Jiang; B Wang; S Ghosh; D Ramaker; S Licht

    2011-12-31

    Super-irons contain the + 6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain.

  10. Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions

    Science.gov (United States)

    Esmaeili, A. M.; Useinov, A. N.; Useinov, N. Kh.

    2018-01-01

    Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.

  11. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  12. Plasmonic resonance-enhanced local photothermal energy deposition by aluminum nanoparticles

    International Nuclear Information System (INIS)

    Chong Xinyuan; Jiang Naibo; Zhang Zhili; Roy, Sukesh; Gord, James R.

    2013-01-01

    Local energy deposition of aluminum nanoparticles (Al NPs) by localized surface plasmon resonance-enhanced photothermal effects is demonstrated. Low-power light stimuli are efficiently and locally concentrated to trigger the oxidation reactions of Al NPs because of the large ohmic absorption and high reactivity of the Al. Numerical simulations show that both ultraviolet and visible light are more efficient than infrared light for photothermal energy coupling. The natural oxidation layer of alumina is found to have minimum impact on the energy deposition because of its negligible dielectric losses. The near-field distributions of the electric field indicate that slight aggregation induces much higher local enhancement, especially at the interface region of multiple contacting nanoparticles.

  13. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    Directory of Open Access Journals (Sweden)

    L. R. Corr

    2016-08-01

    Full Text Available Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  14. Efficient near-field wireless energy transfer using adiabatic system variations

    Energy Technology Data Exchange (ETDEWEB)

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.; Soljacic, Marin

    2017-11-28

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  15. Charge Transfer Properties of Surface-treated WS2 Nanotubes and Fullerene-like Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tiziana DI LUCCIO

    2011-10-01

    Full Text Available We studied the effect of incorporation of inorganic fullerene like nanoparticles (IF and inorganic nanotubes (INT of WS2 into device structures. In order to disperse in a uniform fashion the semiconducting INT/IF WS2 nanoparticles were functionalized with dodecyltrichlorosilane (DTS. Poly-3(hexylthiophene (P3HT has been used along with WS2 nanoparticles as an active layer for the solution processable material in the proposed OLED structure of the type: ITO/WS2/P3HT/LiF-Al to test the electrical effect of the WS2 and to obtain information on its energy levels. Based on the obtained results, we discuss the possibility to use the WS2 nanoparticles in organic electronic devices.

  16. Ultrafast Energy Transfer in an Artificial Photosynthetic Antenna

    Directory of Open Access Journals (Sweden)

    van Grondelle R.

    2013-03-01

    Full Text Available We temporally resolved energy transfer kinetics in an artificial light-harvesting dyad composed of a phthalocyanine covalently linked to a carotenoid. Upon carotenoid photo-excitation, energy transfers within ≈100fs (≈52% efficiency to the phthalocyanine.

  17. Electron transfer dynamics of triphenylamine dyes bound to TiO2 nanoparticles from femtosecond stimulated Raman spectroscopy

    KAUST Repository

    Hoffman, David P.; Lee, Olivia P.; Millstone, Jill E.; Chen, Mark S.; Su, Timothy A.; Creelman, Mark; Frechet, Jean; Mathies, Richard A.

    2013-01-01

    Interfacial electron transfer between sensitizers and semiconducting nanoparticles is a crucial yet poorly understood process. To address this problem, we have used transient absorption (TA) and femtosecond stimulated Raman spectroscopy (FSRS

  18. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  19. Wireless energy transfer between anisotropic metamaterials shells

    International Nuclear Information System (INIS)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-01-01

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted

  20. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    Science.gov (United States)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  1. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall

  2. Synthesis of NiFe2O4 nanoparticles for energy and environment applications

    Science.gov (United States)

    Zhang, Ying; Rimal, Gaurab; Tang, Jinke; Dai, Qilin

    2018-02-01

    Magnetic nanoparticles are of great interest due to their applications in energy and environment. In this work, we developed a chemical solution based method to synthesize NiFe2O4 (NFO) nanoparticles with different sizes and structures by organic ligands and studied their applications in magnetic electrolyte concentration cells and waste water treatment. NFO nanoparticle growth is controlled by the organic passivating ligand ratios, reaction temperatures, and reaction solution concentrations to achieve the control of NFO nanoparticle size ranging from 25 nm to 160 nm. The NFO growth mechanism is controlled by aggregation related mechanism, leading to tunable magnetic properties and concentration cell device performance. Magnetic biochar consisting of biochar/NFO composite was also obtained based on the developed method. Waste water containing Rhodamine B was tested by the synthesized magnetic biochar. We believe the method developed in this work about magnetic NFO nanoparticles and magnetic biochar will shed light on the application of magnetic nanoparticles in energy and environment.

  3. Influence of donor-donor transport on excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K K; Joshi, H C; Pant, T C [Kumaun University, Nainital (India). Department of Physics

    1989-01-01

    Energy migration and transfer from acriflavine to rhodamine B and malachite green in poly (methylmethacrylate) have been investigated using the decay function analysis. It is found that the influence of energy migration in energy transfer can be described quite convincingly by making use of the theories of Loring, Andersen and Fayer (LAF) and Huber. At high acceptor concentration direct donor-acceptor transfer occurs through Forster mechanism. (author). 17 refs., 5 figs.

  4. Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Frimpong, Reynolds A; Hilt, J Zach [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States)], E-mail: hilt@engr.uky.edu

    2008-04-30

    Core magnetite (Fe{sub 3}O{sub 4}) nanoparticles have been functionalized with a model intelligent hydrogel system based on the temperature responsive polymer poly(n-isopropyl acrylamide) (PNIPAAm) to obtain magnetically responsive core-shell nanocomposites. Fe{sub 3}O{sub 4} nanoparticles were obtained from a one-pot co-precipitation method which provided either oleic acid (hydrophobic) or citric acid (hydrophilic) coated nanoparticles. Subsequent ligand exchange of these coatings with various bromine alkyl halides and a bromo silane provided initiating sites for functionalization with NIPAAm using atom transfer radical polymerization (ATRP). The bromine alkyl halides that were used were 2-bromo-2-methyl propionic acid (BMPA) and 2-bromopropionyl bromide (BPB). The bromo silane that was used was 3-bromopropyl trimethoxysilane (BPTS). The intelligent polymeric shell consists of NIPAAm crosslinked with poly(ethylene glycol) 400 dimethacrylate (PEG400DMA). Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used to confirm the presence of the polymeric shell. Dynamic light scattering (DLS) was used to characterize the nanocomposites for particle size changes with temperature. Their magnetic and temperature responsiveness show great promise for further biomedical applications. This platform for functionalizing magnetic nanoparticles with intelligent hydrogels promises to impact a wide range of medical and biological applications of magnetic nanoparticles.

  5. Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Frimpong, Reynolds A; Hilt, J Zach

    2008-01-01

    Core magnetite (Fe 3 O 4 ) nanoparticles have been functionalized with a model intelligent hydrogel system based on the temperature responsive polymer poly(n-isopropyl acrylamide) (PNIPAAm) to obtain magnetically responsive core-shell nanocomposites. Fe 3 O 4 nanoparticles were obtained from a one-pot co-precipitation method which provided either oleic acid (hydrophobic) or citric acid (hydrophilic) coated nanoparticles. Subsequent ligand exchange of these coatings with various bromine alkyl halides and a bromo silane provided initiating sites for functionalization with NIPAAm using atom transfer radical polymerization (ATRP). The bromine alkyl halides that were used were 2-bromo-2-methyl propionic acid (BMPA) and 2-bromopropionyl bromide (BPB). The bromo silane that was used was 3-bromopropyl trimethoxysilane (BPTS). The intelligent polymeric shell consists of NIPAAm crosslinked with poly(ethylene glycol) 400 dimethacrylate (PEG400DMA). Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used to confirm the presence of the polymeric shell. Dynamic light scattering (DLS) was used to characterize the nanocomposites for particle size changes with temperature. Their magnetic and temperature responsiveness show great promise for further biomedical applications. This platform for functionalizing magnetic nanoparticles with intelligent hydrogels promises to impact a wide range of medical and biological applications of magnetic nanoparticles

  6. Energy transfer in reactive and non-reactive H2 + OH collisions

    International Nuclear Information System (INIS)

    Rashed, O.; Brown, N.J.

    1985-04-01

    We have used the methods of quasi-classical dynamics to compute energy transfer properties of non-reactive and reactive H 2 + OH collisions. Energy transfer has been investigated as function of translational temperature, reagent rotational energy, and reagent vibrational energy. The energy transfer mechanism is complex with ten types of energy transfer possible, and evidence was found for all types. There is much more exchange between the translational degree of freedom and the H 2 vibrational degree of freedom than there is between translation and OH vibration. Translational energy is transferred to the rotational degrees of freedom of each molecule. There is a greater propensity for the transfer of translation to OH rotation than H 2 rotation. In reactive collisions, increases in reagent translational temperature predominantly appear as vibrational energy in the water molecule. Energy transfer in non-reactive and reactive collisions does not depend strongly on the initial angular momentum in either molecule. In non-reactive collisions, vibrational energy is transferred to translation, to the rotational degree of freedom of the same molecule, and to the rotational and vibrational degrees of freedom of the other molecule. In reactive collisions, the major effect of increasing the vibrational energy in reagent molecules is that, on the average, the vibrational energy of the reagents appears as product vibrational energy. 18 refs., 16 figs., 6 tabs

  7. Effect of gold nanoparticles on the structure and electron-transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes.

    Science.gov (United States)

    Cortez, M Lorena; Marmisollé, Waldemar; Pallarola, Diego; Pietrasanta, Lía I; Murgida, Daniel H; Ceolín, Marcelo; Azzaroni, Omar; Battaglini, Fernando

    2014-10-06

    Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox-active polyelectrolyte-surfactant complex containing [Os(bpy)2Clpy](2+) (bpy=2,2'-bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron-transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz-crystal microbalance with dissipation (QCM-D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron-transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five-fold increase in current response to glucose compared with analogous supramolecular AuNP-free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron-transfer process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers

    International Nuclear Information System (INIS)

    Kikuchi, Azusa; Nakabai, Yuya; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2015-01-01

    The intermolecular triplet–triplet energy transfer from a photounstable UV-A absorber, 4-tert-butyl-4′-methoxydibenzoylmethane (BMDBM), to UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC), octocrylene (OCR) and dioctyl 4-methoxybenzylidenemalonate (DOMBM) has been observed using a 355 nm laser excitation in rigid solutions at 77 K. The decay curves of the energy-donor phosphorescence in the presence of the UV-B absorbers deviate from the exponential decay at the initial stage of the decay. The Stern–Volmer formulation is not valid in rigid solutions because molecular diffusion is impossible. The experimental results indicate that the rate constant of triplet–triplet energy transfer from BMDBM to the UV-B absorbers, k T–T , decreases in the following order: k T–T (BMDBM–DOMBM)>k T–T (BMDBM–OMC)≥k T–T (BMDBM–OCR). The presence of DOMBM enhances the photostability of the widely used combination of UV-A and UV-B absorbers, BMDBM and OCR. The effects of the triplet–triplet energy transfer on the photostability of BMDBM are discussed. - Highlights: • The intermolecular triplet–triplet energy transfer between UV absorbers was observed. • The phosphorescence decay deviates from exponential at the initial stage of decay. • The effects of triplet–triplet energy transfer on the photostability are discussed

  9. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  10. A simplified approach for the coupling of excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Shi Bo [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Gao Fang, E-mail: gaofang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Liang Wanzhen [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China)

    2012-02-06

    Highlights: Black-Right-Pointing-Pointer We propose a simple method to calculate the coupling of singlet-to-singlet and triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer. Black-Right-Pointing-Pointer Effect from the intermolecular charge-transfer states dorminates in triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer This method can be expanded by including correlated wavefunctions. - Abstract: A simplified approach for computing the electronic coupling of nonradiative excitation-energy transfer is proposed by following Scholes et al.'s construction on the initial and final states [G.D. Scholes, R.D. Harcourt, K.P. Ghiggino, J. Chem. Phys. 102 (1995) 9574]. The simplification is realized through defining a set of orthogonalized localized MOs, which include the polarization effect of the charge densities. The method allows calculating the coupling of both the singlet-to-singlet and triplet-to-triplet energy transfer. Numerical tests are performed for a few of dimers with different intermolecular orientations, and the results demonstrate that Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer whereas in the case of triplet-to-triplet energy transfer, the dominant effect is arisen from the intermolecular charge-transfer states. The present application is on the Hartree-Fock level. However, the correlated wavefunctions which are normally expanded in terms of the determinant wavefunctions can be employed in the similar way.

  11. Risk transfer via energy savings insurance; TOPICAL

    International Nuclear Information System (INIS)

    Mills, Evan

    2001-01-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of$875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance sheets to self

  12. Microemulsion mediated synthesis of triangular shape SnO2 nanoparticles: Luminescence application

    International Nuclear Information System (INIS)

    Luwang, Meitram Niraj

    2014-01-01

    The triangular prism shapes of SnO 2 ·xH 2 O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO 2 nanoparticles was studied. There is the quantum size effect in absorption study of SnO 2 nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO 2 nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO 2 nanoparticles in both microemulsion and powder form. SnO 2 nanoparticles show green emission due to oxygen vacancy. SnO 2 nanoparticles when doped with Eu 3+ ions give the enhanced luminescence of Eu 3+ due to the surface mediated energy transfer from SnO 2 to Eu 3+ ion.

  13. Mid-range adiabatic wireless energy transfer via a mediator coil

    International Nuclear Information System (INIS)

    Rangelov, A.A.; Vitanov, N.V.

    2012-01-01

    A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies, three resonances are created: emitter–mediator (EM), mediator–receiver (MR) and emitter–receiver (ER). If the frequency sweeps are adiabatic and such that the EM resonance precedes the MR resonance, the energy flows sequentially along the chain emitter–mediator–receiver. If the MR resonance precedes the EM resonance, then the energy flows directly from the emitter to the receiver via the ER resonance; then the losses from the mediator are suppressed. This technique is robust against noise, resonant constraints and external interferences. - Highlights: ► Efficient and robust mid-range wireless energy transfer via a mediator coil. ► The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. ► Wireless energy transfer is insensitive to any resonant constraints. ► Wireless energy transfer is insensitive to noise in the neighborhood of the coils.

  14. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium

    International Nuclear Information System (INIS)

    Dai, Jiangdong; Pan, Jianming; Xu, Longcheng; Li, Xiuxiu; Zhou, Zhiping; Zhang, Rongxian; Yan, Yongsheng

    2012-01-01

    Highlights: ► Atom transfer radical emulsion polymerization is a “living” and green technique. ► Nanoparticles can overcome mass transfer limitations and improve accessibility. ► Molecular imprinted nanoparticles with magnetic property for fast separation. ► The performance of imprinted nanoparticles was investigated in detail. ► Nanoparticles were used to selective recognize Tetracycline from water medium. - Abstract: In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition of tetracycline (TC) molecules from aqueous medium. The resulting nanoparticles were characterized by FT-IR, TGA, VSM, SEM and TEM. The results demonstrated MMINs with a narrow diameter distribution were cross-linked with modified Fe 3 O 4 particles, composed of imprinted layer and exhibited good magnetic sensitivity, magnetic and thermal stability. Batch rebinding studies were carried out to determine the specific adsorption equilibrium, kinetics, and selective recognition. The estimated adsorption capacity of MMINs towards TC by the Langmuir isotherm model was 12.10 mg g −1 at 298 K, which was 6.33 times higher than that of magnetic non-molecularly imprinted nanoparticles (MNINs). The kinetic property of MMINs was well-described by the pseudo-second-order rate equation. The results of selective recognition experiments demonstrated outstanding affinity and selectivity towards TC over competitive antibiotics. The reusability of MMINs showed no obviously deterioration at least five repeated cycles in performance. In addition, the MMINs prepared were successfully applied to the extraction of TC from the spiked pork sample.

  15. Low-energy electron irradiation assisted diffusion of gold nanoparticles in polymer matrix

    International Nuclear Information System (INIS)

    Deore, Avinash V.; Bhoraskar, V.N.; Dhole, S.D.

    2014-01-01

    A simple and controllable method to synthesize nanoparticles in the surface region of polymers was used by low energy electron irradiation. Using this method, gold nanoparticles have been synthesized by irradiating gold coated PVA (Polyvinyl Alcohol) sheets. This method was easy in operation and even period of few minutes was sufficient to obtain the nanoparticles. The coatings (∼10 μm) made from a mixture of ethanol and HAuCl 4 on PVA sheets (∼150 μm) by simple drop cast method were irradiated with 30 keV electrons, at room temperature and 10 −6 mbar vacuum level. The electron fluence was varied from coating to coating in the range of 0 to 24×10 15 e/cm 2 . The irradiated samples were characterized by the UV–Vis, XRD, SEM and RBS techniques. The plasmon absorption peak at ∼539 nm in UV–Vis spectra was an evidence for the initiation of the growth of gold nanoparticles. The X-ray diffraction results and the blue shift in the plasmon absorption peak reveal that the size of nanoparticles could be tailored in the range from 58 to 40 nm by varying the electron fluence. The diffusion of gold in the PVA was confirmed by the Rutherford backscattering spectroscopy and scanning electron microscopy techniques. This method of synthesis of metal nanoparticles by low energy electron beam irradiation has the key importance in the development of new fabrication techniques for nanomaterials. - Highlights: • The results indicate that low energy electrons can effectively be used for the synthesis of nanoparticles of different sizes. • This study leads to a definite conclusion that gold nanoparticles have been synthesized in surface region of the PVA sheet. • The size of nanoparticles decreases with increasing electron fluence. • The depth of diffusion of Au atoms at maximum fluence was found to be ∼1.5 μm

  16. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  17. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region

    International Nuclear Information System (INIS)

    Sato, Yohei; Terauchi, Masami; Mukai, Masaki; Kaneyama, Toshikatsu; Adachi, Kenji

    2011-01-01

    The dielectric properties of LaB 6 crystals and the plasmonic behavior of LaB 6 nanoparticles, which have been applied to solar heat-shielding filters, were studied by high energy-resolution electron energy-loss spectroscopy (HR-EELS). An EELS spectrum of a LaB 6 crystal showed a peak at 2.0 eV, which was attributed to volume plasmon excitation of carrier electrons. EELS spectra of single LaB 6 nanoparticles showed peaks at 1.1-1.4 eV depending on the dielectric effect from the substrates. The peaks were assigned to dipole oscillation excitations. These peak energies almost coincided with the peak energy of optical absorption of a heat-shielding filter with LaB 6 nanoparticles. On the other hand, those energies were a smaller than a dipole oscillation energy predicted using the dielectric function of bulk LaB 6 crystal. It is suggested that the lower energy than expected is due to an excitation at 1.2 eV, which was observed for oxidized LaB 6 area. -- Highlights: → The dielectric properties of LaB 6 nanoparticles applied to solar heat-shielding filters were studied by HR-EELS. → Plasmon peak energies of the LaB 6 nanoparticles were almost equal to optical absorption energy of a heat-shielding filter. → From this result, near-infrared optical absorption of the filter is due to the surface dipole mode of the nanoparticles.

  18. Quantum electrodynamics of resonant energy transfer in condensed matter

    International Nuclear Information System (INIS)

    Juzeliunas, G.; Andrews, D.L.

    1994-01-01

    A microscopic many-body QED theory for dipole-dipole resonance energy transfer has been developed from first principles. A distinctive feature of the theory is full incorporation of the dielectric effects of the supporting medium. The approach employs the concept of bath polaritons mediating the energy transfer. The transfer rate is derived in terms of the Green's operator corresponding to the polariton matrix Hamiltonian. In contrast to the more common lossless polariton models, the present theory accommodates an arbitrary number of energy levels for each molecule of the medium. This includes, a case of special interest, where the excitation energy spectrum of the bath molecules is sufficiently dense that it can be treated as a quasicontinuum in the energy region in question, as in the condensed phase normally results from homogeneous and inhomogeneous line broadening. In such a situation, the photon ''dressed'' by the medium polarization (the polariton) acquires a finite lifetime, the role of the dissipative subsystem being played by bath molecules. It is this which leads to the appearance of the exponential decay factor in the microscopically derived pair transfer rates. Accordingly, the problem associated with potentially infinite total ensemble rates, due to the divergent R -2 contribution, is solved from first principles. In addition, the medium modifies the distance dependence of the energy transfer function A(R) and also produces extra modifications due to screening contributions and local field effects. The formalism addresses cases where the surrounding medium is either absorbing or lossless over the range of energies transferred. In the latter case the exponential factor does not appear and the dielectric medium effect in the near zone reduces to that which is familiar from the theory of radiationless (Foerster) energy transfer

  19. Dissimilar mechanism of executing hole transfer by WO{sub 3} and MoO{sub 3} nanoparticles in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eung-Kyu; Kim, Jae-Hyoung; Kim, Ji-Hwan; Park, Min-Ho; Lee, Dong-Hoon; Kim, Yong-Sang, E-mail: yongsang@skku.edu

    2015-07-31

    We investigated the effect of metal oxide nanoparticles (NPs) in poly (3,4 ethylenedioxythiophence):poly (styrene-sulfonate) layer for the light harvestation in poly (3-hexylthiophene):[6,6]-pheny-C{sub 61}-butyric acid methyl ester organic solar cells. The role of tungsten trioxide nanoparticles (WO{sub 3}) and molybdenum trioxide nanoparticles (MoO{sub 3}) in enhancing the efficiency of solar cells was compared. Due to the difference in the energy band structure of the two nanoparticles, the WO{sub 3} NPs acted as a hole blocking layer, whereas MoO{sub 3} NPs helped in the hole transfer. The solar cell with WO{sub 3} NPs at 1.5 wt% concentration showed a power conversion efficiency of 4.22% under AM 1.5G illumination and the device blended with 2 wt% of MoO{sub 3} NPs showed a power conversion efficiency of 4.40%. We measured various electrical properties including, electrochemical impedance spectroscopy and recombination mechanisms using the light intensity dependent current–voltage measurement of organic solar cell. - Highlights: • An organic solar cell was fabricated with WO{sub 3} or MoO{sub 3} NPs mixed PEDOT:PSS layer. • The effects of metallic NPs in PEDOT:PSS light harvesting system was investigated. • WO{sub 3} NPs acted as a hole blocking layer and MoO{sub 3} NPs helped in hole transporting. • The MoO{sub 3} NPs gave higher performance, reduced charge recombination and low resistance.

  20. Ferrofluid synthesis using oleic acid coated Fe3O4 nanoparticles dispersed in mineral oil for heat transfer applications

    Science.gov (United States)

    Imran, Mohd; Rahman Ansari, Akhalakur; Hussain Shaik, Aabid; Abdulaziz; Hussain, Shahir; Khan, Afzal; Rehaan Chandan, Mohammed

    2018-03-01

    Ferrofluids are stable dispersion of iron oxide nanoparticles in a carrier fluid which find potential applications in heat transfer. Fe3O4 nanoparticles of mean size in the range of 5–10 nm were synthesized using conventional co-precipitation method. This work deals with the synthesis of ferrofluids using mineral oil as a carrier fluid and oleic acid coated Fe3O4 nanoparticles as dispersed phase. Morphology (shape and size) and crystallinity of the synthesized nanoparticle is captured using TEM and XRD. Oleic acid coating on nanoparticle is probed using FTIR for confirming the stability of ferrofluid. Thermal properties of mineral oil based ferrofluid with varying concentration of nanoparticles are evaluated in terms of thermal conductivity. It was found that the thermal conductivity of ferrofluid increases upto 2.5% (w/v) nanoparticle loading, where a maximum enhancement of ∼51% in thermal conductivity was recorded as compared to the base fluid.

  1. Optimizing the Activation of Chlorin e6 Utilizing Upconversion Energy Transfer

    Science.gov (United States)

    Avalos, Julio C.; Pedraza, Francisco J.; Sardar, Dhiraj K.

    2015-03-01

    Current cancer therapy techniques, such as chemotherapy and radiation therapy, possess several drawbacks including lack of selectivity resulting in harmful side effects. Photodynamic therapy (PDT) is one of the fastest emerging techniques due to its many advantages, including the use of nonionizing radiation, targeted delivery, and controlled doses. In PDT, photosensitizers (PSs) are activated inside targeted cells to produce irreversible damage inducing cell death. Since most PSs operate in the visible range, it is difficult to activate them due to the high attenuation of soft tissue. Upconverting nanoparticles (UCNP) are able to absorb in the NIR region, where light is less attenuated, and emit in the visible range, resulting in deeper tissue penetration. UCNPs are able to assist with the activation of the PS by energy transfer when the PS is conjugated onto the UCNP. Chlorin e6 (Ce6) is a commonly used PSs due to its ability to release reactive oxygen species (ROS), which is one of the main processes utilized in PDT. The UCNP studied contain a combination of rare earth doped ions including Erbium, Thulium, and Holmium precisely doped into the host nanocrystal to improve upconversion emission and energy transfer. The work presented will focus on exploring the factors that affect the activation of Ce6. The results will include the enhancement of Ce6 activation and ROS release when conjugated onto a rare earth-doped UCNP. This research was funded by NSF-PREM Grant No. DMR -0934218 and RISE Grant No. GM 060655.

  2. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions.

    Science.gov (United States)

    Zhu, Ming; Huang, Xingyi; Yang, Ke; Zhai, Xing; Zhang, Jun; He, Jinliang; Jiang, Pingkai

    2014-11-26

    The interfacial region plays a critical role in determining the electrical properties and energy storage density of dielectric polymer nanocomposites. However, we still know a little about the effects of electrical properties of the interfacial regions on the electrical properties and energy storage of dielectric polymer nanocomposites. In this work, three types of core-shell structured polymer@BaTiO3 nanoparticles with polymer shells having different electrical properties were used as fillers to prepare ferroelectric polymer nanocomposites. All the polymer@BaTiO3 nanoparticles were prepared by surface-initiated reversible-addition-fragmentation chain transfer (RAFT) polymerization, and the polymer shells were controlled to have the same thickness. The morphology, crystal structure, frequency-dependent dielectric properties, breakdown strength, leakage currents, energy storage capability, and energy storage efficiency of the polymer nanocomposites were investigated. On the other hand, the pure polymers having the same molecular structure as the shells of polymer@BaTiO3 nanoparticles were also prepared by RAFT polymerization, and their electrical properties were provided. Our results show that, to achieve nanocomposites with high discharged energy density, the core-shell nanoparticle filler should simultaneously have high dielectric constant and low electrical conductivity. On the other hand, the breakdown strength of the polymer@BaTiO3-based nanocomposites is highly affected by the electrical properties of the polymer shells. It is believed that the electrical conductivity of the polymer shells should be as low as possible to achieve nanocomposites with high breakdown strength.

  3. Analyzing the soil sorption and transfer environmental functions in the South-East part of Western Siberia using Pt and Ni nanoparticles

    Science.gov (United States)

    Kulizhskiy, Sergey; Loyko, Sergey; Morgalev, Yuriy; Istigechev, Georgiy; Novokreshchennykh, Tatiana; Rodikova, Anna

    2015-04-01

    The soil with flushing water regime has a very important environmental function, the regulative one in the migration of the dispersed substances caused by natural and anthropogenic activity. The study of these processes is necessary to solve questions of the origins and functioning of soils and also to estimate the parameters of finely dispersed xenobiotics (man-made nanoparticles) accumulation and transfer in the landscapes. The model substance to explore the ways and potential function of migration in texture-differentiated soils of the southern forest zone of Western Siberia are the suspensions of nanosized platinum (diameter from 5 to 15 nm). The research is based on the properties and behavior of nanoparticles in porous media and their ability to keep highly dispersed state for a long time in the aqueous suspensions due to the small size (up to 100 nm) and low surface charge. Particle identification tags will be conducted using mass spectrometry with inductively coupled plasma. That is possible due to the small percentage abundance of platinum. Two groups of experiments were conducted with support of RFBR grant №14-04-00967. First one has been done for evaluation the platinum nanoparticles transmission and interception in soil horizons inside undisturbed monoliths. Second group has dealt with the mechanical barriers investigation for nanoparticles behavior in the native Haplic Albeluvisols profiles by standard method application to determine the filtration properties. The significant variability of detention and transmission values of nanoparticles columns through soil horizons has been detected. There are no simple correlations between the evaluated with the nanoparticles pass-through function through the soil column and soil properties. The main factor that determines the conditions of nanoparticles transfer through the horizon is the geometry of the pore space, and the type of filtering suspensions: linear or front one. Thus, the presences of dead

  4. Risk transfer via energy savings insurance

    OpenAIRE

    Mills, Evan

    2001-01-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of t...

  5. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.

    Science.gov (United States)

    Aissaoui, Nesrine; Moth-Poulsen, Kasper; Käll, Mikael; Johansson, Peter; Wilhelmsson, L Marcus; Albinsson, Bo

    2017-01-05

    Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.

  6. Toxicity and transfer of CuO Nanoparticles on Arabidopsis thaliana

    Science.gov (United States)

    Zhao, Shilin; Dai, Yanhui; Xu, Lina

    2018-02-01

    CuO engineered nanoparticles (ENPs) are widely used in commercial applications. With increasing CuO ENPs production, CuO ENPs are likely to present in the environment and cause a potential threaten to ecosystem. In this work, Arabidopsis thaliana (Bay-0) was chosen to take the toxic experiment after exposed to CuO ENPs (0, 20, and 50 mg/L) and Cu2+ (0.15 mg/L). And the copper content of shoots at 50 mg/L CuO ENPs was about 20 times of control, indicating that CuO ENPs could be absorbed into Arabidopsis thaliana seedlings and transfered from root to shoot in a certain way.

  7. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jiangdong; Pan, Jianming; Xu, Longcheng; Li, Xiuxiu [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhiping [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhang, Rongxian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng, E-mail: djdxxx123@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191 (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer Atom transfer radical emulsion polymerization is a 'living' and green technique. Black-Right-Pointing-Pointer Nanoparticles can overcome mass transfer limitations and improve accessibility. Black-Right-Pointing-Pointer Molecular imprinted nanoparticles with magnetic property for fast separation. Black-Right-Pointing-Pointer The performance of imprinted nanoparticles was investigated in detail. Black-Right-Pointing-Pointer Nanoparticles were used to selective recognize Tetracycline from water medium. - Abstract: In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition of tetracycline (TC) molecules from aqueous medium. The resulting nanoparticles were characterized by FT-IR, TGA, VSM, SEM and TEM. The results demonstrated MMINs with a narrow diameter distribution were cross-linked with modified Fe{sub 3}O{sub 4} particles, composed of imprinted layer and exhibited good magnetic sensitivity, magnetic and thermal stability. Batch rebinding studies were carried out to determine the specific adsorption equilibrium, kinetics, and selective recognition. The estimated adsorption capacity of MMINs towards TC by the Langmuir isotherm model was 12.10 mg g{sup -1} at 298 K, which was 6.33 times higher than that of magnetic non-molecularly imprinted nanoparticles (MNINs). The kinetic property of MMINs was well-described by the pseudo-second-order rate equation. The results of selective recognition experiments demonstrated outstanding affinity and selectivity towards TC over competitive antibiotics. The reusability of MMINs showed no obviously deterioration at least five repeated cycles in performance. In addition, the MMINs prepared were successfully

  8. Structure and function of nanoparticle-protein conjugates

    International Nuclear Information System (INIS)

    Aubin-Tam, M-E; Hamad-Schifferli, K

    2008-01-01

    Conjugation of proteins to nanoparticles has numerous applications in sensing, imaging, delivery, catalysis, therapy and control of protein structure and activity. Therefore, characterizing the nanoparticle-protein interface is of great importance. A variety of covalent and non-covalent linking chemistries have been reported for nanoparticle attachment. Site-specific labeling is desirable in order to control the protein orientation on the nanoparticle, which is crucial in many applications such as fluorescence resonance energy transfer. We evaluate methods for successful site-specific attachment. Typically, a specific protein residue is linked directly to the nanoparticle core or to the ligand. As conjugation often affects the protein structure and function, techniques to probe structure and activity are assessed. We also examine how molecular dynamics simulations of conjugates would complete those experimental techniques in order to provide atomistic details on the effect of nanoparticle attachment. Characterization studies of nanoparticle-protein complexes show that the structure and function are influenced by the chemistry of the nanoparticle ligand, the nanoparticle size, the nanoparticle material, the stoichiometry of the conjugates, the labeling site on the protein and the nature of the linkage (covalent versus non-covalent)

  9. Microemulsion mediated synthesis of triangular shape SnO{sub 2} nanoparticles: Luminescence application

    Energy Technology Data Exchange (ETDEWEB)

    Luwang, Meitram Niraj, E-mail: mn.luwang@ncl.res.in

    2014-01-30

    The triangular prism shapes of SnO{sub 2}·xH{sub 2}O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO{sub 2} nanoparticles was studied. There is the quantum size effect in absorption study of SnO{sub 2} nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO{sub 2} nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO{sub 2} nanoparticles in both microemulsion and powder form. SnO{sub 2} nanoparticles show green emission due to oxygen vacancy. SnO{sub 2} nanoparticles when doped with Eu{sup 3+} ions give the enhanced luminescence of Eu{sup 3+} due to the surface mediated energy transfer from SnO{sub 2} to Eu{sup 3+} ion.

  10. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes

    DEFF Research Database (Denmark)

    He, Jian; Yang, Song; Riisager, Anders

    2018-01-01

    Magnetic nickel ferrite (NiFe2O4) nanoparticles were exploited as stable and easily separable heterogeneous catalysts for catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as both the hydrogen source and the solvent providing 94% product yield at 180 degrees C...

  11. Structural studies of metal nanoparticles using high-energy x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kumara, L. S. R., E-mail: KUMARA.Rosantha@nims.go.jp; Yang, Anli; Song, Chulho [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Synchrotron X-ray Group, Quantum Beam Unit, NIMS, 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259-J3-16, Nagatsuta, Midori, Yokohama 226-8502 (Japan); Kohara, Shinji [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Synchrotron X-ray Group, Quantum Beam Unit, NIMS, 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Kusada, Kohei; Kobayashi, Hirokazu [Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan (Japan); Kitagawa, Hiroshi [Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan (Japan); INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan (Japan); Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501 Japan (Japan)

    2016-07-27

    The XRD patterns of nanoparticles exhibit broad Bragg peaks because of small size, where the contribution of diffuse component provides us with inherent structural information. Therefore, pair distribution function obtained from a Fourier transformation of high-energy XRD data and structure modeling on the basis of diffraction data becomes an essential tool to understand the structure of nanoparticles. This promising tool was utilized to obtain structural information of Pd/Pt bimetallic core/shell and solid-solution nanoparticles, which show much attention due to their improved hydrogen storage capacity and catalytic activity.

  12. Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles.

    Science.gov (United States)

    Yu, Mengqun; Wang, Hong; Fu, Fei; Li, Linyao; Li, Jing; Li, Gan; Song, Yang; Swihart, Mark T; Song, Erqun

    2017-04-04

    The effective monitoring, identification, and quantification of pathogenic bacteria is essential for addressing serious public health issues. In this study, we present a universal and facile one-step strategy for sensitive and selective detection of pathogenic bacteria using a dual-molecular affinity-based Förster (fluorescence) resonance energy transfer (FRET) platform based on the recognition of bacterial cell walls by antibiotic and aptamer molecules, respectively. As a proof of concept, Vancomycin (Van) and a nucleic acid aptamer were employed in a model dual-recognition scheme for detecting Staphylococcus aureus (Staph. aureus). Within 30 min, by using Van-functionalized gold nanoclusters and aptamer-modified gold nanoparticles as the energy donor and acceptor, respectively, the FRET signal shows a linear variation with the concentration of Staph. aureus in the range from 20 to 10 8 cfu/mL with a detection limit of 10 cfu/mL. Other nontarget bacteria showed negative results, demonstrating the good specificity of the approach. When employed to assay Staph. aureus in real samples, the dual-recognition FRET strategy showed recoveries from 99.00% to the 109.75% with relative standard derivations (RSDs) less than 4%. This establishes a universal detection platform for sensitive, specific, and simple pathogenic bacteria detection, which could have great impact in the fields of food/public safety monitoring and infectious disease diagnosis.

  13. Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer.

    Science.gov (United States)

    Farnum, Byron H; Morseth, Zachary A; Brennaman, M Kyle; Papanikolas, John M; Meyer, Thomas J

    2015-06-18

    Degenerately doped In2O3:Sn semiconductor nanoparticles (nanoITO) have been used to study the photoinduced interfacial electron-transfer reactivity of surface-bound [Ru(II)(bpy)2(4,4'-(PO3H2)2-bpy)](2+) (RuP(2+)) molecules as a function of driving force over a range of 1.8 eV. The metallic properties of the ITO nanoparticles, present within an interconnected mesoporous film, allowed for the driving force to be tuned by controlling their Fermi level with an external bias while their optical transparency allowed for transient absorption spectroscopy to be used to monitor electron-transfer kinetics. Photoinduced electron transfer from excited-state -RuP(2+*) molecules to nanoITO was found to be dependent on applied bias and competitive with nonradiative energy transfer to nanoITO. Back electron transfer from nanoITO to oxidized -RuP(3+) was also dependent on the applied bias but without complication from inter- or intraparticle electron diffusion in the oxide nanoparticles. Analysis of the electron injection kinetics as a function of driving force using Marcus-Gerischer theory resulted in an experimental estimate of the reorganization energy for the excited-state -RuP(3+/2+*) redox couple of λ* = 0.83 eV and an electronic coupling matrix element, arising from electronic wave function overlap between the donor orbital in the molecule and the acceptor orbital(s) in the nanoITO electrode, of Hab = 20-45 cm(-1). Similar analysis of the back electron-transfer kinetics yielded λ = 0.56 eV for the ground-state -RuP(3+/2+) redox couple and Hab = 2-4 cm(-1). The use of these wide band gap, degenerately doped materials provides a unique experimental approach for investigating single-site electron transfer at the surface of oxide nanoparticles.

  14. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  15. Synthesis and characterization of TiO2/Ag/polymer ternary nanoparticles via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Park, Jung Tae; Koh, Joo Hwan; Seo, Jin Ah; Cho, Yong Soo; Kim, Jong Hak

    2011-01-01

    We report on the novel ternary hybrid materials consisting of semiconductor (TiO 2 ), metal (Ag) and polymer (poly(oxyethylene methacrylate) (POEM)). First, a hydrophilic polymer, i.e. POEM, was grafted from TiO 2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. These TiO 2 -POEM brush nanoparticles were used to template the formation of Ag nanoparticles by introduction of a AgCF 3 SO 3 precursor and a NaBH 4 aqueous solution for reduction process. Successful grafting of polymeric chains from the surface of TiO 2 nanoparticles and the in situ formation of Ag nanoparticles within the polymeric chains were confirmed using transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). FT-IR spectroscopy also revealed the specific interaction of Ag nanoparticles with the C=O groups of POEM brushes. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the semiconductor, producing ternary hybrid inorganic-organic nanomaterials.

  16. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus.

    Science.gov (United States)

    Shi, Jingyu; Chan, Chunyu; Pang, Yukting; Ye, Weiwei; Tian, Feng; Lyu, Jing; Zhang, Yu; Yang, Mo

    2015-05-15

    In this work, a novel fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) pairs was developed for Staphylococcus aureus specific gene sequence detection. This FRET biosensor platform was realized by immobilization of capture probes on GQDs and conjugation of reporter probes on AuNPs. Target oligos then co-hybridized with capture probes and reporter probes to form a sandwich structure which brought GQDs and AuNPs to close proximity to trigger FRET effect. The fluorescence signals before and after addition of targets were measured and the fluorescence quenching efficiency could reach around 87% with 100 nM target oligo. The limit of detection (LOD) of this FRET biosensor was around 1 nM for S.aureus gene detection. Experiments with both single-base mismatched oligos and double-base mismatched oligos demonstrated the good sequence selectivity of this FRET biosensor. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Pair transfer processes probed at deep sub barrier energies

    International Nuclear Information System (INIS)

    Corradi, L.; Mason, P.; Fioretto, E.; Michelagnoli, C.; Stefanini, A.M.; Valiente-Dobon, J.J.; Szinler, S.; Jelavic-Malenica, D.; Soic, N.; Pollarolo, G.; Farnea, E.; Montagnoli, G.; Montanari, D.; Scarlassara, F.; Ur, C.A.; Gadea, A.; Haas, F.; Marginean, N.

    2011-01-01

    Multinucleon transfer cross sections in the system 40 Ca+ 96 Zr have been measured at bombarding energies ranging from the Coulomb barrier to ∼ 25% below. Target-like (lighter) recoils in inverse kinematics have been completely identified in A,Z and Q-value with the large solid angle magnetic spectrometer PRISMA. The experimental slopes of the neutron transfer probabilities at large internuclear separation are consistent with the values derived from the binding energies. A phenomenological interpretation of the transfer probabilities indicates the presence of enhanced values for the even number of neutron transfers. (authors)

  18. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  19. Power law scaling for rotational energy transfer

    International Nuclear Information System (INIS)

    Pritchard, D.E.; Smith, N.; Driver, R.D.; Brunner, T.A.

    1979-01-01

    We have applied a new scaling law to several sets of rotational energy transfer cross sections. The new law asserts that the square of the T-matrix depends on the amount of energy transferred as a power law. Two different kinds of angular momentum statistics are assumed, one corresponding to m/sub j/ being conserved and the other corresponding to m/sub j/ being completely randomized. Numerical fits are presented which demonstrate that the data follow the power law better than the widely used exponential gap law

  20. Synthesis of Nd3+doped TiO2 nanoparticles and Its Optical Behaviour

    Directory of Open Access Journals (Sweden)

    Ezhil Arasi S.

    2017-04-01

    Full Text Available Pure and Rare earth ion doped TiO2 nanoparticles were synthesized by Sol-gel method. The synthesized TiO2 nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, UV–Vis spectroscopy and photoluminescence emission spectra. From the UV-visible measurement, the absorption edge of Nd3+-TiO2 was shifted to a higher wavelength side with decreasing band gap. Photoluminescence emission studies reveal the energy transfer mechanism of Nd3+ doped TiO2 nanoparticles explain.

  1. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  2. Coherent excitation-energy transfer and quantum entanglement in a dimer

    International Nuclear Information System (INIS)

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman

    2010-01-01

    We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit, however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state entanglement decreases with the increase of the absolute value of the energy detuning.

  3. Measurement of discrete energy-level spectra in individual chemically synthesized gold nanoparticles

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Bolotin, Kirill I; Shi, Su-Fei

    2008-01-01

    We form single-electron transistors from individual chemically synthesized gold nanoparticles, 5-15 nm in diameter, with monolayers of organic molecules serving as tunnel barriers. These devices allow us to measure the discrete electronic energy levels of individual gold nanoparticles that are......, by virtue of chemical synthesis, well-defined in their composition, size and shape. We show that the nanoparticles are nonmagnetic and have spectra in good accord with random-matrix-theory predictions taking into account strong spin-orbit coupling....

  4. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    Full Text Available Wan Nordiana Rahman,1,2 Stéphanie Corde,3,4 Naoto Yagi,5 Siti Aishah Abdul Aziz,1 Nathan Annabell,2 Moshi Geso21School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; 2Division of Medical Radiation, School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC, 3Radiation Oncology, Prince of Wales Hospital, High Street, Randwick, 4Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; 5Japanese Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, JapanAbstract: Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3

  5. Advanced applications of tunable ferrofluids in energy systems and energy harvesters: A critical review

    International Nuclear Information System (INIS)

    Khairul, M.A.; Doroodchi, Elham; Azizian, Reza; Moghtaderi, Behdad

    2017-01-01

    Highlights: • Current developments in ferrofluids are reviewed. • The effects of unique features of ferrofluids on thermal properties are studied. • Applications of tunable magnetic nanofluids in energy harvesters are discussed. • Future research on ferrofluid based electromagnetic energy harvesters are suggested. - Abstract: Ferrofluids or Magnetic nanofluids (MNFs) are the suspensions of magnetic nanoparticles and non-magnetic base fluid. The heat transfer performance of a magnetic nano-suspension is influenced by the strength and orientation of an applied magnetic field. The main attraction of these types of nanofluids is that they not only enhance the fluids’ thermophysical properties but also possess both magnetic characteristics like the other magnetic materials and flow ability similar to any other fluids. Such an exclusive feature enables to control heat transfer, fluid flow and movement of the nanoparticles by using the external magnetic fields. This review paper summarises the recent investigations of magnetic nanofluids with the aim of identifying the effects of major parameters on the performance of heat transfer. In addition, this study also acknowledged the novel application of ferrofluids in the electromagnetic energy harvesters, and its challenges as well as the potentiality in the future research.

  6. Generation of drugs coated iron nanoparticles through high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Radhika Devi, A.; Murty, B. S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Chelvane, J. A. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  7. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  8. Energy transfer in a mechanically trapped exciplex.

    Science.gov (United States)

    Klosterman, Jeremy K; Iwamura, Munetaka; Tahara, Tahei; Fujita, Makoto

    2009-07-15

    Host-guest complexes involving M(6)L(4) coordination cages can display unusual photoreactivity, and enclathration of the very large fluorophore bisanthracene resulted in an emissive, mechanically trapped intramolecular exciplex. Mechanically linked intramolecular exciplexes are important for understanding the dependence of energy transfer on donor-acceptor distance, orientation, and electronic coupling but are relatively unexplored. Steady-state and picosecond time-resolved fluorescence measurements have revealed that selective excitation of the encapsulated guest fluorophore results in efficient energy transfer from the excited guest to an emissive host-guest exciplex state.

  9. Nuclear response functions at large energy and momentum transfer

    International Nuclear Information System (INIS)

    Bertozzi, W.; Moniz, E.J.; Lourie, R.W.

    1991-01-01

    Quasifree nucleon processes are expected to dominate the nuclear electromagnetic response function for large energy and momentum transfers, i.e., for energy transfers large compared with nuclear single particle energies and momentum transfers large compared with typical nuclear momenta. Despite the evident success of the quasifree picture in providing the basic frame work for discussing and understanding the large energy, large momentum nuclear response, the limits of this picture have also become quite clear. In this article a selected set of inclusive and coincidence data are presented in order to define the limits of the quasifree picture more quantitatively. Specific dynamical mechanisms thought to be important in going beyond the quasifree picture are discussed as well. 75 refs, 37 figs

  10. Computational study of energy transfer in two-dimensional J-aggregates

    International Nuclear Information System (INIS)

    Gallos, Lazaros K.; Argyrakis, Panos; Lobanov, A.; Vitukhnovsky, A.

    2004-01-01

    We perform a computational analysis of the intra- and interband energy transfer in two-dimensional J-aggregates. Each aggregate is represented as a two-dimensional array (LB-film or self-assembled film) of two kinds of cyanine dyes. We consider the J-aggregate whose J-band is located at a shorter wavelength to be a donor and an aggregate or a small impurity with longer wavelength to be an acceptor. Light absorption in the blue wing of the donor aggregate gives rise to the population of its excitonic states. The depopulation of these states is possible by (a) radiative transfer to the ground state (b) intraband energy transfer, and (c) interband energy transfer to the acceptor. We study the dependence of energy transfer on properties such as the energy gap, the diagonal disorder, and the exciton-phonon interaction strength. Experimentally observable parameters, such as the position and form of luminescence spectrum, and results of the kinetic spectroscopy measurements strongly depend upon the density of states in excitonic bands, rates of energy exchange between states and oscillator strengths for luminescent transitions originating from these states

  11. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1991-01-01

    This paper gives some examples of how technology transfer can successfully be given to third world countries to allow them to benefit in their quest for economic growth and better standards of living through reduced energy consumption and environmental pollution. It also suggests methods by which obstacles such as high investment costs, lack of information, market demand, etc., can be overcome in order to motivate technological transfer by industrialized countries

  12. Definition and determination of the triplet-triplet energy transfer reaction coordinate.

    Science.gov (United States)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A Ulises; Frutos, Luis Manuel

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  13. Intramolecular singlet-singlet energy transfer in antenna-substituted azoalkanes.

    Science.gov (United States)

    Pischel, Uwe; Huang, Fang; Nau, Werner M

    2004-03-01

    Two novel azoalkane bichromophores and related model compounds have been synthesised and photophysically characterised. Dimethylphenylsiloxy (DPSO) or dimethylnaphthylsiloxy (DNSO) serve as aromatic donor groups (antenna) and the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as the acceptor. The UV spectral window of DBO (250-300 nm) allows selective excitation of the donor. Intramolecular singlet-singlet energy transfer to DBO is highly efficient and proceeds with quantum yields of 0.76 with DPSO and 0.99 with DNSO. The photophysical and spectral properties of the bichromophoric systems suggest that energy transfer occurs through diffusional approach of the donor and acceptor within a van der Waals contact at which the exchange mechanism is presumed to dominate. Furthermore, akin to the behaviour of electron-transfer systems in the Marcus inverted region, a rate of energy transfer 2.5 times slower was observed for the system with the more favourable energetics, i.e. singlet-singlet energy transfer from DPSO proceeded slower than from DNSO, although the process is more exergonic for DPSO (-142 kJ mol(-1) for DPSO versus-67 kJ mol(-1) for DNSO).

  14. Energy transfer from a superconducting magnet to an inductive load

    International Nuclear Information System (INIS)

    Onishi, Toshitada; Miura, Akinori.

    1977-01-01

    Experiments on energy transfer between two superconducting magnets have been carried out using an inductive energy transfer system similar to the flying capacitor system developed at the Karlsruhe Institute. In the present system the capacitor is grounded and diodes are used instead of thyristors, and a fraction of stored energy is transferred to the capacitor only when the relay connected in parallel to the magnet is switched off. The capacitor is expected to have no constraint in size, while in the flying capacitor system the capacitor is required to exceed a threshold size. Consequently it is possible to shorten the transfer time to some extent in comparison with the one in the flying capacitor system. Transfer experiments have been carried out using a storage magnet with inductance of 1.2H and a load of 0.41H. The capacitance is 200μF. It is possible to transfer 80.1% of the stored energy of 221 J into the load in less than about 0.35 seconds. (auth.)

  15. Molecular tilt-dependent and tyrosine-enhanced electron transfer across ITO/SAM/[DPPC–Au NP–Tyrosine] Janus nanoparticle junction

    Energy Technology Data Exchange (ETDEWEB)

    Sarangi, Nirod Kumar; Patnaik, Archita, E-mail: archita59@yahoo.com [Indian Institute of Technology Madras, Department of Chemistry (India)

    2016-09-15

    Enhanced interfacial electron transfer (ET) across the otherwise insulating indium tin oxide/alkanethiol self-assembled monolayer (SAM)/redox molecule junction was accomplished when a Janus gold nanoparticle (JNP) protected by bioinspired phosphatidylcholine (DPPC) lipid and tyrosine amino acid ligands was anchored on it. In addition to the most theoretical and experimental investigations on the distance-dependent ET across Metal–Organic SAM–Nanoparticle (NP) architectures, the current results succinctly illustrate molecular tilt angle of the SAM and the characteristic of JNP as key factors in expediting the ET rate via electron tunneling. In the absence of JNP, electron tunneling with a tunneling factor β = 1.1 Å{sup −1} across the SAM was the rate-limiting step, evidenced from electrochemical impedance spectroscopy (EIS). The apparent electron transfer rate constant (k{sub app}{sup 0}) for anchored SAM was enhanced by at least one order of magnitude than the DPPC-only protected nanoparticle, suggesting the potential role of tyrosine towards the enhanced ET. The asymmetric and biogenic nature of the construct sheds light on a potential bioelectronic device for novel electronic attributes.Graphical abstractEntry of TOC .

  16. Energy transfer in diatom/diatom molecular collisions

    International Nuclear Information System (INIS)

    Sohlberg, K.W.

    1992-01-01

    In a collision of two molecules, the translational energy of the collision may be redistributed into internal energy of rotation, vibration, or electron motion, in one or both of the colliding partners. In addition, internal energy in one or more of these modes may be open-quotes quenchedclose quotes into translation, leading to a superelastic collision. Such energy transfer may take place by a number of mechanisms. This energy transfer is of fundamental importance in understanding chemical reaction dynamics. Nearly all chemical reactions take place through a bimolecular collision process (or multiple bimolecular collisions) and the quantum state specificity of the reaction can have a major role in determining the kinetics of the reaction, In particular, the author has investigated vibrational energy transfer in collisions between two diatomic molecules. In addition to serving as models for all molecular collision process, gas phase collisions of these species are ubiquitous in atmospheric phenomena which are of critical importance in answering the current questions about the human induced degradation of the earth's atmospheric. Classical trajectory methods have been used to explore the excitation of vibrations in gas-phase collisions of the nitrogen molecular ion with its parent molecule. The near symmetry of the reactants is shown to result in a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability, even

  17. Effect of silver ions on the energy transfer from host defects to Tb ions in sol–gel silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbass, Abd Ellateef [Department of Physics, University of the Free State, Bloemfontein (South Africa); Department of Physics, Sudan University of Science and Technology (Sudan); Swart, H.C. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa)

    2015-04-15

    Plasmonic metal structures have been suggested to enhance the luminescence from rare-earth (RE) ions, but this enhancement is not yet well understood or applied to phosphor materials. Although some reports using Ag nanoparticles (NPs) in glass have attributed enhancement of RE emission to the strong electric fields associated with Ag NPs, it has also been proposed that the enhancement is instead due to energy transfer from Ag ions to RE ions. Our work using sol–gel silica shows a third possibility, namely that enhancement of the RE (e.g. Tb) emission is due to energy transfer from defects of the host material to the Tb ions, where the addition of Ag influences the silica host defects. The oxidation state of Ag as a function of annealing temperature was investigated by x-ray diffraction, transmission electron microscopy, UV–vis measurements and x-ray photoelectron spectroscopy, while optical properties were investigated using a Cary Eclipse fluorescence spectrophotometer or by exciting samples with a 325 nm He–Cd laser. The results showed that Ag ions have a significant effect on the silica host defects, which resulted in enhancement of the green Tb emission at 544 nm for non-resonant excitation using a wavelength of 325 nm. - Highlights: • Conversion of Ag ions to metallic nanoparticles after annealing of sol–gel silica. • Addition of Ag resulted in enhanced green luminescence from Tb ions in silica. • Enhancement is attributed to the effect of added Ag on the host defects of silica.

  18. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit

    2015-06-25

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo. © 2015 Taylor & Francis.

  19. A simple and sensitive immunoassay for the determination of human chorionic gonadotropin by graphene-based chemiluminescence resonance energy transfer.

    Science.gov (United States)

    Lei, Jiuqian; Jing, Tao; Zhou, Tingting; Zhou, Yusun; Wu, Wei; Mei, Surong; Zhou, Yikai

    2014-04-15

    In this study, we report a strategy of chemiluminescence resonance energy transfer (CRET) using graphene as an efficient long-range energy acceptor. Magnetic nanoparticles were also used in CRET for simple magnetic separation and immobilization of horseradish peroxidase (HRP)-labeled anti-HCG antibody. In the design of CRET system, the sandwich-type immunocomplex was formed between human chorionic gonadotropin (HCG, antigen) and two different antibodies bridged the magnetic nanoparticles and graphene (acceptors), which led to the occurrence of CRET from chemiluminescence light source to graphene. After optimizing the experimental conditions, the quenching of chemiluminescence signal depended linearly on the concentration of HCG in the range of 0.1 mIU mL(-1)-10 mIU mL(-1) and the detection limit was 0.06 mIU mL(-1). The proposed method was successfully applied for the determination of HCG levels in saliva and serum samples, and the results were in good agreement with the plate ELISA with colorimetric detection. It could also be developed for detection of other antigen-antibody immune complexes by using the corresponding antigens and respective antibodies. © 2013 Published by Elsevier B.V.

  20. Laser-induced transfer of gel microdroplets for cell printing

    Science.gov (United States)

    Yusupov, V. I.; Zhigar'kov, V. S.; Churbanova, E. S.; Chutko, E. A.; Evlashin, S. A.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Bagratashvili, V. N.

    2017-12-01

    We study thermal and transport processes involved in the transfer of gel microdroplets under the conditions of laser cell microprinting. The specific features of the interaction of pulsed laser radiation ( λ = 1.064 µm, pulse duration 4 - 200 ns, energy 2 µJ - 1 mJ) with the absorbing gold film deposited on the glass donor substrate are determined. The investigation of the dynamics of transport processes by means of fast optical video recording and optoacoustic methods makes it possible to determine the characteristics of the produced gel jets as functions of the laser operation regimes. The hydrodynamic process of interaction between the laser radiation and the gold coating with the hydrogel layer on it is considered and the temperature in the region of the laser pulse action is estimated. It is shown that in the mechanism of laser-induced transfer a significant role is played by the processes of explosive boiling of water (in gel) and gold. The amount of gold nanoparticles arriving at the acceptor plate in the process of the laser transfer is determined. For the laser pulse duration 8 ns and small energies (less than 10 µJ), the fraction of gold nanoparticles in the gel microdroplets is negligibly small, and their quantity linearly grows with increasing pulse energy. The performed studies offer a base for optimising the processes of laser transfer of gel microdroplets in the rapidly developing technologies of cell microprinting.

  1. Organic solar cells: understanding the role of Förster resonance energy transfer.

    Science.gov (United States)

    Feron, Krishna; Belcher, Warwick J; Fell, Christopher J; Dastoor, Paul C

    2012-12-12

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  2. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Paul C. Dastoor

    2012-12-01

    Full Text Available Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  3. Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria

    International Nuclear Information System (INIS)

    Linnanto, J.M.; Korppi-Tommola, J.E.I.

    2009-01-01

    Molecular mechanics and quantum chemical configuration interaction calculations in combination with exciton theory were used to predict vibronic energies and eigenstates of light harvesting antennae and the reaction centre and to evaluate excitation energy transfer rates in the photosynthetic unit of purple bacteria. Excitation energy transfer rates were calculated by using the transition matrix formalism and exciton basis sets of the interacting antenna systems. Energy transfer rates of 600-800 fs from B800 ring to B850 ring in the LH2 antenna, 3-10 ps from LH2 to LH2 antenna, 2-8 ps from LH2 to LH1 antenna and finally 30-70 ps from LH1 to the reaction centre were obtained. Dependencies of energy transfer rates on lateral and vertical inter-complex distances were determined. The results indicate that a fair amount of spatial heterogeneity of antenna complexes in the photosynthetic membrane is tolerated without much loss in excitation energy transfer efficiency

  4. Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Linnanto, J.M. [Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae, Jyvaeskylae (Finland)], E-mail: juha.m.linnanto@jyu.fi; Korppi-Tommola, J.E.I. [Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae, Jyvaeskylae (Finland)

    2009-02-23

    Molecular mechanics and quantum chemical configuration interaction calculations in combination with exciton theory were used to predict vibronic energies and eigenstates of light harvesting antennae and the reaction centre and to evaluate excitation energy transfer rates in the photosynthetic unit of purple bacteria. Excitation energy transfer rates were calculated by using the transition matrix formalism and exciton basis sets of the interacting antenna systems. Energy transfer rates of 600-800 fs from B800 ring to B850 ring in the LH2 antenna, 3-10 ps from LH2 to LH2 antenna, 2-8 ps from LH2 to LH1 antenna and finally 30-70 ps from LH1 to the reaction centre were obtained. Dependencies of energy transfer rates on lateral and vertical inter-complex distances were determined. The results indicate that a fair amount of spatial heterogeneity of antenna complexes in the photosynthetic membrane is tolerated without much loss in excitation energy transfer efficiency.

  5. Energy transfer mechanisms in layered 2D perovskites.

    Science.gov (United States)

    Williams, Olivia F; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M

    2018-04-07

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA) 2 (MA) n-1 [Pb n I 3n+1 ] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  6. Energy transfer mechanisms in layered 2D perovskites

    Science.gov (United States)

    Williams, Olivia F.; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M.

    2018-04-01

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)2(MA)n-1[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  7. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Malasi

    2016-10-01

    Full Text Available Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag, its nanoparticles have amongst the highest radiative quantum efficiencies (η, i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.

  8. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  9. Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Baydaa Jaber Nabhan

    2015-06-01

    Full Text Available Phase change materials (PCMs such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.% of (TiO2 nano-particles with about (10nm diameter. It is found that the phase change temperature varies with adding (TiO2 nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity has been found to increase by about (10% at nanoparticles loading (5wt.% and 15oC.

  10. Energy Transfer Kinetics and Dynamics of Relevance to Iodine Lasers

    National Research Council Canada - National Science Library

    Heaven, Michael C

    2001-01-01

    ...). Energy transfer between I(2 P(1/2)) and 02(X) has been studied in detail. Rate constants for electronic energy transfer and nuclear spin relaxation were measured over the temperature range from 150-300K...

  11. Identification of infusion strategy for achieving repeatable nanoparticle distribution and quantification of thermal dosage using micro-CT Hounsfield unit in magnetic nanoparticle hyperthermia.

    Science.gov (United States)

    LeBrun, Alexander; Joglekar, Tejashree; Bieberich, Charles; Ma, Ronghui; Zhu, Liang

    2016-01-01

    The objective of this study was to identify an injection strategy leading to repeatable nanoparticle deposition patterns in tumours and to quantify volumetric heat generation rate distribution based on micro-CT Hounsfield unit (HU) in magnetic nanoparticle hyperthermia. In vivo animal experiments were performed on graft prostatic cancer (PC3) tumours in immunodeficient mice to investigate whether lowering ferrofluid infusion rate improves control of the distribution of magnetic nanoparticles in tumour tissue. Nanoparticle distribution volume obtained from micro-CT scan was used to evaluate spreading of the nanoparticles from the injection site in tumours. Heating experiments were performed to quantify relationships among micro-CT HU values, local nanoparticle concentrations in the tumours, and the ferrofluid-induced volumetric heat generation rate (q(MNH)) when nanoparticles were subject to an alternating magnetic field. An infusion rate of 3 µL/min was identified to result in the most repeatable nanoparticle distribution in PC3 tumours. Linear relationships have been obtained to first convert micro-CT greyscale values to HU values, then to local nanoparticle concentrations, and finally to nanoparticle-induced q(MNH) values. The total energy deposition rate in tumours was calculated and the observed similarity in total energy deposition rates in all three infusion rate groups suggests improvement in minimising nanoparticle leakage from the tumours. The results of this study demonstrate that micro-CT generated q(MNH) distribution and tumour physical models improve predicting capability of heat transfer simulation for designing reliable treatment protocols using magnetic nanoparticle hyperthermia.

  12. Photoinduced electron-transfer from imidazole derivative to nano-semiconductors.

    Science.gov (United States)

    Karunakaran, C; Jayabharathi, J; Jayamoorthy, K; Devi, K Brindha

    2012-04-01

    Bioactive imidazole derivative absorbs in the UV region at 305 nm. The interaction of imidazole derivative with nanoparticulate WO3, Fe2O3, Fe3O4, CuO, ZrO2 and Al2O3 has been studied by UV-visible absorption, FT-IR and fluorescence spectroscopies. The imidazole derivative adsorbs strongly on the surfaces of nanosemiconductor, the apparent binding constants for the association between nanomaterials and imidazole derivative have been determined from the fluorescence quenching. In the case of nanocrystalline insulator, fluorescence quenching through electron transfer from the excited state of the imidazole derivative to alumina is not possible. However, a possible mechanism for the quenching of fluorescence by the insulator is energy transfer, that is, energy transferred from the organic molecule to the alumina lattice. Based on Forster's non-radiation energy transfer theory, the distance between the imidazole derivative and nanoparticles (r0∼2.00 nm) as well as the critical energy transfer distance (R0∼1.70 nm) has been calculated. The interaction between the imidazole derivative and nanosurfaces occurs through static quenching mechanism. The free energy change (ΔGet) for electron transfer process has been calculated by applying Rehm-Weller equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  14. Radiative transition, local field enhancement and energy transfer microcosmic mechanism of tellurite glasses containing Er3+, Yb3+ ions and Ag nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Wenjun; Lin, Jian; Cheng, Mingzhao; Zhang, Shuo; Jia, Yujie; Zhao, Junhong

    2015-01-01

    Er 3+ -doped, Er 3+ /Yb 3+ co-doped tellurite glass with and without Ag NPs were synthesized by melt-quenching method. The high resolution transmission electron microscopy (HR-TEM) and selected area electron diffractions (SAED) manifest growth of Ag NPs. The UV–vis–NIR absorption spectroscopy and fluorescence spectroscopy were measured. The optical band gap and multiphonon relaxation rate constants were calculated. The electronic band structure and local density of state (DOS) of Ag NPs are calculated. The fluorescence emission and enhancement mechanism including localized surface plasmon resonance (LSPR) and energy transfer (ET) microcosmic mechanism were discussed. The electric field distributions of Ag NPs are emulated by FDTD solutions software. Local field enhancement (LFE) induced by LSPR and lightning rod effect was found to be responsible for the fluorescence enhancement while energy transfer from Ag NPs to rare-earth was considered ignorable in the samples without photoluminescent emission. - Highlights: • Tellurite glasses containing Er 3+ , Yb 3+ and Ag NPs are prepared. • Judd–Ofelt and multiphonon relaxation are calculated. • The electronic band structures of Ag NPs are calculated. • The energy transfer mechanism is discussed. • The plasmon resonance effect of Ag NPs is discussed

  15. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Asbahi, Bandar Ali, E-mail: alasbahibandar@gmail.com [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Science, Sana' a University (Yemen); Jumali, Mohammad Hafizuddin Haji, E-mail: hafizhj@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Yap, Chi Chin; Flaifel, Moayad Husein [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2013-10-15

    Photophysical properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/2-butyl-6- (butylamino)benzo [de] isoquinoline-1,3-dione (Fluorol 7GA) and energy transfer between them have been investigated. In this work, both PFO and Fluorol 7GA act as donor and acceptor, respectively. Based on the absorption and luminescence measurements, the photophysical and energy transfer properties such as fluorescence quantum yield (Φ{sub f}), fluorescence lifetime (τ), radiative rate constant (k{sub r}), non-radiative rate constant (k{sub nr}), quenching rate constant (k{sub SV}), energy transfer rate constant (k{sub ET}), energy transfer probability (P{sub DA}), energy transfer efficiency (η), critical concentration of acceptor (C{sub o}), energy transfer time (τ{sub ET}) and critical distance of energy transfer (R{sub o}) were calculated. Large values of k{sub SV}, k{sub ET} and R{sub o} suggested that Förster-type energy transfer was the dominant mechanism for the energy transfer between the excited donor and ground state acceptor molecules. It was observed that the Förster energy transfer together with the trapping process are crucial for performance improvement in ITO/(PFO/Fluorol7GA)/Al device. -- Highlights: • The efficient of energy transfer from PFO to Fluorol 7GA was evidenced. • The resonance energy transfer (Förster type) is the dominant mechanism. • Hsu et al. model was used to calculate Φ{sub f}, τ, k{sub r} and k{sub nr} of PFO thin film. • Several of the photophysical and energy transfer properties were calculated. • Trapping process and Förster energy transfer led to improve the device performance.

  16. Energy transfer processes in Er-doped crystals

    International Nuclear Information System (INIS)

    Georgescu, Serban; Toma, Octavian

    2005-01-01

    In this paper, the microparameters characteristic to various energy-transfer processes in erbium doped crystals are estimated using the Dexter theory. For all the investigated processes, electric dipole-dipole interaction between donor and acceptor ions is assumed. The spectra appearing in Dexter's expression of the microparameter are simulated as a superposition of Lorentzian lines, knowing the positions of both initial and final Stark levels, and calibrated using the Judd-Ofelt model. This approach can give an estimation of the importance of the energy-transfer processes. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix

    Science.gov (United States)

    Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua

    2017-01-01

    Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor–acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL). PMID:28585538

  18. A chopper circuit for energy transfer between superconducting magnets

    International Nuclear Information System (INIS)

    Onishi, Toshitada; Tateishi, Hiroshi; Takeda, Masatoshi; Matsuura, Toshiaki; Nakatani, Toshio.

    1986-01-01

    It has been suggested that superconducting magnets could provide a medium for storing energy and supplying the large energy pulses needed by experimental nuclear-fusion equipment and similar loads. Based on this concept, tests on energy transfer between superconducting magnets are currently being conducted at the Agency of Industrial Science and Technology's Electrotechnical Laboratory. Mitsubishi Electric has pioneered the world's first chopper circuit for this application. The circuit has the advantages of being simple and permitting high-speed, bipolar energy transfer. The article describes this circuit and its testing. (author)

  19. Crossed-beam energy transfer: polarization effects and evidence of saturation

    Science.gov (United States)

    Turnbull, D.; Colaïtis, A.; Follett, R. K.; Palastro, J. P.; Froula, D. H.; Michel, P.; Goyon, C.; Chapman, T.; Divol, L.; Kemp, G. E.; Mariscal, D.; Patankar, S.; Pollock, B. B.; Ross, J. S.; Moody, J. D.; Tubman, E. R.; Woolsey, N. C.

    2018-05-01

    Recent results on crossed-beam energy transfer are presented. Wavelength tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves (IAWs) with amplitudes up to δ n/n≈ 0.015. Increasing the initial probe intensity to access larger IAW amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam's polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effects in a multibeam situation can dramatically enhance the expected amount of energy transfer.

  20. Production and transfer of energy and information in Hamiltonian systems.

    Directory of Open Access Journals (Sweden)

    Chris G Antonopoulos

    Full Text Available We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an "experimental" implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented.

  1. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    linked silicon nanoparticle clusters were synthesized via the CuAAC "click" reaction of functional silicon nanoparticles with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle arrays undergo a solvent dependent change in volume (ethanol> dichloromethane> toluene) similar in behavior to hydrogel nanocomposites. A novel light-harvesting complex and artificial photosynthetic material based on silicon nanoparticles was designed and synthesized. Silicon nanoparticles were used as nanoscaffolds for organizing the porphyrins to form light-harvesting complexes thereby enhancing the light absorption of the system. The energy transfer from silicon nanoparticles to porphyrin acceptors was investigated by both steady-state and time-resolved fluorescence spectroscopy. The energy transfer efficiency depended on the donor-acceptor ratio and the distance between the nanoparticle and the porphyrin ring. The addition of C60 resulted in the formation of silicon nanoparticle-porphyrin-fullerene nanoclusters which led to charge separation upon irradiation of the porphyrin ring. The electron-transfer process between the porphyrin and fullerene was investigated by femto-second transient absorption spectroscopy. Finally, the water soluble silicon nanoparticles were used as nanocarriers in photodynamic therapeutic application, in which can selectively deliver porphyrins into human embryonic kidney 293T (HEK293T) cells. In particular, the PEGylated alkynyl-porphyrins were conjugated onto the azido-terminated silicon nanoparticles via a CuAAC "click" reaction. The resultant PEGylated porphyrin grafted silicon nanoparticles have diameters around 13.5 +/- 3.8 nm. The cryo-TEM and conventional TEM analysis proved that the PEGylated porphyrin grafted silicon nanoparticle could form the micelle-like structures at higher concentration in water via self-assembly. The UV-Vis absorption analysis demonstrated that the silicon

  2. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 2013 MOLECULAR ENERGY TRANSFER GORDON RESEARCH CONFERENCE (JANUARY 13-18, 2013 - VENTURA BEACH MARRIOTT, VENTURA CA

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Scott A. [Marquette University

    2012-10-18

    Sessions covered all areas of molecular energy transfer, with 10 sessions of talks and poster sessions covering the areas of :  Energy Transfer in Inelastic and Reactive Scattering  Energy Transfer in Photoinitiated and Unimolecular Reactions  Non-adiabatic Effects in Energy TransferEnergy Transfer at Surfaces and Interfaces  Energy Transfer in Clusters, Droplets, and Aerosols  Energy Transfer in Solution and Solid  Energy Transfer in Complex Systems  Energy Transfer: New vistas and horizons  Molecular Energy Transfer: Where Have We Been and Where are We Going?

  4. Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material

    International Nuclear Information System (INIS)

    Liu, Yuping; Huang, Kai; Fan, Yu; Zhang, Qing; Sun, Fu; Gao, Tian; Wang, Zhongzheng; Zhong, Jianxin

    2013-01-01

    A nonwoven nanofiber fabric with paper-like qualities composed of Si nanoparticles and carbon as binder-free anode electrode is reported. The nanofiber fabrics are prepared by convenient electrospinning technique, in which, the Si nanoparticles are uniformly confined in the carbon nanofibers. The high strength and flexibility of the nanofiber fabrics are beneficial for alleviating the structural deformation and facilitating ion transports throughout the whole composited electrodes. Due to the absence of binder, the less weight, higher energy density, and excellent electrical conductivity anodes can be attained. These traits make the composited nanofiber fabrics excellent used as a binder-free, mechanically flexible, high energy storage anode material in the next generation of rechargeable lithium ions batteries

  5. Interaction mechanism for energy transfer from Ce to Tb ions in silica

    International Nuclear Information System (INIS)

    Seed Ahmed, H.A.A.; Chae, W.S.; Ntwaeaborwa, O.M.; Kroon, R.E.

    2016-01-01

    Energy transfer phenomena can play an important role in the development of luminescent materials. In this study, numerical simulations based on theoretical models of non-radiative energy transfer are compared to experimental results for Ce, Tb co-doped silica. Energy transfer from the donor (Ce) to the acceptor (Tb) resulted in a decrease in the Ce luminescence intensity and lifetime. The decrease in intensity corresponded best with the energy transfer models based on the exchange interaction and the dipole-dipole interaction. The critical transfer distance obtained from the fitting using both these models is around 2 nm. Since the exchange interaction requires a distance shorter than 1 nm to occur, the mechanism most likely to account for the energy transfer is concluded to be the dipole–dipole interaction. This is supported by an analysis of the lifetime data.

  6. Modeling of MeV alpha particle energy transfer to lower hybrid waves

    International Nuclear Information System (INIS)

    Schivell, J.; Monticello, D.A.; Fisch, N.; Rax, J.M.

    1993-10-01

    The interaction between a lower hybrid wave and a fusion alpha particle displaces the alpha particle simultaneously in space and energy. This results in coupled diffusion. Diffusion of alphas down the density gradient could lead to their transferring energy to the wave. This could, in turn, put energy into current drive. An initial analytic study was done by Fisch and Rax. Here the authors calculate numerical solutions for the alpha energy transfer and study a range of conditions that are favorable for wave amplification from alpha energy. They find that it is possible for fusion alpha particles to transfer a large fraction of their energy to the lower hybrid wave. The numerical calculation shows that the net energy transfer is not sensitive to the value of the diffusion coefficient over a wide range of practical values. An extension of this idea, the use of a lossy boundary to enhance the energy transfer, is investigated. This technique is shown to offer a large potential benefit

  7. Multi-step intramolecular excitation energy transfer in dendritic pyrene-phosphorus(V)porphyrin heptads

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Kazutaka, E-mail: hirakawa.kazutaka@shizuoka.ac.jp [Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Segawa, Hiroshi [Department of Multi-Disciplinary Science - General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8904 (Japan); Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904 (Japan)

    2016-11-15

    Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.

  8. Multi-step intramolecular excitation energy transfer in dendritic pyrene-phosphorus(V)porphyrin heptads

    International Nuclear Information System (INIS)

    Hirakawa, Kazutaka; Segawa, Hiroshi

    2016-01-01

    Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.

  9. Spectroscopic analysis of the riboflavin-serum albumins interaction on silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Voicescu, Mariana, E-mail: voicescu@icf.ro; Angelescu, Daniel G. [Institute of Physical Chemistry ' Ilie Murgulescu' , Romanian Academy (Romania); Ionescu, Sorana [University of Bucharest, Department of Physical Chemistry (Romania); Teodorescu, Valentin S. [Institute of Atomic Physics, National Institute of Materials Physics (Romania)

    2013-04-15

    Spectrophotometric behavior of riboflavin (RF) adsorbed on silver nanoparticles as well as its interaction with two serum albumins, BSA and HSA, respectively, has been evidenced. The time evolution of the plasmonic features of the complexes formed by RF/BSA/HSA and Ag(0) nanoparticles having an average diameter of 10.0 {+-} 2.0 nm have been investigated by UV-Vis absorption spectroscopy. Using steady-state and time-resolved fluorescence spectroscopy, the structure, stability, and dynamics of the serum albumins have been studied. The efficiency of energy transfer process between RF and serum albumins on silver nanoparticles has been estimated. A reaction mechanism of RF with silver nanoparticles is also proposed and the results are discussed with relevance to the involvement of the silver nanoparticles to the redox process of RF and to the RF-serum albumins interaction into a silver nanoparticles complex.

  10. Spectroscopic analysis of the riboflavin—serum albumins interaction on silver nanoparticles

    Science.gov (United States)

    Voicescu, Mariana; Angelescu, Daniel G.; Ionescu, Sorana; Teodorescu, Valentin S.

    2013-04-01

    Spectrophotometric behavior of riboflavin (RF) adsorbed on silver nanoparticles as well as its interaction with two serum albumins, BSA and HSA, respectively, has been evidenced. The time evolution of the plasmonic features of the complexes formed by RF/BSA/HSA and Ag(0) nanoparticles having an average diameter of 10.0 ± 2.0 nm have been investigated by UV-Vis absorption spectroscopy. Using steady-state and time-resolved fluorescence spectroscopy, the structure, stability, and dynamics of the serum albumins have been studied. The efficiency of energy transfer process between RF and serum albumins on silver nanoparticles has been estimated. A reaction mechanism of RF with silver nanoparticles is also proposed and the results are discussed with relevance to the involvement of the silver nanoparticles to the redox process of RF and to the RF-serum albumins interaction into a silver nanoparticles complex.

  11. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single

  12. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  13. Optical absorption and energy transfer processes in dendrimers

    International Nuclear Information System (INIS)

    Reineker, P.; Engelmann, A.; Yudson, V.I.

    2004-01-01

    For dendrimers of various sizes the energy transfer and the optical absorption is investigated theoretically. The molecular subunits of a dendrimer are modeled as two-level systems. The electronic interaction between them is described via transfer integrals and the influence of vibrational degrees of freedom is taken into account in a first approach using a stochastic model. We discuss the time dependence of the energy transport and show that rim states of the dendrimer dominate the absorption spectra, that in general the electronic excitation energy is concentrated on peripheric molecules, and that the energetically lowest absorption peak is redshifted with increasing dendrimer size due to delocalization of the electronic excitation

  14. State-of-the-Art Developments of Acoustic Energy Transfer

    Directory of Open Access Journals (Sweden)

    Md Rabiul Awal

    2016-01-01

    Full Text Available Acoustic energy transfer (AET technology has drawn significant industrial attention recently. This paper presents the reviews of the existing AETs sequentially, preferably, from the early stage. From the review, it is evident that, among all the classes of wireless energy transfer, AET is the safest technology to adopt. Thus, it is highly recommended for sensitive area and devices, especially implantable devices. Though, the efficiency for relatively long distances (i.e., >30 mm is less than that of inductive or capacitive power transfer; however, the trade-off between safety considerations and performances is highly suitable and better than others. From the presented statistics, it is evident that AET is capable of transmitting 1.068 kW and 5.4 W of energy through wall and in-body medium (implants, respectively. Progressively, the AET efficiency can reach up to 88% in extension to 8.6 m separation distance which is even superior to that of inductive and capacitive power transfer.

  15. Subwavelength dielectric nanorod chains for energy transfer in the visible range.

    Science.gov (United States)

    Li, Dongdong; Zhang, Jingjing; Yan, Changchun; Xu, Zhengji; Zhang, Dao Hua

    2017-10-15

    We report a new type of energy transfer device, formed by a dielectric nanorod array embedded in a silver slab. Such dielectric chain structures allow surface plasmon wave guiding with large propagation length and highly suppressed crosstalk between adjacent transmission channels. The simulation results show that our proposed design can be used to enhance the energy transfer along the waveguide-like dielectric nanorod chains via coupled plasmons, where the energy spreading is effectively suppressed, and superior imaging properties in terms of resolution and energy transfer distance can be achieved.

  16. Electron transfer in organic glass. Distance and energy dependence

    International Nuclear Information System (INIS)

    Krongauz, V.V.

    1992-01-01

    The authors have investigated the distance and energy dependence of electron transfer in rigid organic glasses containing randomly dispersed electron donor and electron acceptor molecules. Pulsed radiolysis by an electron beam from a linear accelerator was used for ionization resulting in charge deposition on donor molecules. The disappearance kinetics of donor radical anions due to electron transfer to acceptor was monitored spectroscopically by the change in optical density at the wavelength corresponding to that of donor radical anion absorbance. It was found that the rate of the electron transfer observed experimentally was higher than that computed using the Marcus-Levich theory assuming that the electron-transfer activation barrier is equal to the binding energy of electron on the donor molecule. This discrepancy between the experimental and computed results suggests that the open-quotes inertclose quotes media in which electron-transfer reaction takes place may be participating in the process, resulting in experimentally observed higher electron-transfer rates. 32 refs., 3 figs., 2 tabs

  17. Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency

    DEFF Research Database (Denmark)

    Blum, Christian; Zijlstra, Niels; Lagendijk, Ad

    2012-01-01

    We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Forster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS...... is controlled by carefully positioning the FRET pairs near a mirror. We find that the energy transfer efficiency changes with LDOS, and that, in agreement with theory, the energy transfer rate is independent of the LDOS, which allows one to quantitatively control FRET systems in a new way. Our results imply...

  18. Synthesis and characterization of Nd3+: Yb3+ co-doped near infrared sensitive fluorapatite nanoparticles as a bioimaging probe

    Science.gov (United States)

    Karthi, S.; Kumar, G. A.; Sardar, D. K.; Santhosh, C.; Girija, E. K.

    2018-03-01

    Trivalent Nd and Yb co-doped rod shaped hexagonal phase fluorapatite (FAP) nanoparticles of length and width about 32 and 13 nm, respectively were prepared by hydrothermal method and investigated the ability for 980 nm emission via Nd3+ → Yb3+ energy transfer with the objective of utilizing them in biomedical imaging. Nd3+ → Yb3+ energy transfer in FAP was studied as a function of both Nd3+ and Yb3+ concentrations and found that when Yb3+ concentration was 10 mol% the FAP phase has partially turned in to YbPO4 phase. The Yb3+ emission intensity at 980 nm significantly increased up to 5 mol% Yb3+ doping and then reduced drastically for further increase in its concentration. Nd3+ →Yb3+ energy transfer rates were evaluated from the decay curves and found that a transfer rate of 71% for 2 mol% Nd3+ co-doped with 5 mol% Yb3+. The cytocompatibility test with fibroblast like cells using MTT assay revealed that the nanoparticles are compatible with the cells.

  19. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester

    Science.gov (United States)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.

    2016-11-01

    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  20. Room temperature synthesis of hydrophilic Ln(3+)-doped KGdF4 (Ln = Ce, Eu, Tb, Dy) nanoparticles with controllable size: energy transfer, size-dependent and color-tunable luminescence properties.

    Science.gov (United States)

    Yang, Dongmei; Li, Guogang; Kang, Xiaojiao; Cheng, Ziyong; Ma, Ping'an; Peng, Chong; Lian, Hongzhou; Li, Chunxia; Lin, Jun

    2012-06-07

    In this paper, we demonstrate a simple, template-free, reproducible and one-step synthesis of hydrophilic KGdF(4): Ln(3+) (Ln = Ce, Eu, Tb and Dy) nanoparticles (NPs) via a solution-based route at room temperature. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and cathodoluminescence (CL) spectra are used to characterize the samples. The results indicate that the use of water-diethyleneglycol (DEG) solvent mixture as the reaction medium not only allows facile particle size control but also endows the as-prepared samples with good water-solubility. In particular, the mean size of NPs is monotonously reduced with the increase of DEG content, from 215 to 40 nm. The luminescence intensity and absolute quantum yields for KGdF(4): Ce(3+), Tb(3+) NPs increase remarkably with particle sizes ranging from 40 to 215 nm. Additionally, we systematically investigate the magnetic and luminescence properties of KGdF(4): Ln(3+) (Ln = Ce, Eu, Tb and Dy) NPs. They display paramagnetic and superparamagnetic properties with mass magnetic susceptibility values of 1.03 × 10(-4) emu g(-1)·Oe and 3.09 × 10(-3) emu g(-1)·Oe at 300 K and 2 K, respectively, and multicolor emissions due to the energy transfer (ET) process Ce(3+)→ Gd(3+)→ (Gd(3+))(n)→ Ln(3+), in which Gd(3+) ions play an intermediate role in this process. Representatively, it is shown that the energy transfer from Ce(3+) to Tb(3+) occurs mainly via the dipole-quadrupole interaction by comparison of the theoretical calculation and experimental results. This kind of magnetic/luminescent dual-function materials may have promising applications in multiple biolabels and MR imaging.

  1. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    International Nuclear Information System (INIS)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong; Yu Yunjin; Cao Jianshu

    2012-01-01

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  2. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yu Yunjin [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); College of Physics Science and Technology, Shenzhen University, Guangdong 518060 (China); Cao Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2012-06-28

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  3. Stochastic Modelling of Wireless Energy Transfer

    Science.gov (United States)

    Veilleux, Shaun; Almaghasilah, Ahmed; Abedi, Ali; Wilkerson, DeLisa

    2017-01-01

    This study investigates the efficiency of a new method of powering remote sensors by the means of wireless energy transfer. The increased use of sensors for data collection comes with the inherent cost of supplying power from sources such as power cables or batteries. Wireless energy transfer technology eliminates the need for power cables or periodic battery replacement. The time and cost of setting up or expanding a sensor network will be reduced while allowing sensors to be placed in areas where running power cables or battery replacement is not feasible. This paper models wireless channels for power and data separately. Smart scheduling for the data channel is proposed to avoid transmitting data on a noisy channel where the probability of data loss is high to improve power efficiency. Analytical models have been developed and verified using simulations.

  4. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    International Nuclear Information System (INIS)

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2014-01-01

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity

  5. Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles

    Science.gov (United States)

    Prakash, Anitha; Pathrose, Bini P.; Mathew, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2018-05-01

    We have investigated the thermal and optical properties of neutral red dye incorporated with different weight percentage of gold nanoparticles prepared by laser ablation method. Optical absorption studies confirmed the production of spherical nanoparticles and also the interactions of the dye molecules with gold nanoparticles. The quenching of fluorescence and the reduction in the lifetime of gold incorporated samples were observed and was due to the non-radiative energy transfer between the dye molecules and gold nanoparticles. Dual beam thermal lens technique has been employed to measure the heat diffusion in neutral red with various weight percentage of gold nano sol dispersed in ethanol. The significant outcome of the experiment is that, the overall heat diffusion is slower in the presence of gold nano sol compared to that of dye alone sample. Brownian motion is suggested to be the main mechanism of heat transfer under the present conditions. The thermal diffusivity variations of samples with respect to different excitation power of laser were also studied.

  6. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay.

    Science.gov (United States)

    Lee, Joon Seok; Joung, Hyou-Arm; Kim, Min-Gon; Park, Chan Beum

    2012-04-24

    We report on chemiluminescence resonance energy transfer (CRET) between graphene nanosheets and chemiluminescent donors. In contrast to fluorescence resonance energy transfer, CRET occurs via nonradiative dipole-dipole transfer of energy from a chemiluminescent donor to a suitable acceptor molecule without an external excitation source. We designed a graphene-based CRET platform for homogeneous immunoassay of C-reactive protein (CRP), a key marker for human inflammation and cardiovascular diseases, using a luminol/hydrogen peroxide chemiluminescence (CL) reaction catalyzed by horseradish peroxidase. According to our results, anti-CRP antibody conjugated to graphene nanosheets enabled the capture of CRP at the concentration above 1.6 ng mL(-1). In the CRET platform, graphene played a key role as an energy acceptor, which was more efficient than graphene oxide, while luminol served as a donor to graphene, triggering the CRET phenomenon between luminol and graphene. The graphene-based CRET platform was successfully applied to the detection of CRP in human serum samples in the range observed during acute inflammatory stress.

  7. Investigation of the charge-transfer in photo-excited nanoparticles for CO2 reduction in non-aqueous media

    Directory of Open Access Journals (Sweden)

    Dimitrijević Nada M.

    2013-01-01

    Full Text Available Photoinduced charge separation in TiO2 and Cu2O semiconductor nanoparticles was examined using Electron Paramagnetic Resonance spectroscopy in order to get insight into the photocatalytic reduction of CO2 in nonaqueous media. For dissolution/grafting of CO2 we have used carboxy-PEG4-amine, and as a solvent poly(ethylene glycol 200. We have found that, in this system, reduction of CO2 starts at potential of -0.5 V vs Ag/AgCl, which is significantly more positive than the potential for electrochemical reduction of CO2 in most organic solvents and water (-2.0 V vs. Ag/AgCl. The electron transfer from excited nanoparticles to CO2 is governed both by thermodynamic and kinetic parameters, namely by the redox potential of conduction band electrons and adsorption/binding of CO2 on the surface of nanoparticles.

  8. Mechanism and models for collisional energy transfer in highly excited large polyatomic molecules

    International Nuclear Information System (INIS)

    Gilbert, R. G.

    1995-01-01

    Collisional energy transfer in highly excited molecules (say, 200-500 kJ mol -1 above the zero-point energy of reactant, or of product, for a recombination reaction) is reviewed. An understanding of this energy transfer is important in predicting and interpreting the pressure dependence of gas-phase rate coefficients for unimolecular and recombination reactions. For many years it was thought that this pressure dependence could be calculated from a single energy-transfer quantity, such as the average energy transferred per collision. However, the discovery of 'super collisions' (a small but significant fraction of collisions which transfer abnormally large amounts of energy) means that this simplistic approach needs some revision. The 'ordinary' (non-super) component of the distribution function for collisional energy transfer can be quantified either by empirical models (e.g., an exponential-down functional form) or by models with a physical basis, such as biased random walk (applicable to monatomic or diatomic collision partners) or ergodic (for polyatomic collision partners) treatments. The latter two models enable approximate expressions for the average energy transfer to be estimated from readily available molecular parameters. Rotational energy transfer, important for finding the pressure dependence for recombination reactions, can for these purposes usually be taken as transferring sufficient energy so that the explicit functional form is not required to predict the pressure dependence. The mechanism of 'ordinary' energy transfer seems to be dominated by low-frequency modes of the substrate, whereby there is sufficient time during a vibrational period for significant energy flow between the collision partners. Super collisions may involve sudden energy flow as an outer atom of the substrate is squashed between the substrate and the bath gas, and then is moved away from the interaction by large-amplitude motion such as a ring vibration or a rotation; improved

  9. Excitation of high energy levels under laser exposure of suspensions of nanoparticles in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation)], E-mail: shafeev@kapella.gpi.ru; Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation); Bozon-Verduraz, F. [ITODYS, UMR CNRS 7086, Universite Paris 7-Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France); Robert, M. [Laboratoire d' Electrochimie Moleculaire, UMR CNRS 7591, Universite Paris 7 Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France)

    2007-12-15

    Laser exposure of suspensions of nanoparticles in liquids leads to excitation of high energy levels in both liquid and nanoparticle material. The emission spectrum of the colloidal solution under exposure of a suspension metallic nanoparticles in water to radiation of a Nd:YAG laser of a picosecond range of pulse duration is discussed. Excitation of nuclear energy levels and neutron release is experimentally studied on the model system of transmutation of Hg into Au that occurs under exposure of Hg nanodrops suspended in D{sub 2}O. The proposed mechanism involves: (i) emission of X-ray photons by Hg nanoparticles upon laser exposure, leading to neutron release from D{sub 2}O, (ii) initiation of Hg {yields} Au transmutation by the capture of neutrons. The effect of transmutation is more pronounced using {sup 196}Hg isotope instead of Hg of natural isotope composition. The influence of laser pulse duration on the degree of transmutation (from fs through ns range) is discussed.

  10. Energy transfer of excitons between quantum wells separated by a wide barrier

    International Nuclear Information System (INIS)

    Lyo, S. K.

    2000-01-01

    We present a microscopic theory of the excitonic Stokes and anti-Stokes energy-transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch (Δ) at low temperatures (T). Several important intrinsic energy-transfer mechanisms have been examined, including dipolar coupling, real and virtual photon-exchange coupling, and over-barrier ionization of the excitons via exciton-exciton Auger processes. The transfer rate is calculated as a function of T and the center-to-center distance d between the wells. The rates depend sensitively on T for plane-wave excitons. For localized excitons, the rates depend on T only through the T dependence of the exciton localization radius. For Stokes energy transfer, the dominant energy transfer occurs through a photon-exchange interaction, which enables the excitons from the higher-energy wells to decay into free electrons and holes in the lower-energy wells. The rate has a slow dependence on d, yielding reasonable agreement with recent data from GaAs/Al x Ga 1-x As quantum wells. The dipolar rate is about an order of magnitude smaller for large d (e.g., d=175Aa) with a stronger range dependence proportional to d -4 . However, the latter can be comparable to the radiative rate for small d (e.g., d≤80Aa). For anti-Stokes transfer through exchange-type (e.g., dipolar and photon-exchange) interactions, we show that thermal activation proportional to exp(-Δ/k B T) is essential for the transfer, contradicting a recent nonactivated result based on the Fo''rster-Dexter's spectral-overlap theory. Phonon-assisted transfer yields a negligibly small rate. On the other hand, energy transfer through over-barrier ionization of excitons via Auger processes yields a significantly larger nonactivated rate which is independent of d. The result is compared with recent data

  11. Enhanced fluorescence of a molecular dipole near metal nanoparticle

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N.

    2010-01-01

    We study theoretically radiative and nonradiative decay of a single molecule near small gold nanoparticle. The local field enhancement leads to an increased radiative decay rate while the energy transfer from molecule to optically inactive electronic states in nanoparticle results in a decrease in the fluorescence quantum efficiency for small molecule-nanoparticle distances. We performed a DFT-TDLDA calculation of both the enhancement and the quenching for small nanometersized gold nanoparticles. We found that in close proximity to the surface, the nonradiative decay rate is dominated by generation of electron-hole pairs out of the Fermi sea resulting in a significantly lower quantum efficiency as compared to that obtained from electromagnetic calculations. For large distances, the efficiency is maximal for molecule polarized normal to the surface, whereas for small distances it is maximal for parallel orientation.

  12. Enhanced fluorescence of a molecular dipole near metal nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Pustovit, Vitaliy N., E-mail: pustovit@ccmsi.u [Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kyiv-164 (Ukraine)

    2010-01-15

    We study theoretically radiative and nonradiative decay of a single molecule near small gold nanoparticle. The local field enhancement leads to an increased radiative decay rate while the energy transfer from molecule to optically inactive electronic states in nanoparticle results in a decrease in the fluorescence quantum efficiency for small molecule-nanoparticle distances. We performed a DFT-TDLDA calculation of both the enhancement and the quenching for small nanometersized gold nanoparticles. We found that in close proximity to the surface, the nonradiative decay rate is dominated by generation of electron-hole pairs out of the Fermi sea resulting in a significantly lower quantum efficiency as compared to that obtained from electromagnetic calculations. For large distances, the efficiency is maximal for molecule polarized normal to the surface, whereas for small distances it is maximal for parallel orientation.

  13. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.; Hardin, Brian E.; McGehee, Michael D.

    2010-01-01

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation

  14. Wireless Energy Transfer Through Magnetic Reluctance Coupling

    International Nuclear Information System (INIS)

    Pillatsch, P

    2014-01-01

    Energy harvesting from human motion for body worn or implanted devices faces the problem of the wearer being still, e.g. while asleep. Especially for medical devices this can become an issue if a patient is bed-bound for prolonged periods of time and the internal battery of a harvesting system is not recharged. This article introduces a mechanism for wireless energy transfer based on a previously presented energy harvesting device. The internal rotor of the energy harvester is made of mild steel and can be actuated through a magnetic reluctance coupling to an external motor. The internal piezoelectric transducer is consequently actuated and generates electricity. This paper successfully demonstrates energy transfer over a distance of 16 mm in air and an achieved power output of 85 μW at 25 Hz. The device functional volume is 1.85 cm 3 . Furthermore, it was demonstrated that increasing the driving frequency beyond 25 Hz did not yield a further increase in power output. Future research will focus on improving the reluctance coupling, e.g. by investigating the use of multiple or stronger magnets, in order to increase transmission distance

  15. Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence.

    Science.gov (United States)

    Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian

    2018-01-12

    We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu_{50}Au_{50}, and Cu_{25}Au_{75} nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N-body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

  16. Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells

    NARCIS (Netherlands)

    Rabouw, Freddy T.; Meijerink, Andries

    2015-01-01

    Cooperative energy transfer (ET) is a quantum cutting (or downconversion) process where a luminescent center splits its excited state energy in two by simultaneous transfer to two nearby acceptor centers, thus yielding two low-energy photons for each high-energy photon absorbed. It has the potential

  17. Quantum transfer energy in the framework of time-dependent dipole-dipole interaction

    Science.gov (United States)

    El-Shishtawy, Reda M.; Haddon, Robert C.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.; Berrada, K.; Abdel-Khalek, S.; Al-Hadeethi, Yas F.

    2018-03-01

    In this work, we examine the process of the quantum transfer of energy considering time-dependent dipole-dipole interaction in a dimer system characterized by two-level atom systems. By taking into account the effect of the acceleration and speed of the atoms in the dimer coupling, we demonstrate that the improvement of the probability for a single-excitation transfer energy extremely benefits from the incorporation of atomic motion effectiveness and the energy detuning. We explore the relevance between the population and entanglement during the time-evolution and show that this kind of nonlocal correlation may be generated during the process of the transfer of energy. Our work may provide optimal conditions to implement realistic experimental scenario in the transfer of the quantum energy.

  18. Convective boundary layer flow and heat transfer in a nanofluid in the presence of second order slip, constant heat flux and zero nanoparticles flux

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat (Oman); Al-Rashdi, Maryam H. [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat (Oman); Pop, I. [Department of Mathematics, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca 400084 (Romania)

    2016-02-15

    Highlights: • Convective boundary layer flow and heat transfer in a nanofluid is investigated. • Second order slip increases the rate of shear stress and decreases the rate of heat transfer in a nanofluid. • In nanofluid flow zero normal flux of the nanoparticles at the surface is realistic to apply. • Multiple solutions are identified for certain values of the parameter space. • The upper branch solution is found to be stable, hence physically realizable. - Abstract: In this work, the effects of the second order slip, constant heat flux, and zero normal flux of the nanoparticles due to thermophoresis on the convective boundary layer flow and heat transfer characteristics in a nanofluid using Buongiorno's model over a permeable shrinking sheet is studied theoretically. The nonlinear coupled similarity equations are solved using the function bvp4c using Matlab. Similarity solutions of the flow, heat transfer and nanoparticles volume fraction are presented graphically for several values of the model parameters. The results show that the application of second order slip at the interface is found to be increased the rate of shear stress and decreased the rate of heat transfer in a nanofluid, so need to be taken into account in nanofluid modeling. The results further indicate that multiple solutions exist for certain values of the parameter space. The stability analysis provides guarantee that the lower branch solution is unstable, while the upper branch solution is stable and physically realizable.

  19. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  20. Fluorescence quenching and photocatalytic degradation of textile dyeing waste water by silver nanoparticles

    Science.gov (United States)

    Kavitha, S. R.; Umadevi, M.; Janani, S. R.; Balakrishnan, T.; Ramanibai, R.

    2014-06-01

    Silver nanoparticles (Ag NPs) of different sizes have been prepared by chemical reduction method and characterized using UV-vis spectroscopy and transmission electron microscopy (HRTEM). Fluorescence spectral analysis showed that the quenching of fluorescence of textile dyeing waste water (TDW) has been found to decrease with decrease in the size of the Ag NPs. Experimental results show that the silver nanoparticles can quench the fluorescence emission of adsorbed TDW effectively. The fluorescence interaction between Ag NPs (acceptor) and TDW (donor) confirms the Förster Resonance Energy Transfer (FRET) mechanism. Long range dipole-dipole interaction between the excited donor and ground state acceptor molecules is the dominant mechanism responsible for the energy transfer. Furthermore, photocatalytic degradation of TDW was measured spectrophotometrically by using silver as nanocatalyst under UV light illumination. The kinetic study revealed that synthesized Ag NPs was found to be effective in degrading TDW.

  1. ENHANCING DIRECT ELECTRON TRANSFER OF GLUCOSE OXIDASE USING A GOLD NANOPARTICLE |TITANATE NANOTUBE NANOCOMPOSITE ON A BIOSENSOR

    International Nuclear Information System (INIS)

    Zhao, Ruoxia; Liu, Xiaoqiang; Zhang, Jiamei; Zhu, Jie; Wong, Danny K.Y.

    2015-01-01

    ABSTRACT: In this paper, we have developed a gold nanoparticle (GNP) decorated titanate nanotubes (TNT) nanocomposite that aids in the direct electron transfer of a large enzyme, such as glucose oxidase (GOD), in which the electroactive site of flavin adenine dinucleotide is deeply buried within the enzyme. The ionic liquid, brominated 1-decyl-3-methyl imidazole, was used to immobilise the nanocomposite and the enzyme on a glassy carbon electrode to further aid in the electron transfer between GOD and the electrode surface. Nafion was also added to anchor the biosensor scaffold. Initially, the tubiform geometry of titanate nanomaterials and the GNP-TNT nanocomposite was confirmed by microscopic and spectroscopic techniques before glucose oxidase was entrapped in the nanocomposite. Based on voltammetric results, this biosensor showed a strong electrocatalytic capability towards glucose (with a heterogeneous electron transfer rate constant of 7.1 s −1 at 180 mV s −1 ) and the calibration for glucose exhibited a high sensitivity (5.1 μA mM −1 ) and a wide linear range (0.01–1.2 mM). These results demonstrated superior analytical performance of our biosensor over others fabricated using bulkier TiO 2 nanoparticles or nanobundles, which could be attributed to a high degree of biocompatibility to glucose oxidase and electrical conductivity of the nanocomposite

  2. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Chen Jian; Zeng Fang; Wu Shuizhu; Su Junhua; Zhao Jianqing; Tong Zhen

    2009-01-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu 2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu 2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu 2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu 2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu 2+ /PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu 2+ detection is 1 μM for a nanoparticle sample with a diameter of ∼30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu 2+ ion among the metal ions examined (Na + , K + , Mg 2+ , Ca 2+ , Zn 2+ , Hg 2+ , Mn 2+ , Fe 2+ , Ni 2+ , Co 2+ and Pb 2+ ). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  3. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    Science.gov (United States)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  4. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    Science.gov (United States)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  5. Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations

    Science.gov (United States)

    Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.

    2018-04-01

    Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.

  6. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.

    2010-02-11

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  7. RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Science.gov (United States)

    Abouzied, Mohamed Ali Mohamed

    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various

  8. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    Science.gov (United States)

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  9. The charge transfer structure and effective energy transfer in multiplayer assembly film

    International Nuclear Information System (INIS)

    Li Mingqiang; Jian Xigao

    2005-01-01

    Charge transfer multiplayer films have been prepared by layer-by-layer self-assembly technique. The films incorporate the rare-earth-containing polyoxometalate K 11 [Eu{PW 11 O 39 } 2 ].nH 2 O and the rich electron polyelectrolyte poly(3-viny-1-methyl-pyridine) quaternary ammonium and display a linear increase in the absorption and film thickness with the number of deposition cycles. Ultraviolet and visible absorption spectra, atomic force micrographs, small-angle X-ray reflectivity measurements, and photoluminescence spectra were used to determine the structure of films. Linear and regular multilayer growth was observed. We can observe the formation of charge transfer complex compound in multiplayer by layer-by-layer assembly method. Most importantly, the luminescence spectra show the charge transfer band in assembly films, which suggest that energy could be effectively transferred to rare earth ions in assembly multiplayer films

  10. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit; Verma, Mahendra K.; Samtaney, Ravi

    2015-01-01

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due

  11. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.

    Science.gov (United States)

    Qi, Zewan; Chen, Yang

    2017-01-15

    Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb 3+ ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H + is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb 3+ . The long luminescence lifetime of Tb 3+ allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H + in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Silver nanoparticles-incorporated Nb2O5 surface passivation layer for efficiency enhancement in dye-sensitized solar cells.

    Science.gov (United States)

    Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P

    2018-08-15

    Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Functionally-interdependent shape-switching nanoparticles with controllable properties

    Science.gov (United States)

    Halman, Justin R.; Satterwhite, Emily; Roark, Brandon; Chandler, Morgan; Viard, Mathias; Ivanina, Anna; Bindewald, Eckart; Kasprzak, Wojciech K.; Panigaj, Martin; Bui, My N.; Lu, Jacob S.; Miller, Johann; Khisamutdinov, Emil F.; Shapiro, Bruce A.; Dobrovolskaia, Marina A.

    2017-01-01

    Abstract We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities. Computational algorithms were developed to accurately predict melting temperatures of nanoparticles of various compositions and trace the process of their re-association in silico. Additionally, tunable immunostimulatory properties of described nanoparticles suggest that the particles that do not induce pro-inflammatory cytokines and high levels of interferons can be used as scaffolds to carry therapeutic oligonucleotides, while particles with strong interferon and mild pro-inflammatory cytokine induction may qualify as vaccine adjuvants. The presented concept provides a simple, cost-effective and straightforward model for the development of combinatorial regulation of biological processes in nucleic acid nanotechnology. PMID:28108656

  14. Optically nonlinear energy transfer in light-harvesting dendrimers

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2004-08-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.

  15. Long-range energy transfer in self-assembled quantum dot-DNA cascades

    Science.gov (United States)

    Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant

    2015-11-01

    The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient

  16. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  17. The transfer of technologies for biomass energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, H H [German Agency for Technical Cooperation (GTZ), Eschborn (Germany)

    1995-12-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  18. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  19. Quasiclassical trajectory study of the energy transfer in CO2--rare gas systems

    International Nuclear Information System (INIS)

    Suzukawa, H.H. Jr.; Wolfsberg, M.; Thompson, D.L.

    1978-01-01

    Computational methods are presented for the study of collisions between a linear, symmetric triatomic molecule and an atom by three-dimensional quasiclassical trajectory calculations. Application is made to the investigation of translational to rotational and translational to vibrational energy transfer in the systems CO 2 --Kr, CO 2 --Ar, and CO 2 --Ne. Potential-energy surfaces based on spectroscopic and molecular beam scattering data are used. In most of the calculations, the CO 2 molecule is initially in the quantum mechanical zero-point vibrational state and in a rotational state picked from a Boltzmann distribution at 300 0 K. The energy transfer processes are investigated for translational energies ranging from 0.1 to 10 eV. Translational to rotational energy transfer is found to be the major process for CO 2 --rare gas collisions at these energies. Below 1 eV there is very little translational to vibrational energy transfer. The effects of changes in the internal energy of the molecule, in the masses of the collidants, and in the potential-energy parameters are studied in an attempt to gain understanding of the energy transfer processes

  20. Using Carbon Nanotubes for Nanometer-Scale Energy Transfer Microscopy

    Science.gov (United States)

    Johnston, Jessica; Shafran, Eyal; Mangum, Ben; Mu, Chun; Gerton, Jordan

    2009-10-01

    We investigate optical energy transfer between fluorophores and carbon nanotubes (CNTs). CNTs are grown on Si-oxide wafers by chemical vapor deposition (CVD), lifted off substrates by atomic force microscope (AFM) tips via Van der Waals forces, then shortened by electrical pulses. The tip-attached CNTs are scanned over fluorescent CdSe-ZnS quantum dots (QDs) with sub-nm precision while recording the fluorescence rate. A novel photon counting technique enables us to produce 3D maps of the QD-CNT coupling, revealing nanoscale lateral and vertical features. All CNTs tested (>50) strongly quenched the QD fluorescence, apparently independent of chirality. In some data, a delay in the recovery of QD fluorescence following CNT-QD contact was observed, suggesting possible charge transfer in this system. In the future, we will perform time-resolved studies to quantify the rate of energy and charge transfer processes and study the possible differences in fluorescence quenching and nanotube-QD energy transfer when comparing single-walled (SW) versus multi-walled (MW) CNTs, attempting to grow substrates consisting primarily of SW or MWCNTs and characterizing the structure of tip-attached CNTs using optical spectroscopy.

  1. Influence of external magnetic field on laser-induced gold nanoparticles fragmentation

    International Nuclear Information System (INIS)

    Serkov, A. A.; Rakov, I. I.; Simakin, A. V.; Kuzmin, P. G.; Shafeev, G. A.; Mikhailova, G. N.; Antonova, L. Kh.; Troitskii, A. V.; Kuzmin, G. P.

    2016-01-01

    Laser-assisted fragmentation is an efficient method of the nanoparticles size and morphology control. However, its exact mechanisms are still under consideration. One of the remaining problems is the plasma formation, inevitably occurring upon the high intensity laser irradiation. In this Letter, the role of the laser-induced plasma is studied via introduction of high-intensity external magnetic field (up to 7.5 T). Its presence is found to cause the plasma emission to start earlier regarding to a laser pulse, also increasing the plume luminosity. Under these conditions, the acceleration of nanoparticles fragmentation down to a few nanometers is observed. Laser-induced plasma interaction with magnetic field and consequent energy transfer from plasma to nanoparticles are discussed.

  2. Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Takeshi, E-mail: koyama@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Tsunekawa, Takuya [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Saito, Takeshi [Research Center for Advanced Carbon Materials, AIST, Tsukuba, Ibaraki 305-8565 (Japan); Asaka, Koji; Saito, Yahachi [Department of Quantum Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Kishida, Hideo [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nakamura, Arao [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192 (Japan)

    2016-01-15

    We investigate excitation energy transfer from an encapsulated quaterrylene molecule to a single-walled carbon nanotube by means of femtosecond pump-probe spectroscopy. The time constant of energy transfer becomes shorter with increasing average diameter of nanotube: 1.4±0.2 ps for 1.0 nm, 1.1±0.2 ps for 1.4 nm, and 0.4±0.1 ps for 1.8 nm. The observed behavior is discussed considering the distance of less than 1 nm between the molecule and the nanotube wall. - Highlights: • Dynamical properties of excited states in quaterrylene/SWNT composites were studied. • Excitation energy transfer occurs in the time range of 0.4-1.4 ps. • The transfer rate depends on the nanotube diameter, i.e. molecule-nanotube wall distance. • This dependence indicates the feature of excitation energy transfer on the nanoscale.

  3. Effect of laser energy on the SPR and size of silver nanoparticles synthesized by pulsed laser ablation in distilled water

    Science.gov (United States)

    Baruah, Prahlad K.; Sharma, Ashwini K.; Khare, Alika

    2018-04-01

    The effect of incident laser energy on the surface plasmon resonance (SPR) and size of silver nanoparticles synthesized via pulsed laser ablation of silver immersed in distilled water is reported in this paper. The broadening in the plasmonic bandwidth of the synthesized nanoparticles with the increase in the laser energy incident onto the silver target indicates the reduction in size of the nanoparticles. This is confirmed by the transmission electron microscope (TEM) images which show a decrease in the average particle size of the nanoparticles from approximately 15 to 10 nm with the increase in incident laser energy from 30 to 70 mJ, respectively. The structural features as revealed by the selected area electron diffraction and ultra-high resolution TEM studies confirmed the formation of both silver as well as silver oxide nanoparticles.

  4. Impact of engineered zinc oxide nanoparticles on the energy budgets of Mytilus galloprovincialis

    Science.gov (United States)

    Muller, Erik B.; Hanna, Shannon K.; Lenihan, Hunter S.; Miller, Robert J.; Nisbet, Roger M.

    2014-11-01

    This paper characterizes the sublethal impact of engineered ZnO nanoparticles on the individual performance of the marine mussel Mytilus galloprovincialis within the context of Dynamic Energy Budget theory, thereby allowing an integrated evaluation of the impact of multiple stressors on various endpoints. Data include measurements of the impact of ZnO nanoparticles on body burden, feeding, respiration, shell length, biomass, and mortality of mussels kept in laboratory tanks for over 100 days. ZnO nanoparticles in the environment impair the mussels' feeding rate (EC50 for the maximum feeding rate is 1.5 mg ZnO nanoparticles L- 1). Zn accumulated in tissue increases respiration (EC50 for the respiration rate is 0.9 mg environmental ZnO nanoparticles L- 1 with the body burden having reached its ultimate level), indicating that maintenance processes are more affected by ZnO nanoparticles than feeding. The feeding regime constrained growth and biomass production to the extent that the impact of ZnO nanoparticles on these processes was undetectable, yet the remaining measurements allowed the estimation of the toxicity parameters. The toxicity representation, combined with the DEB model, allowed the calculation of the effect of the nanoparticles on the expected lifetime production of reproductive matter. EC50 for the expected lifetime production of reproductive matter is less than 0.25 mg ZnO nanoparticles L- 1, indicating that that the ecological impact of ZnO nanoparticle exposure is stronger than its impact on individual physiological rates.

  5. Active transfer of poloidal magnetic energy during plasma disruptions in J-TEXT

    International Nuclear Information System (INIS)

    Zhang, Ming; Zhang, Jun; Rao, Bo; Chen, Zhongyong; Li, Xiaolong; Xu, Wendi; Pan, Yuan; Yu, Kexun

    2016-01-01

    Highlights: • An alternative plasma disruption mitigation method by transferring partial poloidal magnetic energy out of the vacuum vessel has been presented in this paper. • This method can reduced the magnetic energy dissipated inside the vacuum vessel during disruption and mitigated the disruption damage. • This method has been experimentally verified in J-TEXT with an experiment system set up. • According to the experimental results, the magnetic energy dissipated inside the vacuum vessel during disruption can be reduced by 20% or more and the loop voltage can be reduced by 58%. - Abstract: The magnitude of the damaging effects of plasma disruptions on vacuum vessel (VV) components increases with the thermal energy and poloidal magnetic energy dissipated inside the VV. This study focuses on an alternative method, by which partial poloidal magnetic energy is transferred out of the VV. The quantity of the poloidal magnetic energy dissipated inside the VV (W_d_i_s) can be reduced with this method, and the damaging effects can be mitigated. Partial magnetic energy is transferred based on magnetic coupling by a group of energy transfer coils (ETCs) that are coupled with the plasma current. This method, which is called magnetic energy transfer (MET), has been experimentally verified in J-TEXT. W_d_i_s can be reduced by approximately 20%, and the loop voltage can be reduced by 58%. MET is established as a novel, promising, and effective plasma disruption mitigation method.

  6. Effects of Laser Energy Density on Size and Morphology of NiO Nanoparticles Prepared by Pulsed Laser Ablation in Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rory; Reddy, M. Amaranatha; Kim, Tae Kyu [Pusan National University, Busan (Korea, Republic of)

    2015-01-15

    Metaloxide nanoparticles are of great importance to a large variety of chemical and material applications ranging from catalysts to electronic devices. Among the metal-oxide nanoparticles, NiO is one of the technologically versatile and important semiconducting materials. It has been extensively investigated because of its myriad applications in catalysts, gas sensors, Li-ion battery materials, electrochromic coatings, active optical fibers, fuel cell electrodes, and so on. The effect of laser ablation at various laser energy densities was investigated. At low energy densities, the produced nanoparticles were of irregular morphology with an average size of 2.4 nm. At higher laser energy densities, the produced nanoparticles were spherical, with a polycrystalline structure and their average size was around 10 nm. More detailed investigations on effects of laser wavelength and energy density as well as the particle size effect on the catalytic activity of synthesized NiO nanoparticles will be investigated in future works.

  7. Novel DNA sequence detection method based on fluorescence energy transfer

    International Nuclear Information System (INIS)

    Kobayashi, S.; Tamiya, E.; Karube, I.

    1987-01-01

    Recently the detection of specific DNA sequence, DNA analysis, has been becoming more important for diagnosis of viral genomes causing infections disease and human sequences related to inherited disorders. These methods typically involve electrophoresis, the immobilization of DNA on a solid support, hybridization to a complementary probe, the detection using labeled with /sup 32/P or nonisotopically with a biotin-avidin-enzyme system, and so on. These techniques are highly effective, but they are very time-consuming and expensive. A principle of fluorescene energy transfer is that the light energy from an excited donor (fluorophore) is transferred to an acceptor (fluorophore), if the acceptor exists in the vicinity of the donor and the excitation spectrum of donor overlaps the emission spectrum of acceptor. In this study, the fluorescence energy transfer was applied to the detection of specific DNA sequence using the hybridization method. The analyte, single-stranded DNA labeled with the donor fluorophore is hybridized to a probe DNA labeled with the acceptor. Because of the complementary DNA duplex formation, two fluorophores became to be closed to each other, and the fluorescence energy transfer was occurred

  8. Reversible, reagentless solubility changes in phosphatidylcholine-stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Mackiewicz, Marilyn R; Ayres, Benjamin R; Reed, Scott M

    2008-01-01

    Phosphatidylcholine (PC) is a versatile ligand for synthesizing gold nanoparticles that are soluble in either organic or aqueous media. Here we report a novel route to organic-soluble, PC-stabilized gold nanoparticles that can be re-suspended in water after removal of the organic solvent. Similarly, we show that PC-stabilized gold nanoparticles synthesized in water can be re-suspended in organic solvents after complete removal of water. Without complete removal of the solvent, the nanoparticles retain their original solubility and do not phase transfer. This change in solvent preference from organic to aqueous and vice versa without the use of an additional phase transfer reagent is novel, visually striking, and of utility for synthetic modification of nanoparticles. This approach allows chemical reactions to be performed on nanoparticles in organic solvents followed by conversion of the products to water-soluble materials. A narrow distribution of PC-stabilized gold nanoparticles was obtained after phase transfer to water as characterized by UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM), demonstrating that the narrow distribution obtained from the organic synthesis is retained after transfer to water. This method produces water-soluble nanoparticles with a narrower dispersity than is possible with direct aqueous synthesis

  9. Diamond nanoparticles as a way to improve electron transfer in sol–gel L-lactate biosensing platforms

    Energy Technology Data Exchange (ETDEWEB)

    Briones, M.; Casero, E. [Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/Francisco Tomás y Valiente, No7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049 Madrid (Spain); Vázquez, L. [Instituto de Ciencia de Materiales de Madrid (CSIC), c/Sor Juana Inés de la Cruz No3, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049 Madrid (Spain); Pariente, F.; Lorenzo, E. [Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/Francisco Tomás y Valiente, No7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049 Madrid (Spain); Petit-Domínguez, M.D., E-mail: mdolores.petit@uam.es [Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, c/Francisco Tomás y Valiente, No7, Campus de Excelencia de la Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2016-02-18

    In the present work, we have included for the first time diamond nanoparticles (DNPs) in a sol–gel matrix derived from (3-mercaptopropyl)-trimethoxysilane (MPTS) in order to improve electron transfer in a lactate oxidase (LOx) based electrochemical biosensing platform. Firstly, an exhaustive AFM study, including topographical, surface potential (KFM) and capacitance gradient (CG) measurements, of each step involved in the biosensing platform development was performed. The platform is based on gold electrodes (Au) modified with the sol–gel matrix (Au/MPTS) in which diamond nanoparticles (Au/MPTS/DNPs) and lactate oxidase (Au/MPTS/DNPs/LOx) have been included. For the sake of comparison, we have also characterized a gold electrode directly modified with DNPs (Au/DNPs). Secondly, the electrochemical behavior of a redox mediator (hydroxymethyl-ferrocene, HMF) was evaluated at the platforms mentioned above. The response of Au/MPTS/DNPs/LOx towards lactate was obtained. A linear concentration range from 0.053 mM to 1.6 mM, a sensitivity of 2.6 μA mM{sup −1} and a detection limit of 16 μM were obtained. These analytical properties are comparable to other biosensors, presenting also as advantages that DNPs are inexpensive, environment-friendly and easy-handled nanomaterials. Finally, the developed biosensor was applied for lactate determination in wine samples. - Highlights: • We have included for the first time diamond nanoparticles (DNPs) in a sol–gel matrix for developing lactate biosensors. • DNPs facilitate electron-transfer within the sol–gel network in electrochemical biosensors. • Lactate biosensors show good sensitivity, detection limit, reproducibility and stability.

  10. Graphene-enhanced Raman imaging of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Naumenko, Denys; Snitka, Valentinas; Snopok, Boris; Arpiainen, Sanna; Lipsanen, Harri

    2012-01-01

    The interaction of anatase titanium dioxide (TiO 2 ) nanoparticles with chemical vapour deposited graphene sheets transferred on glass substrates is investigated by using atomic force microscopy, Raman spectroscopy and imaging. Significant electronic interactions between the nanoparticles of TiO 2 and graphene were found. The changes in the graphene Raman peak positions and intensity ratios indicate that charge transfer between graphene and TiO 2 nanoparticles occurred, increasing the Raman signal of the TiO 2 nanoparticles up to five times. The normalized Raman intensity of TiO 2 nanoparticles per their volume increased with the disorder of the graphene structure. The complementary reason for the observed enhancement is that due to the higher density of states in the defect sites of graphene, a higher electron transfer occurs from the graphene to the anatase TiO 2 nanoparticles. (paper)

  11. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  12. Evaluation of minimum quantity lubrication grinding with nano-particles and recent related patents.

    Science.gov (United States)

    Li, Changhe; Wang, Sheng; Zhang, Qiang; Jia, Dongzhou

    2013-06-01

    In recent years, a large number of patents have been devoted to developing minimum quantity lubrication (MQL) grinding techniques that can significantly improve both environmentally conscious and energy saving and costeffective sustainable grinding fluid alternatives. Among them, one patent is about a supply system for the grinding fluid in nano-particle jet MQL, which produced MQL lubricant by adding solid nano-particles in degradable grinding fluid. The MQL supply device turns the lubricant to the pulse drops with fixed pressure, unchanged pulse frequency and the same drop diameter. The drops will be produced and injected in the grinding zone in the form of jet flow under high pressure gas and air seal. As people become increasingly demanding on our environment, minimum quantity lubrication has been widely used in the grinding and processing. Yet, it presents the defect of insufficient cooling performance, which confines its development. To improve the heat transfer efficiency of MQL, nano-particles of a certain mass fraction can be added in the minimum quantity of lubricant oil, which concomitantly will improve the lubrication effects in the processing. In this study, the grinding experiment corroborated the effect of nano-particles in surface grinding. In addition, compared with other forms of lubrication, the results presented that the grinding force, the friction coefficient and specific grinding energy of MQL grinding have been significantly weakened, while G ratio greatly rose. These are attributed to the friction oil-film with excellent anti-friction and anti-wear performance, which is generated nano-particles at the wheel/workpiece interface. In this research, the cooling performance of nano-particle jet MQL was analyzed. Based on tests and experiments, the surface temperature was assayed from different methods, including flood lubricating oil, dry grinding, MQL grinding and nano-particle jet MQL grinding. Because of the outstanding heat transfer

  13. Magnetic nanoparticles and their application in biomedicine

    International Nuclear Information System (INIS)

    Felinto, M.C.F.C.; Camilo, R.L.; Diegues, T.G.

    2007-01-01

    The magnetic nanoparticles offer some attractive possibilities in biomedicine for the following reasons: First, they have controllable sizes ranging from a few nanometers up to tens of nanometers, which places them at dimensions that are smaller than or comparable to those of a cell (10-100μm) a virus (20-450 nm) or a protein (5-50 nm). Second, the nanoparticles are magnetic, which means that they obey Coulomb's law, and can be manipulated by an external magnetic field gradient. This possibility, combined with the intrinsic penetrability of magnetic fields into human tissue, opens up many applications involving the transport and/or immobilization of magnetic nanoparticles, or of magnetically tagged biological entities. Third, the magnetic nanoparticles can be made to resonantly respond to a time-varying magnetic field, with advantageous results related to the transfer of energy from the exciting field to the nanoparticle. In this paper, we will address the underlying chemical and physics of the biomedical applications of magnetic nanoparticles including radioisotope delivery and a magnetic radiolabeled fluid. We will consider four particular applications: magnetic separation for radio labeled proteins, drug radiolabeled delivery, hyperthermia treatments, and magnetic resonance imaging (MRI) contrast enhancement. There will be included some results obtained in our laboratory in the obtention of these magnetic (author)

  14. Fabrication and Photostability of Rhodamine-6G Gold Nanoparticle Doped Polymer Optical Fiber

    International Nuclear Information System (INIS)

    Sebastian, Suneetha; Ajina, C; Vallabhan, C. P. G; Nampoori, V. P. N.; Radhakrishnan, P.; Kailasnath, M.

    2013-01-01

    We report on fabrication of a rhodamine-6G-gold-nanoparticle doped polymer optical fiber. The gold nanoparticle is synthesized directly into the monomer solution of the polymer using laser ablation synthesis in liquid. The size of the particle is found from the transmission electron microscopy. Rhodamine-6G is then mixed with the nanoparticle-monomer solution and optical characterization of the solution is investigated. It is found that there is a pronounced quenching of fluorescence of rhodamine 6G due to fluorescence resonance energy transfer. The monomer solution containing rhodamine 6G and gold nanoparticles is now made into a cylindrical rod and drawn into a polymer optical fiber. Further, the photostability is calculated with respect to the pure dye doped polymer optical fiber

  15. Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles.

    Science.gov (United States)

    Valenti, Marco; Venugopal, Anirudh; Tordera, Daniel; Jonsson, Magnus P; Biskos, George; Schmidt-Ott, Andreas; Smith, Wilson A

    2017-05-17

    The conversion of light to electrical and chemical energy has the potential to provide meaningful advances to many aspects of daily life, including the production of energy, water purification, and optical sensing. Recently, plasmonic nanoparticles (PNPs) have been increasingly used in artificial photosynthesis (e.g., water splitting) devices in order to extend the visible light utilization of semiconductors to light energies below their band gap. These nanoparticles absorb light and produce hot electrons and holes that can drive artificial photosynthesis reactions. For n-type semiconductor photoanodes decorated with PNPs, hot charge carriers are separated by a process called hot electron injection (HEI), where hot electrons with sufficient energy are transferred to the conduction band of the semiconductor. An important parameter that affects the HEI efficiency is the nanoparticle composition, since the hot electron energy is sensitive to the electronic band structure of the metal. Alloy PNPs are of particular importance for semiconductor/PNPs composites, because by changing the alloy composition their absorption spectra can be tuned to accurately extend the light absorption of the semiconductor. This work experimentally compares the HEI efficiency from Ag, Au, and Ag/Au alloy nanoparticles to TiO 2 photoanodes for the photoproduction of hydrogen. Alloy PNPs not only exhibit tunable absorption but can also improve the stability and electronic and catalytic properties of the pure metal PNPs. In this work, we find that the Ag/Au alloy PNPs extend the stability of Ag in water to larger applied potentials while, at the same time, increasing the interband threshold energy of Au. This increasing of the interband energy of Au suppresses the visible-light-induced interband excitations, favoring intraband excitations that result in higher hot electron energies and HEI efficiencies.

  16. Loading of atorvastatin and linezolid in β-cyclodextrin–conjugated cadmium selenide/silica nanoparticles: A spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Eva Janet; Shibu, Abhishek [Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu (India); Ramasamy, Sivaraj; Paulraj, Mosae Selvakumar [Department of Chemistry, Karunya University, Coimbatore 641114, Tamil Nadu (India); Enoch, Israel V.M.V., E-mail: drisraelenoch@gmail.com [Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu (India); Department of Chemistry, Karunya University, Coimbatore 641114, Tamil Nadu (India)

    2016-08-01

    The preparation of β–cyclodextrin–conjugated cadmium selenide–silica nanoparticles, the loading of two drugs viz., Atorvastatin and linezolid in the cyclodextrin cavity, and the fluorescence energy transfer between CdSe/SiO{sub 2} nanoparticles and the drugs encapsulated in the cyclodextrin cavity are reported in this paper. IR spectroscopy, X-ray diffractometry, transmission electron microscopy, and particle size analysis by light–scattering experiment were used as the tools of characterizing the size and the crystal system of the nanoparticles. The nanoparticles fall under hexagonal system. The silica–shell containing CdSe nanoparticles were functionalized by reaction with aminoethylamino–β–cyclodextrin. Fluorescence spectra of the nanoparticles in their free and drug–encapsulated forms were studied. The FÖrster distances between the encapsulated drugs and the CdSe nanoparticles are below 3 nm. The change in the FÖrster resonance energy parameters under physiological conditions may aid in tracking the release of drugs from the cavity of the cyclodextrin. - Highlights: • CdSe/SiO{sub 2} nanoparticles of crystallite size 15 nm are prepared. • β-Cyclodextrin is attached to the surface of the nanoparticles. • Atorvastatin and linezolid get encapsulated in the cyclodextrin cavity. • FRET efficiency between the nanoparticles and the loaded drugs are determined.

  17. Loading of atorvastatin and linezolid in β-cyclodextrin–conjugated cadmium selenide/silica nanoparticles: A spectroscopic study

    International Nuclear Information System (INIS)

    Antony, Eva Janet; Shibu, Abhishek; Ramasamy, Sivaraj; Paulraj, Mosae Selvakumar; Enoch, Israel V.M.V.

    2016-01-01

    The preparation of β–cyclodextrin–conjugated cadmium selenide–silica nanoparticles, the loading of two drugs viz., Atorvastatin and linezolid in the cyclodextrin cavity, and the fluorescence energy transfer between CdSe/SiO_2 nanoparticles and the drugs encapsulated in the cyclodextrin cavity are reported in this paper. IR spectroscopy, X-ray diffractometry, transmission electron microscopy, and particle size analysis by light–scattering experiment were used as the tools of characterizing the size and the crystal system of the nanoparticles. The nanoparticles fall under hexagonal system. The silica–shell containing CdSe nanoparticles were functionalized by reaction with aminoethylamino–β–cyclodextrin. Fluorescence spectra of the nanoparticles in their free and drug–encapsulated forms were studied. The FÖrster distances between the encapsulated drugs and the CdSe nanoparticles are below 3 nm. The change in the FÖrster resonance energy parameters under physiological conditions may aid in tracking the release of drugs from the cavity of the cyclodextrin. - Highlights: • CdSe/SiO_2 nanoparticles of crystallite size 15 nm are prepared. • β-Cyclodextrin is attached to the surface of the nanoparticles. • Atorvastatin and linezolid get encapsulated in the cyclodextrin cavity. • FRET efficiency between the nanoparticles and the loaded drugs are determined.

  18. Laser induced forward transfer of Ag nanoparticles ink deposition and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Makrygianni, M.; Kalpyris, I.; Boutopoulos, C.; Zergioti, I., E-mail: zergioti@central.ntua.gr

    2014-04-01

    Highlights: • Laser printing of silver nanoparticles ink to be used as conductive patterns on flexible substrates. • Printing of uniform circular shaped silver droplets with a diameter of a few micrometers. • Promising conductive ink exhibiting high conductivity and low sintering temperature. - Abstract: In this work, we report on the printing of silver nanoparticles (Ag NPs) ink by means of laser-induced forward transfer (LIFT) process. The optimum conditions for printing circular shaped features using a Nd:YAG laser at 266 nm have been examined. A study of the influence of the laser fluence and the use of a pre-coated intermediate layer (sacrificial layer) on the donor substrate was performed in order to understand how these parameters affect the printed droplets morphology. We also provide a detailed discussion of the influence of the annealing temperature on the printed features morphology and on their resistivity. Based on these results, the conditions have been determined for printing uniform circular shaped droplets with a diameter as small as 25 μm and an average thickness of 150 nm. Atomic force microscopy on the cured printed droplets revealed a uniform surface morphology with no coffee ring effect. Finally, conductive features with reasonably low resistivity (approximately eleven times that of bulk silver) and at sufficiently low sintering temperatures (100–150 °C) were produced on silicon oxide on silicon and flexible polyimide substrates.

  19. Long range energy transfer in graphene hybrid structures

    International Nuclear Information System (INIS)

    Gonçalves, Hugo; Bernardo, César; Moura, Cacilda; Belsley, Michael; Schellenberg, Peter; Ferreira, R A S; André, P S; Stauber, Tobias

    2016-01-01

    In this work we quantify the distance dependence for the extraction of energy from excited chromophores by a single layer graphene flake over a large separation range. To this end hybrid structures were prepared, consisting of a thin (2 nm) layer of a polymer matrix doped with a well chosen strongly fluorescent organic molecule, followed by an un-doped spacer layer of well-defined thicknesses made of the same polymer material and an underlying single layer of pristine, undoped graphene. The coupling strength is assessed through the variation of the fluorescence decay kinetics as a function of distance between the graphene and the excited chromophore molecules. Non-radiative energy transfer to the graphene was observed at distances of up to 60 nm; a range much greater than typical energy transfer distances observed in molecular systems. (paper)

  20. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  1. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation.

    Science.gov (United States)

    Kim, Young-Kee; Lee, Haryeong

    2016-03-01

    The effect of two types of nanoparticles on the enhancement of bioethanol production in syngas fermentation by Clostridium ljungdahlii was examined. Methyl-functionalized silica and methyl-functionalized cobalt ferrite-silica (CoFe2O4@SiO2-CH3) nanoparticles were used to improve syngas-water mass transfer. Of these, CoFe2O4@SiO2-CH3 nanoparticles showed better enhancement of syngas mass transfer. The nanoparticles were recovered using a magnet and reused five times to evaluate reusability, and it was confirmed that their capability for mass transfer enhancement was maintained. Both types of nanoparticles were applied to syngas fermentation, and production of biomass, ethanol, and acetic acid was enhanced. CoFe2O4@SiO2-CH3 nanoparticles were more efficient for the productivity of syngas fermentation due to improved syngas mass transfer. The biomass, ethanol, and acetic acid production compared to a control were increased by 227.6%, 213.5%, and 59.6%, respectively by addition of CoFe2O4@SiO2-CH3 nanoparticles. The reusability of the nanoparticles was confirmed by reuse of recovered nanoparticles for fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Synthesizing Zno Nanoparticles by High-Energy Milling and Investigating Their Antimicrobial Effect

    Directory of Open Access Journals (Sweden)

    N Mohammadi

    2015-07-01

    Results: The study results demonstrated that size of the synthesized nanoparticles was within the range of 20 -90 nm and their morphology was reported as nanorod and nanoparticles with multifaceted cross-section. An increase in the density of nanoparticles resulted in a rise in the antimicrobial effect. Moreover, Staphylococcus aureus bacteria inhibition zone was 3±0.5 and 7±0.5 mm respectively at the density of 6 and 10 mM. The MIC and MBC of ZnO nanoparticles provided for Staphylococcus aureus were observed 3±3 and 2.5±0 mg/ml, whereas they were reported 7.5±0 and 8±0 mg/ml for Escherichia coli bacteria. Conclusion: The findings of the present study revealed that ZnO nanomaterials could be synthesized by applying high-energy milling on micron-scaled ZnO particles. In addition, they can be utilized in food packaging and preservation process.

  3. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    Science.gov (United States)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  4. Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles

    Directory of Open Access Journals (Sweden)

    Samina Zuhra

    2018-03-01

    Full Text Available The unsteady flow and heat transfer characteristics of electrically conducting water based thin liquid film non-Newtonian (Casson and Williamson nanofluids dispensed with graphene nanoparticles past a stretching sheet are considered in the presence of transverse magnetic field and non-uniform heat source/sink. Embedding the graphene nanoparticles effectively amplifies the thermal conductivity of Casson and Williamson nanofluids. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by the HAM (Homotopy Analysis Method. The solution is expressed through graphs and illustrated which show the influences of all the parameters. The convergence of the HAM solution for the linear operators is obtained. Favorable comparison with previously published research paper is performed to show the correlation for the present work. Skin friction coefficient and Nusselt number are presented through Tables and graphs which show the validation for the achieved results demonstrating that the thin liquid films results from this study are in close agreement with the results reported in the literature. Results achieved by HAM and residual errors are evaluated numerically, given in Tables and also depicted graphically which show the accuracy of the present work. Keywords: Graphene nanoparticles, MHD, Casson and Williamson nanofluids, Stretching sheet, Skin friction coefficient, Nusselt number, Residual errors, Homotopy Analysis Method

  5. Design of a variable-phase contactless energy transfer platform using air-cored planar inductor technology

    NARCIS (Netherlands)

    Sonntag, C.L.W.

    2010-01-01

    Contactless Energy Transfer (CET) describes the process in which electrical energy is transferred among two or more galvanically isolated electrical circuits or devices by means of magnetic induction (magnetic energy). The potential applications can range from the transfer of energy between low

  6. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Quantum mechanical scattering theory is studied for time-dependent. Schrödinger ... the energy transferred to a particle by collision with a rotating blade. Keywords. ..... terms of the unitary group for some time-independent generator. This will ...

  7. Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application

    Science.gov (United States)

    Celina Selvakumari, J.; Nishanthi, S. T.; Dhanalakshmi, J.; Ahila, M.; Pathinettam Padiyan, D.

    2018-05-01

    Nano-sized tin oxide (SnO2) particles were synthesized using eggshell membrane (ESM), a natural bio-waste from the chicken eggshell. The crystallization of SnO2 into the tetragonal structure was confirmed from powder X-ray diffraction and the crystallite size ranged from 13 to 40 nm. Various shapes including rod, hexagonal and spherical SnO2 nanoparticles were observed from the morphological studies. The electrochemical impedance study revealed a lower charge transfer resistance (Rct) of 8.565 Ω and the presence of a constant phase element which arised due to surface roughness and porosity. Capacitive behavior seen in the cyclic voltammetry curve of the prepared SnO2 nanoparticles, find future applications in supercapacitors.

  8. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle

    International Nuclear Information System (INIS)

    Gu Zhiguo; Yang Shuping; Li Zaijun; Sun Xiulan; Wang Guangli; Fang Yinjun; Liu Junkang

    2011-01-01

    Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM -1 cm -2 ), low detection limit (S/N = 3) (3 x 10 -12 M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM -1 cm -2 ), low detection limit (S/N = 3) (3 x 10 -12 M), fast response time (0.045 s), wide calibration range (from 1 x 10 -11 M to 1 x 10 -8 M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10 -6 mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose biosensors based on graphene nanomaterials up to

  9. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Gu Zhiguo; Yang Shuping [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Li Zaijun, E-mail: zaijunli@263.net [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Sun Xiulan [School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang Guangli [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Fang Yinjun [Zhejiang Zanyu Technology Co., Ltd., Hangzhou 310009 (China); Liu Junkang [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2011-10-30

    Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M), fast response time (0.045 s), wide calibration range (from 1 x 10{sup -11} M to 1 x 10{sup -8} M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10{sup -6} mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose

  10. Vectorial photoinduced energy transfer between boron-dipyrromethene (Bodipy) chromophores across a fluorene bridge.

    Science.gov (United States)

    Puntoriero, Fausto; Nastasi, Francesco; Campagna, Sebastiano; Bura, Thomas; Ziessel, Raymond

    2010-08-02

    A series of novel multichromophoric, luminescent compounds has been prepared, and their absorption spectra, luminescence properties (both at 77 K in rigid matrix and at 298 K in fluid solution), and photoinduced intercomponent energy-transfer processes have been studied. The series contains two new multichromophoric systems 1 and 2, each one containing two different boron-dipyrromethene (Bodipy) subunits and one bridging fluorene species, and two fluorene-Bodipy bichromophoric species, 6 and 7. Three monochromophoric compounds, 3, 4, and 5, used as precursors in the synthetic process, were also fully characterized. The absorption spectra of the multichromophoric compounds are roughly the summation of the absorption spectra of their individual components, thus demonstrating the supramolecular nature of the assemblies. Luminescence studies show that quantitative energy transfer occurs in 6 and 7 from the fluorene chromophore to the Bodipy dyes. Luminescence studies, complemented by transient-absorption spectroscopy studies, also indicate that efficient inter-Bodipy energy transfer across the rigid fluorene spacer takes place in 1 and 2, with rate constants, evaluated by several experimental methods, between 2.0 and 7.0 x 10(9) s(-1). Such an inter-Bodipy energy transfer appears to be governed by the Förster mechanism. By taking advantage of the presence of various protonable sites in the substituents of the lower-energy Bodipy subunit of 1 and 2, the effect of protonation on the energy-transfer rates has also been investigated. The results suggest that control of energy-transfer rate and efficiency of inter-Bodipy energy transfer in this type of systems can be achieved by an external, reversible input.

  11. Effects of Al{sub 2}O{sub 3} nanoparticles deposition on critical heat flux of R-123 in flow boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Bin; Bang, In Cheol [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2015-06-15

    In this study, R-123 flow boiling experiments were carried out to investigate the effects of nanoparticle deposition on heater surfaces on flow critical heat flux (CHF) and boiling heat transfer. It is known that CHF enhancement by nanoparticles results from porous structures that are very similar to layers of Chalk River unidentified deposit formed on nuclear fuel rod surfaces during the reactor operation period. Although previous studies have investigated the surface effects through surface modifications, most studies are limited to pool boiling conditions, and therefore, the effects of porous surfaces on flow boiling heat transfer are still unclear. In addition, there have been only few reports on suppression of wetting for decoupled approaches of reasoning. In this study, bare and Al{sub 2}O{sub 3} nanoparticle-coated surfaces were prepared for the study experiments. The CHF of each surface was measured with different mass fluxes of 1,600 kg/m{sup 2}s, 1,800 kg/m{sup 2}s, 2,100 kg/m{sup 2}s, 2,400 kg/m{sup 2}s, and 2,600 kg/m{sup 2}s. The nanoparticle-coated tube showed CHF enhancement up to 17% at a mass flux of 2,400 kg/m{sup 2}s compared with the bare tube. The factors for CHF enhancement are related to the enhanced rewetting process derived from capillary action through porous structures built-up by nanoparticles while suppressing relative wettability effects between two sample surfaces as a highly wettable R-123 refrigerant was used as a working fluid.

  12. Power Loss Analysis and Comparison of Segmented and Unsegmented Energy Coupling Coils for Wireless Energy Transfer.

    Science.gov (United States)

    Tang, Sai Chun; McDannold, Nathan J

    2015-03-01

    This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.

  13. Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications

    Science.gov (United States)

    Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro

    2017-02-01

    In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"

  14. Higher order energy transfer. Quantum electrodynamical calculations and graphical representation

    International Nuclear Information System (INIS)

    Jenkins, R.D.

    2000-01-01

    In Chapter 1, a novel method of calculating quantum electrodynamic amplitudes is formulated using combinatorial theory. This technique is used throughout instead of conventional time-ordered methods. A variety of hyperspaces are discussed to highlight isomorphism between a number of A generalisation of Pascal's triangle is shown to be beneficial in determining the form of hyperspace graphs. Chapter 2 describes laser assisted resonance energy transfer (LARET), a higher order perturbative contribution to the well-known process resonance energy transfer, accommodating an off resonance auxiliary laser field to stimulate the migration. Interest focuses on energy exchanges between two uncorrelated molecular species, as in a system where molecules are randomly oriented. Both phase-weighted and standard isotropic averaging are required for the calculations. Results are discussed in terms of a laser intensity-dependent mechanism. Identifying the applied field regime where LARET should prove experimentally significant, transfer rate increases of up to 30% are predicted. General results for three-center energy transfer are elucidated in chapter 3. Cooperative and accretive mechanistic pathways are identified with theory formulated to elicit their role in a variety of energy transfer phenomena and their relative dominance. In multichromophoric the interplay of such factors is analysed with regard to molecular architectures. The alignments and magnitudes of donor and acceptor transition moments and polarisabilities prove to have profound effects on achievable pooling efficiency for linear configurations. Also optimum configurations are offered. In ionic lattices, although both mechanisms play significant roles in pooling and cutting processes, only the accretive is responsible for sensitisation. The local, microscopic level results are used to gauge the lattice response, encompassing concentration and structural effects. (author)

  15. Solar-Pumping Upconversion of Interfacial Coordination Nanoparticles.

    Science.gov (United States)

    Ishii, Ayumi; Hasegawa, Miki

    2017-01-30

    An interfacial coordination nanoparticle successfully exhibited an upconversion blue emission excited by very low-power light irradiation, such as sunlight. The interfacial complex was composed of Yb ions and indigo dye, which formed a nano-ordered thin shell layer on a Tm 2 O 3 nanoparticle. At the surface of the Tm 2 O 3 particle, the indigo dye can be excited by non-laser excitation at 640 nm, following the intramolecular energy transfer from the indigo dye to the Yb ions. Additionally, the excitation energy of the Yb ion was upconverted to the blue emission of the Tm ion at 475 nm. This upconversion blue emission was achieved by excitation with a CW Xe lamp at an excitation power of 0.14 mW/cm 2 , which is significantly lower than the solar irradiation power of 1.4 mW/cm 2 at 640 ± 5 nm.

  16. Resonance Energy Transfer in Hybrid Devices in the Presence of a Surface

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Huck, Alexander; Kadkhodazadeh, Shima

    2014-01-01

    to approximately 10 nm was observed. By comparing the carrier dynamics of the quantum wells and the nanocrystals, we found that nonradiative recombination via surface states, generated during dry etching of the wafer, counteracts the nonradiative energy-transfer process to the nanocrystals and therefore decreases......We have studied room-temperature, nonradiative resonant energy transfer from InGaN/GaN quantum wells to CdSe/ZnS nanocrystals separated by aluminum oxide layers of different thicknesses. Nonradiative energy transfer from the quantum wells to the nanocrystals at separation distances of up...

  17. Single Molecule Spectroscopy of Electron Transfer

    International Nuclear Information System (INIS)

    Holman, Michael; Zang, Ling; Liu, Ruchuan; Adams, David M.

    2009-01-01

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  18. Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle

    International Nuclear Information System (INIS)

    Bovand, M.; Rashidi, S.; Esfahani, J.A.

    2015-01-01

    Highlights: • The heat transfer is improved by nanofluids and orientations of the obstacle. • The role of solid volume fraction on the fluid flow and heat transfer is studied. • There is an upward drift in the vortices for the diagonal facing flow. • The maximum value of the average Nusselt number is for the vertex facing flow. - Abstract: This paper simulates the forced convective heat transfer of Al 2 O 3 –water nanofluid over an equilateral triangular obstacle. Computations are performed for different orientations of the triangular obstacle (side, vertex and diagonal facing flows). The ranges of Reynolds number (Re) and solid volume fractions of nanoparticles (φ) are 1 ⩽ Re ⩽ 200 and 0 ⩽ φ ⩽ 0.05, respectively. Two-dimensional unsteady conservation laws of mass, momentum, and energy equations have been solved using finite volume method. The effects of Reynolds number, solid volume fractions of nanoparticles and different orientations of the triangular obstacle on the flow and heat transfer characteristics are investigated in detail. Detailed results are presented for wake length, streamline, vorticity, temperature contours and time averaged Nusselt number. Finally, the value of time averaged Nusselt number has been investigated in three equations using least square method which the effects of solid volume fraction of nanoparticles and Reynolds numbers are taken into account. The calculated results revealed that the maximum effect of nanoparticles on heat transfer rate augmentation is for the side facing flow and the minimum is related to the vertex facing flow. Also, the required Reynolds numbers for wake formation decrease with increase in solid volume fraction

  19. Energy Storage Analysis of a Mixed R161/MOF-5 Nanoparticle Nanofluid Based on Molecular Simulations.

    Science.gov (United States)

    Wang, Qiang; Tang, Shengli; Li, Leilei

    2018-05-20

    The thermal properties of refrigerants can be modified by adding porous nanoparticles into them. Here, molecular simulations, including molecular dynamics and grand canonical Monte Carlo, were employed to study the thermal energy storage properties of an R161/MOF-5 nanofluid. The results show that the thermodynamic energy change of MOF-5 nanoparticles is linear to the temperature. The adsorption heat calculated by grand canonical Monte Carlo is close to that calculated by the Clausius⁻Clapeyron equation. Additionally, a negative enhancement of the thermal energy storage capacity of the R161/MOF-5 nanofluid is found near the phase transition area.

  20. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air-water surface.

    Science.gov (United States)

    Zell, Zachary A; Isa, Lucio; Ilg, Patrick; Leal, L Gary; Squires, Todd M

    2014-01-14

    The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T.

  1. Energy transfer in isolated LHC II studied by femtosecond pump-probe technique

    CERN Document Server

    Yang Yi; Liu Yuan; Liu Wei Min; Zhu Rong Yi; Qian Shi Xiong; Xu Chun He

    2003-01-01

    Excitation energy transfer in the isolated light-harvesting chlorophyll (Chl)-a/b protein complex of photosystem II (LHC II) was studied by the one-colour pump-probe technique with femtosecond time resolution. After exciting Chl-b by 638nm beam, the dynamic behaviour shows that the ultrafast energy transfer from Chl-b at positions of B2, B3, and B5 to the corresponding Chl-a molecules in monomeric subunit of LHC II is in the time scale of 230fs. While with the excitation of Chl-a at 678nm, the energy transfer between excitons of Chl-a molecules has the lifetime of about 370 fs, and two other slow decay components are due to the energy transfer between different Chl-a molecules in a monomeric subunit of LHC II or in different subunits, or due to change of molecular conformation. (20 refs).

  2. Risk transfer via energy-savings insurance

    International Nuclear Information System (INIS)

    Mills, Evan

    2003-01-01

    Among the key barriers to investment in energy efficiency are uncertainties about attaining projected energy savings and potential disputes over stipulated savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building diagnostics and commissioning), financial methods are less developed in the energy management arena than in other segments of the economy. Energy-savings insurance (ESI) - formal insurance of predicted energy savings - transfers and spreads both types of risk over a larger pool of energy efficiency projects and reduces barriers to market entry of smaller energy service firms who lack sufficiently strong balance sheets to self-insure the savings. ESI encourages those implementing energy-saving projects to go beyond standard measures and thereby achieve more significant levels of energy savings. Insurance providers are proponents of improved savings measurement and verification techniques, as well as maintenance, thereby contributing to national energy-saving objectives. If properly applied, ESI can potentially reduce the net cost of energy-saving projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Governmental agencies have been pioneers in the use of ESI and could continue to play a role

  3. Study of interaction between tryptophan, tyrosine, and phenylalanine separately with silver nanoparticles by fluorescence quenching method

    International Nuclear Information System (INIS)

    Roy, S.; Das, T.K.

    2015-01-01

    Using the spectroscopic method, the individual interaction of the three biochemically important amino acids, which are constituents of protein, namely, tryptophan, tyrosine, and phenylalanine with biologically synthesized silver nanoparticles has been investigated. The obtained UV-Vis spectra show the formation of ground-state complexes between tryptophan, tyrosine, and phenylalanine with silver nanoparticles. Silver nanoparticles possess the ability to quench the intrinsic fluorescence of the aforesaid amino acids by a dynamic quenching process. The binding constant, number of binding sites, and corresponding thermodynamic parameters (ΔH, ΔS, and ΔG) based on the interaction system were calculated for 293, 303, and 313 K. In the case of tryptophan and phenylalanine, with increase in temperature, the binding constant K was found to decrease; conversely, it was found to increase with increase in temperature in the case of tyrosine. The thermodynamic results revealed that the binding process was spontaneous; hydrogen bonding and van der Waals interaction were the predominant forces responsible for the complex stabilization in the case of tryptophan and phenylalanine, respectively, whereas in the case of tyrosine, hydrophobic interaction was the sole force conferring stability. Moreover, the Förster non-radiation energy transfer theory has been applied to calculate the average binding distance among the above amino acids and silver nanoparticles. The results show a binding distance of <7 nm, which ensures that energy transfer does occur between the said amino acids and silver nanoparticles. (authors)

  4. Energy relaxation and transfer in excitonic trimer

    International Nuclear Information System (INIS)

    Herman, Pavel; Barvik, Ivan; Urbanec, Martin

    2004-01-01

    Two models describing exciton relaxation and transfer (the Redfield model in the secular approximation and Capek's model) are compared for a simple example - a symmetric trimer coupled to a phonon bath. Energy transfer within the trimer occurs via resonance interactions and coupling between the trimer and the bath occurs via modulation of the monomer energies by phonons. Two initial conditions are adopted: (1) one of higher eigenstates of the trimer is initially occupied and (2) one local site of the trimer is initially occupied. The diagonal exciton density matrix elements in the representation of eigenstates are found to be the same for both models, but this is not so for the off-diagonal density matrix elements. Only if the off-diagonal density matrix elements vanish initially (initial condition (1)), they then vanish at arbitrary times in both models. If the initial excitation is local, the off-diagonal matrix elements essentially differ

  5. Solar wind energy transfer through the magnetopause of an open magnetosphere

    International Nuclear Information System (INIS)

    Lee, L.C.; Roederer, J.G.

    1982-01-01

    An expression for the total power P/sub T/ transferred from the solar wind to an ''open'' magnetopause with a nonzero normal component of the magnetic field, which is identified as a rotational discontinuity. The total power P/sub T/ consists of (1) the power P/sub EM/ representing the electromagnetic energy transfer and (2) the power P/sub KE/ representing the rate of kinetic energy carried by particles penetrating into the magnetosphere. It is found that P/sub EM/approx. =V/sub SW/ B/sub SW/psi, P/sub KE/approx. =(1/2 M/sub A/-1) P/sub EM/ and P/sub T/approx. =1/2M/sub A/P/sub EM/, where V/sub SW/, B/sub SW/, and M/sub A/ are the velocity, magnetic field, and the Alfven--Mach number in the solar wind, respectively, and Psi is the open magnetic flux in the magnetosphere. The Alfven--Mach number of flow at the magnetopause determines the nature of the local energy transfer; the power per unit area transferred from the solar wind to the magnetosphere consists mainly of kinetic energy. The electromagnetic energy rate P/sub EM/ controls the near-earth magnetospheric activity, whereas the kinetic energy rate P/sub KE/(approx. =3--4 P/sub EM/) should dominate the dynamics of the distant magnetotail

  6. Photoinduced charge and energy transfer in dye-doped conjugated polymers

    International Nuclear Information System (INIS)

    Veldman, Dirk; Bastiaansen, Jolanda J.A.M.; Langeveld-Voss, Bea M.W.; Sweelssen, Joergen; Koetse, Marc M.; Meskers, Stefan C.J.; Janssen, Rene A.J.

    2006-01-01

    Conjugated polymer-molecular dye blends of MDMO-PPV (poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene]) and PF1CVTP (poly[9,9-dioctylfluorene-2,7-diyl-alt-2,5-bis(2-thienyl-1-cyanovinyl) -1-(3',7= '-dimethyloctyloxy)-4-methoxybenzene-5'',5''-diyl]) with three dipyrrometheneboron difluoride (bodipy) dyes were studied by (time-resolved) fluorescence and photoinduced absorption spectroscopy to determine quantitatively the relation between the electronic HOMO and LUMO levels and the occurrence of energy or charge transfer after optical excitation. We find that for MDMO-PPV photoinduced charge transfer to the dyes occurs, while photoexcitation of PF1CVTP exclusively results in energy transfer. The differences can be rationalized by assuming that the energy of the charge separated state is 0.33-0.45 eV higher than the energy determined from oxidation and reduction potentials of donor and acceptor, respectively. This provides an important design rule to identify appropriate materials for polymer solar cells that can have a high open-circuit voltage

  7. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    Science.gov (United States)

    Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.

    2016-11-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.

  8. Energy Efficiency and Scalability of Metallic Nanoparticle Production Using Arc/Spark Discharge

    Directory of Open Access Journals (Sweden)

    Martin Slotte

    2017-10-01

    Full Text Available The increased global demand for metallic nanoparticles for an ever growing number of applications has given rise to a need for larger scale and more efficient nanoparticle (NP production processes. In this paper one such process is evaluated from the viewpoints of scalability and energy efficiency. Multiple setups of different scale of an arc/spark process were evaluated for energy efficiency and scalability using exergy analysis, heat loss evaluation and life cycle impact assessment, based on data collected from EU FP7 project partners. The energy efficiency of the process is quite low, with e.g., a specific electricity consumption (SEC of producing ~80 nm copper NP of 180 kWh/kg while the thermodynamic minimum energy need is 0.03 kWh/kg. This is due to thermal energy use characteristics of the system. During scale-up of the process the SEC remained similar to that of smaller setups. Loss of NP mass in the tubing of larger setups gives a lower material yield. The variation in material yield has a significant impact on the life cycle impact for the produced NP in both the Human Health and Ecosystem Quality categories while the impact is smaller in the Global Warming and Resource Depletion categories.

  9. Hole transfer from CdSe nanoparticles to TQ1 polymer in hybrid solar cell device

    Science.gov (United States)

    Sohail, Muhammad; Shah, Zawar Hussain; Saeed, Shomaila; Bibi, Nasreen; Shahbaz, Sadia; Ahmed, Safeer; Shabbir, Saima; Siddiq, Muhammad; Iqbal, Azhar

    2018-05-01

    In view of realizing the economic viability, we fabricate a solar cell device containing low band gap and easily processable polymer 5-yl-8-(thiophene-2,5-diyl)-2,3-bis(3-(octyloxy)phenyl) quinoxaline (TQ1) and CdSe nanoparticles (NPs) and investigate its charge transport properties. When the TQ1 is combined with the CdSe NPs a strong photoluminescence quenching and shortening of photoluminescence lifetime of the TQ1 is observed indicating exciton transfer from TQ1 to the CdSe NPs. The time-resolved photoluminescence further reveals that the exciton transfer from the polymer to CdSe NPs is very efficient (68%) and it occurs in solar cell as compared to polymer only device. These observations suggest the importance of other II-VI semiconductor NPs to achieve higher efficiency for photovoltaic devices containing TQ1 polymer.

  10. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    Science.gov (United States)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  11. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    Science.gov (United States)

    Keren, Nir; Paltiel, Yossi

    2018-06-01

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  13. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  14. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  15. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    International Nuclear Information System (INIS)

    Dewa, Takehisa; Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu; Nango, Mamoru

    2013-01-01

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency

  16. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dewa, Takehisa, E-mail: takedewa@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Japan Science and Technology, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nango, Mamoru, E-mail: nango@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2013-06-20

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency.

  17. Efficient weakly-radiative wireless energy transfer: An EIT-like approach

    International Nuclear Information System (INIS)

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, J.D.; Soljacic, Marin

    2009-01-01

    Inspired by a quantum interference phenomenon known in the atomic physics community as electromagnetically induced transparency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme between two identical classical resonant objects, strongly coupled to an intermediate classical resonant object of substantially different properties, but with the same resonance frequency. The transfer mechanism essentially makes use of the adiabatic evolution of an instantaneous (so called 'dark') eigenstate of the coupled 3-object system. Our analysis is based on temporal coupled mode theory (CMT), and is general enough to be valid for various possible sorts of coupling, including the resonant inductive coupling on which witricity-type wireless energy transfer is based. We show that in certain parameter regimes of interest, this scheme can be more efficient, and/or less radiative than other, more conventional approaches. A concrete example of wireless energy transfer between capacitively-loaded metallic loops is illustrated at the beginning, as a motivation for the more general case. We also explore the performance of the currently proposed EIT-like scheme, in terms of improving efficiency and reducing radiation, as the relevant parameters of the system are varied.

  18. Can nanophotonics control the Förster resonance energy transfer efficiency?

    DEFF Research Database (Denmark)

    Blum, C.; Zijlstra, N.; Lagendijk, A.

    2013-01-01

    from photovoltaics and lighting, to probing molecular distances and interactions.It is an intriguing open question whether the FRET rate γFRET and the energy transfer efficiency ηFRET can also be controlled by the nanoscale optical environment, characterized by the local density of optical states (LDOS...... precisely-defined, isolated, and efficient donor-acceptor pairs. The FRET pairs are dye molecules that covalently bound to the opposite ends of a 15 basepair long double-stranded with a precisely defined distance of 6.8 nm. Control over the LDOS is realized by positioning the FRET systems at well...... of the energy donor by the LDOS, the energy transfer efficiency can be enhanced or reduced. If a donor with unit quantum efficiency is placed in a 3D photonic bandgap, the energy transfer efficiency will approach 100 %, independent of the acceptor, and of the distances and orientations between the FRET partners....

  19. A study of heat and mass transfer on magnetohydrodynamic (MHD flow of nanoparticles

    Directory of Open Access Journals (Sweden)

    Syed Tauseef Mohyud-Din

    2018-03-01

    Full Text Available Investigation of the flow, heat and mass transfer of a nanofluid over a suddenly moved flat plate is presented using Buongiorno's model. This study is different from some of the previous studies as the effects of Brownian motion and thermophoresis on nanoparticles volume fraction are passively controlled on the boundary rather than actively. The partial differential equations governing the flow are reduced to a system of nonlinear ordinary differential equations. Viable similarity transforms are used for this purpose. A well-known numerical scheme called Runge-Kutta-Fehlberg method coupled with shooting procedure has been used to find the solution of resulting system of equations. Discussions on the effects of different emerging parameters is provided using graphical aid. A table is also given that provides the results of different parameters on local Nusselt and Sherwood numbers. The passive control model can be used to control the boundary layer thickness as well as the rate of mass transfer at the wall. Keywords: Nanofluid, Brownian motion, Thermophoresis, Nusselt number, Sherwood number

  20. Deterministic nanoparticle assemblies: from substrate to solution

    International Nuclear Information System (INIS)

    Barcelo, Steven J; Gibson, Gary A; Yamakawa, Mineo; Li, Zhiyong; Kim, Ansoon; Norris, Kate J

    2014-01-01

    The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process. (paper)

  1. Photoinduced energy and electron transfer in rubrene-benzoquinone and rubrene-porphyrin systems

    KAUST Repository

    Khan, Jafar Iqbal

    2014-11-01

    Excited-state electron and energy transfer from singlet excited rubrene (Ru) to benzoquinone (BQ) and tetra-(4-aminophenyl) porphyrin (TAPP) were investigated by steady-state absorption and emission, time-resolved transient absorption, and femtosecond (fs)-nanosecond (ns) fluorescence spectroscopy. The low reduction potential of BQ provides the high probability of electron transfer from the excited Ru to BQ. Steady-state and time-resolved results confirm such an excited electron transfer scenario. On the other hand, strong spectral overlap between the emission of Ru and absorption of TAPP suggests that energy transfer is a possible deactivation pathway of the Ru excited state.

  2. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    International Nuclear Information System (INIS)

    Samosvat, D M; Chikalova-Luzina, O P; Zegrya, G G; Vyatkin, V M

    2016-01-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones. (paper)

  3. Ground and excited state behavior of 1,4-dimethoxy-3-methyl-anthracene-9,10-dione in silver nanoparticles: Spectral and computational investigations

    Energy Technology Data Exchange (ETDEWEB)

    Umadevi, M., E-mail: ums10@yahoo.com [Department of Physics, Mother Teresa Women' s University, Kodaikanal 624101, Tamil Nadu (India); Kavitha, S.R. [Department of Physics, Mother Teresa Women' s University, Kodaikanal 624101, Tamil Nadu (India); Vanelle, P.; Terme, T.; Khoumeri, O. [Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05 (France)

    2013-10-15

    Silver nanoparticles (Ag NPs) of various sizes have been successfully synthesized by the simple and convenient Creighton method using sodium borohydride as the reducing agent under microwave irradiation. Optical absorption and fluorescence emission spectroscopic techniques were employed to investigate the effect of silver nanoparticles on the ground and excited state of 1,4-dimethoxy-3-methylanthracene-9,10-dione (DMMAD). The surface plasmon resonance (SPR) peak of the prepared silver colloidal solution was observed at 400 nm. Fluorescence quenching of DMMAD by silver nanoparticles has been found to increase with increase in the size of Ag. The fluorescence quenching has been explained by Forster Resonance Energy Transfer (FRET) theory between DMMAD and silver nanoparticles. The Stern–Volmer quenching constant and Benesi–Hildebrand association constant for the above system were calculated. DFT calculations were also performed to study the charge distribution of DMMAD in Ag both in ground and excited states. -- Highlights: • Silver nanoparticles (Ag NPs) have been synthesized using the Creighton method. • Effect of Ag NPs on the ground state of DMMAD was studied. • Influence of Ag NPs on the excited state of DMMAD was investigated. • Fluorescence quenching has been explained by Forster Resonance Energy Transfer. • Quenching and binding constants were also calculated.

  4. A nanoparticle in plasma

    International Nuclear Information System (INIS)

    Martynenko, Yu. V.; Nagel', M. Yu.; Orlov, M. A.

    2009-01-01

    Charge and energy fluxes onto a nanoparticle under conditions typical of laboratory plasmas are investigated theoretically. Here, by a nanoparticle is meant a grain the size of which is much smaller than both the electron Larmor radius and Debye length and the thermionic emission from which is not limited by the space charge. Under conditions at which thermionic emission plays an important role, the electric potential and temperature T p of a nanoparticle are determined by solving a self-consistent set of equations describing the balance of energy and charge fluxes onto the nanoparticle. It is shown that, when the degree of plasma ionization exceeds a critical level, the potential of the nanoparticle and the energy flux onto it increase with increasing nanoparticle temperature, so that, starting from a certain temperature, the nanoparticle potential becomes positive. The critical degree of ionization starting from which the potential of a nanoparticle is always positive is determined as a function of the plasma density and electron temperature. The nanoparticle temperature T p corresponding to the equilibrium state of a positively charged nanoparticle is found as a function of the electron density for different electron temperatures.

  5. Electromechanical capacitor for energy transfer

    International Nuclear Information System (INIS)

    Carroll, T.A.; Chowdhuri, P.; Marshall, J.

    1983-01-01

    Inductive energy transfer between two magnets can be achieved with almost 100% efficiency with a transfer capacitor. However, the bulk and cost will be high, and reliability low if conventional capacitors are used. A homopolar machine, used as a capacitor, will be compact and economical. A homopolar machine was designed with counter-rotating copper disks completely immersed in a liquid metal (NaK-78) to work as a pulse capacitor. Absence of solid-brush collectors minimized wear and frictional losses. Wetting of the copper disks throughout the periphery by the liquid metal minimized the resistive losses at the collector interface. A liquid-metal collector would, however, introduce hydrodynamic and magnetohydrodynamic losses. The selected liquid metal, e.g., NaK-78 will produce the lowest of such losses among the available liquid metals. An electromechanical capacitor of this design was tested at various dc magnetic fields. Its measured capacitance was about 100 farads at a dc magnetic field of 1.15 tesla

  6. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  7. Effect of particle size on activation energy and peak temperature of the thermoluminescence glow curve of undoped ZnS nanoparticles.

    Science.gov (United States)

    Chandra, B P; Chandrakar, Raju Kumar; Chandra, V K; Baghel, R N

    2016-03-01

    This paper reports the effect of particle size on the thermoluminescence (TL) of undoped ZnS nanoparticles. ZnS nanoparticles were prepared using a chemical precipitation method in which mercaptoethanol was used as the capping agent. The nanoparticles were characterized by X-ray diffraction, field emission gun-scanning electron microscopy and high-resolution transmission electron microscopy. When the concentrations of mercaptoethanol used are 0, 0.005, 0.01, 0.015, 0.025, 0.040 and 0.060 M, the sizes of the nanoparticles are 2.86, 2.81, 2.69, 2.40, 2.10, 1.90 and 1.80 nm, respectively. Initially, the TL intensity of UV-irradiated ZnS nanoparticles increases with temperature, attains a peak value Im for a particular temperature Tm, and then decreases with further increases in temperature. The values of both Im and Tm increase with decreasing nanoparticle size. Whereas the activation energy decreases slightly with decreasing nanoparticle size, the frequency factor decreases significantly as the nanoparticle size is reduced. The order of kinetics for the TL glow curve of ZnS nanoparticles is 2. Expressions are derived for the dependence of activation energy (Ea) and Tm on nanoparticle size, and good agreement is found between the experimental and theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.

  8. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    International Nuclear Information System (INIS)

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-01-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated

  9. Direct determination of resonance energy transfer in photolyase: structural alignment for the functional state.

    Science.gov (United States)

    Tan, Chuang; Guo, Lijun; Ai, Yuejie; Li, Jiang; Wang, Lijuan; Sancar, Aziz; Luo, Yi; Zhong, Dongping

    2014-11-13

    Photoantenna is essential to energy transduction in photoinduced biological machinery. A photoenzyme, photolyase, has a light-harvesting pigment of methenyltetrahydrofolate (MTHF) that transfers its excitation energy to the catalytic flavin cofactor FADH¯ to enhance DNA-repair efficiency. Here we report our systematic characterization and direct determination of the ultrafast dynamics of resonance energy transfer from excited MTHF to three flavin redox states in E. coli photolyase by capturing the intermediates formed through the energy transfer and thus excluding the electron-transfer quenching pathway. We observed 170 ps for excitation energy transferring to the fully reduced hydroquinone FADH¯, 20 ps to the fully oxidized FAD, and 18 ps to the neutral semiquinone FADH(•), and the corresponding orientation factors (κ(2)) were determined to be 2.84, 1.53 and 1.26, respectively, perfectly matching with our calculated theoretical values. Thus, under physiological conditions and over the course of evolution, photolyase has adopted the optimized orientation of its photopigment to efficiently convert solar energy for repair of damaged DNA.

  10. Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime

    International Nuclear Information System (INIS)

    Salavati-fard, T; Vazifehshenas, T

    2014-01-01

    We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field. (paper)

  11. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  12. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-01-01

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for

  13. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder José, E-mail: ederguidelli@pg.ffclrp.usp.br; Baffa, Oswaldo [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP (Brazil)

    2014-03-15

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for

  14. Semiconductor-metal transition of Se in Ru-Se Catalyst Nanoparticles

    Science.gov (United States)

    Babu, P. K.; Lewera, Adam; Oldfield, Eric; Wieckowski, Andrzej

    2009-03-01

    Ru-Se composite nanoparticles are promising catalysts for the oxygen reduction reaction (ORR) in fuel cells. Though the role of Se in enhancing the chemical stability of Ru nanoparticles is well established, the microscopic nature of Ru-Se interaction was not clearly understood. We carried out a combined investigation of ^77Se NMR and XPS on Ru-Se nanoparticles and our results indicate that Se, a semiconductor in elemental form, becomes metallic when interacting with Ru. ^77Se spin-lattice relaxation rates are found to be proportional to T, the well-known Korringa behavior characteristic of metals. The NMR results are supported by the XPS binding energy shifts which suggest that a possible Ru->Se charge transfer could be responsible for the semiconductor->metal transition of Se which also makes Ru less susceptible to oxidation during ORR.

  15. A new energy transfer model for turbulent free shear flow

    Science.gov (United States)

    Liou, William W.-W.

    1992-01-01

    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  16. Forster resonance energy transfer in the system of human serum albumin-xanthene dyes

    Science.gov (United States)

    Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.

    2016-04-01

    The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.

  17. Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow

    Science.gov (United States)

    Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao

    2018-05-01

    An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.

  18. Hydrophilic functionalized silicon nanoparticles produced by high energy ball milling

    Science.gov (United States)

    Hallmann, Steffen

    The mechanochemical synthesis of functionalized silicon nanoparticles using High Energy Ball Milling (HEBM) is described. This method facilitates the fragmentation of mono crystalline silicon into the nanometer regime and the simultaneous surface functionalization of the formed particles. The surface functionalization is induced by the reaction of an organic liquid, such as alkynes and alkenes with reactive silicon sites. This method can be applied to form water soluble silicon nanoparticles by lipid mediated micelle formation and the milling in organic liquids containing molecules with bi-functional groups, such as allyl alcohol. Furthermore, nanometer sized, chloroalkyl functionalized particles can be synthesized by milling the silicon precursor in the presence of an o-chloroalkyne with either alkenes or alkynes as coreactants. This process allows tuning of the concentration of the exposed, alkyl linked chloro groups, simply by varying the relative amounts of the coreactant. The silicon nanoparticles that are formed serve as the starting point for a wide variety of chemical reactions, which may be used to alter the surface properties of the functionalized nanoparticles. Finally, the use of functionalized silicon particles for the production of superhydrophobic films is described. Here HEBM proves to be an efficient method to produce functionalized silicon particles, which can be deposited to form a stable coating exhibiting superhydrophobic properties. The hydrophobicity of the silicon film can be tuned by the milling time and thus the resulting surface roughness of the films.

  19. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror

    Science.gov (United States)

    Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.

    2017-08-01

    The ability to control light-matter interactions in quantum objects opens up many avenues for new applications. We look at this issue within a fully quantized framework using a fundamental theory to describe mirror-assisted resonance energy transfer (RET) in nanostructures. The process of RET communicates electronic excitation between suitably disposed donor and acceptor particles in close proximity, activated by the initial excitation of the donor. Here, we demonstrate that the energy transfer rate can be significantly controlled by careful positioning of the RET emitters near a mirror. The results deliver equations that elicit new insights into the associated modification of virtual photon behavior, based on the quantum nature of light. In particular, our results indicate that energy transfer efficiency in nanostructures can be explicitly expedited or suppressed by a suitably positioned neighboring mirror, depending on the relative spacing and the dimensionality of the nanostructure. Interestingly, the resonance energy transfer between emitters is observed to "switch off" abruptly under suitable conditions of the RET system. This allows one to quantitatively control RET systems in a new way.

  20. A new energy transfer channel from carotenoids to chlorophylls in purple bacteria.

    Science.gov (United States)

    Feng, Jin; Tseng, Chi-Wei; Chen, Tingwei; Leng, Xia; Yin, Huabing; Cheng, Yuan-Chung; Rohlfing, Michael; Ma, Yuchen

    2017-07-10

    It is unclear whether there is an intermediate dark state between the S 2 and S 1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A g + state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.Carotenoids harvest energy from light and transfer it to chlorophylls during photosynthesis. Here, Feng et al. perform ab initio calculations on excited-state dynamics and simulated 2D electronic spectrum of carotenoids, supporting the existence of a new excited state in carotenoids.

  1. Properties of Er{sub 2}O{sub 3} nanoparticles synthesized by a modified co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda C, J.; Maranon R, V. F.; Perez Ladron de G, H.; Rodriguez R, R. A.; Chiu Z, R. [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique Diaz de Leon s/n, Lagos de Moreno 47460, Jalisco (Mexico); Meneses N, M. A., E-mail: jcc050769@yahoo.com.mx [Centro de Investigaciones en Optica, A. C., Apdo. Postal 1-948, Leon, Guanajuato (Mexico)

    2015-07-01

    Er{sub 2}O{sub 3} nanoparticles were synthesized by co-precipitation with the addition of ascorbate as stabilizing agent. The nanoparticles had spherical shapes with a mean diameter of 32 nm and were allocated in clusters, as determined by X-ray diffraction, atomic force microscopy and optical microscopy. Characteristic green and red emissions from Er{sup 3+} were recorded by pumping the nanoparticles at 525 nm, 805 nm and 975 nm. However, the luminescence spectra show an enhancement of red emission for Nir pump wavelengths. We proposed this behavior was due to phonon-assisted depopulation mechanisms and energy transfer processes related to the different excitation schemes. (Author)

  2. Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2 +-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods

    Science.gov (United States)

    Cheng, Keyi; Zhang, Jianguo; Zhang, Liping; Wang, Lun; Chen, Hongqi

    2017-01-01

    A highly sensitive luminescent bioassay for the detection of Salmonella typhimurium was fabricated using Mn2 +-doped NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) as the donor and gold nanorods (Au NRs) as the acceptor and utilizing an energy transfer (LET) system. Mn2 +-doped NaYF4:Yb,Tm UCNPs with a strong emission peak at 807 nm were obtained by changing the doped ion ratio. Carboxyl-terminated Mn2 +-doped NaYF4:Yb,Tm UCNPs were coupled with S. typhimurium aptamers, which were employed to capture and concentrate S. typhimurium. The electrostatic interactions shorten the distance between the negatively charged donor and the positively charged acceptor, which results in luminescence quenching. The added S. typhimurium leads to the restoration of luminescence due to the formation of UCNPs-aptamers-S. typhimurium, which repels the UCNPs-aptamers from the Au NRs. The LET system does not occur because of the nonexistence of the luminescence emission band of Mn2 +-doped NaYF4:Yb,Tm UCNPs, which had large spectral overlap with the absorption band of Au NRs. Under optimal conditions, the linear range of detecting S. typhimurium was 12 to 5 × 105 cfu/mL (R = 0.99). The limit of detection for S. typhimurium was as low as 11 cfu/mL in an aqueous buffer. The measurement of S. typhimurium in milk samples was satisfied in accordance with the plate-counting method, suggesting that the proposed method was of practical value in the application of food security.

  3. Size and shape dependent Gibbs free energy and phase stability of titanium and zirconium nanoparticles

    International Nuclear Information System (INIS)

    Xiong Shiyun; Qi Weihong; Huang Baiyun; Wang Mingpu; Li Yejun

    2010-01-01

    The Debye model of Helmholtz free energy for bulk material is generalized to Gibbs free energy (GFE) model for nanomaterial, while a shape factor is introduced to characterize the shape effect on GFE. The structural transitions of Ti and Zr nanoparticles are predicted based on GFE. It is further found that GFE decreases with the shape factor and increases with decreasing of the particle size. The critical size of structural transformation for nanoparticles goes up as temperature increases in the absence of change in shape factor. For specified temperature, the critical size climbs up with the increase of shape factor. The present predictions agree well with experiment values.

  4. Thermochromic Oxide-Based Thin Films and Nanoparticle Composites for Energy-Efficient Glazings

    Directory of Open Access Journals (Sweden)

    Claes G. Granqvist

    2016-12-01

    Full Text Available Today’s advances in materials science and technology can lead to better buildings with improved energy efficiency and indoor conditions. Particular attention should be directed towards windows and glass facades—jointly known as “glazings”—since current practices often lead to huge energy expenditures related to excessive inflow or outflow of energy which need to be balanced by energy-intensive cooling or heating. This review article outlines recent progress in thermochromics, i.e., it deals with materials whose optical properties are strongly dependent on temperature. In particular, we discuss oxide-based thin surface coatings (thin films and nanoparticle composites which can be deposited onto glass and are able to regulate the throughput of solar energy while the luminous (visible properties remain more or less unaltered. Another implementation embodies lamination materials incorporating thermochromic (TC nanoparticles. The thin films and nanocomposites are based on vanadium dioxide (VO2, which is able to change its properties within a narrow temperature range in the vicinity of room temperature and either reflects or absorbs infrared light at elevated temperatures, whereas the reflectance or absorptance is much smaller at lower temperatures. The review outlines the state of the art for these thin films and nanocomposites with particular attention to recent developments that have taken place in laboratories worldwide. Specifically, we first set the scene by discussing environmental challenges and their relationship with TC glazings. Then enters VO2 and we present its key properties in thin-film form and as nanoparticles. The next part of the article gives perspectives on the manufacturing of these films and particles. We point out that the properties of pure VO2 may not be fully adequate for buildings and we elaborate how additives, antireflection layers, nanostructuring and protective over-coatings can be employed to yield improved

  5. The 2H(e, e' p)n reaction at large energy transfers

    NARCIS (Netherlands)

    Willering, Hendrik Willem

    2003-01-01

    At the ELSA accelerator facillity in Bonn, Germany, we have measured the deutron "breakup" reaction 2H(e,e' p)n at four-momentum transfers around Q2 = -0 .20(GeV/c)2 with an electron beam energy of E0 = 1.6 GeV. The cross section has been determined for energy transfers extending from the

  6. Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer

    Science.gov (United States)

    Ghimire, Ganesh; Dhakal, Krishna P.; Neupane, Guru P.; Jo, Seong Gi; Kim, Hyun; Seo, Changwon; Lee, Young Hee; Joo, Jinsoo; Kim, Jeongyong

    2017-05-01

    Organic/inorganic hybrid structures have been widely studied because of their enhanced physical and chemical properties. Monolayers of transition metal dichalcogenides (1L-TMDs) and organic nanoparticles can provide a hybridization configuration between zero- and two-dimensional systems with the advantages of convenient preparation and strong interface interaction. Here, we present such a hybrid system made by dispersing π-conjugated organic (tris (8-hydroxyquinoline) aluminum(III)) (Alq3) nanoparticles (NPs) on 1L-MoS2. Hybrids of Alq3 NP/1L-MoS2 exhibited a two-fold increase in the photoluminescence of Alq3 NPs on 1L-MoS2 and the n-doping effect of 1L-MoS2, and these spectral and electronic modifications were attributed to the charge transfer between Alq3 NPs and 1L-MoS2. Our results suggested that a hybrid of organic NPs/1L-TMD can offer a convenient platform to study the interface interactions between organic and inorganic nano objects and to engineer optoelectronic devices with enhanced performance.

  7. Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles

    Science.gov (United States)

    Zuhra, Samina; Khan, Noor Saeed; Khan, Muhammad Altaf; Islam, Saeed; Khan, Waris; Bonyah, Ebenezer

    2018-03-01

    The unsteady flow and heat transfer characteristics of electrically conducting water based thin liquid film non-Newtonian (Casson and Williamson) nanofluids dispensed with graphene nanoparticles past a stretching sheet are considered in the presence of transverse magnetic field and non-uniform heat source/sink. Embedding the graphene nanoparticles effectively amplifies the thermal conductivity of Casson and Williamson nanofluids. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by the HAM (Homotopy Analysis Method). The solution is expressed through graphs and illustrated which show the influences of all the parameters. The convergence of the HAM solution for the linear operators is obtained. Favorable comparison with previously published research paper is performed to show the correlation for the present work. Skin friction coefficient and Nusselt number are presented through Tables and graphs which show the validation for the achieved results demonstrating that the thin liquid films results from this study are in close agreement with the results reported in the literature. Results achieved by HAM and residual errors are evaluated numerically, given in Tables and also depicted graphically which show the accuracy of the present work.

  8. Analysis of optical near-field energy transfer by stochastic model unifying architectural dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Makoto, E-mail: naruse@nict.go.jp [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Nanophotonics Research Center, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Akahane, Kouichi; Yamamoto, Naokatsu [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Holmström, Petter [Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH), SE-164 40 Kista (Sweden); Thylén, Lars [Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH), SE-164 40 Kista (Sweden); Hewlett-Packard Laboratories, Palo Alto, California 94304 (United States); Huant, Serge [Institut Néel, CNRS and Université Joseph Fourier, 25 rue des Martyrs BP 166, 38042 Grenoble Cedex 9 (France); Ohtsu, Motoichi [Nanophotonics Research Center, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-04-21

    We theoretically and experimentally demonstrate energy transfer mediated by optical near-field interactions in a multi-layer InAs quantum dot (QD) structure composed of a single layer of larger dots and N layers of smaller ones. We construct a stochastic model in which optical near-field interactions that follow a Yukawa potential, QD size fluctuations, and temperature-dependent energy level broadening are unified, enabling us to examine device-architecture-dependent energy transfer efficiencies. The model results are consistent with the experiments. This study provides an insight into optical energy transfer involving inherent disorders in materials and paves the way to systematic design principles of nanophotonic devices that will allow optimized performance and the realization of designated functions.

  9. Analysis of optical near-field energy transfer by stochastic model unifying architectural dependencies

    International Nuclear Information System (INIS)

    Naruse, Makoto; Akahane, Kouichi; Yamamoto, Naokatsu; Holmström, Petter; Thylén, Lars; Huant, Serge; Ohtsu, Motoichi

    2014-01-01

    We theoretically and experimentally demonstrate energy transfer mediated by optical near-field interactions in a multi-layer InAs quantum dot (QD) structure composed of a single layer of larger dots and N layers of smaller ones. We construct a stochastic model in which optical near-field interactions that follow a Yukawa potential, QD size fluctuations, and temperature-dependent energy level broadening are unified, enabling us to examine device-architecture-dependent energy transfer efficiencies. The model results are consistent with the experiments. This study provides an insight into optical energy transfer involving inherent disorders in materials and paves the way to systematic design principles of nanophotonic devices that will allow optimized performance and the realization of designated functions

  10. Ion-ion interaction and energy transfer of 4+ transuranium ions in cerium tetrafluoride

    International Nuclear Information System (INIS)

    Liu, G.K.; Beitz, J.V.

    1990-01-01

    Dynamics of excited 5f electron states of the transuranium ions Cm 4+ and Bk 4+ in CeF 4 are compared. Based on time- and wavelength-resolved laser-induced fluorescence, excitation energy transfer processes have been probed. Depending on concentration and electronic energy level structure of the studied 4+ transuranium ion, the dominant energy transfer mechanisms were identified as cross relaxation, exciton-exciton annihilation, and trapping. Energy transfer rates derived from the fitting of the observed fluorescence decays to theoretical models, based on electric multipolar ion-ion interactions, are contrasted with prior studies of 4f states of 3+ lanthanide and 3d states of transition metal ions. 16 refs., 1 tab

  11. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages.

    Science.gov (United States)

    Trousil, Jiří; Filippov, Sergey K; Hrubý, Martin; Mazel, Tomáš; Syrová, Zdeňka; Cmarko, Dušan; Svidenská, Silvie; Matějková, Jana; Kováčik, Lubomír; Porsch, Bedřich; Konefał, Rafał; Lund, Reidar; Nyström, Bo; Raška, Ivan; Štěpánek, Petr

    2017-01-01

    We have developed a biodegradable, biocompatible system for the delivery of the antituberculotic antibiotic rifampicin with a built-in drug release and nanoparticle degradation fluorescence sensor. Polymer nanoparticles based on poly(ethylene oxide) monomethyl ether-block-poly(ε-caprolactone) were noncovalently loaded with rifampicin, a combination that, to best of our knowledge, was not previously described in the literature, which showed significant benefits. The nanoparticles contain a Förster resonance energy transfer (FRET) system that allows real-time assessment of drug release not only in vitro, but also in living macrophages where the mycobacteria typically reside as hard-to-kill intracellular parasites. The fluorophore also enables in situ monitoring of the enzymatic nanoparticle degradation in the macrophages. We show that the nanoparticles are efficiently taken up by macrophages, where they are very quickly associated with the lysosomal compartment. After drug release, the nanoparticles in the cmacrophages are enzymatically degraded, with half-life 88±11 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Solar wind energy transfer regions inside the dayside magnetopause

    International Nuclear Information System (INIS)

    Lundin, R.; Dubinin, E.

    1984-01-01

    PROGNOZ-7 high temporal resolution measurements of the ion composition and hot plasma distribution in the dayside high latitude boundary layer near noon have revealed that magnetosheath plasma may penetrate the dayside magnetopause and form high density, high β, magnetosheath-like regions inside the magnetopause. From these measurements it is demonstrated that the magnetosheath injection regions most probably play an important role in transferring solar wind energy into the magnetosphere. The transfer regions are characterized by a strong perpendicular flow towards dawn or dusk (depending on local time) but are also observed to expand rapidly along the boundary field lines. This increased flow component transverse to the local magnetic field corresponds to a predominantly radial electric field of up to several mV m -1 , which indicates that the injected magnetosheath plasma causes an enhanced polarization of the boundary layer. Polarization of the boundary layer can therefore be considered a result of a local MHD-process where magnetosheath plasma excess momentum is converted into electromagnetic energy (electric field), i.e. there is an MHD-generator. It was observed that the boundary layer is charged up to tens of kilovolts, a potential which may be highly variable on e.g. the presence of a momentum exchange by the energy transfer regions. (author)

  13. Hybrid Systems Based on Layered Silicate and Organic Dyes for Cascade Energy Transfer

    Czech Academy of Sciences Publication Activity Database

    Belušáková, S.; Lang, Kamil; Bujdák, J.

    2015-01-01

    Roč. 119, č. 38 (2015), s. 21784-21794 ISSN 1932-7447 Institutional support: RVO:61388980 Keywords : Cascade energy transfers * Multicomponent films * Resonance energy transfer * Spectral properties * Steady state fluorescence * Time-resolved fluorescence spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 4.509, year: 2015

  14. Energy distribution and transfer in flowing hydrogen microwave plasmas

    International Nuclear Information System (INIS)

    Chapman, R.A.

    1987-01-01

    This thesis is an experimental investigation of the physical and chemical properties of a hydrogen discharge in a flowing microwave plasma system. The plasma system is the mechanisms utilized in an electrothermal propulsion concept to convert electromagnetic energy into the kinetic energy of flowing hydrogen gas. The plasmas are generated inside a 20-cm ID resonant cavity at a driving frequency of 2.45 GHz. The flowing gas is contained in a coaxially positioned 22-mm ID quartz discharge tube. The physical and chemical properties are examined for absorbed powers of 20-100 W, pressures of 0.5-10 torr, and flow rates of 0-10,000 μ-moles/sec. A calorimetry system enclosing the plasma system to accurately measure the energy inputs and outputs has been developed. The rate of energy that is transferred to the hydrogen gas as it flows through the plasma system is determined as a function of absorbed power, pressure, and flow rate to +/-1.8 W from an energy balance around the system. The percentage of power that is transferred to the gas is found to increase with increasing flow rate, decrease with increasing pressure, and to be independent of absorbed power

  15. Magnetoliposomes based on nickel/silica core/shell nanoparticles: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ana Rita O.; Gomes, I.T.; Almeida, Bernardo G. [Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Araújo, J.P. [IFIMUP/IN – Instituto de Nanociência e Nanotecnologia, R. Campo Alegre, 4169-007 Porto (Portugal); Castanheira, Elisabete M.S. [Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Coutinho, Paulo J.G., E-mail: pcoutinho@fisica.uminho.pt [Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2014-12-15

    In the present work, nickel magnetic nanoparticles with diameters lower than 100 nm, with and without silica shell, were synthesized by microheterogeneous templating. The magnetic properties of the nanoparticles show a typical ferromagnetic behavior with a coercive field of 80 Oe. Dry magnetoliposomes (DMLs) with diameter between 58 nm and 76 nm were obtained from the synthesis of nanoparticles in the presence of a lipid or surfactant layer, and aqueous magnetoliposomes (AMLs) were obtained by encapsulation of the nanoparticles in liposomes. FRET (Förster resonance energy transfer) experiments were performed to study the non-specific interactions between aqueous magnetoliposomes and giant unilamellar vesicles (GUVs), as models of cell membranes. It was possible to detect membrane fusion between GUVs and AMLs containing both NBD-C{sub 6}-HPC (donor) and the dye Nile Red (acceptor). - Highlights: • Magnetic nickel nanoparticles were synthesized in microheterogeneous media. • The nanoparticles were covered with a silica shell to improve biocompatibility. • Aqueous and dry magnetoliposomes were prepared, the latter with diameter around 70 nm. • Membrane fusion between magnetoliposomes and models of cell membranes was detected by FRET.

  16. Magnetoliposomes based on nickel/silica core/shell nanoparticles: Synthesis and characterization

    International Nuclear Information System (INIS)

    Rodrigues, Ana Rita O.; Gomes, I.T.; Almeida, Bernardo G.; Araújo, J.P.; Castanheira, Elisabete M.S.; Coutinho, Paulo J.G.

    2014-01-01

    In the present work, nickel magnetic nanoparticles with diameters lower than 100 nm, with and without silica shell, were synthesized by microheterogeneous templating. The magnetic properties of the nanoparticles show a typical ferromagnetic behavior with a coercive field of 80 Oe. Dry magnetoliposomes (DMLs) with diameter between 58 nm and 76 nm were obtained from the synthesis of nanoparticles in the presence of a lipid or surfactant layer, and aqueous magnetoliposomes (AMLs) were obtained by encapsulation of the nanoparticles in liposomes. FRET (Förster resonance energy transfer) experiments were performed to study the non-specific interactions between aqueous magnetoliposomes and giant unilamellar vesicles (GUVs), as models of cell membranes. It was possible to detect membrane fusion between GUVs and AMLs containing both NBD-C 6 -HPC (donor) and the dye Nile Red (acceptor). - Highlights: • Magnetic nickel nanoparticles were synthesized in microheterogeneous media. • The nanoparticles were covered with a silica shell to improve biocompatibility. • Aqueous and dry magnetoliposomes were prepared, the latter with diameter around 70 nm. • Membrane fusion between magnetoliposomes and models of cell membranes was detected by FRET

  17. Wireless energy transfer platform for medical sensors and implantable devices.

    Science.gov (United States)

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power.

  18. Ce decay curves in Ce, Tb co-doped LaF3 and the energy transfer mechanism

    International Nuclear Information System (INIS)

    Kroon, R.E.; Swart, H.C.; Ntwaeaborwa, O.M.; Seed Ahmed, H.A.A.

    2014-01-01

    Energy transfer phenomena can play an important role in the development of luminescent materials, and hosts co-doped with Ce 3+ and Tb 3+ ions continue to be actively studied. Several recent reports on Ce, Tb co-doped phosphors suggest different mechanisms for the energy transfer from Ce 3+ to Tb 3+ ions and further study is required to reach consensus on the mechanism or to understand why different mechanisms dominate in different hosts. A more direct method of analysis is proposed to distinguish between the different types of multipole energy transfer mechanisms. When applied to Ce, Tb co-doped LaF 3 , the experimental data shows a poor match to any of these models but is consistent with energy transfer through the exchange mechanism. The decay curves of Ce emission in Ce, Tb co-doped LaF 3 were also studied to obtain further insight on the energy transfer mechanism. Although the decrease in lifetime with increasing Tb concentration shows that energy transfer occurs through a non-radiative mechanism, the form of the decay curves does not correspond to what is expected for energy transfer via multipole interactions.

  19. Morphing continuum analysis of energy transfer in compressible turbulence

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James

    2018-02-01

    A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.

  20. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    Science.gov (United States)

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  1. Spontaneous Emission and Energy Transfer Rates Near a Coated Metallic Cylinder

    OpenAIRE

    BRADLEY, LOUISE

    2014-01-01

    PUBLISHED The spontaneous emission and energy transfer rates of quantum systems in proximity to a dielectrically coated metallic cylinder are investigated using a Green's tensor formalism. The excitation of surface plasmon modes can significantly modify these rates. The spontaneous emission and energy transfer rates are investigated as a function of the material and dimensions of the core and coating, as well as the emission wavelength of the donor. For the material of the core we consider...

  2. Interfacial functionalization and engineering of nanoparticles

    Science.gov (United States)

    Song, Yang

    also of the metal elements in the nanoparticle cores, in contrast to the bulk-exchange counterparts where these distributions were homogeneous within the nanoparticles, as manifested in contact angle, UV--vis, XPS, and TEM measurements. More interestingly, the electrocatalytic performance of the Janus nanoparticles was markedly better than the bulk-exchange ones, suggesting that the segregated distribution of the polar ligands from the apolar ones might further facilitate charge transfer from Ag to Au in the nanoparticle cores, leading to additional improvement of the adsorption and reduction of oxygen. This interfacial protocol was then adopted to prepare trimetallic Ag AuPt Neapolitan nanoparticles by two sequential galvanic exchange reactions of 1-hexanethiolate-capped silver nanoparticles with gold(I)-thiomalic acid and platinum(II)-hexanethiolate complexes. As both reactions were confined to an interface, the Au and Pt elements were situated on two opposite poles of the original Ag nanoparticles, which was clearly manifested in elemental mapping of the nanoparticles, and consistent with the damping and red-shift of the nanoparticle surface plasmon resonance. As nanoscale analogs to conventional amphiphilic molecules, the resulting Janus nanoparticles were found to form oil-in-water micelle-like or water-in-oil reverse micelle-like superparticulate structures depending on the solvent media. These unique characteristics were exploited for the effective transfer of diverse guest nanoparticles between organic and water phase. The transfer of hydrophobic nanoparticles from organic to water media or water-soluble nanoparticles to the organic phase was evidenced by TEM, DLS, UV-Vis, and PL measurements. In particular, line scans based on EDS analysis showed that the vesicle-like structures consisted of multiple layers of the Janus nanoparticles, which encapsulated the guest nanoparticles in the cores. The results highlight the unique effectiveness of using Janus

  3. The influence of molecular rotation on vibration--translation energy transfer

    International Nuclear Information System (INIS)

    McKenzie, R.L.

    1977-01-01

    The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influence of rotational coupling on the net rate of vibrational energy transfer summed over all final rotational states. These results are then related to the predictions of an equivalent collinear collision model, and their comparison allows an evaluation of the collinear approximation. The mechanisms of vibrational energy transfer including rotational transitions are shown to be separable into three classes, with the molecules belonging to each class identified first and foremost by their ratio of fundamental vibrational and rotational frequencies, ω/sub e//B/sub e/, and second by the proximity of their initial state to a near-resonant vibration--rotation transition with a small change in angular momentum. While the dynamics of molecules with ω/sub e//B/sub e/ ratios that are comparable to the range of angular momentum transitions having strong coupling are found to require a complete three-dimensional description, the rates of vibrational energy transfer in molecules with large ω/sub e//B/sub e/ ratios appear to be well approximated by a collinear collision model

  4. Electron transfer dynamics of triphenylamine dyes bound to TiO2 nanoparticles from femtosecond stimulated Raman spectroscopy

    KAUST Repository

    Hoffman, David P.

    2013-04-11

    Interfacial electron transfer between sensitizers and semiconducting nanoparticles is a crucial yet poorly understood process. To address this problem, we have used transient absorption (TA) and femtosecond stimulated Raman spectroscopy (FSRS) to investigate the photoexcited dynamics of a series of triphenylamine-coumarin dye/TiO2 conjugates. The TA decay is multiexponential, spanning time scales from 100 fs to 100 ps, while the characteristic transient Raman spectrum of the radical cation decays biexponentially with a dominant ∼3 ps component. To explain these observations, we propose a model in which the decay of the TA is due to hot electrons migrating from surface trap states to the conduction band of TiO 2 while the decay of the Raman signature is due to internal conversion of the dye molecule. Furthermore, the S1 Raman spectrum of TPAC3, a dye wherein a vinyl group separates the triphenylamine and coumarin moieties, is similar to the S1 Raman spectrum of trans-stilbene; we conclude that their S1 potential energy surfaces and reactivity are also similar. This correlation suggests that dyes containing vinyl linkers undergo photoisomerization that competes with electron injection. © 2013 American Chemical Society.

  5. Mechanism of solid-state plasma-induced dewetting for formation of copper and gold nanoparticles.

    Science.gov (United States)

    Kwon, Soon-Ho; Choe, Han Joo; Lee, Hyo-Chang; Chung, Chin-Wook; Lee, Jung-Joong

    2013-09-01

    Cu and Au nanoparticles were fabricated by plasma treatment on Cu and Au films at 653 K. The nanoparticles were formed by dewetting the metallic films using plasma. Scanning electron microscopy and transmission electron microscopy investigations showed that the plasma-induced dewetting of the Cu and Au films proceeded through heterogeneous hole nucleation and growth along the grain boundaries to lower the surface energy. The amount of energy transferred to surface atoms by one Ar ion was calculated to be 16.1 eV, which was sufficient for displacing Cu and Au atoms. Compared to thermally activated dewetting, more uniform particles could be obtained by plasma-induced dewetting because a much larger number of holes with smaller sizes was generated. The plasma dewetting process is less sensitive to the oxidation of metallic films compared to the annealing process. As a result, Cu nanoparticles could be fabricated at 653 K, whereas the thermally activated dewetting was not possible.

  6. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Aklujkar, Muktak

    2013-01-01

    Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy...... dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration....

  7. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  8. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    Science.gov (United States)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-07-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.

  9. Development of a High-performance Fluorpolymer Electret Mixed with Nano-particles and Its Application to Vibration Energy Harvesting

    International Nuclear Information System (INIS)

    Suzuki, M; Takahashi, T; Aoyagi, S

    2014-01-01

    We have been developing small power generation device of capacitance-type to be converted to electrical energy vibration energy using an electret. In this Study, dielectric nanoparticles were mixed with an electret made of fluorocarbon polymer. As a result, implanted charge density of the electret was successfully enhanced thanks to the mixing of particles. A small sized vibration energy harvester (VEH) was fabricated using the fluorocarbon mixed with dielectric nano-particles. As a result of applying vibration (20 Hz, 0.65 G) to the fabricated VEH, The maximum generated power of approximately 50 μW was obtained

  10. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermonuclear reactor is described. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals

  11. Thermodynamic analysis of a thermal storage unit under the influence of nano-particles added to the phase change material and/or the working fluid

    Science.gov (United States)

    Abolghasemi, Mehran; Keshavarz, Ali; Mehrabian, Mozaffar Ali

    2012-11-01

    The thermal storage unit consists of two concentric cylinders where the working fluid flows through the internal cylinder and the annulus is filled with a phase change material. The system carries out a cyclic operation; each cycle consists of two processes. In the charging process the hot working fluid enters the internal cylinder and transfers heat to the phase change material. In the discharging process the cold working fluid enters the internal cylinder and absorbs heat from the phase change material. The differential equations governing the heat transfer between the two media are solved numerically. The numerical results are compared with the experimental results available in the literature. The performance of an energy storage unit is directly related to the thermal conductivity of nano-particles. The energy consumption of a residential unit whose energy is supplied by a thermal storage system can be reduced by 43 % when using nano-particles.

  12. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production.

    Science.gov (United States)

    Kornienko, Nikolay; Sakimoto, Kelsey K; Herlihy, David M; Nguyen, Son C; Alivisatos, A Paul; Harris, Charles B; Schwartzberg, Adam; Yang, Peidong

    2016-10-18

    The rise of inorganic-biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic-abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica-cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO 2 to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M. thermoacetica Transient absorption (TA) spectroscopy revealed that photoexcited electron transfer rates increase with increasing hydrogenase (H 2 ase) enzyme activity. On the same time scale as the TA spectroscopy, time-resolved infrared (TRIR) spectroscopy showed spectral changes in the 1,700-1,900-cm -1 spectral region. The quantum efficiency of this system for photosynthetic acetic acid generation also increased with increasing H 2 ase activity and shorter carrier lifetimes when averaged over the first 24 h of photosynthesis. However, within the initial 3 h of photosynthesis, the rate followed an opposite trend: The bacteria with the lowest H 2 ase activity photosynthesized acetic acid the fastest. These results suggest a two-pathway mechanism: a high quantum efficiency charge-transfer pathway to H 2 ase generating H 2 as a molecular intermediate that dominates at long time scales (24 h), and a direct energy-transducing enzymatic pathway responsible for acetic acid production at short time scales (3 h). This work represents a promising platform to utilize conventional spectroscopic methodology to extract insights from more complex biotic-abiotic hybrid systems.

  13. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.

    Science.gov (United States)

    Liu, Ran; Duay, Jonathon; Lee, Sang Bok

    2010-07-27

    MnO2 nanoparticle enriched poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires are fabricated by simply soaking the PEDOT nanowires in potassium permanganate (KMnO4) solution. The structures of these MnO2 nanoparticle enriched PEDOT nanowires are characterized by SEM and TEM, which show that the MnO2 nanoparticles have uniform sizes and are finely dispersed in the PEDOT matrix. The chemical constituents and bonding of these composite nanowires are characterized by energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, and infrared spectroscopy, which indicate that the formation and dispersion of these MnO2 nanoparticles into the nanoscale pores of the PEDOT nanowires are most likely triggered by the reduction of KMnO4 via the redox exchange of permanganate ions with the functional group on PEDOT. Varying the concentrations of KMnO4 and the reaction time controls the loading amount and size of the MnO2 nanoparticles. Cyclic voltammetry and galvanostatic charge-discharge are used to characterize the electrochemical properties of these MnO2 nanoparticle loaded PEDOT nanowires. Due to their extremely high exposed surface area with nanosizes, the pristine MnO2 nanoparticles in these MnO2 nanoparticle enriched PEDOT nanowires show very high specific capacitance (410 F/g) as the supercapacitor electrode materials as well as high Li+ storage capacity (300 mAh/g) as cathode materials of Li ion battery, which boost the energy storage capacity of PEDOT nanowires to 4 times without causing excessive volume expansion in the polymer. The highly conductive and porous PEDOT matrix facilitates fast charge/discharge of the MnO2 nanoparticles and prevents them from agglomerating. These synergic properties enable the MnO2 nanoparticle enriched PEDOT nanowires to be promising electrode materials for supercapacitors and lithium ion batteries.

  14. Quinone-Enriched Gold Nanoparticles in Bioelectrochemistry and Charge Storage

    DEFF Research Database (Denmark)

    Wagner, Michal; Qvortrup, Katrine; Tanner, David Ackland

    for merging gold nanoparticles with resultant anthraquinones include one-pot microwave assisted synthesis or after-mixing of separately prepared gold nanoparticles with selected compounds. The quinone-enriched gold nanoparticles can be transferred onto different electrode surfaces, thus enabling facile...

  15. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Balashov, S.P.; Chábera, P.; Imasheva, E.S.; Yartsev, A.; Sundström, V.; Lanyi, J.K.

    2009-01-01

    Roč. 96, č. 6 (2009), s. 2268-2277 ISSN 0006-3495 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : energy transfer * carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.390, year: 2009

  16. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  17. Energy Link Optimization in a Wireless Power Transfer Grid under Energy Autonomy Based on the Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhihao Zhao

    2016-08-01

    Full Text Available In this paper, an optimization method is proposed for the energy link in a wireless power transfer grid, which is a regional smart microgrid comprised of distributed devices equipped with wireless power transfer technology in a certain area. The relevant optimization model of the energy link is established by considering the wireless power transfer characteristics and the grid characteristics brought in by the device repeaters. Then, a concentration adaptive genetic algorithm (CAGA is proposed to optimize the energy link. The algorithm avoided the unification trend by introducing the concentration mechanism and a new crossover method named forward order crossover, as well as the adaptive parameter mechanism, which are utilized together to keep the diversity of the optimization solution groups. The results show that CAGA is feasible and competitive for the energy link optimization in different situations. This proposed algorithm performs better than its counterparts in the global convergence ability and the algorithm robustness.

  18. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    Science.gov (United States)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  19. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    Science.gov (United States)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  20. Observation of the one- to six-neutron transfer reactions at sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.L.; Rehm, K.E.; Gehring, J. [and others

    1995-08-01

    It was suggested many years ago that when two heavy nuclei are in contact during a grazing collision, the transfer of several correlated neutron-pairs could occur. Despite considerable experimental effort, however, so far only cross sections for up to four-neutron transfers have been uniquely identified. The main difficulties in the study of multi-neutron transfer reactions are the small cross sections encountered at incident energies close to the barrier, and various experimental uncertainties which can complicate the analysis of these reactions. We have for the first time found evidence for multi-neutron transfer reactions covering the full sequence from one- to six-neutron transfer reactions at sub-barrier energies in the system {sup 58}Ni + {sup 100}Mo.

  1. Spectroscopic evidence of resonance energy transfer mechanism from PbS QDs to bulk silicon

    Directory of Open Access Journals (Sweden)

    Bernechea M.

    2013-06-01

    Full Text Available In this work, we study the efficiency of the resonance energy transfer from PbS quantum dots to bulk silicon. We present spectroscopic evidence that resonance energy transfer from PbS quantum dots to bulk silicon can be an efficient process for separation distances below 12 nm. Temperature measurements are also presented for PbS quantum dots deposited on glass and silicon with 5 nm and 20nm spacer thicknesses substrates. Our findings show that the resonance energy transfer efficiency remains constant over the 50K to 300K temperature range.

  2. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš [Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16 (Czech Republic); Cranston, Laura J.; Cogdell, Richard J. [Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland (United Kingdom); Lincoln, Craig N.; Hauer, Jürgen, E-mail: juergen.hauer@tuwien.ac.at [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna (Austria); Savolainen, Janne [Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum (Germany)

    2015-06-07

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  3. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    International Nuclear Information System (INIS)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Hauer, Jürgen; Savolainen, Janne

    2015-01-01

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems

  4. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.

    Science.gov (United States)

    Ranjbar Choubeh, Reza; Sonani, Ravi R; Madamwar, Datta; Struik, Paul C; Bader, Arjen N; Robert, Bruno; van Amerongen, Herbert

    2018-03-01

    Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.

  5. HVDC interrupter experiments for large Magnetic Energy Transfer and Storage (METS) systems

    International Nuclear Information System (INIS)

    Swannack, C.E.; Haarman, R.A.; Lindsay, J.D.G.; Weldon, D.M.

    1975-01-01

    Proposed fusion-test reactors will require energy storage systems of hundreds of megajoules with transfer times of the order of one millisecond. The size of the energy storage submodule (and hence, the overall system cost and complexity) is directly determined by the voltage and current limits of the switch used for the energy transfer. Experiments are being conducted on high voltage dc circuit breakers as a major part of the energy storage, pulsed power program. DC circuit interruption characteristics of a commercially available ac power vacuum interrupter are discussed. Preliminary data of interruption characteristics are reported for an interrupter developed specifically to match a present METS circuit requirement

  6. Homopolar machine for reversible energy storage and transfer systems

    Science.gov (United States)

    Stillwagon, Roy E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  7. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1981-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine

  8. Core-level binding energy shifts in Pt Ru nanoparticles: A puzzle resolved

    Science.gov (United States)

    Lewera, Adam; Zhou, Wei Ping; Hunger, Ralf; Jaegermann, Wolfram; Wieckowski, Andrzej; Yockel, Scott; Bagus, Paul S.

    2007-10-01

    Synchrotron measurements of Pt and Ru core-level binding energies, BE's, in Pt-Ru nanoparticles, as a function of Pt content, quantify earlier indications that the Pt 4f BE shift is much larger than the Ru 3d BE shift. A complementary theoretical analysis relates the BE shifts to changes in the metal-metal distances as the composition of the nanoparticle changes. We establish that the large Pt and small Ru BE shifts arise from the different response of these metals to changes in the bond distances, an unexpected result. Our results give evidence that the magnitudes of the BE shifts depend on whether the d band is open, as for Ru, or essentially filled, as for Pt.

  9. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    International Nuclear Information System (INIS)

    Ajayi, O. A.; Wong, C. W.; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-01-01

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices

  10. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. A., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu; Wong, C. W., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States); Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Anderson, N. C.; Wolcott, A.; Owen, J. S. [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Cotlet, M. [Brookhaven National Laboratory, Upton, New York, New York 11973 (United States); Petrone, N.; Hone, J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Gu, T.; Gesuele, F. [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States)

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  11. Preparation and luminescence properties of LaPO{sub 4}:Er,Yb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ha-Kyun [Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of)]. E-mail: hakyun@krict.re.kr; Oh, Jae-Suk [Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Seok, Sang-Il [Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Lee, Tack-Hyuck [Department of Chemistry, Paichai University, Daejeon 302-735 (Korea, Republic of)

    2005-09-15

    For possible applications as optical amplification materials in telecommunications, LaPO{sub 4}:Er,Yb nanoparticles were synthesized in a solution system and their properties were investigated by various spectroscopic techniques. The prepared nanoparticles are single-phased and present the monazite structure, the particle size being about 5 nm with a narrow size distribution. Also, it was confirmed by EA and FT-IR analyses that the surface of nanoparticles is coated with the solvent molecules used in the synthesis reaction, which possibly prevents them from agglomerating. In the NIR region, the emission of the LaPO{sub 4}:Er particles is very weak due to an efficient quenching of the {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2} emission by the hydroxyl groups adsorbed on the surface of the nanoparticles. On the other hand, the co-doping of Yb{sup 3+} as a sensitizer in the nanoparticles resulted in the increase of the emission intensity at 1539 nm due to the effective energy transfer from Yb{sup 3+} to Er{sup 3+}. In addition, the synthesized nanoparticles have exhibited good dispersibility into a polymer matrix and effective luminescence in the NIR region.

  12. Energy transfer and kinetics in mechanochemistry.

    Science.gov (United States)

    Chen, Zhiliang; Lu, Shengyong; Mao, Qiongjing; Buekens, Alfons; Wang, Yuting; Yan, Jianhua

    2017-11-01

    Mechanochemistry (MC) exerts extraordinary degradation and decomposition effects on many chlorinated, brominated, and even fluorinated persistent organic pollutants (POPs). However, its application is still limited by inadequate study of its reaction kinetic aspects. In the present work, the ball motion and energy transfer in planetary ball mill are investigated in some detail. Almost all milling parameters are summarised in a single factor-total effective impact energy. Furthermore, the MC kinetic between calcium oxide/Al and hexachlorobenzene is well established and modelled. The results indicate that total effective impact energy and reagent ratio are the two factors sufficient for describing the MC degradation degree of POPs. The reaction rate constant only depends on the chemical properties of reactants, so it could be used as an important index to appraise the quality of MC additives. This model successfully predicts the reaction rate for different operating conditions, indicating that it could be suitably applied for conducting MC reactions in other reactors.

  13. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad

    2007-11-09

    The PhD-thesis ''Light Harvesting via Energy Transfer in the Dye Solar Cell'' (University of Freiburg, July 2007) describes the conceptual design, synthesis and testing of energy donor acceptor sensitizers for the dye solar cell (DSC). Under monochromatic illumination solar cells sensitized with the novel donor acceptor systems revealed a higher power conversion efficiency than cells containing exclusively the acceptor component. The following approach led to this conclusion: (i) the choice of suitable chromophores as energy donor and acceptor moieties according to the Foerster-theory, (ii) the synthesis of different donor acceptor systems, (iii) the development of a methodology allowing the quantification of energy transfer within dye solar cells, and (iv) the evaluation of characteristics of DSCs that were sensitized with the different donor acceptor systems. The acceptor chromophores used in this work were derived from [Ru(dcbpy)2acac]Cl (dcbpy = 4,4'-dicarboxy-2,2'-bipyridin, acac = acetylacetonato). This complex offered the opportunity to introduce substituents at the acac-ligand's terminal CH3 groups without significantly affecting its excellent photoelectrochemical properties. Alkylated 4-amino-1,8-naphthalimides (termed Fluorols in the following) were used as energy donor chromophores. This class of compounds fulfils the requirements for efficient energy transfer to [Ru(dcbpy)2acac]Cl. Covalently linking donor and acceptor chromophores to one another was achieved by two different concepts. A dyad comprising one donor and one acceptor chromophore was synthesized by subsequent hydrosilylation steps of an olefin-bearing donor and an acceptor precursor to the dihydrosilane HSiMe2-CH2CH2-SiMe2H. A series of polymers comprising multiple donor and acceptor units was made by the addition of alkyne-bearing chromophores to hyperbranched polyglycerol azide (''Click-chemistry''). In this series the donor acceptor

  14. Control of Electron Transfer from Lead-Salt Nanocrystals to TiO 2

    KAUST Repository

    Hyun, Byung-Ryool

    2011-05-11

    The roles of solvent reorganization energy and electronic coupling strength on the transfer of photoexcited electrons from PbS nanocrystals to TiO 2 nanoparticles are investigated. We find that the electron transfer depends only weakly on the solvent, in contrast to the strong dependence in the nanocrystal-molecule system. This is ascribed to the larger size of the acceptor in this system, and is accounted for by Marcus theory. The electronic coupling of the PbS and TiO 2 is varied by changing the length, aliphatic and aromatic structure, and anchor groups of the linker molecules. Shorter linker molecules consistently lead to faster electron transfer. Surprisingly, linker molecules of the same length but distinct chemical structures yield similar electron transfer rates. In contrast, the electron transfer rate can vary dramatically with different anchor groups. © 2011 American Chemical Society.

  15. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.

    Science.gov (United States)

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-12

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  16. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  17. Optogalvanic monitoring of collisional transfer of laser excitation energy in a neon RF plasma

    International Nuclear Information System (INIS)

    Armstrong, T.D.

    1994-01-01

    The optogalvanic signals produced by pulsed laser excitation of 1s5--2p8 and 1s5-2p9 (Paschen notation) transition by a ∼29 MHz radiofrequency (rf) discharge at ∼5 torr have been investigated. The optogalvanic signal produced by 1s5-2p9 excitations indicates that there is transfer of energy from the 2p9 state to some other state. The state to which this energy is transferred is believed to be mainly the 2p8 state because of the very small energy gap between the 2p9 and 2p8 states. To verify this transfer, the 1s5-2p8 transition was investigated. The similarity of the temporal profiles of the optogalvanic signals in both excitations confirms the collisional transfer of laser excitation energy from 2p9 to 2p8

  18. Energy dependence of the Coulomb-nuclear interference at small momentum transfers

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    1997-01-01

    The analyzing power of the elastic proton-proton scattering at small momentum transfers and the effect of the Coulomb-nuclear interference are examined on the basis of the available experimental data at p L from 6 up to 200 GeV/c taking account of a phenomenological analysis at p L =6 GeV/c and of the dynamic high energy spin model. The structure of the spin-dependent elastic scattering amplitude at small momentum transfers is obtained. The predictions for the analyzing power at RHIC energies are made

  19. Hand-to-hand coupling and strategies to minimize unintentional energy transfer during laparoscopic surgery.

    Science.gov (United States)

    Overbey, Douglas M; Hilton, Sarah A; Chapman, Brandon C; Townsend, Nicole T; Barnett, Carlton C; Robinson, Thomas N; Jones, Edward L

    2017-11-01

    Energy-based devices are used in nearly every laparoscopic operation. Radiofrequency energy can transfer to nearby instruments via antenna and capacitive coupling without direct contact. Previous studies have described inadvertent energy transfer through bundled cords and nonelectrically active wires. The purpose of this study was to describe a new mechanism of stray energy transfer from the monopolar instrument through the operating surgeon to the laparoscopic telescope and propose practical measures to decrease the risk of injury. Radiofrequency energy was delivered to a laparoscopic L-hook (monopolar "bovie"), an advanced bipolar device, and an ultrasonic device in a laparoscopic simulator. The tip of a 10-mm telescope was placed adjacent but not touching bovine liver in a standard four-port laparoscopic cholecystectomy setup. Temperature increase was measured as tissue temperature from baseline nearest the tip of the telescope which was never in contact with the energy-based device after a 5-s open-air activation. The monopolar L-hook increased tissue temperature adjacent to the camera/telescope tip by 47 ± 8°C from baseline (P energy devices significantly reduced temperature change in comparison to the monopolar instrument (47 ± 8°C) for both the advanced bipolar (1.2 ± 0.5°C; P energy transfers from the monopolar "bovie" instrument through the operating surgeon to standard electrically inactive laparoscopic instruments. Hand-to-hand coupling describes a new form of capacitive coupling where the surgeon's body acts as an electrical conductor to transmit energy. Strategies to reduce stray energy transfer include avoiding the same surgeon holding the active electrode and laparoscopic camera or using alternative energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Flow and heat transfer behaviour of nanofluids in microchannels

    Directory of Open Access Journals (Sweden)

    James Bowers

    2018-04-01

    Full Text Available Flow and heat transfer of aqueous based silica and alumina nanofluids in microchannels were experimentally investigated. The measured friction factors were higher than conventional model predictions at low Reynolds numbers particularly with high nanoparticle concentrations. A decrease in the friction factor was observed with increasing Reynolds number, possibly due to the augmentation of nanoparticle aggregate shape arising from fluid shear and alteration of local nanoparticle concentration and nanofluid viscosity. Augmentation of the silica nanoparticle morphology by fluid shear may also have affected the friction factor due to possible formation of a core/shell structure of the particles. Measured thermal conductivities of the silica nanofluids were in approximate agreement with the Maxwell-Crosser model, whereas the alumina nanofluids only showed slight enhancements. Enhanced convective heat transfer was observed for both nanofluids, relative to their base fluids (water, at low particle concentrations. Heat transfer enhancement increased with increasing Reynolds number and microchannel hydraulic diameter. However, the majority of experiments showed a larger increase in pumping power requirements relative to heat transfer enhancements, which may hinder the industrial uptake of the nanofluids, particularly in confined environments, such as Micro Electro-Mechanical Systems (MEMS. Keywords: Nanofluid, Microchannel, Heat transfer, Pressure drop, Friction factor, Thermal conductivity, Viscosity

  1. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  2. Development of Thermoelectric and Permanent Magnet Nanoparticles for Clean Energy Applications

    Science.gov (United States)

    Nguyen, Phi-Khanh

    The global trend towards energy efficiency and environmental sustainability has generated a strong demand for clean energy technologies. Among the many energy solutions, the work in this dissertation contributes to two strategic goals: the reduction of fuel consumption in the transportation sector, and the increase of domestic wind power capacity. The key barriers to achieving these goals are materials challenges. Automobiles can be made more efficient by thermoelectric conversion of waste heat from the engine into electricity that can be used to power electrical components in the vehicle. Vehicles can forego petroleum fuel altogether by using electric or hybrid motors. Unfortunately, the conversion efficiency of current thermoelectric technology is too low to be considered economically feasible, and the permanent magnets used in electric vehicle motors and wind turbine generators require critical rare-earth elements that are economically unstable (often referred to as the "rare-earth crisis"). In order to combat these challenges, a "spark erosion" technique was utilized for producing nanoparticles that improve thermoelectric efficiency and contribute to the development of electromotors that do not require rare-earths. In Chapter 2 of this dissertation, I describe the utilization of spark erosion for producing high-quality thermoelectric nanoparticles at a remarkably high rate and with enhanced thermoelectric properties. The technique was employed to synthesize p-type bismuth-antimony telluride (BST) and n-type skutterudite nanoparticles, using a relatively small laboratory apparatus, with low energy consumption. The compacted BST nanocomposite samples made from these nanoparticles exhibit a well-defined, 20--50 nm size nanograin microstructure, and show an enhanced Figure of merit, ZT, of 1.36 at 360 K due to a reduction in lattice thermal conductivity. The skutterudite nanocomposites also show reduced thermal conductivity but still require enhancement in the

  3. Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure

    International Nuclear Information System (INIS)

    Imai, Shunji; Morishita, Yuki; Hata, Tomoyuki; Kondoh, Masuo; Yagi, Kiyohito; Gao, Jian-Qing; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-01-01

    When considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles. In contrast, after basolateral treatment, larger Ag nanoparticles were more internalized than smaller Ag nanoparticles, but the transfer to the apical side was greater for smaller Ag nanoparticles. Au nanoparticles showed different rules of internalization and transcellular transport compared with Ag nanoparticles. Furthermore, the paracellular permeability of the Caco-2 monolayers was temporarily increased by Ag nanoparticles (5 μg/mL; diameters, ≤10 nm) following basolateral but not apical exposure. We conclude that the internalization, transfer, and effects of nanomaterials in epithelial cell monolayers depend on the size and composition of nanomaterials, and the exposure side. - Highlights: • Ag and Au nanoparticles can transfer across Caco-2 monolayers. • Cellular uptake of nanoparticles change between apical and basolateral exposure. • Basolateral Ag nanoparticle exposure increases the permeability of Caco-2 monolayers.

  4. Climate friendly technology transfer in the energy sector: A case study of Iran

    International Nuclear Information System (INIS)

    Talaei, Alireza; Ahadi, Mohammad Sadegh; Maghsoudy, Soroush

    2014-01-01

    The energy sector is the biggest contributor of anthropogenic emissions of greenhouse gases into the atmosphere in Iran. However, abundant potential for implementing low-carbon technologies offers considerable emissions mitigation potential in this sector, and technology transfer is expected to play an important role in the widespread roll-out of these technologies. In the current work, globally existing low-carbon energy technologies that are compatible with the energy sector of Iran are identified and then prioritised against different criteria (i.e. Multi Criteria Decision Analysis). Results of technology prioritisation and a comprehensive literature review were then applied to conduct a SWOT analysis and develop a policy package aiming at facilitating the transfer of low carbon technologies to the country. Results of technology prioritisation suggest that the transport, oil and gas and electricity sectors are the highest priority sectors from technological needs perspective. In the policy package, while fuel price reform and environmental regulations are categorised as high priority policies, information campaigns and development of human resources are considered to have moderate effects on the process of technology transfer. - Highlights: • We examined the process of technology transfer in the energy sector of Iran. • Multi Criteria Decision Analysis techniques are used to prioritise the technological needs of the country. • Transportation, electricity and oil and gas sectors are found as recipients of new technologies. • A policy package was designed for facilitating technology transfer in the energy sector

  5. The Clean Energy Transfer : preliminary assesment of the potential for a clean energy transfer between Manitoba and Ontario

    International Nuclear Information System (INIS)

    2004-09-01

    Ontario may have an electrical power shortfall of as much as 25,000 MW by 2020, due to phase-out of coal fired plants, a general increase in demand and existing plants reaching the end of their design lives. Manitoba has approximately 5,000 MW of new hydroelectric power potential which could help to reduce this shortfall. This document reports on a study between the Manitoba government, the Ontario government, Manitoba Hydro, Hydro One, and the Ontario Independent Electricity Market Operator to provide an incremental transfer capability of 1,500 MW between the provinces. This is known as the Clean Energy Transfer Initiative (CETI). The current east-west transmission grid is limited to about 200 MW and is thus not sufficient for this project. Three transmission options have been studied. The report claims that CETI would be the largest single project in terms of greenhouse gas reductions. It is also claimed to potentially benefit Aboriginal groups by increasing employment and business opportunities. Also, tax revenues would be substantial. The most likely alternative energy supply is considered to be the combined cycle gas turbine which, according to the study, would cost about the same amount per MWh, excluding environmental credits. 4 tabs., 11 figs

  6. The Clean Energy Transfer : preliminary assesment of the potential for a clean energy transfer between Manitoba and Ontario

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    Ontario may have an electrical power shortfall of as much as 25,000 MW by 2020, due to phase-out of coal fired plants, a general increase in demand and existing plants reaching the end of their design lives. Manitoba has approximately 5,000 MW of new hydroelectric power potential which could help to reduce this shortfall. This document reports on a study between the Manitoba government, the Ontario government, Manitoba Hydro, Hydro One, and the Ontario Independent Electricity Market Operator to provide an incremental transfer capability of 1,500 MW between the provinces. This is known as the Clean Energy Transfer Initiative (CETI). The current east-west transmission grid is limited to about 200 MW and is thus not sufficient for this project. Three transmission options have been studied. The report claims that CETI would be the largest single project in terms of greenhouse gas reductions. It is also claimed to potentially benefit Aboriginal groups by increasing employment and business opportunities. Also, tax revenues would be substantial. The most likely alternative energy supply is considered to be the combined cycle gas turbine which, according to the study, would cost about the same amount per MWh, excluding environmental credits. 4 tabs., 11 figs.

  7. Supramolecular core-shell nanoparticles for photoconductive device applications

    Science.gov (United States)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  8. Calculation of energy transfer by fission fragments from plane uranium layer to thin wire

    International Nuclear Information System (INIS)

    Pikulev, A.A.

    2006-01-01

    Energy transfer from a flat fissile uranium slab to a fine wire via fission fragments is calculated. The rate of energy transfer versus the thicknesses of the slab and protecting aluminum film, as well as the wire-slab gap, is found. An expression for the absorption coefficient of the wire is derived, and the effect the thickness of the wire has on the energy transfer process is studied. The amount of the edge effect for a finite-size uranium slab is demonstrated with calculations for vacuum conditions and for argon under a pressure of 0.25 atm [ru

  9. Quantum molecular dynamics study on energy transfer to the secondary electron in surface collision process of an ion

    International Nuclear Information System (INIS)

    Shibahara, M; Satake, S; Taniguchi, J

    2008-01-01

    In the present study the quantum molecular dynamics method was applied to an energy transfer problem to an electron during ionic surface collision process in order to elucidate how energy of ionic collision transfers to the emitted electrons. Effects of various physical parameters, such as the collision velocity and interaction strength between the observed electron and the classical particles on the energy transfer to the electron were investigated by the quantum molecular dynamics method when the potassium ion was collided with the surface so as to elucidate the energy path to the electron and the predominant factor of energy transfer to the electron. Effects of potential energy between the ion and the electron and that between the surface molecule and the electron on the electronic energy transfer were shown in the present paper. The energy transfer to the observed secondary electron through the potential energy term between the ion and the electron was much dependent on the ion collision energy although the energy increase to the observed secondary electron was not monotonous through the potential energy between the ion and surface molecules with the change of the ion collision energy

  10. Visible Light Photocatalysis of [2+2] Styrene Cycloadditions via Energy Transfer

    Science.gov (United States)

    Lu, Zhan; Yoon, Tehshik P.

    2012-01-01

    Hip to be square: Styrenes participate in [2+2] cycloadditions upon irradiation with visible light in the presence of an iridium(III) polypyridyl complex. In contrast to previous reports of visible light photoredox catalysis, the mechanism of this process involves photosensitization by energy transfer and not electron transfer. PMID:22965321

  11. Heat transfer enhancement with elliptical tube under turbulent flow TiO2-water nanofluid

    Directory of Open Access Journals (Sweden)

    Hussein Adnan M.

    2016-01-01

    Full Text Available Heat transfer and friction characteristics were numerically investigated, employing elliptical tube to increase the heat transfer rate with a minimum increase of pressure drop. The flow rate of the tube was in a range of Reynolds number between 10000 and 100000. FLUENT software is used to solve the governing equation of CFD (continuity, momentum and energy by means of a finite volume method (FVM. The electrical heater is connected around the elliptical tube to apply uniform heat flux (3000 W/m2 as a boundary condition. Four different volume concentrations in the range of 0.25% to 1% and different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm, dispersed in water are utilized. The CFD numerical results indicate that the elliptical tube can enhance heat transfer and friction factor by approximately 9% and 6% than the circular tube respectively. The results show that the Nusselt number and friction factor increase with decreasing diameters but increasing volume concentrations of nanoparticles.

  12. One-step synthesis of gold bimetallic nanoparticles with various metal-compositions

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2013-01-01

    Highlights: ► Synthesis of bimetallic nanoparticles in an aqueous solution discharge. ► Alloying gold with divalent sp metals, trivalent sp metals, 3d or 4d metals. ► Formation mechanism of bimetallic nanoparticles by metal reduction and gold erosion. ► Blue and red shift of surface plasmon resonance. -- Abstract: A rapid, one-step process for the synthesis of bimetallic nanoparticles by simultaneous metal reduction and gold erosion in an aqueous solution discharge was investigated. Gold bimetallic nanoparticles were obtained by alloying gold with various types of metals belonging to one of the following categories: divalent sp metals, trivalent sp metals, 3d or 4d metals. The composition of the various gold bimetallic nanoparticles obtained depends on electrochemical factors, charge transfer between gold and other metal, and initial concentration of metal in solution. Transmission electron microscopy and energy dispersive spectroscopy show that the gold bimetallic nanoparticles were of mixed pattern, with sizes of between 5 and 20 nm. A red-shift of the surface plasmon resonance band in the case of the bimetallic nanoparticles Au–Fe, Au–Ga, and Au–In, and a blue-shift of the plasmon band of the Au–Ag nanoparticles was observed. In addition, the interaction of gold bimetallic nanoparticles with unpaired electrons, provided by a stable free radical molecule, was highest for those NPs obtained by alloying gold with a 3d metal

  13. On the nature of intramolecular vibrational energy transfer in dense molecular environments

    Energy Technology Data Exchange (ETDEWEB)

    Benten, Rebekka S. von [Institut fuer Physikalische Chemie der Universitaet Goettingen, Tammannstrasse 6, D-37077 Goettingen (Germany); Abel, Bernd, E-mail: Bernd.Abel@uni-lepzig.de [Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Universitaet Leipzig, Linne-Strasse 2, D-04103 Leipzig (Germany)

    2010-12-09

    Graphical abstract: Mechanisms of IVR in multi-tiers of intramolecular energy levels in different molecular environments are investigated. - Abstract: Transient femtosecond-IR-pump-UV-absorption probe-spectroscopy has been employed to shed light on the nature of intramolecular vibrational energy transfer (IVR) in dense molecular environments ranging from the diluted gas phase to the liquid. A general feature in our experiments and those of others is that IVR proceeds via multiple timescales if overtones or combination vibrations of high frequency modes are excited. It has been found that collisions enhance IVR if its (slower) timescales can compete with collisions. This enhancement is, however, much more weaker and rather inefficient as opposed to the effect of collisions on intermolecular energy transfer which is well known. In a series of experiments we found that IVR depends not significantly on the average energy transferred in a collision but rather on the number of collisions. The collisions are much less efficient in affecting IVR than VET. We conclude that collision induced broadening of vibrational energy levels reduces the energy gaps and enhances existing couplings between tiers. The present results are an important step forward to rationalize and understand apparently different and not consistent results from different groups on different molecular systems between gas and liquid phases.

  14. Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors

    NARCIS (Netherlands)

    Yu, D. C.; Rabouw, F. T.|info:eu-repo/dai/nl/413318036; Boon, W. Q.; Kieboom, T.; Ye, S.; Zhang, Q. Y.; Meijerink, A.|info:eu-repo/dai/nl/075044986

    2014-01-01

    Two distinct energy transfer (ET) mechanisms have been proposed for the conversion of blue to near-infrared (NIR) photons in YAG:Ce3+,Yb3+. The first mechanism involves downconversion by cooperative energy transfer, which would yield two NIR photons for each blue photon excitation. The second

  15. Surprisal analysis and probability matrices for rotational energy transfer

    International Nuclear Information System (INIS)

    Levine, R.D.; Bernstein, R.B.; Kahana, P.; Procaccia, I.; Upchurch, E.T.

    1976-01-01

    The information-theoretic approach is applied to the analysis of state-to-state rotational energy transfer cross sections. The rotational surprisal is evaluated in the usual way, in terms of the deviance of the cross sections from their reference (''prior'') values. The surprisal is found to be an essentially linear function of the energy transferred. This behavior accounts for the experimentally observed exponential gap law for the hydrogen halide systems. The data base here analyzed (taken from the literature) is largely computational in origin: quantal calculations for the hydrogenic systems H 2 +H, He, Li + ; HD+He; D 2 +H and for the N 2 +Ar system; and classical trajectory results for H 2 +Li + ; D 2 +Li + and N 2 +Ar. The surprisal analysis not only serves to compact a large body of data but also aids in the interpretation of the results. A single surprisal parameter theta/subR/ suffices to account for the (relative) magnitude of all state-to-state inelastic cross sections at a given energy

  16. Interference between vibration-to-translation and vibration-to-vibration energy transfer modes in diatomic molecules at high collision energies

    International Nuclear Information System (INIS)

    Shin, H.K.

    1983-01-01

    An explicit time dependent approach for simultaneous VT and VV energy transfer in diatom--diatom collisions is explored using the exponential form of ladder operators in the solution of the Schroedinger equation of motion. The collision of two hydrogen molecules is chosen to illustrate the extent of interference between VT and VV modes among various vibrational states. While vibrational energy transfer processes of nominally VT type can be treated with pure VT mode at low collision energies, the intermode coupling is found to be very important at collision energies of several hω. The occurrence of the coupling appears to be nearly universal in vibrational transitions at such energies. Exceptions to the coupling have been discussed

  17. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan

    2017-01-01

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  18. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    Science.gov (United States)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  19. Visualization of Stereoselective Supramolecular Polymers by Chirality-Controlled Energy Transfer.

    Science.gov (United States)

    Sarkar, Aritra; Dhiman, Shikha; Chalishazar, Aditya; George, Subi J

    2017-10-23

    Chirality-driven self-sorting is envisaged to efficiently control functional properties in supramolecular materials. However, the challenge arises because of a lack of analytical methods to directly monitor the enantioselectivity of the resulting supramolecular assemblies. Presented herein are two fluorescent core-substituted naphthalene-diimide-based donor and acceptor molecules with minimal structural mismatch and they comprise strong self-recognizing chiral motifs to determine the self-sorting process. As a consequence, stereoselective supramolecular polymerization with an unprecedented chirality control over energy transfer has been achieved. This chirality-controlled energy transfer has been further exploited as an efficient probe to visualize microscopically the chirality driven self-sorting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transfer of mechanical energy during the shot put

    Directory of Open Access Journals (Sweden)

    Błażkiewicz Michalina

    2016-09-01

    Full Text Available The aim of this study was to analyse transfer of mechanical energy between body segments during the glide shot put. A group of eight elite throwers from the Polish National Team was analysed in the study. Motion analysis of each throw was recorded using an optoelectronic Vicon system composed of nine infrared camcorders and Kistler force plates. The power and energy were computed for the phase of final acceleration of the glide shot put. The data were normalized with respect to time using the algorithm of the fifth order spline and their values were interpolated with respect to the percentage of total time, assuming that the time of the final weight acceleration movement was different for each putter. Statistically significant transfer was found in the study group between the following segments: Right Knee – Right Hip (p = 0.0035, Left Hip - Torso (p = 0.0201, Torso – Right Shoulder (p = 0.0122 and Right Elbow – Right Wrist (p = 0.0001. Furthermore, the results of cluster analysis showed that the kinetic chain used during the final shot acceleration movement had two different models. Differences between the groups were revealed mainly in the energy generated by the hips and trunk.

  1. Förster resonance energy transfer between acridinediones and selected fluorophores—Medium dependence

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaveni, R. [National Centre for Ultrafast Processes, University of Madras, Taramani Campus, Chennai-600113 (India); Ramamurthy, P., E-mail: prm60@hotmail.com [National Centre for Ultrafast Processes, University of Madras, Taramani Campus, Chennai-600113 (India)

    2013-06-15

    We report highly efficient Förster resonance energy transfer process between acridinedione dyes and basic fluorophores. FRET between free and β-cyclodextrin modified acridinediones as donors and fluorophoric dyes like safranine as acceptor were investigated in an alcoholic medium, polymer solution and a polymeric film. Efficiency of the processes were experimentally found by steady-state and time-resolved experiments for different donor and acceptor combinations. The associated spectral parameters viz., R{sup 0}, J(λ) were calculated, the Stern–Volmer relations based on fluorescence intensity and lifetime were constructed and the rates of energy transfer were calculated. The results indicated that the dominant mechanism responsible for the excitation energy transfer is that of resonance transfer due to long range dipole–dipole interaction and the process was found to be highly efficient when the medium was a constrained one as in the case of a polymeric film. A multifold enhancement in efficiency of energy transfer was also observed when the donor was a modified acridinedione when compared to a free acridinedione. The reason is attributed to the effective binding of the acceptor into the cavity of β-cyclodextrin. Highlights: ► FRET between acridinediones and fluorophoric acceptors were investigated. ► FRET analysis was carried out in methanol, a 5% PVA solution and in PVA matrix. ► FRET efficiency was maximum when the medium was PVA matrix. ► FRET efficiency was also more when β-CD modified ADR is used as the donor. ► Efficiency enhancement is due to the inclusion of acceptor into the cavity of β-CD.

  2. Luminescence and energy transfer processes in rare earth compounds

    International Nuclear Information System (INIS)

    Vliet, J.P.M. van.

    1989-01-01

    In this thesis some studies are presented of the luminescence and energy transfer in compounds containing Eu 3+ , Pr 3+ and Gd 3+ ions. Ch. 2 deals with the energy migration in the system Gd 1 - xEu x(IO 3) 3. In ch 3 the luminescence properties of the Pr 3+ ion in the system La 1 - xPr xMgAl 1 10 1 9 are reported. Ch. 4 discusses the luminescence properties of alkali europium double tungstates and molybdates AEuW 20 8 and AEuMo 20 * (A + = alkali metal atom). The luminiscence and energy migration characteristics of the isostructural system LiGd 1 - xEu xF 4 and Gd 1 - xEu xNbO 4 are reported in ch. 5. In ch. 6 the mechanism of energy migration in (La,Gd)AlO 3 and (Gd,Eu)AlO 3 is discussed. Ch. 7 deals with the system Na 5(Gd,Eu) (WO 4) 4. In ch. 8 the luminescence and energy transfer properties of two europium tellurite anti-glass phases are reported. The two phases are Eu 1 . 7 9TeO x, which has a pseudotetragonal structure, and Eu 1 . 0 6TeO x, which has a monoclinic, ordered structure. (author). 201 refs.; 39 figs.; 8 tabs

  3. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode

    International Nuclear Information System (INIS)

    Liu, Xueyang; Fang, Jian; Gao, Mei; Wang, Hongxia; Yang, Weidong; Lin, Tong

    2015-01-01

    Novel TiO 2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO 2 nanorods on TiO 2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO 2 nanorods had lower dye loading than TiO 2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO 2 nanorods received less resistance than that in TiO 2 nanoparticle aggregation. By just applying a thin layer of TiO 2 nanorods on TiO 2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO 2 nanoparticle layer covered with 3 μm thick TiO 2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO 2 nanorods were prepared for DSSC application. • TiO 2 nanorods show effective light scattering performance. • TiO 2 nanorods have higher electron transfer efficiency than TiO 2 nanoparticles. • TiO 2 nanorods on TiO 2 nanoparticle electrode improve DSSC efficiency

  4. Energy and charge transfer in ionized argon coated water clusters

    International Nuclear Information System (INIS)

    Kočišek, J.; Lengyel, J.; Fárník, M.; Slavíček, P.

    2013-01-01

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H 2 O) n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar + and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar + * and water opens leading to new products Ar n H + and (H 2 O) n H + . On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H 2 O) n H 2 2+ and (H 2 O) n 2+ ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent

  5. Energy transfer and thermal studies of Pr 3+ doped cerium oxalate ...

    Indian Academy of Sciences (India)

    The analysis of energy level diagrams of cerium and praseodymium ions indicates that the energy gap between the sensitizer and the activator ions varies in a small range suggesting a possible energy transfer from the Ce3+ to Pr3+. The emission and absorption spectra of these crystals were recorded. The overlapping of ...

  6. Fluorescence resonance energy transfer between conjugated molecules infiltrated in three-dimensional opal photonic crystals

    International Nuclear Information System (INIS)

    Zou, Lu; Sui, Ning; Wang, Ying-Hui; Qian, Cheng; Ma, Yu-Guang; Zhang, Han-Zhuang

    2015-01-01

    Fluorescence resonance energy transfer (FRET) from Coumarin 6 (C-6) to Sulforhodamine B (S-B) infiltrated into opal PMMA (poly-methyl-methacrylate) photonic crystals (PCs) has been studied in detail. The intrinsic mesh micro-porous structure of opal PCs could increase the luminescent efficiency through inhibiting the intermolecular interaction. Meanwhile, its structure of periodically varying refractive indices could also modify the FRET through affecting the luminescence characteristics of energy donor or energy acceptor. The results demonstrate that the FRET efficiency between conjugated dyes was easily modified by opal PCs. - Highlights: • We investigate the fluorescence resonance energy transfer between two kinds of dyes. • These two kinds of dyes are infiltrated in PMMA opal photonic crystals. • The structure of opal PCs could improve the luminescent characteristics. • The structure of opal PCs could improve the energy transfer characteristics

  7. Radiofrequency Thermal Ablation Heat Energy Transfer in an Ex-Vivo Model.

    Science.gov (United States)

    Thakur, Shivani; Lavito, Sandi; Grobner, Elizabeth; Grobner, Mark

    2017-12-01

    Little work has been done to consider the temperature changes and energy transfer that occur in the tissue outside the vein with ultrasound-guided vein ablation therapy. In this experiment, a Ex-Vivo model of the human calf was used to analyze heat transfer and energy degradation in tissue surrounding the vein during endovascular radiofrequency ablation (RFA). A clinical vein ablation protocol was used to determine the tissue temperature distribution in 10 per cent agar gel. Heat energy from the radiofrequency catheter was measured for 140 seconds at fixed points by four thermometer probes placed equidistant radially at 0.0025, 0.005, and 0.01 m away from the RFA catheter. The temperature rose 1.5°C at 0.0025 m, 0.6°C at 0.005 m, and 0.0°C at 0.01 m from the RFA catheter. There was a clinically insignificant heat transfer at the distances evaluated, 1.4 ± 0.2 J/s at 0.0025 m, 0.7 ± 0.3 J/s at 0.0050 m, and 0.3 ± 0.0 J/s at 0.01 m. Heat degradation occurred rapidly: 4.5 ± 0.5 J (at 0.0025 m), 4.0 ± 1.6 J (at 0.0050 m), and 3.9 ± 3.6 J (at 0.01 m). Tumescent anesthesia injected one centimeter around the vein would act as a heat sink to absorb the energy transferred outside the vein to minimize tissue and nerve damage and will help phlebologists strategize options for minimizing damage.

  8. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Sangwijit, K. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Pitakrattananukool, S. [School of Science, University of Phayao, Muang, Phayao 56000 (Thailand); Anuntalabhochai, S. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand)

    2015-12-15

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 17} ions/cm{sup 2} treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  9. Gold-Pluronic core-shell nanoparticles: synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Timea; Boca, Sanda [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania); Biro, Dominic [Sapientia University, Department of Mechanical Engineering, Faculty of Technical and Human Sciences (Romania); Baldeck, Patrice [Universite Joseph Fourier and CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, CNRS (France); Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania)

    2013-04-15

    This study presents the synthesis of gold-Pluronic core-shell nanoparticles by a two-step method and investigates their biological impact on cancer cells, specifically nanoparticle internalization and cytotoxicity. Uniform, 9-10-nm-sized, hydrophobic gold nanoparticles were synthesized in organic phase by reducing gold salt with oleylamine, after which oleylamine-protected gold nanoparticles were phase-transferred into aqueous medium using Pluronic F127 block copolymer, resulting in gold-Pluronic core-shell nanoparticles with a mean hydrodynamic diameter of {approx}35 nm. The formation and phase-transfer of gold nanoparticles were analyzed by UV-Vis absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. The obtained gold-Pluronic core-shell nanoparticles proved to be highly stable in salted solution. Cytotoxicity tests showed no modification of cellular viability in the presence of properly purified particles. Furthermore, dark-field cellular imaging demonstrated that gold-Pluronic nanoparticles were able to be efficiently uptaken by cells, being internalized through nonspecific endocytosis. The high stability, proven biocompatibility, and imaging properties of gold-Pluronic core-shell nanoparticles hold promise for relevant intracellular applications, with such a design providing the feasibility to combine all multiple functionalities in one nanoparticle for simultaneous detection and imaging.

  10. Gold–Pluronic core–shell nanoparticles: synthesis, characterization and biological evaluation

    International Nuclear Information System (INIS)

    Simon, Timea; Boca, Sanda; Biro, Dominic; Baldeck, Patrice; Astilean, Simion

    2013-01-01

    This study presents the synthesis of gold–Pluronic core–shell nanoparticles by a two-step method and investigates their biological impact on cancer cells, specifically nanoparticle internalization and cytotoxicity. Uniform, 9–10-nm-sized, hydrophobic gold nanoparticles were synthesized in organic phase by reducing gold salt with oleylamine, after which oleylamine-protected gold nanoparticles were phase-transferred into aqueous medium using Pluronic F127 block copolymer, resulting in gold–Pluronic core–shell nanoparticles with a mean hydrodynamic diameter of ∼35 nm. The formation and phase-transfer of gold nanoparticles were analyzed by UV–Vis absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. The obtained gold–Pluronic core–shell nanoparticles proved to be highly stable in salted solution. Cytotoxicity tests showed no modification of cellular viability in the presence of properly purified particles. Furthermore, dark-field cellular imaging demonstrated that gold–Pluronic nanoparticles were able to be efficiently uptaken by cells, being internalized through nonspecific endocytosis. The high stability, proven biocompatibility, and imaging properties of gold–Pluronic core–shell nanoparticles hold promise for relevant intracellular applications, with such a design providing the feasibility to combine all multiple functionalities in one nanoparticle for simultaneous detection and imaging.

  11. Transfer of energy or charge between quasi-zero-dimensional nanostructures

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2016-01-01

    Roč. 45, č. 4 (2016), s. 243-255 ISSN 2332-4309 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LD14011; GA MŠk LH12236 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : charge transfer * electron-phonon interaction * energy transfer * nanostructures * quantum dots Subject RIV: BM - Solid Matter Physics ; Magnetism; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 0.171, year: 2016

  12. Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: energy conversion and magnetic behavior.

    Science.gov (United States)

    Shrivastava, Navadeep; Khan, L U; Vargas, J M; Ospina, Carlos; Coaquira, J A Q; Zoppellaro, Giorgio; Brito, H F; Javed, Yasir; Shukla, D K; Felinto, M C F C; Sharma, Surender K

    2017-07-19

    Luminescence-tunable multicolored LaF 3 :xCe 3+ ,xGd 3+ ,yEu 3+ (x = 5; y = 1, 5, 10, and 15 mol%) nanoparticles have been synthesized via a low cost polyol method. Powder X-ray diffraction and high-resolution transmission electron microscopy studies confirm the hexagonal phase of the LaF 3 :xCe 3+ ,xGd 3+ ,yEu 3+ nanophosphors with average sizes (oval shape) ranging from 5 to 7 nm. Energy-dispersive X-ray spectroscopy analyses show the uniform distribution of Ce 3+ , Gd 3+ , and Eu 3+ dopants in the LaF 3 host matrix. The photoluminescence spectra and electron paramagnetic resonance measurements guarantee the presence of Eu 2+ , corroborated through DC susceptibility measurements of the samples displaying paramagnetic behavior at 300 K, whereas weak ferromagnetic ordering is shown at 2 K. The non-radiative energy transfer processes from the 4f( 2 F 5/2 ) → 5d state (Ce 3+ ) to the intraconfigurational 4f excited levels of rare earth ions and simultaneous emissions in the visible region from the 4f 6 5d 1 (Eu 2+ ) and 5 D 0 (Eu 3+ ) emitting levels, leading to overlapped broad and narrow emission bands, have been proclaimed. The energy transfer mechanism proposes involvement of the Gd 3+ ion sub-lattice as the bridge and finally trapping by Eu 2+/3+ , upon excitation of the Ce 3+ ion. The calculation of experimental intensity parameters (Ω 2,4 ) has been discussed and the highest emission quantum efficiency (η = 85%) of the Eu 3+ ion for the y = 10 mol% sample is reported. The advantageous existence of the Eu 2+ /Eu 3+ ratio along with variously doped nanomaterials described in this work, results in tunable emission color in the blue-white-red regions, highlighting the potential application of the samples in solid-state lighting devices, scintillation devices, and multiplex detection.

  13. Synthesis, exploration of energy storage and electrochemical sensing properties of hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramasami, Alamelu K. [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India); Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore); Ravishankar, T.N.; Sureshkumar, K. [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India); Reddy, M.V.; Chowdari, B.V.R. [Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore); Ramakrishnappa, T. [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India); Balakrishna, Geetha R., E-mail: br.geetha@jainuniversity.ac.in [Centre for Nano and Material Sciences, Jain University, Bangalore 562112 (India)

    2016-06-25

    Gel-combustion, solution combustion and molten salt methods were used to synthesize hematite nanoparicles. Two weight ratios of precursor (Ferric nitrate) to fuel (Cassava Starch) (1:0.5, 1:1) were used in gel-combustion technique. Ferric nitrate as a precursor and ethylenediamine tetraacetic acid as fuel (in stoichiometric proportions) were used in the solution combustion method. Ferric oxalate was the precursor in molten salt method. The structural parameters of the hematite nanoparticles were studied by X-ray diffraction. The optical properties, including band gap studies were done by UV–Visible spectroscopy. The morphological studies were carried out by Scanning Electron Microscope. The energy storage capacity of the molten salt method-hematite nanoparticles surpassed (920 mAhg{sup −1}) the others while the equal-weight- ratio-hematite nanoparticles synthesized by gel-combustion method exhibited better dopamine sensor properties. - Highlights: • Hematite nanoparticles were synthesized by gel, solution combustion and molten salt methods. • Gel-combustion involved the use of natural fuel extracted from the root tubers of Manihot esculenta. • Two ratios of fuel to precursors were attempted in gel combustion method. • The product formed from the equal weight ratio of fuel to precursor was a very good electrochemical dopamine sensor. • The product formed by molten salt method exhibited good battery behaviour (Li-ion battery).

  14. Synthesis, exploration of energy storage and electrochemical sensing properties of hematite nanoparticles

    International Nuclear Information System (INIS)

    Ramasami, Alamelu K.; Ravishankar, T.N.; Sureshkumar, K.; Reddy, M.V.; Chowdari, B.V.R.; Ramakrishnappa, T.; Balakrishna, Geetha R.

    2016-01-01

    Gel-combustion, solution combustion and molten salt methods were used to synthesize hematite nanoparicles. Two weight ratios of precursor (Ferric nitrate) to fuel (Cassava Starch) (1:0.5, 1:1) were used in gel-combustion technique. Ferric nitrate as a precursor and ethylenediamine tetraacetic acid as fuel (in stoichiometric proportions) were used in the solution combustion method. Ferric oxalate was the precursor in molten salt method. The structural parameters of the hematite nanoparticles were studied by X-ray diffraction. The optical properties, including band gap studies were done by UV–Visible spectroscopy. The morphological studies were carried out by Scanning Electron Microscope. The energy storage capacity of the molten salt method-hematite nanoparticles surpassed (920 mAhg"−"1) the others while the equal-weight- ratio-hematite nanoparticles synthesized by gel-combustion method exhibited better dopamine sensor properties. - Highlights: • Hematite nanoparticles were synthesized by gel, solution combustion and molten salt methods. • Gel-combustion involved the use of natural fuel extracted from the root tubers of Manihot esculenta. • Two ratios of fuel to precursors were attempted in gel combustion method. • The product formed from the equal weight ratio of fuel to precursor was a very good electrochemical dopamine sensor. • The product formed by molten salt method exhibited good battery behaviour (Li-ion battery).

  15. Intramolecular energy transfer at donor-acceptor interactions in model and biological membranes

    International Nuclear Information System (INIS)

    Umarova, Fatima T.

    2011-01-01

    Intramolecular triplet-triplet energy transfer between molecules of sensibilisator and photochrome for registration of protein interactions in the membrane preparation of Na,K-ATPase was investigated. Erythrosinithiocyanate (ERITC) was used as the triplet label of sensibilisator, and 4-acetoamido-4 -isothiocyanatostilbene-2,2 disullfonic acid (SITS) was used as the photochrome label. Na,K-ATPase preparations were covalently bound with ERITC in active centre of enzyme, and SITS molecules were covalently bound by NH2-groups. In model system, in chymotrypsinogene molecule, SITS and ERITC labels were used also. The cis-trans-isomerization of SITS was initiated by triplet-triplet energy transfer from light excited ERITC molecule to photochrome. The kinetics of isomerization was recorded by the SITS fluorescence measurements. The constant of rate of triplet-triplet energy transfer from ERITC to cis-isomers of SITS in Na,K-ATPase was determined as (3-7)x10 3 M -1 s -1 , and in model system it equals 1x 10 7 M 1 s -1 . The value of energy transfer between loos molecules of erythrosine and SITS in buffer solution equaled to 7x10 7 M -1 s -1 . This drop of R m y in the membrane preparation of Na,K-ATPase at 10 4 reflected the decrease in the frequency of label collisions caused by the increase in the media viscosity and steric hindrances. (author)

  16. Hydrothermal synthesis and characteristic photoluminescence of Er-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Pham Van; Hieu, Le Trung; Nga, La Quynh [International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam); Dung, Nguyen Duc [Advanced Institute of Science and Technology, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam); Ha, Ngo Ngoc [International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam); Khiem, Tran Ngoc, E-mail: khiem@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam)

    2016-11-15

    We report the characteristic photoluminescence (PL) spectra of erbium ion (Er{sup 3+})-doped tin dioxide (SnO{sub 2})nanoparticles. The materials were prepared via hydrothermal method at 180 °C with in 20 h by using various Er{sup 3+} ion concentrations ranging from 0.0 to 1.0 at%. After the synthesis, the materials were characterized through X-ray diffraction and high-resolution transmission electron microscopy. Crystallite SnO{sub 2} and its average particle diameter of approximately 5 nm did not change with Er{sup 3+} ion dopant concentration. Photoluminescence spectra showed the characteristic light emission from the Er{sup 3+} ions. The PL excitation spectra referred to an efficient energy transfer to Er{sup 3+} ions in the presence of SnO{sub 2}nanoparticles. The most intense Er-related emission of SnO{sub 2}:Er{sup 3+} nanoparticles in near infrared region was found in samples containing an Er{sup 3+} ion concentration of 0.25 at%. Although the absorption bandgaps of the materials were identified at approximately 3.8 eV, we found that efficient excitation comes with low excitation energy band edge. Excitation is possibly involved in shallow defects in SnO{sub 2} nanoparticles.

  17. Designed azurins show lower reorganization free energies for intraprotein electron transfer

    DEFF Research Database (Denmark)

    Farver, Ole; Marshall, Nicholas M; Wherland, Scot

    2013-01-01

    Low reorganization free energies are necessary for fast electron transfer (ET) reactions. Hence, rational design of redox proteins with lower reorganization free energies has been a long-standing challenge, promising to yield a deeper understanding of the underlying principles of ET reactivity...

  18. Energy transfer mechanism between Ce and Tb ions in sol–gel synthesized YSO crystals

    International Nuclear Information System (INIS)

    Chiriu, Daniele; Stagi, Luigi; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo

    2016-01-01

    The luminescence properties of Tb and Ce in Rare Earth Doped crystalline oxides largely depend on their relative concentrations: by increasing the dopant concentration, the luminescence profile changes from blue to green because of the energy transfer among centers. The kinetic properties of the luminescence of optically excited Terbium–Cerium co-doped Y_2SiO_5 sol–gel synthesized crystal powders have been investigated as a function of the Tb dopant concentration (Ce content fixed at 1% atomic). The interaction among different Tb emitting centers and their relation with Ce centers was explained within the Inokuti-Hirayama model for a dipole–dipole energy transfer mechanism in the low-middle Tb concentration range whilst the Forster–Dexter model was applied in the middle-high Tb concentration range. The kinetic model allows elucidating the role of sensitizer and activator ion as a function of Tb concentration, successfully estimating the energy transfer mechanism efficiency and calculating the critical Tb concentration. - Highlights: • The kinetic properties of Ce, Tb recombination in YSO matrix were studied. • The Inokuti-Hirayama and Forster–Dexter models were applied. • At high Tb content, the Ce to Tb energy transfer acts through the dipole−quadrupole. • At low Tb content, the Ce to Tb energy transfer acts through the dipole−dipole. • The presence of Ce reduces the critical Tb concentration (at low Tb content).

  19. Energy transfer mechanism between Ce and Tb ions in sol–gel synthesized YSO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chiriu, Daniele; Stagi, Luigi; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo, E-mail: carlo.ricci@dsf.unica.it

    2016-03-01

    The luminescence properties of Tb and Ce in Rare Earth Doped crystalline oxides largely depend on their relative concentrations: by increasing the dopant concentration, the luminescence profile changes from blue to green because of the energy transfer among centers. The kinetic properties of the luminescence of optically excited Terbium–Cerium co-doped Y{sub 2}SiO{sub 5} sol–gel synthesized crystal powders have been investigated as a function of the Tb dopant concentration (Ce content fixed at 1% atomic). The interaction among different Tb emitting centers and their relation with Ce centers was explained within the Inokuti-Hirayama model for a dipole–dipole energy transfer mechanism in the low-middle Tb concentration range whilst the Forster–Dexter model was applied in the middle-high Tb concentration range. The kinetic model allows elucidating the role of sensitizer and activator ion as a function of Tb concentration, successfully estimating the energy transfer mechanism efficiency and calculating the critical Tb concentration. - Highlights: • The kinetic properties of Ce, Tb recombination in YSO matrix were studied. • The Inokuti-Hirayama and Forster–Dexter models were applied. • At high Tb content, the Ce to Tb energy transfer acts through the dipole−quadrupole. • At low Tb content, the Ce to Tb energy transfer acts through the dipole−dipole. • The presence of Ce reduces the critical Tb concentration (at low Tb content).

  20. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2018-05-03

    Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBA abce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBA abce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.