WorldWideScience

Sample records for nanoparticle catalysts studied

  1. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  2. Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect

    International Nuclear Information System (INIS)

    Wang Yunyu; Luo Zhiquan; Li Bin; Ho, Paul S.; Yao Zhen; Shi Li; Bryan, Eugene N.; Nemanich, Robert J.

    2007-01-01

    A comparison study has been conducted on the formation of catalyst nanoparticles on a high surface tension metal and low surface tension oxide for carbon nanotube (CNT) growth via catalytic chemical vapor deposition (CCVD). Silicon dioxide (SiO 2 ) and tantalum have been deposited as supporting layers before deposition of a thin layer of iron catalyst. Iron nanoparticles were formed after thermal annealing. It was found that densities, size distributions, and morphologies of iron nanoparticles were distinctly different on the two supporting layers. In particular, iron nanoparticles revealed a Volmer-Weber growth mode on SiO 2 and a Stranski-Krastanov mode on tantalum. CCVD growth of CNTs was conducted on iron/tantalum and iron/SiO 2 . CNT growth on SiO 2 exhibited a tip growth mode with a slow growth rate of less than 100 nm/min. In contrast, the growth on tantalum followed a base growth mode with a fast growth rate exceeding 1 μm/min. For comparison, plasma enhanced CVD was also employed for CNT growth on SiO 2 and showed a base growth mode with a growth rate greater than 2 μm/min. The enhanced CNT growth rate on tantalum was attributed to the morphologies of iron nanoparticles in combination with the presence of an iron wetting layer. The CNT growth mode was affected by the adhesion between the catalyst and support as well as CVD process

  3. Fundamental investigations of catalyst nanoparticles

    DEFF Research Database (Denmark)

    Elkjær, Christian Fink

    and economic development in the 20th century. There is however a downside to this development and we are seeing significant pollution and pressure on resources. Catalysis therefore has an increasingly important role in limiting pollution and optimizing the use of resources. This development will depend on our...... fundamental understanding of catalytic processes and our ability to make use of that understanding. This thesis presents fundamental studies of catalyst nanoparticles with particular focus on dynamic processes. Such studies often require atomic-scale characterization, because the catalytic conversion takes...... important that we only study intrinsic structures and phenomena and not those that may be induced by the high energy electrons used to image the specimen. This requires careful consideration of the influence of the electron beam in order to understand, control and minimize that influence. I present four...

  4. Chemical nature of catalysts of oxide nanoparticles in environment

    Indian Academy of Sciences (India)

    Carbon nanostructures (CNS) are often grown using oxide nanoparticles as catalyst in chemical vapour deposition and these oxides are not expected to survive as such during growth. In the present study, the catalysts of cobalt- and nickel oxide-based nanoparticles of sizes varying over a range have been reduced at 575 ...

  5. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  6. Colloidal nanoparticles as catalysts and catalyst precursors for nitrite hydrogenation

    NARCIS (Netherlands)

    Zhao, Yingnan

    2015-01-01

    The most distinguished advantage to use colloidal methods for catalyst preparation is that the size and the shape of nanoparticles can be manipulated easily under good control, which is normally difficult to achieve by using traditional methods, such as impregnation and precipitation. This

  7. Preparation of Monodispersed Fe-Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes

    National Research Council Canada - National Science Library

    Li, Yan; Liu, Jie; Wang, Yongqian; Wang, Zhong L

    2001-01-01

    ...particles were systematically studied. The prepared nanoparticles were used as catalysts for single-walled carbon nanotube growth and the results indicate that there is an upper limit for the size of the catalyst particles to nucleate singlewalled carbon nanotubes.

  8. Nanoparticle-Supported Molecular Polymerization Catalysts

    OpenAIRE

    Amgoune, Abderramane; Krumova, Marina; Mecking, Stefan

    2008-01-01

    Homogeneous molecular catalysts are immobilzed in a well-defined fashion on individual silica nanoparticles with a narrow particle size distribution by covalent attachment. This synthetic methodology is demonstrated with modified salicylaldiminato-substituted titanium(IV) complexes incorporating a trimethoxysilane-terminated linker: dichloro-bis[κ2-N,O-6-(3-(trimethoxysilyl)propoxyphenylimino)-2-tert-butyl-phenolato]titanium(IV) (3) and dichlorobis[κ2-N,O-6-(4-(trimethoxysilyl)propoxy-2,3,5,6...

  9. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  10. Electron microscopic studies of natural gas oxidation catalyst – Effects of thermally accelerated aging on catalyst microstructure

    DEFF Research Database (Denmark)

    Honkanen, Mari; Hansen, Thomas Willum; Jiang, Hua

    2017-01-01

    Structural changes of PtPd nanoparticles in a natural gas oxidation catalyst were studied at elevated temperatures in air and low-oxygen conditions and in situ using environmental transmission electron microscopy (ETEM). The fresh catalyst shows

  11. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.; Michalak, William D.; Baker, L. Robert; An, Kwangjin; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2012-01-01

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous

  12. Metal Nanoparticle Catalysts for Carbon Nanotube Growth

    Science.gov (United States)

    Pierce, Benjamin F.

    2003-01-01

    Work this summer involved and new and unique process for producing the metal nanoparticle catalysts needed for carbon nanotube (CNT) growth. There are many applications attributed to CNT's, and their properties have deemed them to be a hot spot in research today. Many groups have demonstrated the versatility in CNT's by exploring a wide spectrum of roles that these nanotubes are able to fill. A short list of such promising applications are: nanoscaled electronic circuitry, storage media, chemical sensors, microscope enhancement, and coating reinforcement. Different methods have been used to grow these CNT's. Some examples are laser ablation, flame synthesis, or furnace synthesis. Every single approach requires the presence of a metal catalyst (Fe, Co, and Ni are among the best) that is small enough to produce a CNT. Herein lies the uniqueness of this work. Microemulsions (containing inverse micelles) were used to generate these metal particles for subsequent CNT growth. The goal of this summer work was basically to accomplish as much preliminary work as possible. I strived to pinpoint which variable (experimental process, metal product, substrate, method of application, CVD conditions, etc.) was the determining factor in the results. The resulting SEM images were sufficient for the appropriate comparisons to be made. The future work of this project consists of the optimization of the more promising experimental procedures and further exploration onto what exactly dictated the results.

  13. Control of carbon nanotube growth using cobalt nanoparticles as catalyst

    International Nuclear Information System (INIS)

    Huh, Yoon; Green, Malcolm L.H.; Kim, Young Heon; Lee, Jeong Yong; Lee, Cheol Jin

    2005-01-01

    We have controllably grown carbon nanotubes using uniformly distributed cobalt nanoparticles as catalyst. Cobalt nanoparticles with a uniform size were synthesized by chemical reaction and colloidal solutions including the cobalt nanoparticles were prepared. The cobalt nanoparticles were uniformly distributed on silicon substrates by a spin-coating method. Carbon nanotubes with a uniform diameter were synthesized on the cobalt nanoparticles by thermal chemical vapor deposition of acetylene gas. The density and vertical alignment of carbon nanotubes could be controlled by adjusting the density of cobalt (Co) nanoparticles

  14. Silica-supported Preyssler Nanoparticles as New Catalysts in the ...

    African Journals Online (AJOL)

    A new and efficient method for the preparation of 4(3H)-quinazolinones from the condensation of anthranilic acid, orthoester and substituted anilines, in the presence of catalytic amounts of silica-supported Preyssler nanoparticles is reported. The catalyst performs very well in comparison with other catalysts reported before.

  15. Copper (0) nanoparticles onto silica: A stable and facile catalyst for ...

    Indian Academy of Sciences (India)

    Abstract. Solid supported copper (0) nanoparticles were prepared by physical adsorption of copper (0)nanoparticles (synthesized through bottom-up approach) on the solid supports such as silica, HAP, cellulose andbasic alumina. Studies comparing these supported catalysts were done with the synthesis of ...

  16. From Nanoparticles to Process An Aberration Corrected TEM Study of Fischer Tropsch Catalysts at Various Steps of the Process

    International Nuclear Information System (INIS)

    Braidy, N.; Blanchard, J.; Abatzoglou, N.; Andrei, C.

    2011-01-01

    χThe nanostructure of Fischer-Tropsch (FT) Fe carbides are investigated using aberration-corrected high-resolution transmission electron microscopy (TEM). The plasma-generated Fe carbides are analyzed just after synthesis, following reduction via a H2 treatment step and once used as FT catalyst and deactivated. The as-produced nanoparticles (NPs) are seen to be abundantly covered with graphitic and amorphous carbon. Using the extended information limit from the spherical aberration-corrected TEM, the NPs could be indexed as a mixture of NPs in the θ-Fe 3 C and χ-Fe 5 C 2 phases. The reduction treatment exposed the NPs by removing most of the carbonaceous speSubscript textcies while retaining the χ-Fe 5 C 2 . Fe-carbides NPs submitted to conditions typical to FT synthesis develop a Fe3O4 shell which eventually consumes the NPs up to a point where 3-4 nm residual carbide is left at the center of the particle. Subscript textVarious mechanisms explaining the formation of such a microstructure are discussed. (author)

  17. Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Landis, David Dominic; Bligaard, Thomas

    2014-01-01

    The long-term stability of binary nanoparticles and clusters is one of the main challenges in the development of novel (electro-)catalysts for e.g. CO2 reduction. Here, we present a method for predicting the optimal composition and structure of alloy nanoparticles and clusters, with particular...

  18. Potential application of palladium nanoparticles as selective recyclable hydrogenation catalysts

    International Nuclear Information System (INIS)

    Mukherjee, DebKumar

    2008-01-01

    The search for more efficient catalytic systems that might combine the advantages of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis is one of the most exciting challenges of modern chemistry. More recently with the advances of nanochemistry, it has been possible to prepare soluble analogues of heterogeneous catalysts. These nanoparticles are generally stabilized against aggregation into larger particles by electrostatic or steric protection. Herein we demonstrate the use of room temperature ionic liquid for the stabilization of palladium nanoparticles that are recyclable catalysts for the hydrogenation of carbon-carbon double bonds and application of these catalysts to the selective hydrogenation of internal or terminal C=C bonds in unsaturated primary alcohols. The particles suspended in room temperature ionic liquid show no metal aggregation or loss of catalytic activity even on prolonged use

  19. Palladium Loaded on Magnetic Nanoparticles as Efficient and Recyclable Catalyst for the Suzuki- Miyaura Reaction

    Directory of Open Access Journals (Sweden)

    H. Khojasteh

    2015-07-01

    Full Text Available Palladium is the best metal catalyst for Suzuki cross coupling reaction for synthesize of unsymmetrical biaryl compounds. But its high cost limits its application in wide scale. Using of nanoscale particles as active catalytic cites is a good approach for reducing needed noble metal. By loading precious nanoparticles on magnetic nanocores as a support, recycling and reusing of catalyst will be possible. Magnetic nanoparticles have super paramagnetic feature and applying an external magnetic field can collect the supported catalyst from reaction milieu simply. In this work new palladium catalyst immobilized on modified magnetic nanoparticles containing NNO donor atoms were synthesized. Then the catalyst characterized by FT-IR spectroscopy, thermogravimetric analysis, X-ray diffraction and ICP. Prepared catalyst showed high activity in the Suzuki– Miyaura cross-coupling reaction of phenylboronic acid with aryl halides. Activity, Pd loading, reusability and Pd leaching of catalyst were studied. Results showed that the supported catalyst has the advantage to be completely recoverable with the simple application of an external magnetic field.

  20. Magnetic nanoparticles conjugated to chiral imidazolidinone as recoverable catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mondini, Sara [Consiglio Nazionale delle Ricerche, Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Molecolari (Italy); Puglisi, Alessandra; Benaglia, Maurizio, E-mail: maurizio.benaglia@unimi.it; Ramella, Daniela [Università degli Studi di Milano, Dipartimento di Chimica (Italy); Drago, Carmelo [Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare (Italy); Ferretti, Anna M.; Ponti, Alessandro, E-mail: alessandro.ponti@istm.cnr.it [Consiglio Nazionale delle Ricerche, Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Molecolari (Italy)

    2013-11-15

    The immobilization of an ad hoc designed chiral imidazolidin-4-one onto iron oxide magnetic nanoparticles (MNPs) is described, to afford MNP-supported MacMillan’s catalyst. Morphological and structural analysis of the materials, during preparation, use, and recycle, has been carried out by transmission electron microscopy. The supported catalyst was tested in the Diels–Alder reaction of cyclopentadiene with cinnamic aldehyde, affording the products in good yields and enantiomeric excesses up to 93 %, comparable to those observed with the non-supported catalyst. Recovery of the chiral catalyst has been successfully performed by simply applying an external magnet to achieve a perfect separation of the MNPs from the reaction product. The recycle of the catalytic system has been also investigated. Noteworthy, this immobilized MacMillan’s catalyst proved to be able to efficiently promote the reaction in pure water.

  1. Magnetic nanoparticles conjugated to chiral imidazolidinone as recoverable catalyst

    International Nuclear Information System (INIS)

    Mondini, Sara; Puglisi, Alessandra; Benaglia, Maurizio; Ramella, Daniela; Drago, Carmelo; Ferretti, Anna M.; Ponti, Alessandro

    2013-01-01

    The immobilization of an ad hoc designed chiral imidazolidin-4-one onto iron oxide magnetic nanoparticles (MNPs) is described, to afford MNP-supported MacMillan’s catalyst. Morphological and structural analysis of the materials, during preparation, use, and recycle, has been carried out by transmission electron microscopy. The supported catalyst was tested in the Diels–Alder reaction of cyclopentadiene with cinnamic aldehyde, affording the products in good yields and enantiomeric excesses up to 93 %, comparable to those observed with the non-supported catalyst. Recovery of the chiral catalyst has been successfully performed by simply applying an external magnet to achieve a perfect separation of the MNPs from the reaction product. The recycle of the catalytic system has been also investigated. Noteworthy, this immobilized MacMillan’s catalyst proved to be able to efficiently promote the reaction in pure water

  2. Scalable synthesis of palladium nanoparticle catalysts by atomic layer deposition

    International Nuclear Information System (INIS)

    Liang Xinhua; Lyon, Lauren B.; Jiang Yingbing; Weimer, Alan W.

    2012-01-01

    Atomic layer deposition (ALD) was used to produce Pd/Al 2 O 3 catalysts using sequential exposures of Pd(II) hexafluoroacetylacetonate and formalin at 200 °C in a fluidized bed reactor. The ALD-prepared Pd/alumina catalysts were characterized by various methods including hydrogen chemisorption, XPS, and TEM, and compared with a commercially available 1 wt% Pd/alumina catalyst, which was also characterized. The content of Pd on alumina support and the size of Pd nanoparticles can be controlled by the number of ALD-coating cycles and the dose time of the Pd precursor. One layer of organic component from the Pd precursor remained on the Pd particle surface. The ALD 0.9 wt% Pd/alumina had greater active metal surface area and percent metal dispersion than the commercial 1 wt% Pd/alumina catalyst. The ALD and commercial catalysts were subjected to catalytic testing to determine their relative activities for glucose oxidation to gluconic acid in aqueous solution. The ALD 0.9 wt% Pd/alumina catalyst had comparable activity as compared to the commercial 1 wt% Pd catalyst. No noticeable amount of Pd leaching was observed for the ALD-prepared catalysts during the vigorously stirred reaction.

  3. Chemical nature of catalysts of oxide nanoparticles in environment ...

    Indian Academy of Sciences (India)

    12

    Chemical nature of catalysts of oxide nanoparticles in environment prevailing during growth of carbon nanostructures by CCVD. M. Jana*, A. Sil and S. Ray. †. Department of Metallurgical and Materials Engineering. Indian Institute of Technology Roorkee. Roorkee 247 667, India. Present address: *School of Materials ...

  4. Recent development of active nanoparticle catalysts for fuel cell reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Vismadeb; Lee, Youngmin; Sun, Shouheng [Department of Chemistry Brown University Providence, RI (United States)

    2010-04-23

    This review focuses on the recent advances in the synthesis of nanoparticle (NP) catalysts of Pt-, Pd- and Au-based NPs as well as composite NPs. First, new developments in the synthesis of single-component Pt, Pd and Au NPs are summarized. Then the chemistry used to make alloy and composite NP catalysts aiming to enhance their activity and durability for fuel cell reactions is outlined. The review next introduces the exciting new research push in developing CoN/C and FeN/C as non-Pt catalysts. Examples of size-, shape- and composition-dependent catalyses for oxygen reduction at cathode and formic acid oxidation at anode are highlighted to illustrate the potentials of the newly developed NP catalysts for fuel cell applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Biogenic metallic nanoparticles as catalyst for bioelectricity production: A novel approach in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, Kandasamy, E-mail: saravana732@gmail.com [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai (China); MubarakAli, Davoodbasha [Microbial Genetic Engineering Laboratory, Division of Bioengineering, College of Life Science and Bioengineering, Incheon National University, Songdo 406772, Incheon (Korea, Republic of); Department of Microbiology, School of Lifesciences, Bharathidasan University, Tiruchirappalli 620024 (India); Kathiresan, Kandasamy [Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu (India); Thajuddin, Nooruddin [Department of Microbiology, School of Lifesciences, Bharathidasan University, Tiruchirappalli 620024 (India); Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Alharbi, Naiyf S. [Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Chen, Jie, E-mail: jiechen59@sjtu.edu.cn [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai (China)

    2016-01-15

    Highlights: • Trichoderma sp., showed an abilities to synthesis of AgNPs and AuNPs with an excellent stability. • AuNPs significantly enhanced the bioelectricity production by MFC of anaerobic fermentation as catalyst. • Maximum bioelectricity production was optimized and obtained the voltage of 432.80 mA using RSM. - Abstract: The present work aimed to use the biogenic metallic nanoparticles as catalyst for bioelectricity production in microbial fuel cell (MFC) approach under anaerobic condition. Silver and gold nanoparticles (AuNPs) were synthesized using Trichoderma sp. Particle size and cystallinity were measured by X-ray diffraction revealed the crystalline structure with average size of 36.17 nm. Electron microscopic studies showed spherical shaped silver nanoparticles (AgNPs) and cubical shaped AuNPs with size ranges from 50 to 150 nm. The concentration of biogenic metallic nanoparticles as catalyst for enhanced bioelectricity generations and estimated by response surface methodology (RSM) and found at the greatest of 342.80 mA under optimized conditions are time interval, temperature, nanoparticles used as 63 h, 28 ± 2.0 °C, 22.54 mg l{sup −1} (AgNPs) and 25.62 mg l{sup −1} (AuNPs) in a batch reactor. AuNPs acted as an excellent catalyst to enhance the bioelectricity production. This novel technique could be used for eco-friendly, economically feasible and facile electricity production.

  6. Biogenic metallic nanoparticles as catalyst for bioelectricity production: A novel approach in microbial fuel cells

    International Nuclear Information System (INIS)

    Saravanakumar, Kandasamy; MubarakAli, Davoodbasha; Kathiresan, Kandasamy; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Chen, Jie

    2016-01-01

    Highlights: • Trichoderma sp., showed an abilities to synthesis of AgNPs and AuNPs with an excellent stability. • AuNPs significantly enhanced the bioelectricity production by MFC of anaerobic fermentation as catalyst. • Maximum bioelectricity production was optimized and obtained the voltage of 432.80 mA using RSM. - Abstract: The present work aimed to use the biogenic metallic nanoparticles as catalyst for bioelectricity production in microbial fuel cell (MFC) approach under anaerobic condition. Silver and gold nanoparticles (AuNPs) were synthesized using Trichoderma sp. Particle size and cystallinity were measured by X-ray diffraction revealed the crystalline structure with average size of 36.17 nm. Electron microscopic studies showed spherical shaped silver nanoparticles (AgNPs) and cubical shaped AuNPs with size ranges from 50 to 150 nm. The concentration of biogenic metallic nanoparticles as catalyst for enhanced bioelectricity generations and estimated by response surface methodology (RSM) and found at the greatest of 342.80 mA under optimized conditions are time interval, temperature, nanoparticles used as 63 h, 28 ± 2.0 °C, 22.54 mg l"−"1 (AgNPs) and 25.62 mg l"−"1 (AuNPs) in a batch reactor. AuNPs acted as an excellent catalyst to enhance the bioelectricity production. This novel technique could be used for eco-friendly, economically feasible and facile electricity production.

  7. Metal nanoparticles as a conductive catalyst

    Science.gov (United States)

    Coker, Eric N [Albuquerque, NM

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  8. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, Udumula; Marakatti, Vijaykumar S. [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Amshumali, Mungalimane K. [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Department of Chemistry and Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara Campus, Cantonment, Bellary 583105 (India); Loukya, B. [International Center for Materials Science, Jakkur P.O., Bangalore 560064 (India); Singh, Dheeraj Kumar [Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Datta, Ranjan [International Center for Materials Science, Jakkur P.O., Bangalore 560064 (India); Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India)

    2016-12-15

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.

  9. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    International Nuclear Information System (INIS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-01-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH 4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.

  10. Mo-Co catalyst nanoparticles: Comparative study between TiN and Si surfaces for single-walled carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Morant, C., E-mail: c.morant@uam.es [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Campo, T. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Marquez, F. [School of Science and Technology, University of Turabo, 00778-PR (United States); Domingo, C. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain); Sanz, J.M.; Elizalde, E. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-06-01

    Highly pure single-walled carbon nanotubes (SWNT) were synthesized by alcohol catalytic chemical vapor deposition on silicon substrates partially covered by a thin layer of TiN. The TiN coating selectively prevented the growth of carbon nanotubes. Field emission scanning electron microscopy and Raman spectroscopy revealed the formation of high purity vertically aligned SWNT in the Si region. X-ray Photoelectron Spectroscopy and Atomic Force Microscopy indicated that Co nanoparticles are present on the Si regions, and not on the TiN regions. This clearly explains the obtained experimental results: the SWNT only grow where the Co is presented as nanoparticles, i.e. on the Si regions. - Highlights: Black-Right-Pointing-Pointer Single-wall carbon nanotubes (SWNT) ontained by catalytic chemical vapor-deposition. Black-Right-Pointing-Pointer Substrate/Co-Mo catalyst behaviour plays a key role in the SWNT growth. Black-Right-Pointing-Pointer Co nanoparticles (the effective catalyst) have been only observed on the Si region. Black-Right-Pointing-Pointer High purity SWNT were spatially confined in specific locations (Si regions). Black-Right-Pointing-Pointer TiN-coated surfaces, adjacent to a Si oxide region, prevent the growth of SWNT.

  11. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    Science.gov (United States)

    Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun

    2015-07-28

    A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.

  12. Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: A model for tandem environmental catalysis

    KAUST Repository

    Isimjan, Tayirjan T.; He, Quan; Liu, Yong; Zhu, Jesse; Puddephatt, Richard J.; Anderson, Darren Jason

    2013-01-01

    The synthesis and characterization of a novel hybrid nanocomposite catalyst comprised of palladium nanoparticles embedded in polystyrene sulfonic acid (PSSH) and supported on metal oxides is reported. The catalysts are intended for application

  13. Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide.

    Science.gov (United States)

    Dumbre, Deepa K; Choudhary, Vasant R; Patil, Nilesh S; Uphade, Balu S; Bhargava, Suresh K

    2014-02-01

    Gold nanoparticles are deposited on basic CaO supports as catalysts for the selective conversion of styrene into styrene oxide. Synthetic methods, gold loading and calcination temperatures are varied to permit an understanding of their influence on gold nanoparticle size, the presence of cationic gold species and the nature of interaction between the gold nanoparticles and the CaO support. Based on these studies, optimal conditions are designed to make the Au/CaO catalyst efficient for the selective epoxidation of styrene. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Pd nanoparticles Supported on Cellulose as a catalyst for vanillin conversion in aqueous media.

    Science.gov (United States)

    Li, Dan-Dan; Zhang, Jia-Wei; Cai, Chun

    2018-05-17

    Palladium nanoparticles were firstly anchored on modified biopolymer as an efficient catalyst for biofuel upgradation. Fluorinated compounds was grafted onto cellulose to obtain amphiphilic supports for on water reactions. Pd catalyst was prepared by straightforward deposition of metal nanoparticles on modified cellulose. The catalyst exhibited excellent catalytic activity and selectivity in hydrodeoxygenation of vanillin (a typical model compound of lignin) to 2-methoxy-4-methylphenol under atmospheric hydrogen pressure in neat water without any other additives under mild conditions.

  15. Degradation of 4-Chlorophenol Under Sunlight Using ZnO Nanoparticles as Catalysts

    Science.gov (United States)

    Rajar, Kausar; Sirajuddin; Balouch, Aamna; Bhanger, M. I.; Sherazi, Tufail H.; Kumar, Raj

    2018-03-01

    Herein we demonstrate a simplistic microwave assisted chemical precipitation approach regarding the synthesis of zinc oxide nanoparticles. As-prepared ZnO nanoparticles (NPs) were characterized by UV-visible spectroscopy, Fourier transform infra-red spectroscopy, atomic force microscopy and x-ray diffractometry and scrutinized as photo-catalysts for degradation of 4-chlorophenol (4-CP) under sunlight. The study substantiated that 98.5% of 4-CP was degraded within 20 min in the absence of initiator like H2O2 which reflects an outstanding prospective use for ZnO NPs as photo-catalysts. The nanocatalysts were recycled four times and still showed catalytic efficiency up to 95.5% for degradation of 4-CP in the specified 20 min.

  16. Morphology Changes of Co Catalyst Nanoparticles at the Onset of Fischer-Tropsch Synthesis

    DEFF Research Database (Denmark)

    Høydalsvik, Kristin; Fløystad, Jostein B.; Voronov, Alexey

    2014-01-01

    Cobalt nanoparticles play an important role as catalysts for the Fischer-Tropsch synthesis, which is an attractive route for production of synthetic fuels. It is of particular interest to understand the varying conversion rate during the first hours after introducing synthesis gas (H-2 and CO......) to the system. To this end, several in situ characterization studies have previously been done on both idealized model systems and commercially relevant catalyst nanoparticles, using bulk techniques, such as X-ray powder diffraction and X-ray absorption spectroscopy. Since catalysis takes place at the surface...... of the cobalt particles, it is important to develop methods to gain surface-specific structural information under realistic processing conditions. We addressed this challenge using small-angle X-ray scattering (SAXS), a technique exploiting the penetrating nature of X-rays to provide information about particle...

  17. Durable PROX catalyst based on gold nanoparticles and hydrophobic silica

    KAUST Repository

    Laveille, Paco; Guillois, Kevin; Tuel, Alain; Petit, Corine; Basset, Jean-Marie; Caps, Valerie

    2016-01-01

    3 nm gold nanoparticles (Au NP) obtained by direct chemical reduction of AuPPh3Cl in the presence of methyl-terminated silica exhibit superior durability for low temperature CO oxidation in the presence of hydrogen (PROX). The activity of hydrophobic Au/SiO2-R972 indeed appears much more stable with time-on-stream than those of the OH-terminated, hydrophilic Au/TiO2 and Au/Al2O3 catalysts, with similar Au NP size. This enhanced stability is attributed to the peculiar catalyst surface of Au/SiO2-R972. Not only may the support hydrophobicity concentrate and facilitate reactant adsorption and product desorption over Au NP, but methyl-terminated SiO2-R972 likely also inhibits carbonatation of the Au/support interface. Hence, at a temperature at which H2/H2O “cleaning” of the carbonate-contaminated Au/Al2O3 and Au/TiO2 surface is inefficient (< 100°C), passivated Au/SiO2-R972 displays much more stable PROX activity. Besides, the virtual absence of surface hydroxyl groups, which provide sites for water formation in H2/O2 atmospheres, can also account for the improved PROX selectivity (>85%) observed over Au/SiO2-R972. This new example, of CO oxidation activity of gold nanoparticles dispersed over a hydrophobic, “inert” support, clearly emphasizes the role of hydrogen as a promoter for the gold-catalyzed oxidation of CO at low temperature. Unlike support-mediated oxygen activation, hydrogen-only mediated oxygen activation takes full advantage of the hydrophobic surface, which is much more resistant against CO2 and thus remains free of poisonous carbonate species, as compared with hydroxyl-terminated catalysts. Hence, although the absence of surface hydroxyl groups prevents the hydrophobic Au/SiO2-R972 catalyst to reach the state-of-the-art activities initially displayed by Au/TiO2 and Au/Al2O3, it brings long-term stability with time-on-stream and superior selectivity, which opens up promising perspectives in the development of viable PROX catalysts based on gold.

  18. Durable PROX catalyst based on gold nanoparticles and hydrophobic silica

    KAUST Repository

    Laveille, Paco

    2016-01-20

    3 nm gold nanoparticles (Au NP) obtained by direct chemical reduction of AuPPh3Cl in the presence of methyl-terminated silica exhibit superior durability for low temperature CO oxidation in the presence of hydrogen (PROX). The activity of hydrophobic Au/SiO2-R972 indeed appears much more stable with time-on-stream than those of the OH-terminated, hydrophilic Au/TiO2 and Au/Al2O3 catalysts, with similar Au NP size. This enhanced stability is attributed to the peculiar catalyst surface of Au/SiO2-R972. Not only may the support hydrophobicity concentrate and facilitate reactant adsorption and product desorption over Au NP, but methyl-terminated SiO2-R972 likely also inhibits carbonatation of the Au/support interface. Hence, at a temperature at which H2/H2O “cleaning” of the carbonate-contaminated Au/Al2O3 and Au/TiO2 surface is inefficient (< 100°C), passivated Au/SiO2-R972 displays much more stable PROX activity. Besides, the virtual absence of surface hydroxyl groups, which provide sites for water formation in H2/O2 atmospheres, can also account for the improved PROX selectivity (>85%) observed over Au/SiO2-R972. This new example, of CO oxidation activity of gold nanoparticles dispersed over a hydrophobic, “inert” support, clearly emphasizes the role of hydrogen as a promoter for the gold-catalyzed oxidation of CO at low temperature. Unlike support-mediated oxygen activation, hydrogen-only mediated oxygen activation takes full advantage of the hydrophobic surface, which is much more resistant against CO2 and thus remains free of poisonous carbonate species, as compared with hydroxyl-terminated catalysts. Hence, although the absence of surface hydroxyl groups prevents the hydrophobic Au/SiO2-R972 catalyst to reach the state-of-the-art activities initially displayed by Au/TiO2 and Au/Al2O3, it brings long-term stability with time-on-stream and superior selectivity, which opens up promising perspectives in the development of viable PROX catalysts based on gold.

  19. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas; Riisager, Anders

    2011-01-01

    Highly active nanoparticle SCR deNO(x) catalysts composed of amorphous vanadia on crystalline anatase have been prepared by a sol-gel, co-precipitation method using decomposable crystallization seeds. The catalysts were characterized by means of XRPD, TEM/SEM, FT-IR, nitrogen physisorption and NH(3......) catalysts reported in the literature in the examined temperature range of 200-400 degrees C. The catalysts showed very high resistivity towards potassium poisoning maintaining a 15-30 times higher activity than the equally poisoned industrial reference catalyst, upon impregnation by 280 mu mole potassium....../g of catalyst. (C) 2011 Elsevier Inc. All rights reserved....

  20. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.

    2012-08-23

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous catalysis because it enables the observation of surface intermediates during catalytic reactions. To control the size and shape of catalytic nanoparticles, an organic ligand was used as a capping agent to stabilize nanoparticles during synthesis. However, the presence of an organic capping agent presents two major challenges in SFG and catalytic reaction studies: it blocks a significant fraction of active surface sites and produces a strong signal that prevents the detection of reaction intermediates with SFG. Two methods for cleaning Pt nanoparticles capped with poly (vinylpyrrolidone) (PVP) are examined in this study: solvent cleaning and UV cleaning. Solvent cleaning leaves more PVP intact and relies on disordering with hydrogen gas to reduce the SFG signal of PVP. In contrast, UV cleaning depends on nearly complete removal of PVP to reduce SFG signal. Both UV and solvent cleaning enable the detection of reaction intermediates by SFG. However, solvent cleaning also yields nanoparticles that are stable under reaction conditions, whereas UV cleaning results in aggregation during reaction. The results of this study indicate that solvent cleaning is more advantageous for studying the effects of nanoparticle size and shape on catalytic selectivity by SFG vibrational spectroscopy. © 2012 American Chemical Society.

  1. Halide-Enhanced Catalytic Activity of Palladium Nanoparticles Comes at the Expense of Catalyst Recovery

    Directory of Open Access Journals (Sweden)

    Azzedine Bouleghlimat

    2017-09-01

    Full Text Available In this communication, we present studies of the oxidative homocoupling of arylboronic acids catalyzed by immobilised palladium nanoparticles in aqueous solution. This reaction is of significant interest because it shares a key transmetallation step with the well-known Suzuki-Miyaura cross-coupling reaction. Additives can have significant effects on catalysis, both in terms of reaction mechanism and recovery of catalytic species, and our aim was to study the effect of added halides on catalytic efficiency and catalyst recovery. Using kinetic studies, we have shown that added halides (added as NaCl and NaBr can increase the catalytic activity of the palladium nanoparticles more than 10-fold, allowing reactions to be completed in less than half a day at 30 °C. However, this increased activity comes at the expense of catalyst recovery. The results are in agreement with a reaction mechanism in which, under conditions involving high concentrations of chloride or bromide, palladium leaching plays an important role. Considering the evidence for analogous reactions occurring on the surface of palladium nanoparticles under different reaction conditions, we conclude that additives can exert a significant effect on the mechanism of reactions catalyzed by nanoparticles, including switching from a surface reaction to a solution reaction. The possibility of this switch in mechanism may also be the cause for the disagreement on this topic in the literature.

  2. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  3. Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth

    International Nuclear Information System (INIS)

    Randolph, S J; Fowlkes, J D; Melechko, A V; Klein, K L; III, H M Meyer; Simpson, M L; Rack, P D

    2007-01-01

    Vertically aligned carbon nanofiber (CNF) growth is a catalytic chemical vapor deposition process in which structure and functionality is controlled by the plasma conditions and the properties of the catalyst nanoparticles that template the fiber growth. We have found that the resultant catalyst nanoparticle network that forms by the dewetting of a continuous catalyst thin film is dependent on the initial properties of the thin film. Here we report the ability to tailor the crystallographic texture and composition of the nickel catalyst film and subsequently the nanoparticle template by varying the rf magnetron sputter deposition conditions. After sputtering the Ni catalyst thin films, the films are heated and exposed to an ammonia dc plasma, to chemically reduce the native oxide on the films and induce dewetting of the film to form nanoparticles. Subsequent nanoparticle treatment in an acetylene plasma at high substrate temperature results in CNF growth. Evidence is presented that the texture and composition of the nickel thin film has a significant impact on the structure and composition of the formed nanoparticle, as well as the resultant CNF morphology. Nickel films with a preferred (111) or (100) texture were produced and conditions favoring interfacial silicidation reactions were identified and investigated. Both compositional and structural analysis of the films and nanoparticles indicate that the properties of the as-deposited Ni catalyst film influences the subsequent nanoparticle formation and ultimately the catalytic growth of the carbon nanofibers

  4. Nitrogen-Doped Carbon Encapsulated Nickel/Cobalt Nanoparticle Catalysts for Olefin Migration of Allylarenes

    DEFF Research Database (Denmark)

    Kramer, Søren; Mielby, Jerrik Jørgen; Buss, Kasper Spanggård

    2017-01-01

    Olefin migration of allylarenes is typically performed with precious metal-based homogeneous catalysts. In contrast, very limited progress has been made using cheap, earth-abundant base metals as heterogeneous catalysts for these transformations - in spite of the obvious economic and environmental...... advantages. Herein, we report on the use of an easily prepared heterogeneous catalyst material for the migration of olefins, in particular allylarenes. The catalyst material consists of nickel/cobalt alloy nanoparticles encapsulated in nitrogen-doped carbon shells. The encapsulated nanoparticles are stable...

  5. Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst

    International Nuclear Information System (INIS)

    Cheng, Y; Tanaka, M; Watanabe, T; Choi, S Y; Shin, M S; Lee, K H

    2014-01-01

    The catalyst of Ni 2 B nanoparticles was successfully prepared using nickel and boron as precursors with the quenching gas in radio frequency thermal plasmas. The generating of Ni 2 B needs adequate reaction temperature and boron content in precursors. The quenching gas is beneficial for the synthesis of Ni 2 B in RF thermal plasma. The effect of quenching rate, powder feed rate and boron content in feeding powders on the synthesis of nickel boride nanoparticles was studied in this research. The high mass fraction of 28 % of Ni 2 B nanoparticles can be generated at the fixed initial composition of Ni:B = 2:3. Quenching gas is necessary in the synthesis of Ni 2 B nanoaprticles. In addition, the mass fraction of Ni 2 B increases with the increase of quenching gas flow rate and powder feed rate

  6. Gold nanoparticles stabilized by starch polymer and their use as catalyst in homocoupling of phenylboronic acid

    Directory of Open Access Journals (Sweden)

    Kittiyaporn Wongmanee

    2017-10-01

    Full Text Available In this study, gold nanoparticles (Au NPs stabilized by a starch polymer have been successfully prepared and characterized via a number of techniques including X-ray photoelectron spectroscopy (XPS, X-ray diffraction (XRD, UV-visible spectroscopy (UV-vis, transmission electron microscopy (TEM, and dynamic light scattering (DLS measurements. The catalytic activity of starch-stabilized Au NPs was also examined toward the homocoupling of phenylboronic acid in water using oxygen in air as oxidant at an ambient temperature (25 ± 1 °C. Several parameters including the catalyst loading, base equivalent (eq., base type, and reaction time were studied. This study offers a simple, inexpensive and environmentally friendly procedure for the stabilization of colloidal gold catalysts using a hydroxyl-rich structure of starch polymer with a great promise through potential applications in related fields.

  7. Revisiting the electrochemical oxidation of ammonia on carbon-supported metal nanoparticle catalysts

    International Nuclear Information System (INIS)

    Li, Zhe-Fei; Wang, Yuxuan; Botte, Gerardine G.

    2017-01-01

    Highlights: • A procedure to pretreat electrocatalysts to study the ammonia oxidation is provided. • N ads and O/OH ads were identified as the major deactivation species that prevent ammonia oxidatoin. • The electrocatalytic activity, thermodynamics, and possible deactivation mechanisms for ammonia oxidation were elucidated. • The onset potential for ammonia oxidation is related to the hydrogen binding energy of the catalyst. • Ammonia electro-oxidation involves a complex decoupled electron and proton transfer process. - Abstract: The ammonia electro-oxidation reaction (AOR) has been studied due to its promising applications in ammonia electrolysis, wastewater remediation, direct ammonia fuel cells, and sensors. However, it is difficult to compare and analyze the reported electrocatalytic activity of AOR reliably, likely due to the variation in catalyst synthesis, electrode composition, electrode morphology, and testing protocol. In this paper, the electro-oxidation of ammonia on different carbon-supported precious metal nanoparticle catalysts was revisited. The effect of experimental conditions, electrochemical test parameters, electrocatalytic activity, thermodynamics, and possible deactivation mechanism of the catalysts were investigated. Pt/C catalyst possesses the highest electrocatalytic activity, while Ir/C and Rh/C show lower overpotential. The onset potential of the AOR is related to the hydrogen binding energy of the catalyst. N ads is one major cause of deactivation accompanied with the formation of surface O/OH ads at high potentials. The coulombic efficiency of N ads formation on Pt is about 1% initially and gradually decreases with reaction time. Increase in ammonia concentration leads to increase in current density, while increase in hydroxyl ions concentration can enhance the current density and reduce the overpotential simultaneously. The slopes of AOR onset potential and hydrogen adsorption/desorption potential of Pt/C as a function of p

  8. Silica nanoparticles as a highly efficient catalyst for the one-pot ...

    African Journals Online (AJOL)

    Silica nanoparticles as a highly efficient catalyst for the one-pot synthesis of sterically congested ... Bulletin of the Chemical Society of Ethiopia ... 42 nm) as a catalyst under solvent free conditions at room temperature is described. The ease of ...

  9. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, Christopher J. [Univ. of California, Berkeley, CA (United States)

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The α-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the

  10. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases.

    Science.gov (United States)

    Gustafson, Karl P J; Lihammar, Richard; Verho, Oscar; Engström, Karin; Bäckvall, Jan-E

    2014-05-02

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 °C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 °C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  11. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    International Nuclear Information System (INIS)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun; Mao, Hui

    2016-01-01

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al 2 O 3 catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  12. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun, E-mail: 1044208419@qq.com; Mao, Hui, E-mail: rejoice222@163.com [Sichuan Normal University, College of Chemistry and Materials Science (China)

    2016-10-15

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al{sub 2}O{sub 3} catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  13. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts

    Science.gov (United States)

    Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles) as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles. PMID:28344220

  14. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

    Science.gov (United States)

    A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

  15. Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media

    Science.gov (United States)

    Zanato, A. F. S.; Silva, V. C.; Lima, D. A.; Jacinto, M. J.

    2017-11-01

    Monometallic Pd- and bimetallic PtPd-nanoparticles supported on a mesoporous magnetic magnetite@silica matrix resembling a core-shell structure (Fe3O4@mSiO2) have been fabricated. The material was characterized by transmission electron microscope (TEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectra (XPS), energy dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). The catalysts were applied in the removal of anthracene from liquid phase via catalytic hydrogenation. It was found that anthracene as a model compound could be completely converted into the partially hydrogenated species by the monometallic and bimetallic solids. However, during the recycling study the bimetallic material (Fe3O4@mSiO2PtPd-) showed an enhanced activity towards anthracene removal compared with the monometallic materials. A single portion of the PtPd-based catalyst can be used up to 11 times in the hydrogenation of anthracene under mild conditions (6 atm of H2, 75 °C, 20 min). Thanks to the presence of a dense magnetic core, the catalysts were capable of responding to an applied external magnetic field and once the reaction was completed, catalyst/product separation was straightforward.

  16. Origin of low temperature deactivation of Ni5Ga3 nanoparticles as catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Gardini, Diego; Sharafutdinov, Irek; Damsgaard, Christian Danvad

    that the highest methanol yield is obtained with a Ni5Ga3 alloy exposed to a 25% CO2 – 75% H2 reaction mixture at 210 °C [2]. Under these experimental conditions, the catalyst is found to lose 35% of its activity after 20 hours of continuous testing at both 1 and 5 Bars. Although in situ XRD and EXAFS studies [3......In an effort to find alternative energy sources capable to compete with fossil fuels, methanol synthesis could represent a realistic solution to store “green” hydrogen produced from electrolysis or photo-induced water splitting. Recently, density functional theory (DFT) calculations [1] proposed Ni......-Ga alloys as active catalysts for methanol production from syngas mixtures and Ni-Ga nanoparticles supported on highly porous silica have been prepared using an incipient wetness impregnation technique from a solution of nickel and gallium nitrates [2]. Tests conducted in a fixed-bed reactor showed...

  17. Dendrimer encapsulated Silver nanoparticles as novel catalysts for reduction of aromatic nitro compounds

    Science.gov (United States)

    Asharani, I. V.; Thirumalai, D.; Sivakumar, A.

    2017-11-01

    Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.

  18. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.; Krier, James M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2013-01-01

    hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical

  19. Magnetically Separable Iron Oxide Nanoparticles: An Efficient and Reusable Catalyst for Imino Diels-Alder Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Mishra, Kanchan; Lee, Yong Rok; Joh, Young-Gull [Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-02-15

    Iron oxide nanoparticles were synthesized using Saururus chinensis (S. chinensis) leaf extract as a reducing and stabilizing agent via ultrasonication. The size, morphology, crystallinity, elemental composition, weight loss, surface chemical state, and magnetic properties of the synthesized nanoparticles were investigated. The synthe-sized nanoparticles were used as an efficient and recyclable catalyst for the synthesis of a variety of 2-methyl-4-substituted-1,2,3,4-tetrahydroquinoline derivatives by the imino Diels-Alder reaction. After the reaction, the catalyst was recovered by an external magnetic field. The recovered catalyst was then reused in a subsequent reaction under identical conditions. The recycled iron oxide nanoparticles (IONPs) were reused five times with-out any significant loss of catalytic activity.

  20. Magnetically Separable Iron Oxide Nanoparticles: An Efficient and Reusable Catalyst for Imino Diels-Alder Reaction

    International Nuclear Information System (INIS)

    Basavegowda, Nagaraj; Mishra, Kanchan; Lee, Yong Rok; Joh, Young-Gull

    2016-01-01

    Iron oxide nanoparticles were synthesized using Saururus chinensis (S. chinensis) leaf extract as a reducing and stabilizing agent via ultrasonication. The size, morphology, crystallinity, elemental composition, weight loss, surface chemical state, and magnetic properties of the synthesized nanoparticles were investigated. The synthe-sized nanoparticles were used as an efficient and recyclable catalyst for the synthesis of a variety of 2-methyl-4-substituted-1,2,3,4-tetrahydroquinoline derivatives by the imino Diels-Alder reaction. After the reaction, the catalyst was recovered by an external magnetic field. The recovered catalyst was then reused in a subsequent reaction under identical conditions. The recycled iron oxide nanoparticles (IONPs) were reused five times with-out any significant loss of catalytic activity.

  1. Sintering of oxide-supported Pt and Pd nanoparticles in air studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose

    This thesis presents a fundamental study of the sintering of supported nanoparticles in relation to diesel oxidation catalysts. The sintering of supported nanoparticles is an important challenge in relation to this catalyst, as well as many other catalyst systems, and a fundamental understanding...... of Pt, Pd and bimetallic Pt-Pd nanoparticles supported on a flat and homogeneous Al2O3 or SiO2 surface. By using in situ TEM on the planar model catalysts it was possible to directly monitor the detailed dynamical changes of the individual nanoparticles during exposure to oxidizing conditions...

  2. Study of (La, Ce)(Pd, Mn, Fe, Co) O3-Perovskite catalysts characterization with nanoparticles produced by compressor and vacuum until 20/000 km and comparison with imported catalyst of Iran Khodro

    International Nuclear Information System (INIS)

    Khanfekr, A.; Arzani, K.; Nemati, A.; Hossaini, M.

    2009-01-01

    (La,Ce)(Pd,Mn,Fe,Co)O 3 - Perovskite catalyst was prepared by the citrate route and deposited on ceramic monoliths via dip coating procedure by compressor and vacuum method. The catalyst was applied on Rd car with XU7 motors model and the amount of emission was monitored with vehicle emission test systems in Sapco Company after 10000 and 20/000 Km. The results indicate low emission in catalyst with vacuum method and were compared with the imported catalyst with noble metals such as Palladium, Platinum and Rhodium by Iran Khodro Company b ased on the Euro III standards . The catalysts were characterized by specific surface area measurements, scanning electron microscopy, X-ray diffraction, line scan and map. In the results indicated in the home made sample, the amount of carbon monoxide, nitrogen oxides and hydrocarbons were lower than imported catalyst with Iran Khodro company with nobel metals. The illustration shows Nano Particles size on coat. The microstructure evaluation showed that the improved properties can he related to the existence of nano particles on coating.

  3. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  4. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    International Nuclear Information System (INIS)

    Liang Miao; Liu Xia; Qi Wei; Su Rongxin; Huang Renliang; Yu Yanjun; He Zhimin; Wang Libing

    2013-01-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts. (paper)

  5. Perlite-SO3H nanoparticles as an efficient and reusable catalyst for one-pot three-component synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives under both microwave-assisted and thermal solvent-free conditions: Single crystal X-ray structure analysis and theoretical study

    Directory of Open Access Journals (Sweden)

    Ali Ramazani

    2016-01-01

    Full Text Available A general synthetic route for the synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives has been developed using perlite-SO3H nanoparticles as efficient catalyst under both microwave-assisted and thermal solvent-free conditions. The combination of 2-naphthol, aldehyde and urea enabled the synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives in the presence of perlite-SO3H nanoparticles in good to excellent yields. This method provides several advantages like simple work-up, environmentally benign, and shorter reaction times along with high yields. In order to explore the recyclability of the catalyst, the perlite-SO3H nanoparticles in solvent-free conditions were used as catalyst for the same reaction repeatedly and the change in their catalytic activity was studied. It was found that perlite-SO3H nanoparticles could be reused for four cycles with negligible loss of their activity. Single crystal X-ray structure analysis and theoretical studies also were investigated for 4i product. The electronic properties of the compound have been analyzed using DFT calculations (B3LYP/6-311+G*. The FMO analysis suggests that charge transfer takes place within the molecule and the HOMO is localized mainly on naphthalene and oxazinone rings whereas the LUMO resides on the naphthalene ring.

  6. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  7. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Mu, Yongyan; Liang, Hanpu; Hu, Jinsong; Jiang, Li; Wan, Lijun

    2005-12-01

    We report a novel process to prepare well-dispersed Pt nanoparticles on CNTs. Pt nanoparticles, which were modified by the organic molecule triphenylphosphine, were deposited on multiwalled carbon nanotubes by the organic molecule, which acts as a cross linker. By manipulating the relative ratio of Pt nanoparticles and multiwalled carbon nanotubes in solution, Pt/CNT composites with different Pt content were achieved. The so-prepared Pt/CNT composite materials show higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than the commercial E-TEK catalyst, which can be ascribed to the high dispersion of Pt nanoparticles on the multiwalled carbon nanotube surface.

  8. Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: A model for tandem environmental catalysis

    KAUST Repository

    Isimjan, Tayirjan T.

    2013-04-01

    The synthesis and characterization of a novel hybrid nanocomposite catalyst comprised of palladium nanoparticles embedded in polystyrene sulfonic acid (PSSH) and supported on metal oxides is reported. The catalysts are intended for application in green catalysis, and they are shown to be effective in the hydrolysisreduction sequence of tandem catalytic reactions required for conversion of 2-phenyl-1,3-dioxolane to toluene or of phenol to cyclohexane. The two distinct components in the catalyst, Pd nanoparticles and acidic PSSH, are capable of catalyzing sequential reactions in one pot under mild conditions. This work has demonstrated a powerful approach toward designing highperformance, multifunctional, scalable, and environmentally friendly nanostructured tandem catalysts. © 2013 American Chemical Society.

  9. Freeze-drying for controlled nanoparticle distribution in Co/SiO 2 Fischer–Tropsch catalysts

    NARCIS (Netherlands)

    Eggenhuisen, T.M.; Munnik, P.; Talsma, H.; de Jongh, P.E.; de Jong, K.P.

    2013-01-01

    Controlling the nanoparticle distribution over a support is considered essential to arrive at more stable catalysts. By developing a novel freeze drying method, the nanoparticle distribution was successfully manipulated for the preparation of Co/SiO2 Fischer-Tropsch catalysts using a commercial

  10. Synergistic Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the Selective Hydrodeoxygenation of Phenols.

    Science.gov (United States)

    Luska, Kylie L; Migowski, Pedro; El Sayed, Sami; Leitner, Walter

    2015-12-21

    Ruthenium nanoparticles immobilized on acid-functionalized supported ionic liquid phases (Ru NPs@SILPs) act as efficient bifunctional catalysts in the hydrodeoxygenation of phenolic substrates under batch and continuous flow conditions. A synergistic interaction between the metal sites and acid groups within the bifunctional catalyst leads to enhanced catalytic activities for the overall transformation as compared to the individual steps catalyzed by the separate catalytic functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  12. Supported palladium nanoparticles synthesized by living plants as a catalyst for Suzuki-Miyaura reactions.

    Directory of Open Access Journals (Sweden)

    Helen L Parker

    Full Text Available The metal accumulating ability of plants has previously been used to capture metal contaminants from the environment; however, the full potential of this process is yet to be realized. Herein, the first use of living plants to recover palladium and produce catalytically active palladium nanoparticles is reported. This process eliminates the necessity for nanoparticle extraction from the plant and reduces the number of production steps compared to traditional catalyst palladium on carbon. These heterogeneous plant catalysts have demonstrated high catalytic activity in Suzuki coupling reactions between phenylboronic acid and a range of aryl halides containing iodo-, bromo- and chloro- moieties.

  13. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis ...

    Indian Academy of Sciences (India)

    and KANIKA VIJ. Department of Chemistry, University of Delhi, Delhi 110 007, India ... Keywords. PVP-stabilized Ni nanoparticles; ethylene glycol; tetraketones; biscoumarins; ... ing interest in using nickel nanoparticles in organic synthesis ...

  14. Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells.

    Science.gov (United States)

    La-Torre-Riveros, Lyda; Guzman-Blas, Rolando; Méndez-Torres, Adrián E; Prelas, Mark; Tryk, Donald A; Cabrera, Carlos R

    2012-02-01

    Diamond in nanoparticle form is a promising material that can be used as a robust and chemically stable catalyst support in fuel cells. It has been studied and characterized physically and electrochemically, in its thin film and powder forms, as reported in the literature. In the present work, the electrochemical properties of undoped and boron-doped diamond nanoparticle electrodes, fabricated using the ink-paste method, were investigated. Methanol oxidation experiments were carried out in both half-cell and full fuel cell modes. Platinum and ruthenium nanoparticles were chemically deposited on undoped and boron doped diamond nanoparticles through the use of NaBH(4) as reducing agent and sodium dodecyl benzene sulfonate (SDBS) as a surfactant. Before and after the reduction process, samples were characterized by electron microscopy and spectroscopic techniques. The ink-paste method was also used to prepare the membrane electrode assembly with Pt and Pt-Ru modified undoped and boron-doped diamond nanoparticle catalytic systems, to perform the electrochemical experiments in a direct methanol fuel cell system. The results obtained demonstrate that diamond supported catalyst nanomaterials are promising for methanol fuel cells.

  15. Manganese porphyrin immobilized on magnetic MCM-41 nanoparticles as an efficient and reusable catalyst for alkene oxidations with sodium periodate

    Science.gov (United States)

    Hajian, Robabeh; Ehsanikhah, Amin

    2018-01-01

    This study describes the immobilization of tetraphenylporphyrinatomanganese(III) chloride, (MnPor), onto imidazole functionalized MCM-41 with magnetite nanoparticle core (Fe3O4@MCM-41-Im). The resultant material (Fe3O4@MCM-41-Im@MnPor) was characterized by X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), diffuse reflectance UV-Vis spectrophotometry (DR UV-Vis), field emission scanning electron microscopy (FESEM), Inductively coupled plasma (ICP), analyzer transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. This new heterogenized catalyst was applied as an efficient catalyst for the epoxidation of a variety of cyclic and linear olefins with NaIO4 under mild conditions. The prepared catalyst can be easily recovered through the application of an external magnet, and reused several times without any significant decrease in activity and magnetic properties.

  16. Palladium nanoparticles immobilized on multifunctional ‎hyperbranched polyglycerol-grafted magnetic nanoparticles as a ‎sustainable and efficient catalyst for C-C coupling reactions

    Directory of Open Access Journals (Sweden)

    Mina Amini

    2016-07-01

    Full Text Available This study offers an exclusive class of magnetic nanoparticles supported hyperbranched polyglycerol (MNP/HPG that was functionalized with citric acid (MNP/HPG-CA as a host immobilization of palladium nanoparticles. The MNP/HPG-CA/Pd catalyst was fully characterized using some different techniques such as thermogravimetric analysis (TGA, x-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDX, inductively coupled plasma (ICP and x-ray photoelectron spectroscopy (XPS. The new catalytic system showed high activity for the Suzuki–Miyaura cross-coupling and Heck reaction under mild and green conditions. Besides, the MNP/HPG-CA/Pd was found to be a convenient catalyst for copper-free Sonogashira coupling reaction in water as a green solvent at room temperature. Moreover, the catalyst could be recovered easily and reused several times without significant loss of reactivity. Ease of preparation, oxygen insensitive, phosphine-free, air- and moisture-stable, and high reusability of this immobilized palladium catalyst are the noteworthy advantages of this catalytic system.

  17. Silica-Supported Co3O4 Nanoparticles as a Recyclable Catalyst for Rapid Degradation of Azodye

    Directory of Open Access Journals (Sweden)

    Ali Baghban

    2016-10-01

    Full Text Available In this paper, silica nanoparticles with particle size of ~ 10-20 nm were selected as a support for the synthesis of Co3O4 nanoparticles by impregnation of silica nanoparticles in solution of Co(II in a specific concentrations and then calcination to 800 oC. This nanocomposite was then, used as a catalyst for oxidative degradation of methyl orange (MO with ammonium persulfate in aqueous media. Effect of pH, temperature, contact time, amount of oxidant and catalyst were studied in the presence of manuscript. Scanning electron microscope (SEM, electron dispersive spectroscopy (EDS, FT-IR, and ICP-AES analyses were used for analysis of silica-supported Co3O4 (Co3O4/SiO2. Treating MO with ammonium persulfate in the presence of Co3O4/SiO2 led to complete degradation of MO under the optimized conditions. Also, the catalyst exhibited recyclability at least over 10 consecutive runs. Copyright © 2016 BCREC GROUP. All rights reserved Received: 12nd December 2015; Revised: 27th January 2016; Accepted: 27th January 2016 How to Cite: Baghban, A., Doustkhah, E., Rostamnia, S., Aghbash, K.O. (2016. Silica-Supported Co3O4 Nanoparticles as a Recyclable Catalyst for Rapid Degradation of Azodye. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 284-291 (doi:10.9767/bcrec.11.3.568.284-291 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.568.284-291

  18. Low-cost removal of organic pollutants with nickel nanoparticle loaded ordered macroporous hydrogel as high performance catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: tmyi@tjcu.edu.cn [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Huang, Guanbo, E-mail: gbhuang2007@hotmail.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Zhang, Sai [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Liu, Yue [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Wang, Xingrui [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia, E-mail: qhx@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2014-06-01

    A facile route for the in situ preparation of catalytically active Ni nanoparticles (NPs) in ordered macroporous hydrogel (OMH) has been developed. The hydrogel was fabricated based on polystyrene colloid template. The electronegativity of amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains of the hydrogel caused strong binding of Ni{sup 2+} ions which made them distribute uniformly inside the hydrogel. When immersed in NaBH{sub 4} aqueous solution, the Ni{sup 2+} ions on the hydrogel were reduced to Ni NPs. The resultant Ni NPs loaded OMH showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with NaBH{sub 4}. A kinetic study of the catalytic reaction was carried out. The rate constant per unit weight could reach 0.53 s{sup −1} g{sup −1}, which is much better than many common hydrogel loaded nickel catalysts. Moreover, the current catalyst can be easily separated and recovered with stable catalytic activity. - Highlights: • A new poly(acrylamide-co-acryl acid) hydrogel with ordered macropores. • A simple in situ fabrication of nickel nanoparticles under mild conditions. • High-performance heterogeneous catalyst for removal of nitrophenol from water. • Good recyclability of catalyst without any complicated regeneration process.

  19. Low-cost removal of organic pollutants with nickel nanoparticle loaded ordered macroporous hydrogel as high performance catalyst

    International Nuclear Information System (INIS)

    Tang, Mingyi; Huang, Guanbo; Zhang, Sai; Liu, Yue; Li, Xianxian; Wang, Xingrui; Pang, Xiaobo; Qiu, Haixia

    2014-01-01

    A facile route for the in situ preparation of catalytically active Ni nanoparticles (NPs) in ordered macroporous hydrogel (OMH) has been developed. The hydrogel was fabricated based on polystyrene colloid template. The electronegativity of amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains of the hydrogel caused strong binding of Ni 2+ ions which made them distribute uniformly inside the hydrogel. When immersed in NaBH 4 aqueous solution, the Ni 2+ ions on the hydrogel were reduced to Ni NPs. The resultant Ni NPs loaded OMH showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with NaBH 4 . A kinetic study of the catalytic reaction was carried out. The rate constant per unit weight could reach 0.53 s −1  g −1 , which is much better than many common hydrogel loaded nickel catalysts. Moreover, the current catalyst can be easily separated and recovered with stable catalytic activity. - Highlights: • A new poly(acrylamide-co-acryl acid) hydrogel with ordered macropores. • A simple in situ fabrication of nickel nanoparticles under mild conditions. • High-performance heterogeneous catalyst for removal of nitrophenol from water. • Good recyclability of catalyst without any complicated regeneration process

  20. Acetone production using silicon nanoparticles and catalyst compositions

    KAUST Repository

    Chaieb, Sahraoui

    2015-12-10

    Embodiments of the present disclosure provide for a catalytic reaction to produce acetone, a catalyst that include a mixture of silicon particles (e.g., about 1 to 20 nm in diameter) and a solvent, and the like.

  1. Acetone production using silicon nanoparticles and catalyst compositions

    KAUST Repository

    Chaieb, Saharoui; Demellawi, Jehad El; Al-Talla, Zeyad

    2015-01-01

    Embodiments of the present disclosure provide for a catalytic reaction to produce acetone, a catalyst that include a mixture of silicon particles (e.g., about 1 to 20 nm in diameter) and a solvent, and the like.

  2. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    International Nuclear Information System (INIS)

    Liu, Xingchen; Salahub, Dennis R.

    2015-01-01

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo 2 C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis

  3. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingchen; Salahub, Dennis R. [Department of Chemistry, Institute for Quantum Science and Technology, and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 (Canada)

    2015-12-31

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo{sub 2}C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis.

  4. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of ...

    Indian Academy of Sciences (India)

    The zinc oxide (ZnO) nanoparticles functions as highly effective catalyst for the reactions of various o-hydroxy ... the synthesis of relatively large and complex molecules .... of ethylene diamine in hydrothermal ZnO nanorod syn- thesis. Di- and ...

  5. Gas-Phase Oxidation of Aqueous Ethanol by Nanoparticle Vanadia/Anatase Catalysts

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas

    2009-01-01

    The gas-phase oxidation of aqueous ethanol with dioxygen has been examined with a new nanoparticle V2O5/TiO2 catalyst. Product selectivity could to a large extent be controlled by small alterations of reaction parameters, allowing production of acetaldehyde at a selectivity higher than 90%, near...

  6. Cobalt nanoparticles as recyclable catalyst for aerobic oxidation of alcohols in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Arijit; Mukherjee, Debkumar, E-mail: debkumarmukherjee@rediffmail.com [Ramsaday College, Department of Chemistry (India); Adhikary, Bibhutosh, E-mail: adhikarybibhu@yahoo.com [Indian Institute of Engineering, Sciences and Technology, Shibpur, Department of Chemistry (India); Ahmed, Md Azharuddin [University of Calcutta, Department of Physics (India)

    2016-05-15

    Cobalt nanoparticles prepared at room temperature from cobalt sulphate and tetrabutyl ammonium bromide as surfactant have been found to be effective oxidation catalysts. Palladium and platinum nanoparticles (average size 4–6 nm) can also be prepared from PdCl{sub 2} and K{sub 2}PtCl{sub 4}, respectively, using the same surfactant but require high temperature (~120 °C) and much longer preparation time. Agglomeration of nanoparticles prepared from metals like palladium and platinum in common solvents, however, restricts their use as catalysts. It is therefore our endeavour to find the right combination of catalyst and solvent that will be beneficial from industrial point of view. Magnetic property measurement of cobalt nanoclusters was made using SQUID to identify their reusability nature. Herein, we report the use of cobalt nanoparticles (average size 90–95 nm) in dichloromethane solvent as effective reusable catalysts for aerobic oxidation of a variety of alcohols.Graphical Abstract.

  7. Fuel cell electrocatalsis : oxygen reduction on Pt-based nanoparticle catalysts

    NARCIS (Netherlands)

    Vliet, Dennis Franciscus van der

    2010-01-01

    The thesis contains a discussion on the subject of the Oxygen Reduction Reaction (ORR) on Pt-alloy nanoparticle catalysts in the Rotating Disk Electrode (RDE) method. An insight in some of the difficulties of this method is given with proper solutions and compensations for these problems. Pt3Co,

  8. Microemulsion flame pyrolysis for hopcalite nanoparticle synthesis: a new concept for catalyst preparation

    OpenAIRE

    Kaskel, Stefan; Biemelt, Tim; Wegner, Karl; Teichert, Johannes

    2016-01-01

    A new route to highly active hopcalite catalysts via flame spray pyrolysis of an inverse microemulsion precursor is reported. The nitrate derived nanoparticles are around 15 nm in diameter and show excellent conversion of CO under ambient conditions, outperforming commercial reference hopcalite materials produced by co-precipitation.

  9. Microemulsion flame pyrolysis for hopcalite nanoparticle synthesis: a new concept for catalyst preparation.

    Science.gov (United States)

    Biemelt, T; Wegner, K; Teichert, J; Kaskel, S

    2015-04-07

    A new route to highly active hopcalite catalysts via flame spray pyrolysis of an inverse microemulsion precursor is reported. The nitrate derived nanoparticles are around 15 nm in diameter and show excellent conversion of CO under ambient conditions, outperforming commercial reference hopcalite materials produced by co-precipitation.

  10. Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries

    International Nuclear Information System (INIS)

    Sun, Shanshan; Miao, He; Xue, Yejian; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2016-01-01

    In this paper, the hybrid catalysts of manganese oxide decorated by silver nanoparticles (Ag-MnO x ) are fully investigated and show the excellent oxygen reduction reaction (ORR) activity. The Ag-MnO 2 is synthesized by a facile strategy of the electroless plating of silver on the manganese oxide. The catalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Then, the ORR activities of the catalysts are systematically investigated by the rotating disk electrode (RDE) and aluminum-air battery technologies. The Ag nanoparticles with the diameters at about 10 nm are anchored on the surface of α-MnO 2 and a strong interaction between Ag and MnO 2 components in the hybrid catalyst are confirmed. The electrochemical tests show that the activity and stability of the 50%Ag-MnO 2 composite catalyst (the mass ratio of Ag/MnO 2 is 1:1) toward ORR are greatly enhanced comparing with single Ag or MnO 2 catalyst. Moreover, the peak power density of the aluminum-air battery with 50%Ag-MnO 2 can reach 204 mW cm −2 .

  11. ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation

    International Nuclear Information System (INIS)

    Lamba, Randeep; Umar, Ahmad; Mehta, S.K.; Kansal, Sushil Kumar

    2015-01-01

    ZnO doped SnO 2 nanoparticles were synthesized by facile and simple hydrothermal technique and used as an effective photocatalyst for the photocatalytic degradation of harmful and toxic organic dye. The prepared nanoparticles were characterized in detail using different techniques for morphological, structural and optical properties. The characterization results revealed that the synthesized nanoparticles possess both crystal phases of tetragonal rutile phase of pure SnO 2 and wurtzite hexagonal phase of ZnO. In addition, the nanoparticles were synthesized in very high quantity with good crystallinity. The photocatalytic activity of prepared nanoparticles was evaluated by the photocatalytic degradation of methylene blue (MB) dye. Detailed photocatalytic experiments based on the effects of irradiation time, catalyst dose and pH were performed and presented in this paper. The detailed photocatalytic experiments revealed that the synthesized ZnO doped SnO 2 nanoparticles heterojunction photocatalyst exhibit best photocatalytic performance when the catalyst dose was 0.25 g/L and pH = 10. ZnO doped SnO 2 nanoparticles heterojunction photocatalyst was also compared with commercially available TiO 2 (PC-50), TiO 2 (PC-500) and SnO 2 and interestingly ZnO doped SnO 2 nanoparticles exhibited superior photocatalytic performance. The presented work demonstrates that the prepared ZnO doped SnO 2 nanoparticles are promising material for the photocatalytic degradation of organic dyes and toxic chemicals. - Highlights: • Synthesis of well-crystalline ZnO-doped SnO 2 nanoparticles. • Excellent morphological, crystalline and photoluminescent properties. • Efficient environmental remediation using ZnO-doped SnO 2 nanoparticles.

  12. Palladium Nanoparticles Suspended in an Ionic Liquid as Reusable Catalyst for Alkyne Semihydrogenation

    International Nuclear Information System (INIS)

    Lee, Jin Kyu; Kim, Dae Won; Cheong, Min Serk; Kim, Hoon Sik; Mukherjee, DebKumar; Lee, Hyun Joo; Cho, Byung Won

    2010-01-01

    The reaction of PdCl 2 dispersed in tetra-n-butylammonium bromide with tributyl amine at 120 .deg. C under argon leads to stable isolable nanometric particles. X-ray diffraction analysis of the material indicated that it is constituted of Pd(0). Transmission electron microscopy analysis of the particles dispersed in acetone shows the mean particle size distribution (4 ± 1 nm). The isolated palladium nanoparticles can be dispersed in an ionic liquid or in methanol or used in solventless condition for selective hydrogenation of 2-hexyne under mild reaction conditions(0.2 MPa and 20 .deg. C). The commercial variety of the Lindlar catalyst was also studied for comparative investigations

  13. Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for Lithium-O2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Nasybulin, Eduard N.; Engelhard, Mark H.; Kovarik, Libor; Bowden, Mark E.; Li, Shari; Gaspar, Daniel J.; Xu, Wu; Zhang, Jiguang

    2014-12-01

    Dendrimer-encapsulated ruthenium nanoparticles (DEN-Ru) have been used as catalysts in lithium-O2 batteries for the first time. Results obtained from UV-vis spectroscopy, electron microscopy and X-ray photoelectron spectroscopy show that the nanoparticles synthesized by the dendrimer template method are ruthenium oxide instead of metallic ruthenium reported earlier by other groups. The DEN-Ru significantly improve the cycling stability of lithium (Li)-O2 batteries with carbon black electrodes and decrease the charging potential even at low catalyst loading. The monodispersity, porosity and large number of surface functionalities of the dendrimer template prevent the aggregation of the ruthenium nanoparticles making their entire surface area available for catalysis. The potential of using DEN-Ru as stand-alone cathode materials for Li-O2 batteries is also explored.

  14. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    Science.gov (United States)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  15. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    Science.gov (United States)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  16. Study of Pd-Au/MWCNTs formic acid electrooxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk, Anna; Borodzinski, Andrzej; Kedzierzawski, Piotr; Lesiak, Beata [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Stobinski, Leszek [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland); Koever, Laszlo; Toth, Jozsef [Institute of Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P. O. Box 51, 4001 Debrecen (Hungary); Lin, Hong-Ming [Department of Materials Engineering, Tatung University, 40, Chungshan N. Rd., 3rd Sec, 104, Taipei (China)

    2010-12-15

    The Pd-Au multiwall carbon nanotubes (MWCNTs) supported catalyst exhibits higher power density in direct formic acid fuel cell (DFAFC) than similar Pd/MWCNTs catalyst. The Pd-Au/MWCNTs catalyst also exhibits higher activity and is more stable in electrooxidation reaction of formic acid during cyclic voltammetry (CV) measurements. After preparation by polyol method, the catalyst was subjected to two type of treatments: (I) annealing at 250 C in 100% of Ar, (II) reducing in 5% of H{sub 2} in Ar atmosphere at 200 C. It was observed that the catalyst after treatment I was completely inactive, whereas after treatment II exhibited high activity. In order to explain this effect the catalysts were characterized by electron spectroscopy methods. The higher initial catalytic activity of Pd-Au/MWCNTs catalyst than Pd/MWCNTs catalyst in reaction of formic acid electrooxidation was attributed to electronic effect of gold in Pd-Au solution, and larger content of small Au nanoparticles of 1 nm size. The catalytic inactivity of Pd-Au/MWCNTs catalysts annealed in argon is attributed to carbon amorphous overlayer covering of Pd oxide shell on the metallic nanoparticles. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts

    International Nuclear Information System (INIS)

    Marzun, Galina; Nakamura, Junji; Zhang, Xiaorui; Barcikowski, Stephan; Wagener, Philipp

    2015-01-01

    Graphical abstract: - Highlights: • We studied laser-generated, size-controlled palladium nanoparticles in saline solution. • Palladium nanoparticles were electrostatically stabilized by anions. • Photo- and electrocatalyst are prepared by supporting Pd nanoparticles to TiO 2 and graphene. • Particle size does not change during supporting process, while 18 wt% load has been achieved. • Palladium nanoparticles and graphene undergo a redox-reaction during adsorption. - Abstract: In the literature many investigations on colloidal stability and size control of gold nanoparticles are shown but less for ligand-free palladium nanoparticles, which can be promising materials in various applications. Palladium nanoparticles are perspective materials for a manifold of energy application like photo- and electrocatalysis or hydrogen storage. For this purpose, size-controlled nanoparticles with clean surfaces and facile immobilization on catalyst supports are wanted. Laser ablation in saline solution yields ligand-free, charged colloidal palladium nanoparticles that are supported by titania and graphene nanosheets as model systems for photo- and electrocatalysis, respectively. By adjusting the ionic strength during laser ablation in liquid, it is possible to control stability and particle size without compromising subsequent nanoparticle adsorption of supporting materials. A quantitative deposition of nearly 100% yield with up to 18 wt% nanoparticle load was achieved. The average size of the laser-generated nanoparticles remains the same after immobilization on a support material, in contrast to other preparation methods of catalysts. The characterization by X-ray photoelectron spectroscopy reveals a redox reaction between the immobilized nanoparticles and the graphene support

  18. Study of ammonia synthesis over uranium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Erofeev, B.V.; Mikhajlenko, I.E.; Gorelkin, I.I.; Ivanov, L.S.

    1980-01-01

    The effect of induced radiactivity and chemical composition of uranium catalysts on their catalytic activity in the ammonia synthesis reaction has been studied. The catalyst samples comprise pieces of metal uranium and chip irradiated in nuclear reactor by the 4.3x10 16 n/cm 2 integral flux of slow neutrons. Studies of catalytic activity was carried out at 1 atm and 340-510 deg C when stoichiometric nitrogen-hydrogen mixture passed through the following installation. At different temperatures uranium nitrides of different composition are shown to be formed. Uranium nitrides with the composition close to UN 2 are the samples with the highest catalYtic activity. The reduction of catalytic activity of uranium catalysts with the increased temperature of their formation above 400 deg C is explained by low catalytic activity of forming UNsub(1.7) in comparison with UN 2 . Catalytic properties of irradiated and nonirradiated samples do not differ from one another

  19. Study of ammonia synthesis using technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhajlenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    A study was made on catalytic properties of technetium in ammonia synthesis reaction. The preparation of technetium catalysts on ν-Al 2 O 3 , BaTiO 3 , BaO-ν-Al 2 O 3 substrates is described. The investigation of catalytic activity of catalysts was carried out at a pressure of 1 atm. in vertical reactor with volume rate of 15000 h - 1 in the temperature range of 350-425 deg. The amount of catalyst was 0.5-1 g, the volume- 0.5 ml, the size of granules- 2-3 mm. Rate constants of ammonia synthesis reaction were calculated. Seeming activation energies of the process have meanings wihtin the limits of 40-50 kcal/mol. It was shown that with increase in concentration of Tc on BaTiO 3 the catalytic activity rises in comparison with pure Tc. The reduction of catalytic activity with increase of metal content on Al 2 O 3 begins in the limits of 3.5-6.7% Tc/ν-Al 2 O 3 . The catalyst of 5.3% Tc/4.1% Ba/ν -Al 2 O 3 compound has the maximum activity. Technetium catalysts possess the stable catalytic activity and don't requre its reduction during several months

  20. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  1. Physical properties of the GaPd2 intermetallic catalyst in bulk and nanoparticle morphology

    DEFF Research Database (Denmark)

    Wencka, M.; Schwerin, J.; Klanjšek, M.

    2015-01-01

    Intermetallic compound GaPd2 is a highly selective catalyst material for the semi-hydrogenation of acetylene. We have determined anisotropic electronic, thermal and magnetic properties of a GaPd2 monocrystal along three orthogonal orthorhombic directions of the structure. By using 69Ga and 71Ga NMR...... properties of the GaPd2 phase on going from the bulk material to the nanoparticles morphology, we have synthesized GaPd2/SiO2 supported nanoparticles and determined their electronic DOS at εF from the 71Ga NMR spin-lattice relaxation rate. The electronic DOS of the GaPd2 was also studied theoretically from...... spectroscopy, we have determined the electric-field-gradient tensor at the Ga site in the unit cell and the Knight shift, which yields the electronic density of states (DOS) at the Fermi energy εF. The DOS at εF was determined independently also from the specific heat. To see the change of electronic...

  2. Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization

    Directory of Open Access Journals (Sweden)

    Żelechowska Kamila

    2016-12-01

    Full Text Available Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers and reusability.

  3. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu-Dief

    2018-03-01

    Full Text Available Magnetic nanoparticles are a highly worthy reactant for the correlation of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nano catalytic systems by the immobilization of homogeneous catalysts onto magnetic nanoparticles. Catalytic fields include the use of mainly cobalt, nickel, copper, and zinc ferrites, as well as their mixed-metal combinations with Cr, Cd, Mn and sometimes some lanthanides. The ferrite nanomaterials are obtained mainly by co-precipitation and hydrothermal methods, sometimes by the sonochemical technique, micro emulsion and flame spray synthesis route. Catalytic processes with application of ferrite nanoparticles include degradation (in particular photocatalytic, reactions of dehydrogenation, oxidation, alkylation, C–C coupling, among other processes. Ferrite nano catalysts can be easily recovered from reaction systems and reused up to several runs almost without loss of catalytic activity. Finally, we draw conclusions and present a futurity outlook for the further development of new catalytic systems which are immobilized onto magnetic nanoparticles.

  4. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds.

    Science.gov (United States)

    Martins, Mónica; Mourato, Cláudia; Sanches, Sandra; Noronha, João Paulo; Crespo, M T Barreto; Pereira, Inês A C

    2017-01-01

    Pharmaceutical products (PhP) are one of the most alarming emergent pollutants in the environment. Therefore, it is of extreme importance to investigate efficient PhP removal processes. Biologic synthesis of platinum nanoparticles (Bio-Pt) has been reported, but their catalytic activity was never investigated. In this work, we explored the potential of cell-supported platinum (Bio-Pt) and palladium (Bio-Pd) nanoparticles synthesized with Desulfovibrio vulgaris as biocatalysts for removal of four PhP: ciprofloxacin, sulfamethoxazole, ibuprofen and 17β-estradiol. The catalytic activity of the biological nanoparticles was compared with the PhP removal efficiency of D. vulgaris whole-cells. In contrast with Bio-Pd, Bio-Pt has a high catalytic activity in PhP removal, with 94, 85 and 70% removal of 17β-estradiol, sulfamethoxazole and ciprofloxacin, respectively. In addition, the estrogenic activity of 17β-estradiol was strongly reduced after the reaction with Bio-Pt, showing that this biocatalyst produces less toxic effluents. Bio-Pt or Bio-Pd did not act on ibuprofen, but this could be completely removed by D. vulgaris whole-cells, demonstrating that sulfate-reducing bacteria are among the microorganisms capable of biotransformation of ibuprofen in anaerobic environments. This study demonstrates for the first time that Bio-Pt has a high catalytic activity, and is a promising catalyst to be used in water treatment processes for the removal of antibiotics and endocrine disrupting compounds, the most problematic PhP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ferromagnetic resonance of cobalt nanoparticles used as a catalyst for the carbon nanotubes synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, Almaty (Kazakhstan)], E-mail: duraia_physics@yahoo.com; Abdullin, Kh.A. [Institute of Physics and Technology, Almaty (Kazakhstan)

    2009-12-15

    Catalyst is considered to be the most crucial parameter for the growth of carbon nanotubes. In this work we study the ferromagnetic resonance (FMR) spectra of the catalyst nanoclusters. Moreover we report for the first time the angle FMR studies of catalyst particles with and without CNT layer. The dependencies of the FMR spectra, X-ray diffraction (XRD) patterns, Raman spectra and morphology of the CNT layers on the growth conditions are discussed.

  6. Sexual selection studies: A NESCent catalyst meeting

    NARCIS (Netherlands)

    Roughgarden, J.; Adkins-Regan, E.; Akcay, E.; Hinde, C.A.; Hoquet, T.; O'Connor, C.; Prokop, Z.M.; Prum, R.O.; Shafir, S.; Snow, S.S.; Taylor, D.; Cleve, Van J.; Weisberg, M.

    2015-01-01

    A catalyst meeting on sexual selection studies was held in July 2013 at the facilities of the National Evolutionary Synthesis Center (NESCent) in Durham, NC. This article by a subcommittee of the participants foregrounds some of the topics discussed at the meeting. Topics mentioned here include the

  7. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  8. Cobalt nanoparticles as reusable catalysts for reduction of 4 ...

    Indian Academy of Sciences (India)

    33

    active and ordered structures of cobalt nanoparticles. The air stable ... same surfactant was found to reduce p-nitrophenol but lose their catalytic efficiency after recovery. Based on chemical and ... industrial sources.11-13 The US Environmental Protection Agency has reported nitrophenols as one of the most hazardous and ...

  9. Chemical nature of catalysts of oxide nanoparticles in environment ...

    Indian Academy of Sciences (India)

    alloy or cobalt nanoparticles having fcc structure, but the rate of reduction is relatively less in ... dissociation of H2 on the metallic clusters once their size is .... 20 wt.% substitution of cobalt/nickel by copper in the aque- ous saturated solution of ...

  10. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts

    DEFF Research Database (Denmark)

    Marsden, Charlotte Clare; Taarning, Esben; Hansen, David

    2008-01-01

    A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient cond...... conditions; the reactions can be performed in an open flask and at room temperature. Benzaldehyde is even oxidised at a reasonable rate below -70 degrees C. Acrolein is oxidised to methyl acrylate in high yield using the same protocol.......A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient...

  11. PVP-Stabilized Palladium Nanoparticles in Silica as Effective Catalysts for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Caroline Pires Ruas

    2013-01-01

    Full Text Available Palladium nanoparticles stabilized by poly (N-vinyl-2-pyrrolidone (PVP can be synthesized by corresponding Pd(acac2 (acac = acetylacetonate as precursor in methanol at 80°C for 2 h followed by reduction with NaBH4 and immobilized onto SiO2 prepared by sol-gel process under acidic conditions (HF or HCl. The PVP/Pd molar ratio is set to 6. The effect of the sol-gel catalyst on the silica morphology and texture and on Pd(0 content was investigated. The catalysts prepared (ca. 2% Pd(0/SiO2/HF and ca. 0,3% Pd(0/SiO2/HCl were characterized by TEM, FAAS, and SEM-EDS. Palladium nanoparticles supported in silica with a size 6.6 ± 1.4 nm were obtained. The catalytic activity was tested in hydrogenation of alkenes.

  12. Functionalized Natural Carbon-Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production.

    Science.gov (United States)

    Sun, Jian; Guo, Lisheng; Ma, Qingxiang; Gao, Xinhua; Yamane, Noriyuki; Xu, Hengyong; Tsubaki, Noritatsu

    2017-02-01

    We report a one-pot and eco-friendly synthesis of carbon-supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer-Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    Science.gov (United States)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  14. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chakraborty, Debasish; Chorkendorff, Ib

    2012-01-01

    A rational design approach was used to develop an alloyed Ni-Fe/Al2O3 catalyst for decomposition of ammonia. The dependence of the catalytic activity is tested as a function of the Ni-to-Fe ratio, the type of Ni-Fe alloy phase, the metal loading and the type of oxide support. In the tests with high...... temperatures and a low NH3-to-H2 ratio, the catalytic activity of the best Ni-Fe/Al2O3 catalyst was found to be comparable or even better to that of a more expensive Ru-based catalyst. Small Ni-Fe nanoparticle sizes are crucial for an optimal overall NH3 conversion because of a structural effect favoring...

  15. Theoretical studies of homogeneous catalysts mimicking nitrogenase.

    Science.gov (United States)

    Sgrignani, Jacopo; Franco, Duvan; Magistrato, Alessandra

    2011-01-10

    The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen 'fixation' via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N₂ to various degrees. However, to date Mo(N₂)(HIPTN)₃N with (HIPTN)₃N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N₂. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  16. Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

    Directory of Open Access Journals (Sweden)

    Alessandra Magistrato

    2011-01-01

    Full Text Available The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2(HIPTN3N with (HIPTN3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  17. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2015-11-01

    Full Text Available The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  18. Revealing the Dynamics of Platinum Nanoparticle Catalysts on Carbon in Oxygen and Water Using Environmental TEM

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli [Environmental; Engelhard, Mark H. [Environmental; Shao, Yuyan [Environmental; Wang, Chongmin [Environmental

    2017-10-02

    Deactivation of supported metal nanoparticle catalysts, especially in relevant gas condition, is a critical challenge for many technological applications, including heterogeneous catalysis, electrocatalysis, fuel cells, biomedical imaging and drug delivery. It has been far more commonly realized that deactivation of catalysts stems from surface area loss due to particle coarsening, however, for which the mechanism remains largely unclear. Herein, we use aberration corrected environmental transmission electron microscopy, at atomic level, to in-situ observe the dynamics of Pt catalyst in fuel cell relevant gas conditions. Particles migration and coalescence is observed to be the dominant coarsening process. As compared with the case of H2O, O2 promotes Pt nanoparticle migration on carbon surface. Surprisingly, coating Pt/carbon with a nanofilm of electrolyte (Nafion ionomer) leads to a faster migration of Pt in H2O than in O2, a consequence of Nafion-carbon interface water “lubrication” effect. Atomically, the particles coalescence is featured by re-orientation of particles towards lattice matching, a process driven by orientation dependent van der Waals force. These results provide direct observations of dynamics of metal nanoparticles at critical surface/interface under relevant conditions and yield significant insights into the multi-phase interaction in related technological processes.

  19. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    Science.gov (United States)

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  20. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Felix-Navarro, R. M., E-mail: moi6salazar@hotmail.com; Beltran-Gastelum, M.; Salazar-Gastelum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Perez-Sicairos, S.; Lin, S. W. [Centro de Graduados e Investigacion, Instituto Tecnologico de Tijuana (Mexico); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados (Mexico); Alonso-Nunez, G. [Centro de Nanociencias y Nanotecnologia (Mexico)

    2013-08-15

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O{sub 2} to H{sub 2}O{sub 2}. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H{sub 2}SO{sub 4} electrolyte using dissolved O{sub 2}. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H{sub 2}O{sub 2} electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H{sub 2}O{sub 2} alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  1. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  2. Semiconductor-metal transition of Se in Ru-Se Catalyst Nanoparticles

    Science.gov (United States)

    Babu, P. K.; Lewera, Adam; Oldfield, Eric; Wieckowski, Andrzej

    2009-03-01

    Ru-Se composite nanoparticles are promising catalysts for the oxygen reduction reaction (ORR) in fuel cells. Though the role of Se in enhancing the chemical stability of Ru nanoparticles is well established, the microscopic nature of Ru-Se interaction was not clearly understood. We carried out a combined investigation of ^77Se NMR and XPS on Ru-Se nanoparticles and our results indicate that Se, a semiconductor in elemental form, becomes metallic when interacting with Ru. ^77Se spin-lattice relaxation rates are found to be proportional to T, the well-known Korringa behavior characteristic of metals. The NMR results are supported by the XPS binding energy shifts which suggest that a possible Ru->Se charge transfer could be responsible for the semiconductor->metal transition of Se which also makes Ru less susceptible to oxidation during ORR.

  3. Pd nanoparticles supported on three-dimensional graphene aerogels as highly efficient catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Liu, Mingrui; Peng, Cheng; Yang, Wenke; Guo, Jiaojiao; Zheng, Yixiong; Chen, Peiqin; Huang, Tingting; Xu, Jing

    2015-01-01

    Well-dispersed Pd nanoparticles supported on three-dimensional graphene aerogels (Pd/3DGA) were successfully prepared via a facile and efficient hydrothermal method without surfactant and template. The morphology and structure of the as-prepared Pd/3DGA nanocomposites were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM showed that the Pd nanoparticles with a small average diameter and narrow size distribution were uniformly deposited on the surface of the self-assembled three-dimensional graphene aerogels. Raman spectra revealed the surface properties of 3DGA and its interaction with metallic nanoparticles. Cyclic voltammetric (CV) and chronoamperometric (CA) experiments further exhibited its superior catalytic activity and stability for the electro-oxidation of methanol in alkaline media, making it a promising anodic catalyst for direct alkaline alcohol fuel cells (DAAFCs).

  4. Spectroscopic studies of surface-gas interactions and catalyst restructuring at ambient pressure: mind the gap!

    International Nuclear Information System (INIS)

    Rupprechter, Guenther; Weilach, Christian

    2008-01-01

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH 3 OH, CH 4 and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions

  5. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells

    Science.gov (United States)

    Peera, S. Gouse; Sahu, A. K.; Arunchander, A.; Nath, Krishna; Bhat, S. D.

    2015-11-01

    Effective surface functionalization to the hydrophobic graphite nanofibers (GNF) is performed with the biomolecule, namely deoxy-ribo-nucleic-acid (DNA) via π-π interactions. Pt nanoparticles are impregnated on GNF-DNA composite by ethylene glycol reduction method (Pt/GNF-DNA) and its effect on electro catalytic activity for oxygen reduction reaction (ORR) is systemically studied. Excellent dispersion of Pt nanoparticles over GNF-DNA surfaces with no evidence on particle aggregation is a remarkable achievement in this study. This result in higher electro chemical surface area of the catalyst, enhanced ORR behavior with significant enhancement in mass activity. The catalyst is validated in H2-O2 polymer electrolyte fuel cell (PEFC) and a peak power density of 675 mW cm-2 is achieved at a load current density of 1320 mA cm-2 with a minimal catalyst loading of 0.1 mg cm-2 at a cell temperature of 70 °C and 2 bar absolute pressure. Repeated potential cycling up to 10000 cycles in acidic media is also performed for this catalyst and found excellent stability with only 60 mV drop in the ORR half wave potential. The superior behavior of Pt/GNF-DNA catalyst is credited to the robust fibrous structure of GNF and its effective surface functionalization process via π-π interaction.

  6. Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum-antimony tin oxide nanoparticle catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dao-Jun [School of Chemistry and Chemical Engineering, The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong 273165 (China)

    2011-01-15

    We synthesize the new Pt based catalyst for direct ethanol fuel cells using novel multi-walled carbon nanotubes supported platinum-antimony tin oxide (Pt-ATO/MWCNT) nanoparticle as new catalyst support for the first time. The structure of Pt-ATO/MWCNT catalyst is characterized by transmission electron micrograph (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt-ATO/MWCNT catalyst for ethanol electrooxidation reactions are investigated by cyclic voltammetry (CV) and chronoamperometric experiments in acidic medium. The electrocatalytic activity for ethanol electrooxidation reaction shows that high carbon monoxide tolerance and good stability of Pt-ATO/MWCNT catalyst compared with Pt-SnO{sub 2}/MWCNT and commercial Pt/C are observed. These results imply that Pt-ATO/MWCNT catalyst has promising potential applications in direct alcohol fuel cells. (author)

  7. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  8. An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts

    Science.gov (United States)

    Almeida, T. S.; Palma, L. M.; Leonello, P. H.; Morais, C.; Kokoh, K. B.; De Andrade, A. R.

    2012-10-01

    The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved.

  9. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory; Laveille, Paco; Anjum, Dalaver H.; Caps, Valerie; Basset, Jean-Marie

    2015-01-01

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  10. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-04-28

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  11. Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren

    2010-01-01

    This study addresses the sintering mechanism of Pt nanoparticles dispersed on a planar, amorphous Al2O3 support as a model system for a catalyst for automotive exhaust abatement. By means of in situ transmission electron microscopy (TEM), the model catalyst was monitored during the exposure to 10...

  12. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  13. Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production

    Science.gov (United States)

    Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.

    2018-05-01

    Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.

  14. Combined TEM and NC-AFM study of Al2O3-supported Pt nanoparticles

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Simonsen, Søren Bredmose; Chorkendorff, Ib

    Sintering, the growth of large particles at the expense of smaller ones, is one of the main causes of catalysts deactivation, since the physicochemical properties of a nanoparticle may depend strongly on its size, shape and composition. For application as heterogeneous catalysts, the nanoparticle...... kinks and edges often play an important role for the catalytic activity. In order to preserve these sites, it is important to stabilize the supported nanoparticles with sizes of a few nanometers during operational conditions at often high temperatures and in the relevant gas environments. A prototypical...... nanocatalyst system for studying coarsening consists of Pt nanoparticles supported on an Al2O3 material which is relevant as an oxidation catalyst in diesel and lean-burn engine exhaust after-treatment technologies. In this study we address the effect on sintering of the shape of Pt nanoparticles supported...

  15. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    The main objective of our research has been to elucidate fundamental concepts associated with controlling the activity, selectivity, and stability of bifunctional, metal-based heterogeneous catalysts for tandem reactions, such as liquid-phase conversion of oxygenated hydrocarbons derived from biomass. We have shown that bimetallic catalysts that combine a highly-reducible metal (e.g., platinum) with an oxygen-containing metal promoter (e.g., molybdenum) are promising materials for conversion of oxygenated hydrocarbons because of their high activity for selective cleavage for carbon-oxygen bonds. We have developed methods to stabilize metal nanoparticles against leaching and sintering under liquid-phase reaction conditions by using atomic layer deposition (ALD) to apply oxide overcoat layers. We have used controlled surface reactions to produce bimetallic catalysts with controlled particle size and controlled composition, with an important application being the selective conversion of biomass-derived molecules. The synthesis of catalysts by traditional methods may produce a wide distribution of metal particle sizes and compositions; and thus, results from spectroscopic and reactions kinetics measurements have contributions from a distribution of active sites, making it difficult to assess how the size and composition of the metal particles affect the nature of the surface, the active sites, and the catalytic behavior. Thus, we have developed methods to synthesize bimetallic nanoparticles with controlled particle size and controlled composition to achieve an effective link between characterization and reactivity, and between theory and experiment. We have also used ALD to modify supported metal catalysts by addition of promoters with atomic-level precision, to produce new bifunctional sites for selective catalytic transformations. We have used a variety of techniques to characterize the metal nanoparticles in our catalysts, including scanning transmission electron

  16. Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst

    Science.gov (United States)

    This paper discusses the potential use of (Fe3O4@SiO2-SO3H) nanoparticle catalyst for the dehydration of glucose into 5-hydroxymethylfurfural (HMF). A magnetically recoverable (Fe3O4@SiO2-SO3H) nanoparticle catalyst was successfully prepared by supporting sulfonic acid groups (SO3H) on the surface o...

  17. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles....... The discussion is focused on the synthesis, structure, mechanism, performance, and further research....

  18. Transformation of Sodium Bicarbonate and CO2 into Sodium Formate over NiPd Nanoparticle Catalyst

    Directory of Open Access Journals (Sweden)

    Mengnan eWang

    2013-09-01

    Full Text Available The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs. Ni NPs and eight NiM (M stands for a second metal NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  19. Transformation of Sodium Bicarbonate and CO2 into Sodium Formate over NiPd Nanoparticle Catalyst

    Science.gov (United States)

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-09-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  20. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.

    Science.gov (United States)

    Liu, Lichen; Corma, Avelino

    2018-05-23

    Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.

  1. Gram-Scale Synthesis of Highly Active and Durable Octahedral PtNi Nanoparticle Catalysts for Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Choi, Juhyuk; Jang, Jue-Hyuk; Roh, Chi-Woo

    2018-01-01

    for the commercialization of PEMFCs. In this study, we focus on gram-scale synthesis of octahedral PtNi nanoparticles with Pt overlayers (PtNi@Pt) supported on the carbon, resulting in enhanced catalytic activity and durability. Such PtNi@Pt catalysts show high mass activity (1.24 A mgPt−1) at 0.9 V (vs RHE) for the ORR......Proton exchange membrane fuel cells (PEMFC) are regarded as a promising renewable energy source for a future hydrogen energy society. However, highly active and durable catalysts are required for the PEMFCs because of their intrinsic high overpotential at the cathode and operation under the acidic...... condition for oxygen reduction reaction (ORR). Since the discovery of the exceptionally high surface activity of Pt3Ni(111), the octahedral PtNi nanoparticles have been synthesized and tested. Nonetheless, their milligram-scale synthesis method and poor durability make them unsuitable...

  2. Synthesis and Characterization of Ti-Phenyl at SiO2 Core-Shell Nanoparticles Catalyst

    International Nuclear Information System (INIS)

    Syamsi Aini; Jon Efendi; Syamsi Aini; Jon Efendi

    2012-01-01

    This study highlights the potential use of Ti-Phenyl at SiO 2 core-shell nanoparticles as heterogeneous catalysis in oxidation reaction. The Ti-Phenyl at SiO 2 was synthesized by reduction of TiCl 4 and diazonium salt with sodium borohydride to produce phenyl titanium nanoparticles (Ti-Phenyl), followed by the silica shell coating using tetraethyl orthosilicate (TEOS). The Ti-Phenyl at SiO 2 nanoparticles were characterized by Fourier transform infrared (FTIR) spectrometer, diffuse reflectance (DR) UV-visible spectrometer, thermogravimetric analyzer (TGA), X-ray diffraction (XRD) spectrometer, field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The core-shell size of Ti-Phenyl at SiO 2 was in the range of 40 to 100 nm with its core composed with an agglomeration of Ti-Phenyl. The Ti-Phenyl at SiO 2 was active as a catalyst in the liquid phase epoxidation of 1-octene with aqueous hydrogen peroxide as an oxidant. (author)

  3. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    Science.gov (United States)

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation.

  4. Pt{sub 1-x}Co{sub x} nanoparticles as cathode catalyst for proton exchange membrane fuel cells with enhanced catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huimin; Wexler, David; Liu Huakun [Institute for Superconducting and Electronic Materials, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Savadogo, O. [Materials Engineering Department, Ecole Polytechique de Montreal, Montreal, QC H3C3A7 (Canada); Ahn, Jungho [Department of Materials Engineering, Andong National University, Andong (Korea, Republic of); Wang Guoxiu, E-mail: Guoxiu.Wang@uts.edu.au [Department of Chemistry and Forensic Science, University of Technology, Sydney, NSW 2007 (Australia)

    2010-11-01

    Nanosize carbon-supported Pt{sub 1-x}Co{sub x} (x = 0.2, 0.3, and 0.45) electrocatalysts were prepared by a chemical reduction method using sodium borohydride (NaBH{sub 4}) as the reduction agent. Transmission electron microscopy examination showed uniform dispersion of Pt{sub 1-x}Co{sub x} alloy catalysts on carbon matrix, with the particle size less than 10 nm. The electrochemical characteristics of Pt{sub 1-x}Co{sub x} alloy catalysts were studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometric testing. The as-prepared Pt{sub 1-x}Co{sub x} alloy nanoparticles could be promising cathode catalysts for oxygen reduction in proton exchange membrane fuel cells with the feature of much reduced cost, but significantly increased catalytic activity.

  5. Synthesis, characterization and optimization of platinum-alloy nanoparticle catalysts in proton exchange membrane fuel cells

    Science.gov (United States)

    Srivastava, Ratndeep

    Renewable hydrogen-fuelled proton exchange membrane (PEMFC) fuel cells have consistently demonstrated great promise as a future source of energy due to their high conversion efficiency, lower temperature of operation and lack of greenhouse emissions. One of the major impediments in the commercialization of polymer electrolyte membrane fuel cells is the insufficient catalytic reactivity and higher cost of Pt electrocatalysts which are utilized for the electroreduction of oxygen from air. This dissertation focuses primarily on a family of Pt alloy fuel cell electrocatalysts referred to as de-alloyed core-shell electrocatalysts. These materials are bimetallic or multimetallic nanoparticles, mostly supported on conductive supports which were first described in a dissertation by Dr. S. Koh earlier in 2009.1 De-alloyed Pt nanoparticle electrocatalysts are formed from base metal rich binary Pt-M and ternary Pt-M1-M 2 (M, M1, M2 = Cu, Co, Ni, Fe and Cr) alloy nanoparticle precursors. The precursors are transformed and activated by electrochemical selective dissolution of the less noble metal component of the precursors (de-alloying). They have shown exceptional activity for oxygen reduction reaction (ORR) in idealized electrochemical half cell measurements, in particular rotating disk electrode experiments. However, these materials were never tested or implemented in realistic Membrane Electrode Assemblies (MEA) and single PEM fuel cells. The objective of this work was to implement de-alloyed Pt particle catalysts in realistic fuel cell electrode layers as well as a detailed characterization of their behavior and stability. The major challenges of MEA implementation consists of the behavior of the new nanostructured electrocatalysts inside the complex three-phase interface of polymer membrane ionomer, liquid water, metal catalyst, support, and reactant gas. Activity measurements were followed by medium and long-term durability analysis by potential cycling of the membrane

  6. Palladium nanoparticles as catalysts for reduction of Cr(VI) and Suzuki coupling reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lilan; Guo, Yali; Iqbal, Anam; Li, Bo; Deng, Min; Gong, Deyan; Liu, Weisheng; Qin, Wenwu, E-mail: qinww@lzu.edu.cn [Lanzhou University, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering (China)

    2017-04-15

    Herein, six kinds of PdNPs (including icosahedron, sphere, spindle, cube, rod, and wire) were synthesized via simple methods. The catalytic activities were investigated by the reduction reaction of Cr(VI) and Suzuki coupling reaction. Chemically synthesized morphologies of the six catalysis were characterized by transmission electron microscopy, field emission scanning electron microscopy, and X-ray diffraction, etc. Pd icosahedron shows a better catalytic property than other PdNPs with a rate constants 0.42 min{sup −1} for the reduction of Cr(VI). Moreover, the electrocatalyst shows that Pd icosahedron possesses a bigger surface area of 8.56 m{sup 2}/g than other nanoparticles, which is attributed to the better catalyst. The Pd icosahedron possesses a better catalytic property, attributing to the abundant exposed {111} facets with high activity on Pd icosahedron. The catalytic activities are closely related to the surface area with the following order: icosahedrons ≥ sphere > rod > spindle > cube > wire. The Pd icosahedron catalyst represents a strong activity for Suzuki coupling reaction as well, outweighting is 80%. The results reveal that Pd icosahedron acts as an efficient catalyst compared to other PdNPs (wire, rod, sphere, spindle, and cube).

  7. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  8. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes

    DEFF Research Database (Denmark)

    He, Jian; Yang, Song; Riisager, Anders

    2018-01-01

    Magnetic nickel ferrite (NiFe2O4) nanoparticles were exploited as stable and easily separable heterogeneous catalysts for catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as both the hydrogen source and the solvent providing 94% product yield at 180 degrees C...

  9. Thiols make for better catalysts: Au nanoparticles supported on functional SBA-15 for catalysis of Ullmann-type homocouplings

    KAUST Repository

    Chen, Tianyou

    2017-09-21

    A strategy for arraying small gold nanoparticles on a mesoporous support modified with single-component or mixed self-assembled monolayers is described. The use of mixed surface modifiers allows easy access to a range of surface chemistries and modalities of interaction between nanoparticles and supports. A combination of thiol groups and linear semifluorinated chains effectively stabilized the nanoparticles against aggregation, while preserving their catalytic activity. The thiol-fluorous-supported catalyst was found active in Ullmann-type homocoupling of aryl halides and showed exceptional selectivity in this reaction.

  10. Thiols make for better catalysts: Au nanoparticles supported on functional SBA-15 for catalysis of Ullmann-type homocouplings

    KAUST Repository

    Chen, Tianyou; Chen, Batian; Bukhriakov, Konstantin; Rodionov, Valentin

    2017-01-01

    A strategy for arraying small gold nanoparticles on a mesoporous support modified with single-component or mixed self-assembled monolayers is described. The use of mixed surface modifiers allows easy access to a range of surface chemistries and modalities of interaction between nanoparticles and supports. A combination of thiol groups and linear semifluorinated chains effectively stabilized the nanoparticles against aggregation, while preserving their catalytic activity. The thiol-fluorous-supported catalyst was found active in Ullmann-type homocoupling of aryl halides and showed exceptional selectivity in this reaction.

  11. Tailoring Cu Nanoparticle Catalyst for Methanol Synthesis Using the Spinning Disk Reactor

    Directory of Open Access Journals (Sweden)

    Christian Ahoba-Sam

    2018-01-01

    Full Text Available Cu nanoparticles are known to be very active for methanol (MeOH synthesis at relatively low temperatures, such that smaller particle sizes yield better MeOH productivity. We aimed to control Cu nanoparticle (NP size and size distribution for catalysing MeOH synthesis, by using the spinning disk reactor. The spinning disk reactor (SDR, which operates based on shear effect and plug flow in thin films, can be used to rapidly micro-mix reactants in order to control nucleation and particle growth for uniform particle size distribution. This could be achieved by varying both physical and chemical operation conditions in a precipitation reaction on the SDR. We have used the SDR for a Cu borohydride reduction to vary Cu NP size from 3 nm to about 55 nm. XRD and TEM characterization confirmed the presence of Cu2O and Cu crystallites when the samples were dried. This technique is readily scalable for Cu NP production by processing continuously over a longer duration than the small-scale tests. However, separation of the nanoparticles from solution posed a challenge as the suspension hardly settled. The Cu NPs produced were tested to be active catalyst for MeOH synthesis at low temperature and MeOH productivity increased with decreasing particle size.

  12. Enhanced hydrogen reaction kinetics of nanostructured Mg-based composites with nanoparticle metal catalysts dispersed on supports

    International Nuclear Information System (INIS)

    Yoo, Yeong; Tuck, Mark; Kondakindi, Rajender; Seo, Chan-Yeol; Dehouche, Zahir; Belkacemi, Khaled

    2007-01-01

    Hydrogen reaction kinetics of nanocrystalline MgH 2 co-catalyzed with Ba 3 (Ca 1+x Nb 2-x )O 9-δ (BCN) proton conductive ceramics and nanoparticle bimetallic catalyst of Ni/Pd dispersed on single wall carbon nanotubes (SWNTs) support has been investigated. The nanoparticle bimetallic catalysts of Ni/Pd supported by SWNTs were synthesized based on a novel polyol method using NiCl 2 .6H 2 O, PdCl 2 , NaOH and ethylene glycol (EG). The nanostructured Mg composites co-catalyzed with BCN and bimetallic supported catalysts exhibited stable hydrogen desorption capacity of 6.3-6.7 wt.% H 2 and the significant enhancement of hydrogen desorption kinetics at 230-300 deg. C in comparison to either non-catalyzed MgH 2 or the nanocomposite of MgH 2 catalyzed with BCN

  13. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation

    Science.gov (United States)

    Ma, Xiaohui; Luo, Liqiang; Zhu, Limei; Yu, Liming; Sheng, Leimei; An, Kang; Ando, Yoshinori; Zhao, Xinluo

    2013-11-01

    Single-wall carbon nanotubes (SWCNTs) supported Pt-Fe nanoparticles have been prepared by one-step hydrogen arc discharge evaporation of carbon electrode containing both Pt and Fe metal elements. The formation of SWCNTs and Pt-Fe nanoparticles occur simultaneously during the evaporation process. High-temperature hydrogen treatment and hydrochloric acid soaking have been carried out to purify and activate those materials in order to obtain a new type of Pt-Fe/SWCNTs catalyst for methanol oxidation. The Pt-Fe/SWCNTs catalyst performs much higher electrocatalytic activity for methanol oxidation, better stability and better durability than a commercial Pt/C catalyst according to the electrochemical measurements, indicating that it has a great potential for applications in direct methanol fuel cells.

  14. Manganese Dioxide Coated Graphene Nanoribbons Supported Palladium Nanoparticles as an Efficient Catalyst for Ethanol Electrooxidation in Alkaline Media

    International Nuclear Information System (INIS)

    Liu, Qi; Jiang, Kun; Fan, Jinchen; Lin, Yan; Min, Yulin; Xu, Qunjie; Cai, Wen-Bin

    2016-01-01

    Design of appropriate supporting materials is an alternative route to yield efficient Pt-free catalysts for ethanol oxidation reaction, which in practice may determine the conversion efficiency of direct alkaline ethanol fuel cells. In this work, graphene nanoribbons (GNRs) coated with MnO_2 are used as a unique supporting material for loading and dispersing Pd nanoparticles. XRD, TEM and XPS are applied to characterize the structure of as-synthesized Pd/MnO_2/GNRs nanocomposite catalyst, revealing a good dispersion as well as a modification of electronic property of Pd nanoparticles. Electrochemical measurements demonstrate that the as-synthesized nanocomposite displays largely enhanced electrocatalytic activity and durability toward ethanol oxidation in alkaline media as compared to the other tested Pd-based catalysts with various supports.

  15. Synthesis of CaOZnO Nanoparticles Catalyst and Its Application in Transesterification of Refined Palm Oil

    Directory of Open Access Journals (Sweden)

    Cicik Herlina Yulianti

    2014-07-01

    Full Text Available The CaOZnO nanoparticle catalysts with Ca to Zn atomic ratios of 0.08 and 0.25 have been successfully synthesized by co-precipitation method. The catalyst was characterized by X-ray Diffraction (XRD analysis provided with Rietica and Maud software, Scanning Electron Microscopy (SEM and Fourier Transform Infrared spectroscopy (FT-IR, and its properties was compared with bare CaO and ZnO catalysts. The phase composition estimated by Rietica software revealed that the CaO catalyst consists of CaO and CaCO3 phases. The estimation of the particle size by Maud software, showed that the particle size of all catalysts increased by the following order: ZnO. © 2014 BCREC UNDIP. All rights reservedReceived: 1st January 2014; Revised: 10th March 2014; Accepted: 18th March 2014[How to Cite: Yulianti, C.H., Ediati, R., Hartanto, D., Purbaningtias, T.E., Chisaki, Y., Jalil, A.A., Hitam, C.K.N.L.C.K., Prasetyoko, D., (2014. Synthesis of CaOZnO Nanoparticles Catalyst and Its Application in Transesterification of Refined Palm Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 100-110. (doi:10.9767/bcrec.9.2.5998.100-110][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.5998.100-110

  16. The effect of Sodium hydroxide catalyst in formation of Ni nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Shahbahrami, N.; Reyhani, A.; Afshari, N.; Mortazavi, Z.; Norouzian, Sh.; Hojabri, A.; Novinrooz, A. J.

    2007-01-01

    In this paper, Ni nanoparticles growth is studies by spontaneous auto catalytic reduction in an alcohol- water solution in present NaOH catalysis with various ratio at room temperature. The scanning electron microscopy and XRD analyses have been used for investigation diameter and structure of Ni nanoparticles. Investigation of the analyses show that have not formed Ni Nanoparticles in Ph values 8, 9, 10 and 13, but in Ph values 11 and 12 have formed Ni Nanoparticles with average diameter of about 65 and 90 nm, respectively. The XRD patterns show that samples have face-centered cubic structure with (111),(200).(222) planes. The results show that sodium hydroxide value is very effect on the Ni nanoparticles growth.

  17. Study of ferritin nanoparticles

    International Nuclear Information System (INIS)

    Lancok, A.; Kohout, J.; Volfova, L.; Miglierini, M.

    2015-01-01

    Moessbauer spectrometry confirms the presence of hematite, ferrihydrite and maghemite/magnetite in ferritin derived from human spleen tissues. The minerals are present in a form of small (about 4-5 nm in size) grains with highly disordered structure. Consequently, at room temperature all agglomerates of ferritin nanoparticles show non-magnetic behaviour. Magnetic states are revealed at low enough temperatures below the so-called blocking temperature. Employing Moessbauer effect measurements, the latter was determined to be of 16 K for the human spleen. Structural features of these tissues were studied by TEM technique. Employing 57 Fe nuclei as local probes both structural and magnetic features of the biological materials were investigated by Moessbauer spectrometry. It was possible to identify iron atoms and their neighbours. (authors)

  18. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    This work presents a study of the deactivation behavior of Fe-Mo oxide catalyst during selective oxidation of methanol to formaldehyde in a period of 5 days. The structural changes in the catalyst have been investigated in situ for the initial 10 h by Raman spectroscopy, and the structure after 5...

  19. XPS/STM study of model bimetallic Pd–Au/HOPG catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-03-30

    Graphical abstract: - Highlights: • The model Pd–Au/HOPG catalysts preparation has been studied by XPS and STM. • Model “core–shell” type Pd–Au/HOPG catalysts with different Pd/Au ratios were prepared. • Heating of the “core–shell” Pd–Au/HOPG samples up to 400 °C leads to alloy formation. • Contribution of parameters controlling the properties of Pd–Au alloyed particles has been discussed. - Abstract: The preparation of model bimetallic Pd–Au/HOPG catalysts has been investigated using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, model “core–shell” type Pd–Au/HOPG catalysts with similar particle size distribution (5–8 nm), but with different densities of particle locations on the HOPG surface and Pd/Au atomic ratios are prepared. Further, their thermal stability is studied within a temperature range of 50–500 °C at UHV conditions. It has been shown that annealing the model catalysts at a temperature range of 300–400 °C leads to formation of Pd–Au alloyed particles. Enhancement of heating temperature up to 500 °C results in sintering of bimetallic nanoparticles. Contribution of different parameters controlling the properties of Pd–Au alloyed particles has been discussed.

  20. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.

    2014-04-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.

  1. Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration

    Science.gov (United States)

    Jusoh, N. W. C.; Jalil, A. A.; Triwahyono, S.; Karim, A. H.; Salleh, N. F.; Annuar, N. H. R.; Jaafar, N. F.; Firmansyah, M. L.; Mukti, R. R.; Ali, M. W.

    2015-03-01

    ZnO-incorporated mesostructured silica nanoparticles (MSN) catalysts (ZM) were prepared by the introduction of Zn ions into the framework of MSN via a simple electrochemical system in the presence of various concentrations of NH4OH aqueous solution. The physicochemical properties of the catalysts were studied by XRD, 29Si MAS NMR, nitrogen adsorption-desorption, FE-SEM, TEM, FTIR, and photoluminescence spectroscopy. Characterization results demonstrated that the alkaline aqueous electrolyte simply generated abundant silanol groups on the surface of the catalysts as a consequence of desilication to form the hierarchical-like structure of the MSN. Subsequent restructuring of the silica network by the creation of oxygen vacancies and formation of Si-O-Zn during the electrolysis, as well as formation of new Si-O-Si bonds during calcination seemed to be the main factors that enhanced the catalytic performance of photodecolorization of methyl orange. A ZM prepared in the presence of 1.0 M NH4OH (ZM-1.0) was determined to be the most effective catalyst. The catalyst displays a higher first-order kinetics rate of 3.87 × 10-1 h-1 than unsupported ZnO (1.13 × 10-1 h-1) that prepared under the same conditions in the absence of MSN. The experiment on effect of scavengers showed that hydroxyl radicals generated from the three main sources; reduced O2 at the conduction band, decomposed water at the valence band and irradiated H2O2 in the solution, are key factors that influenced the reaction. It is also noted that the recycled ZM-1.0 catalyst maintained its activity up to five runs without serious catalyst deactivation.

  2. Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes toward Highly Active Catalysts

    Directory of Open Access Journals (Sweden)

    Tingting Yang

    2015-02-01

    Full Text Available A simple and effective method for the preparation of platinum nanoparticles (Pt NPs grown on amino-func‐ tionalized halloysite nanotubes (HNTs was developed. The nanostructures were synthesized through the func‐ tionalization of the HNTs, followed by an in situ approach to generate Pt NPs with diameter of approximately 1.5 nm within the entire HNTs. The synthesis process, composition and morphology of the nanostructures were characterized. The results suggest PtNPs/NH2-HNTs nanostructures with ultrafine PtNPs were successfully synthesized by green chemically-reducing H2PtCl6 without the use of surfactant. The nanostructures exhibit promising catalytic properties for reducing potassium hexacyanoferrate(III to potassium hexacyanoferrate(II. The presented experiment for novel PtNPs/NH2-HNTs nanostructures is quite simple and environmentally benign, permitting it as a potential application in the future field of catalysts.

  3. Modeling to study the role of catalyst in the formation of graphitic shells during carbon nanofiber growth subjected to reactive plasma

    Science.gov (United States)

    Gupta, Ravi; Gupta, Neha; Sharma, Suresh C.

    2018-04-01

    An analytical model to study the role of a metal catalyst nanofilm in the nucleation, growth, and resulting structure of carbon nanofibers (CNFs) in low-temperature hydrogen diluted acetylene plasma has been developed. The model incorporates the nanostructuring of thin catalyst films, growth of CNF, restructuring of catalyst nanoparticles during growth, and its repercussion on the resulting structure (alignment of rolled graphene sheets around catalyst nanoparticles) by taking into account the plasma sheath formalization, kinetics of neutrals and positively charged species in the reactive plasma, flux of plasma species onto the catalyst front surface, and numerous surface reactions for carbon generation. In order to examine the influence of the catalyst film on the growth of CNFs, the numerical solutions of the model equations have been obtained for experimentally determined initial conditions and glow discharge plasma parameters. From the solutions obtained, we found that nanostructuring of thin films leads to the formation of small nanoparticles with high surface number density. The CNF nucleates over these small-sized nanoparticles grow faster and attain early saturation because of the quick poisoning of small-sized catalyst particles, and contain only a few graphitic shells. However, thick nanofilms result in shorter CNFs with large diameters composed of many graphitic shells. Moreover, we found that the inclination of graphitic shells also depends on the extent up to which the catalyst can reconstruct itself during the growth. The small nanoparticles show much greater elongation along the growth axis and also show a very small difference between their tip and base diameter during the growth due to which graphitic shells align at very small angles as compared to the larger nanoparticles. The present study is useful to synthesize the thin and more extended CNFs/CNTs having a smaller opening angle (inclination angle of graphene layers) as the opening angle has a

  4. Synthesis and Characterization of Cobalt Containing Nanoparticles on Alumina A Potential Catalyst for Gas to Liquid Fuels Production

    Science.gov (United States)

    Cowen, Jonathan; Hepp, Aloysius F.

    2016-01-01

    Fisher-Tröpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Tröpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported.

  5. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhanced reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and poor durability. Here, we report OER catalysts of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells derived from bimetallic metal–organic frameworks (MOFs) precursors. The optimal OER catalyst shows excellent activity (360 mV overpotential at 10 mA cm–2GEO) and durability (no obvious degradation after 20 000 cycles). The electron-donation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by chemical state of precursors. Severe metal particle growth probably caused by oxidation of carbon shells and encapsulated nanoparticles is believed to the main mechanism for activity degradation in these catalysts.

  6. A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation

    Directory of Open Access Journals (Sweden)

    Cristian H. Campos

    2017-01-01

    Full Text Available This contribution reports a novel preparation of gold nanoparticles on polymer/metal oxide hybrid materials (Au/P[VBTACl]-M metal: Al, Ti or Zr and their use as heterogeneous catalysts in liquid phase hydrogenation of p-chloronitrobenzene. The support was prepared by in situ radical polymerization/sol gel process of (4-vinyl-benzyltrimethylammonium chloride and 3-(trimethoxysilylpropyl methacrylate in conjunction with metal-alkoxides as metal oxide precursors. The supported catalyst was prepared by an ion exchange process using chloroauric acid (HAuCl4 as gold precursor. The support provided the appropriate environment to induce the spontaneous reduction and deposition of gold nanoparticles. The hybrid material was characterized. TEM and DRUV-vis results indicated that the gold forms spherical metallic nanoparticles and that their mean diameter increases in the sequence, Au/P[VBTACl]-Zr > Au/P[VBTACl]-Al > Au/P[VBTACl]-Ti. The reactivity of the Au catalysts toward the p-CNB hydrogenation reaction is attributed to the different particle size distributions of gold nanoparticles in the hybrid supports. The kinetic pseudo-first-order constant values for the catalysts in the hydrogenation reaction increases in the order, Au/P[VBTACl]-Al > Au/P[VBTACl]-Zr > Au/P[VBTACl]-Ti. The selectivity for all the catalytic systems was greater than 99% toward the chloroaniline target product. Finally the catalyst supported on the hybrid with Al as metal oxide could be reused at least four times without loss in activity or selectivity for the hydrogenation of p-CNB in ethanol as solvent.

  7. Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent.

    Science.gov (United States)

    Hazarika, Munmi; Borah, Debajit; Bora, Popymita; Silva, Ana R; Das, Pankaj

    2017-01-01

    This paper describes a simple in-situ process of synthesizing highly dispersed palladium nanoparticles (PdNPs) using aqueous leaf extract of GarciniapedunculataRoxb as bio-reductant and starch (0.3%) as bio-stabilizer. The PdNPs are characterized by techniques like FTIR, TEM, SEM-EDX, XRD and XPS analysis. It is worthnoting thatwhen the synthesis of nanoparticles was carried out in absence of starch, agglomeration of particles has been noticed.The starch-assisted PdNPs showed excellent aqueous-phase catalytic activities for three important reactions: the Suzuki-Miyaura cross-coupling reactions of aryl halides (aryl bromides and iodides) with arylboronic acids; selective oxidations of alcohols to corresponding carbonyl compounds; and reduction of toxic Cr(VI) to nontoxic Cr(III). Our catalyst could be reused up to four cycles without much compromising with its activity. Furthermore, the material also demonstrated excellent antimicrobial and anti-biofilm activities against a novel multidrug resistant clinical bacterial isolate Cronobactersakazakii strain AMD04. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of PdNPswere found to be 0.06 and 0.12 mM respectively.

  8. Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent.

    Directory of Open Access Journals (Sweden)

    Munmi Hazarika

    Full Text Available This paper describes a simple in-situ process of synthesizing highly dispersed palladium nanoparticles (PdNPs using aqueous leaf extract of GarciniapedunculataRoxb as bio-reductant and starch (0.3% as bio-stabilizer. The PdNPs are characterized by techniques like FTIR, TEM, SEM-EDX, XRD and XPS analysis. It is worthnoting thatwhen the synthesis of nanoparticles was carried out in absence of starch, agglomeration of particles has been noticed.The starch-assisted PdNPs showed excellent aqueous-phase catalytic activities for three important reactions: the Suzuki-Miyaura cross-coupling reactions of aryl halides (aryl bromides and iodides with arylboronic acids; selective oxidations of alcohols to corresponding carbonyl compounds; and reduction of toxic Cr(VI to nontoxic Cr(III. Our catalyst could be reused up to four cycles without much compromising with its activity. Furthermore, the material also demonstrated excellent antimicrobial and anti-biofilm activities against a novel multidrug resistant clinical bacterial isolate Cronobactersakazakii strain AMD04. The minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC of PdNPswere found to be 0.06 and 0.12 mM respectively.

  9. Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres.

    Science.gov (United States)

    Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang

    2014-12-15

    Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. 57Fe Moessbauer Studies in Mo-Fe Supported Catalysts

    International Nuclear Information System (INIS)

    Castelao-Dias, M.; Costa, B. F. O.; Quinta-Ferreira, R. M.

    2001-01-01

    Industrially, the Mo-Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Moessbauer spectroscopy which proved to be a useful technique in the choice of supported materials

  11. Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry.

    Science.gov (United States)

    Gill, Arran M; Hinde, Christopher S; Leary, Rowan K; Potter, Matthew E; Jouve, Andrea; Wells, Peter P; Midgley, Paul A; Thomas, John M; Raja, Robert

    2016-03-08

    Highly active and selective aerobic oxidation of KA-oil to cyclohexanone (precursor for adipic acid and ɛ-caprolactam) has been achieved in high yields using continuous-flow chemistry by utilizing uncapped noble-metal (Au, Pt & Pd) nanoparticle catalysts. These are prepared using a one-step in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. Detailed spectroscopic characterization of the nature of the active sites at the molecular level, coupled with aberration-corrected scanning transmission electron microscopy, reveals that the synthetic methodology and associated activation procedures play a vital role in regulating the morphology, shape and size of the metal nanoparticles. These active centers have a profound influence on the activation of molecular oxygen for selective catalytic oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles as new and green catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H-ones under solvent-free condition

    Directory of Open Access Journals (Sweden)

    Eshagh Rezaee Nezhad

    2013-10-01

    Full Text Available The aim of this research is to study Ni2+ supported on hydroxyapatite-core-shell magnetic γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ni2+ as a green and recyclable catalyst for the Biginelli reaction under solvent-free conditions. One-pot multi-component condensation of 1,3-dicarbonyl compounds, urea and aldehydes at 80 oC affords the corresponding compounds in high yields and in short reaction times using γ-Fe2O3@HAp-Ni2+. The catalyst can be readily isolated using an external magnet and no obvious loss of activity was observed when the catalyst was reused in seven consecutive runs. The mean size and the surface morphology of the nanoparticles were characterized by transmission electron microscopy, scanning electron microscope, vibrating sample magnetometry, X-ray powder diffraction and Fourier transform infrared techniques.

  13. FeCrO Nanoparticles as Anode Catalyst for Ethane Proton Conducting Fuel Cell Reactors to Coproduce Ethylene and Electricity

    Directory of Open Access Journals (Sweden)

    Jian-Hui Li

    2011-01-01

    Full Text Available Ethylene and electrical power are cogenerated in fuel cell reactors with FeCr2O4 nanoparticles as anode catalyst, La0.7Sr0.3FeO3- (LSF as cathode material, and BaCe0.7Zr0.1Y0.2O3- (BCZY perovskite oxide as proton-conducting ceramic electrolyte. FeCr2O4, BCZY and LSF are synthesized by a sol-gel combustion method. The power density increases from 70 to 240 mW cm−2, and the ethylene yield increases from about 14.1% to 39.7% when the operating temperature of the proton-conducting fuel cell reactor increases from 650∘C to 750∘C. The FeCr2O4 anode catalyst exhibits better catalytic performance than nanosized Cr2O3 anode catalyst.

  14. CoFe2O4 nanoparticles as a catalyst: synthesis of a forest of vertically aligned CNTs of uniform diameters by plasma-enhanced CVD

    International Nuclear Information System (INIS)

    Baliyan, Ankur; Fukuda, Takahiro; Hayasaki, Yasuhiro; Uchida, Takashi; Nakajima, Yoshikata; Hanajiri, Tatsuro; Maekawa, Toru

    2013-01-01

    Controlling actively the structures of carbon nanotubes such as the alignment, length, diameter, chirality and the number of walls still remains a crucial challenge. The properties of CNTs are highly structure sensitive and particularly dependent on the diameter and number of walls. In this brief communication, we synthesise monodisperse CoFe 2 O 4 nanoparticles of uniform diameters, i.e. 4.8 and 6.9 nm, which are modified with oleic acid as a catalyst for the growth of CNTs. We show that a forest of vertically aligned CNTs of uniform diameters and lengths can be grown using CoFe 2 O 4 nanoparticles. The internal diameters and lengths of CNTs grown using CoFe 2 O 4 nanoparticles of 4.8 and 6.9 nm diameters are, respectively, 4.4 and 6.2 nm and 10 and 15 μm. It is clearly shown that the number of walls of CNTs can be engineered changing the materials of the catalytic nanoparticles. The present results may well encourage further systematic studies on the growth of CNTs using various combinations of elements for the catalytic nanoparticles under different external conditions, which may provide not only the possibilities of controlling the properties of CNTs but also an insight into the nucleation and growth mechanisms.

  15. Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts

    Directory of Open Access Journals (Sweden)

    Anna Piskun

    2016-08-01

    Full Text Available γ-Valerolactone (GVL has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru, 90 °C, 45 bar of H2, 2 wt. % catalyst on LA. Eight monometallic catalysts were tested on carbon based(C, carbon nanotubes (CNT and inorganic supports (Al2O3, SiO2, TiO2, ZrO2, Nb2O5 and Beta-12.5. The best result was found for Ru/Beta-12.5 with almost quantitative LA conversion (94% and 66% of GVL yield after 2 h reaction. The remaining product was 4-hydroxypentanoic acid (4-HPA. Catalytic activity for a bimetallic RuPd/TiO2 catalyst was by far lower than for the monometallic Ru catalyst (9% conversion after 2 h. The effects of relevant catalyst properties (average Ru nanoparticle size, Brunauer-Emmett-Teller (BET surface area, micropore area and total acidity on catalyst activity were assessed.

  16. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    Science.gov (United States)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  17. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO

    Science.gov (United States)

    Alfonso, Dominic R.; Kauffman, Douglas; Matranga, Christopher

    2016-05-01

    Recent experimental studies have reported the electrochemical reduction of carbon dioxide (CO2) into CO at atomically precise negatively charged Au25- nanoclusters. The studies showed CO2 conversion at remarkably low overpotentials, but the exact mechanisms and nature of the active sites remain unclear. We used first-principles density functional theory and continuum solvation models to examine the role of the cluster during electrochemical CO2 reduction and analyze the free energies of proposed intermediate species. Contrary to previous assumptions, our results show that the fully ligand protected cluster is not an active CO2 reduction catalyst because formation of the crucial carboxyl intermediate required very high electrochemical potentials. Instead, our calculations suggest that the reduction process likely occurs on a dethiolated gold site, and adsorbed carboxyl intermediate formation was significantly stabilized at dethiolated gold sites. These findings point to the crucial role of exposed metal sites during electrochemical CO2 reduction at gold nanocluster catalysts.

  18. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Akito Takashima

    2014-07-01

    Full Text Available The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification.

  19. Activation of heterogenised rhodium carbonylation catalyst infrared spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Scurrell, M S

    1977-01-01

    In a study related to heterogeneous versions of homogeneous catalysts active in carbonylation of methanol to acetic acid, the catalyst consisted of 1Vertical Bar3< rhodium as rhodium trichloride supported on 13X zeolite and evacuated at 437/sup 0/K. Contacting the catalyst with carbon monoxide caused two bands, at 2025 and 2095 cm/sup -1/, to appear. Contact with a mixture of carbon monoxide and methyl iodide (the usual promoter) caused bands at 2085, 1710, 1440, and 1370 cm/sup -1/ to appear; the first two correspond to the bands at 2062 and 1711 cm/sup -1/ in homogeneous catalysts attributed to the formation of Rh(CH/sup 3/CO)(CO)X/sup 2/I/sup -/. Spectra.

  20. Study of the catalytic activity of supported technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhailenko, I.E.; Pokorovskaya, O.V.

    1985-01-01

    The radioactive d metal 43 Tc 99 has catalytic properties in the synthesis of ammonia. For the purpose of reducing the quantity of the radioactive metal and of increasing the specific surface, the active component was applied to BaTiO 3 and gamma-Al 2 O 3 supports. This paper uses charcoal as a support and a table presents the catalytic activity of the samples during the synthesis of ammonia. X-ray diffractometric investigation of the catalysts was carried out with the use of Cu K /SUB alpha/ radiation. It is shown that the catalysts. The values of the specific rate constants of technetium in the catalysts. The values of the specific rate constants remain practically constant for all the catalyst samples studied, attesting to the absence of a specific metal-support interaction during the synthesis of ammonia

  1. Evaluating the NOx Storage Catalysts (NSC Aging: A Preliminary Analytical Study with Electronic Microscopy

    Directory of Open Access Journals (Sweden)

    Leonarda Bellebuono

    2017-10-01

    Full Text Available This paper describes an expeditious and reliable method for determining the thermal effects in a static condition of commercial NOx storage catalysts (NSCs using scanning electron microscopy with an energy dispersive X-ray analytical system (SEM/EDS. It is worth remarking that possible changes in the morphology and in the elemental composition of the catalyst may be considered as the most important causes of the lower conversion of NOx. The information attained in this work indicates that Pt nanoparticle sintering is strongly increased by the oxygen exposure, and this can be considered a very useful preliminary investigation for the studies already present in the literature on the efficiency of NSCs.

  2. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.

    Science.gov (United States)

    An, Kwangjin; Zhang, Qiao; Alayoglu, Selim; Musselwhite, Nathan; Shin, Jae-Youn; Somorjai, Gabor A

    2014-08-13

    Designing catalysts with high thermal stability and resistance to deactivation while simultaneously maintaining their catalytic activity and selectivity is of key importance in high-temperature reforming reactions. We prepared Pt nanoparticle catalysts supported on either mesoporous SiO2 or TiO2. Sandwich-type Pt core@shell catalysts (SiO2@Pt@SiO2 and SiO2@Pt@TiO2) were also synthesized from Pt nanoparticles deposited on SiO2 spheres, which were encapsulated by either mesoporous SiO2 or TiO2 shells. n-Hexane reforming was carried out over these four catalysts at 240-500 °C with a hexane/H2 ratio of 1:5 to investigate thermal stability and the role of the support. For the production of high-octane gasoline, branched C6 isomers are more highly desired than other cyclic, aromatic, and cracking products. Over Pt/TiO2 catalyst, production of 2-methylpentane and 3-methylpentane via isomerization was increased selectively up to 420 °C by charge transfer at Pt-TiO2 interfaces, as compared to Pt/SiO2. When thermal stability was compared between supported catalysts and sandwich-type core@shell catalysts, the Pt/SiO2 catalyst suffered sintering above 400 °C, whereas the SiO2@Pt@SiO2 catalyst preserved the Pt nanoparticle size and shape up to 500 °C. The SiO2@Pt@TiO2 catalyst led to Pt nanoparticle sintering due to incomplete protection of the TiO2 shells during the reaction at 500 °C. Interestingly, over the Pt/TiO2 catalyst, the average size of Pt nanoparticles was maintained even after 500 °C without sintering. In situ ambient pressure X-ray photoelectron spectroscopy demonstrated that the Pt/TiO2 catalyst did not exhibit TiO2 overgrowth on the Pt surface or deactivation by Pt sintering up to 600 °C. The extraordinarily high stability of the Pt/TiO2 catalyst promoted high reaction rates (2.0 μmol · g(-1) · s(-1)), which was 8 times greater than other catalysts and high isomer selectivity (53.0% of C6 isomers at 440 °C). By the strong metal-support interaction

  3. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  4. Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton

    Science.gov (United States)

    Priyanka, N.; Venkatachalam, P.

    2016-12-01

    This study describes the bioengineering of phycomolecule-coated zinc oxide nanoparticles (ZnO NPs) as a novel type of plant-growth-enhancing micronutrient catalyst aimed at increasing crop productivity. The impact of natural engineered phycomolecule-loaded ZnO NPs on plant growth characteristics and biochemical changes in Gossypium hirsutum L. plants was investigated after 21 days of exposure to a wide range of concentrations (0, 25, 50, 75, 100, and 200 mg l-l). ZnO NP exposure significantly enhanced growth and biomass by 125.4% and 132.8%, respectively, in the treated plants compared to the untreated control. Interestingly, photosynthetic pigments, namely, chlorophyll a (134.7%), chlorophyll b (132.6%), carotenoids (160.1%), and total soluble protein contents (165.4%) increased significantly, but the level of malondialdehyde (MDA) content (73.8%) decreased in the ZnO-NP-exposed plants compared to the control. The results showed that there were significant increases in superoxide dismutase (SOD, 267.8%) and peroxidase (POX, 174.5%) enzyme activity, whereas decreased catalase (CAT, 83.2%) activity was recorded in the NP-treated plants compared to the control. ZnO NP treatment did not show distinct alterations (the presence or absence of DNA) in a random amplified polymorphic DNA (RAPD) banding pattern. These results suggest that bioengineered ZnO NPs coated with natural phycochemicals display different biochemical effects associated with enhanced growth and biomass in G. hirsutum. Our results imply that ZnO NPs have tremendous potential in their use as an effective plant-growth-promoting micronutrient catalyst in agriculture.

  5. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  6. Ag-Cu Bimetallic Nanoparticles Prepared by Microemulsion Method as Catalyst for Epoxidation of Styrene

    Directory of Open Access Journals (Sweden)

    Hong-Kui Wang

    2012-01-01

    Full Text Available Ag/Cu bimetallic nanocatalysts supported on reticulate-like γ-alumina were prepared by a microemulsion method using N2H4·H2O as the reducing agent. The catalysts were activated by calcination followed with hydrogen reduction at 873K, and the properties were confirmed using various characterization techniques. Compared with metal oxides particles, Ag-Cu particles exhibited smaller sizes (<5 nm after calcination in H2 at 873K. XPS results indicated that the binding energies changed with the Ag/Cu ratios, suggesting that increasing the copper content gave both metals a greater tendency to lose electrons. Furthermore, Ag-Cu bimetallic nanoparticles supported on γ-alumina showed better catalytic activity on the epoxidation of styrene as compared with the corresponding monometallic silver or copper. The styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6% appeared at Ag/Cu molar ratio of 1/1 because of the maximum interaction between silver and copper.

  7. Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Jao, Chi-Yu; Chuang, Farn-Yih; Chen, Fang-Yi

    2017-01-01

    Highlights: • Electrochemical process can purify the urea-rich wastewater, producing hydrogen gas. • Carbon-encapsulated nickel iron nanoparticles (CE-NiFe) are prepared by pyrolysis. • An ultra-thin layer of CE-NiFe nanoparticles is attached to the 3D Ni foam. • CE-NiFe nanoparticles escalate both the urea electrolysis and hydrogen evolution. - Abstract: A cyanide-bridged bimetallic coordination polymer, nickel hexacyanoferrate, could be pyrolyzed to form carbon-encapsulated nickel-iron (CE-NiFe) nanoparticles. The formation of nitrogen-doped spherical carbon shell with ordered mesoporous structure prevented the structural damage of catalyst cores and allowed the migration and diffusion of electrolyte into the hollow carbon spheres. An ultra-thin layer of CE-NiFe nanoparticles could be tightly attached to the three-dimensional macroporous nickel foam (NF) by electrophoretic deposition. The CE-NiFe nanoparticles could lower the onset potential and increase the current density in anodic urea electrolysis and cathodic hydrogen production as compared with bare NF. Macroporous NF substrate was very useful for the urea electrolysis and hydrogen production, which allowed for fast transport of electron, electrolyte, and gas products. The superior electrocatalytic ability of CE-NiFe/NF electrode in urea oxidation and water reduction made it favorable for versatile applications such as water treatment, hydrogen generation, and fuel cells.

  8. Nickel nanoparticles-chitosan composite coated cellulose filter paper: An efficient and easily recoverable dip-catalyst for pollutants degradation.

    Science.gov (United States)

    Kamal, Tahseen; Khan, Sher Bahadar; Asiri, Abdullah M

    2016-11-01

    In this report, we used cellulose filter paper (FP) as high surface area catalyst supporting green substrate for the synthesis of nickel (Ni) nanoparticles in thin chitosan (CS) coating layer and their easy separation was demonstrated for next use. In this work, FP was coated with a 1 wt% CS solution onto cellulose FP to prepare CS-FP as an economical and environment friendly host material. CS-FP was put into 0.2 M NiCl 2 aqueous solution for the adsorption of Ni 2+ ions by CS coating layer. The Ni 2+ adsorbed CS-FP was treated with 0.1 M NaBH 4 aqueous solution to convert the ions into nanoparticles. Thus, we achieved Ni nanoparticles-CS composite through water based in-situ preparation process. Successful Ni nanoparticles formations was assessed by FESEM and EDX analyses. FTIR used to track the interactions between nanoparticles and host material. Furthermore, we demonstrated that the nanocomposite displays an excellent catalytic activity and reusability in three reduction reactions of toxic compounds i.e. conversion of 4-nitrophenol to 4-aminophenol, 2-nitrophenol to 2-aminophenol, and methyl orange dye reduction by NaBH 4 . Such a fabrication process of Ni/CS-FP may be applicable for the immobilization of other metal nanoparticles onto FP for various applications in catalysis, sensing, and environmental sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  10. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low‐temperature fuel cells. A novel type of catalysts prepared by high‐pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting...

  11. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  12. Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO2.

    Science.gov (United States)

    Jhong, Huei-Ru Molly; Tornow, Claire E; Kim, Chaerin; Verma, Sumit; Oberst, Justin L; Anderson, Paul S; Gewirth, Andrew A; Fujigaya, Tsuyohiko; Nakashima, Naotoshi; Kenis, Paul J A

    2017-11-17

    Multiple approaches will be needed to reduce the atmospheric CO 2 levels, which have been linked to the undesirable effects of global climate change. The electroreduction of CO 2 driven by renewable energy is one approach to reduce CO 2 emissions while producing chemical building blocks, but current electrocatalysts exhibit low activity and selectivity. Here, we report the structural and electrochemical characterization of a promising catalyst for the electroreduction of CO 2 to CO: Au nanoparticles supported on polymer-wrapped multiwall carbon nanotubes. This catalyst exhibits high selectivity for CO over H 2 : 80-92 % CO, as well as high activity: partial current density for CO as high as 160 mA cm -2 . The observed high activity, originating from a high electrochemically active surface area (23 m 2  g -1 Au), in combination with the low loading (0.17 mg cm -2 ) of the highly dispersed Au nanoparticles underscores the promise of this catalyst for efficient electroreduction of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.

    Science.gov (United States)

    So, Man-Ho; Liu, Yungen; Ho, Chi-Ming; Che, Chi-Ming

    2009-10-05

    Selective oxidation of amines using oxygen as terminal oxidant is an important area in green chemistry. In this work, we describe the use of graphite-supported gold nanoparticles (AuNPs/C) to catalyze aerobic oxidation of cyclic and acyclic benzylic amines to the corresponding imines with moderate-to-excellent substrate conversions (43-100%) and product yields (66-99%) (19 examples). Oxidation of N-substituted 1,2,3,4-tetrahydroisoquinolines in the presence of aqueous NaHCO3 solution gave the corresponding amides in good yields (83-93%) with high selectivity (up to amide/enamide=93:4) (6 examples). The same protocol can be applied to the synthesis of benzimidazoles from the reaction of o-phenylenediamines with benzaldehydes under aerobic conditions (8 examples). By simple centrifugation, AuNPs/C can be recovered and reused for ten consecutive runs for the oxidation of dibenzylamine to N-benzylidene(phenyl)methanamine without significant loss of catalytic activity and selectivity. This protocol "AuNPs/C+O2" can be scaled to the gram scale, and 8.9 g (84 % isolated yield) of 3,4-dihydroisoquinoline can be obtained from the oxidation of 10 g 1,2,3,4-tetrahydroisoquinoline in a one-pot reaction. Based on the results of kinetic studies, radical traps experiment, and Hammett plot, a mechanism involving the hydrogen-transfer reaction from amine to metal and oxidation of M-H is proposed.

  14. Thermally Stable TiO2 - and SiO2 -Shell-Isolated Au Nanoparticles for In Situ Plasmon-Enhanced Raman Spectroscopy of Hydrogenation Catalysts.

    Science.gov (United States)

    Hartman, Thomas; Weckhuysen, Bert M

    2018-03-12

    Raman spectroscopy is known as a powerful technique for solid catalyst characterization as it provides vibrational fingerprints of (metal) oxides, reactants, and products. It can even become a strong surface-sensitive technique by implementing shell-isolated surface-enhanced Raman spectroscopy (SHINERS). Au@TiO 2 and Au@SiO 2 shell-isolated nanoparticles (SHINs) of various sizes were therefore prepared for the purpose of studying heterogeneous catalysis and the effect of metal oxide coating. Both SiO 2 - and TiO 2 -SHINs are effective SHINERS substrates and thermally stable up to 400 °C. Nano-sized Ru and Rh hydrogenation catalysts were assembled over the SHINs by wet impregnation of aqueous RuCl 3 and RhCl 3 . The substrates were implemented to study CO adsorption and hydrogenation under in situ conditions at various temperatures to illustrate the differences between catalysts and shell materials with SHINERS. This work demonstrates the potential of SHINS for in situ characterization studies in a wide range of catalytic reactions. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect

    International Nuclear Information System (INIS)

    Wojcieszak, R.

    2006-06-01

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (γ-Al 2 O 3 , amorphous or crystallized SiO 2 , Nb 2 O 5 , CeO 2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N 2 , FTIR and FTIR-Pyridine, TEM, STEM, EDS, H 2 -TPR, H 2 -adsorption, H 2 -TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO 2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  16. Preparation of Rh/Ag bimetallic nanoparticles as effective catalyst for hydrogen generation from hydrolysis of KBH4

    Science.gov (United States)

    Huang, Liang; Jiao, Chengpeng; Wang, Liqiong; Huang, Zili; Liang, Feng; Liu, Simin; Wang, Yuhua; Zhang, Haijun; Zhang, Shaowei

    2018-01-01

    ISOBAM-104 protected Rh/Ag bimetallic nanoparticles (NPs) with average diameter less than 3.0 nm were synthesized by a co-reduction method. Ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM and x-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, particle size, and electronic structure of the prepared bimetallic NPs. The catalytic activities of prepared bimetallic NPs for hydrogen generation from hydrolysis of a basic KBH4 solution were evaluated in detail. The results indicated that as-prepared Rh/Ag bimetallic NPs showed a higher catalytic activity than corresponding monometallic NPs. Among all the monometallic NPs and bimetallic NPs, Rh80Ag20 bimetallic NPs exhibited the highest catalytic activity with a value of 6010 mol-H2·h-1·mol-catalyst-1 at pH = 12 and 303 K. The high catalytic activities of Rh/Ag bimetallic NPs could be attributed to presence of negatively charged Rh atoms and positively charged Ag atoms, which is supported by the results of XPS and density functional theory calculation. Based on the kinetic study, the apparent activation energy for the hydrolysis reaction of the basic KBH4 solution catalyzed by Rh80Ag20 bimetallic NPs was about 47.0 ± 3.9 kJ mol-1.

  17. Biofunctionalized Hybrid Magnetic Gold Nanoparticles as Catalysts for Photothermal Ablation of Colorectal Liver Metastases.

    Science.gov (United States)

    White, Sarah B; Kim, Dong-Hyun; Guo, Yang; Li, Weiguo; Yang, Yihe; Chen, Jeane; Gogineni, Venkateswara R; Larson, Andrew C

    2017-12-01

    Purpose To demonstrate that anti-MG1 conjugated hybrid magnetic gold nanoparticles (HNPs) act as a catalyst during photothermal ablation (PTA) of colorectal liver metastases, and thus increase ablation zones. Materials and Methods All experiments were performed with approval of the institutional animal care and use committee. Therapeutic and diagnostic multifunctional HNPs conjugated with anti-MG1 monoclonal antibodies were synthesized, and the coupling efficiency was determined. Livers of 19 Wistar rats were implanted with 5 × 10 6 rat colorectal liver metastasis cell line cells. The rats were divided into three groups according to injection: anti-MG1-coupled HNPs (n = 6), HNPs only (n = 6), and cells only (control group, n = 7). Voxel-wise R2 and R2* magnetic resonance (MR) imaging measurements were obtained before, immediately after, and 24 hours after injection. PTA was then performed with a fiber-coupled near-infrared (808 nm) diode laser with laser power of 0.56 W/cm 2 for 3 minutes, while temperature changes were measured. Tumors were assessed for necrosis with hematoxylin-eosin staining. Organs were analyzed with inductively coupled plasma mass spectrometry to assess biodistribution. Therapeutic efficacy and tumor necrosis area were compared by using a one-way analysis of variance with post hoc analysis for statistically significant differences. Results The coupling efficiency was 22 μg/mg (55%). Significant differences were found between preinfusion and 24-hour postinfusion measurements of both T2 (repeated measures analysis of variance, P = .025) and T2* (P the anti-MG1 HNP and HNP-only groups (P = .034). Mean temperature ± standard deviation with PTA in the anti-MG1-coated HNP, HNP, and control groups was 50.2°C ± 7.8, 51°C ± 4.4, and 39.5°C ± 2.0, respectively. Inductively coupled plasma mass spectrometry revealed significant tumor targeting and splenic sequestration. Mean percentages of tumor necrosis in the anti-MG1-coated HNP, HNP, and

  18. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    Science.gov (United States)

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  19. Effect of nanoparticle metal composition: mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts

    Science.gov (United States)

    Blanckenberg, A.; Kotze, G.; Swarts, A. J.; Malgas-Enus, R.

    2018-02-01

    A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, ( M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.

  20. Water-dispersable hybrid Au-Pd nanoparticles as catalysts in ethanol oxidation, aqueous phase Suzuki-Miyaura and Heck reactions

    KAUST Repository

    Song, Hyon Min

    2012-01-01

    The catalytic activities of water-dispersable Au@Pd core-shell nanoparticles (NPs) and Au-Pd alloy NPs were examined. There is growing interest in Au-Pd hybridized NPs in a supported matrix or non-supported forms as catalysts in various reactions that are not limited to conventional Pd-related reactions. Four different Au@Pd core-shell NPs in this study were prepared at room temperature with help from the emulsion phase surrounding the Au core NPs. Au-Pd alloy NPs were prepared over 90 °C, and underwent phase transfer to aqueous medium for their catalytic use. Au@Pd core-shell NPs show catalytic activity in ethanol oxidation reactions as electrocatalysts, and both core-shell and alloy NPs are good to excellent catalysts in various Suzuki-Miyaura and Heck reactions as heterogeneous catalysts. Specifically, Au@Pd core-shell NPs with sharp branched arms show the highest yield in the reactions tested in this study. A relatively small amount (0.25 mol%) was used throughout the catalytic reactions. © 2012 The Royal Society of Chemistry.

  1. Synthesis of Fe3O4/Pt Nanoparticles Decorated Carbon Nano tubes and Their Use as Magnetically Recyclable Catalysts

    International Nuclear Information System (INIS)

    He, H.; Gao, C.

    2011-01-01

    We report a facile approach to prepare Fe 3 O 4 /Pt nanoparticles decorated carbon nano tubes (CNTs). The superparamagnetic Fe 3 O 4 nanoparticles with average size of 45 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl 3 . The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe 3 O 4 nanoparticles and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanoparticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe 3 O 4 /Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.

  2. Chitosan supported bimetallic Pd/Co nanoparticles as a heterogeneous catalyst for the reduction of nitroaromatics to amines

    Directory of Open Access Journals (Sweden)

    Sajjad Keshipour

    2017-01-01

    Full Text Available A new bimetallic nanocomposite of chitosan was prepared. Pd and Co nanoparticles were deposited on chitosan to produce a new heterogeneous recyclable catalyst for use in the bimetallic catalytic reduction reaction. The catalyst was characterized with common analysis methods for nanocomposites including Energy Dispersive X-Ray Spectroscopy, X-Ray Diffraction pattern, Thermal Gravimetric Analysis, Flame Atomic Absorption Spectroscopy and Scanning Electron Microscopy, and applied in the reduction reaction of nitroaromatics using NaBH4 at room temperature. The bimetallic system gave good results compared to each of the applied metals. Various aromatic amines and diamines were used in the reduction reaction. The aromatic amines were obtained as the sole product of the reduction reaction with 15 mol% Pd and 12 mol% Co during 2h. This reaction had some advantages such as mild reaction conditions, high yield, green solvent, and a recyclable catalyst. Also, the recovered catalyst was applicable in the reduction reaction without a significant decrease in the activity for up to six times.

  3. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.

  4. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Sun, Cheng-Jun; Brown, Dennis E.; Zhang, Liqiang; Yang, Feng; Zhao, Hairui; Wang, Yue; Ma, Xiaohui; Zhang, Xin; Ren, Yang

    2016-01-01

    Herein, we first put forward a smart strategy to in situ fabricate Ru nanoparticle (NP) inserted porous carbon nanofibers by one-pot conversion of Ru-functionalized metal organic framework fibers. Such fiber precursors are skillfully constructed by cooperative assembly of different proportional RuCl3 and Zn(Ac)2·2H2O along with trimesic acid (H3BTC) in the presence of N,N-dimethylformamide. The following high-temperature pyrolysis affords uniform and evenly dispersed Ru NPs (ca. 12-16 nm), which are firmly inserted into the hierarchically porous carbon nanofibers formed simultaneously. The resulting Ru-carbon nanofiber (Ru-CNF) catalysts prove to be active towards the liquid-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL), a biomass-derived platform molecule with wide applications in the preparation of renewable chemicals and liquid transportation fuels. The optimal GVL yield of 96.0% is obtained, corresponding to a high activity of 9.23 molLAh–1gRu–1, 17 times of that using the commercial Ru/C catalyst. Moreover, the Ru-CNF catalyst is extremely stable, and can be cycled up to 7 times without significant loss of reactivity. Our strategy demonstrated here reveals new possibilities to make proficient metal catalysts, and provides a general way to fabricate metal-carbon nanofiber composites available for other applications.

  5. Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration

    International Nuclear Information System (INIS)

    Jusoh, N.W.C.; Jalil, A.A.; Triwahyono, S.; Karim, A.H.; Salleh, N.F.; Annuar, N.H.R.; Jaafar, N.F.; Firmansyah, M.L.; Mukti, R.R.; Ali, M.W.

    2015-01-01

    Graphical abstract: - Highlights: • Hierarchical-like structure of MSN was formed in alkaline aqueous electrolyte. • Desilication generated abundant silanol groups and oxygen vacancies. • Zn 2+ inserted to external –OH groups of the MSN to form Si–O–Zn bonds. • Oxygen vacancies trapped electrons to enhance electron–hole pair separation. • Hydroxyl radical generated from three main sources greatly influenced photoactivity. - Abstract: ZnO-incorporated mesostructured silica nanoparticles (MSN) catalysts (ZM) were prepared by the introduction of Zn ions into the framework of MSN via a simple electrochemical system in the presence of various concentrations of NH 4 OH aqueous solution. The physicochemical properties of the catalysts were studied by XRD, 29 Si MAS NMR, nitrogen adsorption–desorption, FE-SEM, TEM, FTIR, and photoluminescence spectroscopy. Characterization results demonstrated that the alkaline aqueous electrolyte simply generated abundant silanol groups on the surface of the catalysts as a consequence of desilication to form the hierarchical-like structure of the MSN. Subsequent restructuring of the silica network by the creation of oxygen vacancies and formation of Si–O–Zn during the electrolysis, as well as formation of new Si–O–Si bonds during calcination seemed to be the main factors that enhanced the catalytic performance of photodecolorization of methyl orange. A ZM prepared in the presence of 1.0 M NH 4 OH (ZM-1.0) was determined to be the most effective catalyst. The catalyst displays a higher first-order kinetics rate of 3.87 × 10 −1 h −1 than unsupported ZnO (1.13 × 10 −1 h −1 ) that prepared under the same conditions in the absence of MSN. The experiment on effect of scavengers showed that hydroxyl radicals generated from the three main sources; reduced O 2 at the conduction band, decomposed water at the valence band and irradiated H 2 O 2 in the solution, are key factors that influenced the reaction. It is

  6. Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration

    Energy Technology Data Exchange (ETDEWEB)

    Jusoh, N.W.C. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Jalil, A.A., E-mail: aishah@cheme.utm.my [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Triwahyono, S.; Karim, A.H. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Salleh, N.F. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Annuar, N.H.R.; Jaafar, N.F.; Firmansyah, M.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Mukti, R.R. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No 10, Bandung 40132 (Indonesia); Ali, M.W. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-03-01

    Graphical abstract: - Highlights: • Hierarchical-like structure of MSN was formed in alkaline aqueous electrolyte. • Desilication generated abundant silanol groups and oxygen vacancies. • Zn{sup 2+} inserted to external –OH groups of the MSN to form Si–O–Zn bonds. • Oxygen vacancies trapped electrons to enhance electron–hole pair separation. • Hydroxyl radical generated from three main sources greatly influenced photoactivity. - Abstract: ZnO-incorporated mesostructured silica nanoparticles (MSN) catalysts (ZM) were prepared by the introduction of Zn ions into the framework of MSN via a simple electrochemical system in the presence of various concentrations of NH{sub 4}OH aqueous solution. The physicochemical properties of the catalysts were studied by XRD, {sup 29}Si MAS NMR, nitrogen adsorption–desorption, FE-SEM, TEM, FTIR, and photoluminescence spectroscopy. Characterization results demonstrated that the alkaline aqueous electrolyte simply generated abundant silanol groups on the surface of the catalysts as a consequence of desilication to form the hierarchical-like structure of the MSN. Subsequent restructuring of the silica network by the creation of oxygen vacancies and formation of Si–O–Zn during the electrolysis, as well as formation of new Si–O–Si bonds during calcination seemed to be the main factors that enhanced the catalytic performance of photodecolorization of methyl orange. A ZM prepared in the presence of 1.0 M NH{sub 4}OH (ZM-1.0) was determined to be the most effective catalyst. The catalyst displays a higher first-order kinetics rate of 3.87 × 10{sup −1} h{sup −1} than unsupported ZnO (1.13 × 10{sup −1} h{sup −1}) that prepared under the same conditions in the absence of MSN. The experiment on effect of scavengers showed that hydroxyl radicals generated from the three main sources; reduced O{sub 2} at the conduction band, decomposed water at the valence band and irradiated H{sub 2}O{sub 2} in the solution

  7. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  8. Synthesis and Characterization of Tin (IV Tungstate Nanoparticles – A Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Manoj Sadanandan

    2012-12-01

    Full Text Available Tin (IV tungstate, a tetravalent metal acid salt was synthesized in the nanoform by chemical coprecipitation method using EDTA as capping agent. The material was found to be stable in mineral acids, bases and organic solvents except  in HF and aquaregia. The material was characterized using EDS, TG/DTA, FTIR, XRD, SEM, HRTEM and BET surface area measurement. The molecular formula of the compound is 2SnO2 3WO3.5H2O determined from elemental analysis using TG/DTA. Surface morphology and particle size were obtained using SEM and HRTEM. The surface area was found to be 205-225m2/g. The Na+ exchange capacity found to be 3.8 meq/g, indicates the presence of surface hydroxyl group and hence the presence of Bronsted acid sites. The catalytic activity of the material was tested by using esterification and oxidation as model reactions. For the esterification of different alcohols, the percentage yield was found to be high for n-alcohol compared to isomeric alcohols. Oxidation of benzyl alcohol gives benzaldehyde and benzoic acid as the only products. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 12nd June 2012, Revised: 23rd July 2012, Accepted: 29th July 2012[How to Cite: S. Manoj, R. Beena, (2012. Synthesis and Characterization of tin(IV Tungstate Nanoparticles – A Solid Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 105-111. doi:10.9767/bcrec.7.2.3622.105-111] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3622.105-111 ] | View in 

  9. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate.

    Science.gov (United States)

    Brett, Gemma L; Miedziak, Peter J; He, Qian; Knight, David W; Edwards, Jennifer K; Taylor, Stuart H; Kiely, Christopher J; Hutchings, Graham J

    2013-10-01

    The oxidation of 1,4-butanediol and butyrolactone have been investigated by using supported gold, palladium and gold-palladium nanoparticles. The products of such reactions are valuable chemical intermediates and, for example, can present a viable pathway for the sustainable production of polymers. If both gold and palladium were present, a significant synergistic effect on the selective formation of dimethyl succinate was observed. The support played a significant role in the reaction, with magnesium hydroxide leading to the highest yield of dimethyl succinate. Based on structural characterisation of the fresh and used catalysts, it was determined that small gold-palladium nanoalloys supported on a basic Mg(OH)2 support provided the best catalysts for this reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Application of magnetic nanoparticle MnFe_2O_4 type as a catalyst in esterification reaction

    International Nuclear Information System (INIS)

    Pereira, K.R. de O.; Barros, A.B. de S.; Moura, T.F.B. de; Vilar, E.; Dantas, J.; Costa, A. C. F. de M.

    2016-01-01

    The interest in obtaining renewable energy arouses the interest of researchers in the development of biofuels to replace conventional fuels. This work aimed to obtain magnetic nanoparticle MnFe_2O_4 and evaluate their performance as a catalyst in esterification reaction to obtain biodiesel. The sample was synthesized through the combustion reaction and characterized by XRD, SEM and BET. The esterification reaction, the methyl ethyl route was conducted in a high pressure reactor at 180 ° C for 1 hour with oil molar ratio 1:12 alcohol with 2% catalyst. The results indicate the formation of the phase MnFe_2O_4 and agglomerate in the form of irregular plate, with particles bound strongly to the surface of the agglomerates. The catalytic tests showed that sample was active for the reaction of esterification methyl ethyl route, with conversions of 52% and 48%, respectively. (author)

  11. Preparation and characterization of bi-metallic nanoparticle catalyst having better anti-coking properties using reverse micelle technique

    Science.gov (United States)

    Zacharia, Thomas

    Energy needs are rising on an exponential basis. The mammoth energy sources like coal, natural gas and petroleum are the cause of pollution. The large outcry for an alternate energy source which is environmentally friendly and energy efficient is heard during the past few years. This is where “Clean-Fuel” like hydrogen gained its ground. Hydrogen is mainly produced by steam methane reforming (SMR). An alternate sustainable process which can reduce the cost as well as eliminate the waste products is Tri-reforming. In both these reforming processes nickel is used as catalyst. However as the process goes on the catalyst gets deactivated due to coking on the catalytic surface. This goal of this thesis work was to develop a bi-metallic catalyst which has better anti-coking properties compared to the conventional nickel catalyst. Tin was used to dope nickel. It was found that Ni3Sn complex around a core of Ni is coking resistant compared to pure nickel catalyst. Reverse micelle synthesis of catalyst preparation was used to control the size and shape of catalytic particles. These studies will benefit researches on hydrogen production and catalyst manufactures who work on different bi-metallic combinations.

  12. Steam reforming of methanol over oxide decorated nanoporous gold catalysts: a combined in situ FTIR and flow reactor study.

    Science.gov (United States)

    Shi, J; Mahr, C; Murshed, M M; Gesing, T M; Rosenauer, A; Bäumer, M; Wittstock, A

    2017-03-29

    Methanol as a green and renewable resource can be used to generate hydrogen by reforming, i.e., its catalytic oxidation with water. In combination with a fuel cell this hydrogen can be converted into electrical energy, a favorable concept, in particular for mobile applications. Its realization requires the development of novel types of structured catalysts, applicable in small scale reactor designs. Here, three different types of such catalysts were investigated for the steam reforming of methanol (SRM). Oxides such as TiO 2 and CeO 2 and mixtures thereof (Ce 1 Ti 2 O x ) were deposited inside a bulk nanoporous gold (npAu) material using wet chemical impregnation procedures. Transmission electron and scanning electron microscopy reveal oxide nanoparticles (1-2 nm in size) abundantly covering the strongly curved surface of the nanoporous gold host (ligaments and pores on the order of 40 nm in size). These catalysts were investigated in a laboratory scaled flow reactor. First conversion of methanol was detected at 200 °C. The measured turn over frequency at 300 °C of the CeO x /npAu catalyst was 0.06 s -1 . Parallel investigation by in situ infrared spectroscopy (DRIFTS) reveals that the activation of water and the formation of OH ads are the key to the activity/selectivity of the catalysts. While all catalysts generate sufficient OH ads to prevent complete dehydrogenation of methanol to CO, only the most active catalysts (e.g., CeO x /npAu) show direct reaction with formic acid and its decomposition to CO 2 and H 2 . The combination of flow reactor studies and in operando DRIFTS, thus, opens the door to further development of this type of catalyst.

  13. Selective deposition of catalyst nanoparticles using the gravitational force for carbon nanotubes interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Yoon; Lee, Hyun-Chul; Lee, Jong-Hak; Park, Jae-Hong; Alegaonkar, Prashant S. [Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, 300 Chunchun-dong, Jangan-Gu, Suwon, 440-746 (Korea, Republic of); Yoo, Ji-Beom [Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, 300 Chunchun-dong, Jangan-Gu, Suwon, 440-746 (Korea, Republic of)], E-mail: jbyoo@skku.ac.kr; Han, In-Taek; Kim, Ha-Jin; Jin, Yong-Wan; Kim, Jong-Min [Samsung Advanced Institute of Technology, Mt. 14-1, Nongseo-dong, Giheung-gu, Younggin-si Gyunggi-do, 449-712 (Korea, Republic of); Kwon, Kee-Won [Department of Semiconducting System, Sungkyunkwan University (Korea, Republic of)

    2008-04-01

    The photolithography process has generally been used for the making of catalyst layers used for the synthesis of CNTs due to its comparative ease. However, this method results in the formation of undesirable catalyst particles, which deteriorate the quality of the devices. Therefore, we tried to form a catalyst layer without using any lift-off or wet etching process, especially for the formation of carbon nanotube interconnects. After spin coating the samples, which were previously fabricated with several vias, with an iron-acetate solution, the catalyst layer was pulled down into the bottom of the holes through the force of gravity. We were able to remove the catalyst layer which was coated over undesirable areas, by TMAH (tetramethylammonium hydroxide, N(CH{sub 3}){sub 4}OH) treatment. After the catalyst deposition process, we synthesized CNTs and observed them by scanning electron microscopy (SEM)

  14. Silver nanoparticles fabricated hybrid microgels for optical and catalytic study

    International Nuclear Information System (INIS)

    Siddiq, M.; Shah, L.A.; Ambreen, J.; Sayed, M.

    2016-01-01

    In this work different compositions of smart poly(N-isopropylacrylamide-vinylacetic acid-acrylamide) poly(NIPAM-VAA-AAm) microgels with different vinyl acetic acid (VAA) contents have been synthesized successfully by conventional free radical emulsion polymerization. Silver metal nanoparticles (NPs) were fabricated inside the microgels network by insitu reduction method using sodium borohydride (NaBH/sub 4/) as reducing agent. The confirmation of polymerization and entrapment of metal NPs were carried out by FT-IR spectroscopy. Dynamic laser light scattering (DLLS) technique was used for calculating average hydrodynamic diameter of microgel particles. The optical properties of silver NPs were studied by UV-Visible spectroscopy at various conditions of pH and temperature. The hybrid microgels show red shift and increase in intensity of surface plasmon resonance (SPR) band with the increase in temperature and decrease in pH of the medium. The synthesized materials were used as catalysts in the reduction process and it was found that the catalyst composed of high amount of VAA shows enhanced catalytic activity. The apparent rate constant (k/sub app/) for catalyst composed of 12 percent VAA was doubled (5.6*10/sup -3/ sec/sup -1/) as compared to 4 percent VAA containing catalyst (2.8*10/sup -3/ sec/sup -1/). (author)

  15. Preparation of Mo/Al2O3 Sulfide Catalysts Modified by Ir Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Cinibulk, Josef; Vít, Zdeněk

    2002-01-01

    Roč. 143, - (2002), s. 443-451 ISSN 0167-2991. [International Symposium Scientific Bases for the Preparation of Heterogeneous Catalysts /8./. Louvain-la-Neuve, 09.09.2002-12.09.2002] R&D Projects: GA AV ČR IAA4072103 Keywords : catalysts modified * sulfide catalysts * Mo/Al2O3 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.468, year: 2002

  16. Stabilization of supported platinum nanoparticles on γ-alumina catalysts by addition of tungsten

    International Nuclear Information System (INIS)

    Contreras, Jose L.; Fuentes, Gustavo A.; Zeifert, Beatriz; Salmones, Jose

    2009-01-01

    The thermal stabilization of Al 2 O 3 using W 6+ ions has been found useful to the synthesis of Pt/Al 2 O 3 catalysts. The simultaneous and sequential methods were used to study the effect of W 6+ upon Pt/γ-Al 2 O 3 reducibility, Pt dispersion, and benzene hydrogenation. The W/Pt atomic ratios were from 0.49 to 12.4. In the first method we found that the W 6+ ions delayed reduction of a fraction of Pt 4+ atoms beyond 773 K. At the same time, W 6+ inhibited sintering of the metallic crystallites once they were formed on the surface. For the sequential sample with a W/Pt atomic ratio of 3.28 W 6+ did not inhibit the H 2 reduction of Pt oxides even below of 773 K, the Pt oxides were reduced completely. After reduction at 1073 K, sequential samples impregnating Pt on WO x -γ-Al 2 O 3 were more active and stable during benzene hydrogenation. TOF of the reaction did not change when the W/Pt atomic ratio, preparation technique and reduction temperature changed and its value was of 1.1 s -1 . W 6+ ions promoted high thermal stability of Pt crystallites when sequential catalysts were reduced at 1073 K and decreased their Lewis acidity.

  17. SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant [University of Pittsburgh

    2014-10-03

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it was demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would

  18. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin; Liu, Jinyong; Wang, Peng; Werth, Charles; Strathmann, Timothy J.

    2014-01-01

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  19. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin

    2014-10-03

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  20. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Henry Fonda Aritonang

    2017-05-01

    Full Text Available Highly dispersed platinum (Pt nanoparticles / multiwalled carbon nanotubes (MWCNTs on bacterial cellulose (BC as anode catalysts for proton exchange membrane fuel cells (PEMFC were prepared with various precursors and their electro-catalytic activities towards hydrogen oxidation at 70 oC under non-humidified conditions. The composite was prepared by deposition of Pt nanoparticles and MWCNTs on BC gel by impregnation method using a water solution of metal precursors and MWCNTs followed by reducing reaction using a hydrogen gas. The composite was characterized by using TEM (transmission electron microscopy, EDS (energy dispersive spectroscopy, and XRD (X-ray diffractometry techniques. TEM images and XRD patterns both lead to the observation of spherical metallic Pt nanoparticles with mean diameter of 3-11 nm well impregnated into the BC fibrils. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as a membrane in fuel cell field. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 26th February 2017; Accepted: 27th February 2017 How to Cite: Aritonang, H.F., Kamu, V.S., Ciptati, C., Onggo, D., Radiman, C.L. (2017. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 287-292 (doi:10.9767/bcrec.12.2.803.287-292 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.803.287-292

  1. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  2. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    Science.gov (United States)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  3. Study of the synthesis of ammonia over technetium catalysts

    International Nuclear Information System (INIS)

    Spetsyn, V.I.; Mikhailenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    The catalytic properties of technetium in the synthesis of ammonia have been studied in the present work. Technetium catalysts according to specific yield surpass all know catalysts for the synthesis of ammonia. The enhanced catalytic activity of technetium compared to manganese and rhenium is apparently explained by the presence of the radioactivity of 99 Tc. The processes of adsorption, orientation of the adsorbed molecules, and their binding energies can differ during radiation action. Irradiation of the carrier, occurring through #betta#-emission of 99 Tc, with doses of 4-8 x 10 3 rad/day, increased the number of defects in the crystal structure where stabilization of technetium atoms was possible. The existence of charged centers can cause an increase in the dissociative chemisorption of nitrogen, which is the limiting stage of the process. Technetium catalysts possess a stable catalytic activity and do not require its restoration for several months. Results suggest that the use of technetium as a catalyst for the synthesis of ammonia has real advantages and potential possibilities

  4. Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles

    International Nuclear Information System (INIS)

    Khanfekr, A.; Arzani, K.; Nemati, A.; Hosseini, M.

    2009-01-01

    (Lanthanum, Cerium)(Iron, Manganese, Cobalt, Palladium)(Oxygen) 3 ,-Perovskite catalyst was prepared by the citrate route and deposited on ceramic monoliths via dip coating procedure. The catalyst was applied on a car with X U 7 motors and the amount of emission was monitored with vehicle emission test systems in Sapco company. The results were compared with the imported catalyst with noble metals such as Palladium, Platinum and Rhodium by Iran Khodro company based on the Euro III standards. The catalysts were characterized by specific surface area measurements, scanning electron microscopy, X-ray diffraction, line scan and map. In the results, obtained in the home made sample, the amount of carbon monoxide, nitrogen oxides and hydrocarbons were lower than imported catalyst with Iran Khodro company with nobel metals. The illustration shows nano particles size on coat. The microstructure evaluation showed that the improved properties can be related to the existence of nano particles on coating

  5. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    DEFF Research Database (Denmark)

    Kemppainen, Erno; Halme, Janne; Hansen, Ole

    2016-01-01

    is the evolution and transport of gaseous H2, since HER leads to the continuous formation of H2 bubbles near the electrode. We present a numerical model that includes the transport of both gaseous and dissolved H2, as well as mass exchange between them, and combine it with a kinetic model of HER at platinum (Pt......) nanoparticle electrodes. We study the effect of the diffusion layer thickness and H2 dissolution rate constant on the importance of gaseous transport, and the effect of equilibrium hydrogen coverage and Pt loading on the kinetic and mass transport overpotentials. Gaseous transport becomes significant when...

  6. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane

    International Nuclear Information System (INIS)

    Rakap, Murat

    2015-01-01

    Herein, the utilization of poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles (3.4 ± 1.4 nm) as highly efficient catalysts in the hydrolysis of ammonia borane for hydrogen generation is reported. They are prepared by co-reduction of ruthenium and rhodium metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy-energy dispersive X-ray spectroscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. They are durable and highly efficient catalysts for hydrogen generation from the hydrolysis of ammonia borane even at very low concentrations and temperature, providing average turnover frequency of 386 mol H 2 (mol cat) −1 min −1 and maximum hydrogen generation rate of 10,680 L H 2 min −1 (mol cat) −1 . Poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles also provide activation energy of 47.4 ± 2.1 kJ/mol for the hydrolysis of ammonia borane. - Highlights: • Ru-Rh@PVP NPs provide a TOF of 386 mol H 2 (mol cat) −1 min −1 for hydrolysis of AB. • Maximum HG rate is 9680 L H 2 min −1 (mol cat) −1 for the hydrolysis of AB. • Activation energy is 47.4 ± 2.1 kJ mol −1 for the hydrolysis of AB

  7. Stabilization of supported platinum nanoparticles on gamma-alumina catalysts by addition of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Jose L., E-mail: jlcl@correo.azc.uam.m [Universidad Autonoma Metropolitana-Azcapotzalco. Energia, CBI, Av. Sn. Pablo 180, Col. Reynosa, 02200, Mexico, D.F. (Mexico); Universidad Autonoma Metropolitana-Iztapalapa Depto. Ingenieria de Procesos e Hidraulica, A.P. 55-534, 09340 Mexico, D.F. (Mexico); Fuentes, Gustavo A. [Universidad Autonoma Metropolitana-Iztapalapa Depto. Ingenieria de Procesos e Hidraulica, A.P. 55-534, 09340 Mexico, D.F. (Mexico); Zeifert, Beatriz; Salmones, Jose [Instituto Politecnico Nacional, ESIQIE, Av. IPN s/n Edif. 8, UPALM, Mexico, D.F. 07738 (Mexico)

    2009-08-26

    The thermal stabilization of Al{sub 2}O{sub 3} using W{sup 6+} ions has been found useful to the synthesis of Pt/Al{sub 2}O{sub 3} catalysts. The simultaneous and sequential methods were used to study the effect of W{sup 6+} upon Pt/gamma-Al{sub 2}O{sub 3} reducibility, Pt dispersion, and benzene hydrogenation. The W/Pt atomic ratios were from 0.49 to 12.4. In the first method we found that the W{sup 6+} ions delayed reduction of a fraction of Pt{sup 4+} atoms beyond 773 K. At the same time, W{sup 6+}inhibited sintering of the metallic crystallites once they were formed on the surface. For the sequential sample with a W/Pt atomic ratio of 3.28 W{sup 6+} did not inhibit the H{sub 2} reduction of Pt oxides even below of 773 K, the Pt oxides were reduced completely. After reduction at 1073 K, sequential samples impregnating Pt on WO{sub x}-gamma-Al{sub 2}O{sub 3} were more active and stable during benzene hydrogenation. TOF of the reaction did not change when the W/Pt atomic ratio, preparation technique and reduction temperature changed and its value was of 1.1 s{sup -1}. W{sup 6+} ions promoted high thermal stability of Pt crystallites when sequential catalysts were reduced at 1073 K and decreased their Lewis acidity.

  8. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2006-09-30

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

  9. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-03-31

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

  10. Characterization of catalysts by Moessbauer spectroscopy: An application to the study of Fischer-Tropsch, hydrotreating and super Claus catalysts

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Boellaard, E.; Craje, M.W.J.

    1993-01-01

    Moessbauer spectroscopy is an excellent in-situ technique for the identification of phases present in catalysts. Applied to metallic iron catalysts used in the Fischer-Tropsch reaction it reveals a detailed picture of the carburization process and provides insight into the relation between the properties of the catalytic material and its activity. The influence of a support and the effect of alloying iron with an (in)active metal on the catalytic performance is discussed for Fe, Cu-Fe and Ni-Fe systems. In addition, Moessbauer spectroscopy is used for the identification of 'Co-sulfide' species present in sulfided Co and CoMo catalysts applied in one of the largest chemical processes in the world, the hydrotreatment of crude oil. A structural model is proposed. Finally, the contribution of Moessbauer spectroscopic studies to the development of a new catalyst for cleaning of Claus tail gas via selective oxidation of hydrogen sulfide to elemental sulfur is discussed. (orig.)

  11. Detection of triglyceride using an iridium nano-particle catalyst based amperometric biosensor.

    Science.gov (United States)

    Liao, Wei-Yin; Liu, Chung-Chiun; Chou, Tse-Chuan

    2008-12-01

    The detection and quantification of triglyceride (TG) using an iridium nano-particle modified carbon based biosensor was successfully carried out in this study. The detection procedures were based on the electrochemical detection of enzymatically produced NADH. TG was hydrolyzed by lipase and the glycerol produced was catalytically oxidized by NAD-dependent glycerol dehydrogenase producing NADH in a solution containing NAD(+). Glyceryl tributyrate, a short chain triglyceride, was chosen as the substrate for the evaluation of this TG biosensor in bovine serum and human serum. A linear response to glyceryl tributyrate in the concentration range of 0 to 10 mM and a sensitivity of 7.5 nA mM(-1) in bovine serum and 7.0 nA mM(-1) in human serum were observed experimentally. The potential interference of species such as uric acid (UA) and ascorbic acid (AA) was assessed. The incorporation of a selected surfactant and an increase in the incubation temperature appeared to enhance the performance of this biosensor. The conditions for the determination of TG levels in bovine serum using this biosensor were optimized, with sunflower seed oil being used as an analyte to simulate the detection of TG in blood. The experimental results demonstrated that this iridium nano-particle modified working electrode based biosensor provided a relatively simple means for the accurate determination of TG in serum.

  12. Copper (0) nanoparticles onto silica: A stable and facile catalyst for ...

    Indian Academy of Sciences (India)

    crystallization from EtOAc: petroleum ether (0.2 mL. EtOAc in 10 mL petroleum ether). The catalyst ... tent with the expected elemental composition of the catalyst (figure S3 in SI). .... (5 mL) was stirred at refluxing temperature; cIsolated yields refer to the yields obtained by the crystallization from ethyl acetate:petroleum ether ...

  13. Water-dispersable hybrid Au-Pd nanoparticles as catalysts in ethanol oxidation, aqueous phase Suzuki-Miyaura and Heck reactions

    KAUST Repository

    Song, Hyon Min; Moosa, Basem; Khashab, Niveen M.

    2012-01-01

    The catalytic activities of water-dispersable Au@Pd core-shell nanoparticles (NPs) and Au-Pd alloy NPs were examined. There is growing interest in Au-Pd hybridized NPs in a supported matrix or non-supported forms as catalysts in various reactions

  14. Study of the butyl acetate synthesis - 1. Catalyst selection

    Directory of Open Access Journals (Sweden)

    Álvaro Orjuela Londoño

    2004-01-01

    Full Text Available In this work, a laboratory scale selection study over eight catalytic agents was made, in the acetic acid and butyl alcohol esterification reaction (seven lon exchange resins and a zeolytic solid. Considering some physicochemical characteristics as the activation pre-treating requirements, acidity, thermal stability, reaction performance, etc., it was found that macroporous ion exchange resins are the most efficient catalysts, especially Lewatit K-2431 resin.

  15. CuI nanoparticles as a remarkable catalyst in the synthesis of benzo[b][1,5]diazepines: an eco-friendly approach.

    Science.gov (United States)

    Ghasemzadeh, Mohammad Ali; Safaei-Ghomi, Javad

    2015-01-01

    Highly efficient CuI nanoparticles catalyzed one-pot synthesis of some benzo[b][1,5]diazepine derivatives via multi-component condensation of aromatic diamines, Meldrum's acid and isocyanides. The present approach creates a variety of benzo[b][1,5]diazepines as pharmaceutical and biologically active heterocyclic compounds in excellent yields and short reaction times. The salient features of the copper iodide nanoparticles are: easy preparation, cost-effective, high stability, low loading and reusability of the catalyst. The prepared copper iodide nanoparticles were fully characterized by XRD, EDX, FT-IR, SEM and TEM analysis.

  16. Synthesis of Fe3O4/Pt Nanoparticles Decorated Carbon Nanotubes and Their Use as Magnetically Recyclable Catalysts

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2011-01-01

    Full Text Available We report a facile approach to prepare Fe3O4/Pt nanoparticles decorated carbon nanotubes (CNTs. The superparamagnetic Fe3O4 nanoparticles with average size of 4∼5 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl3. The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe3O4 nanopartilces and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanopaticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe3O4/Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.

  17. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  18. Effect of Copper Nanoparticles Dispersion on Catalytic Performance of Cu/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Yajing Zhang

    2013-01-01

    Full Text Available Cu/SiO2 catalysts, for the synthesis of ethylene glycol (EG from hydrogenation of dimethyl oxalate (DMO, were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, temperature-programmed reduction (TPR, and X-ray photoelectron spectroscopy (XPS and N2 adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm, better copper dispersion, higher Cu+/C0 ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.

  19. HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation

    OpenAIRE

    Achmad Roesyadi; Danawati Hariprajitno; Nurjannah Nurjannah; Santi Dyah Savitri

    2013-01-01

    It is important to develop a renewable source of energy to overcome a limited source fossil energy. Palm oil is a potential alternative and environmental friendly energy resource in Indonesia due to high production capacity of this vegetable oil. The research studied effect of catalyst to selectivity of biofuel product from cracking of palm oil. The catalyst consisted of HZSM-5 catalyst with or without impregnation. The research was conducted in two steps, namely catalyst synthesized and cata...

  20. Aberration-corrected imaging of active sites on industrial catalyst nanoparticles

    DEFF Research Database (Denmark)

    Gontard, Lionel Cervera; Chang, L-Y; Hetherington, CJD

    2007-01-01

    Picture perfect: Information about the local topologies of active sites on commercial nanoparticles can be gained with atomic resolution through spherical-aberration-corrected transmission electron microscopy (TEM). A powder of Pt nanoparticles on carbon black was examined with two advanced TEM t...

  1. Increase of electrodeposited catalyst stability via plasma grown vertically oriented graphene nanoparticle movement restriction.

    Science.gov (United States)

    Vanrenterghem, Bart; Hodnik, Nejc; Bele, Marjan; Šala, Martin; Amelinckx, Giovanni; Neukermans, Sander; Zaplotnik, Rok; Primc, Gregor; Mozetič, Miran; Breugelmans, Tom

    2017-08-17

    Beside activity, electrocatalyst stability is gaining in importance. The most common degradation mechanism is the loss of the active surface area due to nanoparticle growth via coalescence/agglomeration. We propose a particle confinement strategy via vertically oriented graphene deposition to overcome degradation of the nanoparticles.

  2. Synthesis of mesoporous zeolite catalysts by in situ formation of carbon template over nickel nanoparticles

    DEFF Research Database (Denmark)

    Abildstrøm, Jacob Oskar; Kegnæs, Marina; Hytoft, Glen

    2016-01-01

    A novel synthesis procedure for the preparation of the hierarchical zeolite materials with MFI structure based on the carbon templating method with in situ generated carbon template is presented in this study. Through chemical vapour deposition of coke on nickel nanoparticles supported on silica...... oxide, a carbon-silica composite is obtained and exploited as a combined carbon template/silica source for zeolite synthesis. This approach has several advantages in comparison with conventional carbon templating methods, where relatively complicated preparative strategies involving multistep...... impregnation procedures and rather expensive chemicals are used. Removal of the carbon template by combustion results in zeolite single crystals with intracrystalline pore volumes between 0.28 and 0.48 cm3/g. The prepared zeolites are characterized by XRD, SEM, TEM and physisorption analysis. The isomerization...

  3. Structural studies of supported tin catalysts

    Science.gov (United States)

    Nava, Noel; Viveros, Tomás

    1999-11-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Mössbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied.

  4. Structural studies of supported tin catalysts

    International Nuclear Information System (INIS)

    Nava, Noel; Viveros, Tomas

    1999-01-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Moessbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO 2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied

  5. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    Energy Technology Data Exchange (ETDEWEB)

    Stanger, Keith James [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-α-acetamidocinnamate (MAC), has the illustrated structure as established by 31P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]4, [Rh(COD)2]+BF4-, [Rh(COD)Cl]2, and RhCl3• 3H2O, adsorbed on SiO2 are optimally activated for toluene hydrogenation by pretreatment with H2 at 200 C. The same complexes on Pd-SiO2 are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH2)3s-]Re(O)(Me)(PPh3) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  6. Studies on the biodistribution of dextrin nanoparticles

    International Nuclear Information System (INIS)

    Goncalves, C; Gama, F M; Ferreira, M F M; Martins, J A; Santos, A C; Prata, M I M; Geraldes, C F G C

    2010-01-01

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a γ-emitting 153 Sm 3+ radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  7. Studies on the biodistribution of dextrin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, C; Gama, F M [IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Minho University, Campus de Gualtar, 4710-057 Braga (Portugal); Ferreira, M F M; Martins, J A [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Santos, A C; Prata, M I M [IBILI, Faculty of Medicine of the University of Coimbra, Coimbra (Portugal); Geraldes, C F G C, E-mail: fmgama@deb.uminho.pt [Departamento de Ciencias da Vida, Faculdade de Ciencia e Tecnologia e Centro de Neurociencias e Biologia Celular, Universidade de Coimbra (Portugal)

    2010-07-23

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a {gamma}-emitting {sup 153}Sm{sup 3+} radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  8. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jamal, Aslam [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Rahman, Mohammed M. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar, E-mail: drkhanmarwat@gmail.com [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Faisal, Mohd. [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Akhtar, Kalsoom [Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: Black-Right-Pointing-Pointer Reusable chemical sensor. Black-Right-Pointing-Pointer Green environmental and eco-friendly chemi-sensor. Black-Right-Pointing-Pointer High sensitivity. Black-Right-Pointing-Pointer Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb{sub 2}O{sub 6}) are well crystalline nano-particles with an average particles size of 26 {+-} 10 nm. UV-visible absorption spectra ({approx}286 nm) were used to investigate the optical properties of CoSb{sub 2}O{sub 6}. The chemical sensing of CoSb{sub 2}O{sub 6} NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 {mu}A cm{sup -2} mM{sup -1}) and a large linear dynamic range (1.0 {mu}M-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb{sub 2}O{sub 6} nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb{sub 2}O{sub 6} nano-particles can play an excellent research impact in the environmental field.

  9. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  10. First-Row-Transition Ion Metals(II-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Nuno M. R. Martins

    2017-11-01

    Full Text Available A series of first-row transition-metals combined with ethylenediamine tetraacetic acid (EDTA, as metal-based N,O-chelating ligands, at the surface of ferrite magnetic nanoparticles (MNPs was prepared by a co-precipitation method. Those EDTA functionalized MNPs with general formula Fe3O4@EDTA-M2+ [M = Mn2+ (1, Fe2+ (2, Co2+ (3, Ni2+ (4, Cu2+ (5 or Zn2+ (6] were characterized by FTIR (Fourier Transform Infrared spectroscopy, powder XRD (X-ray Diffraction, SEM (Scanning Electron Microscope, EDS (Energy Dispersive Spectrometer, VSM (Vibrating Sample Magnetometer and TGA (Thermal Gravity Analysis. The application of the magnetic NPs towards the microwave-assisted oxidation of several alcohol substrates in a solvent-free medium was evaluated. The influence of reaction parameters such as temperature, time, type of oxidant, and presence of organic radicals was investigated. This study demonstrates that these MNPs can act as efficient catalysts for the conversion of alcohols to the corresponding ketones or aldehydes with high selectivity and yields up to 99% after 2 h of reaction at 110 °C using t-BuOOH as oxidant. Moreover, they have the advantage of being magnetically recoverable catalysts that can be easily recycled in following runs.

  11. ZnO nanoparticle catalysts for use in biodiesel production and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shuli; Salley, Steven O; Ng, K. Y. Simon

    2014-11-25

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La.sub.2CO.sub.5, LaOOH, and combinations or mixtures thereof.

  12. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Rakap, Murat, E-mail: mrtrakap@gmail.com

    2015-11-15

    Herein, the utilization of poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles (3.4 ± 1.4 nm) as highly efficient catalysts in the hydrolysis of ammonia borane for hydrogen generation is reported. They are prepared by co-reduction of ruthenium and rhodium metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy-energy dispersive X-ray spectroscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. They are durable and highly efficient catalysts for hydrogen generation from the hydrolysis of ammonia borane even at very low concentrations and temperature, providing average turnover frequency of 386 mol H{sub 2} (mol cat){sup −1} min{sup −1} and maximum hydrogen generation rate of 10,680 L H{sub 2} min{sup −1} (mol cat){sup −1}. Poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles also provide activation energy of 47.4 ± 2.1 kJ/mol for the hydrolysis of ammonia borane. - Highlights: • Ru-Rh@PVP NPs provide a TOF of 386 mol H{sub 2} (mol cat){sup −1} min{sup −1} for hydrolysis of AB. • Maximum HG rate is 9680 L H{sub 2} min{sup −1} (mol cat){sup −1} for the hydrolysis of AB. • Activation energy is 47.4 ± 2.1 kJ mol{sup −1} for the hydrolysis of AB.

  13. Study on the poisoning effect-of non-vanadium catalysts by potassium

    Science.gov (United States)

    Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi

    2018-02-01

    The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.

  14. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  15. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  16. Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs

    Science.gov (United States)

    Lin, Lu; Liu, Haiou; Zhang, Xiongfu

    2018-03-01

    Rational design of efficient approaches to fabricate MOFs-coated core-shell composites is promising but challenging. We report here the encapsulation of Pd nanoparticles (Pd NPs) supported flower-like ZnO (F-ZnO) microspheres with ZIF-8 shell through a facile strategy, in which the formation and immobilization of Pd NPs on F-ZnO supports and the subsequent growth of ZIF-8 shells over them are effectively integrated into one-pot synthetic route. Importantly, the utilization of ZnO both as support of Pd NPs and Zn2+ source of ZIF-8 is favorable for the implement of one-pot synthesis, due to its functions in anchoring Pd NPs and inducing ZIF-8 formation. Further insights into the morphological influence of zinc oxide particles on the resulting materials indicate that the flower-like microspheres with 2D nanosheets as subunits also benefit the coating of Pd NPs supported cores with ZIF-8, resulting in a well-defined core-shell catalyst. The achieved catalyst deliveries remarkable performance in terms of selectivity, anti-poisoning and recyclability in the liquid hydrogenations of alkenes.

  17. Formation of Multiple-Phase Catalysts for the Hydrogen Storage of Mg Nanoparticles by Adding Flowerlike NiS.

    Science.gov (United States)

    Xie, Xiubo; Ma, Xiujuan; Liu, Peng; Shang, Jiaxiang; Li, Xingguo; Liu, Tong

    2017-02-22

    In order to enhance the hydrogen storage properties of Mg, flowerlike NiS particles have been successfully prepared by solvothermal reaction method, and are subsequently ball milled with Mg nanoparticles (NPs) to fabricate Mg-5 wt % NiS nanocomposite. The nanocomposite displays Mg/NiS core/shell structure. The NiS shell decomposes into Ni, MgS and Mg 2 Ni multiple-phases, decorating on the surface of the Mg NPs after the first hydrogen absorption and desorption cycle at 673 K. The Mg-MgS-Mg 2 Ni-Ni nanocomposite shows enhanced hydrogenation and dehydrogenation rates: it can quickly uptake 3.5 wt % H 2 within 10 min at 423 K and release 3.1 wt % H 2 within 10 min at 573 K. The apparent hydrogen absorption and desorption activation energies are decreased to 45.45 and 64.71 kJ mol -1 . The enhanced sorption kinetics of the nanocomposite is attributed to the synergistic catalytic effects of the in situ formed MgS, Ni and Mg 2 Ni multiple-phase catalysts during the hydrogenation/dehydrogenation process, the porthole effects for the volume expansion and microstrain of the phase transformation of Mg 2 Ni and Mg 2 NiH 4 and the reduced hydrogen diffusion distance caused by nanosized Mg. This novel method of in situ producing multiple-phase catalysts gives a new horizon for designing high performance hydrogen storage material.

  18. Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Engbæk, Jakob Soland; Vendelbo, Søren Bastholm

    2017-01-01

    We demonstrated a proof-of-concept catalytic steam reforming flow reactor system heated only by supported magnetic nickel–cobalt nanoparticles in an oscillating magnetic field. The heat transfer was facilitated by the hysteresis heating in the nickel–cobalt nanoparticles alone. This produced...... a sufficient power input to equilibrate the reaction at above 780 °C with more than 98% conversion of methane. The high conversion of methane indicated that Co-rich nanoparticles with a high Curie temperature provide sufficient heat to enable the endothermic reaction, with the catalytic activity facilitated...... by the Ni content in the nanoparticles. The magnetic hysteresis losses obtained from temperature-dependent hysteresis measurements were found to correlate well with the heat generation in the system. The direct heating of the catalytic system provides a fast heat transfer and thereby overcomes the heat...

  19. Electrocatalytic glucose oxidation via hybrid nanomaterial catalyst of multi-wall TiO2 nanotubes supported Ni(OH)2 nanoparticles: Optimization of the loading level

    International Nuclear Information System (INIS)

    Gu, Yingying; Liu, Yicheng; Yang, Haihong; Li, Benqiang; An, Yarui

    2015-01-01

    Highlights: • Multi-wall TiO 2 nanotube supported Ni(OH) 2 nanoparticles, Ni(OH) 2 /TNTs, was prepared and investigated as anode electro-catalysts for glucose oxidation. • Ni(OH) 2 -24.2%/TNTs obtains the best catalytic activity. • Compared with Ni(OH) 2, the current density of Ni(OH) 2 -24.2%/TNTs increased 5.9 times in 0.1 M NaOH solution. - Abstract: The novel hybrid nanomaterial catalyst of multi-wall TiO 2 nanotube supported Ni(OH) 2 nanoparticles (Ni(OH) 2 /TNTs) was prepared through hydrothermal method and investigated as anode electro-catalysts for glucose oxidation. The nanostructure was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetry-differential thermal analysis (TGA) and nitrogen adsorption-desorption (BET-BJH). The electrochemical performance was measured by a range of electrochemical measurements. Compared with Ni(OH) 2 , the current density of Ni(OH) 2 /TNTs modified GC electrode increased 5.9 times in 0.1 M NaOH solution. The results indicated that the synthesized nanoparticles exhibited good electro-catalytic activity and stability for glucose oxidation. Meanwhile, the hybrid nanomaterial of Ni(OH) 2 /TNTs may be a potential candidate catalyst for direct glucose fuel cell

  20. Phenol Removal by a Novel Non-Photo-Dependent Semiconductor Catalyst in a Pilot-Scaled Study: Effects of Initial Phenol Concentration, Light, and Catalyst Loading

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available A novel non-photo-dependent semiconductor catalyst (CT was employed to degrade phenol in the present pilot-scaled study. Effect of operational parameters such as phenol initial concentration, light area, and catalyst loading on phenol degradation, was compared between CT catalyst and the conventional photocatalyst titanium dioxide. CT catalyst excelled titanium dioxide in treating and mineralizing low-level phenol, under both mild UV radiation and thunder conditions of nonphoton. The result suggested that CT catalyst could be applied in circumstances when light is not easily accessible in pollutant-carrying media (e.g., particles, cloudy water, and colored water.

  1. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  2. Cu-MCM-41 nanoparticles: An efficient catalyst for the synthesis of 5 ...

    Indian Academy of Sciences (India)

    To investigate reusability, the catalyst was recovered by simple filtration and reused for several cycles with consistent activity. Keywords. ... membranes. Another advantage of tetrazolic acids over carboxylic acids is that they are resistant to many bio- logical metabolic degradation pathways.3. Conventionally 5-substituted ...

  3. Ba/ZrO2 nanoparticles as efficient heterogeneous base catalyst for ...

    Indian Academy of Sciences (India)

    activity of the Ba/ZrO2 catalyst was evaluated for synthesis of β-nitro alcohols and ... for base catalyzed reactions.10–17 The Ca2+ ions sub- .... by gold sputtering for three minutes. ..... Jain S R, Adiga K C and Verneker V R 1981 Combust.

  4. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  5. Catalyst study for the plasma exhaust purification process

    International Nuclear Information System (INIS)

    Chabot, J.; Sannier, J.

    1990-01-01

    Several catalysts available from commercial sources have been screened to find out specific catalysts which allow complete methane oxidation and ammonia decomposition at temperature as low as possible in order to minimize tritium loss by permeation through processing equipment walls. Afterwards, an extended kinetic investigation has been performed on the best catalysts to achieve the data necessary to unit calculations. For methane oxidation, a palladium on alumina catalyst shows a very satisfactory low-temperature efficiency while a non-precious metal catalyst made of nickel oxide and alumina was found to be the more efficient for ammonia decomposition

  6. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2005-11-15

    Composite materials of SBA-15/zeolite Y were synthesized from zeolite Y precursor and a synthesis mixture of mesoporous silicate SBA-15 via a hydrothermal process in the presence of a slightly acidic media of pH 4-6 with 2M H{sub 2}SO{sub 4}. The SBA-15/ZY composites showed Type IV adsorption isotherms, narrow BJH average pore size distribution of 4.9 nm, surface areas up to 800 m{sup 2}2/g and pore volumes 1.03 cm{sup 3}, all comparable to pure SBA-15 synthesized under similar conditions. Chemical analysis revealed Si/Al ratio down to 8.5 in the most aluminated sample, and {sup 27}AlSS MAS NMR confirmed aluminum was in tetrahedral coordination. This method of introduction of Al in pure T{sub d} coordination is effective in comparison to other direct and post synthesis alumination methods. Bronsted acid sites were evident from a pyridinium peak at 1544 cm-1 in the FTIR spectrum after pyridine adsorption, and from NH{sub 3} -TPD experiments. SBA-15/ZY composites showed significant catalytic activities for the dealkylation of isopropylbenzene to benzene and propene, similar to those of commercial zeolite Y. It was observed that higher conversion for catalysts synthesized with high amount of ZY precursor mixture added to the SBA-15. Over all the composites has shown good catalytic activity. Further studies will be focused on gaining a better understand the nature of the precursor, and to characterize and to locate the acid sites in the composite material. The composite will also be evaluated for heavy oil conversion to naphtha and middle distillates.

  7. Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst

    Directory of Open Access Journals (Sweden)

    Karen Leus

    2016-03-01

    Full Text Available We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier by means of atomic layer deposition (ALD. The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF and transmission electron microscopy (TEM analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.

  8. Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient and Reusable Catalyst for the Regioselective Ring Opening of Epoxides in Water

    Directory of Open Access Journals (Sweden)

    Eshagh Rezaee Nezhad

    2016-01-01

    Full Text Available An efficient and simple method for the preparation of Si-Imidazole-HSO4 functionalized magnetic Fe3O4 nanoparticles (Si-Im-HSO4 MNPs and used as an efficient and reusable magnetic catalysts for the regioselective ring opening of epoxides under green conditions in water. This catalyst was used for the ring opening of epoxide corresponding to the thiocyanohydrins and azidohydrines. Compared to the classical ring opening of epoxides, this new method consistently has the advantage of excellent yields, short reaction times, and methodological simplicity.

  9. Basic study of catalyst aging in the H-coal process

    Energy Technology Data Exchange (ETDEWEB)

    Cable, T.L.; Massoth, F.E.; Thomas, M.G.

    1985-04-01

    Samples of CoMo/Al/sub 2/O/sub 3/ catalysts used in an H-coal process demonstration run were studied to determine causes of catalyst deactivation. Physical and surface properties of the aged and regenerated catalysts were examined. Model compounds were used to assess four catalyst activity functions, viz., hydrodesulfurization (HDS), hydrogenation, cracking and hydrodeoxygenation (HDO). Other tests were performed to study the effects of coke and metals separately on the four catalyst activity functions. Catalyst coke content and metal deposits first increased rapidly, then more gradually with exposure time in the process run. Surface area and pore volume markedly decreased with exposure time. Catalyst activities of aged catalysts showed a rapid decline with exposure time. One-day exposure to coal resulted in significant losses in HDS and hydrogenation activities and nearly complete loss in cracking and HDO activities. Although metal deposits caused some permanent catalyst deactivation, coke had a much greater effect. Regenerated catalysts showed less recovery of catalytic activity as processing time increased. These results agreed well with product inspections from the process run. Oxygen chemisorption on aged-regenerated catalysts decreased with catalyst exposure time, indicating a significant loss of active sites. However, ESCA results showed no evidence of extensive sintering of the active MoS/sub 2/ phase. Permanent deactivation of the longer-time exposed catalysts can be ascribed, at least partly, to lateral growth of the active molybdenum sulfide phase. In addition, some loss in cobalt promotion occurred early in the process, which may account for the rapid loss in HDS and HDO activity in regenerated catalysts. 24 references.

  10. Model studies of methanol synthesis on copper catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, J.; Nakamura, I.; Uchijima, T. [Univ. of Tsukuba, Ibaraki (Japan); Watanabe, T. [Research Inst. of Innovative Technology for Earth, Kyoto (Japan); Fujitani, T. [National Inst. for Resources and Environment, Ibaraki (Japan)

    1996-12-31

    The synthesis of methanol by the hydrogenation of CO{sub 2} over Zn-deposited and Zn-free copper surfaces has been studied using an XPS apparatus combined with a high-pressure flow reactor (18 atm). It was shown that the Zn deposited on Cu(111) and poly-Cu acted as a promoter for methanol synthesis, while the Zn on Cu(110) and Cu(100) had no such a promotional effect. The turnover frequency (TOF) for Zn/Cu(111) linearly increased with Zn coverage below {Theta}Zn--0.19, and then decreased above {Theta}Zn=0.20. The optimum TOF obtained at {Theta}Zn--0-19 was thirteen-fold larger than TOF for the Zn-free Cu(111) surface. On the other hand, no promotional effect of Zn was observed for the reverse water-gas shift reaction on all the surfaces. The results indicate the formation of special sites for methanol synthesis on Zn/Cu(111). The Zn-deposited Cu(111) can be regarded as a model of Cu/ZnO catalysts because the TOF and the activation energy for methanol formation over the Zn-deposited Cu(111) were in fairly good agreement with those for the Cu/ZnO powder catalysts. The post-reaction surface analysis by XPS showed the formation of formate species (HCOOa). The formate coverage was proportional to the activity for methanol formation below {Theta}Zn=0.20, suggesting that the hydrogenation of the formate species is the rate-determining step of methanol formation. The formate species was stabilized by Zn species on Cu(111) in the absence of ZnO species. STM results on the Zn-deposited Cu(111) suggested the formation of a Cu-Zn surface alloy. The presence of special sites for methanol synthesis was also indicated in the results of powder catalysts.

  11. Synthesis and Characterization of Silicotungstic Acid Nanoparticles Via Sol Gel Technique as a Catalyst in Esterification Reaction

    International Nuclear Information System (INIS)

    Wan Nor Roslam Wan Ishak; Manal Ismail

    2011-01-01

    The purpose of this work is to study the synthesis, characterization and catalytic performance of silicotungstic acid-silica sol gel (STA-SG) as acid catalyst in esterification reaction. The activity and selectivity of STA-SG have been investigated and compared to the STA bulk (STAB) and sulphuric acid (H 2 SO 4 ). The synthesized catalysts were characterized by various techniques shown that the STA-SG catalyst is relatively high in surface area compared to STAB of 460.11 m 2 /g and 0.98 m 2 /g, respectively. From the XPS analyses, there was a significant formation of W-O-Si, W-O-W and Si-O-Si bonding in STA-SG compared to that in STAB. Both the H 2 SO 4 and the STAB gave high conversion of 100 % and 98 %, while lower selectivity of glycerol monooleate (GMO) with 81.6 % and 89.9 %, respectively. On the contrary, the STA-SG enabled a conversion of 94 %, while significantly higher GMO selectivity of 95 % rendering it the more efficient acid catalyst. (author)

  12. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts.

    Science.gov (United States)

    Witzke, M E; Dietrich, P J; Ibrahim, M Y S; Al-Bardan, K; Triezenberg, M D; Flaherty, D W

    2017-01-03

    Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C-C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cu δ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu 0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2-35 nm) and catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.

  13. A surface science study of model catalysts : II metal-support interactions in Cu/SiO2 model catalysts

    NARCIS (Netherlands)

    Oetelaar, van den L.C.A.; Partridge, A.; Toussaint, S.L.G.; Flipse, C.F.J.; Brongersma, H.H.

    1998-01-01

    The thermal stability of wet-chemically prepared Cu/SiO2 model catalysts containing nanometer-sized Cu particles on silica model supports was studied upon heating in hydrogen and ultrahigh vacuum. The surface and interface phenomena that occur are determined by the metal-support interactions.

  14. Catalyst Schools' Implementation of the Learning School Approach. Catalyst Schools Research Study Report

    Science.gov (United States)

    Hammer, Patricia Cahape

    2016-01-01

    "Catalyst schools" were 28 elementary and secondary schools selected to participate in a pilot project begun in July 2014, which explored how best to support teacher professional learning through decentralization of decision making and implementation of the Learning School approach. The pilot project was the first phase in a statewide…

  15. The structure of a working catalyst : from flat surfaces to nanoparticles

    NARCIS (Netherlands)

    Roobol, Sander Bas

    2014-01-01

    Catalysis is the working horse of the chemical industry. In many cases, it is a poorly understood process taking place at the surfaces of nanoparticles under relatively harsh conditions, such as high pressures and high temperatures. This thesis focuses on new approaches to acquire atomic-scale

  16. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane.

    Science.gov (United States)

    Li, Pei-Zhou; Aranishi, Kengo; Xu, Qiang

    2012-03-28

    Highly dispersed Ni nanoparticles have been successfully immobilized by the zeolitic metal-organic framework ZIF-8 via sequential deposition-reduction methods, which show high catalytic activity and long durability for hydrogen generation from hydrolysis of aqueous ammonia borane (NH(3)BH(3)) at room temperature. This journal is © The Royal Society of Chemistry 2012

  17. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions

    Science.gov (United States)

    Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal

    2017-10-01

    A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.

  18. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    Science.gov (United States)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  19. Non-conventional plasma assisted catalysts for diesel exhaust treatment. A case study

    International Nuclear Information System (INIS)

    Rajanikanth, B.S.; Srinivas Kumar, P.K.; Ravi, V.

    2002-01-01

    The author reports the application of pulse discharges along with catalysts in treating the exhaust gas at higher temperatures. In the present work, a plasma reactor, filled with catalysts, called as plasma catalytic reactor, is studied for removal of oxides of nitrogen, total hydrocarbons and carbon monoxide. The experiments are conducted on an actual diesel engine exhaust at no-load and at different temperatures starting from room temperature to 300 degree C. The removal efficiencies of these pollutants are studied. The experiments are carried out with both conventional and non-conventional catalysts. The idea is to explore the pollutant removal efficiency characteristics by non-conventional catalysts. The efficiency results are compared with that of conventional catalysts. The experiments are carried out at a constant pulse repetition rate of 120 pps. Both pellet and honeycomb type catalysts are used in the study

  20. CoFe{sub 2}O{sub 4} nanoparticles as a catalyst: synthesis of a forest of vertically aligned CNTs of uniform diameters by plasma-enhanced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Baliyan, Ankur [Graduate School of Interdisciplinary New Science, Toyo University (Japan); Fukuda, Takahiro [Bio-Nano Electronics Research Centre, Toyo University (Japan); Hayasaki, Yasuhiro; Uchida, Takashi; Nakajima, Yoshikata; Hanajiri, Tatsuro; Maekawa, Toru, E-mail: maekawa@toyo.jp [Graduate School of Interdisciplinary New Science, Toyo University (Japan)

    2013-06-15

    Controlling actively the structures of carbon nanotubes such as the alignment, length, diameter, chirality and the number of walls still remains a crucial challenge. The properties of CNTs are highly structure sensitive and particularly dependent on the diameter and number of walls. In this brief communication, we synthesise monodisperse CoFe{sub 2}O{sub 4} nanoparticles of uniform diameters, i.e. 4.8 and 6.9 nm, which are modified with oleic acid as a catalyst for the growth of CNTs. We show that a forest of vertically aligned CNTs of uniform diameters and lengths can be grown using CoFe{sub 2}O{sub 4} nanoparticles. The internal diameters and lengths of CNTs grown using CoFe{sub 2}O{sub 4} nanoparticles of 4.8 and 6.9 nm diameters are, respectively, 4.4 and 6.2 nm and 10 and 15 {mu}m. It is clearly shown that the number of walls of CNTs can be engineered changing the materials of the catalytic nanoparticles. The present results may well encourage further systematic studies on the growth of CNTs using various combinations of elements for the catalytic nanoparticles under different external conditions, which may provide not only the possibilities of controlling the properties of CNTs but also an insight into the nucleation and growth mechanisms.

  1. Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition.

    Science.gov (United States)

    Lu, An-Hui; Nitz, Joerg-Joachim; Comotti, Massimiliano; Weidenthaler, Claudia; Schlichte, Klaus; Lehmann, Christian W; Terasaki, Osamu; Schüth, Ferdi

    2010-10-13

    Uniform and highly dispersed γ-Fe(2)O(3) nanoparticles with a diameter of ∼6 nm supported on CMK-5 carbons and C/SBA-15 composites were prepared via simple impregnation and thermal treatment. The nanostructures of these materials were characterized by XRD, Mössbauer spectroscopy, XPS, SEM, TEM, and nitrogen sorption. Due to the confinement effect of the mesoporous ordered matrices, γ-Fe(2)O(3) nanoparticles were fully immobilized within the channels of the supports. Even at high Fe-loadings (up to about 12 wt %) on CMK-5 carbon no iron species were detected on the external surface of the carbon support by XPS analysis and electron microscopy. Fe(2)O(3)/CMK-5 showed the highest ammonia decomposition activity of all previously described Fe-based catalysts in this reaction. Complete ammonia decomposition was achieved at 700 °C and space velocities as high as 60,000 cm(3) g(cat)(-1) h(-1). At a space velocity of 7500 cm(3) g(cat)(-1) h(-1), complete ammonia conversion was maintained at 600 °C for 20 h. After the reaction, the immobilized γ-Fe(2)O(3) nanoparticles were found to be converted to much smaller nanoparticles (γ-Fe(2)O(3) and a small fraction of nitride), which were still embedded within the carbon matrix. The Fe(2)O(3)/CMK-5 catalyst is much more active than the benchmark NiO/Al(2)O(3) catalyst at high space velocity, due to its highly developed mesoporosity. γ-Fe(2)O(3) nanoparticles supported on carbon-silica composites are structurally much more stable over extended periods of time but less active than those supported on carbon. TEM observation reveals that iron-based nanoparticles penetrate through the carbon layer and then are anchored on the silica walls, thus preventing them from moving and sintering. In this way, the stability of the carbon-silica catalyst is improved. Comparison with the silica supported iron oxide catalyst reveals that the presence of a thin layer of carbon is essential for increased catalytic activity.

  2. Microwave assisted green synthesis and characterizations of noble metal nanoparticles and their roles as catalysts in organic reduction reactions and anticancer agent

    Science.gov (United States)

    Francis, Sijo; Koshy, Ebey P.; Mathew, Beena

    2018-04-01

    Nanomaterials are interesting chemicals that uncover the explorations and expectations of decades. The report suggests environmentally benevolent and easy route for the synthesis of noble metal nanoparticles. Personnel, laboratory and ecological benefits of the synthesized nanoparticles are demonstrated herein. The aqueous extract from the leaves of Litchi chinensis Sonn is performed as the alternative reducing agent. The microwave activated silver and gold nanoparticles have spherical geometries with crystalline essence. X-ray diffraction technique witnessed the face centered cubic lattice for the nano silver and gold particles that preferentially oriented towards the (111) plane. The reduction of nitro anilines is performed to elucidate the heterogeneous catalytic power of the nanoparticles. The nano catalyst is a potential candidate to meet the challenges raised from organic pollutant dye that cause environmental contamination. The chemical stability, low-cost factor and plant based origin of the new nanoparticles are admired. The multitudes of health hazards especially human carcinoma can be effectively inhibited by the silver and gold nanoparticles. The leaf extract, silver and gold nanoparticles showed IC50 values 66.56 ± 0.80, 23.55 ± 0.43 and 20.38 ± 0.41 μg ml‑1 respectively against the human lung adenocarcinoma cell lines A549 determined using the MTT dye conversion assay.

  3. Ag1 Pd1 Nanoparticles-Reduced Graphene Oxide as a Highly Efficient and Recyclable Catalyst for Direct Aryl C-H Olefination.

    Science.gov (United States)

    Hu, Qiyan; Liu, Xiaowang; Wang, Guoliang; Wang, Feifan; Li, Qian; Zhang, Wu

    2017-12-14

    The efficient and selective palladium-catalyzed activation of C-H bonds is of great importance for the construction of diverse bioactive molecules. Despite significant progress, the inability to recycle palladium catalysts and the need for additives impedes the practical applications of these reactions. Ag 1 Pd 1 nanoparticles-reduced graphene oxide (Ag 1 Pd 1 -rGO) was used as highly efficient and recyclable catalyst for the chelation-assisted ortho C-H bond olefination of amides with acrylates in good yields with a broad substrate scope. The catalyst can be recovered and reused at least 5 times without losing activity. A synergistic effect between the Ag and Pd atoms on the catalytic activity was found, and a plausible mechanism for the AgPd-rGO catalyzed C-H olefination is proposed. These findings suggest that the search for such Pd-based bimetallic alloy nanoparticles is a new method towards the development of superior recyclable catalysts for direct aryl C-H functionalization under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Uniform Pt Nanoparticles Incorporated into Reduced Graphene Oxides with MoO_3 as Advanced Anode Catalysts for Methanol Electro-oxidation

    International Nuclear Information System (INIS)

    Hao, Yanfei; Wang, Xudan; Zheng, Yuanyuan; Shen, Jianfeng; Yuan, Junhua; Wang, Ai-jun; Niu, Li; Huang, Shengtang

    2016-01-01

    Highlights: • Pt nanoparticles were uniformly deposited on graphene with MoO_3. Their size can be tuned by controlling MoO_3 loading. These Pt catalysts are high active on methanol oxidation. They also show high tolerance to CO poisoning. - Abstract: Pt nanoparticles (NPs) were uniformly deposited on the reduced graphene oxides (RGOs) by one-pot thermoreduction strategy with assist of MoO_3. MoO_3 can significantly reduce the size of Pt NPs on RGOs. These Pt NPs can be averaged to be 3.0 to 4.1 nm with MoO_3 loading from 27.4 to 8.8%. Without MoO_3, the size of Pt NPs can reach up to 15.2 nm. In addition, MoO_3 in Pt-MoO_3/RGO catalysts conducts a surface-confined reversible electron transfer. And the Pt-MoO_3/RGO catalysts show strong resistance to CO poisoning and high activity towards methanol oxidation reaction (MOR). Among these Pt-based catalysts, Pt-MoO_3/RGO catalysts with 16.5% MoO_3 loading possess a largest MOR current up to 610 mA mg"−"1 Pt with a smallest deteriorate rate of 0.000425 s"−"1 polarizing for 5000 s at 0.65 V. These results demonstrate commercial feasibility for Pt catalysts to reduce significantly the amount of precious metals Pt in parallel to maintain a high MOR activity and CO tolerance.

  5. Catalytic Study on TiO2 Photo catalyst Synthesised Via Microemulsion Method on Atrazine

    International Nuclear Information System (INIS)

    Ruslimie, C.A.; Hasmizam Razali; Khairul, W.M.

    2011-01-01

    Titanium dioxide photo catalyst was synthesised by microemulsions method under controlled hydrolysis of titanium butoxide, Ti(O(CH 2 ) 3 )CH 3 . The synthesised TiO 2 photo catalyst was compared with Sigma-commercial TiO 2 by carrying out the investigation on its properties using scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis and thermal gravimetric analysis (TGA). The photo catalytic activities for both photo catalysts were studied for atrazine photodegradation. (author)

  6. Multiscale study of metal nanoparticles

    Science.gov (United States)

    Lee, Byeongchan

    Extremely small structures with reduced dimensionality have emerged as a scientific motif for their interesting properties. In particular, metal nanoparticles have been identified as a fundamental material in many catalytic activities; as a consequence, a better understanding of structure-function relationship of nanoparticles has become crucial. The functional analysis of nanoparticles, reactivity for example, requires an accurate method at the electronic structure level, whereas the structural analysis to find energetically stable local minima is beyond the scope of quantum mechanical methods as the computational cost becomes prohibitingly high. The challenge is that the inherent length scale and accuracy associated with any single method hardly covers the broad scale range spanned by both structural and functional analyses. In order to address this, and effectively explore the energetics and reactivity of metal nanoparticles, a hierarchical multiscale modeling is developed, where methodologies of different length scales, i.e. first principles density functional theory, atomistic calculations, and continuum modeling, are utilized in a sequential fashion. This work has focused on identifying the essential information that bridges two different methods so that a successive use of different methods is seamless. The bond characteristics of low coordination systems have been obtained with first principles calculations, and incorporated into the atomistic simulation. This also rectifies the deficiency of conventional interatomic potentials fitted to bulk properties, and improves the accuracy of atomistic calculations for nanoparticles. For the systematic shape selection of nanoparticles, we have improved the Wulff-type construction using a semi-continuum approach, in which atomistic surface energetics and crystallinity of materials are added on to the continuum framework. The developed multiscale modeling scheme is applied to the rational design of platinum

  7. The asymmetric Schrock olefin metathesis catalysts. A computational study

    NARCIS (Netherlands)

    Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    The mechanism of the transition metal catalyzed olefin metathesis reaction with the Schrock catalyst is investigated with pure (BP86) and hybrid (B3LYP) density functional theory. On the free-energy surface there is no adduct between ethylene and model catalyst (MeO)

  8. Study on Endurance and Performance of Impregnated Ruthenium Catalyst for Thruster System.

    Science.gov (United States)

    Kim, Jincheol; Kim, Taegyu

    2018-02-01

    Performance and endurance of the Ru catalyst were studied for nitrous oxide monopropellant thruster system. The thermal decomposition of N2O requires a considerably high temperature, which make it difficult to be utilized as a thruster propellant, while the propellant decomposition temperature can be reduced by using the catalyst through the decomposition reaction with the propellant. However, the catalyst used for the thruster was frequently exposed to high temperature and high-pressure environment. Therefore, the state change of the catalyst according to the thruster operation was analyzed. Characterization of catalyst used in the operation condition of the thruster was performed using FE-SEM and EDS. As a result, performance degradation was occurred due to the volatilization of Ru catalyst and reduction of the specific surface area according to the phase change of Al2O3.

  9. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    Science.gov (United States)

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs.

  10. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  11. Controllable deposition of platinum nanoparticles on single-wall carbon nanohorns as catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Niu, Ben; Xu, Wei; Guo, Zhengduo; Zhou, Nengzhi; Liu, Yang; Shi, Zujin; Lian, Yongfu

    2012-09-01

    Uniform and well dispersed platinum nanoparticles were successfully deposited on single-walled carbon nanohorns with the assistance of 4,4-dipydine and ion liquids, respectively. In particular, the size of platinum nanoparticles could be controlled in a very narrow range (2.2 to 2.5 nm) when ion liquids were applied. The crystalline nature of these platinum nanoparticles was confirmed by high resolution transmission electron microscopy observation and X-ray power diffraction analysis, and two species of platinum Pt(0) and Pt(II) were detected by X-ray photoelectron spectroscopy. Electrochemical studies revealed that thus obtained nanocomposites had much better electrocatalytic activity for the methanol oxidation than those prepared with carbon nanotubes as supporter.

  12. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    Science.gov (United States)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  13. Study of PtNi/C catalyst for direct ethanol fuel cell

    International Nuclear Information System (INIS)

    Moraes, L.P.R. de; Silva, E.L. da; Amico, S.C.; Malfatti, C.F.

    2014-01-01

    In this work, PtNi binary catalyst and pure platin catalyst were synthesized by the impregnation-reduction method, using Vulcan XC72R as support, for direct ethanol fuel cells. The composition and structure of the catalysts were analyzed by X-ray diffraction, the electrochemical behavior was evaluated by cyclic voltammetry and morphology of the catalysts was studied by high-resolution transmission electron microscopy. The results showed that the addition of Ni to Pt led to the contraction of the crystal lattice, increased the catalytic activity compared to pure Pt and initiated the electrooxidation of ethanol at lower potential. (author)

  14. Study on the effects of titanium oxide based nanomaterials as catalysts on the hydrogen sorption kinetics of magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Anderson de Farias; Jardim, Paula Mendes; Santos, Dilson Silva dos, E-mail: anderso.n@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Conceicao, Monique Osorio Talarico da [Centro Universitario de Volta Redonda (UniFOA), RJ (Brazil)

    2016-07-01

    Full text: Magnesium hydride is highly attractive for hydrogen storage in solid state in reason of its high gravimetric capacity (7,6 wt% of H{sub 2}) and low density (1,7 g/cm³), making it a promissory candidate for mobile applications [1]. However, its low sorption kinetics and desorption temperature are the main obstacles for its application. In the present study the catalytic role of TiO{sub 2} based nanomaterials with different morphologies on the sorption kinetics of MgH{sub 2} was evaluated. The additions consisted on titanate nanotubes (TTNT-Low), TiO{sub 2} nanorods (TTNT-550) and nanoparticles (KA-100, TTNT-ACID). Transmission and Scanning Transmission Electron Microscopy (S/TEM) associated with X-ray Energy Dispersive Spectroscopy (XEDS) mapping was used to characterize the catalysts' morphology and crystalline structure and their dispersion within magnesium hydride, altogether with other characterization techniques such as X-ray diffraction (XRD) and BET technique for structure and surface area analysis. The sorption kinetics were evaluated by means of a volumetric gas absorption/desorption (Sievert-type) apparatus. The results indicated that all additives improved the sorption kinetics of MgH{sub 2}, but the samples with TTNT-550 (TiO{sub 2} nanorods) and TTNT-ACID (TiO{sub 2} nanoparticles) presented the best and the second best performances, respectively, suggesting that the 1D morphology may promote a slightly superior kinetics than particulate catalysts. (author)

  15. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  16. Study of the effect of ionizing radiation for utilization of spent cracking catalysts

    International Nuclear Information System (INIS)

    Kondo, Fernando Mantovani

    2014-01-01

    Catalyst is a substance that changes the rate of a reaction. In the petroleum industry the commonly catalysts are used for Fluid Catalytic Cracking (FCC) and Hydrocatalytic Cracking (HCC), which one applied in a specific stage. These catalysts are used to facilitate the molecular chains cracking which will generate a mixture of hydrocarbons. However, the catalyst gradually loses its activity, either by changing its original molecular structure or by its contamination from other petroleum molecules. The application of ionizing radiation (electron beam and gamma rays) over these spent catalysts was studied to contribute with the extraction of metals or rare-earths of high added-value. Tests carried out with FCC catalysts were used the techniques of 60 Co irradiation and electron beam (EB) and had as a subject the extraction of lanthanum (La 2 O 3 ), regeneration and utilization of these catalysts. However, the use of ionizing radiation has not contributed in these processes. Meanwhile with HCC catalysts the irradiation used was electron beam and had as a subject the extraction of molybdenum (MoO 3 ). In temperature around 750°C, these irradiated catalysts of the lower region have an extraction yield twice higher compared to non-irradiated ones, in other words 57.65% and 26.24% respectively. (author)

  17. PEO-b-P4VP/Yttrium Hydroxide Hybrid Nanotubes as Supporter for Catalyst Gold Nanoparticles

    Science.gov (United States)

    Yang, Qian; Chen, Dao-yong

    2012-06-01

    The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-1min-1), and good reusability of GNTs/CHNTs.

  18. A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds.

    Science.gov (United States)

    Bhattacharjee, Archita; Ahmaruzzaman, M; Sinha, Tanur

    2015-02-05

    Tin oxide (SnO2) nanoparticles of sizes ∼4.5, ∼10 and ∼30 nm were successfully synthesized by a simple chemical precipitation method using amino acid, glycine which acts as a complexing agent and surfactant, namely sodium dodecyl sulfate (SDS) as a stabilizing agent, at various calcination temperatures of 200, 400 and 600°C. This method resulted in the formation of spherical SnO2 nanoparticles and the size of the nanoparticles was found to be a factor of calcination temperature. The spherical SnO2 nanoparticles show a tetragonal rutile crystalline structure. A dramatic increase in band gap energy (3.8-4.21 eV) was observed with a decrease in grain size (30-4.5 nm) due to three dimensional quantum confinement effect shown by the synthesized SnO2 nanoparticles. SnO2 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and fourier transformed infrared spectroscopy (FT-IR). The optical properties were investigated using UV-visible spectroscopy. These SnO2 nanoparticles were employed as catalyst for the reduction of p-nitro phenol to p-amino phenol in aqueous medium for the first time. The synthesized SnO2 nanoparticles act as an efficient photocatalyst in the degradation of methyl violet 6B dye under direct sunlight. For the first time, methyl violet 6B dye was degraded by SnO2 nanoparticles under direct sunlight. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCC-1) as Efficient Heterogeneous Catalysts for CO Oxidation

    KAUST Repository

    Qureshi, Ziyauddin S.; Sarawade, Pradip B.; Hussain, Irshad; Zhu, Haibo; Al-Johani, Hind; Anjum, Dalaver H.; Hedhili, Mohamed N.; Maity, Niladri; D'Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Gold nanoparticles (Au NPs) of different sizes were supported on fibrous silica nanospheres (KCC-1) by various methods. The size and the location of the Au NPs on the support were found to depend on the preparation method. The KCC-1-supported Au NPs were thoroughly characterized by using HR-TEM, XRD, X-ray photoelectron spectroscopy, UV, and Brunauer-Emmett-Teller surface area measurements and were applied in catalysis for the oxidation of CO. The catalytic performance is discussed in relation to the morphological properties of KCC-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kun; Miao, Peng; Tang, Yuguo, E-mail: tangyg@sibet.ac.cn [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tong, Hui; Zhu, Xiaoli [Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Tao; Cheng, Wenbo [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 (China)

    2014-02-03

    In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

  1. Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCC-1) as Efficient Heterogeneous Catalysts for CO Oxidation

    KAUST Repository

    Qureshi, Ziyauddin S.

    2016-04-13

    Gold nanoparticles (Au NPs) of different sizes were supported on fibrous silica nanospheres (KCC-1) by various methods. The size and the location of the Au NPs on the support were found to depend on the preparation method. The KCC-1-supported Au NPs were thoroughly characterized by using HR-TEM, XRD, X-ray photoelectron spectroscopy, UV, and Brunauer-Emmett-Teller surface area measurements and were applied in catalysis for the oxidation of CO. The catalytic performance is discussed in relation to the morphological properties of KCC-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of coke precursor on catalyst and study on regeneration of catalyst in upgrading of bio-oil

    International Nuclear Information System (INIS)

    Guo, Xiaoya; Zheng, Yong; Zhang, Baohua; Chen, Jinyang

    2009-01-01

    Catalyst HZSM-5 was used in bio-oil catalytic cracking upgrading. The precursor of coke on the catalyst was analyzed by means of TGA, FTIR and C13 NMR. Precursors of coke deposited in the pore of the molecular sieve were mainly aromatic hydrocarbon with the boiling point range from 350 o C to 650 o C. Those on the outer surface of the pellet precursor were identified as saturated aliphatic hydrocarbons with the boiling point below 200 o C. The activity of HZSM-5 was studied after regeneration. In terms of yield of organic distillate and formation rate of coke, results showed that catalytic activity change moderately during the first three times of regeneration.

  3. Supporting Statewide Implementation of the Learning School Initiative. Catalyst Schools Research Study Report

    Science.gov (United States)

    Hammer, Patricia Cahape

    2016-01-01

    This is the first in a series of reports based on a research study, Developing Effective Professional Learning Communities in Catalyst Schools, conducted between February 2015 and June 2016. "Catalyst schools" were elementary- and secondary-level schools selected to participate in a pilot project intended to explore how best to support…

  4. In situ, Cr K-edge XAS study on the Phillips catalyst : activation and ethylene polymerization

    NARCIS (Netherlands)

    Groppo, E.; Prestipino, C.; Cesano, F.; Bonino, F.; Bordiga, S.; Lamberti, C.; Thuene, P.C.; Niemantsverdriet, J.W.; Zecchina, A.

    2005-01-01

    In this in situ EXAFS and XANES study on the Phillips ethylene-polymerization Cr/SiO2 catalyst, two polymerization routes are investigated and compared. The first mimics that adopted in industrial plants, where ethylene is dosed directly on the oxidized catalyst, while in the second the oxidized

  5. ETEM Studies of Electrodes and Electro-catalysts

    DEFF Research Database (Denmark)

    Jooss, Christian; Mildner, Stephanie; Beleggia, Marco

    2016-01-01

    Environmental TEM is an excellent tool for gaining insight into the atomic and electronic structure of electro-catalysts under operating conditions. Several electrochemical reactions such as oxidation/reduction processes of electrodes, heterogeneous gas phase catalysis of water splitting...

  6. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely...

  7. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    Formaldehyde (CH2O) may be synthesized industrially by selective oxidation of methanol over an iron-molybdate (Fe-Mo) oxide catalyst according to: CH3OH + ½O2 →CH2O + H2O. The reaction is normally carried out in a multitubular reactor with excess of air at 250-400 °C (yield = 90-95 %), known...... the activity of the catalyst [2]. Pure MoO3 in itself has low activity. Literature from the last decades agrees that the major reason for the deactivation is loss of molybdenum from the catalyst. Molybdenum forms volatile species with methanol, which can leave behind Mo poor zones. The catalyst is usually...

  8. Hydrothermal synthesis of highly crystalline RuS2 nanoparticles as cathodic catalysts in the methanol fuel cell and hydrochloric acid electrolysis

    International Nuclear Information System (INIS)

    Li, Yanjuan; Li, Nan; Yanagisawa, Kazumichi; Li, Xiaotian; Yan, Xiao

    2015-01-01

    Highlights: • Highly crystalline RuS 2 nanoparticles have been first synthesized by a “one-step” hydrothermal method. • The product presents a pure cubic phase of stoichiometric ratio RuS 2 with average particle size of 14.8 nm. • RuS 2 nanoparticles were used as cathodic catalysts in methanol fuel cell and hydrochloric acid electrolysis. • The catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl − . - Abstract: Highly crystalline ruthenium sulfide (RuS 2 ) nanoparticles have been first synthesized by a “one-step” hydrothermal method at 400 °C, using ruthenium chloride and thiourea as reactants. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy/energy disperse spectroscopy (SEM/EDS), thermo gravimetric-differential thermal analyze (TG-DTA), transmission electron microscopy equipped with selected area electron diffraction (TEM/SAED). Fourier transform infrared spectra (IR), and X-ray photoelectron spectroscopy (XPS). XRD result illustrates that the highly crystalline product presents a pure cubic phase of stoichiometric ratio RuS 2 and the average particle size is 14.8 nm. SEM and TEM images display the products have irregular shape of 6–25 nm. XPS analyst indicates that the sulfur exists in the form of S 2 2− . Cyclic voltammetry (CV), rotating disk electrode (RDE), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements are conducted to evaluate the electrocatalytic activity and stability of the highly crystalline RuS 2 nanoparticles in oxygen reduction reaction (ORR) for methanol fuel cell and hydrochloric acid electrolysis. The results illustrate that RuS 2 is active towards oxygen reduction reaction. Although the activity of RuS 2 is lower than that of Pt/C, the RuS 2 catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl −

  9. Pd nanoparticles immobilized on carbon nanotubes with a polyaniline coaxial coating for the Heck reaction: coating thickness as the key factor influencing the efficiency and stability of the catalyst

    KAUST Repository

    Yu, Rui; Liu, Rui; Deng, Jie; Ran, Maofei; Wang, Ning; Chu, Wei; He, Zhiwei; Du, Zheng; Jiang, Chengfa; Sun, Wenjing

    2018-01-01

    Pd nanoparticles (NPs) supported on polyaniline (PANI)-coated carbon nanotubes (CNTs) were synthesized using a low-cost and simple method for application in the Heck reaction. The effects of the PANI/CNT coating weight ratio on the catalytic stability and recyclability of the composite were determined by using a combination of experimental and computational methods. The results show that through coordination of the N-species in PANI with the Pd NPs, the nitrogen-rich PANI@CNT provides a strong support for the Pd NPs. The thickness of the PANI layer is the key in determining the stability of the catalyst. PANI becomes protonated in the presence of CNTs, as electron transfer from the former to the latter creates strong interactions between the two. Thus, PANI becomes more stable in nanocomposites with a higher CNT content, e.g., PANI/CNT = 0.5 : 1. The catalyst with a PANI/CNT ratio of 0.5 : 1 exhibited the best recycling performance, and only a small loss of activity was observed after 10 cycles. However, upon increasing the PANI content (e.g., PANI/CNT = 4 : 1), the PANI units tend to form bulk structures that are less stable than those that wrap around the CNTs. Such a structure is unstable; therefore, the PANI layers can easily deform or break away from the CNT backbones. Hence, these catalysts deactivate during recycling. Thus, our study demonstrates that the assembly of noble-metal NPs on CNTs bearing a thin coaxial PANI coating is a powerful technique to prepare reusable catalysts for the Heck reaction. Coating thickness is also a key factor affecting the efficiency and stability of the catalyst.

  10. Pd nanoparticles immobilized on carbon nanotubes with a polyaniline coaxial coating for the Heck reaction: coating thickness as the key factor influencing the efficiency and stability of the catalyst

    KAUST Repository

    Yu, Rui

    2018-02-12

    Pd nanoparticles (NPs) supported on polyaniline (PANI)-coated carbon nanotubes (CNTs) were synthesized using a low-cost and simple method for application in the Heck reaction. The effects of the PANI/CNT coating weight ratio on the catalytic stability and recyclability of the composite were determined by using a combination of experimental and computational methods. The results show that through coordination of the N-species in PANI with the Pd NPs, the nitrogen-rich PANI@CNT provides a strong support for the Pd NPs. The thickness of the PANI layer is the key in determining the stability of the catalyst. PANI becomes protonated in the presence of CNTs, as electron transfer from the former to the latter creates strong interactions between the two. Thus, PANI becomes more stable in nanocomposites with a higher CNT content, e.g., PANI/CNT = 0.5 : 1. The catalyst with a PANI/CNT ratio of 0.5 : 1 exhibited the best recycling performance, and only a small loss of activity was observed after 10 cycles. However, upon increasing the PANI content (e.g., PANI/CNT = 4 : 1), the PANI units tend to form bulk structures that are less stable than those that wrap around the CNTs. Such a structure is unstable; therefore, the PANI layers can easily deform or break away from the CNT backbones. Hence, these catalysts deactivate during recycling. Thus, our study demonstrates that the assembly of noble-metal NPs on CNTs bearing a thin coaxial PANI coating is a powerful technique to prepare reusable catalysts for the Heck reaction. Coating thickness is also a key factor affecting the efficiency and stability of the catalyst.

  11. Approaches to single-nanoparticle catalysis.

    Science.gov (United States)

    Sambur, Justin B; Chen, Peng

    2014-01-01

    Nanoparticles are among the most important industrial catalysts, with applications ranging from chemical manufacturing to energy conversion and storage. Heterogeneity is a general feature among these nanoparticles, with their individual differences in size, shape, and surface sites leading to variable, particle-specific catalytic activity. Assessing the activity of individual nanoparticles, preferably with subparticle resolution, is thus desired and vital to the development of efficient catalysts. It is challenging to measure the activity of single-nanoparticle catalysts, however. Several experimental approaches have been developed to monitor catalysis on single nanoparticles, including electrochemical methods, single-molecule fluorescence microscopy, surface plasmon resonance spectroscopy, X-ray microscopy, and surface-enhanced Raman spectroscopy. This review focuses on these experimental approaches, the associated methods and strategies, and selected applications in studying single-nanoparticle catalysis with chemical selectivity, sensitivity, or subparticle spatial resolution.

  12. Report of liquefaction catalyst study meeting (March 1996); Ekika shokubai kentokai hokoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Studied in the research are four iron-based catalysts, which are natural pyrite, synthetic iron sulfide, synthetic iron hydroxide, and catalyst-attached carbon. Tanito Harum coal is treated in a 0.01t/d-capable continuous operation furnace (once-through) under conditions of 450 degrees C and 170kgf/cm{sup 2} with catalyst addition of 1.0, 3.0wt% (catalyst-attached carbon 0.6, 1.0wt%), and a liquid yield of 41.5-48.6wt%-daf coal is achieved. A higher yield results when more catalyst is added. The same yield as achieved by the addition of 3wt% natural pyrite is obtained by the addition of 1.9wt% synthetic iron sulfide, 1.5wt% of synthetic iron hydroxide, or 0.7wt% catalyst-attached coal. The catalyst cost for treating a ton of coal is 4-9 hundred yen, which is far more expensive than the cost set forth as the target. Catalysts whose production process embodiment is now under study are natural pyrite and synthetic iron sulfide, and studies for others are just preliminary. Provided that the practical application of the liquefaction technology realizes in about 2000, then the petroleum price is predicted to be 23 dollars per barrel. Coal liquefaction products will have to be produced at a cost which will enable competition with the said petroleum price. (NEDO)

  13. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  14. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Science.gov (United States)

    Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui

    2018-04-01

    Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  15. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-04-01

    Full Text Available Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction, SEM (scanning electron microscope, BET test and transient test. The experiments show that: ① The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. ② The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. ③ The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  16. Direct dimethyl-ether (DME) synthesis by spatial patterned catalyst arrangement. A modeling and simulation study

    Energy Technology Data Exchange (ETDEWEB)

    McBride, K.; Turek, T.; Guettel, R. [Clausthal Univ. of Technology (Germany). Inst. of Chemical Process Engineering

    2011-07-01

    The effect of spatially patterned catalyst beds was investigated for direct DME synthesis from synthesis gas as an example. A layered arrangement of methanol synthesis and dehydration catalyst was chosen and studied by numerical simulation under typical operating conditions for single-step DME synthesis. It was revealed that catalyst layers significantly influence the DME productivity. With an increasing number of layers from 2 to 40, an increase in DME productivity was observed approaching the performance of a physical catalyst mixture for an infinite number of layers. The results prove that a physical mixture of methanol synthesis and dehydration catalyst achieves the highest DME productivity under operating conditions chosen in this study. This can be explained by the higher average methanol concentration for the layered catalyst arrangement and thus stronger equilibrium constraints for the methanol synthesis reaction. Essentially, the layered catalyst arrangement is comparable to a cascade model of the two-step process, which is less efficient in terms of DME yield than the single-step process. However, since a significant effect was found, the layered catalyst arrangement could be beneficial for other reaction systems. (orig.)

  17. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water

    Science.gov (United States)

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-01

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m2 g-1 were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  18. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.

    Science.gov (United States)

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-22

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m(2) g(-1) were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  19. Spectrophotometric evaluation of surface morphology dependent catalytic activity of biosynthesized silver and gold nanoparticles using UV–vis spectra: A comparative kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Ankamwar, Balaprasad, E-mail: bankamwar@yahoo.com [Bio-inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007 (India); Kamble, Vaishali; Sur, Ujjal Kumar [Bio-inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007 (India); Santra, Chittaranjan [Department of Chemistry, Netaji Nagar Day College, Regent Park, Kolkata 700092 (India)

    2016-03-15

    Graphical abstract: - Highlights: • The biosynthesized silver nanoparticles were stable for 6 months and used as effective SERS active substrate. • They are effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. • Comparative catalytic efficiency of both silver and gold nanoparticles was studied spectrophotometrically. • Our results demonstrate surface morphology dependent catalytic activity of both nanoparticles. - Abstract: The development of eco-friendly and cost-effective synthetic protocol for the preparation of nanomaterials, especially metal nanoparticles is an emerging area of research in nanotechnology. These metal nanoparticles, especially silver can play a crucial role in various catalytic reactions. The biosynthesized silver nanoparticles described here was very stable up to 6 months and can be further exploited as an effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. The silver nanoparticles were utilized as an efficient surface-enhanced Raman scattering (SERS) active substrate using Rhodamine 6G as Raman probe molecule. We have also carried out systematic comparative studies on the catalytic efficiency of both silver and gold nanoparticles using UV–vis spectra to monitor the above reaction spectrophotometrically. We find that the reaction follows pseudo-first order kinetics and the catalytic activity can be explained by a simple model based on Langmuir–Hinshelwood mechanism for heterogeneous catalysis. We also find that silver nanoparticles are more efficient as a catalyst compare to gold nanoparticles in the reduction of 4-nitrophenol to 4-aminophenol, which can be explained by the morphology of the nanoparticles as determined by transmission electron microscopy.

  20. Spectrophotometric evaluation of surface morphology dependent catalytic activity of biosynthesized silver and gold nanoparticles using UV–vis spectra: A comparative kinetic study

    International Nuclear Information System (INIS)

    Ankamwar, Balaprasad; Kamble, Vaishali; Sur, Ujjal Kumar; Santra, Chittaranjan

    2016-01-01

    Graphical abstract: - Highlights: • The biosynthesized silver nanoparticles were stable for 6 months and used as effective SERS active substrate. • They are effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. • Comparative catalytic efficiency of both silver and gold nanoparticles was studied spectrophotometrically. • Our results demonstrate surface morphology dependent catalytic activity of both nanoparticles. - Abstract: The development of eco-friendly and cost-effective synthetic protocol for the preparation of nanomaterials, especially metal nanoparticles is an emerging area of research in nanotechnology. These metal nanoparticles, especially silver can play a crucial role in various catalytic reactions. The biosynthesized silver nanoparticles described here was very stable up to 6 months and can be further exploited as an effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. The silver nanoparticles were utilized as an efficient surface-enhanced Raman scattering (SERS) active substrate using Rhodamine 6G as Raman probe molecule. We have also carried out systematic comparative studies on the catalytic efficiency of both silver and gold nanoparticles using UV–vis spectra to monitor the above reaction spectrophotometrically. We find that the reaction follows pseudo-first order kinetics and the catalytic activity can be explained by a simple model based on Langmuir–Hinshelwood mechanism for heterogeneous catalysis. We also find that silver nanoparticles are more efficient as a catalyst compare to gold nanoparticles in the reduction of 4-nitrophenol to 4-aminophenol, which can be explained by the morphology of the nanoparticles as determined by transmission electron microscopy.

  1. Effect of Au Precursor and Support on the Catalytic Activity of the Nano-Au-Catalysts for Propane Complete Oxidation

    Directory of Open Access Journals (Sweden)

    Arshid M. Ali

    2015-01-01

    Full Text Available Catalytic activity of nano-Au-catalyst(s for the complete propane oxidation was investigated. The results showed that the nature of both Au precursor and support strongly influences catalytic activity of the Au-catalyst(s for the propane oxidation. Oxidation state, size, and dispersion of Au nanoparticles in the Au-catalysts, surface area, crystallinity, phase structure, and redox property of the support are the key aspects for the complete propane oxidation. Among the studied Au-catalysts, the AuHAuCl4-Ce catalyst is found to be the most active catalyst.

  2. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin; Sarawade, Pradip; Albert, Matthias; D'Elia, Valerio; Hedhili, Mohamed Nejib; Kö hler, Klaus; Basset, Jean-Marie

    2015-01-01

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  3. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin

    2015-01-09

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  4. Hollow Mesoporous Silica Supported Ruthenium Nanoparticles: A Highly Active and Reusable Catalyst for H2 Generation from the Hydrolysis of NaBH4

    Directory of Open Access Journals (Sweden)

    Shuge Peng

    2015-01-01

    Full Text Available Ru nanoparticles supported on hollow mesoporous silica (HMS, which are prepared via in situ wet chemical reduction, have been investigated as the highly efficient heterogeneous catalyst for H2 generation from the hydrolysis of an alkaline NaBH4 solution. Many techniques, including X-ray diffraction (XRD, transmission electron microscope (TEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the as-prepared nanocatalyst (Ru/HMS. Factors, such as Ru loadings in HMS, catalyst concentration, and solution temperature, on catalytic property and reutilization are investigated in this work. A rate of H2 generation as high as 18.6 L min−1 g−1 (Ru using 1 wt% NaBH4 solution containing 3 wt% NaOH and 40 mg of Ru/HMS catalyst can be reached at room temperature. The minimum apparent activation energy (Ea of H2 generation, obtained by fitting the curve of Ea values versus catalyst amount, is determined to be 46.7 ± 1 kJ/mol. The residual catalytic activity of the repeated Ru/HMS still remains 47.7% after 15 runs, which perhaps results from the incorporation of the residual by-product (NaBO2 in the pores of HMS based on the analysis of XPS.

  5. Polymeric carbon nitride/mesoporous silica composites as catalyst support for Au and Pt nanoparticles.

    Science.gov (United States)

    Xiao, Ping; Zhao, Yanxi; Wang, Tao; Zhan, Yingying; Wang, Huihu; Li, Jinlin; Thomas, Arne; Zhu, Junjiang

    2014-03-03

    Small and homogeneously dispersed Au and Pt nanoparticles (NPs) were prepared on polymeric carbon nitride (CNx )/mesoporous silica (SBA-15) composites, which were synthesized by thermal polycondensation of dicyandiamide-impregnated preformed SBA-15. By changing the condensation temperature, the degree of condensation and the loading of CNx can be controlled to give adjustable particle sizes of the Pt and Au NPs subsequently formed on the composites. In contrast to the pure SBA-15 support, coating of SBA-15 with polymeric CNx resulted in much smaller and better-dispersed metal NPs. Furthermore, under catalytic conditions the CNx coating helps to stabilize the metal NPs. However, metal NPs on CNx /SBA-15 can show very different catalytic behaviors in, for example, the CO oxidation reaction. Whereas the Pt NPs already show full CO conversion at 160 °C, the catalytic activity of Au NPs seems to be inhibited by the CNx support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts.

    Science.gov (United States)

    Zhang, Zhen; Sèbe, Gilles; Wang, Xiaosong; Tam, Kam C

    2018-02-15

    pH-responsive poly(4-vinylpyridine) (P4VP) grafted cellulose nanocrystals (P4VP-g-CNC) were prepared by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) and subsequently used to stabilize gold nanoparticles (Au NPs) as efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol (4NP). The presence of P4VP brushes on the CNC surface controlled the growth of Au NPs yielding smaller averaged diameter compared to Au NPs deposited directly on pristine CNC. The catalytic performances of pristine Au NPs, Au@CNC and Au@P4VP-g-CNC were compared by measuring the turnover frequency (TOF) for the catalytic reduction of 4NP. Compared to pristine Au NPs, the catalytic activity of Au@CNC and Au@P4VP-g-CNC were 10 and 24 times better. Moreover, the Au@P4VP-g-CNC material could be recovered via flocculation at pH>5, and the recycled nanocatalyst remained highly active. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fabrication of hollow carbon nanospheres introduced with Fe and N species immobilized palladium nanoparticles as catalysts for the semihydrogenation of phenylacetylene under mild reaction conditions

    Science.gov (United States)

    Zhang, Wei; Wang, Fushan; Li, Xinlin; Liu, Yansheng; Liu, Yang; Ma, Jiantai

    2017-05-01

    Palladium nanoparticles immobilized on hollow carbon nanospheres introduced with both Fe and N species, denoted as Pd/Fe-N/C, have been designed as an efficient, heterogeneous, environmentally friendly catalyst for the semihydrogenation of phenylacetylene in liquid-phase under mild conditions (298 K, H2 1 atm) without any additive. A high selectivity towards styrene (higher than 96.2%) was achieved with the total conversion of phenylacetylene within 80 min. The synergistic effect of doped N and Fe with Pd might be an important influence on improving the catalytic performance. Moreover, the Pd/Fe-N/C could be easily recycled by centrifugation and is reusable without obvious decrease of catalytic activity and selectivity. Therefore, the Pd/Fe-N/C nanocatalyst is highly attractive as selective hydrogenation heterogeneous catalyst for important industrial reactions.

  8. Palladium Nanoparticles Immobilized on Poly(vinyl chloride-Supported Pyridinium as an Efficient and Recyclable Catalyst for Suzuki-Miyaura Cross-Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2011-01-01

    Full Text Available The palladium nanoparticles immobilized on the polymeric surface of poly(vinyl chloride-supported pyridinium (PVC-Py-Pd0 were achieved by a simple procedure by applying the corresponding functionalized polymer and palladium chloride in ethanol solution. The as-prepared catalyst (PVC-Py-Pd0 was found to be air and moisture stable and exhibits significant catalytic activity for Suzuki-Miyaura cross-coupling reaction of various aryl halides and phenylboronic acid under milder operating conditions. The procedure presented here showed several merits such as short reaction time, simple experimental and isolated procedure and excellent yields of products. Furthermore, the catalyst can be easily recovered and reused for at least six times with consistent activities.

  9. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  10. MAGNETO-CHEMICAL CHARACTER STUDIES OF NOVEL Fe CATALYSTS FOR COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Murty A. Akundi; Jian H. Zhang; A.N. Murty; S.V. Naidu

    2002-04-01

    The objectives of the present study are: (1) To synthesize iron catalysts: Fe/MoO{sub 3}, and Fe/Co/MoO{sub 3} employing two distinct techniques: Pyrolysis with organic precursors and Co-precipitation of metal nitrates; (2) To investigate the magnetic character of the catalysts before and after exposure to CO and CO+H{sub 2} by (a) Mossbauer study of Iron (b) Zerofield Nuclear Magnetic Resonance study of Cobalt, and (c) Magnetic character of the catalyst composite; (3) To study the IR active surface species of the catalyst while stimulating (CO--Metal, (CO+H{sub 2})--Metal) interactions, by FTIR Spectroscopy; and (4) To analyze the catalytic character (conversion efficiency and product distribution) in both direct and indirect liquefaction Process and (5) To examine the correlations between the magnetic and chemical characteristics. This report presents the results of our investigation on (a) the effect of metal loading (b) the effect of intermetallic ratio and (c) the effect of catalyst preparation procedure on (i) the magnetic character of the catalyst composite (ii) the IR active surface species of the catalyst and (iii) the catalytic yields for three different metal loadings: 5%, 15%, and 25% (nominal) for three distinct intermetallic ratios (Fe/Co = 0.3, 1.5, 3.0).

  11. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis.

    Science.gov (United States)

    Sun, Zhenkun; Sun, Bo; Qiao, Minghua; Wei, Jing; Yue, Qin; Wang, Chun; Deng, Yonghui; Kaliaguine, Serge; Zhao, Dongyuan

    2012-10-24

    The organization of different nano objects with tunable sizes, morphologies, and functions into integrated nanostructures is critical to the development of novel nanosystems that display high performances in sensing, catalysis, and so on. Herein, using acetylacetone as a chelating agent, phenolic resol as a carbon source, metal nitrates as metal sources, and amphiphilic copolymers as a template, we demonstrate a chelate-assisted multicomponent coassembly method to synthesize ordered mesoporous carbon with uniform metal-containing nanoparticles. The obtained nanocomposites have a 2-D hexagonally arranged pore structure, uniform pore size (~4.0 nm), high surface area (~500 m(2)/g), moderate pore volume (~0.30 cm(3)/g), uniform and highly dispersed Fe(2)O(3) nanoparticles, and constant Fe(2)O(3) contents around 10 wt %. By adjusting acetylacetone amount, the size of Fe(2)O(3) nanoparticles is readily tunable from 8.3 to 22.1 nm. More importantly, it is found that the metal-containing nanoparticles are partially embedded in the carbon framework with the remaining part exposed in the mesopore channels. This unique semiexposure structure not only provides an excellent confinement effect and exposed surface for catalysis but also helps to tightly trap the nanoparticles and prevent aggregating during catalysis. Fischer-Tropsch synthesis results show that as the size of iron nanoparticles decreases, the mesoporous Fe-carbon nanocomposites exhibit significantly improved catalytic performances with C(5+) selectivity up to 68%, much better than any reported promoter-free Fe-based catalysts due to the unique semiexposure morphology of metal-containing nanoparticles confined in the mesoporous carbon matrix.

  12. A simple route to Cu{sub x}Sn{sub (100−x)} intermetallic nanoparticle catalyst for ultra-phenol hydroxylation

    Energy Technology Data Exchange (ETDEWEB)

    Pithakratanayothin, Sakollapath [The Petroleum and Petrochemical College and Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Tongsri, Ruangdaj [Powder Metallurgy Research and Development Unit - PM-RDU, National Metal and Materials Technology Center, Pathum Thani 12120 (Thailand); Chaisuwan, Thanyalak [The Petroleum and Petrochemical College and Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Wongkasemjit, Sujitra, E-mail: dsujitra@chula.ac.th [The Petroleum and Petrochemical College and Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand)

    2016-09-15

    A practical methodology and novel, economical materials were proposed to successfully prepare nanoparticle catalysts for phenol hydroxylation. The preparation was carried out via mechanical alloying (MA) of Cu{sub x}Sn{sub (100−x)} powder mixtures (where x = 30, 50, 70, and 100%wt). The mechanical alloyed nanoparticles were characterized using various techniques. X-ray diffraction patterns indicated that η-Cu{sub 6}Sn{sub 5}, ε-Cu{sub 3}Sn, and CuSn phases could be formed in the mechanical alloyed Cu{sub x}Sn{sub (100−x)} materials. Transmission electron micrographs and selected area electron diffraction patterns confirmed the presence of η-Cu{sub 6}Sn{sub 5}, ε-Cu{sub 3}Sn, and CuSn phases. Activity of the catalysts, using the optimal conditions of 70 °C reaction temperature for 1 h, 50 mg of Cu{sub 0.5}Sn{sub 0.5}, and 1:3 phenol:H{sub 2}O{sub 2} ratio, provided more than 98% conversion with 70% catechol (CAT) and 29% hydroquinone (HQ). Experimental results suggested that the presence of the ε-Cu{sub 3}Sn phase gave higher activity while Sn reduced benzoquinone (BQ) to HQ. The catalyst maintained its stability with no structural collapse for more than 24 h. - Highlights: • Cu{sub x}Sn{sub y} intermetallic as a catalyst was successfully synthesized via mechanical alloying. • Cu{sub x}Sn{sub y} intermetallics promoted impressive phenol hydroxylation. • 98% conversion was achieved with high selectivity of catechol.

  13. Study of iron-zinc catalysts by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Arriola, S.H.

    1990-01-01

    The Moessbauer parameters were determined on a series of catalyst mixtures of iron and zinc oxides with variable quantities of zinc. A change in the crystal structure of the iron oxide when introducing zinc into the samples was observed. The corundum structure of the α-Fe 2 O 3 phase was transformed into the spinel type of zinc ferrite when zinc oxide was present in any quantity. A strong electronic interaction between the zinc ferrite and the zinc oxide present in excess was evident. The catalysts were analyzed using x-ray fluorescence and x-ray diffraction methods. (author) 10 refs.; 4 figs.; 2 tabs

  14. Ru Nanoparticles Supported on MIL-101 by Double Solvents Method as High-Performance Catalysts for Catalytic Hydrolysis of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Tong Liu

    2015-01-01

    Full Text Available Highly dispersed crystalline Ru nanoparticles (NPs were successfully immobilized inside the pores of MIL-101 by a double solvents method (DSM. HRTEM clearly demonstrated the uniform distribution of the ultrafine Ru NPs throughout the interior cavities of MIL-101. The synthesized Ru@MIL-101 catalyst was also characterized by X-ray diffraction (XRD, N2 adsorption desorption, and ICP-AES. The catalytic test indicated that the Ru NPs supported MIL-101 material exhibited exceedingly high activity and excellent durability for hydrogen generation from the catalytic hydrolysis of amine boranes.

  15. The Effect of Catalyst Type on The Microstructure and Magnetic Properties of Synthesized Hard Cobalt Ferrite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shaima'a Jaber Kareem

    2018-02-01

    Full Text Available A sol-gel process prepared the nanoparticles of hard cobalt ferrite (CoFe2O4. Cobalt nitrate hexahydrate (Co (NO32⋅6H2O, iron nitrate nonahydrate (Fe (NO33⋅9H2O with using two catalysis acid (citric acid and alkaline (hydroxide ammonium were used as precursor materials. Crystallization behavior of the CoFe2O4 nanoparticles were studied by X-ray diffraction (XRD. Nanoparticles phases can change from amorphous to spinel ferrite crystalline depending on the calcinated temperature at 600°C, with using citric acid as a catalysis without finding forgone phase, while using hydroxide ammonium was shown second phase (α-Fe2O3 with CoFe2O4. Crystallite size was measured by Scherrer’s formula about (25.327 nm and (27.119 nm respectively. Structural properties were investigated by FTIR, which was appeared main bond of (Fe-O, (Co-O, (C-O, and (H-O. Scanning electron microscopy (FE- SEM was shown the microstructure observation of cobalt ferrite and the particle size at the range about (28.77-42.97 nm. Magnetization measurements were carried out on a vibrating sample magenometer (VSM that exhibited hard spinel ferrite.

  16. Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation

    DEFF Research Database (Denmark)

    Gardini, Diego; Mortensen, Peter Mølgaard; Carvalho, Hudson W. P.

    2014-01-01

    Hydrodeoxygenation (HDO) is proposed as an efficient way to remove oxygen in bio-oil, improving its quality as a more sustainable alternative to conventional fuels in terms of CO2 neutrality and relative short production cycle [1]. Ni and Ni-MoS2 nanoparticles supported on ZrO2 show potential...... as high-pressure (100 bar) catalysts for purification of bio-oil by HDO. However, the catalysts deactivate in presence of sulfur, chlorine and potassium species, which are all naturally occurring in real bio-oil. The deactivation mechanisms of the Ni/ZrO2 have been investigated through scanning...... transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Catalytic testing has been performed using guaiacol in 1-octanol acting as a model compound for bio-oil. Addition of sulphur (0.3 vol% octanethiol) in the feed...

  17. Hydrophobic catalyst applications in the nuclear field and in environmental studies

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Popescu, Irina; Stefanescu, Ioan; Varlam, Carmen

    2002-01-01

    The paper presents methods of preparation and applications of hydrophobic platinum catalysts in nuclear field and environmental protection. These catalysts allow the transport of gaseous reactants and reaction products to and from catalytic active centers since the pore blocking by water is avoided. Hence the activity and stability of the catalysts increase and isotopic exchange columns with simpler internal structure can be achieved. The aim of the paper is: 1. to give a data base regarding the preparation methods of the optimal catalyst type; 2. to indicate the utilization and operation procedures of hydrophobic catalysts with mixed and simple packings; 3. to evaluate the performances and applications of hydrophobic catalysts. Over one hundred of hydrophobic catalysts of the active metal/support type were prepared in our laboratory. Hydrophobic features were obtained by different methods like these: - coating a hydrophilic conventional catalyst with a hydrophobic agent such as silicone or teflon; - supporting the active metal directly into the pores of a hydrophobic support; - mixing the teflon powder with a hydrophilic conventional catalyst; coating the support with teflon followed by the impregnation with the precursor of the active metal. The most important application of these catalysts is detritiation of the heavy water used as moderator and coolant in CANDU type reactors. Build-up of tritium in heavy water following the neutron capture by deuterium leads to a reduction in the moderating properties and at the same time leads to a contamination hazard for both operation personnel and environment. Tritium recovery leads this way to both improving the moderating qualities of the heavy water and obtaining valuable pure tritium of high importance in fusion research and other laboratory studies. One gram of tritium costs about USD 10,000. The physical chemical process is water-hydrogen catalyzed isotopic exchange. Also discussed in the paper is the separation of

  18. Sodium Tetraphenylborate Catalyst Identification: Preliminary Studies Set 2

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1997-05-01

    This document details the results of these tests and represents the second report of the task designed to identify soluble NaTPB decomposition catalysts. This task, performed as part of the DNFSB Recommendation 96-1 Implementation Plan, partially fulfills the request by High Level Waste Engineering and the ITP Flow Sheet Team in task Technical Request HLW-TTR-97008

  19. A nanostructural study of Raney-type nickel catalysts

    NARCIS (Netherlands)

    Devred, F.

    2004-01-01

    Raney-type nickel catalysts have been applied in commercial hydrogenation reactions for decades. They are relatively cheap and have proven to be very efficient in hydrogenation. The preparation process is relatively simple, but it appears that many parameters have an influence on the performance of

  20. Moessbauer study on the formation process of Fe-K composition in iron-based catalyst for dehydrogenation of ethylbenzene

    International Nuclear Information System (INIS)

    Jiang Keyu; Zhao Zhenjie; Yang Xielong

    2001-01-01

    Fe-K spinel structure is the predecessor of active phase of potassium promoted iron-based catalyst for dehydrogenation of ethylbenzene. Moessbauer spectroscopy has been used to study the formation process of Fe-K spinel structure which depends on the catalyst composition and preparing condition. The results may prove useful for production of industrial catalyst

  1. Towards quantitative analysis of core-shell catalyst nano-particles by aberration corrected high angle annular dark field STEM and EDX

    International Nuclear Information System (INIS)

    Haibo, E; Nellist, P D; Lozano-Perez, S; Ozkaya, D

    2010-01-01

    Core-shell structured heterogeneous catalyst nano-particles offer the promise of more efficient precious metal usage and also novel functionalities but are as yet poorly characterised due to large compositional variations over short ranges. High angle annular dark field detector in a scanning transmission electron microscope is frequently used to image at high resolution because of its Z-contrast and incoherent imaging process, but generally little attention is paid to quantification. Energy dispersive X-ray analysis provides information on thickness and chemical composition and, used in conjunction with HAADF-STEM, aids interpretation of imaged nano-particles. We present important calibrations and initial data for truly quantitative high resolution analysis.

  2. The effect of diluting ruthenium by iron in RuxSey catalyst for oxygen reduction

    International Nuclear Information System (INIS)

    Delacote, Cyril; Lewera, Adam; Pisarek, Marcin; Kulesza, Pawel J.; Zelenay, Piotr; Alonso-Vante, Nicolas

    2010-01-01

    This study has focused on the synthesis of novel oxygen reduction reaction (ORR) chalcogenide catalysts, with Ru partially replaced by Fe in a cluster-type Ru x Se y . The catalysts were obtained by thermal decomposition of Ru 3 (CO) 12 and Fe(CO) 5 in the presence of Se. As indicated by the XPS data, the composition of catalyst nanoparticles depends on the solvent used (either p-xylene or dichlorobenzene). The presence of iron in synthesized catalysts has been confirmed by both EDAX and XPS. Voltammetric activation of the catalysts results in a partial removal of iron and unreacted selenium from the surface. The ORR performance of electrochemically pre-treated catalysts was evaluated using rotating disk and ring-disk electrodes in a sulfuric acid solution. No major change in the ORR mechanism relative to the Se/Ru catalyst has been observed with Fe-containing catalysts.

  3. Chelating agent-assisted heat treatment of a carbon-supported iron oxide nanoparticle catalyst for PEMFC.

    Science.gov (United States)

    Liu, Shyh-Jiun; Huang, Chia-Hung; Huang, Chun-Kai; Hwang, Weng-Sing

    2009-08-28

    Iron complexes were supported on commercial carbon black and heat treated to create FeO(x)/C catalysts that showed a larger normalized current density and normalized power density than commercial Pt/C catalysts; the coordination number of the iron complexes used affected the formation of the active site for oxygen reduction in PEMFC.

  4. A study on the polymer catalyst manufacturing technology

    International Nuclear Information System (INIS)

    Chung, Heung Seok; Lee, Han Soo; Kang, Hee Seok; Paek, Seung Uh; Kim, Kwang Rak; Koo, Jee Hyu; Chung, Yong Won; Sung, Ki Ung; Na, Jeong Won; Hwang, Seong Tae; Kim, Yong Ik; Choi, Yoon Dong

    1994-01-01

    Heavy water is used as moderator and coolant in Pressurized Heavy Water Power Plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new four pressurized heavy water power plants till the year 2006. Total heavy water demand for these plants would be 1988 Mg during the period 1992-2006. Reformed hydrogen processes is considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchance was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m 3 HD/m 3 Bed.sec. and heavy water separation processes using the catalysts were optimized. (Author)

  5. Study of propane partial oxidation on vanadium-containing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Komashko, G.A.; Khalamejda, S.V.; Zazhigalov, V.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    The present results indicate that maximum selectivity to acrylic acid can be reached over V-P-Zr-O catalysts. When the hydrocarbon concentration is 5.1 vol.% the selectivity is about 30% at quite high paraffin conversion. Conclusively, some explanations to the observed facts can be given. The V-P-O catalyst promotion with lanthanum by means of mechanochemical treatment is distinguished by the additive uniform spreading all over the matrix surface. Such twophase system is highly active in propane conversion (lanthanum oxide) and further oxidation of the desired products. The similar properties are attributed to V-P-Bi-La-O catalyst. Bismuth, tellurium and zirconium additives having clearly defined acidic properties provoke the surface acidity strengthening and make easier desorption of the acidic product (acrylic acid) from the surface lowering its further oxidation. Additionally, since bismuth and zirconium are able to form phosphates and, according to, to create space limitations for the paraffin molecule movement out of the active group boundaries, this can be one more support in favour of the selectivity increase. With this point of view very interesting results were obtained. It has been shown that the more limited the size of the vanadium unit, the higher the selectivity is. Monoclinic phase AV{sub 2}P{sub 2}O{sub 10} which consists in clusters of four vanadium atoms is sensibly more reactive than the orthorhombic phase consists in V{sub {infinity}} infinite chains. (orig.)

  6. Chemisorption studies of Pt/SnO2 catalysts

    Science.gov (United States)

    Brown, Kenneth G.; Ohorodnik, Susan K.; Vannorman, John D.; Schryer, Jacqueline; Upchurch, Billy T.; Schryer, David R.

    1990-01-01

    The low temperature CO oxidation catalysts that are being developed and tested at NASA-Langley are fairly unique in their ability to efficiently oxidize CO at low temperatures (approx. 303 K). The bulk of the reaction data that has been collected in the laboratory has been determined using plug flow reactors with a low mass of Pt/SnO2/SiO2 catalyst (approx. 0.1 g) and a modest flow rate (5 to 10 sc sm). The researchers have previously characterized the surface solely in terms of N2 BET surface areas. These surface areas have not been that indicative of reaction rate. Indeed, some of the formulations with high BET surface area have yielded lower reaction rates than those with lower BET surface areas. As a result researchers began a program of determining the chemisorption of the various species involved in the reaction; CO, O2 and CO2. Such a determination of will lead to a better understanding of the mechanism and overall kinetics of the reaction. The pulsed-reactor technique, initially described by Freel, is used to determine the amount of a particular molecule that is adsorbed on the catalyst. Since there is some reaction of CO with the surface to produce CO2, the pulsed reactor had to be coupled with a gas chromatograph in order to distinguish between the loss of CO that is due to adsorption by the surface and the loss that is due to reaction with the surface.

  7. Optical and structural studies of silver nanoparticles

    International Nuclear Information System (INIS)

    Temgire, M.K.; Joshi, S.S.

    2004-01-01

    Gamma radiolysis method was used to prepare polyvinyl alcohol (PVA) capped silver nanoparticles by optimizing various conditions like metal ion concentration and polymer (PVA) of different molecular weights. The role of different scavengers was also studied. The decrease in particle size was observed with increase in the molecular weight of capping agent. γ-radiolytic method provides silver nanoparticles in fully reduced and highly pure state. XRD (X-ray diffraction) technique confirmed the zero valent state of silver. Optical studies were done using UV-visible spectrophotometer to see the variation of electronic structure of the metal sol. Transmission Electron Microscopic (TEM) studies reveal the fcc geometry. The TEM show clearly split Debye-Scherrer rings. The d values calculated from the diffraction ring pattern are in perfect agreement with the ASTM data. Ag particles less than 10 nm are spherical in shape, whereas the particles above 30 nm have structure of pentagonal biprisms or decahedra, referred to as multiply twinned particles

  8. Further studies on hydration of alkynes by the PtCl4-CO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Israelsohn, Osnat; Vollhardt, K. Peter C.; Blum, Jochanan

    2002-01-18

    Under CO atmosphere, between 80 and 120 C, a glyme solution of PtCl{sub 4} forms a carbonyl compound that promotes hydration of internal as well as terminal alkynes to give aldehyde-free ketones. The catalytic process depends strongly on the electronic and steric nature of the substrates. Part of the carbonyl functions of the catalyst can be replaced by phosphine ligands. Chiral DIOP reacts with the PtCl{sub 4}-CO compound to give a catalyst that promotes partial kinetic resolution of a racemic alkyne. Replacement of part of the CO by polystyrene-bound diphenylphosphine enables to attach the catalyst to the polymeric support. Upon entrapment of the platinum compound in a silica sol-gel matrix, it reacts as a partially recyclable catalyst. A reformulated mechanism for the PdCl{sub 4}-CO catalyzed hydration is suggested on the basis of the present study.

  9. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect

    Energy Technology Data Exchange (ETDEWEB)

    Zahed, Bahareh; Hosseini-Monfared, Hassan, E-mail: monfared@znu.ac.ir

    2015-02-15

    Graphical abstract: - Highlights: • Characteristics of three different graphene oxide (GO) are studied as a support for Ag nanoparticles. • The required conditions for a best support are determined. • For the first time the silver nanoparticles decorated GO as catalyst for aerobic oxidation of benzyl alcohol and the effects of the degree of reduction of GO on AgNPs on GO are reported. - Abstract: Three different nanocomposites of silver and graphene oxide, namely silver nanoparticles (AgNPs) immobilized on reduced graphene oxide (AgNPs/rGO), partially reduced graphene oxide (AgNPs/GO) and thiolated partially reduced graphene oxide (AgNPs/GOSH), were synthesized in order to compare their properties. Characterizations were carried out by infrared and UV–Vis and Raman spectroscopy, ICP, X-ray diffraction, SEM and TEM, confirming both the targeted chemical modification and the composite formation. The nanocomposites were successfully employed in the aerobic oxidation of benzyl alcohol at atmospheric pressure. AgNPs/GOSH is stable and recyclable catalyst which showed the highest activity in the aerobic oxidation of benzyl alcohol in the presence of N-hydroxyphthalimide (NHPI) to give benzaldehyde with 58% selectivity in 24 h at 61% conversion. The favorite properties of AgNPs/GOSH are reasonably attributed to the stable and well distributed AgNPs over GOSH due to strong adhesion between AgNPs and GOSH.

  10. Hydrothermal synthesis of highly crystalline RuS{sub 2} nanoparticles as cathodic catalysts in the methanol fuel cell and hydrochloric acid electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanjuan [Key Laboratory of Marine Chemistry Theory and Technology, Minisry of Education Ocean University of China, Qingdao, 266100 (China); College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Li, Nan, E-mail: lin@jlu.edu.cn [College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Kochi University, Kochi 780-8520 (Japan); Li, Xiaotian [College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Yan, Xiao [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China)

    2015-05-15

    Highlights: • Highly crystalline RuS{sub 2} nanoparticles have been first synthesized by a “one-step” hydrothermal method. • The product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} with average particle size of 14.8 nm. • RuS{sub 2} nanoparticles were used as cathodic catalysts in methanol fuel cell and hydrochloric acid electrolysis. • The catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}. - Abstract: Highly crystalline ruthenium sulfide (RuS{sub 2}) nanoparticles have been first synthesized by a “one-step” hydrothermal method at 400 °C, using ruthenium chloride and thiourea as reactants. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy/energy disperse spectroscopy (SEM/EDS), thermo gravimetric-differential thermal analyze (TG-DTA), transmission electron microscopy equipped with selected area electron diffraction (TEM/SAED). Fourier transform infrared spectra (IR), and X-ray photoelectron spectroscopy (XPS). XRD result illustrates that the highly crystalline product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} and the average particle size is 14.8 nm. SEM and TEM images display the products have irregular shape of 6–25 nm. XPS analyst indicates that the sulfur exists in the form of S{sub 2}{sup 2−}. Cyclic voltammetry (CV), rotating disk electrode (RDE), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements are conducted to evaluate the electrocatalytic activity and stability of the highly crystalline RuS{sub 2} nanoparticles in oxygen reduction reaction (ORR) for methanol fuel cell and hydrochloric acid electrolysis. The results illustrate that RuS{sub 2} is active towards oxygen reduction reaction. Although the activity of RuS{sub 2} is lower than that of Pt/C, the RuS{sub 2} catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}.

  11. Fe-containing nanoparticles used as effective catalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation

    Science.gov (United States)

    Tsodikov, M. V.; Ellert, O. G.; Nikolaev, S. A.; Arapova, O. V.; Bukhtenko, O. V.; Maksimov, Yu. V.; Kirdyankin, D. I.; Vasil'kov, A. Yu.

    2018-03-01

    Active iron-containing nanosized components have been formed on the lignin surface. The metal was deposited on the lignin from an ethanol solution of Fe(acac)3 and from a colloid solution of iron metal particles obtained beforehand by metal vapor synthesis. These active components are able to absorb microwave radiation and are suitable for microwave-assisted high-rate dehydrogenation and dry reforming of lignin without addition of a carbon adsorbent, as a supplementary radiation absorbing material, to the feedstock. The dependence of the solid lignin heating dynamics on the concentration of supported iron particles was investigated. The threshold Fe concentration equal to 0.5 wt.%, providing the highest rate of sample heating up to the reforming and plasma generation temperature was identified. The microstructure and magnetic properties of iron-containing nanoparticles supported on lignin were studied before and after the reforming. The Fe3O4 nanoparticles and also core-shell Fe3O4@γ-Fe-C nanostructures are formed during the reforming of lignin samples. The catalytic performance of iron-based nanoparticles toward the lignin conversion is manifested as increasing selectivity to hydrogen and syngas, which reaches 94% at the Fe concentration of 2 wt.%. It was found that with microwave irradiation under argon, hydrogen predominates in the gas. In the CO2 atmosphere, dry reforming takes place to give syngas with the CO/H2 ratio of 0.9. In both cases, the degree of hydrogen recovery from lignin reaches 90-94%. [Figure not available: see fulltext.

  12. HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation

    Directory of Open Access Journals (Sweden)

    Achmad Roesyadi

    2013-03-01

    Full Text Available It is important to develop a renewable source of energy to overcome a limited source fossil energy. Palm oil is a potential alternative and environmental friendly energy resource in Indonesia due to high production capacity of this vegetable oil. The research studied effect of catalyst to selectivity of biofuel product from cracking of palm oil. The catalyst consisted of HZSM-5 catalyst with or without impregnation. The research was conducted in two steps, namely catalyst synthesized and catalytic cracking process. HZSM-5 was synthesized using Plank methods. The characterization of the synthesized catalysts used AAS (Atomic Absorption Spectroscopy and BET (Brunaueur Emmet Teller. The cracking was carried out in a fixed bed microreactor with diameter of 1 cm and length of 16 cm which was filled with 0.6 gram catalyst. The Zn/HZSM-5 catalyst was recommended for cracking palm oil for the high selectivity to gasoline. © 2013 BCREC UNDIP. All rights reserved.(Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 28th September 2012; Revised: 19th November 2012; Accepted: 20th December 2012[How to Cite: A. Roesyadi, D. Hariprajitno, N. Nurjannah, S.D. Savitri, (2013. HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 185-190.(doi:10.9767/bcrec.7.3.4045.185-190][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4045.185-190 ] View in  |

  13. Ruthenium-platinum bimetallic catalysts supported on silica: characterization and study of benzene hydrogenation and CO methanation

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.K.; Rao, K.M.; Sundararaman, N.; Chandavar, K.

    1986-12-15

    Ru-Pt/SiO/sub 2/ bimetallic catalysts with varying Ru:Pt ratio have been prepared and studied with the aim to establish if they contain coclusters or isolated ruthenium and platinum particles. X-ray diffraction studies show that individual crystallites of ruthenium and platinum are present and no coclusters are formed. Metal dispersion has been determined by hydrogen chemisorption and surface composition of the catalysts has been obtained from XPS. It was found that preoxidation of the catalysts prior to reduction is essential for good platinum dispersion. The experimental turnover number (TN) for benzene hydrogenation on the bimetallic catalysts agrees very well with that of the weighted average on the individual metal catalysts and this may be taken as a kinetic evidence for the absence of coclusters. Carbon monoxide methanation activity of the bimetallic catalysts is quite similar to that of the supported platinum catalyst. 6 refs., 6 figs., 2 tabs.

  14. Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2017-05-01

    Full Text Available In this study, we describe a green and simple procedure for biosynthesis of ZnO nanoparticles using Candida albicans as eco-friendly reducing and capping agent. The synthesized ZnO nanoparticles were characterized by UV–vis spectroscopy, powder X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, photoluminescence (PL, thermo gravimetric analysis (TGA and differential thermal analysis (DTA. The prepared nano-particles were used as catalyst for the fast and efficient synthesis of steroidal pyrazolines (4–9 from α, β-unsaturated steroidal ketones (1–3. The target molecules were obtained in good to excellent yields applying the current method.

  15. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  16. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.

    Science.gov (United States)

    Akbayrak, Serdar; Tonbul, Yalçın; Özkar, Saim

    2016-07-05

    Ruthenium(0) nanoparticles supported on ceria (Ru(0)/CeO2) were in situ generated from the reduction of ruthenium(iii) ions impregnated on ceria during the hydrolysis of ammonia borane. Ru(0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, BET, XRD, TEM, SEM-EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on ceria and the resulting Ru(0)/CeO2 is a highly active, reusable and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 361 min(-1). The reusability tests reveal that Ru(0)/CeO2 is still active in the subsequent runs of hydrolysis of ammonia borane preserving 60% of the initial catalytic activity even after the fifth run. Ru(0)/CeO2 provides a superior catalytic lifetime (TTO = 135 100) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 ± 0.1 °C before deactivation. The work reported here includes the formation kinetics of ruthenium(0) nanoparticles. The rate constants for the slow nucleation and autocatalytic surface growth of ruthenium(0) nanoparticles were obtained using hydrogen evolution as a reporter reaction. An evaluation of rate constants at various temperatures enabled the estimation of activation energies for both the reactions, Ea = 60 ± 7 kJ mol(-1) for the nucleation and Ea = 47 ± 2 kJ mol(-1) for the autocatalytic surface growth of ruthenium(0) nanoparticles, as well as the activation energy of Ea = 51 ± 2 kJ mol(-1) for the catalytic hydrolysis of ammonia borane.

  17. Preparation and characterization of mesoporous TiO{sub 2}-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lili; Huang, Shouying; Zhu, Baolin; Zhang, Shoumin; Huang, Weiping, E-mail: hwp914@nankai.edu.cn [Nankai University, College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), and Tianjin Key Lab of Metal and Molecule-based Material Chemistry (China)

    2016-11-15

    Mesoporous TiO{sub 2}-sphere-supported Au-nanoparticles (Au/m-TiO{sub 2}-spheres) catalysts have been synthesized by a simple method using tetrabutyl titanate as TiO{sub 2} precursor and characterized with XRD, BET, ICP, SEM, TEM, UV-Vis DRS, XPS, as well as FT-IR. The samples with the size in the range of 200–400 nm were almost perfectly spherical. The average diameter of pores was about 3.6 nm, and the mesopore size distribution was in the range of 2–6 nm with a narrow distribution. When the catalyst was calcined at 300 °C, the Au NPs with the size ca. 5 nm were highly dispersed on the surfaces of m-TiO{sub 2} spheres and partially embedded in the supports. Remarkably, the specific surface area of the Au/m-TiO{sub 2}-spheres was as high as 117 m{sup 2} g{sup −1}. The CO-adsorbed catalyst showed an apparent IR adsorption peak at 1714 cm{sup −1} that matched with bridging model CO. It means the catalysts should be of high catalytic activity for the CO oxidation due to they could adsorb and activate CO commendably. When Au-content was 0.48 wt.%, the Au/m-TiO{sub 2}-spheres could convert CO completely into CO{sub 2} at ambient temperature.

  18. Degradation of metaldehyde in water by nanoparticle catalysts and powdered activated carbon.

    Science.gov (United States)

    Li, Zhuojun; Kim, Jong Kyu; Chaudhari, Vrushali; Mayadevi, Suseeladevi; Campos, Luiza C

    2017-07-01

    Metaldehyde, an organic pesticide widely used in the UK, has been detected in drinking water in the UK with a low concentration (doped titanium dioxide nanocatalyst with different concentrations of carbon (C-1.5, C-40, and C-80) for metaldehyde removal from aqueous solutions by adsorption and oxidation via photocatalysis. PAC was found to be the most effective material which showed almost over 90% removal. Adsorption data were well fitted to the Langmuir isotherm model, giving a q m (maximum/saturation adsorption capacity) value of 32.258 mg g -1 and a K L (Langmuir constant) value of 2.013 L mg -1 . In terms of kinetic study, adsorption of metaldehyde by PAC fitted well with a pseudo-second-order equation, giving the adsorption rate constant k 2 value of 0.023 g mg -1  min -1 , implying rapid adsorption. The nanocatalysts were much less effective in oxidising metaldehyde than PAC with the same metaldehyde concentration and 0.2 g L -1 loading concentration of materials under UV light; the maximum removal achieved by carbon-doped titanium dioxide (C-1.5) nanocatalyst was around 15% for a 7.5 ppm metaldehyde solution. Graphical abstract ᅟ.

  19. A comparative study on synthesis of LLDPE/TiO2 nanocomposites using different TiO2 by in situ polymerization with zirconocene/dMMAO catalyst

    International Nuclear Information System (INIS)

    Owpradit, Wathanyoo; Jongsomjit, Bunjerd

    2008-01-01

    The present study revealed the effect of different TiO 2 nanoparticles employed on catalytic and characteristic properties of LLDPE/TiO 2 nanocomposites synthesized by the in situ polymerization with zirconocene/dMMAO catalyst. It was found that the presence of rutile phase in titania apparently resulted in decreased activities due to low intrinsic activity of active sites being present. Based on 13 C NMR results, all LLDPE/TiO 2 samples exhibited the random copolymer having different degree of 1-hexene insertion. The highly dispersion of titania can enhance the degree of 1-hexene insertion resulting in decreased crystallinity

  20. Study of carbon-supported bimetallic PtCu nanoparticles by ASAXS

    International Nuclear Information System (INIS)

    Bulat, N.V.; Avakyan, L.A; Pryadchenko, V.V.; Srabionyan, V.V.; Belenov, S.V.; Bugaev, L.A.

    2017-01-01

    Bimetallic platinum-copper nanoparticles on carbon support are studied as a perspective electrochemical catalyst by anomalous small-angle X-ray scattering near the Pt absorption L 3 -edge. The simultaneous fitting of several diffraction patterns measured at different photon energies lead to a satisfactory agreement between experimental and model curves in the assumption of core-shell structure of the particles with Pt-rich shell and Cu-rich core. It is shown that the average size of as prepared nanoparticles is about 6 nm with distribution spread of about ±2 nm and with thickness of Pt-rich shell approximately 1.6 nm. After annealing at 350o C the average size of the particles increased by two times with additional enlargement of the Pt-rich shell thickness. (paper)

  1. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  2. Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Yisi; Li, Jie; Li, Wenzhang; Li, Yaomin; Chen, Qiyuan; Zhan, Faqi

    2015-12-01

    Spinel CoMn2O4 (CMO) nanoparticles grown on three-dimensional (3D) nitrogen-doped graphene areogel (NGA) is prepared by a facile two-step hydrothermal method. The NGA not only possesses the intrinsic property of graphene, but also has abundant pore conformations for supporting spinel metal oxide nanoparticles, thus would be suitable as a good electrocatalysts' support for oxygen reduction reaction (ORR). The structure, morphology, porous properties, and chemical composition of CMO/NGA are investigated by X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, nitrogen adsorption-desorption measurements, and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of catalysts is discussed by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and rotating disk electrode (RDE) measurements in O2-saturated 0.1 M KOH electrolyte. The CMO/NGA hybrid exhibits more positive onset potential and half-wave potential, faster charge transfer than that of CMO and NGA, and its electrocatalytic performance is comparable with the commercial 20 wt.% Pt/C. Furthermore, it mainly favors a direct 4e- reaction pathway, and has excellent ethanol tolerance and high durability, which is attributed to the unique 3D crumpled porous nanostructure of NGA with large specific area and fast electron transport, and the synergic covalent coupling between the CoMn2O4 nanoparticles and NGA.

  3. MoP nanoparticles supported on indium-doped porous carbon. Outstanding catalysts for highly efficient CO{sub 2} electroreduction

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaofu; Lu, Lu; Yang, Dexin; Chen, Chunjun; Han, Buxing [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Zhu, Qinggong; Wu, Congyi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing (China)

    2018-02-23

    Electrochemical reduction of CO{sub 2} into value-added product is an interesting area. MoP nanoparticles supported on porous carbon were synthesized using metal-organic frameworks as the carbon precursor, and initial work on CO{sub 2} electroreduction using the MoP-based catalyst were carried out. It was discovered that MoP nanoparticles supported on In-doped porous carbon had outstanding performance for CO{sub 2} reduction to formic acid. The Faradaic efficiency and current density could reach 96.5 % and 43.8 mA cm{sup -2}, respectively, when using ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate as the supporting electrolyte. The current density is higher than those reported up to date with very high Faradaic efficiency. The MoP nanoparticles and the doped In{sub 2}O{sub 3} cooperated very well in catalyzing the CO{sub 2} electroreduction. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Polyphosphoric acid supported on Ni0.5Zn0.5Fe2O4 nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles

    Directory of Open Access Journals (Sweden)

    Farid Moeinpour

    2017-05-01

    Full Text Available Polyphosphoric acid supported on silica coated Ni0.5Zn0.5Fe2O4 nanoparticles was found to be magnetically separable, highly efficient, eco-friendly, green and recyclable heterogeneous catalyst. This new catalyst at first was fully characterized by TEM, SEM, FTIR and XRD techniques and then catalytic activity of this catalyst was investigated in the synthesis of 5-cyano-1,4-dihydropyrano[2,3-c]pyrazoles. Also the Ni0.5Zn0.5Fe2O4 magnetic nanoparticle-supported polyphosphoric acid could be reused at least six times without significant loss of activity. It could be recovered easily by applying an external magnet.

  5. New self-assembled material based on Ru nanoparticles and 4-sulfocalix[4]arene as an efficient and recyclable catalyst for reduction of brilliant yellow azo dye in water: a new model catalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu, Darsi; Pradeep, Chullikkattil P.; Dhir, Abhimanew, E-mail: abhimanew@iitmandi.ac.in [Indian Institute of Technology (India)

    2016-12-15

    New self-assembled material (Ru@SC) with ruthenium nanoparticles (Ru NPs) and 4-sulfocalix[4]arene (SC) is synthesized in water at room temperature. Ru@SC is characterized by thermal gravimetric analysis, FT-IR, powder x-ray diffraction, TEM and SEM analysis. The size of Ru nanoparticles in the self-assembly is approximately 5 nm. The self-assembled material Ru@SC shows an efficient catalytic reduction of toxic ‘brilliant yellow’ (BY) azo dye. The reduced amine products were successfully separated and confirmed by single-crystal XRD, NMR and UV-Vis spectroscopy. Ru@SC showed a better catalytic activity in comparison with commercial catalysts Ru/C (ruthenium on charcoal 5 %) and Pd/C (palladium on charcoal 5 and 10 %). The catalyst also showed a promising recyclability and heterogeneous nature as a catalyst for reduction of ‘BY’ azo dye.

  6. Study and application of hydrophobic catalyst in treating tritium waste

    International Nuclear Information System (INIS)

    Dan, Gui-ping; Zhang, Dong; Qiu, Yong-mei; Yuan, Guo-Qi

    2008-01-01

    Tritium decontamination from tritium waste is important for the management of tritium waste. Tritium removal from waste tritium oxide can not only get tritium, but also reduce the amount of waste tritium. At the meantime, by cleaning the tritium pollution gas can also reduce the tritium exhausting from tritium facility. At present, the process of hydrogen isotopic exchange in tritium removal from waste tritium oxide and coordination oxidisation-adsorption in tritium cleaning from waste tritium gas are the mainly methods. In these methods, hydrophobic catalysts which can be used in these process are the key technology. There are many references about their preparing and applying, but few on the estimation about their performance changing during their applying. However, their performance stability on isotopic catalytic exchange and catalytic oxidisation will affect their using in reaction. Hydrophobic catalyst Pt-SDB which can be used in tritium isotopic exchange between tritium oxide and hydrogen and the cleaning of tritium pollution gas have been prepared in our laboratory in early days. In order to estimating their performance stability during their using, this work will investigate their stability on their catalytic activity and their radiation-resistance tritium. (author)

  7. Surface chemistry of "unprotected" nanoparticles

    DEFF Research Database (Denmark)

    Schrader, Imke; Warneke, Jonas; Neumann, Sarah

    2015-01-01

    The preparation of colloidal nanoparticles in alkaline ethylene glycol is a powerful approach for the preparation of model catalysts and ligand-functionalized nanoparticles. For these systems the term "unprotected" nanoparticles has been established because no strongly binding stabilizers...... study. "Unprotected" Pt and Ru nanoparticles were characterized by NMR spectroscopy, which does not evidence the presence of any C-H containing species bound to the particle surface. Instead, the colloids were found to be covered by CO, as demonstrated by IR spectroscopy. However, analysis...

  8. Model studies of secondary hydrogenation in Fischer-Tropsch synthesis studied by cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aaserud, Christian

    2003-07-01

    Mass transfer effects are very important in Fischer-Tropsch (FT) synthesis. In order to study the FT synthesis without the influence of any transport limitations, cobalt foils have been used as model catalysts. The effect of pretreatment (number of calcinations and different reduction times) for cobalt foil catalysts at 220 {sup o}C, 1 bar and H{sub 2}/CO = 3 has been studied in a microreactor. The foils were examined by Scanning electron microscopy (SEM). It was found that the catalytic activity of the cobalt foil increases with the number of pretreatments possibly due to an increase in the surface area of the cobalt foil. The SEM results support the assumption that the surface area of the cobalt foil increases with the number of pretreatments. The reduction time was also found to influence the catalytic activity of the cobalt foil. Highest activity was obtained using a reduction time of only five min (compared to one and thirty min). The decrease in activity after reduction for thirty min compared to five min was suggested to be due to restructuring of the surface of the cobalt foil and a reduction time of only 1 min was not enough to reduce the cobalt foil sufficiently. Time of reduction did also influence the product distribution. Increased reduction time resulted in a lower selectivity to light products and increased selectivity to heavier components. The paraffin/olefin ratio increased with increasing CO-conversion also for cobalt foils. The paraffin/olefin ratio also increased when the reduction period of the cobalt foil was increased at a given CO-conversion. Hydrogenation of propene to propane has been studied as a model reaction for secondary hydrogenation of olefins in the FT synthesis. The study has involved promoted and unpromoted cobalt FT catalysts supported on different types of supports and also unsupported cobalt. Hydrogenation of propene was carried out at 120 {sup o}C, 1.8 bar and H{sub 2}/C{sub 3}H{sub 6} 6 in a fixed bed microreactor. The rate

  9. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    Science.gov (United States)

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  10. A study on the polymer catalyst process technology

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Kang, H. S.; Paek, S. W.; Lee, S. H.; Sung, K. W.

    1997-06-01

    Heavy water is used as moderator and coolant in Pressurized Heavy Water Power Plants. According to the governmental long-term plan for power supply Korea is scheduled to construct and operate total four pressurized heavy water power plant till the year 1999. Total heavy water make-up for these plants would be 18 Mg/a from the year 1999. Reformed hydrogen processes is considered best suited to Korea. Polymer catalysts for this process were manufactured and the performance of hydrogen isotope exchange was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m{sup 3}.HD/m{sup 3} Bed.sec. and heavy water separation process using the catalysis were optimized. (author). 102 refs., 134 tabs., 65 figs.

  11. A study on the polymer catalyst process technology

    International Nuclear Information System (INIS)

    Chung, H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Kang, H. S.; Paek, S. W.; Lee, S. H.; Sung, K. W.

    1997-06-01

    Heavy water is used as moderator and coolant in Pressurized Heavy Water Power Plants. According to the governmental long-term plan for power supply Korea is scheduled to construct and operate total four pressurized heavy water power plant till the year 1999. Total heavy water make-up for these plants would be 18 Mg/a from the year 1999. Reformed hydrogen processes is considered best suited to Korea. Polymer catalysts for this process were manufactured and the performance of hydrogen isotope exchange was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m 3 .HD/m 3 Bed.sec. and heavy water separation process using the catalysis were optimized. (author). 102 refs., 134 tabs., 65 figs

  12. Physical properties of Cu nanoparticles: A molecular dynamics study

    International Nuclear Information System (INIS)

    Kart, H.H.; Yildirim, H.; Ozdemir Kart, S.; Çağin, T.

    2014-01-01

    Thermodynamical, structural and dynamical properties of Cu nanoparticles are investigated by using Molecular Dynamics (MD) simulations at various temperatures. In this work, MD simulations of the Cu-nanoparticles are performed by means of the MPiSiM codes by utilizing from Quantum Sutton-Chen (Q-SC) many-body force potential to define the interactions between the Cu atoms. The diameters of the copper nanoparticles are varied from 2 nm to 10 nm. MD simulations of Cu nanoparticles are carried out at low and high temperatures to study solid and liquid properties of Cu nanoparticles. Simulation results such as melting point, radial distribution function are compared with the available experimental bulk results. Radial distribution function, mean square displacement, diffusion coefficient, Lindemann index and Honeycutt–Andersen index are also calculated for estimating the melting point of the Copper nanoparticles. - Highlights: • Solid and liquid properties of Cu nanoparticles are studied. • Molecular dynamics utilizing the Quantum Sutton Chen potential is used in this work. • Melting temperatures of nanoparticles are strongly depended on nanoparticle sizes. • Heat capacity, radial distribution function and diffusion coefficients are studied. • Structures of nanoparticles are analyzed by Lindemann and Honeycutt–Andersen index

  13. Progesterone lipid nanoparticles: Scaling up and in vivo human study.

    Science.gov (United States)

    Esposito, Elisabetta; Sguizzato, Maddalena; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Nastruzzi, Claudio; Cortesi, Rita

    2017-10-01

    This investigation describes a scaling up study aimed at producing progesterone containing nanoparticles in a pilot scale. Particularly hot homogenization techniques based on ultrasound homogenization or high pressure homogenization have been employed to produce lipid nanoparticles constituted of tristearin or tristearin in association with caprylic-capric triglyceride. It was found that the high pressure homogenization method enabled to obtain nanoparticles without agglomerates and smaller mean diameters with respect to ultrasound homogenization method. X-ray characterization suggested a lamellar structural organization of both type of nanoparticles. Progesterone encapsulation efficiency was almost 100% in the case of high pressure homogenization method. Shelf life study indicated a double fold stability of progesterone when encapsulated in nanoparticles produced by the high pressure homogenization method. Dialysis and Franz cell methods were performed to mimic subcutaneous and skin administration. Nanoparticles constituted of tristearin in mixture with caprylic/capric triglyceride display a slower release of progesterone with respect to nanoparticles constituted of pure tristearin. Franz cell evidenced a higher progesterone skin uptake in the case of pure tristearin nanoparticles. A human in vivo study, based on tape stripping, was conducted to investigate the performance of nanoparticles as progesterone skin delivery systems. Tape stripping results indicated a decrease of progesterone concentration in stratum corneum within six hours, suggesting an interaction between nanoparticle material and skin lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Methodology study for the catalyst obtention to low temperature fuel cells (DEFC)

    International Nuclear Information System (INIS)

    Oliveira, Emilia Lucena de; Korb, Matias De Angelis; Correa, Patricia dos Santos; Radtke, Claudio; Malfatti, Celia de Fraga; Rieder, Ester

    2010-01-01

    Different methods to elaboration of catalysts in direct ethanol fuel cells (low temperature fuel cells) have been proposed in the literature. The present work aims to study a simplified methodology to obtain Pt-Sn-Ni alloys, used as catalysts in low temperature fuel cells. Impregnation/reduction method was employed to obtain Pt- Sn-Ni alloys supported on carbon, using ethylenoglycol as reductor agent and carbon Vulcan XC72R as support. Different amounts of Pt, Sn e Ni were studied, with the intent to obtain the maximum catalytic effect. The catalysts were obtained in an alkaline range, at 130 deg C, using the proportion ethylenoglycol:water 75/25 v/v. The analytical techniques used in this study was RBS (Rutherford Backscattering Spectroscopy), X Ray Diffraction and Cyclic Voltammetry. (author)

  15. The effect of diluting ruthenium by iron in Ru{sub x}Se{sub y} catalyst for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Delacote, Cyril [Laboratory of Electrocatalysis, CNRS, University of Poitiers, F-86022 Poitiers Cedex (France); CEISAM, CNRS, University of Nantes, F-44322 Nantes Cedex 3 (France); Lewera, Adam [University of Warsaw, Department of Chemistry, ul. Pasteura 1, 02-093 Warsaw (Poland); Pisarek, Marcin [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland); Kulesza, Pawel J. [University of Warsaw, Department of Chemistry, ul. Pasteura 1, 02-093 Warsaw (Poland); Zelenay, Piotr [Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Alonso-Vante, Nicolas, E-mail: nicolas.alonso.vante@univ-poitiers.f [Laboratory of Electrocatalysis, CNRS, University of Poitiers, F-86022 Poitiers Cedex (France)

    2010-11-01

    This study has focused on the synthesis of novel oxygen reduction reaction (ORR) chalcogenide catalysts, with Ru partially replaced by Fe in a cluster-type Ru{sub x}Se{sub y}. The catalysts were obtained by thermal decomposition of Ru{sub 3}(CO){sub 12} and Fe(CO){sub 5} in the presence of Se. As indicated by the XPS data, the composition of catalyst nanoparticles depends on the solvent used (either p-xylene or dichlorobenzene). The presence of iron in synthesized catalysts has been confirmed by both EDAX and XPS. Voltammetric activation of the catalysts results in a partial removal of iron and unreacted selenium from the surface. The ORR performance of electrochemically pre-treated catalysts was evaluated using rotating disk and ring-disk electrodes in a sulfuric acid solution. No major change in the ORR mechanism relative to the Se/Ru catalyst has been observed with Fe-containing catalysts.

  16. A combined in situ XAS-XRPD-Raman study of Fischer-Tropsch synthesis over a carbon supported Co catalyst

    DEFF Research Database (Denmark)

    Tsakoumis, Nikolaos E.; Dehghan, Roya; Johnsen, Rune

    2013-01-01

    A cobalt based Fischer-Tropsch synthesis (FTS) catalyst, supported on a carbon nanofibers/carbon felt composite (Co/CNF/CF) was studied in situ at realistic conditions. The catalyst was monitored by Xray absorption spectroscopy (XAS), high-resolution X-ray powder diffraction (HR-XRPD) and Raman...... spectroscopy, while changes in the gas phase were observed by mass spectrometry (MS). Transmission electron microscopy (TEM) was also applied to characterise the catalyst. The catalyst has a bimodal particle size distribution and exhibits a high deactivation rate. During the in situ study the catalyst appears...... to reduce further at the induction period of FTS, while crystallite growth is been detected in the same period. At steady state FTS the amount of metallic Co is constant. A change in the volumetric flow towards higher conversions did not affect the degree of reduction or the crystallite size of the catalyst...

  17. CuI nanoparticles as new, efficient and reusable catalyst for the one-pot synthesis of 1,4-dihydro pyridines

    International Nuclear Information System (INIS)

    Safaeighomi, Javad; Ziarati, Abolfazl; Teymuri, Raheleh

    2012-01-01

    A simple one-pot synthesis of two derivatives of 1,4-dihydro pyridines has been described under reflux conditions using copper iodide nanoparticles (CuI NPs) as a catalyst in high yields. This method demonstrated four-component coupling reactions of aldehydes and ammonium acetate via two pathways. In one route, the reaction was performed using 2 eq ethyl acetoacetate while in the other one 1 eq ethyl acetoacetate and 1 eq malononitrile were used. The CuI NPs was reused and recycled without any loss of activity and product yield. It is noteworthy to state that wide range of the 1,4-dihydro pyridines have attracted large interest due to pharmacological and biological activities

  18. Kinetics study of ethanol steam reforming on Pt/CeO{sub 2} based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Qi, A. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada). Dept. of Chemistry and Chemical Engineering; Thurgood, C.; Amphlett, J. [Royal Military College of Canada, Kingston, ON (Canada). Dept. of Chemistry and Chemical Engineering; Peppley, B. [Queens Univ., Kingston, ON (Canada). Dept. of Chemical Engineering

    2009-07-01

    Interest in fuel cell systems operating on fuels derived from renewable energy sources is increasing because they have the potential to produce electricity with high efficiency and minimal emissions of carbon dioxide and other pollutants. Bioethanol is currently produced by the fermentation of non-edible biomass, through conventional means and also through advances in enzyme technology. The authors previously reported on the steam reforming of bioethanol with a stable ceria supported precious metal catalyst, developed in-house. The catalyst had good thermal stability and resisted carbon formation. This paper reported on a more recent kinetic study in which the influence of operating conditions were quantified. The operating conditions included temperature, steam/carbon ratios, and gas hourly velocities. The results of standard catalyst characterization techniques such as BET, TGA, SEM and TPR were also provided. The data was used to drive an empirical rate expression. The study also investigated a potential rate mechanism.

  19. Experimental study of simultaneous Athabasca bitumen recovery and upgrading using ultradispersed catalysts injection

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, R.; Pereira, P. [University of Calgary (Canada)

    2011-07-01

    As the demand for oil is continuously increasing, the need for unconventional resources is rising. Oil extraction from bitumen and heavy oil reservoirs requires advanced techniques in order to decrease the viscosity of the oil. To increase the recovered original oil in place (OOIP) of a reservoir and decrease refining costs, new techniques to upgrade oil in situ are being developed. The current study investigates the use of ultra-dispersed (UD) submicronic catalysts to decrease oil viscosity. The experiment involved the injection of the catalyst and hydrogen gas in a sand pack saturated with Athabasca bitumen. Analysis was carried out by building recovery curves, and by comparing the oil recovery from the catalyzed process with that of catalyst-free processes. The study demonstrated that the oil recovered from the new technique had higher API gravity and lower viscosity, indicating the success of the in situ upgrading process.

  20. Kinetic study of the hydration of propylene oxide in the presence of heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Akyalcin Sema

    2017-01-01

    Full Text Available The kinetics of the hydration of propylene oxide was studied using a pressurized batch reactor for both uncatalyzed and heterogeneously catalyzed reactions. Lewatit MonoPlus M500/HCO3 - was used as heterogeneous catalyst, which showed better performance than Dowex Marathon A/HCO3 -. The effects of the parameters, namely internal and external diffusion resistances, temperature, catalyst loading and mole ratios of reactants, on the reaction rate were studied. The uncatalyzed and heterogeneously catalyzed reactions were proven to follow a series-parallel irreversible homogeneous mechanism. The temperature dependencies of the rate constants appearing in the rate expressions were determined.

  1. Recent density functional studies of hydrodesulfurization catalysts: insight into structure and mechanism

    International Nuclear Information System (INIS)

    Hinnemann, Berit; Moses, Poul Georg; Noerskov, Jens K

    2008-01-01

    The present article will highlight some recent density functional theory (DFT) studies of hydrodesulfurization (HDS) catalysts. It will be summarized how DFT in combination with experimental studies can give a detailed picture of the structure of the active phase. Furthermore, we have used DFT to investigate the reaction pathway for thiophene HDS, and we find that the reaction entails a complex interplay of different active sites, depending on reaction conditions. An investigation of pyridine inhibition confirmed some of these results. These fundamental insights constitute a basis for rational improvement of HDS catalysts, as they have provided important structure-activity relationships

  2. Sustainable green catalysis by supported metal nanoparticles.

    Science.gov (United States)

    Fukuoka, Atsushi; Dhepe, Paresh L

    2009-01-01

    The recent progress of sustainable green catalysis by supported metal nanoparticles is described. The template synthesis of metal nanoparticles in ordered porous materials is studied for the rational design of heterogeneous catalysts capable of high activity and selectivity. The application of these materials in green catalytic processes results in a unique activity and selectivity arising from the concerted effect of metal nanoparticles and supports. The high catalytic performances of Pt nanoparticles in mesoporous silica is reported. Supported metal catalysts have also been applied to biomass conversion by heterogeneous catalysis. Additionally, the degradation of cellulose by supported metal catalysts, in which bifunctional catalysis of acid and metal plays the key role for the hydrolysis and reduction of cellulose, is also reported. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  3. Polymer-encapsulated metal nanoparticles: optical, structural, micro-analytical and hydrogenation studies of a composite material

    International Nuclear Information System (INIS)

    Scalzullo, Stefania; Mondal, Kartick; Deshmukh, Amit; Scurrell, Mike; Mallick, Kaushik; Witcomb, Mike

    2008-01-01

    A single-step synthesis route is described for the preparation of a metal-polymer composite in which palladium acetate and meta-amino benzoic acid were used as the precursors for palladium nanoparticles and poly(meta-amino benzoic acid) (PABA). The palladium nanoparticles were found to be uniformly dispersed and highly stabilized throughout the macromolecule matrix. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which provided information regarding the chemical structure of the polymer, whereas electron microscopy images yielded information regarding the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was used as a catalyst for the ethylene hydrogenation reaction and showed catalytic activity at higher temperatures. TEM studies confirmed the changed environment of the nanoparticles at these temperatures

  4. Study of the oxides nature effect of rare and rare earth elements on the aluminium-chromium catalyst properties

    International Nuclear Information System (INIS)

    Dadashev, B.A.; Abbasov, S.G.; Sarydzhanov, A.A.; AN Azerbajdzhanskoj SSR, Baku. Inst. Neftekhimicheskikh Protsessov)

    1975-01-01

    Adsorption studies have shown that oxides of rare and rare earth elements REE appreciably influence the structure of aluminium-chrome catalyst. Alkaline promotors, unlike REE, contribute to the formation of developed contact surface. Electrophysical investigations show that oxides of rare elements introduced into the catalyst increase its conductivity and activation energy. As for REE oxides, they decrease the conductivity and increase the activation energy. Catalysts with developed surface and high conductivity are also more active in the reaction of isopentane dehydration

  5. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Ahmed, Maaz S.

    alcohol solvent and the surface of the catalyst: (listed in order of strength) lone pair-surface (heterocyclic primary alcohols) > pi-surface (aryl primary alcohols) > van der Waals-surface (alkyl primary alcohols). These interactions were previously underappreciated in condensed phase heterogeneously catalyzed aerobic oxidations. Bi and Te serve as synergistic promoters that enhance both the rate and yield of the reactions relative to reactions employing Pd alone or Pd in combination with Bi or with Te as the sole promoter. We report X-ray absorption spectroscopic studies of the heterogenous catalyst. These methods show that the promoters undergo oxidation in preference to Pd, maintaining the Pd surface in the active metallic state and preventing inhibition by surface Pd-oxide formation. The data also suggest formation of a Pd-Te alloy phase that modifies the electronic properties of the Pd catalyst. Collectively, these results provide valuable insights into the synergistic benefits of multiple promoters in heterogeneous catalytic oxidation reactions.

  6. Electrocatalysis of chemically synthesized noble metal nanoparticles on carbon electrodes

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    Noble metal nanoparticles (NPs), such as platinum (Pt) and palladium (Pd) NPs are promising catalysts for dioxygen reduction and oxidation of molecules such as formic acid and ethanol in fuel cells. Carbon nanomaterials are ideal supporting materials for electrochemical catalysts due to their good...... by electrochemical SPM. This study offers promise for development of new high-efficiency catalyst types with low-cost for fuel cell technology...

  7. Deactivation of SCR catalysts by potassium: A study of potential alkali barrier materials

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Castellino, Francesco

    2017-01-01

    The use of coatings in order to protect vanadia based SCR catalysts against potassium poisoning has been studied by lab- and pilot-scale experiments. Three-layer pellets, consisting of a layer ofa potential coating material situated between layers of fresh and potassium poisoned SCR catalyst, were...... the coating process. Potassium had to some extent penetrated the MgO coat, and SEM analysis revealed it to be rather thick and fragile. Despite these observations, the coating did protect the SCR catalyst against potassium poisoning to some degree, leaving promise of further optimization....... used to test the ability of the barrier layer to block the diffusion of potassium across the pellet. Of MgO, sepiolite and Hollandite manganese oxide, MgO was the most effective potassium barrier, and no potassium was detected in the MgO layer upon exposure to SCR conditions for 7 days. Two monoliths...

  8. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst

    International Nuclear Information System (INIS)

    Nageswara Rao, A.; Sivasankar, B.; Sadasivam, V.

    2009-01-01

    The photocatalytic degradation of salicylic acid was studied by a batch process using ZnO as the catalyst on irradiation with UV light. The effect of process parameters such as pH, catalyst loading and initial concentration of salicylic acid on the extent of degradation was investigated. The degradation of salicylic acid was found to be effective in the neutral pH range. The optimum catalyst loading was observed at 2.0 g/L. The process followed first order kinetics and the apparent rate constant decreased with increase in the initial concentration of salicylic acid. The mechanism for the degradation of salicylic acid could be explained on the basis of Langmuir-Hinshelwood mechanism. The complete mineralization of salicylic acid was observed in the presence of ZnO photocatalyst. The ZnO was found to be quite stable and undergoes photocorrosion only to a negligible extent.

  9. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.; Krier, James M.; Alayoglu, Selim; Shin, Jae-Yoon; An, Kwangjin; Komvopoulos, Kyriakos; Liu, Zhi; Somorjai, Gabor A.

    2014-01-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn

  10. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction

    DEFF Research Database (Denmark)

    Hernandez-Fernandez, Patricia; Masini, Federico; McCarthy, David Norman

    2014-01-01

    Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by the cost of platinum, currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease...

  11. An XPS study on ruthenium compounds and catalysts

    International Nuclear Information System (INIS)

    Bianchi, C.L.; Ragaini, V.; Cattania, M.G.

    1991-01-01

    The binding energy (BE) of the relevant peaks of several ruthenium compounds have been measured with a monochromatic small spot XPS. The BE of the 3d 5/2 level of ruthenium is in the range 279.91-282.88 eV. The variation of BE is due either to the variation of the oxidation state or to the different counter-ion. A series of catalysts with varying amounts of ruthenium supported on alumina and prepared using different precursors was also analyzed. The presence of more ruthenium species other than the metal was observed. On the basis of the values previously obtained on unsupported compounds, the species with higher BE were assigned to oxides. On all the samples prepared from RuCl 3 , an additional peak at a very high BE (283.79 eV) has been observed. This peak is related to the presence of chlorine on the surface: it is suggested that it is related to a charge transfer interaction. The influence of this species on the CO reactivity in the Fischer-Tropsch reaction is discussed. (orig.)

  12. Extended X-ray absorption fine structure (EXAFS) studies of supported catalysts

    International Nuclear Information System (INIS)

    Joyner, R.W.

    1979-01-01

    Since the rebirth of interest in extended X-ray absorption fine structure there have been several studies of systems of catalytic interest. This note is a preliminary account of an investigation of supported platinum catalysts and NiO/Al 2 O 3 catalysts. Experiments were performed on pressed disc samples at the DESY synchrotron, Hamburg, using the EXAFS spectrometer. The synchrotron operated at 7 GeV energy with a circulating current of approximately 4 mA; spectrum accumulation time was typically 45 minutes. (author)

  13. From fundamental studies of reactivity on single crystals to the design of catalysts

    Science.gov (United States)

    H. Larsen, Jane; Chorkendorff, Ib

    One of the prominent arguments for performing surface science studies have for many years been to improve and design new and better catalysts. Although surface science has provided the fundamental framework and tools for understanding heterogeneous catalysis until now there have been extremely few examples of actually designing new catalysts based solely on surface science studies. In this review, we shall demonstrate how a close collaboration between different fundamental disciplines like structural-, theoretical-and reactivity-studies of surfaces as well as a strong interaction with industry can have strong synergetic effects and how this was used to develop a new catalyst. As so often before the studies reviewed here were not initiated with the objective to solve a specific problem, but realizing that a new class of very stable two-dimensional alloys could be synthesized from otherwise immiscible metals made it possible to present a new solution to a specific problem in the industrial catalysis relating to methane activation in the steam reforming process. Methane is the main constituent of natural gas and it is an extremely important raw material for many large scale chemical processes such as production of hydrogen, ammonia, and methanol. In the steam reforming process methane and water are converted into a mixture of mainly hydrogen and carbon monoxide, the so-called synthesis gas. Industrially the steam reforming process usually takes place over a catalyst containing small nickel crystallites highly dispersed on a porous support material like aluminum/magnesium oxides in order to achieve a high active metal area. There is a general consensus that the rate limiting step of this process is the dissociative sticking of methane on the nickel surface. Driven by the desire to understand this step and hopefully be able to manipulate the reactivity, a large number of investigations of the methane/nickel interaction have been performed using nickel single crystals as

  14. A molecular dynamics study of helium bombardments on tungsten nanoparticles

    Science.gov (United States)

    Li, Min; Hou, Qing; Cui, Jiechao; Wang, Jun

    2018-06-01

    Molecular dynamics simulations were conducted to study the bombardment process of a single helium atom on a tungsten nanoparticle. Helium atoms ranging from 50 eV to 50 keV were injected into tungsten nanoparticles with a diameter in the range of 2-12 nm. The retention and reflection of projectiles and sputtering of nanoparticles were calculated at various times. The results were found to be relative to the nanoparticle size and projectile energy. The projectile energy of 100 eV contributes to the largest retention of helium atoms in tungsten nanoparticles. The most obvious difference in reflection exists in the range of 3-10 keV. Around 66% of sputtering atoms is in forward direction for projectiles with incident energy higher than 10 keV. Moreover, the axial direction of the nanoparticles was demonstrated to influence the bombardment to some degree.

  15. Gold Nanoparticles on Mesoporous SiO2-Coated Magnetic Fe3O4 Spheres: A Magnetically Separatable Catalyst with Good Thermal Stability

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2013-11-01

    Full Text Available Fe3O4 spheres with an average size of 273 nm were prepared in the presence of CTAB by a solvothermal method. The spheres were modified by a thin layer of SiO2, and then coated by mesoporous SiO2 (m-SiO2 films, by using TEOS as a precursor and CTAB as a soft template. The resulting m-SiO2/Fe3O4 spheres, with an average particle size of 320 nm, a high surface area (656 m2/g, and ordered nanopores (average pore size 2.5 nm, were loaded with gold nanoparticles (average size 3.3 nm. The presence of m-SiO2 coating could stabilize gold nanoparticles against sintering at 500 °C. The material showed better performance than a conventional Au/SiO2 catalyst in catalytic reduction of p-nitrophenol with NaBH4. It can be separated from the reaction mixture by a magnet and be recycled without obvious loss of catalytic activity. Relevant characterization by XRD, TEM, N2 adsorption-desorption, and magnetic measurements were conducted.

  16. Catalysts and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  17. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  18. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  19. Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2005-01-01

    Supported ionic liquid phase (SILP) catalysts have been studied with regard to their long-term stability in the continuous gas-phase hydroformylation of propene. Kinetic data have been acquired by variation of temperature, pressure, syngas composition, substrate concentration, and residence time...

  20. A mechanistic study on the oxidative coupling of methane over lithium doped magnesium oxide catalysts

    NARCIS (Netherlands)

    Geerts, J.W.M.H.; Kasteren, van J.M.N.; Wiele, van der K.; Imarisio, G.; Frias, M.; Berntgen, J.M.

    1988-01-01

    To elucidate the importance of various reaction steps in the oxidative convers ion of methane, experiments were carried out with three reaction products: ethane, ethylene and carbon monoxide. These products were studied seperately, in oxidation experiments with and without a catalyst. Moreover , the

  1. Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Ahmed, El Hadi; Christensen, Claus H.

    2011-01-01

    Hydrodeoxygenation of waste fats and oils is a viable method for producing renewable diesel oil. In this study a model feed consisting of oleic acid and tripalmitin in molar ratio 1:3 was hydrotreated at 325°C with 20bars H2 in a stirred batch autoclave with a 5wt% Pt/γ-Al2O3 catalyst, and samples...

  2. A MECHANISTIC STUDY OF RHODIUM TRI(ORTHO-TERT-BUTYLPHENYL)PHOSPHITE COMPLEXES AS HYDROFORMYLATION CATALYSTS

    NARCIS (Netherlands)

    JONGSMA, T; CHALLA, G; VANLEEUWEN, PWNM

    1991-01-01

    A mechanistic study of the hydroformylation cycle with a rhodium tri(o-t-butylphenyl)phosphite complex as catalyst is presented. Spectroscopic experiments prove that under hydroformylation conditions this complex is coordinated by only one phosphite. The complex has a high activity in the

  3. Impregnation of mesoporous silica for catalyst preparation studied with differential scanning calorimetry

    NARCIS (Netherlands)

    Eggenhuisen, T.M.; van Steenbergen, M.J.; Talsma, H.; de Jongh, P.E.; de Jong, K.P.

    2009-01-01

    Aqueous impregnation of mesoporous silica as a first step in catalyst preparation was studied to investigate the distribution of the metal-precursor solution over the support. The degree of pore-filling after impregnation was determined using the freezing point depression of confined liquids. A

  4. Miswak mediated green synthesized palladium nanoparticles as effective catalysts for the Suzuki coupling reactions in aqueous media

    Directory of Open Access Journals (Sweden)

    Mujeeb Khan

    2017-05-01

    Full Text Available Green and eco-friendly synthesis of palladium nanoparticles NPs is carried out under facile and eco-friendly conditions using an aqueous solution of Salvadora persica L. (SP root extract (RE as a bioreductant, which is commonly known as Miswak. The as-synthesized Pd NPs were characterized using various spectroscopic and microscopic techniques, including, UV–Vis spectroscopy, FT-IR spectroscopy, XRD, ICP-MS and TEM. Detailed investigations of the Pd NPs have confirmed that the polyphenolic phytomolecules present in the RE of Miswak not only act as a bioreductant by facilitating the reduction and growth of Pd NPs, but they also functionalize the surface of Pd NPs and stabilized them in various solvents. Furthermore, the catalytic activity of the green synthesized Pd NPs was also tested toward the Suzuki coupling reactions of various aryl halides in aqueous media. The as-prepared Pd NPs exhibited superior catalytic activity and reusability for the Suzuki coupling reaction in aqueous and aerobic conditions. The kinetics of the reaction studied by GC revealed that the conversion of various aryl halides to biphenyl takes place in a short time.

  5. Yolk–shell Fe3O4@SiO2@PMO: amphiphilic magnetic nanocomposites as an adsorbent and a catalyst with high efficiency and recyclability

    KAUST Repository

    Dai, Jinyu; Zou, Houbing; Wang, Runwei; Wang, Yu; Shi, Zhiqiang; Qiu, Shilun

    2017-01-01

    This study describes the preparation of a multifunctional adsorptive catalyst by the incorporation of ligand groups within the channels of magnetic amphiphilic nanocomposites and attached with Pd nanoparticles. It was clearly demonstrated that Pd2

  6. Effect of plasma treatments to graphite nanofibers supports on electrochemical behaviors of metal catalyst electrodes.

    Science.gov (United States)

    Lee, Hochun; Jung, Yongju; Kim, Seok

    2012-02-01

    In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity.

  7. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles.

    Science.gov (United States)

    Tang, Lin; Guo, Xuefeng; Yang, Yu; Zha, Zhenggen; Wang, Zhiyong

    2014-06-11

    A highly efficient and selective reaction for the synthesis of 2-substituted benzoxazoles and benzimidazoles catalyzed by Au/TiO2 has been developed via two hydrogen-transfer processes. This reaction has a good tolerance to air and water, a wide substrate scope, and represents a new avenue for practical C-N and C-O bond formation. More importantly, no additional additives, oxidants and reductants are required for the reaction and the catalyst can be recovered and reused readily.

  8. Fine platinum nanoparticles supported on a porous ceramic membrane as efficient catalysts for the removal of benzene.

    Science.gov (United States)

    Liu, Hui; Li, Chengyin; Ren, Xiaoyong; Liu, Kaiqi; Yang, Jun

    2017-11-29

    It would be desirable to remove volatile organic compounds (VOCs) while we eliminate the dusts using silicon carbide (SiC)-based porous ceramics from the hot gases. Aiming at functionalizing SiC-based porous ceramics with catalytic capability, we herein report a facile strategy to integrate high efficient catalysts into the porous SiC substrates for the VOC removal. We demonstrate an aqueous salt method for uniformly distributing fine platinum (Pt) particles on the alumina (Al 2 O 3 ) layers, which are pre-coated on the SiC substrates as supports for VOC catalysts. We confirm that at a Pt mass loading as low as 0.176% and a weight hourly space velocity of 6000 mL g -1 h -1 , the as-prepared Pt/SiC@Al 2 O 3 catalysts can convert 90% benzene at a temperature of ca. 215 °C. The results suggest a promising way to design ceramics-based bi-functional materials for simultaneously eliminating dusts and harmful VOCs from various hot gases.

  9. A Comparative Study of Solvothermal and Sol-Gel-Derived Nanocrystalline Alumina Catalysts for Ethanol Dehydration

    Directory of Open Access Journals (Sweden)

    Mingkwan Wannaborworn

    2015-01-01

    Full Text Available The ethanol dehydration to ethylene over alumina catalysts prepared by solvothermal and sol-gel methods was investigated. Also, a commercial alumina was used for comparison purposes. The results showed that the catalytic activity depends on the properties of catalyst derived from different preparation methods and reaction temperature. The alumina synthesized by solvothermal method exhibited the highest activity. This can be attributed to the higher surface area and larger amount of acid site, especially the ratio of weak/strong acid strength as determined by N2 physisorption and NH3-TPD studies. The solvothermal-derived catalyst exhibited an excellent performance with complete ethanol conversion and 100% selectivity to ethylene at 350°C in comparison with other ones. In addition, we further studied the catalytic dehydration of alumina catalyst modified with Fe. The presence of 10 wt.% Fe decreased both conversion and ethylene selectivity. However, the acetaldehyde selectivity apparently increased. It was related to the dehydrogenation pathway that takes place on Fe species.

  10. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Soulimani, F.; Ruiz Martinez, J.; van der Bij, H.E.; Weckhuysen, B.M.

    2013-01-01

    A synchrotron-based infrared micro-spectroscopy study has been conducted to investigate the structure as well as the Brønsted and Lewis acidity of Fluid Catalytic Cracking (FCC) catalyst particles at the individual particle level. Both fresh and laboratory-deactivated catalyst particles have been

  11. Moessbauer studies of superparamagnetic ferrite nanoparticles for functional application

    Energy Technology Data Exchange (ETDEWEB)

    Mazeika, K., E-mail: kestas@ar.fi.lt; Jagminas, A.; Kurtinaitiene, M. [SSRI Center for Physical Sciences and Technology (Lithuania)

    2013-04-15

    Nanoparticles of CoFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} prepared for functional applications in nanomedicine were studied using Moessbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Moessbauer spectra.

  12. Kinetics study of levulinic acid production from corncobs by tin tetrachloride as catalyst.

    Science.gov (United States)

    Qing, Qing; Guo, Qi; Wang, Pengbo; Qian, Hongjia; Gao, Xiaohang; Zhang, Yue

    2018-07-01

    Levulinic acid (LA) is an ideal platform chemical that can be produced through acid-catalyzed dehydration and hydrolysis of hexose sugars obtained from lignocellulosic materials. In this study, SnCl 4 was identified as an efficient catalyst for LA production and the reaction kinetics was investigated in a single water phase under different reaction conditions. The Box-Behnken design response surface methodology (RSM) was applied to determine the optimized reaction conditions and three individual variables including reaction temperature, duration, and catalyst concentration were evaluated. An appealing LA yield of 76.0% was achieved at 193 °C and 17 min with 82 mM SnCl 4 catalyst. A kinetics model was developed to predict the yields of glucose, HMF, and LA, which are tally with the experimental results. The analysis of the related kinetic parameters and the results of the RSM experiment helped to provide insights into the interplay between various reaction steps with SnCl 4 as catalysts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Multi-level computational chemistry study on hydrogen recombination catalyst of off-gas treatment system

    International Nuclear Information System (INIS)

    Hatakeyama, Nozomu; Ise, Mariko; Inaba, Kenji

    2011-01-01

    In order to reveal the deactivation mechanism of the hydrogen recombination catalyst of off-gas treatment system, we investigate by using multi-level computational chemistry simulation methods. The recombiner apparatus is modeled by the numerical mesh system in the axial coordinates, and unsteady, advection and reaction rate equations are solved by using a finite difference method. The chemical reactions are formulated to represent adsorption-desorption of hydrogen and oxygen on Pt catalyst, and time developments of the coverage factors of Pt are solved numerically. The computational simulations successfully reproduce the very similar behaviors observed by experiments, such as increasing of the inversion rates of H 2 to H 2 O, the temperatures distributions along the flow direction, dependencies of experimental condition, and so on. Thus Pt poisoning is considered to cause the deactivation of the hydrogen recombination catalyst. To clarify the poisoning mechanism, the molecular level simulation is applied to the system of Pt on boehmite attacked by a cyclic siloxane which has been detected by experiments and considered as one of poisoning spices. The simulation shows ring-opening reaction of the cyclic siloxane on Pt, then attachment of two ends of the chain-like siloxane to Pt and boehmite, respectively, and that finally the recombination reaction is prevented. This may be the first study to find out the detailed dynamical mechanism of hydrogen recombination catalyst poisoning with cyclic siloxane. (author)

  14. The study of catalysts for synthesis of higher alcohols from CO + H/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Niu Yugin; Chen Zhenghua; Liu Xiulan; Li Yu; Bo Luhong

    1988-03-01

    Catalysts for synthesis of higher alcohols from CO+H/sub 2/ were developed, and the effects of preparing methods, Zn/Cr atomic ratio and K/sub 2/0 content on catalyst activity were investigated. The effects of the technological parameters were studied. An 1000 h long term test was carried out in order to investigate the catalyst life. Experimental results show that the catalyst has high activity and selectivity, as well as good stability. In the long term test under reaction conditions of 400-405 degrees C, 14-15 MPa, 5000h/sup -1/ (with respect to exit gas), the alcohol product composition is methanol 73-75%; ethanol 1.5-2.2%; propanol 2.2-2.5%; isobutanol 15-17; isopentanol 1-1.5%, while the activity and selectivity are 0.3-0.32 ml/ml cat.h and more than 90% respectively. 5 refs., 4 figs., 2 tabs.

  15. Pd@Pt Core–Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction

    Science.gov (United States)

    A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics ...

  16. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo; Anjum, Dalaver H.; Wang, Qingxiao; Abou-Hamad, Edy; Emsley, Lyndon; Dong, Hailin; Laveille, Paco; Li, Lidong; Samal, Akshaya Kumar; Basset, Jean-Marie

    2014-01-01

    Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as

  17. Catalyst-Free Conjugation and In Situ Quantification of Nanoparticle Ligand Surface Density Using Fluorogenic Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Sun, Honghao; Berg, Rolf Henrik

    2011-01-01

    A highly efficient method for functionalizing nanoparticles and directly quantifying conjugation efficiency and ligand surface density has been developed. Attachment of 3-azido-modifed RGD-peptides to PEGylated liposomes was achieved by using Cu-free click conditions. Upon coupling a fluorophore ...

  18. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    Science.gov (United States)

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  19. Flow dynamics study of catalyst powder in catalytic cracking unit for troubleshooting

    Directory of Open Access Journals (Sweden)

    Yelgaonkar Vivek

    2017-12-01

    Full Text Available Gamma scanning and radiotracer applications are very effective and inexpensive tools to understand and optimize the process as well as troubleshoot the various types of problems in many chemical, petrochemical industries and refineries. These techniques are non-invasive; hence, the problems can be pinpointed online, which leads to reduce the downtime, schedule the shutdown and maintenance of the plant equipment, rendering huge economic benefits. In a leading refinery of India, the catalytic cracking unit (CCU was malfunctioning. It was suspected by the refinery engineers that the catalyst powder was being carried over to the fractionator, which could have led to erosion of the fractionator column internals resulting in their rupture, and consequentially, to the fire hazard. To understand the flow behaviour of the catalyst powder and to ensure the mechanical integrity, catalyst accumulation and choking, both radiotracer study and gamma scanning of the CCU reactor was carried out. The reactor consists of a riser, three primary cyclones and three secondary cyclones. Gamma scanning of the reactor was carried out with the help of an automatic gamma scanner using 1.8 GBq of Co-60 sealed source. Results showed that the catalyst powder was accumulated in one of the secondary cyclones and uneven density distribution was observed in another secondary cyclone. The radiotracer study was carried out using the irradiated catalyst powder as a radiotracer, which contains 0.9 GBq of Na-24. The radiotracer was injected in the reactor through the specially fabricated injection system. Radiation measurement was done using the thermally insulated and collimated NaI(Tl scintillation detectors located at various strategic locations coupled to a multi-detector data acquisition system. The data were mathematically analysed. It was confirmed that the catalyst powder was accumulated in one of the secondary cyclones with no flow downwards. This resulted in excess powder

  20. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano-particles

  1. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    Science.gov (United States)

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  2. Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells

    NARCIS (Netherlands)

    Garcia, A.; Yan, N.; Vincent, A.; Singh, A.; Hill, J.M.; Chuang, K. T.; Luo, J.L.

    2015-01-01

    In this work, we show that grafted metal oxide can be a highly cost-effective and active anode for solid oxide fuel cells for sour methane conversion. The developed electro-catalyst was composed of vanadium oxide grafted TiO2 nanoparticles (VOx/TiO2) infiltrated into a porous La0.4Sr0.5Ba0.1TiO3+δ

  3. Synthesis of nickel nanoparticles by hydrazine reduction: mechanistic study and continuous flow synthesis

    International Nuclear Information System (INIS)

    Eluri, Ravi; Paul, Brian

    2012-01-01

    The continuous synthesis of nickel nanoparticles (NiNPs) in a static microchannel T-mixer by the reduction of NiCl 2 ·6H 2 O in the presence of ethylene glycol without a stabilizing/capping agent was investigated. The nanoparticles were formed in accordance with the modified polyol process with hydrazine used as a reducing agent and NaOH as a catalyst for nanoparticle formation. The reaction mechanism for NiNP formation was investigated in batch with the help of Fourier transform infrared spectroscopy and X-ray diffraction (XRD) techniques. Parameters were found for reducing reaction times from 60 to 1 min. The effects of temperature (60–120 °C) and NaOH concentration (0.1 and 0.5 M) on batch-processed particle characteristics were also studied using XRD, transmission electron microscope and electron microprobe analysis. Average particle size was reduced from 9.2 ± 2.9 to 5.4 ± 0.9 nm at higher temperature and NaOH concentration. Adaptation of this chemistry to a static microchannel T-mixer for continuous synthesis resulted in smooth, spherical particles. Increases in the reaction temperature from 120 to 130 °C resulted in a narrow size distribution of 5.3 ± 1 nm and also resulted in magnetic properties of 5.1 emu/g (saturation magnetization), 1.1 emu/g (remanent magnetization), and 62 Oe (coercivity).

  4. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device.

    Science.gov (United States)

    Fremerey, Peter; Jess, Andreas; Moos, Ralf

    2015-10-23

    In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H₂S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.

  5. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device

    Directory of Open Access Journals (Sweden)

    Peter Fremerey

    2015-10-01

    Full Text Available In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H2S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.

  6. Multifunctional magnetic core–shell dendritic mesoporous silica nanospheres decorated with tiny Ag nanoparticles as a highly active heterogeneous catalyst

    International Nuclear Information System (INIS)

    Sun, Zebin; Li, Haizhen; Cui, Guijia; Tian, Yaxi; Yan, Shiqiang

    2016-01-01

    Graphical abstract: - Highlights: • A multifunctional magnetic core–shell dendritic silica nanocatalyst was successfully fabricated by an oil–water biphase stratification coating strategy. • The magnetic core–shell dendritic silica nanomaterials Fe_3O_4@SiO_2@Dendritic-SiO_2 were chosen as the catalyst's support for the first time. • The as-synthesized nanocatalyst exhibited excellent catalytic activity and reusability due to easy accessibility of active sites and superparamagnetism. • The novel catalyst could be conveniently recovered by magnetic separation from the reaction system. - Abstract: In present work, a multifunctional magnetic core–shell dendritic silica nanocatalyst Fe_3O_4@SiO_2@Dendritic-SiO_2-NH_2-Ag with easy accessibility of active sites and convenient recovery was successfully fabricated by an oil–water biphase stratification coating strategy, and characterized by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, N_2 adsorption–desorption, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The as-synthesized nanocatalyst Fe_3O_4@SiO_2@Dendritic-SiO_2-NH_2-Ag displayed excellent catalytic activity for the catalytic reduction of 4-nitrophenol and 2-nitroaniline using sodium borohydride in aqueous solution at room temperature due to easy accessibility of active sites. Interestingly, the novel catalyst could be conveniently recovered by magnetic separation from the reaction system and recycled for at least five times without significant loss in activity. These results indicate that the above mentioned approach based on magnetic core–shell dendritic silica Fe_3O_4@SiO_2@Dendritic-SiO_2 provided a useful platform for the preparation of noble metal nanocatalysts with easy accessibility, excellent catalytic activity and convenient recovery.

  7. Thermal decomposition study of manganese sulfide (MnS) nanoparticles

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.; Deshpande, M. P.

    2018-05-01

    The as-synthesized manganese sulfide (MnS) nanoparticles were used for the thermal study. The nanoparticles were synthesized by simple wet chemical route at ambient temperature. The photoelectron binding energy and chemical composition of MnS nanoparticles was analyzed by X-ray photoelectron spectroscopy (XPS). The thermogravimetric (TG), differential thermogravimetric (DTG) and differential thermal analysis (DTA) were carried out on the as-synthesized MnS nanoparticles. The thermocurves were recorded in inert N2 atmosphere in the temperature range of ambient to 1173 K. The heating rates employed were 5, 10, 15 and 20 K/min. The thermodynamic parameters like activation energy (Ea), enthalpy change (ΔH), entropy change (ΔS) and change in Gibbs free energy (ΔG) of as-synthesized MnS nanoparticles were determined using Kissinger method. The obtained XPS and thermal results are discussed.

  8. Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemaunt, E-mail: hvatsal@gmail.com [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Srivastava, R.C. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Pal Singh, Jitendra [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Negi, P. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Agrawal, H.M. [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Das, D. [UGC-DAE CSR Kolkata Centre, Kolkata 700098 (India); Hwa Chae, Keun [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of)

    2016-03-01

    The present work investigates the magnetic behavior of Dy{sup 3+} substituted cobalt ferrite nanoparticles. X-ray diffraction studies reveal presence of cubic spinel phases in these nanoparticles. Raman spectra of these nanoparticles show change in intensity of Raman bands, which reflects cation redistribution in cubic spinel lattice. Saturation magnetization and coercivity decrease with increase of Dy{sup 3+}concentration in these nanoparticles. Room temperature Mössbauer measurements show the cation redistribution in these nanoparticles and corroborates the results obtained from Raman Spectroscopic measurements. Decrease in magnetization of Dy{sup 3+} substituted cobalt ferrite is attributed to the reduction in the magnetic interaction and cation redistribution. - Highlights: • Slight decrease in crystallite size after Dy{sup 3+} doping. • Saturation magnetization and coercivity decrease after Dy{sup 3+} doping. • Mössbauer measurements show the cation redistribution in the samples.

  9. Does Pelletizing Catalysts Influence the Efficiency Number of Activity Measurements? Spectrochemical Engineering Considerations for an Accurate Operando Study

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Perez-Ferreras, Susana; Banares, Miguel A.

    2013-01-01

    of, for example, support oxides might take place, which in turn affects the pore size distribution and the porosity of the catalyst, leading to the observation of lower activity values due to decreased catalyst efficiency. This phenomenon can also apply to conventional activity measurements......, in the cases that pelletizing and recrushing of samples are performed to obtain adequate particle size fractions for the catalytic bed. A case study of an operand investigation of a V2O3-WO3/TiO2-sepiolite catalyst is used as an example, and simple calculations of the influence of catalyst activity...... and internal pore diffusion properties are considered in this paper for the evaluation of catalyst performance in, for example, operando reactors. Thus, it is demonstrated that with a pelletizing pressure of...

  10. Moessbauer spectroscopy and nuclear inelastic scattering studies on polynuclear oxo-bridged iron catalyst-first results

    International Nuclear Information System (INIS)

    Rajagopalan, S.; Asthalter, T.; Rabe, V.; Buerck, U. van; Wagner, F. E.; Laschat, S.

    2008-01-01

    Polynuclear iron catalysts are interesting materials because of their novel properties. In the future they may help to replace high cost and hazardous heavy metal catalysts by efficient, non toxic and economic iron compounds. In this work, we present some preliminary results on a novel polynuclear oxo-bridged iron catalyst. The chemical environment of the metal species (Fe) was studied under Gif-type conditions (Fe catalyst/Zn/O 2 in pyridine/acetic acid) with cyclohexene as substrate. Such Gif-type catalysts are able to catalyse the selective oxidation of alkanes and alkenes. The characterization was done by Moessbauer spectroscopy and nuclear inelastic scattering. In order to identify the intermediate species during the reaction (selective oxidation using molecular O 2 ), a freeze-quench technique was used. This also helps to understand the kinetics of the chemical reaction.

  11. Catalytic Activity Studies of Vanadia/Silica–Titania Catalysts in SVOC Partial Oxidation to Formaldehyde: Focus on the Catalyst Composition

    Directory of Open Access Journals (Sweden)

    Niina Koivikko

    2018-02-01

    Full Text Available In this work, silica–titania supported catalysts were prepared by a sol–gel method with various compositions. Vanadia was impregnated on SiO2-TiO2 with different loadings, and materials were investigated in the partial oxidation of methanol and methyl mercaptan to formaldehyde. The materials were characterized by using N2 physisorption, X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, X-ray photoelectron spectroscopy (XPS, Scanning transmission electron microscope (STEM, NH3-TPD, and Raman techniques. The activity results show the high importance of an optimized SiO2-TiO2 ratio to reach a high reactant conversion and formaldehyde yield. The characteristics of mixed oxides ensure a better dispersion of the active phase on the support and in this way increase the activity of the catalysts. The addition of vanadium pentoxide on the support lowered the optimal temperature of the reaction significantly. Increasing the vanadia loading from 1.5% to 2.5% did not result in higher formaldehyde concentration. Over the 1.5%V2O5/SiO2 + 30%TiO2 catalyst, the optimal selectivity was reached at 415 °C when the maximum formaldehyde concentration was ~1000 ppm.

  12. Ni-CeO2/C Catalysts with Enhanced OSC for the WGS Reaction

    Directory of Open Access Journals (Sweden)

    Laura Pastor-Pérez

    2015-03-01

    Full Text Available In this work, the WGS performance of a conventional Ni/CeO2 bulk catalyst is compared to that of a carbon-supported Ni-CeO2 catalyst. The carbon-supported sample resulted to be much more active than the bulk one. The higher activity of the Ni-CeO2/C catalyst is associated to its oxygen storage capacity, a parameter that strongly influences the WGS behavior. The stability of the carbon-supported catalyst under realistic operation conditions is also a subject of this paper. In summary, our study represents an approach towards a new generation of Ni-ceria based catalyst for the pure hydrogen production via WGS. The dispersion of ceria nanoparticles on an activated carbon support drives to improved catalytic skills with a considerable reduction of the amount of ceria in the catalyst formulation.

  13. Morphological features of electrodeposited Pt nanoparticles and its application as anode catalysts in polymer electrolyte formic acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hongrae; Joo, Jiyong; Kwon, Youngkook [Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, GIST, Gwangju 500-712 (Korea); Uhm, Sunghyun [Ertl Center for Electrochemistry and Catalysis, GIST, Gwangju 500-712 (Korea); Lee, Jaeyoung [Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, GIST, Gwangju 500-712 (Korea); Ertl Center for Electrochemistry and Catalysis, GIST, Gwangju 500-712 (Korea)

    2010-09-15

    Electrodeposited Pt nanoparticles on carbon substrate show various morphologies depending on the applied potentials. Dendritic, pyramidal, cauliflower-like, and hemi-spherical morphologies of Pt are formed at potential ranges between -0.2 and 0.3 V (vs. Ag/AgCl) and its particle sizes are distributed from 8 to 26 nm. Dendritic bulky particles over 20 nm are formed at an applied potential of -0.2 V, while low deposition potential of 0.2 V causes dense hemi-spherical structure of Pt less than 10 nm. The influence of different Pt shapes on an electrocatalytic oxidation of formic acid is represented. Consequently, homogeneous distribution of Pt nanoparticles with average particle of ca. 14 nm on carbon paper results in a high surface to volume ratio and the better power performance in a fuel cell application. (author)

  14. FY 1990 Study Meeting of Catalyst (Iron system). Data; 1990 nendo shokubai kento kai (Tetsu kei) shiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The FY 1990 Study Meeting of Iron-system Catalyst was held at NEDO on March 12, 1991, and the data were arranged. In the study meeting, papers titled as follows were made public: About the behavior of H{sub 2}S on iron-system catalyst by Muroran Institute of Technology; Results of the test on iron-system catalyst in the BCL project by Research Institute, Mitsubishi Kasei Corp.; Results of the test on iron-system catalyst by 2.4 t/d PDU by NKK; Results of the test on iron-system catalyst by 0.1 t/d BSU by Mitsui Engineering and Shipbuilding Co.; Results of the test on iron-system catalyst by 1 t/d PSU by Nippon Steel Corp.; Results of the research at Government Industrial Development Laboratory, Hokkaido, and the study; Results of the research at National Chemical Laboratory for Industry and the study; Results of the research at the University of Tokyo and the study; Details of the development of synthetic iron sulfide and the attainment up to now by Asahi Chemical Industry Co. Moreover, the plenary session was held on research items for the development of iron-system catalyst in future. (NEDO)

  15. Synthesis, characterization and electrochemical studies of Pt- W/C catalyst for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Ahmed, R.; Shahid, S.; Ansari, M. S.

    2013-01-01

    Pt-W/C catalyst was synthesized by slow reduction of platinum and tungsten solutions in the desired ratio with subsequent deposition on the Vulcan carbon already added to the solution. Crystallite size of catalyst was about 9 nm and its density, cell volume, d-spacing and lattice parameter were also calculated. EDX analysis of the catalyst was also done. Electrochemical surface area of the catalyst was determined by cyclic voltammetry (CV). CV of the catalyst was done both in acidic and basic media to find out the peak potential, peak current, specific activity and mass activity of the catalyst. Peak potential versus scan rate plots showed that the electro oxidation of methanol is an irreversible process. Tafel equation was used to plot polarization curves to find out the exchange current density. Higher values of exchange current indicate better catalysts. Specific activities of the catalyst were determined in acidic and basic media and it was found that the specific activity in basic media increased substantially as compared to acidic media. The specific activity in acidic media was 83 mA/mg pt whereas in basic media it was 137mA/mg pt which is a substantial increase. Heterogeneous rate constant in acidic media was 6.15 * 10-6 cm/ s and in basic media it was 4.92 * 10-5 cm/s which is much higher in basic media. In this binary catalyst addition of tungsten has increased the catalytic activity but it is non-noble metal thus will decrease the cost. Stability studies of the catalyst were done upto fifty cycles both in acidic and basic media and was found quite stable in both the media. (author)

  16. Synthesis, characterization and electrochemical studies of Pt-W/C catalyst for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Ahmed, Riaz; Shahid, Saliha; Ansari, Muhammad Shahid

    2014-01-01

    Pt-W/C catalyst was synthesized by slow reduction of platinum and tungsten solutions in the desired ratio with subsequent deposition on the Vulcan carbon already added to the solution. Crystallite size of catalyst was about 9 nm and its density, cell volume, d-spacing and lattice parameter were also calculated. EDX analysis of the catalyst was also done. Electrochemical surface area of the catalyst was determined by cyclic voltammetry (CV). CV of the catalyst was done both in acidic and basic media to find out the peak potential, peak current, specific activity and mass activity of the catalyst. Peak potential versus scan rate plots showed that the electro oxidation of methanol is an irreversible process. Tafel equation was used to plot polarization curves to find out the exchange current density. Higher values of exchange current indicate better catalysts. Specific activities of the catalyst were determined in acidic and basic media and it was found that the specific activity in basic media increased substantially as compared to acidic media. The specific activity in acidic media was 83 mA/mg pt whereas in basic media it was 137mA/mg pt which is a substantial increase. Heterogeneous rate constant in acidic media was 6.15 x 10 −6 cm/ s and in basic media it was 4.92 x 10 −5 cm/s which is much higher in basic media. In this binary catalyst addition of tungsten has increased the catalytic activity but it is non-noble metal thus will decrease the cost. Stability studies of the catalyst were done upto fifty cycles both in acidic and basic media and was found quite stable in both the media

  17. In-situ environmental (scanning) transmission electron microscopy of catalysts at the atomic level

    International Nuclear Information System (INIS)

    Gai, P L; Boyes, E D

    2014-01-01

    Observing reacting single atoms on the solid catalyst surfaces under controlled reaction conditions is a key goal in understanding and controlling heterogeneous catalytic reactions. In-situ real time aberration corrected environmental (scanning) transmission electron microscopy (E(S)TEM permit the direct imaging of dynamic surface and sub-surface structures of reacting catalysts. In this paper in-situ AC ETEM and AC ESTEM studies under controlled reaction environments of oxide catalysts and supported metal nanocatalysts important in chemical industry are presented. They provide the direct evidence of dynamic processes at the oxide catalyst surface at the atomic scale and single atom dynamics in catalytic reactions. The ESTEM studies of single atom dynamics in controlled reaction environments show that nanoparticles act as reservoirs of ad-atoms. The results have important implications in catalysis and nanoparticle studies

  18. Catalyst study for the decontamination of glove-box atmospheres containing tritium at MPC levels

    International Nuclear Information System (INIS)

    Chobot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The BEATRICE loop was designed for studying the conversion of tritium at very low activity levels using catalytic oxidation followed by water trapping. The purpose is to study kinetic parameters required for the design of the NET tritium cleanup system with the two main objectives to operate without isotopic swamping and to determine the ability of efficient conversion at room temperature. From experiments carried out between 20 and 250 0 C it is concluded that two palladium/alumina and platinum/alumina catalysts are very efficient in removing tritium from contaminated gas mixtures down to a few MPC levels without isotopic swamping and even at room temperature. However at room temperature, in relation to tritium species trapped on the catalyst surface a progressive deactivation with time occurs. This phenomenon may be a concern for process efficiency and tritium inventory and regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at room temperature

  19. Catalyst study for the decontamination of glove-boxe atmospheres containing tritium at MPC levels

    International Nuclear Information System (INIS)

    Chabot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The BEATRICE loop was designed for studying the conversion of tritium at very low activity levels using catalytic oxidation followed by water trapping. The purpose is to study kinetic parameters required for the design of the NET tritium clean-up system with the two main objectives to operate without isotopic swamping and to determine the ability of efficient conversion at room temperature. From experiments carried out between 20 and 250 0 C it is concluded that two palladium/alumina and platinum/alumina catalysts are very efficient in removing tritium from contaminated gas mixtures down to a few MPC levels without isotopic swamping and even at room temperature. However at room temperature, in relation to tritium species trapped on the catalyst surface a progressive deactivation with time occurs. This phenomenon may be a concern for process efficiency and tritium inventory and best regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at room temperature

  20. Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template

    KAUST Repository

    Ziani, Ahmed; Shinagawa, Tatsuya; Stegenburga, Liga; Takanabe, Kazuhiro

    2016-01-01

    of the nanoparticles, and transparency of the catalysts. In this study, we present a systematic study of the structural and optical properties, surface morphologies, and electrochemical oxygen evolution reaction (OER) performance of cobalt oxide prepared from a

  1. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong; Anjum, Dalaver H.; Zhou, Lu; Laveille, Paco; Basset, Jean-Marie

    2015-01-01

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles

  2. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong

    2015-06-25

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.

  3. In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: Reactivity Studies with Methanol and Butane

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    The interactions of methanol and butane with supported chromium oxide catalysts under oxidizing and reducing conditions were studied by in situ Raman spectroscopy as a function of the specific oxide support (Al2O3, ZrO2, TiO2, SiO2, Nb2O5, 3% SiO2/TiO2, 3% TiO2/SiO2, and a physical mixture of SiO2

  4. Sol-Gel Synthesis, Electrochemical Characterization, and Stability Testing of Ti0.7W0.3O2 Nanoparticles for Catalyst Support Applications in Proton-Exchange Membrane Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Subban, Chinmayee V. [Cornell Univ., Ithaca, NY (United States); Zhou, Qin [Cornell Univ., Ithaca, NY (United States); Hu, Anthony [Cornell Univ., Ithaca, NY (United States); Moylan, Thomas E. [General Motors Research and Development, Warren, MI (United States); Wagner, Frederick T. [General Motors Research and Development, Warren, MI (United States); DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States)

    2010-11-19

    The materials currently used in proton-exchange membrane fuel cells (PEMFCs) require complex control of operating conditions to make them sufficiently durable to permit commercial deployment. One of the major materials challenges to allow simplification of fuel cell operating strategies is the discovery of catalyst supports that are much more stable to oxidative decomposition than currently used carbon blacks. Here we report the synthesis and characterization of Ti0.7W0.3O2 nanoparticles (approximately 50 nm diameter), a promising doped metal oxide that is a candidate for such a durable catalyst support. The synthesized nanoparticles were platinized, characterized by electrochemical testing, and evaluated for stability under PEMFC and other oxidizing acidic conditions. Ti0.7W0.3O2 nanoparticles show no evidence of decomposition when heated in a Nafion solution for 3 weeks at 80 °C. In contrast, when heated in sulfuric, nitric, perchloric, or hydrochloric acid, the oxide reacts to form salts such as titanylsulfatehydrate from sulfuric acid. Electrochemical tests show that rates of hydrogen oxidation and oxygen reduction by platinum nanoparticles supported on Ti0.7W0.3O2 are comparable to those of commercial Pt on carbon black.

  5. Hybrid Nanomaterials with Single-Site Catalysts by Spatially Controllable Immobilization of Nickel Complexes via Photoclick Chemistry for Alkene Epoxidation.

    Science.gov (United States)

    Ghosh, Dwaipayan; Febriansyah, Benny; Gupta, Disha; Ng, Leonard Kia-Sheun; Xi, Shibo; Du, Yonghua; Baikie, Tom; Dong, ZhiLi; Soo, Han Sen

    2018-05-22

    Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.

  6. Lantana camara Linn leaf extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Dash, Shib Shankar; Bag, Braja Gopal; Hota, Poulami

    2015-03-01

    A facile one-step green synthesis of stable gold nanoparticles (AuNPs) has been described using chloroauric acid (HAuCl4) and the leaf extract of Lantana camara Linn (Verbenaceae family) at room temperature. The leaf extract enriched in various types of plant secondary metabolites is highly efficient for the reduction of chloroaurate ions into metallic gold and stabilizes the synthesized AuNPs without any additional stabilizing or capping agents. Detailed characterizations of the synthesized gold nanoparticles were carried out by surface plasmon resonance spectroscopy, transmission electron microscopy, dynamic light scattering, Zeta potential, X-ray diffraction and Fourier transform-infrared spectroscopy studies. The synthesized AuNPs have been utilized as a catalyst for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol in water at room temperature under mild reaction condition. The kinetics of the reduction reaction has been studied spectrophotometrically.

  7. Preparation and characterization of the perovskite catalysts : activity studies for diesel surrogate (dodecane) reforming

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.; Kundu, A.; Karan, K.; Peppley, B. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada)

    2009-07-01

    Canada's northern communities rely on diesel fuel for generating electricity. The process of converting diesel to electricity in internal combustion engines is not efficient and generates significant amounts of unwanted products. This paper presented an alternative process whereby diesel is reformed into hydrogen-rich reformate which can then be fed to a solid oxide fuel cell. This alternative process converts energy more efficiently and eliminates the formation of nitrogen oxides (NOx) and soot. This study focused on the development of LaFeO{sub 3} based perovskite catalysts for diesel reforming. The activity of the perovskite catalysts was assessed for steam reforming of dodecane, a surrogate for diesel. In order to study the effect on catalytic activity, various perovskite materials were prepared by doping the perovskite at A-site to minimize the coke deposition and at B-site to improve the activity. Preliminary results for dodecane reforming for selected perovskites were promising. Additional testing is underway regarding catalyst activity and stability studies as well carbon and sulphur poisoning.

  8. Catalytic Conversion of Biomass Pyrolysis Vapours over Sodium-Based Catalyst; A Study on teh State of Sodium on the Catalyst

    NARCIS (Netherlands)

    Nguyen, T.S.; Lefferts, Leonardus; Gupta, K.B. Sai Sankar; Seshan, Kulathuiyer

    2015-01-01

    In situ upgrading of biomass pyrolysis vapours over Na2CO3/γ-Al2O3 catalysts was studied in a laboratory-scale fixed-bed reactor at 500 °C. Catalytic oil exhibits a significant improvement over its non-catalytic counterpart, such as lower oxygen content (12.3 wt % compared to 42.1 wt %), higher

  9. Stability of Porous Platinum Nanoparticles: Combined In Situ TEM and Theoretical Study

    DEFF Research Database (Denmark)

    Chang, Shery L. Y.; Barnard, Amanda S.; Dwyer, Christian

    2012-01-01

    Porous platinum nanoparticles provide a route for the development of catalysts that use less platinum without sacrificing catalytic performance. Here, we examine porous platinum nanoparticles using a combination of in situ transmission electron microscopy and calculations based on a first-principles......-parametrized thermodynamic model. Our experimental observations show that the initially irregular morphologies of the as-sythesized porous nanoparticles undergo changes at high temperatures to morphologies having faceted external surfaces with voids present in the interior of the particles. The increasing size of stable...

  10. Theoretical Studies of Optical Properties of Silver Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Zhao-Wang, Wu; Li-Hua, Zhang; Jie, Zhang

    2010-01-01

    Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization. (fundamental areas of phenomenology(including applications))

  11. Aging study of the powdered magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Umar Saeed, E-mail: omar_aps@yahoo.co.uk [Department of Physics, University of Peshawar (Pakistan); Rahim, Abdur, E-mail: rahimkhan533@gmail.com [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Khan, Nasrullah [Department of Physics, Kohat University of Science and Technology, Kohat (Pakistan); Muhammad, Nawshad; Rehman, Fozia [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Ahmad, Khalid [Institute of Chemistry, State University of Campinas, PO Box 6154, 13083-970 Campinas, SP (Brazil); Iqbal, Jibran [College of Natural and Health Sciences, Zayed University, 144534 Abu Dhabi (United Arab Emirates)

    2017-03-01

    Magnetite nanoparticles were produced via co-precipitation method and then stored at room temperature for 6 years in aerobic atmosphere. Variations in the inherent solid phase and solid interfacial properties of the prepared magnetite nanoparticles were investigated. For this purpose the fresh and aged samples were characterized using transmission electron microscopy, vibrating sample magnetometer, X-ray diffractometer and energy dispersive X-ray spectrometer. The solid phase transformations of magnetite nanoparticles to maghemite nanoparticles as well as formation of other iron oxides were happened. After aging of 6 years, no change was occurred in the magnetic features; however increase in particle size from 9.6 to 18.5 measured by transmission electron microscopy was confirmed. The crystallite size and vibrating sample magnetometer values were measured before and after aging and found to increase from 8.98 nm and 47.23 emu/g to 16.18 nm and 58.36 emu/g respectively. The formation of other iron oxides, recrystallization and agglomeration during aging process, caused a significant decrease in the specific surface area from 124.43 to 45.00 m{sup 2}/g of the stored sample. - Highlights: • Magnetite nanoparticles (NPs) were produced via co-precipitation method. • Inherent solid phase and interfacial properties of NP were evaluated after 6 years. • The solid phase transformations of magnetite NPs to maghemite NPs was happened. • After aging of 6 years, no change was occurred in the magnetic features.

  12. Aging study of the powdered magnetite nanoparticles

    International Nuclear Information System (INIS)

    Khan, Umar Saeed; Rahim, Abdur; Khan, Nasrullah; Muhammad, Nawshad; Rehman, Fozia; Ahmad, Khalid; Iqbal, Jibran

    2017-01-01

    Magnetite nanoparticles were produced via co-precipitation method and then stored at room temperature for 6 years in aerobic atmosphere. Variations in the inherent solid phase and solid interfacial properties of the prepared magnetite nanoparticles were investigated. For this purpose the fresh and aged samples were characterized using transmission electron microscopy, vibrating sample magnetometer, X-ray diffractometer and energy dispersive X-ray spectrometer. The solid phase transformations of magnetite nanoparticles to maghemite nanoparticles as well as formation of other iron oxides were happened. After aging of 6 years, no change was occurred in the magnetic features; however increase in particle size from 9.6 to 18.5 measured by transmission electron microscopy was confirmed. The crystallite size and vibrating sample magnetometer values were measured before and after aging and found to increase from 8.98 nm and 47.23 emu/g to 16.18 nm and 58.36 emu/g respectively. The formation of other iron oxides, recrystallization and agglomeration during aging process, caused a significant decrease in the specific surface area from 124.43 to 45.00 m"2/g of the stored sample. - Highlights: • Magnetite nanoparticles (NPs) were produced via co-precipitation method. • Inherent solid phase and interfacial properties of NP were evaluated after 6 years. • The solid phase transformations of magnetite NPs to maghemite NPs was happened. • After aging of 6 years, no change was occurred in the magnetic features.

  13. Self-Assembly Template Driven 3D Inverse Opal Microspheres Functionalized with Catalyst Nanoparticles Enabling a Highly Efficient Chemical Sensing Platform.

    Science.gov (United States)

    Wang, Tianshuang; Can, Inci; Zhang, Sufang; He, Junming; Sun, Peng; Liu, Fangmeng; Lu, Geyu

    2018-02-14

    The design of semiconductor metal oxides (SMOs) with well-ordered porous structure has attracted tremendous attention owing to their larger specific surface area. Herein, three-dimensional inverse opal In 2 O 3 microspheres (3D-IO In 2 O 3 MSs) were fabricated through one-step ultrasonic spray pyrolysis (USP) which employed self-assembly sulfonated polystyrene (S-PS) spheres as a sacrificial template. The spherical pores observed in the 3D-IO In 2 O 3 MSs had diameters of about 4 and 80 nm. Subsequently, the catalytic palladium oxide nanoparticles (PdO NPs) were loaded on 3D-IO In 2 O 3 MSs via a simple impregnation method, and their gas sensing properties were investigated. In a comparison with pristine 3D-IO In 2 O 3 MSs, the 3D-IO PdO@In 2 O 3 MSs exhibited a 3.9 times higher response (R air /R gas = 50.9) to 100 ppm acetone at 250 °C and a good acetone selectivity. The detection limit for acetone could extend down to ppb level. Furthermore, the 3D-IO PdO@In 2 O 3 MSs-based sensor also possess good long-term stability. The extraordinary sensing performance can be attributed to the novel 3D periodic porous structure, highly three-dimensional interconnection, larger specific surface area, size-tunable (meso- and macroscale) bimodal pores, and PdO NP catalysts.

  14. Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol

    Science.gov (United States)

    Edison, T. Jebakumar Immanuel; Sethuraman, M. G.

    2013-03-01

    A robust synthesis of silver nanoparticles (AgNPs) using the peel extract of Punica granatum is reported in this article. The formation of AgNPs was confirmed by the appearance of brownish yellow color and the Surface Plasmon Resonance (SPR) peak at 432 nm. The biogenic AgNPs were found to have the size approximately 30 nm with distorted spherical shape. The high negative zeta potential values of AgNPs revealed their high stability which could be attributed to the capping of AgNPs by the phytoconstituents of the Punica granatum peel. The biogenic AgNPs were also found to function as an effective green catalyst in the reduction of anthropogenic pollutant viz., 4-nitrophenol (4-NP) by solid sodium borohydride, which was evident from the instantaneous color change of bright yellow (400 nm) to colorless (294 nm) solution, after the addition of AgNPs. The catalytic action of biogenic AgNPs in the reduction of 4-NP could be explained on the basis of Langmuir-Hinshelwood model.

  15. Quantitative positron annihilation studies in citrates, halides and oxyhalides chemisorbed on γ-alumina catalyst

    International Nuclear Information System (INIS)

    Luo, X.H.; Jean, Y.C.; Cheng, K.L.

    1987-01-01

    A quantitative study of the γ-alumina catalyst chemisorbed by nitrates, halides, and oxyhalides has been conducted with the positron annihilation spectroscopy (PAS). Catalysts containing Fe, Co, or Ni have been extensively used in chemical industry and petroleum refining. The positron or Ps annihilation can provide a profile information about the bulk, near surface, and void. It is an in-situ surface technique. The PAS technique has shown its capability to determine the nitrate or chloride in γ-alumina as low as 0.02% in solids. It is interesting to note that the PAS may offer the oxidation state information in solids. This is not surprising because the positron annihilation is sensitive to the electron density variation in environments. Positron annihilation models for halides and oxyhalides are proposed

  16. Catalyst-Controlled and Tunable, Chemoselective Silver-Catalyzed Intermolecular Nitrene Transfer: Experimental and Computational Studies.

    Science.gov (United States)

    Dolan, Nicholas S; Scamp, Ryan J; Yang, Tzuhsiung; Berry, John F; Schomaker, Jennifer M

    2016-11-09

    The development of new catalysts for selective nitrene transfer is a continuing area of interest. In particular, the ability to control the chemoselectivity of intermolecular reactions in the presence of multiple reactive sites has been a long-standing challenge in the field. In this paper, we demonstrate examples of silver-catalyzed, nondirected, intermolecular nitrene transfer reactions that are both chemoselective and flexible for aziridination or C-H insertion, depending on the choice of ligand. Experimental probes present a puzzling picture of the mechanistic details of the pathways mediated by [( t Bu 3 tpy)AgOTf] 2 and (tpa)AgOTf. Computational studies elucidate these subtleties and provide guidance for the future development of new catalysts exhibiting improved tunability in group transfer reactions.

  17. Moessbauer study of CO-precipitated Fischer-Tropsch iron catalysts

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Huggins, F.E.; Mahajan, V.; Huffman, G.P.; Bukur, D.B.; Rao, V.U.S.

    1994-01-01

    Moessbauer spectroscopy studies of precipitated Fischer-Tropsch (FT) iron catalysts, viz. 100 Fe/5 Cu/4.2 K/x SiO 2 , where x = 0, 8, 16, 24, 25, 40, or 100, have shown that reduction of the oxide precursor in CO gives rise to χ-carbide Fe 5 C 2 whose amount decreases with an increase of SiO 2 content. The χ-carbide is converted into magnetite Fe 3 O 4 while catalyzing the FT synthesis reaction. A correlation between FT activity and the content of χ-carbide in the catalysts was found, which indicated that χ-carbide is active for FT synthesis reaction. (orig.)

  18. Kinetic Study on the Esterification of Palm Fatty Acid Distillate (PFAD) Using Heterogeneous Catalyst

    Science.gov (United States)

    Rofiqah, U.; Djalal, R. A.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Esterification with heterogeneous catalysts is believed to have advantages compared to homogeneous catalysts. Palm Fatty Acid Distillate (PFAD) was esterified by ZrO2 -SO4 2-/natural zeolite at temperature variation of 55°C, 60°C, and 65°C to produce biodiesel. Determination of reaction kinetics was done by experiment and modeling. Kinetic study was approached using pseudo-homogeneous model of first order. For experiment, reaction kinetics were 0.0031 s-1, 0.0054 s-1, and 0.00937 s-1 for a temperature of 55 °C, 60 °C and 65 °C, respectively. For modelling, reaction kinetics were 0.0030 s-1, 0.0055 s-1, and 0.0090 s-1 for a temperature of 55°C, 60°C and 65°C, respectively. Rate and conversion of reaction are getting increased by increasing temperature.

  19. Catalyst study for the decontamination of atmospheres containing few traces of tritium

    International Nuclear Information System (INIS)

    Chabot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The conversion of tritium at very low activity level using catalytic oxidation followed by water trapping is studied in the loop BEATRICE in order to measure kinetic parameters required for the design of the NET tritium clean-up system. Two precious-metal catalysts (Pd/alumina and Pt/alumina) are very efficient in removing tritium from contaminated gas mixtures down to a few MPC level at low temperatures, without need of isotopic swamping. However at room temperature, the trapping of tritium species on the catalyst surface gives rise to a progressive deactivation with time. Best regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at low temperatures

  20. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1 - Experimental study

    Science.gov (United States)

    Ahadi, Mohammad; Tam, Mickey; Saha, Madhu S.; Stumper, Jürgen; Bahrami, Majid

    2017-06-01

    In this work, a new methodology is proposed for measuring the through-plane thermal conductivity of catalyst layers (CLs) in polymer electrolyte membrane fuel cells. The proposed methodology is based on deconvolution of bulk thermal conductivity of a CL from measurements of two thicknesses of the CL, where the CLs are sandwiched in a stack made of two catalyst-coated substrates. Effects of hot-pressing, compression, measurement method, and substrate on the through-plane thermal conductivity of the CL are studied. For this purpose, different thicknesses of catalyst are coated on ethylene tetrafluoroethylene (ETFE) and aluminum (Al) substrates by a conventional Mayer bar coater and measured by scanning electron microscopy (SEM). The through-plane thermal conductivity of the CLs is measured by the well-known guarded heat flow (GHF) method as well as a recently developed transient plane source (TPS) method for thin films which modifies the original TPS thin film method. Measurements show that none of the studied factors has any effect on the through-plane thermal conductivity of the CL. GHF measurements of a non-hot-pressed CL on Al yield thermal conductivity of 0.214 ± 0.005 Wṡm-1ṡK-1, and TPS measurements of a hot-pressed CL on ETFE yield thermal conductivity of 0.218 ± 0.005 Wṡm-1ṡK-1.

  1. Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel

    International Nuclear Information System (INIS)

    Yahya, Noor Yahida; Ngadi, Norzita; Jusoh, Mazura; Halim, Noor Amirah Abdul

    2016-01-01

    Highlights: •Simple synthesis of mesoporous calcium titanate by sol-gel-hydrothermal method. •Improvement of characteristics and catalytic activity from commercial CaO. • Production of biodiesel at relatively mild reaction conditions. - Abstract: Mesoporous calcium titanate (MCT) catalyst was synthesized via a sol-gel-hydrothermal method and investigated as a catalyst for biodiesel production from waste cooking oil (WCO). Calcium was supported on titanate in order to increase their surface area, stability and consequently, improve its performance in the transesterification of WCO to biodiesel. Synthesized catalyst was characterized with powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), N_2 physisorption, Fourier transform-infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and carbon dioxide temperature-programmed desorption (CO_2-TPD). The catalyst possessed high surface area, basicity and stability than calcium oxide (CaO) catalyst. The highest biodiesel yield achieved was 80.0% in 3:1 of methanol to WCO molar ratio, 0.2 wt.% of MCT catalyst for 1 h at 65 °C. Reusability study suggested that this catalyst can be recycled for five successive runs.

  2. The fabrication of porous 4A-zeolite-supported Ag nanoparticles catalysts and its catalytic activity for styrene epoxidation

    Directory of Open Access Journals (Sweden)

    Youkui Wu

    Full Text Available Binderless hierarchically porous 4A-zeolite has been successful produced through hydrothermal crystallization, in which silicon-aluminum sol binded to the carbon nanofibers (CNFs, that is to say, where the CNFs powder was coated during the crystallization 4A-zeolite. The mixing of silica-alumina sol and CNFs was only a simple physical mixing process. The samples of micropores-macroporous hierarchical 4A-zeolite (P-4A-zeolite was analyzed by a series of characterization techniques, such as field emission scanning electron microscope (FESEM, transmission electron microscopy (TEM, simultaneous thermal analysis (STA and CO2 adsorption-desorption (BET and BJH, and so on. In addition, the adsorption test of silver nanoparticles was carried out. The characterization results indicated the presence of micropores and the formation of macroporous. At the same time, silver adsorption test proved that the prepared P-4A-zeolite had good adsorption performance and the catalytic performance of Ag/P-4A-zeolite was further investigated through the epoxidation of styrene. Keywords: Carbon nanofibers, Porous 4A-zeolite, Silver nanoparticles, Styrene epoxidation

  3. Polypropylene Nano composites Obtained by In Situ Polymerization Using Metallocenes Catalyst: Influence of the Nanoparticles on the Final Polymer Morphology

    International Nuclear Information System (INIS)

    Zapata, P.; Quijada, R.

    2012-01-01

    Polypropylene nano composites containing silica nanospheres based on the sol-gel methods were produced via in situ polymerization using a rac-Et(Ind) 2 ZrCl 2 /methylaluminoxane (MAO) system. Two different routes were used depending on the interaction between the silica nanoparticles with the catalytic system. In route 1 the nanoparticles were added together with the catalytic system (rac-Et(Ind) 2 ZrCl 2 )/(MAO) directly into the reactor, and in route 2 the metallocenes rac-Et(Ind) 2 ZrCl 2 was supported on silica nanospheres pretreated with (MAO). SEM images show that when the nanospheres were added by both routes, they were replicated in the final polymer particle morphology; this phenomenon was more pronounced for PP obtained by route 2. The polypropylene (PP) nano composites obtained by both routes had a slightly higher percent crystallinity and crystallinity temperatures than pure PP. Transmission electron microscopy (TEM) images show that the nanospheres were well dispersed into the polypropylene matrix, particularly in the nano composites obtained by the support system (route 2).

  4. Polypropylene Nanocomposites Obtained by In Situ Polymerization Using Metallocene Catalyst: Influence of the Nanoparticles on the Final Polymer Morphology

    Directory of Open Access Journals (Sweden)

    Paula Zapata

    2012-01-01

    Full Text Available Polypropylene nanocomposites containing silica nanospheres based on the sol-gel methods were produced via in situ polymerization using a rac-Et(Ind2ZrCl2/methylaluminoxane (MAO system. Two different routes were used depending on the interaction between the silica nanoparticles with the catalytic system. In route 1 the nanoparticles were added together with the catalytic system (rac-Et(Ind2ZrCl2/(MAO directly into the reactor, and in route 2 the metallocene rac-Et(Ind2ZrCl2 was supported on silica nanospheres pretreated with (MAO. SEM images show that when the nanospheres were added by both routes, they were replicated in the final polymer particle morphology; this phenomenon was more pronounced for PP obtained by route 2. The polypropylene (PP nanocomposites obtained by both routes had a slightly higher percent crystallinities and crystallinity temperatures than pure PP. Transmission electron microscopy (TEM images show that the nanospheres were well dispersed into the polypropylene matrix, particularly in the nanocomposites obtained by the support system (route 2.

  5. Acid properties of catalysts as studied by CO adsorption

    International Nuclear Information System (INIS)

    Knozinger, H.

    1992-01-01

    CO is a soft base and can therefore, be used as a highly specific probe for acid sites on oxide surfaces. Relative acidity sequences of Bronsted sites can be established based on the IR-hydroxyl frequency shifts when CO is adsorbed by H-bonding at 77 K. Coordination of CO onto coordinately unsaturated cation sites (Lewis acid sites) leads to cation-sensitive carbonyl stretching frequency shifts. The CO stretching band postions can be correlated with the electric field strength exerted by the cation. A universal correlation seems to exist. Applications of these principles for the study of binary oxides; zeolites, supported oxides and sulfides will be discussed in this paper

  6. In vitro study revealed different size behavior of different nanoparticles

    International Nuclear Information System (INIS)

    Schaudien, Dirk; Knebel, Jan; Creutzenberg, Otto

    2012-01-01

    Toxicity of nanoparticles is depending not only on the size of the primary particles but on the size of their agglomerates. Therefore, further studies are needed to examine the behavior of nanoparticles after they have gotten in contact with cells. The presented study investigated the change of size of different commercially available nanoparticles after applying them to different cell lines such as A549, Calu-3, 16HBE14o and LK004 representative for the different parts of the human lung. The different nanoparticles exhibited differences in behavior of size. TiO 2 P25 showed a tendency to increase, whereas TiO 2 T805 and Printex ® 90 remained more or less at the same size. In contrast, ZnO < 50 nm particles showed a significant decrease of size.

  7. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    International Nuclear Information System (INIS)

    Kepenienė, V.; Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J.; Vaitkus, R.; Norkus, E.

    2016-01-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  8. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kepenienė, V., E-mail: virginalisk@gmail.com [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Vaitkus, R. [Faculty of Chemistry, Vilnius University, Vilnius LT 03225 (Lithuania); Norkus, E. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania)

    2016-03-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  9. Structural Modification of Cobalt Catalysts: Effect of Wetting Studied by X-Ray and Infrared Techniques

    Directory of Open Access Journals (Sweden)

    Khodakov A.

    1999-07-01

    Full Text Available The effect of wetting on the structure and localisation of cobalt species on various supports (Al2O3, SiO2, TiO2, HZSM-5 zeolite was studied using X-ray diffraction, Fourier transform infrared spectroscopy with CO as a molecular probe, X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis. Aqueous impregnation to incipient wetness of reduced and passivated cobalt catalysts results, even in the absence of any promoter, in a considerable decrease in the concentration of Co crystalline phases and modifies the surface sites. The decrease in the concentration of Co3O4 crystallites was especially pronounced on silica supported catalysts prepared via impregnation of cobalt and on a mixture of Co3O4 and HZSM-5 zeolite. Saturation with water of the passivated Co/SiO2 sample results in an amorphous solid with a local structure close to that of Co2SiO4. For Co/Al2O3 and Co/TiO2 catalysts, the effect of wetting on the concentration of Co3O4 crystalline phase was considerably smaller.

  10. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  11. Study of Alginate-Supported Ionic Liquid and Pd Catalysts

    Directory of Open Access Journals (Sweden)

    Eric Guibal

    2012-01-01

    Full Text Available New catalytic materials, based on palladium immobilized in ionic liquid supported on alginate, were elaborated. Alginate was associated with gelatin for the immobilization of ionic liquids (ILs and the binding of palladium. These catalytic materials were designed in the form of highly porous monoliths (HPMs, in order to be used in a column reactor. The catalytic materials were tested for the hydrogenation of 4-nitroaniline (4-NA in the presence of formic acid as hydrogen donor. The different parameters for the elaboration of the catalytic materials were studied and their impact analyzed in terms of microstructures, palladium sorption properties and catalytic performances. The characteristics of the biopolymer (proportion of β-D-mannuronic acid (M and α-L-guluronic acid (G in the biopolymer defined by the M/G ratio, the concentration of the porogen agent, and the type of coagulating agent significantly influenced catalytic performances. The freezing temperature had a significant impact on structural properties, but hardly affected the catalytic rate. Cellulose fibers were incorporated as mechanical strengthener into the catalytic materials, and allowed to enhance mechanical properties and catalytic efficiency but required increasing the amount of hydrogen donor for catalysis.

  12. Studying nature of oxide catalyst activity in olefine hydrogenetion

    International Nuclear Information System (INIS)

    Minachev, Kh.M.; Khodakov, Yu.S.; Makarov, P.A.

    1978-01-01

    La 2 O 3 activity nature in ethylene hydrogenation is discussed. The adsorbed forms of H 2 , ethylene, as well as CO, CO 2 , H 2 O, isolated at thermovacuum treatment, are studied. The conclusions on the mechanism of La 2 O 3 poizoning are made on the basis of investigation into interaction of C 2 H 4 and H 2 adsorbed forms with one another and with CO, CO 2 , H 2 O. It has been found that La 2 O 3 poisoning by water, CO and CO 2 at low-temperature ethylene hydrogenation is connected with the adsorptive hydrogen displacement. At adsorption temperatures of 20,-68,-78 deg, CO and CO 2 have been adsorbed in α-, β-, γ-forms; ethylene in α-and β-forms, and hydrogen only in the α-form. The adsorbed hydrogen at -68, -78 deg is irreversibly desorbed by CO and CO 2 . The adsorptive C 2 H 4 displacement by the above materials is observed only at 20 deg. According to the specific toxic effect of ethylene hydrogenation on La 2 O 3 poisons are placed in the following way: CO > CO 2 > H 2 O

  13. Nanoporosity studies of novel catalysts through positronium annihilation

    Science.gov (United States)

    Félix, M. V.; Rodríguez-Rojas, R. A.; Castañeda-Contreras, J.; Nava, R.; Consolati, G.; Castaño, V. M.

    2006-10-01

    Eight novel hybrid silica gel-succinic acid-zinc acetate samples were analyzed through Positron annihilation lifetime spectroscopy in order to study average free volume quantities and free volume distributions. The aim of this work was to understand the type of porosity within these species and its relationship with surface textural properties (tested by the BET method) and catalytic activity. We found a noticeable dependence of o-Ps lifetimes on the nature of each modifier agent (succinic acid, Zn acetate, succinic acid-Zn acetate) fixed on the surface of SiO 2 and SiO 2-Al 2O 3 particles. We observed the trend of the Zinc acetate to create mesopores among silica particles, while succinic acid acts as a positronium quencher and a nanoporosity performer. Long o-Ps lifetimes were decomposed into two components accounting for the existence of interparticle and intraparticle holes, however discrepancies beyond elementary facts between the BET method measurements and our positronium calculations were found. A discussion of the kind of open spaces analysis necessary to fully understand the porosity in these hybrid materials is also presented.

  14. A comparative study of hydroxyapatite nanoparticles synthesized by different routes

    OpenAIRE

    Paz, Adrian; Guadarrama, Dainelys; López, Mónica; E. González, Jesús; Brizuela, Nayrim; Aragón, Javier

    2012-01-01

    In this study, bioactive hydroxyapatite nanoparticles were prepared by two different methods: wet chemical precipitation and biomimetic precipitation. The aim was to evaluate the morphology, particle-size, crystallinity and phases of the powders obtained by traditional wet chemical precipitation and the novel biomimetic precipitation using a supersaturated calcium solution. The nanoparticles were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy and X-r...

  15. Overcoming the Instability of Nanoparticle-Based Catalyst Films in Alkaline Electrolyzers by using Self-Assembling and Self-Healing Films

    NARCIS (Netherlands)

    Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar

    2017-01-01

    Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst

  16. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    powerful platform for nanoparticle catalysis, our studies suggest that in some cases interband transitions should be considered as an alternative mechanism of light-driven nanoparticle catalysis. The benefits already demonstrated by plasmonic nanostructures as catalysts provided the impetus for examining complementary activation modes based on the metal nanoparticle itself. Leveraging these transitions has the potential to provide a means to highly active catalysis modes that would otherwise be challenging to access. For example, for the preparation of highly active metal catalysts on a subnanosized scale is challenging, thus limiting their exploitation and study in catalysis. Our work suggests a novel and facile strategy for the formation of highly active gold nanocluster catalysts by light illumination of the interband transitions in the presence of the appropriate substrate.

  17. Nonlinear optical studies of single gold nanoparticles

    NARCIS (Netherlands)

    Dijk, Meindert Alexander van

    2007-01-01

    Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new

  18. Polymeric nanoparticles stabilized by surfactants: kinetic studies

    Czech Academy of Sciences Publication Activity Database

    Pánek, Jiří; Filippov, Sergey K.; Koňák, Čestmír; Steinhart, Miloš; Štěpánek, Petr

    2011-01-01

    Roč. 32, č. 8 (2011), s. 1105-1110 ISSN 0193-2691 R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanoparticles * solvent shifting * time-resolved SAXS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.560, year: 2011

  19. Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the One-Pot Synthesis of Flavones.

    Science.gov (United States)

    Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-11-02

    Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Study of CO2 Methanation over Ni-Based Catalysts Supported by CNTs with Various Textural Characteristics

    OpenAIRE

    Yanyan Feng; Wen Yang; Wei Chu

    2015-01-01

    This work studied the influence of textural characteristics of CNTs on catalytic performance of Ni/CNTs for CO2 methanation. The CNTs supports were prepared by chemical vapor deposition method using Ni/MgO catalysts, and acetonitrile and ethanol were used as carbon sources, respectively. The Ni/CNTs catalysts were prepared via impregnation method and characterized by X-ray diffraction (XRD), N2 adsorption/desorption, and temperature-programmed reduction (H2-TPR) techniques. The results indica...

  1. Photocatalytic studies of electrochemically synthesized polysaccharide-functionalized ZnO nanoparticles

    Science.gov (United States)

    Kaur, Simranjeet; Kaur, Harpreet

    2018-05-01

    The present work reports the electrochemical synthesis of polysaccharide-functionalized ZnO nanoparticles using sodium hydroxide, starch, and zinc electrodes for the degradation of cationic dye (Rhodamine-B) under sunlight. Physiochemical properties of synthesized sample have been characterized by different techniques such as XRD, TEM, FESEM, EDS, IR, and UV-visible spectroscopic techniques. The influence of various factors such as effect of dye concentration, contact time, amount of photocatalyst, and pH has been studied. The results obtained from the photodegradation study showed that degradation rate of Rhodamine-B dye has been increased with increase of amount of photocatalyst and decreased with increase in initial dye concentration. Furthermore, the kinetics of the degradation has been investigated. It has been found that the photodegradation of Rhodamine-B dye follows pseudo-first-order kinetics and prepared photocatalyst can effectively degrade the cationic dye. Thus, this ecofriendly and efficient photocatalyst can be used for the treatment of dye-contaminated water. This catalyst also showed the antibacterial activity against Bacillus pumilus and Escherichia coli bacterial strains, so the synthesized nanoparticles also have the pharmaceutical properties.

  2. Synthesis and study of catalytic application of l-methionine protected gold nanoparticles

    Science.gov (United States)

    Raza, Akif; Javed, Safdar; Qureshi, Muhammad Zahid; khan, Muhammad Usman; Khan, Muhammad Saleem

    2017-10-01

    Gold nanoparticle is growing class of nanotechnology due to large number of uses. We synthesized stable l-methionine protected gold nanoparticles (AuNps) by in situ reduction of HAuCl4 using sodium borohydrate as reducing and l-methionine as stabilizing agent in an aqueous medium. Different parameters (pH, capping agent, precursor salt, and heating time) were optimized to see the effect on the size of particles. Double beam spectrophotometer was used to carry out the spectroscopic studies. It was observed that pH and concentration of reducing salt are deciding factors in controlling the size and morphology of AuNps. Scanning electron microscopy (SEM) verified the formation of AuNPs as predicted by UV-Vis spectra. The interaction of AuNPs with l-methionine was confirmed by Fourier Transform Infrared (FTIR). The reduction of 4-nitrophenol acted as standard of reaction to check the response of AuNps catalyst. Complete reduction of 4-nitrophenol was accomplished by AuNps sol in just 60 s. Fastest reduction rate was observed with smaller spherical particles. This study concluded that size and shape of AuNps can be monitored by controlling the pH, concentration of capping and reducing agent. It also provides an economical solution to aquatic environment in terms of time saving and use of small volume of catalytic solution for reduction of several other toxic organic pollutants.

  3. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO2 reforming of methane

    KAUST Repository

    Biausque, Gregory; Laveille, Paco; Anjum, Dalaver H.; Caps, Valerie; Basset, Jean-Marie

    2015-01-01

    Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.

  4. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-09-24

    Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.

  5. Study of phase development and thermal stability in as synthesized TiO2 nanoparticles by laser pyrolysis: ethylene uptake and oxygen enrichment

    Science.gov (United States)

    Ilie, Alina Georgiana; Scarisoreanu, Monica; Dutu, Elena; Dumitrache, Florian; Banici, Ana-Maria; Fleaca, Claudiu Teodor; Vasile, Eugenia; Mihailescu, Ion

    2018-01-01

    Laser pyrolysis has proven a viable and trustworthy method of TiO2 nanoparticles fabrication, ensuring good quality and wide variety of nanoparticle morphologies and sizes. This work is aimed to phase control, experimentally studied, by parameter modulation, during one step laser pyrolysis synthesis or in combination with thermal annealing. High phase purity anatase and rutile TiO2 nanoparticles, oxygen abundant, are synthesized from TiCl4 and C2H4 gas mixtures, in the presence of air as oxygen donor, under CO2 laser radiation. The nano-titania samples are analyzed by X-ray Diffraction, EDAX, TEM and Raman spectroscopy and reveal good phase stability and distinct morphology. This study extends the method applicability onto rutile majoritarian TiO2 synthesis and generation of thermally stable anatase titania, a well-known catalyst.

  6. XPS and STEM study of the interface formation between ultra-thin Ru and Ir OER catalyst layers and perylene red support whiskers

    Directory of Open Access Journals (Sweden)

    Atanasoska Ljiljana L.

    2013-01-01

    Full Text Available The interface formation between nano-structured perylene red (PR whiskers and oxygen evolution reaction (OER catalysts ruthenium and iridium has been studied systematically by XPS and STEM. The OER catalyst over-layers with thicknesses ranging from ~0.1 to ~50 nm were vapor deposited onto PR ex-situ. STEM images demonstrate that, with increasing thickness, Ru and Ir transform from amorphous clusters to crystalline nanoparticles, which agglomerate with increased over-layer thickness. XPS data show a strong interaction between Ru and PR. Ir also interacts with PR although not to the extent seen for Ru. At low coverages, the entire Ru deposit is in the reacted state while a small portion of the deposited Ir remains metallic. Ru and Ir bonding occur at the PR carbonyl sites as evidenced by the attenuation of carbonyl photoemission and the emergence of new peak assigned to C-O single bond. The curve fitting analysis and the derived stoichiometry indicates the formation of metallo-organic bonds. The co-existence of oxide bonds is also apparent.

  7. Soybean oil transesterification: Study of using Nb2O5.xH2O as catalyst in biodiesel production

    Directory of Open Access Journals (Sweden)

    Deborah A. dos Santos

    2012-06-01

    Full Text Available Economic and environmental reasons show a trend towards replacing fossil fuels with biofuels such as those from triglycerides. Biodiesel can be obtained from vegetable oils and animal fat through several processes such as transesterification, esterification, usually with methanol, ethanol or through pyrolysis, all of them in the presence of an acid or basis catalyst. The use of solid catalysts in biodiesel production has the following advantages: easy recovery and reuse, thus decreasing process costs and amount of waste generated.1 Some of the problems in the use of solid catalysts are: low concentration of active sites, microporosity, and leaching of active sites.2 Studies aiming at developing methodologies involving hydrated niobium oxide as catalyst in biodiesel production have been carried out by our research group.3,4 Parameters such as the use of assistant solvent to increase the boiling point of the mixture (toluene, ethylene glycol, and DMSO, pre-thermal treatment (calcinations and catalyst molar concentration were initially assessed in esterification, oleic acid, and methanol reactions.  From these studies we could observe that high temperatures and excessive alcohol favor esterification reactions.  The best reaction conditions were then used as models and employed in transesterification reactions of soybean oil.  DMSO (Dimethyl sulfoxide was the solvent used to increase the reaction medium temperature without evaporating all the methanol. Transesterification reactions were carried out with soybean oil (0.5 g, methanol (0.85 g, DMSO (2.50 ml, and hydrated niobium oxide as catalyst in ratios of 20% and 100% (in relation to oil mass.  Catalyst was employed without pretreatment and after pretreatment at 115 °C, 300 °C, and 500 °C. The reactions occurred at 170 °C, under reflux for 48 hours.  A reaction without a catalyst was also carried out. All the reactions have shown conversion using CCD and they have been determined by 1H NMR

  8. In situ FTIRS study of ethanol electro-oxidation on anode catalysts in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sun, G.; Jiang, L.; Zhu, M.; Yan, S.; Wang, G.; Xin, Q. [Chinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics; Chen, Q.; Li, J.; Jiang, Y.; Sun, S. [Xiamen Univ., Xiamen (China). State Key Lab. for Physical Chemistry of Solid Surfaces

    2006-07-01

    The low activation of ethanol oxidation at lower temperatures is an obstacle to the development of cost-effective direct ethanol fuel cells (DEFCs). This study used a modified polyol method to prepare carbon-supported platinum (Pt) based catalysts. Carbon supported Pt-based catalysts were fabricated by a modified polyol method and characterized through transmission electron spectroscopy (TEM) and X-ray diffraction (XRD). Results of the study showed that the particles in the Pt/C and PtRu/C and PtSn/C catalysts were distributed on the carbon support uniformly. Diffraction peaks of the Pt shifted positively in the PtRu/C catalysts and negatively in the PtSn/C catalysts. In situ Fourier Transform Infra-red spectroscopy (FTIR) was used to investigate the adsorption and oxidation process of ethanol on the catalysts. Results showed that the electrocatalytic activity of ethanol oxidation on the materials was enhanced. Linear bonded carbon monoxide (CO) was the most strongly absorbed species, and the main products produced by the catalysts were carbon dioxide (CO{sub 2}), acetaldehyde, and acetic acid. Results showed that the PtRu/C catalyst broke the C-C bond more easily than the Pt/C and PtSn/C compounds. However, the results of a linear sweep voltammogram analysis showed that ethanol oxidation of the PtSn/C was enhanced. Bands observed on the compound indicated the formation of acetic acid and acetaldehyde. It was concluded that the enhancement of PtSn/C for ethanol oxidation was due to the formation of acetic acid and acetaldehyde at lower potentials. 4 refs., 1 fig.

  9. In operando Detection of Three-Way Catalyst Aging by a Microwave-Based Method: Initial Studies

    Directory of Open Access Journals (Sweden)

    Gregor Beulertz

    2015-07-01

    Full Text Available Initial studies on aging detection of three way catalysts with a microwave cavity perturbation method were conducted. Two physico-chemical effects correlate with the aging state. At high temperatures, the resonance frequencies for oxidized catalysts (λ = 1.02 are not influenced by aging, but are significantly affected by aging in the reduced case (λ = 0.98. The catalyst aging state can therefore potentially be inferred from the resonance frequency differences between reduced and oxidized states or from the resonance frequency amplitudes during lambda oscillations. Secondly, adsorbed water at low temperatures strongly affects the resonance frequencies. Light-off experiment studies showed that the resonance frequency depends on the aging state at temperatures below the oxygen storage light-off. These differences were attributed to different water sorption capabilities of differently aged samples due to a surface area decrease with proceeding aging. In addition to the aging state, the water content in the feed gas and the temperature affect the amount of adsorbed water, leading to different integral electrical material properties of the catalyst and changing the resonance properties of the catalyst-filled canning. The classical aging-related properties of the catalyst (oxygen storage capacity, oxygen storage light-off, surface area, agreed very well with data obtained by the microwave-based method.

  10. Deuterium absorption in Mg70Al30 thin films with bilayer catalysts: A comparative neutron reflectometry study

    International Nuclear Information System (INIS)

    Poirier, Eric; Harrower, Chris T.; Kalisvaart, Peter; Bird, Adam; Teichert, Anke; Wallacher, Dirk; Grimm, Nico; Steitz, Roland; Mitlin, David; Fritzsche, Helmut

    2011-01-01

    Highlights: → Mg 70 Al 30 thin films studied for hydrogen absorption using in situ neutron reflectometry. → Films with Ta/Pd, Ti/Pd and Ni/Pd bilayer catalysts systematically compared. → Measurements reveals deuterium spillover from the catalysts to the MgAl phase. → The use of Ti-Pd bilayer offers best results in terms of amount absorbed and kinetics. → Key results cross-checked with X-ray reflectometry. - Abstract: We present a neutron reflectometry study of deuterium absorption in thin films of Al-containing Mg alloys capped with a Ta/Pd, Ni/Pd and Ti/Pd-catalyst bilayer. The measurements were performed at room temperature over the 0-1 bar pressure range under quasi-equilibrium conditions. The modeling of the measurements provided a nanoscale representation of the deuterium profile in the layers at different stages of the absorption process. The absorption mechanism observed was found to involve spillover of atomic deuterium from the catalyst layer to the Mg alloy phase, followed by the deuteration of the Mg alloy. Complete deuteration of the Mg alloy occurs in a pressure range between 100 and 500 mbar, dependent on the type of bilayer catalyst. The use of a Ti/Pd bilayer catalyst yielded the best results in terms of both storage density and kinetic properties.

  11. A study on the properties of blended regenerated spent catalyst and cement sandcrete blocks

    International Nuclear Information System (INIS)

    Amissah, Emmanuel Kofi

    2016-07-01

    Sandcrete is widely used as building material. Its properties greatly depend on the properties and proportions of its constituents. The main binder material to produce sandcrete is the Portland cement. The uncertainty about future availability of commonly used Portland materials concomitantly with the environmental problems such as greenhouse gases emissions and high cost of clinker consumption are highlighting the need of identifying other materials for the construction industry, which will aid in minimizing the clinker consumption and reduce the greenhouse gas emissions and cost in the production of cement. The purpose of this study is to examine the properties of sandcrete blocks produced with blended Regenerated Spent Catalyst and cement. In this work, two different series of sandcrete mixtures in which cement was partially replaced with Regenerated Spent Catalyst(RSC) within the range of 5% to 20% (by mass) with an increment of 5%. 100% cement sandcrete was also prepared as reference sandcrete. The physical properties studied were compressive strength, water absorption and setting time. Chemical property studied was chloride content. Comparison of data between the control and that of cement with additives were made. The results obtained in this study clearly indicated that substituting Portland cement up to 20wt. % RSC gave sandcrete strengths higher than the 32.5N/mm 2 , which corresponds to that of Portland cement. The replacement of Portland cement with 10 wt. % of RSC gave the highest strength of 34.0 N/mm 2 . Thus, Regenerated Spent Catalyst may be utilized as effective mineral additive for designing durable sandcrete structures. The optimum amount of RSC recommended to be added as an additive to the Portland cement is 10%. (au)

  12. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  13. Removal of silver nanoparticles by mussel-inspired Fe3O4@ polydopamine core-shell microspheres and its use as efficient catalyst for methylene blue reduction

    Science.gov (United States)

    Wu, Maoling; Li, Yinying; Yue, Rui; Zhang, Xiaodan; Huang, Yuming

    2017-02-01

    The removal of silver nanoparticles (AgNPs) from water is highly needed because of their increasing use and potential risk to the environment due to their toxic effects. Catalysis over AgNPs has received significant attention because of their highly catalytic performance. However, their use in practical applications is limited due to high cost and limited resources. Here, we present for the first time that the mussel-inspired Fe3O4@polydopamine (Fe3O4@PDA) nanocomposite can be used for efficient removal and recovery of AgNPs. Adsorption of AgNPs over Fe3O4@PDA was confirmed by TEM, FT-IR, XRD, TGA and magnetic property. The adsorption efficiency of AgNPs by Fe3O4@PDA was investigated as a function of pH, contact time, ionic strength and concentration of AgNPs. The kinetic data were well fitted to a pseudo-second order kinetic model. The isotherm data were well described by Langmuir model with a maximum adsorption capacity of 169.5 mg/g, which was higher than those by other adsorbents. Notably, the obtained AgNPs-Fe3O4@PDA exhibited highly catalytic activity for methylene blue reduction by NaBH4 with a rate constant of 1.44 × 10-3/s, which was much higher than those by other AgNPs catalysts. The AgNPs-Fe3O4@PDA promised good recyclability for at least 8 cycles and acid resistant with good stability.

  14. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole

    International Nuclear Information System (INIS)

    Niu Hongyun; Zhang Di; Zhang Shengxiao; Zhang Xiaole; Meng Zhaofu; Cai Yaqi

    2011-01-01

    Humic acid coated Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 /HA) were prepared for the removal of sulfathiazole from aqueous media. Fe 3 O 4 /HA exhibited high activity to produce hydroxyl (·OH) radicals through catalytic decomposition of H 2 O 2 . The degradation of sulfathiazole was strongly temperature-dependent and favored in acidic solution. The catalytic rate was increased with Fe 3 O 4 /HA dosage and H 2 O 2 concentration. When 3 g L -1 of Fe 3 O 4 /HA and 0.39 M of H 2 O 2 were introduced to the aqueous solution, most sulfathiazole was degraded within 1 h, and >90% of total organic carbon (TOC) were removed in the reaction period (6 h). The major final products were identified as environmentally friendly ions or inorganic molecules (SO 4 2- , CO 2 , and N 2 ). The corresponding degradation rate (k) of sulfathiazole and TOC was 0.034 and 0.0048 min -1 , respectively. However, when 3 g L -1 of bare Fe 3 O 4 were used as catalyst, only 54% of TOC was eliminated, and SO 4 2- was not detected within 6 h. The corresponding degradation rate for sulfathiazole and TOC was 0.01 and 0.0016 min -1 , respectively. The high catalytic ability of Fe 3 O 4 /HA may be caused by the electron transfer among the complexed Fe(II)-HA or Fe(III)-HA, leading to rapid regeneration of Fe(II) species and production of ·OH radicals.

  15. Fenton-like oxidation of 2,4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst.

    Science.gov (United States)

    Li, Renchao; Gao, Ying; Jin, Xiaoying; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2015-01-15

    In this report, various iron-based nanoparticles (nZVI, n-Ni/Fe, n-Pd/Fe) were used for both heterogeneous Fenton oxidation of 2,4-dichlorophenol (2,4-DCP) and reductive dechlorination of 2,4-DCP in order to understand their roles in the Fenton oxidation and the reductive degradation of 2,4-DCP. The dechlorination efficiency of 2,4-DCP using nZVI, n-Ni/Fe, n-Fe/Pd and Fe(2)(+) was 6.48%, 6.80%, 15.95%, 5.02%, while Fenton oxidation efficiency of 2,4-DCP was 57.87%, 34.23%, 27.94%, 19.61% after 180 min, respectively. The new findings included a higher dechlorination using n-Fe/Pd due to Pd effective catalysis and the effective heterogeneous Fenton oxidation using nZVI depending on reductive dechlorination and heterogeneous Fenton oxidation occurs simultaneously. However, nZVI as the potential catalyst for heterogeneous Fenton was observed, and SEM, EDS and XRD demonstrate that change on the nZVI surface occurred due to the Fe(2+) leaching, and Total Organic Carbon (TOC) (30.71%) shows that 2,4-DCP was degraded. Furthermore, the experiment indicates that the pH values and concentration of 2,4-DCP significantly impacted on the heterogeneous Fenton oxidation of 2,4-DCP and the data fits well with the pseudo first-order kinetic model, which was a diffusion-controlled reaction. Finally, a possible mechanism for degradation of 2,4-DCP was proposed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Studies on the behaviour of different spent fluidized-bed catalytic cracking catalysts on Portland cement

    Directory of Open Access Journals (Sweden)

    Soriano, L.

    2009-12-01

    Full Text Available The fluidized-bed catalytic cracking catalyst (FCC it is a residue from the industry of the petroleum that shows a high pozzolanic reactivity and, in cementing matrix, it significantly improves their mechanical behaviour as well as durability. In this research a comparative study on residues of catalyst from different sources has been carried out, in order to know if these residues can be used jointly in an indiscriminate way or, on the contrary, it is necessary to classify them according to their characteristics. Thus, a study on five different FCC residues, supplied from different companies, has been carried out, and their physical-chemical characteristics, pozzolanic reactivity by means of thermogravimetric analysis and the evolution of the mechanical strength of mortars were studied. After analyzing all the aspects, it can be concluded that no significant differences among the different tested catalysts were found.El catalizador de craqueo catalítico (FCC es un residuo de la industria del petróleo que posee una elevada reactividad puzolánica y en matrices cementicias mejora de manera importante los aspectos mecánicos así como de durabilidad. En este trabajo se realiza un estudio comparativo sobre residuos de catalizador de distintos orígenes, para poder conocer si se pueden utilizar conjuntamente de forma indiscriminada o por el contrario hay que catalogarlos según su origen. Para ello, se realizó un estudio sobre cinco residuos de catalizador de craqueo catalítico distintos, suministrados por diferentes empresas y se estudiaron sus características fisicoquímicas, reactividad puzolánica a través de estudios termogravimétricos y la evolución de las resistencias mecánicas en morteros. Tras analizar todos los aspectos se concluye que no existen diferencias significativas entre los distintos catalizadores empleados.

  17. Direct production of carbon nanofibers decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate

    Directory of Open Access Journals (Sweden)

    MA Vesaghi

    2012-12-01

    Full Text Available  Carbon nanofibers (CNFs decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal. chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 35˚C. These nanoparticles provide the nucleation sites for CNF growth, removing the need for a buffer layer. High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O2 at atmospheric environment, during the CNFs growth, lead to the production of CNFs decorated with Cu2O particles. The surface morphology of the Ni catalyst films and grown CNFs over it was studied by scanning electron microscopy. Transmission electron microscopy and Raman spectroscopy revealed the formation of CNFs. The selected area electron diffraction pattern and electron diffraction studies show that these CNFs were decorated with Cu2O nanoparticles.

  18. Phase study of titanium dioxide nanoparticle prepared via sol-gel process

    Science.gov (United States)

    Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan

    2018-03-01

    In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.

  19. 3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticles-A study of surface area and spinel inversion influence

    Science.gov (United States)

    Zampiva, Rúbia Young Sun; Kaufmann Junior, Claudir Gabriel; Pinto, Juliano Schorne; Panta, Priscila Chaves; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2017-11-01

    The MgFe2O4 spinel exhibits remarkable magnetic properties that open up numerous applications in biomedicine, the environment and catalysis. MgFe2O4 nanoparticles are excellent catalyst for carbon nanotube (CNT) production. In this work, we proposed to use MgFe2O4 nanopowder as a catalyst in the production of 3D macroscopic structures based on CNTs. The creation of these nanoengineered 3D architectures remains one of the most important challenges in nanotechnology. These systems have high potential as supercapacitors, catalytic electrodes, artificial muscles and in environmental applications. 3D macrostructures are formed due to an elevated density of CNTs. The quantity and quality of the CNTs are directly related to the catalyst properties. A heat treatment study was performed to produce the most effective catalyst. Factors such as superficial area, spinel inversion, crystallite size, degree of agglomeration and its correlation with van der Waals forces were examined. As result, the ideal catalyst properties for CNT production were determined and high-density 3D CNT macrostructures were produced successfully.

  20. Mechanistic Studies of Metal-Oxo Cubane Catalysts for Lightweight Solar Fuels Storage

    Science.gov (United States)

    2013-03-01

    13692. 4 “ Single - crystal growth, crystal and electronic structure of NaCoO2.” Takahashi, Y.; Gotoh, Y.; Akimoto, J. J. Sol. State Chem. 2003, 172, 22...bond formation by the Co–OEC catalysts. 2. A penetrating study of Co3 +|Co4+ self-exchange kinetics of Co4O4 cubanes and a detailed understanding of...construct the artificial leaf described in (7). 4. The examination of Co2+| Co3 + self-exchange in a faithful structural molecular analog of the 7