WorldWideScience

Sample records for nanometer step height

  1. Step-height standards based on the rapid formation of monolayer steps on the surface of layered crystals

    Energy Technology Data Exchange (ETDEWEB)

    Komonov, A.I. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Prinz, V.Ya., E-mail: prinz@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Seleznev, V.A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Kokh, K.A. [Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (IGM SB RAS), pr. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (NIIC SB RAS), pr. Lavrentieva 3, Novosibirsk 630090 (Russian Federation)

    2017-07-15

    Highlights: • Easily reproducible step-height standard for SPM calibrations was proposed. • Step-height standard is monolayer steps on the surface of layered single crystal. • Long-term change in surface morphology of Bi{sub 2}Se{sub 3} and ZnWO{sub 4} was investigated. • Conducting surface of Bi{sub 2}Se{sub 3} crystals appropriate for calibrating STM. • Ability of robust SPM calibrations under ambient conditions were demonstrated. - Abstract: Metrology is essential for nanotechnology, especially for structures and devices with feature sizes going down to nm. Scanning probe microscopes (SPMs) permits measurement of nanometer- and subnanometer-scale objects. Accuracy of size measurements performed using SPMs is largely defined by the accuracy of used calibration measures. In the present publication, we demonstrate that height standards of monolayer step (∼1 and ∼0.6 nm) can be easily prepared by cleaving Bi{sub 2}Se{sub 3} and ZnWO{sub 4} layered single crystals. It was shown that the conducting surface of Bi{sub 2}Se{sub 3} crystals offers height standard appropriate for calibrating STMs and for testing conductive SPM probes. Our AFM study of the morphology of freshly cleaved (0001) Bi{sub 2}Se{sub 3} surfaces proved that such surfaces remained atomically smooth during a period of at least half a year. The (010) surfaces of ZnWO{sub 4} crystals remained atomically smooth during one day, but already two days later an additional nanorelief of amplitude ∼0.3 nm appeared on those surfaces. This relief, however, did not further grow in height, and it did not hamper the calibration. Simplicity and the possibility of rapid fabrication of the step-height standards, as well as their high stability, make these standards available for a great, permanently growing number of users involved in 3D printing activities.

  2. Foot and Ankle Kinematics During Descent From Varying Step Heights.

    Science.gov (United States)

    Gerstle, Emily E; O'Connor, Kristian; Keenan, Kevin G; Cobb, Stephen C

    2017-12-01

    In the general population, one-third of incidences during step negotiation occur during the transition to level walking. Furthermore, falls during curb negotiation are a common cause of injury in older adults. Distal foot kinematics may be an important factor in determining injury risk associated with transition step negotiation. The purpose of this study was to identify foot and ankle kinematics of uninjured individuals during descent from varying step heights. A 7-segment foot model was used to quantify kinematics as participants walked on a level walkway, stepped down a single step (heights: 5 cm, 15 cm, 25 cm), and continued walking. As step height increased, landing strategy transitioned from the rearfoot to the forefoot, and the rearfoot, lateral and medial midfoot, and medial forefoot became more plantar flexed. During weight acceptance, sagittal plane range of motion of the rearfoot, lateral midfoot, and medial and lateral forefoot increased as step height increased. The changes in landing strategy and distal foot function suggest a less stable ankle position at initial contact and increased demand on the distal foot at initial contact and through the weight acceptance phase of transition step negotiation as step height increases.

  3. Multiple height calibration artefact for 3D microscopy

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Carli, Lorenzo; Eriksen, Rasmus Solmer

    2011-01-01

    A novel artefact for calibration of the height in 3D microscopy is presented. The artefact comprises three steps having a common vertical axis, which allows z-coordinate calibration at different magnifications without requiring repositioning. The artefact is suitable for transferring traceability...... to 3D techniques at the micrometer and nanometer scale, e.g. 3D SEM, confocal microscopes etc. Two different series of samples were fabricated using EDM with three steps of 2–5–7μm, and 20–50–70μm, respectively, from a 3mm diameter carbide wire. The artefact steps were calibrated on a stylus instrument...

  4. The Effect of Backward-Facing Step Height on Instability Growth and Breakdown in Swept Wing Boundary-Layer Transition

    Science.gov (United States)

    Eppink, Jenna L.; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2015-01-01

    A low-speed experiment was performed on a swept at plate model with an imposed pressure gradient to determine the effect of a backward-facing step on transition in a stationary-cross flow dominated flow. Detailed hot-wire boundary-layer measurements were performed for three backward-facing step heights of approximately 36, 45, and 49% of the boundary-layer thickness at the step. These step heights correspond to a subcritical, nearly-critical, and critical case. Three leading-edge roughness configurations were tested to determine the effect of stationary-cross flow amplitude on transition. The step caused a local increase in amplitude of the stationary cross flow for the two larger step height cases, but farther downstream the amplitude decreased and remained below the baseline amplitude. The smallest step caused a slight local decrease in amplitude of the primary stationary cross flow mode, but the amplitude collapsed back to the baseline case far downstream of the step. The effect of the step on the amplitude of the primary cross flow mode increased with step height, however, the stationary cross flow amplitudes remained low and thus, stationary cross flow was not solely responsible for transition. Unsteady disturbances were present downstream of the step for all three step heights, and the amplitudes increased with increasing step height. The only exception is that the lower frequency (traveling crossflow-like) disturbance was not present in the lowest step height case. Positive and negative spikes in instantaneous velocity began to occur for the two larger step height cases and then grew in number and amplitude downstream of reattachment, eventually leading to transition. The number and amplitude of spikes varied depending on the step height and cross flow amplitude. Despite the low amplitude of the disturbances in the intermediate step height case, breakdown began to occur intermittently and the flow underwent a long transition region.

  5. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps.

    Science.gov (United States)

    Urbanski, John Paul; Levitan, Jeremy A; Burch, Damian N; Thorsen, Todd; Bazant, Martin Z

    2007-05-15

    Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.

  6. The effect of step stool use and provider height on CPR quality during pediatric cardiac arrest: A simulation-based multicentre study.

    Science.gov (United States)

    Cheng, Adam; Lin, Yiqun; Nadkarni, Vinay; Wan, Brandi; Duff, Jonathan; Brown, Linda; Bhanji, Farhan; Kessler, David; Tofil, Nancy; Hecker, Kent; Hunt, Elizabeth A

    2018-01-01

    We aimed to explore whether a) step stool use is associated with improved cardiopulmonary resuscitation (CPR) quality; b) provider adjusted height is associated with improved CPR quality; and if associations exist, c) determine whether just-in-time (JIT) CPR training and/or CPR visual feedback attenuates the effect of height and/or step stool use on CPR quality. We analysed data from a trial of simulated cardiac arrests with three study arms: No intervention; CPR visual feedback; and JIT CPR training. Step stool use was voluntary. We explored the association between 1) step stool use and CPR quality, and 2) provider adjusted height and CPR quality. Adjusted height was defined as provider height + 23 cm (if step stool was used). Below-average height participants were ≤ gender-specific average height; the remainder were above average height. We assessed for interaction between study arm and both adjusted height and step stool use. One hundred twenty-four subjects participated; 1,230 30-second epochs of CPR were analysed. Step stool use was associated with improved compression depth in below-average (female, p=0.007; male, pstep stool use (pStep stool use is associated with improved compression depth regardless of height. Increased provider height is associated with improved compression depth, with visual feedback attenuating the effects of height and step stool use.

  7. Application of Displacement Height and Surface Roughness Length to Determination Boundary Layer Development Length over Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Xiangju Cheng

    2014-12-01

    Full Text Available One of the most uncertain parameters in stepped spillway design is the length (from the crest of boundary layer development. The normal velocity profiles responding to the steps as bed roughness are investigated in the developing non-aerated flow region. A detailed analysis of the logarithmic vertical velocity profiles on stepped spillways is conducted through experimental data to verify the computational code and numerical experiments to expand the data available. To determine development length, the hydraulic roughness and displacement thickness, along with the shear velocity, are needed. This includes determining displacement height d and surface roughness length z0 and the relationship of d and z0 to the step geometry. The results show that the hydraulic roughness height ks is the primary factor on which d and z0 depend. In different step height, step width, discharge and intake Froude number, the relations d/ks = 0.22–0.27, z0/ks = 0.06–0.1 and d/z0 = 2.2–4 result in a good estimate. Using the computational code and numerical experiments, air inception will occur over stepped spillway flow as long as the Bauer-defined boundary layer thickness is between 0.72 and 0.79.

  8. Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height

    International Nuclear Information System (INIS)

    Leal, F F; Ferreira, S C; Ferreira, S O

    2011-01-01

    The formation of mounded surfaces in epitaxial growth is attributed to the presence of barriers against interlayer diffusion in the terrace edges, known as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth using an ES barrier explicitly dependent on the step height. Our model has an intrinsic topological step barrier even in the absence of an explicit ES barrier. We show that mounded morphologies can be obtained even for a small barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma equation, is observed in the absence of an explicit step barrier. The mounded surfaces are described by a super-roughness dynamical scaling characterized by locally smooth (facetted) surfaces and a global roughness exponent α > 1. The thin film limit is featured by surfaces with self-assembled three-dimensional structures having an aspect ratio (height/width) that may increase or decrease with temperature depending on the strength of the step barrier. (fast track communication)

  9. Transfer characteristics of optical profilers with respect to rectangular edge and step height measurement

    Science.gov (United States)

    Xie, Weichang; Hagemeier, Sebastian; Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard; Lehmann, Peter

    2017-06-01

    Optical profilers are mature instruments used in research and industry to study surface topography features. Although the corresponding standards are based on simple step height measurements, in practical applications these instruments are often used to study the fidelity of surface topography. In this context it is well-known that in certain situations a surface profile obtained by an optical profiler will differ from the real profile. With respect to practical applications such deviations often occur in the vicinity of steep walls and in cases of high aspect ratio. In this contribution we compare the transfer characteristics of different 3D optical profiler principles, namely white-light interferometry, focus sensing, and confocal microscopy. Experimental results demonstrate that the transfer characteristics do not only depend on the parameters of the optical measurement system (e. g. wavelength and coherence of light, numerical aperture, evaluated signal feature, polarization) but also on the properties of the measuring object such as step height, aspect ratio, material properties and homogeneity, rounding and steepness of the edges, surface roughness. As a result, typical artefacts such as batwings occur for certain parameter combinations, particularly at certain height-to-wavelength ratio (HWR) values. Understanding of the mechanisms behind these phenomena enables to reduce them by an appropriate parameter adaption. However, it is not only the edge artefacts, but also the position of an edge that may be changed due to the properties of the measuring object. In order to investigate the relevant effects theoretically, several models are introduced. These are based on either an extension of Richards-Wolf modeling or rigorous coupled wave analysis (RCWA). Although these models explain the experimental effects quite well they suffer from different limitations, so that a quantitative correspondence of theoretical modeling and experimental results is hard to achieve

  10. Self-estimation of physical ability in stepping over an obstacle is not mediated by visual height perception: a comparison between young and older adults.

    Science.gov (United States)

    Sakurai, Ryota; Fujiwara, Yoshinori; Ishihara, Masami; Yasunaga, Masashi; Ogawa, Susumu; Suzuki, Hiroyuki; Imanaka, Kuniyasu

    2017-07-01

    Older adults tend to overestimate their step-over ability. However, it is unclear as to whether this is caused by inaccurate self-estimation of physical ability or inaccurate perception of height. We, therefore, measured both visual height perception ability and self-estimation of step-over ability among young and older adults. Forty-seven older and 16 young adults performed a height perception test (HPT) and a step-over test (SOT). Participants visually judged the height of vertical bars from distances of 7 and 1 m away in the HPT, then self-estimated and, subsequently, actually performed a step-over action in the SOT. The results showed no significant difference between young and older adults in visual height perception. In the SOT, young adults tended to underestimate their step-over ability, whereas older adults either overestimated their abilities or underestimated them to a lesser extent than did the young adults. Moreover, visual height perception was not correlated with the self-estimation of step-over ability in both young and older adults. These results suggest that the self-overestimation of step-over ability which appeared in some healthy older adults may not be caused by the nature of visual height perception, but by other factor(s), such as the likely age-related nature of self-estimation of physical ability, per se.

  11. Simulation of Electrical Discharge Initiated by a Nanometer-Sized Probe in Atmospheric Conditions

    International Nuclear Information System (INIS)

    Chen Ran; Chen Chilai; Liu Youjiang; Wang Huanqin; Kong Deyi; Ma Yuan; Cada Michael; Brugger Jürgen

    2013-01-01

    In this paper, a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions. The field strength distributions in a nanometer scale tip-to-plate electrode arrangement were calculated using the finite element analysis (FEA) method, and the influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of effective discharge range (EDR) on the plate were also investigated and discussed. The simulation results show that the probe with a wide tip will cause a larger effective discharge range on the plate; the field strength in the gap is notably higher than that induced by the sharp tip probe; the effective discharge range will increase linearly with the rise of excitation voltage, and decrease nonlinearly with the rise of gap length. In addition, probe dimension, especially the width/height ratio, affects the effective discharge range in different manners. With the width/height ratio rising from 1:1 to 1:10, the effective discharge range will maintain stable when the excitation voltage is around 50 V. This will increase when the excitation voltage gets higher and decrease as the excitation voltage gets lower. Furthermore, when the gap length is 5 nm and the excitation voltage is below 20 V, the diameter of EDR in our simulation is about 150 nm, which is consistent with the experiment results reported by other research groups. Our work provides a preliminary understanding of nanometer scale discharges and establishes a predictive structure-behavior relationship

  12. Should we consider steps with variable height for a safer stair negotiation in older adults?

    Science.gov (United States)

    Kunzler, Marcos R; da Rocha, Emmanuel S; Dos Santos, Christielen S; Ceccon, Fernando G; Priario, Liver A; Carpes, Felipe P

    2018-01-01

    Effects of exercise on foot clearances are important. In older adults variations in foot clearances during walking may lead to a fall, but there is a lack of information concerning stair negotiation in older adults. Whether a condition of post exercise changes foot clearances between steps of a staircase in older adults still unknown. To determine differences in clearances when older adults negotiate different steps of a staircase before and after a session of aerobic exercise. Kinematics data from 30 older adults were acquired and the toe and heel clearances were determined for each step. Clearances were compared between the steps. Smaller clearances were found at the highest step during ascending and descending, which was not changed by exercise. Smaller clearances suggest higher risk of tripping at the top of the staircase, regardless of exercise. A smaller step at the top of a short flight of stairs could reduce chances of tripping in older adults. It suggests that steps with variable height could make stair negotiation safer in older adults. This hypothesis should be tested in further studies.

  13. Measurement of width and step-height of photolithographic product patterns by using digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ju Yeop; Kang, Sung Hoon; Ma, Hye Joon; Jung, Hyun Chul; Hong, Chung Ki; Kim, Kyeong Suk [Chosun University, Gwangju (Korea, Republic of); Kwon, Ik Hwan [Dept. of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); Yang, Seung Pil [Dept. of Ophthalmic Optics, Dong A College of Health, Youngam (Korea, Republic of)

    2016-02-15

    The semiconductor industry is one of the key industries of Korea, which has continued growing at a steady annual growth rate. Important technology for the semiconductor industry is high integration of devices. This is to increase the memory capacity for unit area, of which key is photolithography. The photolithography refers to a technique for printing the shadow of light lit on the mask surface on to wafer, which is the most important process in a semiconductor manufacturing process. In this study, the width and step-height of wafers patterned through this process were measured to ensure uniformity. The widths and inter-plate heights of the specimens patterned using photolithography were measured using transmissive digital holography. A transmissive digital holographic interferometer was configured, and nine arbitrary points were set on the specimens as measured points. The measurement of each point was compared with the measurements performed using a commercial device called scanning electron microscope (SEM) and Alpha Step. Transmission digital holography requires a short measurement time, which is an advantage compared to other techniques. Furthermore, it uses magnification lenses, allowing the flexibility of changing between high and low magnifications. The test results confirmed that transmissive digital holography is a useful technique for measuring patterns printed using photolithography.

  14. Measurement of width and step-height of photolithographic product patterns by using digital holography

    International Nuclear Information System (INIS)

    Shin, Ju Yeop; Kang, Sung Hoon; Ma, Hye Joon; Jung, Hyun Chul; Hong, Chung Ki; Kim, Kyeong Suk; Kwon, Ik Hwan; Yang, Seung Pil

    2016-01-01

    The semiconductor industry is one of the key industries of Korea, which has continued growing at a steady annual growth rate. Important technology for the semiconductor industry is high integration of devices. This is to increase the memory capacity for unit area, of which key is photolithography. The photolithography refers to a technique for printing the shadow of light lit on the mask surface on to wafer, which is the most important process in a semiconductor manufacturing process. In this study, the width and step-height of wafers patterned through this process were measured to ensure uniformity. The widths and inter-plate heights of the specimens patterned using photolithography were measured using transmissive digital holography. A transmissive digital holographic interferometer was configured, and nine arbitrary points were set on the specimens as measured points. The measurement of each point was compared with the measurements performed using a commercial device called scanning electron microscope (SEM) and Alpha Step. Transmission digital holography requires a short measurement time, which is an advantage compared to other techniques. Furthermore, it uses magnification lenses, allowing the flexibility of changing between high and low magnifications. The test results confirmed that transmissive digital holography is a useful technique for measuring patterns printed using photolithography

  15. Quantifying height of ultraprecisely machined steps on oxygen-free electronic copper disc using Fourier-domain short coherence interferometry

    CERN Document Server

    Montonen, Risto; Hæggström, Edward; Österberg, Kenneth

    2016-01-01

    The internal shape and alignment of accelerator discs is crucial for efficient collider operation at the future compact linear collider (CLIC). We applied a calibrated custom-made Fourier-domain short coherence interferometer to measure the height of 40 and 60μm60  μm ultraprecisely turned steps (surface roughness Ra≤25nmRa≤25  nm, flatness ≤2μm≤2  μm) on an oxygen-free electronic copper disc. The step heights were quantified to be (39.6±2.6)μm(39.6±2.6)  μm and (59.0±2.3)μm(59.0±2.3)  μm. The uncertainties are quoted at 95% confidence level and include contributions from calibration, refractive index of air, cosine error, surface roughness, and thermal expansion in comparison to standard temperature of 20°C. The results were verified by measuring the same steps using a commercial white light interferometer Veeco—NT3300. Our instrument can ensure that the accelerator discs of the CLIC are aligned within the tolerance required for efficient collider operation.

  16. KINOFORM LENSES - TOWARD NANOMETER RESOLUTION.

    Energy Technology Data Exchange (ETDEWEB)

    STEIN, A.; EVANS-LUTTERODT, K.; TAYLOR, A.

    2004-10-23

    While hard x-rays have wavelengths in the nanometer and sub-nanometer range, the ability to focus them is limited by the quality of sources and optics, and not by the wavelength. A few options, including reflective (mirrors), diffractive (zone plates) and refractive (CRL's) are available, each with their own limitations. Here we present our work with kinoform lenses which are refractive lenses with all material causing redundant 2{pi} phase shifts removed to reduce the absorption problems inherently limiting the resolution of refractive lenses. By stacking kinoform lenses together, the effective numerical aperture, and thus the focusing resolution, can be increased. The present status of kinoform lens fabrication and testing at Brookhaven is presented as well as future plans toward achieving nanometer resolution.

  17. Optoelectronic circuits in nanometer CMOS technology

    CERN Document Server

    Atef, Mohamed

    2016-01-01

    This book describes the newest implementations of integrated photodiodes fabricated in nanometer standard CMOS technologies. It also includes the required fundamentals, the state-of-the-art, and the design of high-performance laser drivers, transimpedance amplifiers, equalizers, and limiting amplifiers fabricated in nanometer CMOS technologies. This book shows the newest results for the performance of integrated optical receivers, laser drivers, modulator drivers and optical sensors in nanometer standard CMOS technologies. Nanometer CMOS technologies rapidly advanced, enabling the implementation of integrated optical receivers for high data rates of several Giga-bits per second and of high-pixel count optical imagers and sensors. In particular, low cost silicon CMOS optoelectronic integrated circuits became very attractive because they can be extensively applied to short-distance optical communications, such as local area network, chip-to-chip and board-to-board interconnects as well as to imaging and medical...

  18. Nanometer scale materials - characterization and fabrication

    International Nuclear Information System (INIS)

    Murday, J.S.; Colton, R.J.; Rath, B.B.

    1993-01-01

    Materials and solid state scientists have made excellent progress in understanding material behavior in length scales from microns to meters. Below a micron, the lack of analytical prowess has been a deterrent. At the atomic scale, chemistry and atomic/molecular physics have also contributed significant understanding of matter. The maturity of these three communities, materials, solid state physics, atomic/molecular physics/chemistry, coupled with the development of analytical capability for nanometer-sized structures, promises to broaden our grasp of materials behavior into the last realm of unexplored size scales-nanometer. The motivation for this effort is driven both by the expectation of novel properties as well as by the potential solution to long standing technological issues. Critical scale lengths for many material properties fall in the nanometer range, examples include superconductor coherence lengths, electron inelastic mean free paths, electron wavelengths in solids, critical lengths for dislocation generation. Structures of nanometer size will undoubtedly show behavior unexpected from experience at the larger and smaller scales. Many technological problems such as adhesion, friction, corrosion, elasticity and fracture are believed to depend critically on nanometer scale phenomena. The millennia-old efforts to improve materials behavior have undoubtedly been slowed by our inability to 'observe' in this size range. (orig.)

  19. Topography and local modification of the HoBa2Cu3O/sub 7-//sub x/(001) surface using scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Heinzelmann, H.; Anselmetti, D.; Wiesendanger, R.; Guentherodt, H.; Kaldis, E.; Wisard, A.

    1988-01-01

    The topography of the (001) surface of a high T/sub c/ superconducting HoBa 2 Cu 3 O/sub 7-//sub x/ single crystal was investigated in air using scanning tunneling microscopy. We found large, flat terraces separated by growth steps. The heights of these steps correspond to multiples of the c-axis lattice constant of 11.7 A of the perovskite structure. These steps have been verified by atomic force microscopy. On a smaller scale the flat terraces showed some fine structure with a corrugation height of 4 to 5 A and a lateral extent of several nanometers. In addition, we succeeded in creating nanometer-sized structures by increasing the sample bias voltage and tunneling current

  20. Nanometer Characterization/Manipulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Characterizes the nanometer scale of biological, chemical, physical, electronic, and mechanical properties of surfaces and thin films using scanning probe...

  1. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    Science.gov (United States)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  2. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    Science.gov (United States)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  3. Glass ceramic ZERODUR enabling nanometer precision

    Science.gov (United States)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  4. Glass frit bonding with controlled width and height using a two-step wet silicon etching procedure

    Science.gov (United States)

    Yifang, Liu; Daner, Chen; Liwei, Lin; Gaofeng, Zheng; Jianyi, Zheng; Lingyun, Wang; Daoheng, Sun

    2016-03-01

    A simple and versatile two-step silicon wet etching technique for the control of the width and height of the glass frit bonding layer has been developed to improve bonding strength and reliability in wafer-level microelectromechanical systems (MEMS) packaging processes. The height of the glass frit bonding layer is set by the design of a vertical reference wall which regulates the distance between the silicon wafer and the encapsulation capping substrate. On the other hand, the width of the bonding layer is constrained between two micro grooves which are used to accommodate the spillages of extra glass frit during the bonding process. An optimized thermal bonding process, including the formation of glass liquid, removal of gas bubbles under vacuum and the filling of voids under normal atmospheric condition has been developed to suppress the formation of the bubbles/voids. The stencil printing and pre-sintering processes for the glass frit have been characterized before the thermal bonding process under different magnitudes of bonding pressure. The bonding gap thickness is found to be equal to the height of the reference wall of 10 μm in the prototype design. The bubbles/voids are found to be suppressed effectively and the bonding strength increases from 10.2 to 19.1 MPa as compared with a conventional thermal annealing process in air. Experimentally, prototype samples are measured to have passed the high hermetic sealing leakage tests of 5  ×  10-8 atm cc s-1.

  5. Nanometals - Status and perspective

    International Nuclear Information System (INIS)

    Faester, S.; Hansen, N.; Huang, X.; Juul Jensen, D.; Ralph, B.

    2012-01-01

    Nanometals and nanotechnology have over the years been covered in papers, books and conferences - also in many Risoe International Symposia, where the 30th in 2009 dealt solely with nanostructured metals. Since then, rapid progress has been made in synthesis, characterization and modeling, and it is timely to discuss status and perspective also with a view on applications in an international forum such as the Risoe Symposium. Both keynote and contributed papers address important current problems illustrating global research and development in this field. Examples are the development of new synthesis techniques followed by characterization and modeling of microstructures both in 2D and 3D now starting to bridge the micrometer scales. The vital area of mechanical behavior is addressed by the development of new testing techniques and a broad effort to characterize and model mechanical properties of metals strengthened by dislocations and twins. This research has now led to new understanding of both strengthening mechanisms and strengh structure relationships based on experiments in combination with analytical and numerical modeling. The holistic approach to research on nanometals demonstrated by these proceedings can guide both scientists and technologists in their future work also with the aim of introducing into society this new group of advanced materials. Such an effort is important, as science and technology today is significantly affected by politics of governments and international institutions, and therefore a new initiative in the pressent is to include a discussion of research and development in the area of nanometals i USA, China and Japan. (Author)

  6. Nanometals - Status and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Faester, S.; Hansen, N.; Huang, X.; Juul Jensen, D.; Ralph, B. (eds.)

    2012-11-01

    Nanometals and nanotechnology have over the years been covered in papers, books and conferences - also in many Risoe International Symposia, where the 30th in 2009 dealt solely with nanostructured metals. Since then, rapid progress has been made in synthesis, characterization and modeling, and it is timely to discuss status and perspective also with a view on applications in an international forum such as the Risoe Symposium. Both keynote and contributed papers address important current problems illustrating global research and development in this field. Examples are the development of new synthesis techniques followed by characterization and modeling of microstructures both in 2D and 3D now starting to bridge the micrometer scales. The vital area of mechanical behavior is addressed by the development of new testing techniques and a broad effort to characterize and model mechanical properties of metals strengthened by dislocations and twins. This research has now led to new understanding of both strengthening mechanisms and strengh structure relationships based on experiments in combination with analytical and numerical modeling. The holistic approach to research on nanometals demonstrated by these proceedings can guide both scientists and technologists in their future work also with the aim of introducing into society this new group of advanced materials. Such an effort is important, as science and technology today is significantly affected by politics of governments and international institutions, and therefore a new initiative in the pressent is to include a discussion of research and development in the area of nanometals i USA, China and Japan. (Author)

  7. Optical properties of (nanometer MCM-41)-(malachite green) composite materials

    International Nuclear Information System (INIS)

    Li Xiaodong; Zhai Qingzhou; Zou Mingqiang

    2010-01-01

    Nanosized materials loaded with organic dyes are of interest with respect to novel optical applications. The optical properties of malachite green (MG) in MCM-41 are considerably influenced by the limited nanoporous channels of nanometer MCM-41. Nanometer MCM-41 was synthesized by tetraethyl orthosilicate (TEOS) as the source of silica and cetyltrimethylammonium bromide (CTMAB) as the template. The liquid-phase grafting method has been employed for incorporation of the malachite green molecules into the channels of nanometer MCM-41. A comparative study has been carried out on the adsorption of the malachite green into modified MCM-41 and unmodified MCM-41. The modified MCM-41 was synthesized using a silylation reagent, trimethychlorosilane (TMSCl), which functionalized the surface of nanometer MCM-41 for proper host-guest interaction. The prepared (nanometer MCM-41)-MG samples have been studied by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, low-temperature nitrogen adsorption-desorption technique at 77 K, Raman spectra and luminescence studies. In the prepared (nanometer MCM-41)-MG composite materials, the frameworks of the host molecular sieve were kept intact and the MG located inside the pores of MCM-41. Compared with the MG, it is found that the prepared composite materials perform a considerable luminescence. The excitation and emission spectra of MG in both modified MCM-41 and unmodified MCM-41 were examined to explore the structural effects on the optical properties of MG. The results of luminescence spectra indicated that the MG molecules existed in monomer form within MCM-41. However, the luminescent intensity of MG incorporated in the modified MCM-41 are higher than that of MG encapsulated in unmodified MCM-41, which may be due to the anchored methyl groups on the channels of the nanometer MCM-41 and the strong host-guest interactions. The steric effect from the pore size of the host materials is significant. Raman

  8. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    This paper reported on dispersion effect and dispersing techniques of nanometer WS2 particles in the green lubricant concocted by us. And it also researched on auto-reconditioning performance of nanometer WS2 particles to the abrasive surfaces of steel ball from four-ball tribology test and piston ring from engine ...

  9. Nanometer size field effect transistors for terahertz detectors

    International Nuclear Information System (INIS)

    Knap, W; Rumyantsev, S; Coquillat, D; Dyakonova, N; Teppe, F; Vitiello, M S; Tredicucci, A; Blin, S; Shur, M; Nagatsuma, T

    2013-01-01

    Nanometer size field effect transistors can operate as efficient resonant or broadband terahertz detectors, mixers, phase shifters and frequency multipliers at frequencies far beyond their fundamental cut-off frequency. This work is an overview of some recent results concerning the application of nanometer scale field effect transistors for the detection of terahertz radiation. (paper)

  10. A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step.

    Science.gov (United States)

    Hyun, Seung-Hyun; Ryew, Che-Cheong

    2017-12-01

    The aim of this study is to compare and analyze the components of ground reaction force (GRF) relative to the foothold heights during downward step of 16-t truck. Adult males (n= 10) jumped downward from each 1st, 2nd, 3rd foothold step and driver's seat orderly using hand rail. Sampling rate of force components of 3 axis (medial-lateral [ML] GRF, anterior-posterior [AP] GRF, peak vertical force [PVF]), variables (COPx, COPy, COP area) of center of pressure (COP), loading rate, and stability index (ML, AP, vertical, and dynamic postural stability index [DPSI]) processed from GRF system was cut off at 1,000 Hz. and variables was processed with repeated one-way analysis of variance. AP GRF, PVF and loading rate showed higher value in case of not used hand rail than that used hand rail in all 1st, 2nd, and 3rd of foothold step. DPSI showed more lowered stability in order of 2nd, 3rd step than 1st foothold step used with hand rail, of which showed lowest stability from driver's seat. COPx, COPy, and COP area showed higher value in case of 2nd and 3rd than that of 1st of foothold step, and showed lowest stability from driver's seat. It is more desirable for cargo truck driver to utilize an available hand rail in order of 3rd, 2nd, and 1st of foothold step than downward stepping directly, thus by which may results in decrease of falling injuries and minimization of impulsive force transferring to muscular-skeletal system.

  11. Nanometer-scale temperature measurements of phase change memory and carbon nanomaterials

    Science.gov (United States)

    Grosse, Kyle Lane

    This work investigates nanometer-scale thermometry and thermal transport in new electronic devices to mitigate future electronic energy consumption. Nanometer-scale thermal transport is integral to electronic energy consumption and limits current electronic performance. New electronic devices are required to improve future electronic performance and energy consumption, but heat generation is not well understood in these new technologies. Thermal transport deviates significantly at the nanometer-scale from macroscopic systems as low dimensional materials, grain structure, interfaces, and thermoelectric effects can dominate electronic performance. This work develops and implements an atomic force microscopy (AFM) based nanometer-scale thermometry technique, known as scanning Joule expansion microscopy (SJEM), to measure nanometer-scale heat generation in new graphene and phase change memory (PCM) devices, which have potential to improve performance and energy consumption of future electronics. Nanometer-scale thermometry of chemical vapor deposition (CVD) grown graphene measured the heat generation at graphene wrinkles and grain boundaries (GBs). Graphene is an atomically-thin, two dimensional (2D) carbon material with promising applications in new electronic devices. Comparing measurements and predictions of CVD graphene heating predicted the resistivity, voltage drop, and temperature rise across the one dimensional (1D) GB defects. This work measured the nanometer-scale temperature rise of thin film Ge2Sb2Te5 (GST) based PCM due to Joule, thermoelectric, interface, and grain structure effects. PCM has potential to reduce energy consumption and improve performance of future electronic memory. A new nanometer-scale thermometry technique is developed for independent and direct observation of Joule and thermoelectric effects at the nanometer-scale, and the technique is demonstrated by SJEM measurements of GST devices. Uniform heating and GST properties are observed for

  12. Agreement between estimated and measured heights and weights ...

    African Journals Online (AJOL)

    index (BMI = kg/m2) and require accurate recording of a patient's height and weight.1. In reality, however, patients often cannot stand up straight for accurate height measurement, or are unable to step on a scale. In such cases, height and weight values are often obtained from the patient or their relatives, who either do not ...

  13. Does my step look big in this? A visual illusion leads to safer stepping behaviour.

    Directory of Open Access Journals (Sweden)

    David B Elliott

    Full Text Available BACKGROUND: Tripping is a common factor in falls and a typical safety strategy to avoid tripping on steps or stairs is to increase foot clearance over the step edge. In the present study we asked whether the perceived height of a step could be increased using a visual illusion and whether this would lead to the adoption of a safer stepping strategy, in terms of greater foot clearance over the step edge. The study also addressed the controversial question of whether motor actions are dissociated from visual perception. METHODOLOGY/PRINCIPAL FINDINGS: 21 young, healthy subjects perceived the step to be higher in a configuration of the horizontal-vertical illusion compared to a reverse configuration (p = 0.01. During a simple stepping task, maximum toe elevation changed by an amount corresponding to the size of the visual illusion (p<0.001. Linear regression analyses showed highly significant associations between perceived step height and maximum toe elevation for all conditions. CONCLUSIONS/SIGNIFICANCE: The perceived height of a step can be manipulated using a simple visual illusion, leading to the adoption of a safer stepping strategy in terms of greater foot clearance over a step edge. In addition, the strong link found between perception of a visual illusion and visuomotor action provides additional support to the view that the original, controversial proposal by Goodale and Milner (1992 of two separate and distinct visual streams for perception and visuomotor action should be re-evaluated.

  14. Acute adjustments of heart rate and oxygen consuption in an experimental protocol of step training with diferent combinations of platform height and musical rhythms - doi: 10.4025/actascihealthsci.v35i2.11669

    Directory of Open Access Journals (Sweden)

    Viviane Ribeiro de Ávila

    2013-06-01

    Full Text Available The aim of this study was to investigate adaptations acute heart rate (HR and oxygen consumption (VO2 in an experimental protocol of step training with different combinations of platform height (15.2, 20.3 and 25.4 cm and musical rhythms (125, 135 and 145 bpm. Thirty-five women were randomly selected, (mean ± DP aged 21.6 ± 1.8 years, body weight of 57.8 ± 8.2 kg, height of 162.6 ± 6.8 cm, body mass index of 21.8 ± 2.5 kg m-2 and fat percentage (% Fat of 24.8 ± 4.4%, with at least six months experience in step training sessions, and a frequency of at least two days a week. Techniques of descriptive and inferential statistics were employed. A significant difference was detected for the HR and VO2 in relation to the increase in step platform height and in musical rhythm for all the combinations, except for three situations. From the obtained results, we can infer that the cardiovascular and metabolic responses increase or decrease according to the musical rhythm and/or platform height.

  15. Absence of modulatory action on haptic height perception with musical pitch

    Directory of Open Access Journals (Sweden)

    Michele eGeronazzo

    2015-09-01

    Full Text Available Although acoustic frequency is not a spatial property of physical objects, in common language, pitch, i.e., the psychological correlated of frequency, is often labeled spatially (i.e., high in pitch or low in pitch. Pitch-height is known to modulate (and interact with the response of participants when they are asked to judge spatial properties of non-auditory stimuli (e.g., visual in a variety of behavioral tasks. In the current study we investigated whether the modulatory action of pitch-height extended to the haptic estimation of height of a virtual step.We implemented a HW/SW setup which is able to render virtual 3D objects (stair-steps haptically through a PHANTOM device, and to provide real-time continuous auditory feedback depending on the user interaction with the object. The haptic exploration was associated with a sinusoidal tone whose pitch varied as a function of the interaction point’s height within (i a narrower and (ii a wider pitch range, or (iii a random pitch variation acting as a control audio condition. Explorations were also performed with no sound (haptic only. Participants were instructed to explore the virtual step freely, and to communicate height estimation by opening their thumb and index finger to mimic the step riser height, or verbally by reporting the height in centimeters of the step riser. We analyzed the role of musical expertise by dividing participants into non musicians and musicians. Results showed no effects of musical pitch on high-realistic haptic feedback. Overall there is no difference between the two groups in the proposed multimodal conditions. Additionally, we observed a different haptic response distribution between musicians and non musicians when estimations of the auditory conditions are matched with estimations in the no sound condition.

  16. Step edge influence on barrier height and contact area in vertical heterojunctions between epitaxial graphene and n-type 4H-SiC

    International Nuclear Information System (INIS)

    Tadjer, M. J.; Nyakiti, L. O.; Robinson, Z.; Anderson, T. J.; Myers-Ward, R. L.; Wheeler, V. D.; Eddy, C. R.; Gaskill, D. K.; Koehler, A. D.; Hobart, K. D.; Kub, F. J.

    2014-01-01

    Vertical rectifying contacts of epitaxial graphene grown by Si sublimation on the Si-face of 4H-SiC epilayers were investigated. Forward bias preferential conduction through the step edges was correlated by linear current density normalization. This phenomenon was observed on samples with 2.7–5.8 monolayers of epitaxial graphene as determined by X-ray photoelectron spectroscopy. A modified Richardson plot was implemented to extract the barrier height (0.81 eV at 290 K, 0.99 eV at 30 K) and the electrically dominant SiC step length of a Ti/Al contact overlapping a known region of approximately 0.52 μm wide SiC terraces

  17. Atomistic Insight on the Charging Energetics in Sub-nanometer Pore Supercacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Feng, Guang [Clemson University

    2010-01-01

    Electrodes featuring sub-nanometer pores can significantly enhance the capacitance and energy density of supercapacitors. However, ions must pay an energy penalty to enter sub-nanometer pores as they have to shed part of their solvation shell. The magnitude of such energy penalty plays a key role in determining the accessibility and charging/discharging of these sub-nanometer pores. Here we report on the atomistic simulation of Na+ and Cl ions entering a polarizable slit pore with a width of 0.82 nm. We show that the free energy penalty for these ions to enter the pore is less than 14 kJ/mol for both Na+ and Cl ions. The surprisingly small energy penalty is caused by the van der Waals attractions between ion and pore walls, the image charge effects, the moderate (19-26%) de-hydration of the ions inside the pore, and the strengthened interactions between ions and their hydration water molecules in the sub-nanometer pore. The results provide strong impetus for further developing nanoporous electrodes featuring sub- nanometer pores.

  18. SYSTEMATIZATION OF THE BASIC STEPS OF THE STEP-AEROBICS

    Directory of Open Access Journals (Sweden)

    Darinka Korovljev

    2011-03-01

    Full Text Available Following the development of the powerful sport industry, in front of us appeared a lot of new opportunities for creating of the new programmes of exercising with certain requisites. One of such programmes is certainly step-aerobics. Step-aerobics can be defined as a type of aerobics consisting of the basic aerobic steps (basic steps applied in exercising on stepper (step bench, with a possibility to regulate its height. Step-aerobics itself can be divided into several groups, depending on the following: type of music, working methods and adopted knowledge of the attendants. In this work, the systematization of the basic steps in step-aerobics was made on the basis of the following criteria: steps origin, number of leg motions in stepping and relating the body support at the end of the step. Systematization of the basic steps of the step-aerobics is quite significant for making a concrete review of the existing basic steps, thus making creation of the step-aerobics lesson easier

  19. Control Software for Piezo Stepping Actuators

    Science.gov (United States)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  20. [Electronic and structural properties of individual nanometer-size supported metallic clusters

    International Nuclear Information System (INIS)

    Reifenberger, R.

    1993-01-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained

  1. NANOMETER PRECISION IN LARGE SURFACE PROFILOMETRY

    International Nuclear Information System (INIS)

    TAKACS, P.Z.

    1999-01-01

    The Long Trace Profiler (LTP) is in use at many synchrotron radiation (SR) laboratories throughout the world and by a number of manufacturers who specialize in fabricating grazing incidence mirrors for SR and x-ray telescope applications. Recent improvements in the design and operation of the LTP system have reduced the statistical error in slope profile measurement to the 1 standard deviation level of 0.3 microradian for 0.5 meter long mirrors. This corresponds to a height error on the order of 10-20 nanometers. This level of performance allows one to measure with confidence the absolute shape of large cylindrical aspheres and spheres that have kilometer radii of curvature in the axial direction. The LTP is versatile enough to make measurements of a mirror in the face up, sideways, and face down configurations. We will illustrate the versatility of the current version of the instrument, the LTP II, and present results from two new versions of the instrument: the in situ LTP (ISLTP) and the Vertical Scan LTP (VSLTP). Both of them are based on the penta prism LTP (ppLTP) principle that utilizes a stationary optical head and moving penta prism. The ISLTP is designed to measure the distortion of high heat load mirrors during actual operation in SR beam lines. The VSLTP is designed to measure the complete 3-dimensional shape of x-ray telescope cylinder mirrors and mandrels in a vertical configuration. Scans are done both in the axial direction and in the azimuthal direction

  2. Development of a sub-nanometer positioning device: combining a new linear motor with linear motion ball guide ways

    International Nuclear Information System (INIS)

    Otsuka, J; Tanaka, T; Masuda, I

    2010-01-01

    A new type of linear motor described in this note has some advantages compared with conventional motors. The attractive magnetic force between the stator (permanent magnets) and mover (armature) is diminished almost to zero. The efficiency is better because the magnetic flux leakage is very small, the size of motor is smaller and detent (force ripple) is smaller than for conventional motors. Therefore, we think that this motor is greatly suitable for ultra-precision positioning as an actuator. An ultra-precision positioning device using this motor and linear motion ball guide ways is newly developed by making the device very rigid and using a suitable control method. Moreover, the positioning performance is evaluated by a positioning resolution, and deviation and dispersion errors. As a result of repeated step response tests, the positioning resolution is 0.3 nm, with the deviation error and dispersion error (3σ) being sub-nanometer. Consequently, the positioning device achieves sub-nanometer positioning. (technical design note)

  3. Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah

    Science.gov (United States)

    Gournay, Jonas P.; Kirkland, Brenda L.; Folk, Robert L.; Lynch, F. Leo

    1999-07-01

    Scanning electron microscopy reveals an association between early dolomite in the Pennsylvanian Desert Creek (Paradox Fm.) and small (approximately 0.1 μm) nanometer-scale textures, termed `nannobacteria'. Three diagenetically distinct dolomites are present: early dolomite, limpid dolomite, and baroque dolomite. In this study, only the early dolomite contained nanometer-scale features. These textures occur as discrete balls and rods, clumps of balls, and chains of balls. Precipitation experiments demonstrate that these textures may be the result of precipitation in an organic-rich micro-environment. The presence of these nanometer-scale textures in Pennsylvanian rocks suggests that these early dolomites precipitated in organic-rich, bacterial environments.

  4. Linking pedestrian flow characteristics with stepping locomotion

    Science.gov (United States)

    Wang, Jiayue; Boltes, Maik; Seyfried, Armin; Zhang, Jun; Ziemer, Verena; Weng, Wenguo

    2018-06-01

    While properties of human traffic flow are described by speed, density and flow, the locomotion of pedestrian is based on steps. To relate characteristics of human locomotor system with properties of human traffic flow, this paper aims to connect gait characteristics like step length, step frequency, swaying amplitude and synchronization with speed and density and thus to build a ground for advanced pedestrian models. For this aim, observational and experimental study on the single-file movement of pedestrians at different densities is conducted. Methods to measure step length, step frequency, swaying amplitude and step synchronization are proposed by means of trajectories of the head. Mathematical models for the relations of step length or frequency and speed are evaluated. The problem how step length and step duration are influenced by factors like body height and density is investigated. It is shown that the effect of body height on step length and step duration changes with density. Furthermore, two different types of step in-phase synchronization between two successive pedestrians are observed and the influence of step synchronization on step length is examined.

  5. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern

  6. Nanometer CMOS ICs from basics to ASICs

    CERN Document Server

    J M Veendrick, Harry

    2017-01-01

    This textbook provides a comprehensive, fully-updated introduction to the essentials of nanometer CMOS integrated circuits. It includes aspects of scaling to even beyond 12nm CMOS technologies and designs. It clearly describes the fundamental CMOS operating principles and presents substantial insight into the various aspects of design implementation and application. Coverage includes all associated disciplines of nanometer CMOS ICs, including physics, lithography, technology, design, memories, VLSI, power consumption, variability, reliability and signal integrity, testing, yield, failure analysis, packaging, scaling trends and road blocks. The text is based upon in-house Philips, NXP Semiconductors, Applied Materials, ASML, IMEC, ST-Ericsson, TSMC, etc., courseware, which, to date, has been completed by more than 4500 engineers working in a large variety of related disciplines: architecture, design, test, fabrication process, packaging, failure analysis and software.

  7. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  8. Phonon scattering in graphene over substrate steps

    International Nuclear Information System (INIS)

    Sevinçli, H.; Brandbyge, M.

    2014-01-01

    We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.

  9. Displacement laser interferometry with sub-nanometer uncertainty

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.

    2004-01-01

    Development in industry is asking for improved resolution and higher accuracy in mechanical measurement. Together with miniaturization the demand for sub nanometer uncertainty on dimensional metrology is increasing rapidly. Displacement laser interferometers are used widely as precision displacement

  10. Stochastic modelling in design of mechanical properties of nanometals

    International Nuclear Information System (INIS)

    Tengen, T.B.; Wejrzanowski, T.; Iwankiewicz, R.; Kurzydlowski, K.J.

    2010-01-01

    Polycrystalline nanometals are being fabricated through different processing routes and conditions. The consequence is that nanometals having the same mean grain size may have different grain size dispersion and, hence, may have different material properties. This has often led to conflicting reports from both theoretical and experimental findings about the evolutions of the mechanical properties of nanomaterials. The present paper employs stochastic model to study the impact of microstructure evolution during grain growth on the mechanical properties of polycrystalline nanometals. The stochastic model for grain growth and the stochastic model for changes in mechanical properties of nanomaterials are proposed. The model for the mechanical properties developed is tested on aluminium samples.Many salient features of the mechanical properties of the aluminium samples are revealed. The results show that the different mechanisms of grain growth impart different nature of response to the material mechanical properties. The conventional, homologous and anomalous temperature dependences of the yield stress have also been revealed to be due to different nature of interactions of the microstructures during evolution.

  11. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  12. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    International Nuclear Information System (INIS)

    Walz, Dieter R

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor

  13. Magic angle and height quantization in nanofacets on SiC(0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keisuke; Iwata, Jun-Ichi; Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656 (Japan)

    2014-02-03

    We report on the density-functional calculations that provide microscopic mechanism of the facet formation on the SiC (0001) surface. We first identify atom-scale structures of single-, double-, and quad-bilayer steps and find that the single-bilayer (SB) step has the lowest formation energy. We then find that the SB steps are bunched to form a nanofacet with a particular angle relative to the (0001) plane (magic facet angle) and with a discretized height along the (0001) direction (height quantization). We also clarify a microscopic reason for the self-organization of the nanofacet observed experimentally.

  14. Preparation, characterization and optical properties of Lanthanum-(nanometer MCM-41) composite materials

    International Nuclear Information System (INIS)

    Zhai, Q. Z.; Wang, P.

    2008-01-01

    Nanometer MCM-41 molecular sieve was prepared under a base condition by using cetyltrimethylammonium bromide as template and tetraethyl orthosilicate as silica source by means of hydrothermal method. Lanthanum(III) was incorporated into the nanometer MCM-41 by a liquid phase grafting method. The prepared nano composite materials were characterized by means of powder X-ray diffraction, spectrophotometric analysis, Fourier transform infrared spectroscopy, low temperature nitrogen adsorption-desorption technique, solid diffuse reflectance absorption spectra and luminescence. The powder X-ray diffraction studies show that the nanometer MCM-41 molecular sieve is successfully prepared. The highly ordered meso porous two-dimensional hexagonal channel structure and framework of the support MCM-41 is retained intact in the prepared composite material La-(nanometer MCM-41). The spectrophotometric analysis indicates that lanthanum exists in the prepared nano composite materials. The Fourier transform infrared spectra indicate that the framework of the MCM-41 molecular sieve still remains in the prepared nano composite materials and some framework vibration peaks show blue shifts relative to those of the MCM-41 molecular sieve. The low temperature nitrogen adsorption-desorption indicates that the guest locales in the channel of the molecular sieve. Compared with bulk lanthanum oxide, the guest in the channel of the molecular sieve has smaller particle size and shows a significant blue shift of optical absorption band in solid diffuse reflectance absorption spectra. The observed blue shift in the solid state diffuse reflectance absorption spectra of the lanthanum-(nanometer MCM-41) sample show the obvious stereoscopic confinement effect of the channel of the host on the guest, which further indicates the successful encapsulation of the guest in the host. The La-(nanometer MCM-41) sample shows luminescence

  15. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry.

    Science.gov (United States)

    Villarrubia, J S; Tondare, V N; Vladár, A E

    2016-01-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples-mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  16. Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    M. Gouda

    2015-01-01

    Full Text Available The objective of this paper is the synthesis of some nanometal oxides via microwave irradiation technique and their application to augment multifunctional properties of cotton fabric. Cotton fabrics containing nanometal oxides were prepared via a thiol-modification of cotton fabric samples and then dipped into the metal salt solutions precursors and transferred to the microwave oven. The surface morphology and quantitative analysis of the obtained modified cotton fabrics containing nanometal oxides were studied by scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX. The shape and distribution of nanometal oxide inside the fabric samples were analyzed by transmission electron microscopy of cross-section fabric samples. The iron oxide nanoparticles had a nanosphere with particle size diameter 15–20 nm, copper oxide nanoparticles had a nanosphere with particle size diameter 25–30 nm, and cobalt oxide nanoparticles had a nanotube-like shape with a length of 100–150 nanometer and a diameter of ~58 nanometer, whereas the manganese oxide nanoparticles had a linear structure forming nanorods with a diameter of 50–55 nanometer and a length of 70–80 nanometers. Antibacterial activity was evaluated quantitatively against gram-positive bacteria such as Staphylococcus aureus and gram-negative bacteria such as Escherichia coli, UV-protection activity was analyzed using UV-DRS spectroscopy, and flame retardation of prepared fabric samples was evaluated according to the limiting oxygen index (LOI. Results revealed that the prepared fabric sample containing nanometal oxide possesses improved antibacterial, LOI, and UV-absorbing efficiency. Moreover, the metal oxide nanoparticles did not leach out the fabrics by washing even after 30 laundering washing cycles.

  17. Fabrication of nanometer flat areas onto YBa2Cu3O7-x thin film surfaces by scanning tunneling microscope

    International Nuclear Information System (INIS)

    Virtanen, J.A.; Suketu, P.; Huth, G.C.; Cho, Z.H.

    1991-01-01

    A scanning tunneling microscope was used to mechanically ''mill'' nanometer flat areas of up to 1600 μm 2 on high temperature superconducting (HTS) films of YBa 2 Cu 3 O 7-x which were originally formed by laser ablation. Flatness to a standard deviation of 2 nm in height was found to be characteristic of milled areas. It was subsequently possible to mill trenches and ditches onto these flat areas. Scanning tunneling measurements of the exposed layered structure of the milled HTS surface are also reported. Surface modifications are also possible by the application of voltage pulse to the tunneling tip. The combination of electrical pulses and milling offer a possibility of mixed electromechanical patterning of the film

  18. Mechanically activated self-propagated high-temperature synthesis of nanometer-structured MgB2

    International Nuclear Information System (INIS)

    Radev, D.D.; Marinov, M.; Tumbalev, V.; Radev, I.; Konstantinov, L.

    2005-01-01

    Nanometer-sized MgB 2 was prepared via a two-step modification of the mechanically activated self-propagated high-temperature synthesis. The experimental conditions and some structural and phase characteristics of the synthesized product are reported. It is shown that a single-phase material can be prepared after 2 h of intense mechanical treatment of the starting magnesium and boron powders and a synthesis induced at a current-pulse density of 30 A cm -2 . The average size of MgB 2 particles synthesized in this way is 70-80 nm. It is also shown that using the same reagents and the 'classic' high-temperature interaction at 850 deg C with a protective atmosphere of pure Ar, mean particle size of the MgB 2 obtained is 50 μm

  19. Nanometer sized structures grown by pulsed laser deposition

    KAUST Repository

    ElZein, Basma

    2015-10-01

    Nanometer sized materials can be produced by exposing a target to a laser source to remove material from the target and deposit the removed material onto a surface of a substrate to grow a thin film in a vacuum chamber

  20. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Reifenberger, R.

    1993-09-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained.

  1. Object Detection and Tracking-Based Camera Calibration for Normalized Human Height Estimation

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-01-01

    Full Text Available This paper presents a normalized human height estimation algorithm using an uncalibrated camera. To estimate the normalized human height, the proposed algorithm detects a moving object and performs tracking-based automatic camera calibration. The proposed method consists of three steps: (i moving human detection and tracking, (ii automatic camera calibration, and (iii human height estimation and error correction. The proposed method automatically calibrates camera by detecting moving humans and estimates the human height using error correction. The proposed method can be applied to object-based video surveillance systems and digital forensic.

  2. Analysis of nano-meter structure in Ti implanted polymers

    International Nuclear Information System (INIS)

    Zhou Gu; Wu Yuguang; Zhang Tonghe; Zhao Xinrong

    2001-01-01

    Polyethylene terephthalate (PET) is modified with Ti ion implantation to a dose of 1x10 17 to 2 x 10 17 cm -2 by using a metal vapor vacuum arc(MEVVA)source. Nano-meter structures in the implanted sample are observed by means of transmission electron microscope (TEM). The influence of ion dose on the structure is indicated. The results show that dense nano-meter phases are dispersed uniformly in the implanted layer. TEM cross section indicates that there is a three-layer structure in the implanted PET. It is found that a metallurgical surface is formed. Therefore the hardness, wear resistance and conductive properties of PET are improved after metal ion implantation. The mechanism of electrical conduction will be discussed

  3. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  4. The Effect of Forward-Facing Steps on Stationary Crossflow Instability Growth and Breakdown

    Science.gov (United States)

    Eppink, Jenna L.

    2018-01-01

    The e?ect of a forward-facing step on stationary cross?ow transition was studied using standard stereo particle image velocimetry (PIV) and time-resolved PIV. Step heights ranging from 53 to 71% of the boundary-layer thickness were studied in detail. The steps above a critical step height of approximately 60% of the boundary-layer thickness had a signi?cant impact on the stationary cross?ow growth downstream of the step. For the critical cases, the stationary cross?ow amplitude grew suddenly downstream of the step, decayed for a short region, then grew again. The adverse pressure gradient upstream of the step resulted in a region of cross?ow reversal. A secondary set of vortices, rotating in the opposite direction to the primary vortices, developed underneath the uplifted primary vortices. The wall-normal velocity disturbance (V' ) created by these secondary vortices impacted the step, and is believed to feed into the strong vortex that developed downstream of the step. A large but very short negative cross?ow region formed for a short region downstream of the step due to a sharp inboard curvature of the streamlines near the wall. For the larger step height cases, a cross?ow-reversal region formed just downstream of the strong negative cross?ow region. This cross?ow reversal region is believed to play an important role in the growth of the stationary cross?ow vortices downstream of the step, and may be a good indication of the critical forward-facing step height.

  5. Phonon scattering in graphene over substrate steps

    DEFF Research Database (Denmark)

    Sevincli, Haldun; Brandbyge, Mads

    2014-01-01

    We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance...

  6. Novel two-step method to form silk fibroin fibrous hydrogel

    International Nuclear Information System (INIS)

    Ming, Jinfa; Li, Mengmeng; Han, Yuhui; Chen, Ying; Li, Han; Zuo, Baoqi; Pan, Fukui

    2016-01-01

    Hydrogels prepared by silk fibroin solution have been studied. However, mimicking the nanofibrous structures of extracellular matrix for fabricating biomaterials remains a challenge. Here, a novel two-step method was applied to prepare fibrous hydrogels using regenerated silk fibroin solution containing nanofibrils in a range of tens to hundreds of nanometers. When the gelation process of silk solution occurred, it showed a top-down type gel within 30 min. After gelation, silk fibroin fibrous hydrogels exhibited nanofiber network morphology with β-sheet structure. Moreover, the compressive stress and modulus of fibrous hydrogels were 31.9 ± 2.6 and 2.8 ± 0.8 kPa, respectively, which was formed using 2.0 wt.% concentration solutions. In addition, fibrous hydrogels supported BMSCs attachment and proliferation over 12 days. This study provides important insight in the in vitro processing of silk fibroin into useful new materials. - Highlights: • SF fibrous hydrogel was prepared by a novel two-step method. • SF solution containing nanofibrils in a range of tens to hundreds of nanometers was prepared. • Gelation process was top-down type gel with several minutes. • SF fibrous hydrogels exhibited nanofiber network morphology with β-sheet structure. • Fibrous hydrogels had higher compressive stresses superior to porous hydrogels.

  7. Sexual Orientation, Objective Height, and Self-Reported Height.

    Science.gov (United States)

    Skorska, Malvina N; Bogaert, Anthony F

    2017-01-01

    Studies that have used mostly self-reported height have found that androphilic men and women are shorter than gynephilic men and women, respectively. This study examined whether an objective height difference exists or whether a psychosocial account (e.g., distortion of self-reports) may explain these putative height differences. A total of 863 participants, recruited at a Canadian university, the surrounding region, and through lesbian, gay, bisexual, and transgender (LGBT) events across Canada, self-reported their height and had their height measured. Androphilic men were shorter, on average, than gynephilic men. There was no objective height difference between gynephilic, ambiphilic, and androphilic women. Self-reported height, statistically controlling for objective height, was not related to sexual orientation. These findings are the first to show an objective height difference between androphilic and gynephilic men. Also, the findings suggest that previous studies using self-reported height found part of a true objective height difference between androphilic and gynephilic men. These findings have implications for existing biological theories of men's sexual orientation development.

  8. Performance analysis in stepped solar still for effluent desalination

    Energy Technology Data Exchange (ETDEWEB)

    Velmurugan, V. [Department of Mechanical Engineering, Infant Jesus College of Engineering, Thoothukudi, Tamil Nadu 628 851 (India); Naveen Kumar, K.J.; Noorul Haq, T.; Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu 625 015 (India)

    2009-09-15

    In this work, a stepped solar still and an effluent settling tank are fabricated and tested for desalinating the textile effluent. The effluent is purified in an effluent settling tank. In this tank, large and fine solid particles are settled and clarified. The settled effluents are used as raw water in the stepped solar still. For better performance, the stepped solar still consists of 50 trays with two different depths. First 25 trays with 10 mm height and the next 25 trays with 5 mm height are used. Fin, sponge, pebble and combination of the above are used for enhancing the productivity of the stepped solar still. A maximum increase in productivity of 98% occurs in stepped solar still when fin, sponge and pebbles are used in this basin. Theoretical analysis agrees well with experimental results. (author)

  9. Experiments of Nanometer Spot Size Monitor at FETB Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry has been developed and installed in the final focus test beam (FFTB) line at SLAC. The beam experiments started in September 1993, the first fringe pattern from the monitor was observed in the beginning of April 1994, then the small vertical spot around 70 nm was observed in May 1994. The spot size monitor has been routinely used for tuning the beam optics in FFTB. Basic principle of this monitor has been well proved, and its high performance as a precise beam monitor in nanometer range has been demonstrated.

  10. Flip-flop design in nanometer CMOS from high speed to low energy

    CERN Document Server

    Alioto, Massimo; Palumbo, Gaetano

    2015-01-01

    This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design tradeoffs are explored in a wide range of applications and the related energy-performance targets. A wide range of existing and recently proposed Flip-Flop topologies are discussed. Theoretical foundations are provided to set the stage for the derivation of design guidelines, and emphasis is given on practical aspects and consequences of the presented results. Analytical models and derivations are introduced when needed to gai...

  11. Theoretical atomic-force-microscopy study of a stepped surface: Nonlocal effects in the probe

    International Nuclear Information System (INIS)

    Girard, C.

    1991-01-01

    The interaction force between a metallic tip and a nonplanar dielectric surface is derived from a nonlocal formalism. A general formulation is given for the case of a spherical tip of nanometer size and for surfaces of arbitrary shapes (stepped surfaces and single crystals adsorbed on a planar surface). The dispersion part of the attractive force is obtained from a nonlocal theory expressed in terms of generalized electric susceptibilities of the two constituents. Implications for atomic force microscopy in attractive modes are discussed. In this context, the present model indicates two different forms of corrugation: those due to the protuberance present on the tip leading to atomic corrugations; nanometer-sized corrugations detected in the attractive region by the spherical part of the tip

  12. Investigation of turbulent boundary layer over forward-facing step via direct numerical simulation

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Nagano, Yasutaka

    2010-01-01

    This paper presents observations and investigations of the detailed turbulent structure of a boundary layer over a forward-facing step. The present DNSs are conducted under conditions with three Reynolds numbers based on step height, or three Reynolds numbers based on momentum thickness so as to investigate the effects of step height and inlet boundary layer thickness. DNS results show the quantitative turbulent statistics and structures of boundary layers over a forward-facing step, where pronounced counter-gradient diffusion phenomena (CDP) are especially observed on the step near the wall. Also, a quadrant analysis is conducted in which the results indicate in detail the turbulence motion around the step.

  13. A model based approach to reference-free straightness measurement at the Nanometer Comparator

    Science.gov (United States)

    Weichert, C.; Stavridis, M.; Walzel, M.; Elster, C.; Wiegmann, A.; Schulz, M.; Köning, R.; Flügge, J.; Tutsch, R.

    2009-06-01

    The Nanometer Comparator is the PTB reference length measuring machine for high precision calibrations of line scales and encoder systems. Up to now the Nanometer Comparator allows to measure the position of line structures in one dimension only. For high precision characterisations of masks, scales and incremental encoders, the measurement of the straightness of graduations is a requirement from emerging lithography techniques. Therefore the Nanometer Comparator will be equipped with an additional short range measurement system in the Y-direction, realized as a single path plane mirror interferometer and supposed to achieve sub-nm uncertainties. To compensate the topography of the Y-mirror, the Traceable Multi Sensor (TMS) method will be implemented to achieve a reference-free straightness measurement. Virtual experiments are used to estimate the lower accuracy limit and to determine the sensitive parameters. The virtual experiments contain the influence of the positioning devices, interferometer errors as well as non-perfect adjustment and fabrication of the machine geometry. The whole dynamic measurement process of the Nanometer Comparator including its influence on the TMS analysis, e.g. non-equally spaced measurement points, is simulated. We will present the results of these virtual experiments as well as the most relevant error sources for straightness measurement, incorporating the low uncertainties of the existing and planned measurement systems.

  14. Fear of heights and visual height intolerance.

    Science.gov (United States)

    Brandt, Thomas; Huppert, Doreen

    2014-02-01

    The aim of this review is, first, to cover the different aspects of visual height intolerance such as historical descriptions, definition of terms, phenomenology of the condition, neurophysiological control of gaze, stance and locomotion, and therapy, and, second, to identify warranted epidemiological and experimental studies. Vivid descriptions of fear of heights can be found in ancient texts from the Greek, Roman, and Chinese classics. The life-time prevalence of visual height intolerance is as high as 28% in the general population, and about 50% of those who are susceptible report an impact on quality of life. When exposed to heights, visual exploration by eye and head movements is restricted, and the velocity of locomotion is reduced. Therapy for fear of heights is dominated by the behavioral techniques applied during real or virtual reality exposure. Their efficacy might be facilitated by the administration of D-cycloserine or glucocorticoids. Visual height intolerance has a considerable impact on daily life and interpersonal interactions. It is much more frequent than fear of heights, which is defined as an environmental subtype of a specific phobia. There is certainly a continuum stretching from acrophobia to a less-pronounced visual height intolerance, to which the categorical distinction of a specific phobia does not apply.

  15. Nanometer-sized emissions from municipal waste incinerators: A qualitative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David R., E-mail: david.r.johnson@ghd.com

    2016-12-15

    Municipal waste incinerators (MWI) are beneficial alternatives to landfills for waste management. A recent constituent of concern in emissions from these facilities is incidental nanometer-sized particles (INP{sub MWI}), i.e., particles smaller than 1 micrometer in size that may deposit in the deepest parts of the lungs, cross into the bloodstream, and affect different regions of the body. With limited data, the public may fear INP{sub MWI} due to uncertainty, which may affect public acceptance, regulatory permitting, and the increased lowering of air quality standards. Despite limited data, a qualitative risk assessment paradigm can be applied to determine the relative risk due to INP{sub MWI} emissions. This review compiles existing data on nanometer-sized particle generation by MWIs, emissions control technologies used at MWIs, emission releases into the atmosphere, human population exposure, and adverse health effects of nanometer-sized particles to generate a qualitative risk assessment and identify data gaps. The qualitative risk assessment conservatively concludes that INP{sub MWI} pose a low to moderate risk to individuals, primarily due to the lack of relevant toxicological data on INP{sub MWI} mixtures in ambient particulate matter.

  16. Theoretical study and simulation for a nanometer laser based on Gauss–Hermite source expansion

    International Nuclear Information System (INIS)

    Gu, Xiaowei

    2013-01-01

    Recently there has been worldwide interest in constructing a new generation of continuously tunable nanometer lasers for a wide range of scientific applications, including femtosecond science, biological molecules, nanoscience research fields, etc. The high brightness electron beam required by a short wavelength self-amplified spontaneous emission FEL can be reached only with accurate control of the beam dynamics in the facility. Numerical simulation codes are basic tools for designing new nanometer laser devices. We have developed a MATLAB quasi-one-dimensional code based on a reduced model for the FEL. The model uses an envelope description of the transverse dynamics of the laser beam and full longitudinal particle motion. We have optimized the LCLS facility parameters, then given the characteristics of the nanometer laser. (letter)

  17. Theoretical study and simulation for a nanometer laser based on Gauss-Hermite source expansion

    Science.gov (United States)

    Gu, Xiaowei

    2013-07-01

    Recently there has been worldwide interest in constructing a new generation of continuously tunable nanometer lasers for a wide range of scientific applications, including femtosecond science, biological molecules, nanoscience research fields, etc. The high brightness electron beam required by a short wavelength self-amplified spontaneous emission FEL can be reached only with accurate control of the beam dynamics in the facility. Numerical simulation codes are basic tools for designing new nanometer laser devices. We have developed a MATLAB quasi-one-dimensional code based on a reduced model for the FEL. The model uses an envelope description of the transverse dynamics of the laser beam and full longitudinal particle motion. We have optimized the LCLS facility parameters, then given the characteristics of the nanometer laser.

  18. Shearing Nanometer-Thick Confined Hydrocarbon Films: Friction and Adhesion

    DEFF Research Database (Denmark)

    Sivebæk, I. M.; Persson, B. N. J.

    2016-01-01

    We present molecular dynamics (MD) friction and adhesion calculations for nanometer-thick confined hydrocarbon films with molecular lengths 20, 100 and 1400 carbon atoms. We study the dependency of the frictional shear stress on the confining pressure and sliding speed. We present results...

  19. Assessing a Template Matching Approach for Tree Height and Position Extraction from Lidar-Derived Canopy Height Models of Pinus Pinaster Stands

    Directory of Open Access Journals (Sweden)

    Francesco Pirotti

    2010-10-01

    Full Text Available In this paper, an assessment of a method using a correlation filter over a lidar-derived digital canopy height model (CHM is presented. The objective of the procedure is to obtain stem density, position, and height values, on a stand with the following characteristics: ellipsoidal canopy shape (Pinus pinaster, even-aged and single-layer structure. The process consists of three steps: extracting a correlation map from CHM by applying a template whose size and shape resembles the canopy to be detected, applying a threshold mask to the correlation map to keep a subset of candidate-pixels, and then applying a local maximum filter to the remaining pixel groups. The method performs satisfactorily considering the experimental conditions. The mean tree extraction percentage is 65% with a coefficient of agreement of 0.4. The mean absolute error of height is ~0.5 m for all plots except one. It can be considered a valid approach for extracting tree density and height in regularly spaced stands (i.e., poplar plantations which are fundamental for extracting related forest parameters such as volume and biomass.

  20. Total body height estimation using sacrum height in Anatolian Caucasians: multidetector computed tomography-based virtual anthropometry

    International Nuclear Information System (INIS)

    Karakas, Hakki Muammer; Celbis, Osman; Harma, Ahmet; Alicioglu, Banu

    2011-01-01

    Estimation of total body height is a major step when a subject has to be identified from his/her skeletal structures. In the presence of decomposed skeletons and missing bones, estimation is usually based on regression equation for intact long bones. If these bones are fragmented or missing, alternative structures must be used. In this study, the value of sacrum height (SH) in total body height (TBH) estimation was investigated in a contemporary population of adult Anatolian Caucasians. Sixty-six men (41.6 ± 14.9 years) and 43 women (41.1 ± 14.2 years) were scanned with 64-row multidetector computed tomography (MDCT) to obtain high-resolution anthropometric data. SH of midsagittal sections was electronically measured. The technique and methodology were validated on a standard skeletal model. Sacrum height was 111.2 ± 12.6 mm (77-138 mm) in men and 104.7 ± 8.2 (89-125 mm) in women. The difference between the two sexes regarding SH was significant (p < 0.0001). SH did not significantly correlate with age in men, whereas the correlation was significant in women (p < 0.03). The correlation between SH and the stature was significant in men (r = 0.427, p < 0.0001) and was insignificant in women. For men the regression equation was [Stature = (0.306 x SH)+137.9] (r = 0.54, SEE = 56.9, p < 0.0001). Sacrum height is not susceptible to sex, or to age in men. In the presence of incomplete male skeletons, SH helps to determine the stature. This study is also one of the initial applications of MDCT in virtual anthropometric research. (orig.)

  1. Total body height estimation using sacrum height in Anatolian Caucasians: multidetector computed tomography-based virtual anthropometry

    Energy Technology Data Exchange (ETDEWEB)

    Karakas, Hakki Muammer [Inonu University Medical Faculty, Turgut Ozal Medical Center, Department of Radiology, Malatya (Turkey); Celbis, Osman [Inonu University Medical Faculty Turgut Ozal Medical Center, Department of Forensic Medicine, Malatya (Turkey); Harma, Ahmet [Inonu University Medical Faculty Turgut Ozal Medical Center, Department of Orthopaedics and Traumatology, Malatya (Turkey); Alicioglu, Banu [Trakya University Medical Faculty, Department of Radiology, Edirne (Turkey); Trakya University Health Sciences Institute, Department of Anatomy, Edirne (Turkey)

    2011-05-15

    Estimation of total body height is a major step when a subject has to be identified from his/her skeletal structures. In the presence of decomposed skeletons and missing bones, estimation is usually based on regression equation for intact long bones. If these bones are fragmented or missing, alternative structures must be used. In this study, the value of sacrum height (SH) in total body height (TBH) estimation was investigated in a contemporary population of adult Anatolian Caucasians. Sixty-six men (41.6 {+-} 14.9 years) and 43 women (41.1 {+-} 14.2 years) were scanned with 64-row multidetector computed tomography (MDCT) to obtain high-resolution anthropometric data. SH of midsagittal sections was electronically measured. The technique and methodology were validated on a standard skeletal model. Sacrum height was 111.2 {+-} 12.6 mm (77-138 mm) in men and 104.7 {+-} 8.2 (89-125 mm) in women. The difference between the two sexes regarding SH was significant (p < 0.0001). SH did not significantly correlate with age in men, whereas the correlation was significant in women (p < 0.03). The correlation between SH and the stature was significant in men (r = 0.427, p < 0.0001) and was insignificant in women. For men the regression equation was [Stature = (0.306 x SH)+137.9] (r = 0.54, SEE = 56.9, p < 0.0001). Sacrum height is not susceptible to sex, or to age in men. In the presence of incomplete male skeletons, SH helps to determine the stature. This study is also one of the initial applications of MDCT in virtual anthropometric research. (orig.)

  2. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  3. Mechanics of toe and heel landing in stepping down in ongoing gait

    NARCIS (Netherlands)

    van Dieen, J.H.; Spanjaard, M.; Konemann, R.; Bron, L.; Pijnappels, M.A.G.M.

    2008-01-01

    When stepping down from a height difference in ongoing gait, subjects are known to use a heel landing at small height differences and switch to toe landing for larger height differences. We hypothesized that in toe landing, the leading leg can perform more negative work, to control the momentum

  4. Obtaining of iron particles of nanometer size in a natural zeolite

    International Nuclear Information System (INIS)

    Xingu C, E. G.

    2013-01-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  5. Memory for target height is scaled to observer height.

    Science.gov (United States)

    Twedt, Elyssa; Crawford, L Elizabeth; Proffitt, Dennis R

    2012-04-01

    According to the embodied approach to visual perception, individuals scale the environment to their bodies. This approach highlights the central role of the body for immediate, situated action. The present experiments addressed whether body scaling--specifically, eye-height scaling--occurs in memory when action is not immediate. Participants viewed standard targets that were either the same height as, taller than, or shorter than themselves. Participants then viewed a comparison target and judged whether the comparison was taller or shorter than the standard target. Participants were most accurate when the standard target height matched their own heights, taking into account postural changes. Participants were biased to underestimate standard target height, in general, and to push standard target height away from their own heights. These results are consistent with the literature on eye-height scaling in visual perception and suggest that body scaling is not only a useful metric for perception and action, but is also preserved in memory.

  6. Spatio-temporal evaluation of plant height in corn via unmanned aerial systems

    Science.gov (United States)

    Varela, Sebastian; Assefa, Yared; Vara Prasad, P. V.; Peralta, Nahuel R.; Griffin, Terry W.; Sharda, Ajay; Ferguson, Allison; Ciampitti, Ignacio A.

    2017-07-01

    Detailed spatial and temporal data on plant growth are critical to guide crop management. Conventional methods to determine field plant traits are intensive, time-consuming, expensive, and limited to small areas. The objective of this study was to examine the integration of data collected via unmanned aerial systems (UAS) at critical corn (Zea mays L.) developmental stages for plant height and its relation to plant biomass. The main steps followed in this research were (1) workflow development for an ultrahigh resolution crop surface model (CSM) with the goal of determining plant height (CSM-estimated plant height) using data gathered from the UAS missions; (2) validation of CSM-estimated plant height with ground-truthing plant height (measured plant height); and (3) final estimation of plant biomass via integration of CSM-estimated plant height with ground-truthing stem diameter data. Results indicated a correlation between CSM-estimated plant height and ground-truthing plant height data at two weeks prior to flowering and at flowering stage, but high predictability at the later growth stage. Log-log analysis on the temporal data confirmed that these relationships are stable, presenting equal slopes for both crop stages evaluated. Concluding, data collected from low-altitude and with a low-cost sensor could be useful in estimating plant height.

  7. Effect of nanometer scale surface roughness of titanium for osteoblast function

    Directory of Open Access Journals (Sweden)

    Satoshi Migita

    2017-02-01

    Full Text Available Surface roughness is an important property for metallic materials used in medical implants or other devices. The present study investigated the effects of surface roughness on cellular function, namely cell attachment, proliferation, and differentiation potential. Titanium (Ti discs, with a hundred nanometer- or nanometer-scale surface roughness (rough and smooth Ti surface, respectively were prepared by polishing with silicon carbide paper. MC3T3-E1 mouse osteoblast-like cells were cultured on the discs, and their attachment, spreading area, proliferation, and calcification were analyzed. Cells cultured on rough Ti discs showed reduced attachment, proliferation, and calcification ability suggesting that the surface inhibited osteoblast function. The findings can provide a basis for improving the biocompatibility of medical devices.

  8. Childhood height, adult height, and the risk of prostate cancer

    DEFF Research Database (Denmark)

    Bjerregaard, Lise Geisler; Aarestrup, Julie; Gamborg, Michael

    2016-01-01

    PURPOSE: We previously showed that childhood height is positively associated with prostate cancer risk. It is, however, unknown whether childhood height exerts its effects independently of or through adult height. We investigated whether and to what extent childhood height has a direct effect...... on the risk of prostate cancer apart from adult height. METHODS: We included 5,871 men with height measured at ages 7 and 13 years in the Copenhagen School Health Records Register who also had adult (50-65 years) height measured in the Danish Diet, Cancer and Health study. Prostate cancer status was obtained...... through linkage to the Danish Cancer Registry. Direct and total effects of childhood height on prostate cancer risk were estimated from Cox regressions. RESULTS: From 1996 to 2012, 429 prostate cancers occurred. Child and adult heights were positively and significantly associated with prostate cancer risk...

  9. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  10. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    Science.gov (United States)

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    Science.gov (United States)

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  12. Fall from heights: does height really matter?

    Science.gov (United States)

    Alizo, G; Sciarretta, J D; Gibson, S; Muertos, K; Romano, A; Davis, J; Pepe, A

    2018-06-01

    Fall from heights is high energy injuries and constitutes a fraction of all fall-related trauma evaluations while bearing an increase in morbidity and mortality. We hypothesize that despite advancements in trauma care, the overall survivability has not improved in this subset of trauma patients. All adult trauma patients treated after sustaining a fall from heights during a 40-month period were retrospectively reviewed. Admission demographics, clinical data, fall height (ft), injury patterns, ISS, GCS, length of stay, and mortality were reviewed. 116 patients sustained a fall from heights, 90.4% accidental. A mean age of 37± 14.7 years, 86% male, and a fall height of 19 ± 10 ft were encountered. Admission GCS was 13 ± 2 with ISS 10 ± 11. Overall LOS was 6.6 ± 14.9 days and an ICU LOS of 2.8 ± 8.9 days. Falls ≥ 25 ft.(16%) had lower GCS 10.4 ± 5.8, increased ISS 22.6 ± 13.8, a fall height 37.9 ± 13.1 ft and associated increased mortality (p < 0.001). Mortality was 5.2%, a mean distance fallen of 39 ± 22 ft. and an ISS of 31.5 ±16.5. Brain injury was the leading cause of death, 50% with open skull fractures. Level of height fallen is a good predictor of overall outcome and survival. Despite advances in trauma care, death rates remain unchanged. Safety awareness and injury prevention programs are needed to reduce the risk of high-level falls.

  13. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap

    International Nuclear Information System (INIS)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-01-01

    Gaps with single-nanometer dimensions (<10 nm) between metallic nanostructures enable giant local field enhancements for surface enhanced Raman scattering (SERS). Monolayer graphene is an ideal candidate to obtain a sub-nanometer gap between plasmonic nanostructures. In this work, we demonstrate a simple method to achieve a sub-nanometer gap by dewetting a gold film supported on monolayer graphene grown on copper foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene–SiO 2 –Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au–graphene–Cu hybrid configuration as an SERS substrate. (paper)

  14. Are Human Mating Preferences with Respect to Height Reflected in Actual Pairings?

    OpenAIRE

    Stulp, Gert; Buunk, Abraham P.; Pollet, Thomas V.; Nettle, Daniel; Verhulst, Simon

    2013-01-01

    Pair formation, acquiring a mate to form a reproductive unit, is a complex process. Mating preferences are a step in this process. However, due to constraining factors such as availability of mates, rival competition, and mutual mate choice, preferred characteristics may not be realised in the actual partner. People value height in their partner and we investigated to what extent preferences for height are realised in actual couples. We used data from the Millennium Cohort Study (UK) and comp...

  15. A single mask process for the realization of fully-isolated, dual-height MEMS metallic structures separated by narrow gaps

    Science.gov (United States)

    Li, Yuan; Kim, Minsoo; Allen, Mark G.

    2018-02-01

    Multi-height metallic structures are of importance for various MEMS applications, including master molds for creating 3D structures by nanoimprint lithography, or realizing vertically displaced electrodes for out-of-plane electrostatic actuators. Normally these types of multi-height structures require a multi-mask process with increased fabrication complexity. In this work, a fabrication technology is presented in which fully-isolated, dual-height MEMS metallic structures separated by narrow gaps can be realized using a self-aligned, single-mask process. The main scheme of this proposed process is through-mold electrodeposition, where two photoresist mold fabrication steps and two electrodeposition steps are sequentially implemented to define the thinner and thicker structures in the dual-height configuration. The process relies on two self-aligned steps enabled by the electrodeposited thinner structures: a wet-etching of the seed layer utilizing the thinner structure as an etch-mask to electrically isolate the thinner and the thicker structures, and a backside UV lithography utilizing the thinner structure as a lithographic mask to create a high-aspect-ratio mold for the thicker structure through-mold electrodeposition. The latter step requires the metallic structures to be fabricated on a transparent substrate. Test structures with differences in aspect ratio are demonstrated to showcase the capability of the process.

  16. Bio-inspired step-climbing in a hexapod robot

    International Nuclear Information System (INIS)

    Chou, Ya-Cheng; Yu, Wei-Shun; Huang, Ke-Jung; Lin, Pei-Chun

    2012-01-01

    Inspired by the observation that the cockroach changes from a tripod gait to a different gait for climbing high steps, we report on the design and implementation of a novel, fully autonomous step-climbing maneuver, which enables a RHex-style hexapod robot to reliably climb a step up to 230% higher than the length of its leg. Similar to the climbing strategy most used by cockroaches, the proposed maneuver is composed of two stages. The first stage is the ‘rearing stage,’ inclining the body so the front side of the body is raised and it is easier for the front legs to catch the top of the step, followed by the ‘rising stage,’ maneuvering the body's center of mass to the top of the step. Two infrared range sensors are installed on the front of the robot to detect the presence of the step and its orientation relative to the robot's heading, so that the robot can perform automatic gait transition, from walking to step-climbing, as well as correct its initial tilt approaching posture. An inclinometer is utilized to measure body inclination and to compute step height, thus enabling the robot to adjust its gait automatically, in real time, and to climb steps of different heights and depths successfully. The algorithm is applicable for the robot to climb various rectangular obstacles, including a narrow bar, a bar and a step (i.e. a bar of infinite width). The performance of the algorithm is evaluated experimentally, and the comparison of climbing strategies and climbing behaviors in biological and robotic systems is discussed. (paper)

  17. Analysis of the chronic lower limb injuries occurrence in step aerobic instructors in relation to their working step class profile: a three year longitudinal prospective study.

    Science.gov (United States)

    Malliou, P; Rokka, S; Beneka, A; Gioftsidou, A; Mavromoustakos, S; Godolias, G

    2014-01-01

    There is limited information on injury patterns in Step Aerobic Instructors (SAI) who exclusively execute "step" aerobic classes. To record the type and the anatomical position in relation to diagnosis of muscular skeletal injuries in step aerobic instructors. Also, to analyse the days of absence due to chronic injury in relation to weekly working hours, height of the step platform, working experience and working surface and footwear during the step class. The Step Aerobic Instructors Injuries Questionnaire was developed, and then validity and reliability indices were calculated. 63 SAI completed the questionnaire. For the statistical analysis of the data, the method used was the analysis of frequencies, the non-parametric test χ^{2} (chi square distribution), correlation and linear and logistic regressions analysis from the SPSS statistical package. 63 SAI reported 115 injuries that required more than 2 days absence from step aerobic classes. The chronic lower extremity injuries were 73.5%, with the leg pain, the anterior knee pain, the plantar tendinopathy and the Achilles tendinopathy being most common overuse syndromes. The working hours, the platform height, the years of aerobic dance seem to affect the days of absence due to chronic lower limb injury occurrence in SAI.

  18. Apron heights around stepped massifs in the Cydonia Mensae region: Do they record the local paleobathymetry of Oceanus Borealis?

    Science.gov (United States)

    Parker, T. J.; Gorsline, D. S.

    1993-01-01

    The use of photoclinometry and shadow measurements to determine the basin volume without linking the measurements to a global datum is described. Since the boundary, or shoreline, of the basin cannot be tied to the datum and typically has no useful local relative height to measure, what is needed is a number of measurements of the height of the paleoshorelines distributed across the basin. Photoclinometric profiles are being compiled from Viking Orbiter images of the Cydonia Mensae region, which includes images with high sun elevations, necessary to avoid shadows, and images with low sun elevations, to enable the use of shadow measurements as an independent check, at high resolution (40 to 100 m/pixel). Both asymmetric and symmetric photoclinometric profile models are being used, and the results cross checked with one another to minimize errors. An apron-height map, potentially a paleobathymetric map of part of the margin of Oceanus Borealis, can be compiled from this data to determine whether variations in apron height are consistent with a lacustrine interpretation.

  19. CFD Simulation of Heat Transfer and Turbulent Fluid Flow over a Double Forward-Facing Step

    Directory of Open Access Journals (Sweden)

    Hussein Togun

    2013-01-01

    Full Text Available Heat transfer and turbulent water flow over a double forward-facing step were investigated numerically. The finite volume method was used to solve the corresponding continuity, momentum, and energy equations using the K-ε model. Three cases, corresponding to three different step heights, were investigated for Reynolds numbers ranging from 30,000 to 100,000 and temperatures ranging from 313 to 343 K. The bottom of the wall was heated, whereas the top was insulated. The results show that the Nusselt number increased with the Reynolds number and step height. The maximum Nusselt number was observed for case 3, with a Reynolds number of 100,000 and temperature of 343 K, occurring at the second step. The behavior of the Nusselt number was similar for all cases at a given Reynolds number and temperature. A recirculation zone was observed before and after the first and second steps in the contour maps of the velocity field. In addition, the results indicate that the coefficient pressure increased with increasing Reynolds number and step height. ANSYS FLUENT 14 (CFD software was employed to run the simulations.

  20. Applied Study on Magnetic Nanometer Beads in Preparation of Genechip Samples

    Institute of Scientific and Technical Information of China (English)

    陈慧; 高华方; 谢欣; 马雪梅; 杨渝珍

    2004-01-01

    Summary: A protocol for enrichment and adsorption of karyocyte from whole blood by using magnetic nanometer beads as solid-phase absorbents was presented. The PCR amplification could be accomplished by using the nanobeads with karyocyte as template directly and the PCR products were applied on an oligonucleotide array to do gene typing. The HLA-A PCR amplification system and a small HLA-A oligonucleotide microarray were applied as the platform and an experiment protocol of separating karyocyte from whole blood using the magnetic nanometer beads (Fe2O3) were set up.The experimental conditions were also discussed. It showed that pH level of PBS eluent, Taq enzyme quantity and fragment length of products could influent the amplification results, and the magnetic nano-beads could succeed in sample preparation in microarray to provide a promising way in automatic detection and lab-on-a-chip.

  1. Tracing temperature in a nanometer size region in a picosecond time period.

    Science.gov (United States)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  2. Optimization of a Cu CMP process modeling parameters of nanometer integrated circuits

    International Nuclear Information System (INIS)

    Ruan Wenbiao; Chen Lan; Ma Tianyu; Fang Jingjing; Zhang He; Ye Tianchun

    2012-01-01

    A copper chemical mechanical polishing (Cu CMP) process is reviewed and analyzed from the view of chemical physics. Three steps Cu CMP process modeling is set up based on the actual process of manufacturing and pattern-density-step-height (PDSH) modeling from MIT. To catch the pattern dependency, a 65 nm testing chip is designed and processed in the foundry. Following the model parameter extraction procedure, the model parameters are extracted and verified by testing data from the 65 nm testing chip. A comparison of results between the model predictions and test data show that the former has the same trend as the latter and the largest deviation is less than 5 nm. Third party testing data gives further evidence to support the great performance of model parameter optimization. Since precise CMP process modeling is used for the design of manufacturability (DFM) checks, critical hotspots are displayed and eliminated, which will assure good yield and production capacity of IC. (semiconductor technology)

  3. Inverted Polarity Thunderstorms Linked with Elevated Cloud Base Height

    Science.gov (United States)

    Cummins, K. L.; Williams, E.

    2016-12-01

    The great majority of thunderstorms worldwide exhibit gross positive dipole structure, produce intracloud lightning that reduces this positive dipole (positive intracloud flashes), and produce negative cloud-to-ground lightning from the lower negative end of this dipole. During the STEPS experiment in 2000 much new evidence for thunderstorms (or cells within multi-cellular storms) with inverted polarity came to light, both from balloon soundings of electric field and from LMA analysis. Many of the storms with inverted polarity cells developed in eastern Colorado. Fleenor et al. (2009) followed up after STEPS to document a dominance of positive polarity CG lightning in many of these cases. In the present study, surface thermodynamic observations (temperature and dew point temperature) have been used to estimate the cloud base heights and temperatures at the time of the Fleenor et al. lightning observations. It was found that when more than 90% of the observed CG lightning polarity within a storm is negative, the cloud base heights were low (2000 m AGL or lower, and warmer, with T>10 C), and when more than 90% of the observed CG lightning within a storm was positive, the cloud base heights were high (3000 m AGL or higher, and colder, with Tmixed polarity were generally associated with intermediate cloud base heights. These findings on inverted polarity thunderstorms are remarkably consistent with results in other parts of the world where strong instability prevails in the presence of high cloud base height: the plateau regions of China (Liu et al., 1989; Qie et al., 2005), and in pre-monsoon India (Pawar et al., 2016), particularly when mixed polarity cases are excluded. Calculations of adiabatic cloud water content for lifting from near 0 oC cast some doubt on earlier speculation (Williams et al., 2005) that the graupel particles in these inverted polarity storms attain a wet growth condition, and so exhibit positive charging following laboratory experiments. This

  4. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    Science.gov (United States)

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  5. Concordant preferences for actual height and facial cues to height

    OpenAIRE

    Re, Daniel Edward; Perrett, David I.

    2012-01-01

    Physical height has a well-documented effect on human mate preferences. In general, both sexes prefer opposite-sex romantic relationships in which the man is taller than the woman, while individual preferences for height are affected by a person’s own height. Research in human mate choice has demonstrated that attraction to facial characteristics, such as facial adiposity, may reflect references for body characteristics. Here, we tested preferences for facial cues to height. In general, incre...

  6. Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs.

    Science.gov (United States)

    van den Tillaar, Roland; Gamble, Paul

    2018-03-26

    This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η 2  ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between 'fast' vs. 'slow' sub-groups (η 2  ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the 'over-speed' condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.

  7. Sensitivity of GPS occultation to the stratopause height

    DEFF Research Database (Denmark)

    Schrøder, Thomas Morville; Ao, Chi; de la Torre Juárez, Manuel

    2007-01-01

    We scrutinize temperature profiles collected with radio occultation measurement for an imprint of the stratopause. In the retrieval step that integrates bending angle data to atmospheric refractivity, the falloff toward infinite altitude is constrained in a boundary condition with statistical opt...... rate, not isothermal conditions. Keeping the model seed for temperature conversion to subsequent retrieval steps eliminates external information from the deconvolved refractivity. It will help argue for radio occultation as independent vehicle for climate monitoring....... height gradient. On the basis of noise free simulation using a climatology covering all latitudes, seasons, and hours and on the basis of validation against data collected with weather balloons, laser imaging, and limb sounding, we find that adaptation to the fluctuating stratopause is crucial...

  8. Linear step drive

    International Nuclear Information System (INIS)

    Haniger, L.; Elger, R.; Kocandrle, L.; Zdebor, J.

    1986-01-01

    A linear step drive is described developed in Czechoslovak-Soviet cooperation and intended for driving WWER-1000 control rods. The functional principle is explained of the motor and the mechanical and electrical parts of the drive, power control, and the indicator of position are described. The motor has latches situated in the reactor at a distance of 3 m from magnetic armatures, it has a low structural height above the reactor cover, which suggests its suitability for seismic localities. Its magnetic circuits use counterpoles; the mechanical shocks at the completion of each step are damped using special design features. The position indicator is of a special design and evaluates motor position within ±1% of total travel. A drive diagram and the flow chart of both the control electronics and the position indicator are presented. (author) 4 figs

  9. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.

    Science.gov (United States)

    Yuan, Zhe; Govind Rajan, Ananth; Misra, Rahul Prasanna; Drahushuk, Lee W; Agrawal, Kumar Varoon; Strano, Michael S; Blankschtein, Daniel

    2017-08-22

    Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO 2 and CH 4 , through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO 2 and CH 4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO 2 /CH 4 mixture, the graphene nanopores exhibit a trade-off between the CO 2 permeance and the CO 2 /CH 4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO 2 /CH 4 separation factors higher than 10 2 have CO 2 permeances per pore lower than 10 -22 mol s -1 Pa -1 , and pores with separation factors of ∼10 have CO 2 permeances per pore between 10 -22 and 10 -21 mol s -1 Pa -1 . Finally, we show that a pore density of 10 14 m -2 is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric

  10. Love and fear of heights: the pathophysiology and psychology of height imbalance.

    Science.gov (United States)

    Salassa, John R; Zapala, David A

    2009-01-01

    Individual psychological responses to heights vary on a continuum from acrophobia to height intolerance, height tolerance, and height enjoyment. This paper reviews the English literature and summarizes the physiologic and psychological factors that generate different responses to heights while standing still in a static or motionless environment. Perceptual cues to height arise from vision. Normal postural sway of 2 cm for peripheral objects within 3 m increases as eye-object distance increases. Postural sway >10 cm can result in a fall. A minimum of 20 minutes of peripheral retinal arc is required to detect motion. Trigonometry dictates that a 20-minute peripheral retinal arch can no longer be achieved in a standing position at an eye-object distance of >20 m. At this distance, visual cues conflict with somatosensory and vestibular inputs, resulting in variable degrees of imbalance. Co-occurring deficits in the visual, vestibular, and somatosensory systems can significantly increase height imbalance. An individual's psychological makeup, influenced by learned and genetic factors, can influence reactions to height imbalance. Enhancing peripheral vision and vestibular, proprioceptive, and haptic functions may improve height imbalance. Psychotherapy may improve the troubling subjective sensations to heights.

  11. Nanometer-scale patterning of high-Tc superconductors for Josephson junction-based digital circuits

    International Nuclear Information System (INIS)

    Wendt, J.R.; Plut, T.A.; Corless, R.F.; Martens, J.S.; Berkowitz, S.; Char, K.; Johansson, M.; Hou, S.Y.; Phillips, J.M.

    1994-01-01

    A straightforward method for nanometer-scale patterning of high-T c superconductor thin films is discussed. The technique combines direct-write electron beam lithography with well-controlled aqueous etches and is applied to the fabrication of Josephson junction nanobridges in high-quality, epitaxial thin-film YBa 2 Cu 3 O 7 . We present the results of our studies of the dimensions, yield, uniformity, and mechanism of the junctions along with the performance of a representative digital circuit based on these junctions. Direct current junction parameter statistics measured at 77 K show critical currents of 27.5 μA±13% for a sample set of 220 junctions. The Josephson behavior of the nanobridge is believed to arise from the aggregation of oxygen vacancies in the nanometer-scale bridge

  12. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    Science.gov (United States)

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  13. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  14. Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP Force

    Directory of Open Access Journals (Sweden)

    Wen J. Li

    2011-12-01

    Full Text Available We report in this paper a novel, inexpensive and flexible method for fabricating micrometer- and nanometer-scale three-dimensional (3D polymer structures using visible light sources instead of ultra-violet (UV light sources or lasers. This method also does not require the conventional micro-photolithographic technique (i.e., photolithographic masks for patterning and fabricating polymer structures such as hydrogels. The major materials and methods required for this novel fabrication technology are: (1 any cross-linked network of photoactive polymers (examples of fabricated poly(ethylene glycol (PEG-diacrylate hydrogel structures are shown in this paper; (2 an Optically-induced Dielectrophoresis (ODEP System which includes an “ODEP chip” (i.e., any chip that changes its surface conductivity when exposed to visible light, an optical microscope, a projector, and a computer; and (3 an animator software hosted on a computer that can generate virtual or dynamic patterns which can be projected onto the “ODEP chip” through the use of a projector and a condenser lens. Essentially, by placing a photosensitive polymer solution inside the microfluidic platform formed by the “ODEP chip” bonded to another substrate, and applying an alternating current (a.c. electrical potential across the polymer solution (typically ~20 Vp-p at 10 kHz, solid polymer micro/nano structures can then be formed on the “ODEP chip” surface when visible-light is projected onto the chip. The 2D lateral geometry (x and y dimensions and the thickness (height of the micro/nano structures are dictated by the image geometry of the visible light projected onto the “ODEP chip” and also the time duration of projection. Typically, after an image projection with intensity ranging from ~0.2 to 0.4 mW/cm2 for 10 s, ~200 nm high structures can be formed. In our current system, the thickness of these polymer structures can be controlled to form from ~200 nanometers to ~3

  15. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  16. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2013-01-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano

  17. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  18. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  19. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  20. PIXAN: the Lucas Heights PIXE analysis computer package

    International Nuclear Information System (INIS)

    Clayton, E.

    1986-11-01

    To fully utilise the multielement capability and short measurement time of PIXE it is desirable to have an automated computer evaluation of the measured spectra. Because of the complex nature of PIXE spectra, a critical step in the analysis is the data reduction, in which the areas of characteristic peaks in the spectrum are evaluated. In this package the computer program BATTY is presented for such an analysis. The second step is to determine element concentrations, knowing the characteristic peak areas in the spectrum. This requires a knowledge of the expected X-ray yield for that element in the sample. The computer program THICK provides that information for both thick and thin PIXE samples. Together, these programs form the package PIXAN used at Lucas Heights for PIXE analysis

  1. Simultaneous growth of self-patterned carbon nanotube forests with dual height scales

    Science.gov (United States)

    Sam, Ebru Devrim; Kucukayan-Dogu, Gokce; Baykal, Beril; Dalkilic, Zeynep; Rana, Kuldeep; Bengu, Erman

    2012-05-01

    In this study, we report on a unique, one-step fabrication technique enabling the simultaneous synthesis of vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with dual height scales through alcohol catalyzed chemical vapor deposition (ACCVD). Regions of VA-MWCNTs with different heights were well separated from each other leading to a self-patterning on the surface. We devised a unique layer-by-layer process for application of catalyst and inhibitor precursors on oxidized Si (100) surfaces before the ACCVD step to achieve a hierarchical arrangement. Patterning could be controlled by adjusting the molarity and application sequence of precursors. Contact angle measurements on these self-patterned surfaces indicated that manipulation of these hierarchical arrays resulted in a wide range of hydrophobic behavior changing from that of a sticky rose petal to a lotus leaf.In this study, we report on a unique, one-step fabrication technique enabling the simultaneous synthesis of vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with dual height scales through alcohol catalyzed chemical vapor deposition (ACCVD). Regions of VA-MWCNTs with different heights were well separated from each other leading to a self-patterning on the surface. We devised a unique layer-by-layer process for application of catalyst and inhibitor precursors on oxidized Si (100) surfaces before the ACCVD step to achieve a hierarchical arrangement. Patterning could be controlled by adjusting the molarity and application sequence of precursors. Contact angle measurements on these self-patterned surfaces indicated that manipulation of these hierarchical arrays resulted in a wide range of hydrophobic behavior changing from that of a sticky rose petal to a lotus leaf. Electronic supplementary information (ESI) available: Fig. S1; AFM image of the Co-O layer which was first dried at 40 °C and then oxidized at 200 °C. Fig. S2; graph relative to the area of CNT islands for different

  2. Numerical simulation in a two dimensional turbulent flow over a backward-facing step

    International Nuclear Information System (INIS)

    Silveira Neto, A. da; Grand, D.

    1991-01-01

    Numerical simulations of turbulent flows in complex geometries are generally restricted to the prediction of the mean flow and use semi-empirical turbulence models. The present study is devoted to the simulation of the coherence structures which develop in a flow submitted to a velocity change, downstream of a backward facing step. Two aspect ratios (height of the step over height of the channel) have been explored and the values of the Reynolds number vary from (6000 to 90000). In the isothermal case coherent structures have been obtained by the numerical simulation in the mixing layer downstream of the step. The numerical simulations provides results in fairly good agreement with available experimental results. In a second step a thermal stratification is imposed on this flow for one value of Richardson number (0.5) the coherent structures disappear downstream for increasing values of Richardson number. (author)

  3. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  4. Agreement between measured height, and height predicted from ...

    African Journals Online (AJOL)

    lower limb measurements, such as knee height, as well as upper limb measures ... had with bone injuries/fractures affecting height or ulna length; and n = 1 had a ... and heels, buttocks and upper back in contact with the vertical surface of the .... found striking similarity in linear growth of infants to five-year- olds among all ...

  5. Accuracy of recumbent height measurement.

    Science.gov (United States)

    Gray, D S; Crider, J B; Kelley, C; Dickinson, L C

    1985-01-01

    Since many patients requiring specialized nutritional support are bedridden, measurement of height for purposes of nutritional assessment or prescription must often be done with the patient in bed. This study examined the accuracy of measuring body height in bed in the supine position. Two measurements were performed on 108 ambulatory inpatients: (1) standing height using a standard height-weight scale, and (2) bed height using a flexible tape. Patients were divided into four groups based on which of two researchers performed each of the two measurements. Each patient was also weighed and self-reported height, weight, sex, and age were recorded. Bed height was significantly longer than standing height by 3.68 cm, but the two measurements were equally precise. It was believed, however, that this 2% difference was probably not clinically significant in most circumstances. Bed height correlated highly with standing height (r = 0.95), and the regression equation was standing height = 13.82 +/- 0.09 bed height. Patients overestimated their heights. Heights recorded by nurses were more accurate when patients were measured than when asked about their heights, but the patients were more often asked than measured.

  6. Height and weight distribution of lower-middle income group of radiation workers

    International Nuclear Information System (INIS)

    Datta, S.; Sharma, R.C.; Sunta, C.M.

    1982-01-01

    Workers in the nuclear industry who are occasionally exposed to a radioactive environment were monitored for possible internal contamination. Calibration of the detection equipment was carried out with the help of a phantom. It is imperative that the phantom should have the physical dimensions of the subjects being monitored. As a step towards evolving a reference phantom, the height and weight distribution of the workers has been studied. The subjects included in this study are from lower middle income group drawing salaries between Rs 500 to 1000 per month. Mean weight +- SD was found to be 56.2 +- 8.70 kg and height 167 +- 5.90 cm. these averages match well with the data given by certain Life Insurance Companies in India. Although mean weight was found to be appreciably higher than the value reported in 1966, based on autopsy data, the mean weight and height are much less than the reference man values adopted by International Commission on Radiological Protection (ICRP) which are based on western man (average weight = 70 kg., average height = 174 cm). (author)

  7. Dimensional crossover in fluids under nanometer-scale confinement.

    Science.gov (United States)

    Das, Amit; Chakrabarti, J

    2012-05-01

    Several earlier studies have shown signatures of crossover in various static and dynamics properties of a confined fluid when the confining dimension decreases to about a nanometer. The density fluctuations govern the majority of such properties of a fluid. Here, we illustrate the crossover in density fluctuation in a confined fluid, to provide a generic understanding of confinement-induced crossover of fluid properties, using computer simulations. The crossover can be understood as a manifestation of changes in the long-wavelength behavior of fluctuation in density due to geometrical constraints. We further show that the confining potential significantly affects the crossover behavior.

  8. Weight-to-height ratio and aerobic capacity in 15-year-old male taekwondo martial artists.

    Science.gov (United States)

    Poliszczuk, Tatiana; Jankowska, Ewa; Poliszczuk, Dmytro

    2013-01-01

    Martial arts are growing in popularity throughout the whole world. Their beneficial influence on physical development and fitness is noteworthy. Martial arts are an attractive form of physical recreation, constitute a perfect means for combating stress, and have a positive effect on general health, including during rehabilitation. The aim of this study is to assess physical development and aerobic capacity in boys who practice taekwondo and to determine the relationships between results of a fitness test and particular parameters of physical development. Study participants comparised 51 boys aged 15 years who practiced taekwondo (with training experience ranging from 1 to 6 years). Volkov´s modification of the Harvard Step Test was used to assess body height and body mass. BMI was also calculated. Centile charts were used to assess weight-to-height ratio and the level of measured parameters. BMI was analyzed according to the Cole classification system. Dispersion was calculated using a coefficient of variation. The Pearson product-moment correlation coefficient between selected parameters was also calculated. Most study participants had normal BMI, but 30% showed overweight and 13% showed underweight or emaciation. Weight-to-height ratio differed significantly from the norm in 33% of the boys when compared to centile charts. All participants had average aerobic capacity. However, when weight-to-height ratio was compared to the results of the Harvard Step Test, boys with normal body proportions performed much better in the test than boys with abnormal body mass (p<0.05). Study participants showed abnormal weight-to-height ratio mainly in terms of overweight. The boys had greater body height and body mass compared to the general Polish population. Aerobic capacity differed considerably between participants.

  9. Final height in survivors of childhood cancer compared with Height Standard Deviation Scores at diagnosis.

    Science.gov (United States)

    Knijnenburg, S L; Raemaekers, S; van den Berg, H; van Dijk, I W E M; Lieverst, J A; van der Pal, H J; Jaspers, M W M; Caron, H N; Kremer, L C; van Santen, H M

    2013-04-01

    Our study aimed to evaluate final height in a cohort of Dutch childhood cancer survivors (CCS) and assess possible determinants of final height, including height at diagnosis. We calculated standard deviation scores (SDS) for height at initial cancer diagnosis and height in adulthood in a cohort of 573 CCS. Multivariable regression analyses were carried out to estimate the influence of different determinants on height SDS at follow-up. Overall, survivors had a normal height SDS at cancer diagnosis. However, at follow-up in adulthood, 8.9% had a height ≤-2 SDS. Height SDS at diagnosis was an important determinant for adult height SDS. Children treated with (higher doses of) radiotherapy showed significantly reduced final height SDS. Survivors treated with total body irradiation (TBI) and craniospinal radiation had the greatest loss in height (-1.56 and -1.37 SDS, respectively). Younger age at diagnosis contributed negatively to final height. Height at diagnosis was an important determinant for height SDS at follow-up. Survivors treated with TBI, cranial and craniospinal irradiation should be monitored periodically for adequate linear growth, to enable treatment on time if necessary. For correct interpretation of treatment-related late effects studies in CCS, pre-treatment data should always be included.

  10. Nanometer range closed-loop control of a stepper micro-motor for data storage

    NARCIS (Netherlands)

    Patrascu, M.; Stramigioli, Stefano; de Boer, Meint J.; Krijnen, Gijsbertus J.M.

    2007-01-01

    We present a nanometer range, closed-loop control study for MEMS stepper actuators. Although generically applicable to other types of stepper motors, the control design presented here was particularly intended for one dimensional shuffle actuators fabricated by surface micromachining technology. The

  11. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    Science.gov (United States)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  12. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale

    International Nuclear Information System (INIS)

    Bolzon, B.

    2007-11-01

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  13. Social inequalities in height: persisting differences today depend upon height of the parents.

    Directory of Open Access Journals (Sweden)

    Bruna Galobardes

    Full Text Available Substantial increases in height have occurred concurrently with economic development in most populations during the last century. In high-income countries, environmental exposures that can limit genetic growth potential appear to have lessened, and variation in height by socioeconomic position may have diminished. The objective of this study is to investigate inequalities in height in a cohort of children born in the early 1990s in England, and to evaluate which factors might explain any identified inequalities.12,830 children from The Avon Longitudinal Study of Parents and Children (ALSPAC, a population based cohort from birth to about 11.5 years of age, were used in this analysis. Gender- and age-specific z-scores of height at different ages were used as outcome variables. Multilevel models were used to take into account the repeated measures of height and to analyze gender- and age-specific relative changes in height from birth to 11.5 years. Maternal education was the main exposure variable used to examine socioeconomic inequalities. The roles of parental and family characteristics in explaining any observed differences between maternal education and child height were investigated. Children whose mothers had the highest education compared to those with none or a basic level of education, were 0.39 cm longer at birth (95% CI: 0.30 to 0.48. These differences persisted and at 11.5 years the height difference was 1.4 cm (95% CI: 1.07 to 1.74. Several other factors were related to offspring height, but few changed the relationship with maternal education. The one exception was mid-parental height, which fully accounted for the maternal educational differences in offspring height.In a cohort of children born in the 1990s, mothers with higher education gave birth to taller boys and girls. Although height differences were small they persisted throughout childhood. Maternal and paternal height fully explained these differences.

  14. A differential Michelson interferometer with orthogonal single frequency laser for nanometer displacement measurement

    International Nuclear Information System (INIS)

    Yan, Liping; Chen, Benyong; Wang, Bin

    2017-01-01

    A novel differential Michelson laser interferometer is proposed to eliminate the influence of environmental fluctuations for nanometer displacement measurement. This differential interferometer consists of two homodyne interferometers in which two orthogonal single frequency beams share common reference arm and partial measurement arm. By modulating the displacement of the common reference arm with a piezoelectric transducer, the common-mode displacement drift resulting from the environmental disturbances can be well suppressed and the measured displacement as differential-mode displacement signal is achieved. In addition, a phase difference compensation method is proposed for accurately determining the phase difference between interference signals by correcting the time interval according to the average speed in one cycle of interference signal. The nanometer displacement measurement experiments were performed to demonstrate the effectiveness and feasibility of the proposed interferometer and show that precision displacement measurement with standard deviation less than 1 nm has been achieved. (paper)

  15. Are human mating preferences with respect to height reflected in actual pairings?

    Science.gov (United States)

    Stulp, Gert; Buunk, Abraham P; Pollet, Thomas V; Nettle, Daniel; Verhulst, Simon

    2013-01-01

    Pair formation, acquiring a mate to form a reproductive unit, is a complex process. Mating preferences are a step in this process. However, due to constraining factors such as availability of mates, rival competition, and mutual mate choice, preferred characteristics may not be realised in the actual partner. People value height in their partner and we investigated to what extent preferences for height are realised in actual couples. We used data from the Millennium Cohort Study (UK) and compared the distribution of height difference in actual couples to simulations of random mating to test how established mate preferences map on to actual mating patterns. In line with mate preferences, we found evidence for: (i) assortative mating (r = .18), (ii) the male-taller norm, and, for the first time, (iii) for the male-not-too-tall norm. Couples where the male partner was shorter, or over 25 cm taller than the female partner, occurred at lower frequency in actual couples than expected by chance, but the magnitude of these effects was modest. We also investigated another preference rule, namely that short women (and tall men) prefer large height differences with their partner, whereas tall women (and short men) prefer small height differences. These patterns were also observed in our population, although the strengths of these associations were weaker than previously reported strength of preferences. We conclude that while preferences for partner height generally translate into actual pairing, they do so only modestly.

  16. Are human mating preferences with respect to height reflected in actual pairings?

    Directory of Open Access Journals (Sweden)

    Gert Stulp

    Full Text Available Pair formation, acquiring a mate to form a reproductive unit, is a complex process. Mating preferences are a step in this process. However, due to constraining factors such as availability of mates, rival competition, and mutual mate choice, preferred characteristics may not be realised in the actual partner. People value height in their partner and we investigated to what extent preferences for height are realised in actual couples. We used data from the Millennium Cohort Study (UK and compared the distribution of height difference in actual couples to simulations of random mating to test how established mate preferences map on to actual mating patterns. In line with mate preferences, we found evidence for: (i assortative mating (r = .18, (ii the male-taller norm, and, for the first time, (iii for the male-not-too-tall norm. Couples where the male partner was shorter, or over 25 cm taller than the female partner, occurred at lower frequency in actual couples than expected by chance, but the magnitude of these effects was modest. We also investigated another preference rule, namely that short women (and tall men prefer large height differences with their partner, whereas tall women (and short men prefer small height differences. These patterns were also observed in our population, although the strengths of these associations were weaker than previously reported strength of preferences. We conclude that while preferences for partner height generally translate into actual pairing, they do so only modestly.

  17. Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Khan, Sajid; Göbel, Ole

    2010-01-01

    This review gives an overview of the progress made in recent years in the development of low-cost parallel patterning techniques for ceramic materials, silica, and organic–inorganic silsesquioxane-based hybrids from wet-chemical solutions and suspensions on the micrometer and nanometer-scale. The

  18. Imaging and Patterning on Nanometer Scale Using Coherent EUV Light

    International Nuclear Information System (INIS)

    Wachulak, P.W.; Fiedorowicz, H.; Bartnik, A.; Marconi, M.C.; Menoni, C.S.; Rocca, J.J.

    2010-01-01

    Extreme ultraviolet (EUV) covers wavelength range from about 5 nm to 50 nm. That is why EUV is especially applicable for imaging and patterning on nanometer scale length. In the paper periodic nanopatterning realized by interference lithography and high resolution holographic nanoimaging performed in a Gabor in-line scheme are presented. In the experiments a compact table top EUV laser was used. Preliminary studies on using a laser plasma EUV source for nanoimaging are presented as well. (author)

  19. Final height in survivors of childhood cancer compared with Height Standard Deviation Scores at diagnosis

    NARCIS (Netherlands)

    Knijnenburg, S. L.; Raemaekers, S.; van den Berg, H.; van Dijk, I. W. E. M.; Lieverst, J. A.; van der Pal, H. J.; Jaspers, M. W. M.; Caron, H. N.; Kremer, L. C.; van Santen, H. M.

    2013-01-01

    Our study aimed to evaluate final height in a cohort of Dutch childhood cancer survivors (CCS) and assess possible determinants of final height, including height at diagnosis. We calculated standard deviation scores (SDS) for height at initial cancer diagnosis and height in adulthood in a cohort of

  20. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    Science.gov (United States)

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  1. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Kyle L. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Pop, Eric [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  2. Height premium for job performance.

    Science.gov (United States)

    Kim, Tae Hyun; Han, Euna

    2017-08-01

    This study assessed the relationship of height with wages, using the 1998 and 2012 Korean Labor and Income Panel Study data. The key independent variable was height measured in centimeters, which was included as a series of dummy indicators of height per 5cm span (wages to assess the heterogeneity in the height-wage relationship, across the conditional distribution of monthly wages. We found a non-linear relationship of height with monthly wages. For men, the magnitude of the height wage premium was overall larger at the upper quantile of the conditional distribution of log monthly wages than at the median to low quantile, particularly in professional and semi-professional occupations. The height-wage premium was also larger at the 90th quantile for self-employed women and salaried men. Our findings add a global dimension to the existing evidence on height-wage premium, demonstrating non-linearity in the association between height and wages and heterogeneous changes in the dispersion and direction of the association between height and wages, by wage level. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control.

    Science.gov (United States)

    Kim, Myunghee; Collins, Steven H

    2013-06-01

    Unilateral, below-knee amputation is associated with an increased risk of falls, which may be partially related to a loss of active ankle control. If ankle control can contribute significantly to maintaining balance, even in the presence of active foot placement, this might provide an opportunity to improve balance using robotic ankle-foot prostheses. We investigated ankle- and hip-based walking stabilization methods in a three-dimensional model of human gait that included ankle plantarflexion, ankle inversion-eversion, hip flexion-extension, and hip ad/abduction. We generated discrete feedback control laws (linear quadratic regulators) that altered nominal actuation parameters once per step. We used ankle push-off, lateral ankle stiffness and damping, fore-aft foot placement, lateral foot placement, or all of these as control inputs. We modeled environmental disturbances as random, bounded, unexpected changes in floor height, and defined balance performance as the maximum allowable disturbance value for which the model walked 500 steps without falling. Nominal walking motions were unstable, but were stabilized by all of the step-to-step control laws we tested. Surprisingly, step-by-step modulation of ankle push-off alone led to better balance performance (3.2% leg length) than lateral foot placement (1.2% leg length) for these control laws. These results suggest that appropriate control of robotic ankle-foot prosthesis push-off could make balancing during walking easier for individuals with amputation.

  4. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    Science.gov (United States)

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  5. Fluorescent gel particles in the nanometer range for detection of metabolites in living cells

    DEFF Research Database (Denmark)

    Almdal, K.; Sun, H.; Poulsen, A.K.

    2006-01-01

    micelles in oil microemulsions. Typical sizes of the particles are tens of nanometers. Characterization methods for such particles based on size exclusion chromatography, photon correlation spectroscopy, scanning electron microscopy, and atomic force microscopy have been developed. The stability...

  6. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    Science.gov (United States)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  7. Height-Deterministic Pushdown Automata

    DEFF Research Database (Denmark)

    Nowotka, Dirk; Srba, Jiri

    2007-01-01

    We define the notion of height-deterministic pushdown automata, a model where for any given input string the stack heights during any (nondeterministic) computation on the input are a priori fixed. Different subclasses of height-deterministic pushdown automata, strictly containing the class...... of regular languages and still closed under boolean language operations, are considered. Several of such language classes have been described in the literature. Here, we suggest a natural and intuitive model that subsumes all the formalisms proposed so far by employing height-deterministic pushdown automata...

  8. Casein Aggregates Built Step-by-Step on Charged Polyelectrolyte Film Surfaces Are Calcium Phosphate-cemented*

    Science.gov (United States)

    Nagy, Krisztina; Pilbat, Ana-Maria; Groma, Géza; Szalontai, Balázs; Cuisinier, Frédéric J. G.

    2010-01-01

    The possible mechanism of casein aggregation and micelle buildup was studied in a new approach by letting α-casein adsorb from low concentration (0.1 mg·ml−1) solutions onto the charged surfaces of polyelectrolyte films. It was found that α-casein could adsorb onto both positively and negatively charged surfaces. However, only when its negative phosphoseryl clusters remained free, i.e. when it adsorbed onto a negative surface, could calcium phosphate (CaP) nanoclusters bind to the casein molecules. Once the CaP clusters were in place, step-by-step building of multilayered casein architectures became possible. The presence of CaP was essential; neither Ca2+ nor phosphate could alone facilitate casein aggregation. Thus, it seems that CaP is the organizing motive in the casein micelle formation. Atomic force microscopy revealed that even a single adsorbed casein layer was composed of very small (in the range of tens of nanometers) spherical forms. The stiffness of the adsorbed casein layer largely increased in the presence of CaP. On this basis, we can imagine that casein micelles emerge according to the following scheme. The amphipathic casein monomers aggregate into oligomers via hydrophobic interactions even in the absence of CaP. Full scale, CaP-carrying micelles could materialize by interlocking these casein oligomers with CaP nanoclusters. Such a mechanism would not contradict former experimental results and could offer a synthesis between the submicelle and the block copolymer models of casein micelles. PMID:20921229

  9. A scanning tunneling microscope with a scanning range from hundreds of micrometers down to nanometer resolution.

    Science.gov (United States)

    Kalkan, Fatih; Zaum, Christopher; Morgenstern, Karina

    2012-10-01

    A beetle type stage and a flexure scanning stage are combined to form a two stages scanning tunneling microscope (STM). It operates at room temperature in ultrahigh vacuum and is capable of scanning areas up to 300 μm × 450 μm down to resolution on the nanometer scale. This multi-scale STM has been designed and constructed in order to investigate prestructured metallic or semiconducting micro- and nano-structures in real space from atomic-sized structures up to the large-scale environment. The principle of the instrument is demonstrated on two different systems. Gallium nitride based micropillars demonstrate scan areas up to hundreds of micrometers; a Au(111) surface demonstrates nanometer resolution.

  10. Shadow Analysis Technique for Extraction of Building Height using High Resolution Satellite Single Image and Accuracy Assessment

    Science.gov (United States)

    Raju, P. L. N.; Chaudhary, H.; Jha, A. K.

    2014-11-01

    These High resolution satellite data with metadata information is used to extract the height of the building using shadow. Proposed approach divides into two phases 1) rooftop and shadow extraction and 2) height estimation. Firstly the rooftop and shadow region were extracted by manual/ automatic methods using Example - Based and Rule - Based approaches. After feature extraction next step is estimating height of the building by taking rooftop in association with shadow using Ratio Method and by using the relation between sun-satellite geometry. The performance analysis shows the total mean error of height is 0.67 m from ratio method, 1.51 m from Example - Based Approach and 0.96 m from Rule - Based Approach. Analysis concluded that Ratio Method i.e. manual method is best for height estimation but it is time consuming so the automatic Rule Based approach is best for height estimation in comparison to Example Based Approach because it require more knowledge and selection of more training samples as well as slows the processing rate of the method.

  11. The stepping behavior analysis of pedestrians from different age groups via a single-file experiment

    Science.gov (United States)

    Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang

    2018-03-01

    The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.

  12. Walk Ratio (Step Length/Cadence) as a Summary Index of Neuromotor Control of Gait: Application to Multiple Sclerosis

    Science.gov (United States)

    Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi

    2011-01-01

    In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…

  13. Transmission electron microscopical study of teenage crown dentin on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Panfilov, Peter, E-mail: peter.panfilov@urfu.ru [Ural Federal University, Ekaterinburg (Russian Federation); Kabanova, Anna [Ural Federal University, Ekaterinburg (Russian Federation); Guo, Jinming; Zhang, Zaoli [Erich Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben (Austria)

    2017-02-01

    Statement of significance: This is the first transmission electron microscopic study of teenage crown dentin on the nanometer scale. Samples for TEM were prepared by mechanical thinning and chemical polishing that allowed obtaining the electron transparent foils. It was firstly shown that human dentin possesses the layered morphology: the layers are oriented normally to the main axis of a tooth and have the thickness of ~ 50 nm. HA inorganic phase of teenage crown dentin is in the amorphous state. The cellular structure, which was formed from collagen fibers (diameter is ~ 5 nm), are observed near DEJ region in teenage dentin, whereas bioorganic phase of teenage crown dentin near the pulp camera does not contain the collagen fibers. Cracks in dentin thin foils have sharp tips, but big angles of opening (~ 30{sup °}) with plastic zone ahead crack tip. It means that young crown human dentin exhibits ductile or viscous-elastic fracture behavior on the nanometer scale. - Highlights: • Dentin has layered morphology. • Mineral component of dentin is in amorphous state. • Collagen fibers form cellular structure in dentin. • Cracks in dentin behave by elastic-plastic manner.

  14. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  15. Transmission electron microscopical study of teenage crown dentin on the nanometer scale

    International Nuclear Information System (INIS)

    Panfilov, Peter; Kabanova, Anna; Guo, Jinming; Zhang, Zaoli

    2017-01-01

    Statement of significance: This is the first transmission electron microscopic study of teenage crown dentin on the nanometer scale. Samples for TEM were prepared by mechanical thinning and chemical polishing that allowed obtaining the electron transparent foils. It was firstly shown that human dentin possesses the layered morphology: the layers are oriented normally to the main axis of a tooth and have the thickness of ~ 50 nm. HA inorganic phase of teenage crown dentin is in the amorphous state. The cellular structure, which was formed from collagen fibers (diameter is ~ 5 nm), are observed near DEJ region in teenage dentin, whereas bioorganic phase of teenage crown dentin near the pulp camera does not contain the collagen fibers. Cracks in dentin thin foils have sharp tips, but big angles of opening (~ 30 ° ) with plastic zone ahead crack tip. It means that young crown human dentin exhibits ductile or viscous-elastic fracture behavior on the nanometer scale. - Highlights: • Dentin has layered morphology. • Mineral component of dentin is in amorphous state. • Collagen fibers form cellular structure in dentin. • Cracks in dentin behave by elastic-plastic manner.

  16. Development and Validation of an Automated Step Ergometer

    Directory of Open Access Journals (Sweden)

    C. de Sousa Maria do Socorro

    2014-12-01

    Full Text Available Laboratory ergometers have high costs, becoming inaccessible for most of the population, hence, it is imperative to develop affordable devices making evaluations like cardiorespiratory fitness feasible and easier. The objective of this study was to develop and validate an Automated Step Ergometer (ASE, adjusted according to the height of the subject, for predicting VO2max through a progressive test. The development process was comprised by three steps, the theoretical part, the prototype assembly and further validation. The ASE consists in an elevating platform that makes the step at a higher or lower level as required for testing. The ASE validation was obtained by comparing the values of predicted VO2max (equation and direct gas analysis on the prototype and on a, treadmill. For the validation process 167 subjects with average age of 31.24 ± 14.38 years, of both genders and different degrees of cardiorespiratory fitness, were randomized and divided by gender and training condition, into untrained (n=106, active (n=24 and trained (n=37 subjects. Each participant performed a progressive test on which the ASE started at the same height (20 cm for all. Then, according to the subject’s height, it varied to a maximum of 45 cm. Time in each stage and rhythm was chosen in accordance with training condition from lowest to highest (60-180 s; 116-160 bpm, respectively. Data was compared with the student’s t test and ANOVA; correlations were tested with Pearson’s r. The value of α was set at 0.05. No differences were found between the predicted VO2max and the direct gas analysis VO2max, nor between the ASE and treadmill VO2max (p= 0.365 with high correlation between ergometers (r= 0.974. The values for repeatability, reproducibility, and reliability of male and female groups measures were, respectively, 4.08 and 5.02; 0.50 and 1.11; 4.11 and 5.15. The values of internal consistency (Cronbach’s alpha among measures were all >0.90. It was verified

  17. Unified height systems after GOCE

    Science.gov (United States)

    Rummel, Reiner; Gruber, Thomas; Sideris, Michael; Rangelova, Elena; Woodworth, Phil; Hughes, Chris; Ihde, Johannes; Liebsch, Gunter; Rülke, Axel; Gerlach, Christian; Haagmans, Roger

    2015-04-01

    The objectives of global height unification are twofold, (1) the realization of accurate geopotential numbers C together with their standard deviation σ(C) at a selected set of stations (datum points of national height systems, geodetic fundamental stations (IERS), primary tide gauges (PSMSL) and primary reference clocks (IERS)) and (2) the determination of height off-sets between all existing regional/national height systems and one global height reference. In the future the primary method of height determination will be GPS-levelling with very stringent requirements concerning the consistency of the positioning and the gravity potential difference part. Consistency is required in terms of the applied standards (ITRF, zero tide system, geodetic reference system). Geopotential differences will be based on a next generation geopotential model combining GOCE and GRACE and a best possible collection of global terrestrial and altimetric gravity and topographic data. Ultimately, the envisaged accuracy of height unification is about 10 cm2/s2 (or 1cm). At the moment, in well surveyed regions, an accuracy of about 40 to 60 cm2/s2 (or 4 to 6cm) is attainable. Objective One can be realized by straight forward computation of geopotential numbers C, i.e. geopotential differences relative to an adopted height reference. No adjustment is required for this. Objective Two, the unification of existing height systems is achieved by employing a least-squares adjustment based on the GBVP-approach. In order to attain a non-singular solution, this requires for each included datum zone at least one geo-referenced station per zone, i.e. its ellipsoidal height h and, in addition, the corresponding physical height H (geopotential number, normal height, orthometric height, etc.). Changes in geopotential numbers of consecutive realizations reflect (1) temporal changes of station heights, (2) improvements or changes of the applied geopotential (or geoid) model and (3) improvements of the

  18. Global effects of income and income inequality on adult height and sexual dimorphism in height.

    Science.gov (United States)

    Bogin, Barry; Scheffler, Christiane; Hermanussen, Michael

    2017-03-01

    Average adult height of a population is considered a biomarker of the quality of the health environment and economic conditions. The causal relationships between height and income inequality are not well understood. We analyze data from 169 countries for national average heights of men and women and national-level economic factors to test two hypotheses: (1) income inequality has a greater association with average adult height than does absolute income; and (2) neither income nor income inequality has an effect on sexual dimorphism in height. Average height data come from the NCD-RisC health risk factor collaboration. Economic indicators are derived from the World Bank data archive and include gross domestic product (GDP), Gross National Income per capita adjusted for personal purchasing power (GNI_PPP), and income equality assessed by the Gini coefficient calculated by the Wagstaff method. Hypothesis 1 is supported. Greater income equality is most predictive of average height for both sexes. GNI_PPP explains a significant, but smaller, amount of the variation. National GDP has no association with height. Hypothesis 2 is rejected. With greater average adult height there is greater sexual dimorphism. Findings support a growing literature on the pernicious effects of inequality on growth in height and, by extension, on health. Gradients in height reflect gradients in social disadvantage. Inequality should be considered a pollutant that disempowers people from the resources needed for their own healthy growth and development and for the health and good growth of their children. © 2017 Wiley Periodicals, Inc.

  19. Hybrid approaches to nanometer-scale patterning: Exploiting tailored intermolecular interactions

    International Nuclear Information System (INIS)

    Mullen, Thomas J.; Srinivasan, Charan; Shuster, Mitchell J.; Horn, Mark W.; Andrews, Anne M.; Weiss, Paul S.

    2008-01-01

    In this perspective, we explore hybrid approaches to nanometer-scale patterning, where the precision of molecular self-assembly is combined with the sophistication and fidelity of lithography. Two areas - improving existing lithographic techniques through self-assembly and fabricating chemically patterned surfaces - will be discussed in terms of their advantages, limitations, applications, and future outlook. The creation of such chemical patterns enables new capabilities, including the assembly of biospecific surfaces to be recognized by, and to capture analytes from, complex mixtures. Finally, we speculate on the potential impact and upcoming challenges of these hybrid strategies.

  20. Electron transport in nanometer GaAs structure under radiation exposure

    CERN Document Server

    Demarina, N V

    2002-01-01

    One investigates into effect of neutron and proton irradiation on electron transport in nanometer GaAs structures. Mathematical model takes account of radiation defects via introduction of additional mechanisms od scattering of carriers at point defects and disordered regions. To investigate experimentally into volt-ampere and volt-farad characteristics one used a structure based on a field-effect transistor with the Schottky gate and a built-in channel. Calculation results of electron mobility, drift rate of electrons, time of energy relaxation and electron pulse are compared with the experimental data

  1. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

    Czech Academy of Sciences Publication Activity Database

    Lapčíková, Monika; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Entlicher, G.; Pokorný, D.; Gallo, J.; Sosna, A.

    2009-01-01

    Roč. 266, 1-2 (2009), s. 349-355 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high molecular weight polyethylene * nanometer size wear debris * morphology of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.771, year: 2009

  2. Encounter Probability of Individual Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    1998-01-01

    wave height corresponding to a certain exceedence probability within a structure lifetime (encounter probability), based on the statistical analysis of long-term extreme significant wave height. Then the design individual wave height is calculated as the expected maximum individual wave height...... associated with the design significant wave height, with the assumption that the individual wave heights follow the Rayleigh distribution. However, the exceedence probability of such a design individual wave height within the structure lifetime is unknown. The paper presents a method for the determination...... of the design individual wave height corresponding to an exceedence probability within the structure lifetime, given the long-term extreme significant wave height. The method can also be applied for estimation of the number of relatively large waves for fatigue analysis of constructions....

  3. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    Science.gov (United States)

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  4. Encounter Probability of Significant Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    The determination of the design wave height (often given as the significant wave height) is usually based on statistical analysis of long-term extreme wave height measurement or hindcast. The result of such extreme wave height analysis is often given as the design wave height corresponding to a c...

  5. Shapiro like steps reveals molecular nanomagnets’ spin dynamics

    International Nuclear Information System (INIS)

    Abdollahipour, Babak; Abouie, Jahanfar; Ebrahimi, Navid

    2015-01-01

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields

  6. Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials’ frictional properties at atomic-scale steps

    International Nuclear Information System (INIS)

    Lang, Haojie; Peng, Yitian; Zeng, Xingzhong

    2017-01-01

    Highlights: • Bending of uncovered step edge of 2-dimensional materials could be a common phenomenon during friction processes. • 2-dimensional materials with large interlayer bonding strength possess good frictional properties at step. • Increased bending stiffness of step edge could be the major reason that lateral force increased with step height. - Abstract: Atomic-scale steps generally presented in 2-dimensional materials have important influence on the overall nanotribological properties of surface. Frictional properties at atomic-scale steps of two types of 2-dimensional materials are studied using calibrated atomic force microscopy (AFM) tip sliding against the steps. The lateral force at uncovered step is larger than covered step due to the bending of step edge. The lateral force at monolayer uncovered step edge of h-BN is lower than graphene because h-BN possesses higher interlayer bonding strength than graphene and the bending of h-BN step edge is suppressed to some extent. The high uncovered step exhibits much larger lateral force than low uncovered step, which could be mainly induced by increased bending stiffness of step edge rather than increased step height. The results revealed that interlayer bonding strength and bending stiffness have great influence on the lateral force at atomic-scale steps. The studies can provide a further understanding of frictional properties at atomic scale steps and could be helpful for the applications of 2-dimensional materials as lubricant coating.

  7. Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials’ frictional properties at atomic-scale steps

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Haojie; Peng, Yitian, E-mail: yitianpeng@dhu.edu.cn; Zeng, Xingzhong

    2017-07-31

    Highlights: • Bending of uncovered step edge of 2-dimensional materials could be a common phenomenon during friction processes. • 2-dimensional materials with large interlayer bonding strength possess good frictional properties at step. • Increased bending stiffness of step edge could be the major reason that lateral force increased with step height. - Abstract: Atomic-scale steps generally presented in 2-dimensional materials have important influence on the overall nanotribological properties of surface. Frictional properties at atomic-scale steps of two types of 2-dimensional materials are studied using calibrated atomic force microscopy (AFM) tip sliding against the steps. The lateral force at uncovered step is larger than covered step due to the bending of step edge. The lateral force at monolayer uncovered step edge of h-BN is lower than graphene because h-BN possesses higher interlayer bonding strength than graphene and the bending of h-BN step edge is suppressed to some extent. The high uncovered step exhibits much larger lateral force than low uncovered step, which could be mainly induced by increased bending stiffness of step edge rather than increased step height. The results revealed that interlayer bonding strength and bending stiffness have great influence on the lateral force at atomic-scale steps. The studies can provide a further understanding of frictional properties at atomic scale steps and could be helpful for the applications of 2-dimensional materials as lubricant coating.

  8. The voltammetric responses of nanometer-sized electrodes in weakly supported electrolyte: A theoretical study

    International Nuclear Information System (INIS)

    Liu Yuwen; Zhang Qianfan; Chen Shengli

    2010-01-01

    The effect of the supporting electrolyte concentration on the interfacial profiles and voltammetric responses of nanometer-sized disk electrodes have been investigated theoretically by combining the Poisson-Nernst-Planck (PNP) theory and Butler-Volmer (BV) equation. The PNP-theory is used to treat the nonlinear couplings of electric field, concentration field and dielectric field at electrochemical interface without the electroneutrality assumption that has been long adopted in various voltammetric theories for macro/microelectrodes. The BV equation is modified by using the Frumkin correction to account for the effect of the diffuse double layer potential on interfacial electron-transfer (ET) rate and by including a distance-dependent ET probability in the expression of rate constant to describe the radial heterogeneity of the ET rate constant at nanometer-sized disk electrodes. The computed voltammetric responses for disk electrodes larger than 200 nm in radii in the absence of the excess of the supporting electrolyte using the present theoretical scheme show reasonable agreements with the predications of the conventional microelectrode voltammetric theory which uses the combined Nernst-Planck equation and electroneutrality equation to describe the mixed electromigration-diffusion mass transport without including the possible effects of the diffuse double layer (Amatore et al. ). For electrodes smaller than 200 nm, however, the voltammetric responses predicated by the present theory exhibit significant deviation from the microelectrode theory. It is shown that the deviations are mainly resulted from the overlap between the diffuse double layer and the concentration depletion layer (CDL) at nanoscale electrochemical interfaces in weakly supported media, which will result in the invalidation of the electroneutrality condition in CDL, and from the radial inhomogeneity of ET probability at nanometer-sized disk electrodes.

  9. The voltammetric responses of nanometer-sized electrodes in weakly supported electrolyte: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yuwen; Zhang Qianfan [Hubei Electrochemical Power Sources Key Laboratory, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Chen Shengli, E-mail: slchen@whu.edu.c [Hubei Electrochemical Power Sources Key Laboratory, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2010-11-30

    The effect of the supporting electrolyte concentration on the interfacial profiles and voltammetric responses of nanometer-sized disk electrodes have been investigated theoretically by combining the Poisson-Nernst-Planck (PNP) theory and Butler-Volmer (BV) equation. The PNP-theory is used to treat the nonlinear couplings of electric field, concentration field and dielectric field at electrochemical interface without the electroneutrality assumption that has been long adopted in various voltammetric theories for macro/microelectrodes. The BV equation is modified by using the Frumkin correction to account for the effect of the diffuse double layer potential on interfacial electron-transfer (ET) rate and by including a distance-dependent ET probability in the expression of rate constant to describe the radial heterogeneity of the ET rate constant at nanometer-sized disk electrodes. The computed voltammetric responses for disk electrodes larger than 200 nm in radii in the absence of the excess of the supporting electrolyte using the present theoretical scheme show reasonable agreements with the predications of the conventional microelectrode voltammetric theory which uses the combined Nernst-Planck equation and electroneutrality equation to describe the mixed electromigration-diffusion mass transport without including the possible effects of the diffuse double layer (Amatore et al. ). For electrodes smaller than 200 nm, however, the voltammetric responses predicated by the present theory exhibit significant deviation from the microelectrode theory. It is shown that the deviations are mainly resulted from the overlap between the diffuse double layer and the concentration depletion layer (CDL) at nanoscale electrochemical interfaces in weakly supported media, which will result in the invalidation of the electroneutrality condition in CDL, and from the radial inhomogeneity of ET probability at nanometer-sized disk electrodes.

  10. Formation and surface strengthening of nano-meter embedded phases during high energy Ti implanted and annealed steel

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Cui Ping; Wang Ping

    1999-12-01

    Observation of transmission electron microscope indicated that the phase of FeTi 2 with 3.5-20 nm in diameter is embedded in high energy Ti implanted layer. It's average diameter is 8 nm. The nano-meter phases were embedded among dislocations and grain boundary in Ti implanted steel at 400 degree C. The wear resistance has been improved. The embedded structure can be changed obviously after annealing. The structure has been changed slightly after annealing at annealing temperature raging from 350 to 500 degree C, however, the hardness and wear resistance of implanted layer increased greatly. The maximum of hardness is obtained when the sample was annealed at 500 degree C for 20 min. It can be seen that the strengthening of implanted layer has enhanced by annealing indeed. The grain boundary and dislocations have disappeared; the diameter of nano-meter phases increased from 10 nm to 15 nm after annealing at temperature of 750 degree C and 1000 degree respectively. The average densities of nano-meter phases are 8.8 x 10 10 /cm 2 and 6.5 x 10 10 /cm 2 respectively for both of annealing temperature. The hardness decreased obviously when the annealing temperature is greater than 750 degree C

  11. Temperature-modulated annealing of c-plane sapphire for long-range-ordered atomic steps

    International Nuclear Information System (INIS)

    Yatsui, Takashi; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao; Yoshimoto, Mamoru

    2016-01-01

    High-quality single-crystalline sapphire is used to prepare various semiconductors because of its thermal stability. Here, we applied the tempering technique, which is well known in the production of chocolate, to prepare a sapphire substrate. Surprisingly, we successfully realised millimetre-range ordering of the atomic step of the sapphire substrate. We also obtained a sapphire atomic step with nanometre-scale uniformity in the terrace width and atomic-step height. Such sapphire substrates will find applications in the preparation of various semiconductors and devices. (paper)

  12. Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices.

    Science.gov (United States)

    Gubicza, Agnes; Csontos, Miklós; Halbritter, András; Mihály, György

    2015-03-14

    The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.

  13. An Improved Manufacturing Approach for Discrete Silicon Microneedle Arrays with Tunable Height-Pitch Ratio

    Directory of Open Access Journals (Sweden)

    Renxin Wang

    2016-10-01

    Full Text Available Silicon microneedle arrays (MNAs have been widely studied due to their potential in various transdermal applications. However, discrete MNAs, as a preferred choice to fabricate flexible penetrating devices that could adapt curved and elastic tissue, are rarely reported. Furthermore, the reported discrete MNAs have disadvantages lying in uniformity and height-pitch ratio. Therefore, an improved technique is developed to manufacture discrete MNA with tunable height-pitch ratio, which involves KOH-dicing-KOH process. The detailed process is sketched and simulated to illustrate the formation of microneedles. Furthermore, the undercutting of convex mask in two KOH etching steps are mathematically analyzed, in order to reveal the relationship between etching depth and mask dimension. Subsequently, fabrication results demonstrate KOH-dicing-KOH process. {321} facet is figured out as the surface of octagonal pyramid microneedle. MNAs with diverse height and pitch are also presented to identify the versatility of this approach. At last, the metallization is realized via successive electroplating.

  14. Physiological pattern of lumbar disc height

    International Nuclear Information System (INIS)

    Biggemann, M.; Frobin, W.; Brinckmann, P.

    1997-01-01

    Purpose of this study is to present a new method of quantifying objectively the height of all discs in lateral radiographs of the lumbar spine and of analysing the normal craniocaudal sequence pattern of lumbar disc heights. Methods: The new parameter is the ventrally measured disc height corrected for the dependence on the angle of lordosis by normalisation to mean angles observed in the erect posture of healthy persons. To eliminate radiographic magnification, the corrected ventral height is related to the mean depth of the cranially adjoining vertebra. In this manner lumbar disc heights were objectively measured in young, mature and healthy persons (146 males and 65 females). The craniocaudal sequence pattern was analysed by mean values from all persons and by height differences of adjoining discs in each individual lumbar spine. Results: Mean normative values demonstrated an increase in disc height between L1/L2 and L4/L5 and a constant or decreasing disc height between L4/L5 and L5/S1. However, this 'physiological sequence of disc height in the statistical mean' was observed in only 36% of normal males and 55% of normal females. Conclusion: The radiological pattern of the 'physiological sequence of lumbar disc height' leads to a relevant portion of false positive pathological results especially at L4/L5. An increase of disc height from L4/L5 to L5/S1 may be normal. The recognition of decreased disc height should be based on an abrupt change in the heights of adjoining discs and not on a deviation from a craniocaudal sequence pattern. (orig.) [de

  15. Heat-transfer and pressure distributions for laminar separated flows downstream of rearward-facing steps with and without mass suction

    Science.gov (United States)

    Brown, R. D.; Jakubowski, A. K.

    1974-01-01

    Heat-transfer and pressure distributions were measured for laminar separated flows downstream of rearward-facing steps with and without mass suction. The flow conditions were such that the boundary-layer thickness was comparable to or larger than the step height. For both suction and no-suction cases, an increase in the step height resulted in a sharp decrease in the initial heat-transfer rates behind the step. Downstream, however, the heat transfer gradually recovered back to less than or near attached-flow values. Mass suction from the step base area increased the local heat-transfer rates; however, this effect was relatively weak for the laminar flows considered. Even removal of the entire approaching boundary layer raised the post-step heat-transfer rates only about 10 percent above the flatplate values. Post-step pressure distributions were found to depend on the entrainment conditions at separation. In the case of the solid-faced step, a sharp pressure drop behind the step was followed by a very short plateau and relatively fast recompression. For the slotted-step connected to a large plenum but without suction, the pressure drop at the base was much smaller and the downstream recompression more gradual than that for solid-faced step.

  16. Mixed Surfactant Template Method for Preparation of Nanometer Selenium

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Li

    2009-01-01

    Full Text Available Selenium nanoparticles have been synthesized in an aqueous solution by using sodium dodecyl sulfate and polyvinyl alcohol as a soft template. The factors on synthesis, such as reaction time, concentration of reactants and ultrasonic irradiation were studied. The uniform stable selenium nanospheres were obstained in the conditions of 1.0 (mass fraction sodium dodecyl sulfate, 1.0 (mass fraction polyvinyl alcohol, n(Vc:n(H2SeO3=7:1 and 7 minutes after the initiation of the reaction at room temperature. The average particle size of selenium is about 30 nm. The product was characterized by UV and TEM. Finally the applications of the red element nanometer selenium in anti-older cosmetics are presented.

  17. Adult height, nutrition, and population health

    Science.gov (United States)

    Perkins, Jessica M.; Subramanian, S.V.; Davey Smith, George

    2016-01-01

    In this review, the potential causes and consequences of adult height, a measure of cumulative net nutrition, in modern populations are summarized. The mechanisms linking adult height and health are examined, with a focus on the role of potential confounders. Evidence across studies indicates that short adult height (reflecting growth retardation) in low- and middle-income countries is driven by environmental conditions, especially net nutrition during early years. Some of the associations of height with health and social outcomes potentially reflect the association between these environmental factors and such outcomes. These conditions are manifested in the substantial differences in adult height that exist between and within countries and over time. This review suggests that adult height is a useful marker of variation in cumulative net nutrition, biological deprivation, and standard of living between and within populations and should be routinely measured. Linkages between adult height and health, within and across generations, suggest that adult height may be a potential tool for monitoring health conditions and that programs focused on offspring outcomes may consider maternal height as a potentially important influence. PMID:26928678

  18. Validity of the Stages of Change in Steps instrument (SoC-Step) for achieving the physical activity goal of 10,000 steps per day.

    Science.gov (United States)

    Rosenkranz, Richard R; Duncan, Mitch J; Caperchione, Cristina M; Kolt, Gregory S; Vandelanotte, Corneel; Maeder, Anthony J; Savage, Trevor N; Mummery, W Kerry

    2015-11-30

    Physical activity (PA) offers numerous benefits to health and well-being, but most adults are not sufficiently physically active to afford such benefits. The 10,000 steps campaign has been a popular and effective approach to promote PA. The Transtheoretical Model posits that individuals have varying levels of readiness for health behavior change, known as Stages of Change (Precontemplation, Contemplation, Preparation, Action, and Maintenance). Few validated assessment instruments are available for determining Stages of Change in relation to the PA goal of 10,000 steps per day. The purpose of this study was to assess the criterion-related validity of the SoC-Step, a brief 10,000 steps per day Stages of Change instrument. Participants were 504 Australian adults (176 males, 328 females, mean age = 50.8 ± 13.0 years) from the baseline sample of the Walk 2.0 randomized controlled trial. Measures included 7-day accelerometry (Actigraph GT3X), height, weight, and self-reported intention, self-efficacy, and SoC-Step: Stages of Change relative to achieving 10,000 steps per day. Kruskal-Wallis H tests with pairwise comparisons were used to determine whether participants differed by stage, according to steps per day, general health, body mass index, intention, and self-efficacy to achieve 10,000 steps per day. Binary logistic regression was used to test the hypothesis that participants in Maintenance or Action stages would have greater likelihood of meeting the 10,000 steps goal, in comparison to participants in the other three stages. Consistent with study hypotheses, participants in Precontemplation had significantly lower intention scores than those in Contemplation (p = 0.003) or Preparation (p per day (OR = 3.11; 95 % CI = 1.66,5.83) compared to those in Precontemplation, Contemplation, or Preparation. Intention (p per day. Australian New Zealand Clinical Trials Registry reference: ACTRN12611000157976 World Health Organization Universal Trial

  19. In defense of the classical height system

    Science.gov (United States)

    Foroughi, Ismael; Vaníček, Petr; Sheng, Michael; Kingdon, Robert William; Santos, Marcelo C.

    2017-11-01

    In many European countries, normal heights referred to the quasi-geoid as introduced by Molodenskij in the mid-20th century are preferred to the classical height system that consists of orthometric heights and the geoid as a reference surface for these heights. The rationale for this choice is supposed to be that in the classical height system, neither the geoid, nor the orthometric height can be ever known with centimetre level accuracy because one would need to know the topographical mass density to a level that can never be achieved. The aim of this paper is to question the validity of this rationale. The common way of assessing the congruency of a local geoid model and the orthometric heights is to compare the geoid heights with the difference between orthometric heights provided by leveling and geodetic heights provided by GNSS. On the other hand, testing the congruency of a quasi-geoidal model with normal height a similar procedure is used, except that instead of orthometric heights, normal heights are employed. For the area of Auvergne, France, which is now a more or less standard choice for precise geoid or quasi-geoid testing, only the normal heights are supplied by the Institute Geographic National, the provider of the data. This is clearly the consequence of the European preference for the Molodenskij system. The quality of the height system is to be judged by the congruency of the difference of the geoid/quasi-geoid heights subtracted from the geodetic heights and orthometric/normal heights. To assess the congruency of the classical height system, the Helmert approximation of orthometric heights is typically used as the transformation between normal and Helmert's heights is easily done. However, the evaluation of the differences between Helmert's and the rigorous orthometric heights is somewhat more involved as will be seen from the review in this paper. For the area of interest, the differences between normal and Helmert's heights at the control

  20. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    Science.gov (United States)

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  1. On the Extreme Wave Height Analysis

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1994-01-01

    The determination of the design wave height is usually based on the statistical analysis of long-term extreme wave height measurements. After an introduction to the procedure of the extreme wave height analysis, the paper presents new development concerning various aspects of the extreme wave...... height analysis. Finally, the paper gives a practical example based on a data set of the hindcasted wave heights for a deep water location in the Mediterranean Sea....

  2. Generating Sub-nanometer Displacement Using Reduction Mechanism Consisting of Torsional Leaf Spring Hinges

    Directory of Open Access Journals (Sweden)

    Fukuda Makoto

    2014-02-01

    Full Text Available Recent demand on the measurement resolution of precise positioning comes up to tens of picometers. Some distinguished researches have been performed to measure the displacement in picometer order, however, few of them can verify the measurement performance as available tools in industry. This is not only because the picometer displacement is not yet required for industrial use, but also due to the lack of standard tools to verify such precise displacement. We proposed a displacement reduction mechanism for generating precise displacement using torsional leaf spring hinges (TLSHs that consist of four leaf springs arranged radially. It has been demonstrated that a prototype of the reduction mechanism was able to provide one-nanometer displacement with 1/1000 reduction rate by a piezoelectric actuator. In order to clarify the potential of the reduction mechanism, a displacement reduction table that can be mounted on AFM stage was newly developed using TLSHs. This paper describes the design of the reduction mechanism and the sub-nanometer displacement performance of the table obtained from its dynamic and static characteristics measured by displacement sensors and from the AFM images

  3. Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer.

    Science.gov (United States)

    McMullen, Angus J; Tang, Jay X; Stein, Derek

    2017-11-28

    We report measurements and analyses of nanopore translocations by fd and M13, two related strains of filamentous virus that are identical except for their charge densities. The standard continuum theory of electrokinetics greatly overestimates the translocation speed and the conductance associated with counterions for both viruses. Furthermore, fd and M13 behave differently from one another, even translocating in opposite directions under certain conditions. This cannot be explained by Manning-condensed counterions or a number of other proposed models. Instead, we argue that these anomalous findings are consequences of the breakdown of the validity of continuum hydrodynamics at the scale of a few molecular layers. Next to a polyelectrolyte, there exists an extra-viscous, sub-nanometer-thin boundary layer that has a giant influence on the transport characteristics. We show that a stagnant boundary layer captures the essential hydrodynamics and extends the validity of the electrokinetic theory beyond the continuum limit. A stagnant layer with a thickness of about half a nanometer consistently improves predictions of the ionic current change induced by virus translocations and of the translocation velocity for both fd and M13 over a wide range of nanopore dimensions and salt concentrations.

  4. Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass

    Directory of Open Access Journals (Sweden)

    Nora Tilly

    2015-09-01

    Full Text Available Plant biomass is an important parameter for crop management and yield estimation. However, since biomass cannot be determined non-destructively, other plant parameters are used for estimations. In this study, plant height and hyperspectral data were used for barley biomass estimations with bivariate and multivariate models. During three consecutive growing seasons a terrestrial laser scanner was used to establish crop surface models for a pixel-wise calculation of plant height and manual measurements of plant height confirmed the results (R2 up to 0.98. Hyperspectral reflectance measurements were conducted with a field spectrometer and used for calculating six vegetation indices (VIs, which have been found to be related to biomass and LAI: GnyLi, NDVI, NRI, RDVI, REIP, and RGBVI. Furthermore, biomass samples were destructively taken on almost the same dates. Linear and exponential biomass regression models (BRMs were established for evaluating plant height and VIs as estimators of fresh and dry biomass. Each BRM was established for the whole observed period and pre-anthesis, which is important for management decisions. Bivariate BRMs supported plant height as a strong estimator (R2 up to 0.85, whereas BRMs based on individual VIs showed varying performances (R2: 0.07–0.87. Fused approaches, where plant height and one VI were used for establishing multivariate BRMs, yielded improvements in some cases (R2 up to 0.89. Overall, this study reveals the potential of remotely-sensed plant parameters for estimations of barley biomass. Moreover, it is a first step towards the fusion of 3D spatial and spectral measurements for improving non-destructive biomass estimations.

  5. Sub-nanometer-resolution imaging of peptide nanotubes in water using frequency modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, Tomoki; Hayashi, Itsuho; Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Kimura, Kenjiro, E-mail: kimura@gold.kobe-u.ac.jp [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Tamura, Atsuo [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan)

    2013-06-20

    Highlights: ► Peptide nanotubes were aligned on highly oriented pyrolytic graphite surface. ► We visualized sub-nanometer-scale structure on peptide nanotube surface in water. ► We observed hydration structure at a peptide nanotube/water interface. - Abstract: Peptide nanotubes are self-assembled fibrous materials composed of cyclic polypeptides. Recently, various aspects of peptide nanotubes have been studied, in particular the utility of different methods for making peptide nanotubes with diverse designed functions. In order to investigate the relationship between formation, function and stability, it is essential to analyze the precise structure of peptide nanotubes. Atomic-scale surface imaging in liquids was recently achieved using frequency modulation atomic force microscopy with improved force sensing. Here we provide a precise surface structural analysis of peptide nanotubes in water without crystallizing them obtained by imaging the nanotubes at the sub-nanometer scale in water. In addition, the local hydration structure around the peptide nanotubes was observed at the nanotube/water interface.

  6. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    International Nuclear Information System (INIS)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-01-01

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  7. Correlation of Fault Size, Moment Magnitude, and Tsunami Height to Proved Paleo-tsunami Data in Sulawesi Indonesia

    Science.gov (United States)

    Julius, A. M.; Pribadi, S.

    2016-02-01

    Sulawesi (Indonesia) island is located in the meeting of three large plates i.e. Indo-Australia, Pacific, and Eurasia. This configuration surely make high risk on tsunami by earthquake and by sea floor landslide. NOAA and Russia Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determine of correlation between all tsunami parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights in this study sourced from NOAA and Russia Tsunami database and completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between fault area, moment magnitude, and tsunami height by simple regression in Sulawesi. The step of this research are data collect, processing, and regression analysis. Result shows very good correlation, each moment magnitude, tsunami heights, and fault parameter i.e. long, wide, and slip are correlate linier. In increasing of fault area, the tsunami height and moment magnitude value also increase. In increasing of moment magnitude, tsunami height also increase. This analysis is enough to proved all Sulawesi tsunami parameter catalog in NOAA, Russia Tsunami Laboratory and PTWC are correct. Keyword: tsunami, magnitude, height, fault

  8. The nature of the Fe-graphene interface at the nanometer level

    International Nuclear Information System (INIS)

    Cattelan, Mattia; Artiglia, Luca; Favaro, Marco; Agnoli, Stefano; Granozzi, Gaetano; Peng, Guowen; Roling, Luke T.; Mavrikakis, Manos; Cavaliere, Emanuele; Gavioli, Luca; Barinov, Alexey; Píš, Igor; Nappini, Silvia; Magnano, Elena; Bondino, Federica

    2016-01-01

    The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This work reports a detailed investigation at the nanometer level of the Fe–graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, and scanning tunnelling microscopy. Quasi-freestanding graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.

  9. The nature of the Fe-graphene interface at the nanometer level

    Energy Technology Data Exchange (ETDEWEB)

    Cattelan, Mattia, E-mail: mattia.cattelan.1@studenti.unipd.it; Artiglia, Luca; Favaro, Marco; Agnoli, Stefano, E-mail: mattia.cattelan.1@studenti.unipd.it; Granozzi, Gaetano [Department of Chemical Sciences, University of Padova, via Marzolo 1, 35135, Padova (Italy); Peng, Guowen; Roling, Luke T.; Mavrikakis, Manos [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Cavaliere, Emanuele; Gavioli, Luca [Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica, via dei Musei 41, I-25121 Brescia (Italy); Barinov, Alexey [Sincrotrone Trieste S.C.p.A., Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy); Píš, Igor [Sincrotrone Trieste S.C.p.A., Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy); Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy); Nappini, Silvia; Magnano, Elena; Bondino, Federica [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy)

    2016-07-27

    The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This work reports a detailed investigation at the nanometer level of the Fe–graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, and scanning tunnelling microscopy. Quasi-freestanding graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.

  10. The transient response of a quantum wave to an instantaneous potential step switching

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, F [Departamento de Quimica-Fisica, Universidad del Pais Vasco, Apdo 644, 48080 Bilbao (Spain); Cruz, H [Departamento de Fisica Basica, Universidad de La Laguna (Spain); Muga, J G [Departamento de Quimica-Fisica, Universidad del Pais Vasco, Apdo 644, 48080 Bilbao (Spain)

    2002-12-06

    The transient response of a stationary state of a quantum particle in a step potential to an instantaneous change in the step height (a simplified model for a sudden bias switch in an electronic semiconductor device) is solved exactly by means of a semianalytical expression. The characteristic times for the transient process up to the new stationary state are identified. A comparison is made between the exact results and an approximate method.

  11. Influence of step-height and body mass on gastrocnemius muscle fascicle behavior during stair ascent.

    NARCIS (Netherlands)

    Spanjaard, M.; Reeves, N.D.; van Dieen, J.H.; Baltzopoulos, V.; Maganaris, C.N.

    2008-01-01

    To better understand the role of the ankle plantar flexor muscles in stair negotiation, we examined the effects of manipulation of kinematic and kinetic constraints on the behavior of the gastrocnemius medialis (GM) muscle during stair ascent. Ten subjects ascended a four-step staircase at four

  12. Strengthening of metallic alloys with nanometer-size oxide dispersions

    Science.gov (United States)

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  13. Sub-nanometer periodic nonlinearity error in absolute distance interferometers

    Science.gov (United States)

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  14. Strengthening of metallic alloys with nanometer-size oxide dispersions

    Science.gov (United States)

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  15. Poppy Crop Height and Capsule Volume Estimation from a Single UAS Flight

    Directory of Open Access Journals (Sweden)

    Faheem Iqbal

    2017-06-01

    Full Text Available The objective of this study was to estimate poppy plant height and capsule volume with remote sensing using an Unmanned Aircraft System (UAS. Data were obtained from field measurements and UAS flights over two poppy crops at Cambridge and Cressy in Tasmania. Imagery acquired from the UAS was used to produce dense point clouds using structure from motion (SfM and multi-view stereopsis (MVS techniques. Dense point clouds were used to generate a digital surface model (DSM and orthophoto mosaic. An RGB index was derived from the orthophoto to extract the bare ground spaces. This bare ground space mask was used to filter the points on the ground, and a digital terrain model (DTM was interpolated from these points. Plant height values were estimated by subtracting the DSM and DTM to generate a Crop Height Model (CHM. UAS-derived plant height (PH and field measured PH in Cambridge were strongly correlated with R2 values ranging from 0.93 to 0.97 for Transect 1 and Transect 2, respectively, while at Cressy results from a single flight provided R2 of 0.97. Therefore, the proposed method can be considered an important step towards crop surface model (CSM generation from a single UAS flight in situations where a bare ground DTM is unavailable. High correlations were found between UAS-derived PH and poppy capsule volume (CV at capsule formation stage (R2 0.74, with relative error of 19.62%. Results illustrate that plant height can be reliably estimated for poppy crops based on a single UAS flight and can be used to predict opium capsule volume at capsule formation stage.

  16. More practical critical height sampling.

    Science.gov (United States)

    Thomas B. Lynch; Jeffrey H. Gove

    2015-01-01

    Critical Height Sampling (CHS) (Kitamura 1964) can be used to predict cubic volumes per acre without using volume tables or equations. The critical height is defined as the height at which the tree stem appears to be in borderline condition using the point-sampling angle gauge (e.g. prism). An estimate of cubic volume per acre can be obtained from multiplication of the...

  17. Imagery and fear influence height perception.

    Science.gov (United States)

    Clerkin, Elise M; Cody, Meghan W; Stefanucci, Jeanine K; Proffitt, Dennis R; Teachman, Bethany A

    2009-04-01

    The current study tested whether height overestimation is related to height fear and influenced by images of falling. To assess perceptual biases, participants high (n=65) versus low (n=64) in height fear estimated the vertical extents of two balconies using a visual matching task. On one of the balconies, participants engaged in an imagery exercise designed to enhance the subjective sense that they were acting in a dangerous environment by picturing themselves falling. As expected, we found that individuals overestimated the balcony's height more after they imagined themselves falling, particularly if they were already afraid of heights. These findings suggest that height fear may serve as a vulnerability factor that leads to perceptual biases when triggered by a stressor (in this case, images of falling).

  18. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  19. Direct observation and analysis of yolk-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki [JEOL Ltd., SM Business Unit, Tokyo (Japan); Young Jeong, Hu [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Galeano, Carolina; Schüth, Ferdi [Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Mülheim (Germany); Terasaki, Osamu, E-mail: terasaki@mmk.su.se, E-mail: terasaki@kaist.ac.kr [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, Stockholm University, SE-10691 Stockholm (Sweden)

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO{sub 2}, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  20. Self-organized nano-structuring of CoO islands on Fe(001)

    Science.gov (United States)

    Brambilla, A.; Picone, A.; Giannotti, D.; Riva, M.; Bussetti, G.; Berti, G.; Calloni, A.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-01-01

    The realization of nanometer-scale structures through bottom-up strategies can be accomplished by exploiting a buried network of dislocations. We show that, by following appropriate growth steps in ultra-high vacuum molecular beam epitaxy, it is possible to grow nano-structured films of CoO coupled to Fe(001) substrates, with tunable sizes (both the lateral size and the maximum height scale linearly with coverage). The growth mode is discussed in terms of the evolution of surface morphology and chemical interactions as a function of the CoO thickness. Scanning tunneling microscopy measurements reveal that square mounds of CoO with lateral dimensions of less than 25 nm and heights below 10 atomic layers are obtained by growing few-nanometers-thick CoO films on a pre-oxidized Fe(001) surface covered by an ultra-thin Co buffer layer. In the early stages of growth, a network of misfit dislocations develops, which works as a template for the CoO nano-structuring. From a chemical point of view, at variance with typical CoO/Fe interfaces, neither Fe segregation at the surface nor Fe oxidation at the buried interface are observed, as seen by Auger electron spectroscopy and X-ray Photoemission Spectroscopy, respectively.

  1. Numerical simulations of the melting behavior of bulk and nanometer-sized Cu systems

    International Nuclear Information System (INIS)

    Manai, G.; Delogu, F.

    2007-01-01

    Molecular dynamics simulations have been employed to investigate the melting mechanisms of four different Cu systems consisting of a surface-free crystalline bulk, a semi-crystal terminating with a free surface and two unsupported particles with a radius of about 4 and 8 nm, respectively. Starting from a relaxed configuration at 300 K, the systems were gradually heated up to the characteristic melting points. The surface-free bulk system underwent homogeneous melting at the limit of superheating, whereas the melting of the semi-crystal and of the nanometer-sized particles occurred with heterogeneous features. In these latter cases, the structural and energetic properties revealed a two-state character with a definite difference between disordered surface layers and bulk-like interiors. In addition, the melting point and the latent heat of fusion of the nanometer-sized particles were significantly depressed with respect to the ones of the semi-crystal, approximately corresponding to the equilibrium values. Pre-melting phenomena took place at the free surfaces at temperatures significantly below the melting point, determining the formation of a solid-liquid interface. Numerical findings indicate that in all the cases the onset of melting is connected with the proliferation and migration of lattice defects and that an intimate relationship exists between homogeneous and heterogeneous melting mechanisms

  2. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  3. Combined Treatment with Gonadotropin-releasing Hormone Analog and Anabolic Steroid Hormone Increased Pubertal Height Gain and Adult Height in Boys with Early Puberty for Height.

    Science.gov (United States)

    Tanaka, Toshiaki; Naiki, Yasuhiro; Horikawa, Reiko

    2012-04-01

    Twenty-one boys with a height of 135 cm or less at onset of puberty were treated with a combination of GnRH analog and anabolic steroid hormone, and their pubertal height gain and adult height were compared with those of untreated 29 boys who enter puberty below 135 cm. The mean age at the start of treatment with a GnRH analog, leuprorelin acetate depot (Leuplin(®)) was 12.3 yr, a mean of 1.3 yr after the onset of puberty, and GnRH analog was administered every 3 to 5 wk thereafter for a mean duration of 4.1 yr. The anabolic steroid hormone was started approximately 1 yr after initiation of treatment with the GnRH analog. The mean pubertal height gain from onset of puberty till adult height was significantly greater in the combination treatment group (33.9 cm) than in the untreated group (26.4 cm) (ppenis and pubic hair is promoted by the anabolic steroid hormone, no psychosocial problems arose because of delayed puberty. No clinically significant adverse events appeared. Combined treatment with GnRH analog and anabolic steroid hormone significantly increased height gain during puberty and adult height in boys who entered puberty with a short stature, since the period until epiphyseal closure was extended due to deceleration of the bone age maturation by administration of the GnRH analog and the growth rate at this time was maintained by the anabolic steroid hormone.

  4. Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

    KAUST Repository

    Ganapathy, R.

    2010-01-21

    Epitaxial growth, a bottom-up self-assembly process for creating surface nano- and microstructures, has been extensively studied in the context of atoms. This process, however, is also a promising route to self-assembly of nanometer- and micrometer-scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics of colloidal crystal films with single-particle resolution. We show quantitatively that colloidal epitaxy obeys the same two-dimensional island nucleation and growth laws that govern atomic epitaxy. However, we found that in colloidal epitaxy, step-edge and corner barriers that are responsible for film morphology have a diffusive origin. This diffusive mechanism suggests new routes toward controlling film morphology during epitaxy.

  5. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    International Nuclear Information System (INIS)

    Attota, Ravikiran; Dixson, Ronald G.

    2014-01-01

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  6. Nanostructuring by ion beam

    International Nuclear Information System (INIS)

    Valbusa, U.; Boragno, C.; Buatier de Mongeot, F.

    2003-01-01

    In metals, the surface curvature dependence of the sputtering yield and the presence of an extra energy barrier whenever diffusing adatoms try to descend step edges, produce a similar surface instability, which builds up regular patterns. By tuning the competition between these two mechanisms, it is possible to create self-organized structures of the size of few nanometers. Height, lateral distance and order of the structures change with the deposition parameters like ion energy, dose, incident angle and substrate temperature. The paper offers an overview of the experiments carried out and foresees possible applications of these results in the area of material science

  7. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.1; monometallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.C.; Sayers, D.A.

    1993-01-01

    The structural information found using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to nanometer scale metallic clusters. (author)

  8. Maternal Height and Child Growth Patterns

    OpenAIRE

    Addo, O. Yaw; Stein, Aryeh D.; Fall, Caroline H.; Gigante, Denise P.; Guntupalli, Aravinda M.; Horta, Bernardo L.; Kuzawa, Christopher W.; Lee, Nanette; Norris, Shane A.; Prabhakaran, Poornima; Richter, Linda M.; Sachdev, Harshpal S.; Martorell, Reynaldo

    2013-01-01

    OBJECTIVE:\\ud To examine associations between maternal height and child growth during 4 developmental periods: intrauterine, birth to age 2 years, age 2 years to mid-childhood (MC), and MC to adulthood.\\ud \\ud STUDY DESIGN:\\ud Pooled analysis of maternal height and offspring growth using 7630 mother-child pairs from 5 birth cohorts (Brazil, Guatemala, India, the Philippines, and South Africa). We used conditional height measures that control for collinearity in height across periods. We estim...

  9. A new capacitive long-range displacement nanometer sensor with differential sensing structure based on time-grating

    Science.gov (United States)

    Yu, Zhicheng; Peng, Kai; Liu, Xiaokang; Pu, Hongji; Chen, Ziran

    2018-05-01

    High-precision displacement sensors, which can measure large displacements with nanometer resolution, are key components in many ultra-precision fabrication machines. In this paper, a new capacitive nanometer displacement sensor with differential sensing structure is proposed for long-range linear displacement measurements based on an approach denoted time grating. Analytical models established using electric field coupling theory and an area integral method indicate that common-mode interference will result in a first-harmonic error in the measurement results. To reduce the common-mode interference, the proposed sensor design employs a differential sensing structure, which adopts a second group of induction electrodes spatially separated from the first group of induction electrodes by a half-pitch length. Experimental results based on a prototype sensor demonstrate that the measurement accuracy and the stability of the sensor are substantially improved after adopting the differential sensing structure. Finally, a prototype sensor achieves a measurement accuracy of  ±200 nm over the full 200 mm measurement range of the sensor.

  10. Study of the Inception Length of Flow over Stepped Spillway Models ...

    African Journals Online (AJOL)

    The results showed that the inception (development) length increases as the unit discharge increases and it decreases with an increase in both stepped roughness height and chute angle. The ratio of the development length, in this study, to that of Bauer's was found to be 4:5. Finally, SMM-5 produced the least velocity of ...

  11. Standardizing Scale Height Computation of Maven Ngims Neutral Data and Variations Between Exobase and Homeopause Scale Heights

    Science.gov (United States)

    Elrod, M. K.; Slipski, M.; Curry, S.; Williamson, H. N.; Benna, M.; Mahaffy, P. R.

    2017-12-01

    The MAVEN NGIMS team produces a level 3 product which includes the computation of Ar scale height an atmospheric temperatures at 200 km. In the latest version (v05_r01) this has been revised to include scale height fits for CO2, N2 O and CO. Members of the MAVEN team have used various methods to compute scale heights leading to significant variations in scale height values depending on fits and techniques within a few orbits even, occasionally, the same pass. Additionally fitting scale heights in a very stable atmosphere like the day side vs night side can have different results based on boundary conditions. Currently, most methods only compute Ar scale heights as it is most stable and reacts least with the instrument. The NGIMS team has chosen to expand these fitting techniques to include fitted scale heights for CO2, N2, CO, and O. Having compared multiple techniques, the method found to be most reliable for most conditions was determined to be a simple fit method. We have focused this to a fitting method that determines the exobase altidude of the CO2 atmosphere as a maximum altitude for the highest point for fitting, and uses the periapsis as the lowest point and then fits the altitude versus log(density). The slope of altitude vs log(density) is -1/H where H is the scale height of the atmosphere for each species. Since this is between the homeopause and the exobase, each species will have a different scale height by this point. This is being released as a new standardization for the level 3 product, with the understanding that scientists and team members will continue to compute more precise scale heights and temperatures as needed based on science and model demands. This is being released in the PDS NGIMS level 3 v05 files for August 2017. Additionally, we are examining these scale heights for variations seasonally, diurnally, and above and below the exobase. The atmosphere is significantly more stable on the dayside than on the nightside. We have also found

  12. Degeneration and height of cervical discs classified from MRI compared with precise height measurements from radiographs

    International Nuclear Information System (INIS)

    Kolstad, Frode; Myhr, Gunnar; Kvistad, Kjell Arne; Nygaard, Oystein P.; Leivseth, Gunnar

    2005-01-01

    Study design: Descriptive study comparing MRI classifications with measurements from radiographs. Objectives: 1.Define the relationship between MRI classified cervical disc degeneration and objectively measured disc height. 2.Assess the level of inter- and intra-observer errors using MRI in defining cervical disc degeneration. Summary of background data: Cervical spine degeneration has been defined radiologically by loss of disc height, decreased disc and bone marrow signal intensity and disc protrusion/herniation on MRI. The intra- and inter-observer error using MRI in defining cervical degeneration influences data interpretation. Few previous studies have addressed this source of error. The relation and time sequence between cervical disc degeneration classified by MRI and cervical disc height decrease measured from radiographs is unclear. Methods: The MRI classification of degeneration was based on nucleus signal, prolaps identification and bone marrow signal. Two neuro-radiologists evaluated the MR-images independently in a blinded fashion. The radiographic disc height measurements were done by a new computer-assisted method compensating for image distortion and permitting comparison with normal level-, age- and gender-appropriate disc height. Results/conclusions: 1.Progressing disc degeneration classified from MRI is on average significantly associated with a decrease of disc height as measured from radiographs. Within each MRI defined category of degeneration measured disc heights, however, scatter in a wide range. 2.The inter-observer agreement between two neuro-radiologists in both defining degeneration and disc height by MRI was only moderate. Studies addressing questions related to cervical disc degeneration should take this into consideration

  13. Degeneration and height of cervical discs classified from MRI compared with precise height measurements from radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Kolstad, Frode [National Centre of Spinal Disorders, Norwegian University of Science and Technology, University Hospital of Trondheim, 7006 Trondheim (Norway)]. E-mail: frode.kolstad@medisin.ntnu.no; Myhr, Gunnar [Department of Radiology, University Hospital of Trondheim, 7006 Trondheim (Norway); Kvistad, Kjell Arne [Department of Radiology, University Hospital of Trondheim, 7006 Trondheim (Norway); Nygaard, Oystein P. [National Centre of Spinal Disorders, Norwegian University of Science and Technology, University Hospital of Trondheim, 7006 Trondheim (Norway); Leivseth, Gunnar [Department of Neuromedicine, Faculty of Medicine, Norwegian University of Science and Technology, University Hospital of Trondheim, 7006 Trondheim (Norway)

    2005-09-01

    Study design: Descriptive study comparing MRI classifications with measurements from radiographs. Objectives: 1.Define the relationship between MRI classified cervical disc degeneration and objectively measured disc height. 2.Assess the level of inter- and intra-observer errors using MRI in defining cervical disc degeneration. Summary of background data: Cervical spine degeneration has been defined radiologically by loss of disc height, decreased disc and bone marrow signal intensity and disc protrusion/herniation on MRI. The intra- and inter-observer error using MRI in defining cervical degeneration influences data interpretation. Few previous studies have addressed this source of error. The relation and time sequence between cervical disc degeneration classified by MRI and cervical disc height decrease measured from radiographs is unclear. Methods: The MRI classification of degeneration was based on nucleus signal, prolaps identification and bone marrow signal. Two neuro-radiologists evaluated the MR-images independently in a blinded fashion. The radiographic disc height measurements were done by a new computer-assisted method compensating for image distortion and permitting comparison with normal level-, age- and gender-appropriate disc height. Results/conclusions: 1.Progressing disc degeneration classified from MRI is on average significantly associated with a decrease of disc height as measured from radiographs. Within each MRI defined category of degeneration measured disc heights, however, scatter in a wide range. 2.The inter-observer agreement between two neuro-radiologists in both defining degeneration and disc height by MRI was only moderate. Studies addressing questions related to cervical disc degeneration should take this into consideration.

  14. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    Directory of Open Access Journals (Sweden)

    Shunsuke Asahina

    2014-11-01

    Full Text Available Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in york-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the york-shell materials: (i resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii sample preparation for observing internal structures; and (iii X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  15. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    Science.gov (United States)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  16. An antithetic variate to facilitate upper-stem height measurements for critical height sampling with importance sampling

    Science.gov (United States)

    Thomas B. Lynch; Jeffrey H. Gove

    2013-01-01

    Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur...

  17. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.2; bimetallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.; Sayers, D.

    1993-01-01

    The structural information obtained using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to the study of nanometer scale bimetallic clusters. (author)

  18. Height perception influenced by texture gradient.

    Science.gov (United States)

    Tozawa, Junko

    2012-01-01

    Three experiments were carried out to examine whether a texture gradient influences perception of relative object height. Previous research implicated texture cues in judgments of object width, but similar influences have not been demonstrated for relative height. In this study, I evaluate a hypothesis that the projective ratio of the number of texture elements covered by the objects combined with the ratio of the retinal object heights determines percepts of relative object height. Density of texture background was varied: four density conditions ranged from no-texture to very dense texture. In experiments 1 and 2, participants judged the height of comparison bar compared to the standard bar positioned on no-texture or textured backgrounds. Results showed relative height judgments differed with texture manipulations, consistent with predictions from a hypothesised combination of the number of texture elements with retinal height (experiment 1), or partially consistent with this hypothesis (experiment 2). In experiment 2, variations in the position of a comparison object showed that comparisons located far from the horizon were judged more poorly than in other positions. In experiment 3 I examined distance perception; relative distance judgments were found to be also affected by textured backgrounds. Results are discussed in terms of Gibson's relational theory and distance calibration theory.

  19. SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD -FACING STEP WITH RIBS TURBULATORS

    Directory of Open Access Journals (Sweden)

    Khudheyer S Mushatet

    2011-01-01

    Full Text Available Simulation is presented for a backward facing step flow and heat transfer inside a channel with ribs turbulators. The problem was investigated for Reynolds numbers up to 32000. The effect of a step height, the number of ribs and the rib thickness on the flow and thermal field were investigated. The computed results are presented as streamlines counters, velocity vectors and graphs of Nusselt number and turbulent kinetic energy variation. A control volume method employing a staggered grid techniques was imposed to discretize the governing continuity, full Navier Stockes and energy equations. A computer program using a SIMPLE algorithm was developed to handle the considered problem. The effect of turbulence was modeled by using a k-є model with its wall function formulas. The obtained results show that the strength and size of the re-circulation zones behind the step are increased with the increase of contraction ratio(i.e. with the increase of a step height. The size of recirculation regions and the reattachment length after the ribs are decreased with increasing of the contraction ratio. Also the results show that the Reynolds number and contraction ratio have a significant effect on the variation of turbulent kinetic energy and Nusselt number

  20. STM observations of ferromagnetic clusters

    International Nuclear Information System (INIS)

    Wawro, A.; Kasuya, A.

    1998-01-01

    Co, Fe and Ni clusters of nanometer size, deposited on silicon and graphite (highly oriented pyrolytic graphite), were observed by a scanning tunneling microscope. Deposition as well as the scanning tunneling microscope measurements were carried out in an ultrahigh vacuum system at room temperature. Detailed analysis of Co cluster height was done with the scanning tunneling microscope equipped with a ferromagnetic tip in a magnetic field up to 70 Oe. It is found that bigger clusters (few nanometers in height) exhibit a dependence of their apparent height on applied magnetic field. We propose that such behaviour originates from the ferromagnetic ordering of cluster and associate this effect to spin polarized tunneling. (author)

  1. Characterization of nano-textured samples in a production environment

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Bilenberg, Brian

    2015-01-01

    , such as a machine floor. The acquisition and analysing time for the topological parameters height, width and sidewall angle is only a few milliseconds. It is demonstrated that by simple adaptions to an optical microscope we can measure nano-textured surfaces with an uncertainty of a few nanometers for the height......Nano-textured surfaces have been characterized by optical diffraction techniques using an adapted commercial light microscope with two detectors, a CCD camera and a spectrometer. We demonstrate that the microscope has a resolution in the nanometer range, also in an environment with many vibrations...

  2. Lipid domain formation and ligand-receptor distribution in lipid bilayer membranes investigated by atomic force microscopy

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Mouritsen, O.G.; Jørgensen, K.

    2002-01-01

    A novel experimental technique, based on atomic force microscopy (AFM), is proposed to visualize the lateral organization of membrane systems in the nanometer range. The technique involves the use of a ligand-receptor pair, biotin-avidin, which introduces a height variation on a solid-supported l......A novel experimental technique, based on atomic force microscopy (AFM), is proposed to visualize the lateral organization of membrane systems in the nanometer range. The technique involves the use of a ligand-receptor pair, biotin-avidin, which introduces a height variation on a solid...

  3. Spinel Li2CoTi3O8 nanometer obtained for application as pigment

    International Nuclear Information System (INIS)

    Costa de Camara, M. S.; Alves Pimentel, L.; Longo, E.; Nobrega Azevedo, L. da; Araujo Melo, D. M. de

    2016-01-01

    Pigments are used in ceramics, cosmetics, inks, and other applications widely materials. To this must be single and easily reproducible. Moreover, the pigments obtained in the nanoscale are more stable, reproducible and highlight color in small amounts compared with those obtained in micrometer scale. The mixed oxides with spinel structures AB 2 O 4 have important applications, including: pigments, refractories, catalytic and electronic ceramics. In this context, the aim of this work was the preparation of powder Li 2 CoTi 3 O 8 spinel phase with nanometer particle size of the polymeric precursor method (Pechini) and characterization by means of thermal analysis (TG/DTA) X-ray diffraction (XRD), refined by the Rietveld method, BET, transmission electron microscopy (TEM), Raman and colorimetric coordinates. The pigment was obtained by heat treatment of 400 degree centigrade to 1000 degree centigrade after pyrolysis at 300 degree centigrade/1 h for removing the organic material. Li 2 CoTi 3 O 8 desired spinel phase was obtained from 500 degree centigrade, and presenting stability nanometer to about 1.300 degree centigrade. Spinel green phase introduced at temperatures in the range of 400 degree centigrade and 500 degree centigrade, and 600 degree centigrade at temperatures between blue and 1000 degree centigrade. (Author)

  4. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy

    International Nuclear Information System (INIS)

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2010-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze valence states at nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO x micro-patterns prepared by O 2 + ion implantation in Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample was topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of the PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale. (author)

  5. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy

    International Nuclear Information System (INIS)

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2008-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze the valence states at the nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO x micro-patterns prepared by O 2 + ion implantation in a Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample is topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale. (author)

  6. On High-Frequency Topography-Implied Gravity Signals for a Height System Unification Using GOCE-Based Global Geopotential Models

    Science.gov (United States)

    Grombein, Thomas; Seitz, Kurt; Heck, Bernhard

    2017-03-01

    National height reference systems have conventionally been linked to the local mean sea level, observed at individual tide gauges. Due to variations in the sea surface topography, the reference levels of these systems are inconsistent, causing height datum offsets of up to ±1-2 m. For the unification of height systems, a satellite-based method is presented that utilizes global geopotential models (GGMs) derived from ESA's satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context, height datum offsets are estimated within a least squares adjustment by comparing the GGM information with measured GNSS/leveling data. While the GNSS/leveling data comprises the full spectral information, GOCE GGMs are restricted to long wavelengths according to the maximum degree of their spherical harmonic representation. To provide accurate height datum offsets, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. Therefore, a combination of the GOCE information with the high-resolution Earth Gravitational Model 2008 (EGM2008) is performed. The main contribution of this paper is to analyze the benefit, when high-frequency topography-implied gravity signals are additionally used to reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new method is proposed that does not rely on an assumed spectral consistency of topographic heights and implied gravity as is the case for the residual terrain modeling (RTM) technique. In the first step of this new approach, gravity forward modeling based on tesseroid mass bodies is performed according to the Rock-Water-Ice (RWI) approach. In a second step, the resulting full spectral RWI-based topographic potential values are reduced by the effect of the topographic gravity field model RWI_TOPO_2015, thus, removing the long to medium wavelengths. By using the latest GOCE GGMs, the impact of topography

  7. Height and Tilt Geometric Texture

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  8. Nanometer and molecular materials: the greatness of the very tiny; Materiales manometricos y moleculares: la grandeza de lo infimo

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Marina [Centro de Investigacion en Energia (CIE) de la UNAM, Temixco, Morelos (Mexico)

    2010-07-01

    Some of the materials have been present in our lives for many years, and now appear with unique or improved properties by the fact that they can be manufactured in the nanometer scale; that is, a million times smaller than a millimeter and with geometries that include the nanodots, the nanotubes, the nanowires, to mention a few of them. The most popular is the titanium dioxide (Titania), known by many as the white pigment in paints, sunscreens, cosmetics and others for their null toxicity, low cost and high stability. Strictly speaking, these features are really applicable to the micrometric material (which is a thousand times larger than the nanometer) and it is still to be proven toxicity and stability of the nanometer materials; but it is a fact that the nanometer titania is very popular in a multitude of applications that have to do with catalysis, sensors, and energy conversion and storing. We will also deal with conductive polymers, which are molecular conjugated materials. [Spanish] Algunos de los materiales han estado presentes en nuestras vidas por muchos anos y ahora aparecen con propiedades unicas o mejoradas por el hecho de que se pueden fabricar en la escala de los nanometros; esto es, un millon de veces mas pequenos que un milimetro y con geometrias que comprenden los nanopuntos, los nanotubos, los nanoalambres, por mencionar algunas. El mas popular es el dioxido de titanio (titania), conocido por muchos como el pigmento blanco de las pinturas, filtros solares, cosmeticos y demas, por su nula toxicidad, bajo costo y gran estabilidad. Estrictamente hablando, estas caracteristicas son realmente aplicables al material micrometrico (que es mil veces mas grande que el nanometrico) y todavia esta por probarse la toxicidad y estabilidad de los nanomateriales; pero es un hecho que la titania nanometrica es muy popular en un sinfin de aplicaciones que tienen que ver con catalisis, sensores, y conversion y almacenamiento de energia. Hablaremos tambien de

  9. Final height and intrauterine growth retardation.

    Science.gov (United States)

    Tauber, Maïthé

    2017-06-01

    Approximately 10% of small for gestational age (SGA) children maintain a small body size throughout childhood and often into adult life with a decreased pubertal spurt. Growth hormone (GH) therapy increases short-term growth in a dose-dependent manner and adult height had now been well documented. Shorter children might benefit from a higher dose at start (50μg/kg/day). The response to GH treatment was similar for both preterm and term short SGA groups and the effect of GH treatment on adult height showed a wide variation in growth response. As a whole, mean adult height is higher than -2 SDS in 60% of patients and 70% reached an adult height in their target height with better results with higher doses and combined GnRH analog therapy in those who were short at onset of puberty. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Correlation Equation of Fault Size, Moment Magnitude, and Height of Tsunami Case Study: Historical Tsunami Database in Sulawesi

    Science.gov (United States)

    Julius, Musa, Admiral; Pribadi, Sugeng; Muzli, Muzli

    2018-03-01

    Sulawesi, one of the biggest island in Indonesia, located on the convergence of two macro plate that is Eurasia and Pacific. NOAA and Novosibirsk Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determination of correlation between tsunami and earthquake parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights on this study sourced from NOAA and Novosibirsk Tsunami database, completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between moment magnitude, fault size and tsunami height by simple regression. The step of this research are data collecting, processing, and regression analysis. Result shows moment magnitude, fault size and tsunami heights strongly correlated. This analysis is enough to proved the accuracy of historical tsunami database in Sulawesi on NOAA, Novosibirsk Tsunami Laboratory and PTWC.

  11. Shoe collar height effect on athletic performance, ankle joint kinematics and kinetics during unanticipated maximum-effort side-cutting performance.

    Science.gov (United States)

    Lam, Gilbert Wing Kai; Park, Eun Jung; Lee, Ki-Kwang; Cheung, Jason Tak-Man

    2015-01-01

    Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.

  12. Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials

    Science.gov (United States)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Yoon, Bokwon; Schweinberger, Florian F.; Landman, Uzi; Heiz, Ueli

    2016-10-01

    The nature of the nano-catalyzed hydrogenation of ethylene, yielding benchmark information pertaining to the concept of structure sensitivity/insensitivity and its applicability at the bottom of the catalyst particle size-range, is explored with experiments on size-selected Ptn (n = 7-40) clusters soft-landed on MgO, in conjunction with first-principles simulations. As in the case of larger particles both the direct ethylene hydrogenation channel and the parallel hydrogenation-dehydrogenation ethylidyne-producing route must be considered, with the fundamental uncovering that at the reaction exhibits characteristics consistent with structure sensitivity, in contrast to the structure insensitivity found for larger particles. In this size-regime, the chemical properties can be modulated and tuned by a single atom, reflected by the onset of low temperature hydrogenation at T > 150 K catalyzed by Ptn (n ≥ 10) clusters, with maximum room temperature reactivity observed for Pt13 using a pulsed molecular beam technique. Structure insensitive behavior, inherent for specific cluster sizes at ambient temperatures, can be induced in the more active sizes, e.g. Pt13, by a temperature increase, up to 400 K, which opens dehydrogenation channels leading to ethylidyne formation. This reaction channel was, however found to be attenuated on Pt20, as catalyst activity remained elevated after the 400 K step. Pt30 displayed behavior which can be understood from extrapolating bulk properties to this size range; in particular the calculated d-band center. In the non-scalable sub-nanometer size regime, however, precise control of particle size may be used for atom-by-atom tuning and manipulation of catalyzed hydrogenation activity and selectivity.

  13. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  14. Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio

    CERN Document Server

    Morgado, Alonso; Rosa, José M

    2012-01-01

    This book presents innovative solutions for the implementation of Sigma-Delta Modulation (SDM) based Analog-to-Digital Conversion (ADC), required for the next generation of wireless hand-held terminals. These devices will be based on the so-called multistandard transceiver chipsets, integrated in nanometer CMOS technologies. One of the most challenging and critical parts in such transceivers is the analog-digital interface, because of the assorted signal bandwidths and dynamic ranges that can be required to handle the A/D conversion for several operation modes.   This book describes new adaptive and reconfigurable SDM ADC topologies, circuit strategies and synthesis methods, specially suited for multi-standard wireless telecom systems and future Software-defined-radios (SDRs) integrated in nanoscale CMOS. It is a practical book, going from basic concepts to the frontiers of SDM architectures and circuit implementations, which are explained in a didactical and systematic way. It gives a comprehensive overview...

  15. Transmission electron microscopy studies on nanometer-sized ω phase produced in Gum Metal

    International Nuclear Information System (INIS)

    Yano, Takaaki; Murakami, Yasukazu; Shindo, Daisuke; Hayasaka, Yuichiro; Kuramoto, Shigeru

    2010-01-01

    The morphology, numerical density and average spacing of the ω phase formed in Gum Metal, a Ti-based alloy showing unique mechanical properties, were studied by transmission electron microscopy. Based on dark-field image observations and precise thickness measurements using a thin-foil specimen, the average spacing of the nanometer-sized ω phase was determined to be 6 nm. This spacing appeared to be sufficiently small for trapping dislocations. The results are discussed in conjunction with the dislocation-free deformation mechanism proposed for Gum Metal.

  16. A New Nonlinear Model of Body Resistance in Nanometer PD SOI MOSFETs

    Directory of Open Access Journals (Sweden)

    Arash Daghighi

    2011-01-01

    Full Text Available In this paper, a nonlinear model for the body resistance of a 45nm PD SOI MOSFET is developed. This model verified on the base of the small signal three-dimensional simulation results. In this paper by using the three-dimensional simulation of ISE-TCAD software, the indicating factors of body resistance in nanometer transistors and then are shown, using the surface potential model. A mathematical relation to calculat the body resistance incorporating device width and body potential was derived. Excellent agreement was obtained by comparing the model outputs and three-dimensional simulation results.

  17. Challenges in Defining Tsunami Wave Height

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Mungov, G.; Sweeney, A.; Arcos, N. P.

    2017-12-01

    The NOAA National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 Mw earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height, NCEI will consider adding an additional field for the maximum peak measurement.

  18. Combined Treatment with Gonadotropin-releasing Hormone Analog and Anabolic Steroid Hormone Increased Pubertal Height Gain and Adult Height in Boys with Early Puberty for Height

    OpenAIRE

    Tanaka, Toshiaki; Naiki, Yasuhiro; Horikawa, Reiko

    2012-01-01

    Twenty-one boys with a height of 135 cm or less at onset of puberty were treated with a combination of GnRH analog and anabolic steroid hormone, and their pubertal height gain and adult height were compared with those of untreated 29 boys who enter puberty below 135 cm. The mean age at the start of treatment with a GnRH analog, leuprorelin acetate depot (Leuplin?) was 12.3 yr, a mean of 1.3 yr after the onset of puberty, and GnRH analog was administered every 3 to 5 wk thereafter for a mean d...

  19. Asymmetric step-like characteristics in a tilted rocking ratchet potential

    International Nuclear Information System (INIS)

    Lee, A. Khangjune; Lee, Jong-Rim; Lee, K.H.

    2012-01-01

    The overdamped Langevin dynamics has been employed to study the directional transport of particles driven in a tilted rocking ratchet potential. The system subjected to a constant direct force undergoes an asymmetrical dynamic transition from a static state to a sliding state at two different critical forces that are consistent with the predicted values. When an additional alternating force is applied to the system, the time-averaged velocity shows several steps of equal height as the direct force increases. These steps are similar to the Shapiro steps in an rf-driven Josephson junction, and appear whenever the system's natural frequency given by the direct force matches an integer multiple of the applied frequency. When the alternating force exceeds a certain critical value which can be also estimated for a slow rocking, a directional motion known as the rectification effect occurs even at zero direct force.

  20. Effect of firing conditions & release height on terminal performance of submunitions and conditions for optimum height of release

    Directory of Open Access Journals (Sweden)

    L.K. Gite

    2017-06-01

    Full Text Available Submunitions should exhibit optimum terminal performance at target end when released from certain pre-determined height. Selection of an optimum height of release of the submunitions depends on the terminal parameters like forward throw, remaining velocity, impact angle and flight time. In this paper, the effects of initial firing conditions and height of release on terminal performance of submunitions discussed in detail. For different height of release, the relation between range and forward throw is also established & validated for a number of firing altitude and rocket configurations.

  1. Height predicts jealousy differently for men and women

    NARCIS (Netherlands)

    Buunk, Abraham P.; Park, Justin H.; Zurriaga, Rosario; Klavina, Liga; Massar, Karlijn

    Because male height is associated with attractiveness, dominance, and reproductive success, taller men may be less jealous. And because female height has a curvilinear relationship with health and reproductive success (with average-height females having the advantages), female height may have a

  2. The association between adult attained height and sitting height with mortality in the European Prospective Investigation into Cancer and Nutrition (EPIC.

    Directory of Open Access Journals (Sweden)

    Norie Sawada

    Full Text Available Adult height and sitting height may reflect genetic and environmental factors, including early life nutrition, physical and social environments. Previous studies have reported divergent associations for height and chronic disease mortality, with positive associations observed for cancer mortality but inverse associations for circulatory disease mortality. Sitting height might be more strongly associated with insulin resistance; however, data on sitting height and mortality is sparse. Using the European Prospective Investigation into Cancer and Nutrition study, a prospective cohort of 409,748 individuals, we examined adult height and sitting height in relation to all-cause and cause-specific mortality. Height was measured in the majority of participants; sitting height was measured in ~253,000 participants. During an average of 12.5 years of follow-up, 29,810 deaths (11,931 from cancer and 7,346 from circulatory disease were identified. Hazard ratios (HR with 95% confidence intervals (CI for death were calculated using multivariable Cox regression within quintiles of height. Height was positively associated with cancer mortality (men: HRQ5 vs. Q1 = 1.11, 95%CI = 1.00-1.24; women: HRQ5 vs. Q1 = 1.17, 95%CI = 1.07-1.28. In contrast, height was inversely associated with circulatory disease mortality (men: HRQ5 vs. Q1 = 0.63, 95%CI = 0.56-0.71; women: HRQ5 vs. Q1 = 0.81, 95%CI = 0.70-0.93. Although sitting height was not associated with cancer mortality, it was inversely associated with circulatory disease (men: HRQ5 vs. Q1 = 0.64, 95%CI = 0.55-0.75; women: HRQ5 vs. Q1 = 0.60, 95%CI = 0.49-0.74 and respiratory disease mortality (men: HRQ5 vs. Q1 = 0.45, 95%CI = 0.28-0.71; women: HRQ5 vs. Q1 = 0.60, 95%CI = 0.40-0.89. We observed opposing effects of height on cancer and circulatory disease mortality. Sitting height was inversely associated with circulatory disease and respiratory disease mortality.

  3. 2D AND 3D KINEMATICS DURING LATERAL STEP-DOWN TESTING IN INDIVIDUALS WITH ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    Science.gov (United States)

    Mostaed, Maria F; Werner, David M; Barrios, Joaquin A

    2018-02-01

    The lateral step-down test is an established clinical evaluation tool to assess quality of movement in patients with knee disorders. However, this test has not been investigated in individuals after anterior cruciate ligament reconstruction (ACLR) in association with quantitative 3D motion analysis. The purpose of this study was to determine the strength of association between visually-assessed quality of movement during the lateral step-down test and 3D lower limb kinematics in patients with history of ACLR. A second purpose was to compare kinematics between subgroups based on the presence or absence of faulty alignments during the task. The final purpose was to compare visually-assessed quality of movement scores between box heights during lateral step-down testing. Twenty subjects at least one year status post-ACLR (18 females, age of 24.5 ± 4.6 years and body mass index of 23.4 ± 2.3 kg/m 2 ) performed the lateral step-down test unilaterally on the surgical limb atop four and six inch boxes. A board-certified orthopedic physical therapist scored overall quality of movement during the lateral step-down test using established criteria during 2D video playback. Lower limb kinematics were simultaneously collected using 3D motion capture. An alpha level of 0.05 was used for all statistical treatments. Overall 2D quality of movement score significantly correlated (r =0.47-0.57) with 3D hip adduction and hip internal rotation across box heights. Across box heights, the presence of faulty pelvic alignment differentiated a subgroup exhibiting less peak knee flexion, and the presence of faulty knee alignment differentiated a subgroup exhibiting greater peak hip adduction. The six inch box elicited worse quality of movement compared to the four inch box. These results suggest that visually-assessed quality of movement is associated with several kinematic variables after ACLR. 2D movement deviations at the pelvis appear to consistently relate to less knee

  4. Genetically Determined Height and Coronary Artery Disease

    NARCIS (Netherlands)

    Nelson, Christopher P.; Hamby, Stephen E.; Saleheen, Danish; Hopewell, Jenna C.; Zeng, Lingyao; Assimes, Themistocles L.; Kanoni, Stavroula; Willenborg, Christina; Burgess, Stephen; Amouyel, Phillipe; Anand, Sonia; Blankenberg, Stefan; Boehm, Bernhard O.; Clarke, Robert J.; Collins, Rory; Dedoussis, George; Farrall, Martin; Franks, Paul W.; Groop, Leif; Hall, Alistair S.; Hamsten, Anders; Hengstenberg, Christian; Hovingh, G. Kees; Ingelsson, Erik; Kathiresan, Sekar; Kee, Frank; König, Inke R.; Kooner, Jaspal; Lehtimäki, Terho; März, Winifred; McPherson, Ruth; Metspalu, Andres; Nieminen, Markku S.; O'Donnell, Christopher J.; Palmer, Colin N. A.; Peters, Annette; Perola, Markus; Reilly, Muredach P.; Ripatti, Samuli; Roberts, Robert; Salomaa, Veikko; Shah, Svati H.; Schreiber, Stefan; Siegbahn, Agneta; Thorsteinsdottir, Unnur; Veronesi, Giovani; Wareham, Nicholas; Willer, Cristen J.; Zalloua, Pierre A.; Erdmann, Jeanette

    2015-01-01

    BACKGROUND The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested

  5. Cleanability evaluation of ceramic glazes with nanometer far-infrared materials using contact angle measurement.

    Science.gov (United States)

    Wang, Lijuan; Liang, Jinsheng; Di, Xingfu; Tang, Qingguo

    2014-05-01

    The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.

  6. 14 CFR 29.87 - Height-velocity envelope.

    Science.gov (United States)

    2010-01-01

    ... Category A engine isolation requirements, the height-velocity envelope for complete power failure must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a...

  7. Research on long-range grating interferometry with nanometer resolution

    International Nuclear Information System (INIS)

    Chu, Xingchun; Zhao, Shanghong; Lü, Haibao

    2008-01-01

    Grating interferometry that features long range and nanometer resolution is presented. The optical system was established based on a single long metrology grating. The large fringe multiplication was achieved by properly selecting two high-order diffraction beams to form a fringe pattern. The fringe pattern collected by a linear array was first tailored to a few multiples of fringes in order to suppress the effect of the energy leakage on phase-extracting precision when the fast Fourier transform (FFT) algorithm was used to calculate its phase. Thus, the phase-extracting precision of a tailored fringe pattern by FFT was greatly improved. Based on this, a novel subdividing method, which exploited the time-shift property of FFT, was developed to subdivide the fringe with large multiple and high accuracy. Numerical results show that the system resolution reaches 1 nm. The experimental results obtained against a capacitive sensor in the sub-mm range show that the measurement precision of the system is less than 10 nm. (technical design note)

  8. Wuthering Heights

    NARCIS (Netherlands)

    Bronte, Emily

    2005-01-01

    Wuthering Heights tells the story of a romance between two youngsters: Catherine Earnshaw and an orphan boy, Heathcliff. After she rejects him for a boy from a better background he develops a lust for revenge that takes over his life. In attempting to win her back and destroy those he blames for his

  9. Mixing height measurements from UHF wind profiling radar

    Energy Technology Data Exchange (ETDEWEB)

    Angevine, W.M.; Grimsdell, A.W. [CIRES, Univ. of Colorado, and NOAA Aeronomy Lab., Boulder, Colorado (United States)

    1997-10-01

    Mixing height in convective boundary layers can be detected by wind profiling radars (profilers) operating at or near 915 MHZ. We have made such measurements in a variety of settings including Alabama in 1992; Nova Scotia, Canada, during the North Atlantic Regional Experiment (NARE) 1993; Tennessee during the Southern Oxidant Study (SOS) 1994; near a 450 m tower in Wisconsin in 1995; and extensively in Illinois during the Flatland95, `96, and `97 experiments, as well as continuous operations at the Flatland Atmospheric Observatory. Profiler mixing height measurements, like all measurements, are subject to some limitations. The most important of these are due to rainfall, minimum height, and height resolution. Profilers are very sensitive to rain, which dominates the reflectivity and prevents the mixing height from being detected. Because the best height resolution is currently 60 m and the minimum height is 120-150 m AGL, the profiler is not suited for detecting mixing height in stable or nocturnal boundary layers. Problems may also arise in very dry or cold environments. (au) 12 refs.

  10. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition.

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Li, Tao; Yin, Yaling; Xia, Yong; Yin, Jianping

    2017-08-10

    Surface plasmon polaritons, due to their tight spatial confinement and high local intensity, hold great promises in nanofabrication which is beyond the diffraction limit of conventional lithography. Here, we demonstrate theoretically the 2D surface optical lattices based on the surface plasmon polariton interference field, and the potential application to nanometer-scale molecular deposition. We present the different topologies of lattices generated by simple configurations on the substrate. By explicit theoretical derivations, we explain their formation and characteristics including field distribution, periodicity and phase dependence. We conclude that the topologies can not only possess a high stability, but also be dynamically manipulated via changing the polarization of the excitation laser. Nanometer-scale molecular deposition is simulated with these 2D lattices and discussed for improving the deposition resolution. The periodic lattice point with a width resolution of 33.2 nm can be obtained when the fullerene molecular beam is well-collimated. Our study can offer a superior alternative method to fabricate the spatially complicated 2D nanostructures, with the deposition array pitch serving as a reference standard for accurate and traceable metrology of the SI length standard.

  11. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  12. 14 CFR 27.87 - Height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... applicable power failure condition in paragraph (b) of this section, a limiting height-speed envelope must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-speed envelope. 27.87 Section 27.87... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.87 Height-speed envelope. (a) If there is any...

  13. Nanometer, submicron and micron sized aluminum powder prepared by semi-solid mechanical stirring method with addition of ceramic particles

    International Nuclear Information System (INIS)

    Qin, X.H.; Jiang, D.L.; Dong, S.M.

    2004-01-01

    Composite powder, which is a mixture of Al/Al 2 O 3 composite particles and nanometer, submicron and micron sized aluminum powder, was prepared by semi-solid mechanical stirring method with addition of Al 2 O 3 ceramic particles. The ceramic particles have an average diameter of 80 μm and a volume fraction of 15% in the slurry. The methods used to measure the size distribution of particles greater than 50 μm and less than 50 μm were sieve analysis and photosedimentation, respectively. The surface morphology and transverse sections of the composite powder of different sizes were examined by scanning electron microscope (SEM), optical microscope and auger electron spectroscopy (AES). The results indicate that the composite powder prepared in present work have a wide size distribution ranging from less than 50-900 μm, and the aluminum particles and Al/Al 2 O 3 composite particles are separated and isolated. The particles greater than 200 μm and less than 50 μm are almost pure aluminum powder. The rate of conversion of ingot aluminum into particles less than 1 μm containing nanometer and submicron sizes is 1.777 wt.% in this work. The aluminum powder of different sizes has different shape and surface morphology, quasi-spherical in shape with rough surface for aluminum particles of micron scale, irregular in shape for aluminum particles of submicron scale, and quite close to a globular or an excellent globular in shape for aluminum particles of nanometer size. On the other hand, the surface of ceramic particle was coated by aluminum particles with maximum thickness less than 10 μm containing nanometer and submicron sizes as a single layer. It is suggested that the surface of ceramic particles can provide more nucleation sites for solidification of liquid aluminum and the nucleation of liquid aluminum can take place readily, grow and adhere on the surface of ceramic particles, although it is poorly wetted by the liquid aluminum and the semi-solid slurry can

  14. Birth order progressively affects childhood height.

    Science.gov (United States)

    Savage, Tim; Derraik, José G B; Miles, Harriet L; Mouat, Fran; Cutfield, Wayne S; Hofman, Paul L

    2013-09-01

    There is evidence suggesting that first-born children and adults are anthropometrically different to later-borns. Thus, we aimed to assess whether birth order was associated with changes in growth and metabolism in childhood. We studied 312 healthy prepubertal children: 157 first-borns and 155 later-borns. Children were aged 3-10 years, born 37-41 weeks gestation, and of birth weight appropriate-for-gestational-age. Clinical assessments included measurement of children's height, weight, fasting lipid and hormonal profiles and DEXA-derived body composition. First-borns were taller than later-borns (P < 0·0001), even when adjusted for parents' heights (0·31 vs 0·03 SDS; P = 0·001). There was an incremental height decrease with increasing birth order, so that first-borns were taller than second-borns (P < 0·001), who were in turn taller than third-borns (P = 0·007). Further, among sibling pairs both height SDS (P = 0·009) and adjusted height SDS (P < 0·0001) were lower in second- vs first-born children. Consistent with differences in stature, first- (P = 0·043) and second-borns (P = 0·003) had higher IGF-I concentrations than third-borns. Both first- (P < 0·001) and second-borns (P = 0·004) also had reduced abdominal adiposity (lower android fat to gynoid fat ratio) when compared with third-borns. Other parameters of adiposity and blood lipids were unaffected by birth order. First-borns were taller than later-born children, with an incremental height reduction from first to third birth order. These differences were present after correction for genetic height, and associated to some extent with alterations in plasma IGF-I. Our findings strengthen the evidence that birth order is associated with phenotypic changes in childhood. © 2013 John Wiley & Sons Ltd.

  15. An analysis of the relationship between bodily injury severity and fall height in victims of fatal falls from height

    Directory of Open Access Journals (Sweden)

    Grzegorz Teresiński

    2017-03-01

    Full Text Available Aim of the study : One of the basic issues discussed in forensic literature regarding falls from a height is determination of fall heights and differentiation between suicidal and accidental falls. The aim of the study was to verify the usefulness of the available methods for the purposes of forensic expertises. Material and methods : The study encompassed fatalities of falls from a height whose autopsies were performed in the Department of Forensic Medicine in Lublin. Results : Similarly to other authors, the severity of injuries was assessed using the Abbreviated Injury Scale (AIS and injury severity score (ISS. The study findings demonstrated a statistically significant correlation between the fall height and the severity of injuries according to ISS and a statistically significant difference in fall heights between the groups of accidents and suicides.

  16. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    Science.gov (United States)

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  17. Height and Breast Cancer Risk

    DEFF Research Database (Denmark)

    Zhang, Ben; Shu, Xiao-Ou; Delahanty, Ryan J

    2015-01-01

    BACKGROUND: Epidemiological studies have linked adult height with breast cancer risk in women. However, the magnitude of the association, particularly by subtypes of breast cancer, has not been established. Furthermore, the mechanisms of the association remain unclear. METHODS: We performed a meta......-analysis to investigate associations between height and breast cancer risk using data from 159 prospective cohorts totaling 5216302 women, including 113178 events. In a consortium with individual-level data from 46325 case patients and 42482 control patients, we conducted a Mendelian randomization analysis using...... a genetic score that comprised 168 height-associated variants as an instrument. This association was further evaluated in a second consortium using summary statistics data from 16003 case patients and 41335 control patients. RESULTS: The pooled relative risk of breast cancer was 1.17 (95% confidence...

  18. Adult body height is a good predictor of different dimensions of cognitive function in aged individuals

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pereira

    2016-09-01

    Full Text Available Background: Adult height, weight and adiposity measures have been suggested by some studies to be predictors of depression, cognitive impairment and dementia. However, the presence of confounding factors and the lack of a thorough neuropsychological evaluation in many of these studies have precluded a definitive conclusion about the influence of anthropometric measures in cognition and depression. In this study we aim to assess the value of adult height and weight to predict cognitive impairment and depressive symptoms in aged individuals.Methods and Findings: Cross-sectional study performed between 2010 and 2012 in the Portuguese general community. A total of 1050 participants were included in the study and randomly selected from local area health authority registries. The cohort was representative of the general Portuguese population with respect to age (above 50 years of age and gender. Cognitive function was assessed using a battery of tests grouped in two dimensions: general executive function and memory. Two-step hierarchical multiple linear regression models were conducted to determine the predictive value of anthropometric measures in cognitive performance and mood before and after correction for possible confounding factors (gender, age, school years, physical activity, alcohol consumption and smoking habits. We found single associations of weight, height, body mass index, abdominal perimeter and age with executive function, memory and depressive symptoms. However, when included in a predictive model adjusted for gender, age, school years and lifestyle factors only height prevailed as a significant predictor of general executive function (β=0,139; p<0,001 and memory (β=0,099; p<0,05. No relation was found between mood and any of the anthropometric measures studied.Conclusions and Relevance: Height is an independent predictor of cognitive function in late-life and its effects on the general and executive function and memory are

  19. Experimental investigation of turbulent flow in a channel with the backward-facing inclined step

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2012-04-01

    Full Text Available The work deals with the experimental investigation of turbulent flow in a closed channel with the backward-facing inclined step. Experiments were carried by means of the PIV optical measuring method in the channel of the rectangular cross-section in the inlet part and with inclined steps of the constant height H mm and various inclination angles for a wide range of the Reynolds number. The attention was paid especially to the separation region behind the step and to the relaxation of the shear layer after the reattachment in the outlet part of the channel. The dependence of the length of the separation region on the Reynolds number was obtained for various step angles. Optical measurements were completed by the measurement of static pressure distribution in the inlet and outlet part of the channel to estimate energy losses.

  20. Near-field diffraction of laser light by dielectric corner step

    Science.gov (United States)

    Stafeev, S.; Kotlyar, V.; Kovalev, A.

    2014-01-01

    The diffraction of a linearly polarized plane wave by a corner dielectric microstep of height equals of two incident wavelengths was studied using finite-difference time domain method and near-field scanning optical microscopy. It was shown that the corner step generates an elongated region of enhanced intensity, termed as a curved laser microjet. The curved laser microjet has a length of about DOF = 9.5λ and the smallest diameter FWHM = (1.94+/-0.15)λ at distance z = 5.5λ.

  1. Mesoporous TiO2 Micro-Nanometer Composite Structure: Synthesis, Optoelectric Properties, and Photocatalytic Selectivity

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-01-01

    Full Text Available Mesoporous anatase TiO2 micro-nanometer composite structure was synthesized by solvothermal method at 180°C, followed by calcination at 400°C for 2 h. The as-prepared TiO2 was characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, and Fourier transform infrared spectrum (FT-IR. The specific surface area and pore size distribution were obtained from N2 adsorption-desorption isotherm, and the optoelectric property of the mesoporous TiO2 was studied by UV-Vis absorption spectrum and surface photovoltage spectra (SPS. The photocatalytic activity was evaluated by photodegradation of sole rhodamine B (RhB and sole phenol aqueous solutions under simulated sunlight irradiation and compared with that of Degussa P-25 (P25 under the same conditions. The photodegradation preference of this mesoporous TiO2 was also investigated for an RhB-phenol mixed solution. The results show that the TiO2 composite structure consists of microspheres (∼0.5–2 μm in diameter and irregular aggregates (several hundred nanometers with rough surfaces and the average primary particle size is 10.2 nm. The photodegradation activities of this mesoporous TiO2 on both RhB and phenol solutions are higher than those of P25. Moreover, this as-prepared TiO2 exhibits photodegradation preference on RhB in the RhB-phenol mixture solution.

  2. Proposed replacement nuclear research reactor, Lucas Heights, NSW

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-12

    all radioactive waste from Lucas Heights for disposal or storage at a National Repository must be a high priority and is dependent on the timely provision of the Repository and Store. The Committee also recommends that provision of the reactor, at an estimated cost of $286.4 million (at 1997 prices) should not be at the expense of other Government science funding. It is also stressed out that there is an urgent need for an agreement on the Community Right to Know Charter. Steps toward its development identified in the Environment Assessment Report should be undertaken as soon as possible to enable the public to be better informed about the further development of the project.

  3. Proposed replacement nuclear research reactor, Lucas Heights, NSW

    International Nuclear Information System (INIS)

    1999-01-01

    all radioactive waste from Lucas Heights for disposal or storage at a National Repository must be a high priority and is dependent on the timely provision of the Repository and Store. The Committee also recommends that provision of the reactor, at an estimated cost of $286.4 million (at 1997 prices) should not be at the expense of other Government science funding. It is also stressed out that there is an urgent need for an agreement on the Community Right to Know Charter. Steps toward its development identified in the Environment Assessment Report should be undertaken as soon as possible to enable the public to be better informed about the further development of the project

  4. Sri Lanka, Colored Height

    Science.gov (United States)

    2005-01-01

    The topography of the island nation of Sri Lanka is well shown in this color-coded shaded relief map generated with digital elevation data from the Shuttle Radar Topography Mission (SRTM). Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. For this special view heights below 10 meters (33 feet) above sea level have been colored red. These low coastal elevations extend 5 to 10 km (3.1 to 6.2 mi) inland on Sri Lanka and are especially vulnerable to flooding associated with storm surges, rising sea level, or, as in the aftermath of the earthquake of December 26, 2004, tsunami. These so-called tidal waves have occurred numerous times in history and can be especially destructive, but with the advent of the near-global SRTM elevation data planners can better predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events. Sri Lanka is shaped like a giant teardrop falling from the southern tip of the vast Indian subcontinent. It is separated from India by the 50km (31mi) wide Palk Strait, although there is a series of stepping-stone coral islets known as Adam's Bridge that almost form a land bridge between the two countries. The island is just 350km (217mi) long and only 180km (112mi) wide at its broadest, and is about the same size as Ireland, West Virginia or Tasmania. The southern half of the island is dominated by beautiful and rugged hill country, and includes Mt Pidurutalagala, the islandaE(TM)s highest point at 2524 meters (8281 ft). The entire northern half comprises a large plain extending from the edge of the hill country to the

  5. Quantum decrease of capacitance in a nanometer-sized tunnel junction

    Science.gov (United States)

    Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.

    2013-03-01

    We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)

  6. Nanometer Linear Focusing of Hard X Rays by a Multilayer Laue Lens

    International Nuclear Information System (INIS)

    Kang, H.C.; Stephenson, G.B.; Maser, J.; Liu, C.; Conley, R.; Macrander, A.T.; Vogt, S.

    2006-01-01

    We report on a type of linear zone plate for nanometer-scale focusing of hard x rays, a multilayer Laue lens (MLL), produced by sectioning a multilayer and illuminating it in Laue diffraction geometry. Because of its large optical depth, a MLL spans the diffraction regimes applicable to a thin Fresnel zone plate and a crystal. Coupled wave theory calculations indicate that focusing to 5 nm or smaller with high efficiency should be possible. Partial MLL structures with outermost zone widths as small as 10 nm have been fabricated and tested with 19.5 keV synchrotron radiation. Focal sizes as small as 30 nm with efficiencies up to 44% are measured

  7. Evolutionary perspectives on human height variation

    NARCIS (Netherlands)

    Stulp, Gert; Barrett, Louise

    Human height is a highly variable trait, both within and between populations, has a high heritability, and influences the manner in which people behave and are treated in society. Although we know much about human height, this information has rarely been brought together in a comprehensive,

  8. The association between adult attained height and sitting height with mortality in the European prospective investigation into cancer and nutrition (EPIC)

    NARCIS (Netherlands)

    Sawada, Norie; Wark, Petra A.; Merritt, Melissa A.; Tsugane, Shoichiro; Ward, Heather A.; Rinaldi, Sabina; Weiderpass, Elisabete; Dartois, Laureen; His, Mathilde; Boutron-Ruault, Marie Christine; Turzanski-Fortner, Renée; Kaaks, Rudolf; Overvad, Kim; Redondo, María Luisa; Travier, Noemie; Molina-Portillo, Elena; Dorronsoro, Miren; Cirera, Lluis; Ardanaz, Eva; Perez-Cornago, Aurora; Trichopoulou, Antonia; Lagiou, Pagona; Valanou, Elissavet; Masala, Giovanna; Pala, Valeria; Peeters, Petra H M; Van Der Schouw, Yvonne T.; Melander, Olle; Manjer, Jonas; Silva, Marisa Da; Skeie, Guri; Tjønneland, Anne; Olsen, Anja; Gunter, Marc J.; Riboli, Elio; Cross, Amanda J.

    2017-01-01

    Adult height and sitting height may reflect genetic and environmental factors, including early life nutrition, physical and social environments. Previous studies have reported divergent associations for height and chronic disease mortality, with positive associations observed for cancer mortality

  9. Prediction of facial height, width, and ratio from thumbprints ridge count and its possible applications

    Directory of Open Access Journals (Sweden)

    Lawan Hassan Adamu

    2017-01-01

    Full Text Available The fingerprints and face recognition are two biometric processes that comprise methods for uniquely recognizing humans based on certain number of intrinsic physical or behavioral traits. The objectives of the study were to predict the facial height (FH, facial width, and ratios from thumbprints ridge count and its possible applications. This was a cross-sectional study. A total of 457 participants were recruited. A fingerprint live scanner was used to capture the plain thumbprint. The facial photograph was captured using a digital camera. Pearson's correlation analysis was used for the relationship between thumbprint ridge density and facial linear dimensions. Step-wise linear multiple regression analysis was used to predict facial distances from thumbprint ridge density. The result showed that in males the right ulnar ridge count correlates negatively with lower facial width (LFW, upper facial width/upper FH (UFW/UFH, lower FH/FH (LFH/FH, and positively with UFH and UFW/LFW. The right and left proximal ridge counts correlate with LFW and UFH, respectively. In males, the right ulnar ridge count predicts LFW, UFW/LFW, UFW/UFH, and LFH/FH. Special upper face height I, LFW, height of lower third of the face, UFW/LFW was predicted by right radial ridge counts. LFH, height of lower third of the face, and LFH/FH were predicted from left ulnar ridge count whereas left proximal ridge count predicted LFW. In females only, the special upper face height I was predicted by right ulnar ridge count. In conclusion, thumbprint ridge counts can be used to predict FH, width, ratios among Hausa population. The possible application of fingerprints in facial characterization for used in human biology, paleodemography, and forensic science was demonstrated.

  10. Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jingtian, E-mail: jingtian.fang@utdallas.edu; Vandenberghe, William G.; Fu, Bo; Fischetti, Massimo V. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2016-01-21

    We present a formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale channel and body. Assuming externally applied potentials that change slowly along the electron-transport direction, we invoke the envelope-wavefunction approximation to apply the open boundary conditions and to develop the transport equations. We construct the full-band open boundary conditions (self-energies of device contacts) from the complex band structure of the contacts. We solve the transport equations and present the expressions required to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ∼66 mV/decade and a drain-induced barrier-lowering of ∼2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA architecture are able to meet the performance requirements of future devices in terms of SS swing and electrostatic control.

  11. Carbon nanotube transistors scaled to a 40-nanometer footprint.

    Science.gov (United States)

    Cao, Qing; Tersoff, Jerry; Farmer, Damon B; Zhu, Yu; Han, Shu-Jen

    2017-06-30

    The International Technology Roadmap for Semiconductors challenges the device research community to reduce the transistor footprint containing all components to 40 nanometers within the next decade. We report on a p-channel transistor scaled to such an extremely small dimension. Built on one semiconducting carbon nanotube, it occupies less than half the space of leading silicon technologies, while delivering a significantly higher pitch-normalized current density-above 0.9 milliampere per micrometer at a low supply voltage of 0.5 volts with a subthreshold swing of 85 millivolts per decade. Furthermore, we show transistors with the same small footprint built on actual high-density arrays of such nanotubes that deliver higher current than that of the best-competing silicon devices under the same overdrive, without any normalization. We achieve this using low-resistance end-bonded contacts, a high-purity semiconducting carbon nanotube source, and self-assembly to pack nanotubes into full surface-coverage aligned arrays. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Depositing nanometer-sized particles of metals onto carbon allotropes

    Science.gov (United States)

    Watson, Kent A. (Inventor); Fallbach, Michael J. (Inventor); Ghose, Sayata (Inventor); Smith, Joseph G. (Inventor); Delozier, Donavon M. (Inventor); Connell, John W. (Inventor)

    2010-01-01

    A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.

  13. Helium Ion Microscope: A New Tool for Sub-nanometer Imaging of Soft Materials

    Science.gov (United States)

    Shutthanandan, V.; Arey, B.; Smallwood, C. R.; Evans, J. E.

    2017-12-01

    High-resolution inspection of surface details is needed in many biological and environmental researches to understand the Soil organic material (SOM)-mineral interactions along with identifying microbial communities and their interactions. SOM shares many imaging characteristics with biological samples and getting true surface details from these materials are challenging since they consist of low atomic number materials. FE-SEM imaging is the main imagining technique used to image these materials in the past. These SEM images often show loss of resolution and increase noise due to beam damage and charging issues. Newly developed Helium Ion Microscope (HIM), on the other hand can overcome these difficulties and give very fine details. HIM is very similar to scanning electron microscopy (SEM) but instead of using electrons as a probe beam, HIM uses helium ions with energy ranges from 5 to 40 keV. HIM offers a series of advantages compared to SEM such as nanometer and sub-nanometer image resolutions (about 0.35 nm), detailed surface topography, high surface sensitivity, low Z material imaging (especially for polymers and biological samples), high image contrast, and large depth of field. In addition, HIM also has the ability to image insulating materials without any conductive coatings so that surface details are not modified. In this presentation, several scientific applications across biology and geochemistry will be presented to highlight the effectiveness of this powerful microscope. Acknowledgements: Research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. Work was supported by DOE-BER Mesoscale to Molecules Bioimaging Project FWP# 66382.

  14. Obtaining of iron particles of nanometer size in a natural zeolite; Obtencion de particulas de hierro de tamano nanometrico en una zeolita natural

    Energy Technology Data Exchange (ETDEWEB)

    Xingu C, E. G.

    2013-07-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  15. Height, selected genetic markers and prostate cancer risk

    DEFF Research Database (Denmark)

    Lophatananon, Artitaya; Stewart-Brown, Sarah; Kote-Jarai, Zsofia

    2017-01-01

    Background:Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a possible role for its association with the risk of aggressive prostate cancer.Methods:We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases...... and 6016 controls and a subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects and their possible interactions.Results:The results suggest that height is associated with high-grade prostate cancer risk. Men with height >180 cm...... are at a 22% increased risk as compared to men with height prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased risk of overall prostate cancer...

  16. Accelerator-based Single-shot Ultrafast Transmission Electron Microscope with Picosecond Temporal Resolution and Nanometer Spatial Resolution

    OpenAIRE

    Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.

    2014-01-01

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs, and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. W...

  17. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  18. 14 CFR 29.1517 - Limiting height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of... following power failure, the range of heights and its variation with forward speed must be established...

  19. Diffraction phase microscopy imaging and multi-physics modeling of the nanoscale thermal expansion of a suspended resistor.

    Science.gov (United States)

    Wang, Xiaozhen; Lu, Tianjian; Yu, Xin; Jin, Jian-Ming; Goddard, Lynford L

    2017-07-04

    We studied the nanoscale thermal expansion of a suspended resistor both theoretically and experimentally and obtained consistent results. In the theoretical analysis, we used a three-dimensional coupled electrical-thermal-mechanical simulation and obtained the temperature and displacement field of the suspended resistor under a direct current (DC) input voltage. In the experiment, we recorded a sequence of images of the axial thermal expansion of the central bridge region of the suspended resistor at a rate of 1.8 frames/s by using epi-illumination diffraction phase microscopy (epi-DPM). This method accurately measured nanometer level relative height changes of the resistor in a temporally and spatially resolved manner. Upon application of a 2 V step in voltage, the resistor exhibited a steady-state increase in resistance of 1.14 Ω and in relative height of 3.5 nm, which agreed reasonably well with the predicted values of 1.08 Ω and 4.4 nm, respectively.

  20. Soft computing methods for geoidal height transformation

    Science.gov (United States)

    Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.

    2009-07-01

    Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.

  1. SPAR-H Step-by-Step Guidance

    Energy Technology Data Exchange (ETDEWEB)

    W. J. Galyean; A. M. Whaley; D. L. Kelly; R. L. Boring

    2011-05-01

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

  2. SPAR-H Step-by-Step Guidance

    International Nuclear Information System (INIS)

    Galyean, W.J.; Whaley, A.M.; Kelly, D.L.; Boring, R.L.

    2011-01-01

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

  3. SPAR-H Step-by-Step Guidance

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Dana L. Kelly; Ronald L. Boring; William J. Galyean

    2012-06-01

    Step-by-step guidance was developed recently at Idaho National Laboratory for the US Nuclear Regulatory Commission on the use of the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method for quantifying Human Failure Events (HFEs). This work was done to address SPAR-H user needs, specifically requests for additional guidance on the proper application of various aspects of the methodology. This paper overviews the steps of the SPAR-H analysis process and highlights some of the most important insights gained during the development of the step-by-step directions. This supplemental guidance for analysts is applicable when plant-specific information is available, and goes beyond the general guidance provided in existing SPAR-H documentation. The steps highlighted in this paper are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff.

  4. Nanometer scale thermometry in a living cell

    Science.gov (United States)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2014-01-01

    Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of sub-degree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool for many areas of biological, physical and chemical research; possibilities range from the temperature-induced control of gene expression2–5 and tumor metabolism6 to the cell-selective treatment of disease7,8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the sub-cellular level2–5. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9mK/Hz) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds, NDs), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular level, enabling unique potential applications in life sciences. PMID:23903748

  5. Effects of Forward- and Backward-Facing Steps on the Crossflow Receptivity and Stability in Supersonic Boundary Layers

    Science.gov (United States)

    Balakumar, P.; King, Rudolph A.; Eppink, Jenna L.

    2014-01-01

    The effects of forward- and backward-facing steps on the receptivity and stability of three-dimensional supersonic boundary layers over a swept wing with a blunt leading edge are numerically investigated for a freestream Mach number of 3 and a sweep angle of 30 degrees. The flow fields are obtained by solving the full Navier-Stokes equations. The evolution of instability waves generated by surface roughness is simulated with and without the forward- and backward-facing steps. The separation bubble lengths are about 5-10 step heights for the forward-facing step and are about 10 for the backward-facing step. The linear stability calculations show very strong instability in the separated region with a large frequency domain. The simulation results show that the presence of backward-facing steps decreases the amplitude of the stationary crossflow vortices with longer spanwise wavelengths by about fifty percent and the presence of forward-facing steps does not modify the amplitudes noticeably across the steps. The waves with the shorter wavelengths grow substantially downstream of the step in agreement with the linear stability prediction.

  6. The Sine Method: An Alternative Height Measurement Technique

    Science.gov (United States)

    Don C. Bragg; Lee E. Frelich; Robert T. Leverett; Will Blozan; Dale J. Luthringer

    2011-01-01

    Height is one of the most important dimensions of trees, but few observers are fully aware of the consequences of the misapplication of conventional height measurement techniques. A new approach, the sine method, can improve height measurement by being less sensitive to the requirements of conventional techniques (similar triangles and the tangent method). We studied...

  7. POD analysis of flow over a backward-facing step forced by right-angle-shaped plasma actuator.

    Science.gov (United States)

    Wang, Bin; Li, Huaxing

    2016-01-01

    This study aims to present flow control over the backward-facing step with specially designed right-angle-shaped plasma actuator and analyzed the influence of various scales of flow structures on the Reynolds stress through snapshot proper orthogonal decomposition (POD). 2D particle image velocimetry measurements were conducted on region (x/h = 0-2.25) and reattachment zone in the x-y plane over the backward-facing step at a Reynolds number of Re h  = 27,766 (based on step height [Formula: see text] and free stream velocity [Formula: see text]. The separated shear layer was excited by specially designed right-angle-shaped plasma actuator under the normalized excitation frequency St h  ≈ 0.345 along the 45° direction. The spatial distribution of each Reynolds stress component was reconstructed using an increasing number of POD modes. The POD analysis indicated that the flow dynamic downstream of the step was dominated by large-scale flow structures, which contributed to streamwise Reynolds stress and Reynolds shear stress. The intense Reynolds stress localized to a narrow strip within the shear layer was mainly affected by small-scale flow structures, which were responsible for the recovery of the Reynolds stress peak. With plasma excitation, a significant increase was obtained in the vertical Reynolds stress peak. Under the dimensionless frequencies St h  ≈ 0.345 and [Formula: see text] which are based on the step height and momentum thickness, the effectiveness of the flow control forced by the plasma actuator along the 45° direction was ordinary. Only the vertical Reynolds stress was significantly affected.

  8. Short bowel mucosal morphology, proliferation and inflammation at first and repeat STEP procedures.

    Science.gov (United States)

    Mutanen, Annika; Barrett, Meredith; Feng, Yongjia; Lohi, Jouko; Rabah, Raja; Teitelbaum, Daniel H; Pakarinen, Mikko P

    2018-04-17

    Although serial transverse enteroplasty (STEP) improves function of dilated short bowel, a significant proportion of patients require repeat surgery. To address underlying reasons for unsuccessful STEP, we compared small intestinal mucosal characteristics between initial and repeat STEP procedures in children with short bowel syndrome (SBS). Fifteen SBS children, who underwent 13 first and 7 repeat STEP procedures with full thickness small bowel samples at median age 1.5 years (IQR 0.7-3.7) were included. The specimens were analyzed histologically for mucosal morphology, inflammation and muscular thickness. Mucosal proliferation and apoptosis was analyzed with MIB1 and Tunel immunohistochemistry. Median small bowel length increased 42% by initial STEP and 13% by repeat STEP (p=0.05), while enteral caloric intake increased from 6% to 36% (p=0.07) during 14 (12-42) months between the procedures. Abnormal mucosal inflammation was frequently observed both at initial (69%) and additional STEP (86%, p=0.52) surgery. Villus height, crypt depth, enterocyte proliferation and apoptosis as well as muscular thickness were comparable at first and repeat STEP (p>0.05 for all). Patients, who required repeat STEP tended to be younger (p=0.057) with less apoptotic crypt cells (p=0.031) at first STEP. Absence of ileocecal valve associated with increased intraepithelial leukocyte count and reduced crypt cell proliferation index (pSTEP. Persistent inflammation and lacking mucosal growth may contribute to continuing bowel dysfunction in SBS children, who require repeat STEP procedure, especially after removal of the ileocecal valve. Level IV, retrospective study. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. [Clinical observation on nanometer acupoint mounting method for alleviation of myospasm complicated by spinal injury].

    Science.gov (United States)

    Zhang, Su-Jie; Si, Tong; Li, Zhi

    2008-11-01

    To observe clinical effect of nanometer acupoint mounting method for alleviation of myospasm complicated by spinal injury. Sixty cases were randomly divided into an observation group and a control group, 30 cases in each group. The observation group were treated by nanometer mounting at 4 Jiaji (EX-B 2) points each on both sides of the affected spine and Shenshu (BL 23), Shangliao (BL 31), Ciliao (BL 32), Yang-lingquan (GB 34), Xuanzhong (GB 39); and the control group by mounting zinc oxide sticking tablets at the above acupoints. The mounting was replaced once each two days, 7 times constituting one course. One week and one month after the end of 3 courses, their results were recorded, respectively. Before treatment, there was no significant difference between the two groups in grades of the myospasm degree (P > 0.05). One week after the end of treatment, 15 cases were grade I of myospasm, 9 cases were grade II, 5 cases were grade III and 1 case was grade IV in the observation group, and 1 cases grade I, 7 cases grade II, 14 cases grade III, 8 cases grade IV in the control group. Ridit analysis on the data indicated that there were significant differences before and after treatment in the myospasm degree (P mounting method is a new one for alleviation of myospasm complicated by spinal injury, with convenience, safety and no side effect.

  10. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    International Nuclear Information System (INIS)

    Han, H.-S.; Chen, D.-R.; Pui, David Y.H.; Anderson, Bruce E.

    2000-01-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po 210 ), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below

  11. Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation

    International Nuclear Information System (INIS)

    Dong Dianbo; Li Peijun; Li Xiaojun; Zhao Qing; Zhang Yinqiu; Jia Chunyun; Li Peng

    2010-01-01

    Photocatalytic degradation of pyrene on soil surfaces was investigated in the presence of nanometer anatase TiO 2 under a variety of conditions. After being spiked with pyrene, soil samples loaded with different amounts of TiO 2 (0%, 1%, 2%, 3%, and 4%, w/w) were exposed to UV irradiation for 25 h. The results indicated that the photocatalytic degradation of pyrene followed pseudo-first-order kinetics. TiO 2 accelerated the degradation of pyrene generally as indicated by the half-life reduction from 45.90 to 31.36 h, corresponding to the TiO 2 amounts from 0% to 4%, respectively. The effects of H 2 O 2 , light intensity and humic acids on the degradation of pyrene were also investigated. The degradation of pyrene increased along with increasing the concentration of H 2 O 2 , light intensity and the concentration of humic acids. All results indicated that the photocatalytic method in the presence of nanometer anatase TiO 2 was an advisable choice for the treatments of PAHs polluted soil in the future.

  12. Monitoring result analyses of high slope of five-step ship lock in the Three Gorges Project

    Directory of Open Access Journals (Sweden)

    Qixiang Fan

    2015-04-01

    Full Text Available The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP was commenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lock was put in operation in June 2003. The side slopes of the ship lock are characterized by great height (170 m, steepness (70 m in height of upright slope, and great length (over 7000 m in total length. In association with the ship lock, the surrounding rocks in slope have a high potential to deform, with which the magnitude of deformation is restricted. Monitoring results show that the deformation of the five-step ship lock high slopes of the TGP primarily occurred in excavation period, and deformation tended to be stable and convergent during operation period, suggesting the allowable ranges of deformation. At present, the slopes and lock chambers are stable, and the ship lock works well under normal operation condition, enabling the social and economic benefits of the TGP.

  13. Self-assembled metallic nanoparticle template — a new approach of surface nanostructuring at nanometer scale

    Directory of Open Access Journals (Sweden)

    A. Taleb

    2017-09-01

    Full Text Available In the present work, the formation of silver and copper nanostructures on highly oriented pyrolytic graphite (HOPG modified with self-assembled gold nanoparticles (Au NPs is demonstrated. Surface patterning with nanometer resolution was achieved. Different methods such as field emission scanning electron microscopy (FEGSEM, energy dispersive spectrometry (EDS and X-ray photoelectron spectroscopy (XPS were used to illustrate a selective deposition of silver and copper on Au NPs. The mechanism of silver and copper ions reduction on Au NP with n-dodecanethiol coating is discussed.

  14. Modelling foot height and foot shape-related dimensions.

    Science.gov (United States)

    Xiong, Shuping; Goonetilleke, Ravindra S; Witana, Channa P; Lee Au, Emily Yim

    2008-08-01

    The application of foot anthropometry to design good-fitting footwear has been difficult due to the lack of generalised models. This study seeks to model foot dimensions so that the characteristic shapes of feet, especially in the midfoot region, can be understood. Fifty Hong Kong Chinese adults (26 males and 24 females) participated in this study. Their foot lengths, foot widths, ball girths and foot heights were measured and then evaluated using mathematical models. The results showed that there were no significant allometry (p > 0.05) effects of foot length on ball girth and foot width. Foot height showed no direct relationship with foot length. However, a normalisation with respect to foot length and foot height resulted in a significant relationship for both males and females with R(2) greater than 0.97. Due to the lack of a direct relationship between foot height and foot length, the current practice of grading shoes with a constant increase in height or proportionate scaling in response to foot length is less than ideal. The results when validated with other populations can be a significant way forward in the design of footwear that has an improved fit in the height dimension.

  15. Imaging height fluctuations in free-standing graphene membranes

    Science.gov (United States)

    Dorsey, Kyle; Miskin, Marc; Barnard, Arthur; Rose, Peter; Cohen, Itai; McEuen, Paul

    We present a technique based on multi-wavelength interference microscopy to measure the heights of observed ripples in free-standing graphene membranes. Graphene membranes released from a transparent substrate produce interference fringes when viewed in the reflection mode of an inverted microscope(Blees et. al. Nature 524 (7564): 204-207 (2015)). The fringes correspond to corrugation of the membrane as it floats near an interface. A single set of fringes is insufficient to uniquely determine the height profile, as a given fringe spacing can correspond to an increase or decrease in height by λ / 2 . Imaging at multiple wavelengths resolves the ambiguities in phase, and enables unique determination of the height profile of the membrane (Schilling et. al.Phys. Rev. E, 69:021901, 2004). We utilize this technique to map out the height fluctuations in free-standing graphene membranes to answer questions about fundamental mechanical properties of two-dimensional materials.

  16. Footprint parameters as a measure of arch height.

    Science.gov (United States)

    Hawes, M R; Nachbauer, W; Sovak, D; Nigg, B M

    1992-01-01

    The human foot has frequently been categorized into arch height groups based upon analysis of footprint parameters. This study investigates the relationship between directly measured arch height and many of the footprint parameters that have been assumed to represent arch height. A total of 115 male subjects were measured and footprint parameters were calculated from digitized outlines. Correlation and regression analyses were used to determine the relationship between footprint measures and arch height. It may be concluded from the results that footprint parameters proposed in the literature (arch angle, footprint index, and arch index) and two further parameters suggested in this study (arch length index and truncated arch index) are invalid as a basis for prediction or categorization of arch height. The categorization of the human foot according to the footprint measures evaluated in this paper represent no more than indices and angles of the plantar surface of the foot itself.

  17. Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models

    Science.gov (United States)

    Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.

    2018-03-01

    Tree or canopy height is an important attribute for carbon stock estimation, forest management and habitat quality assessment. Airborne Laser Scanning (ALS) based on Light Detection and Ranging (LiDAR) has advantages over other remote sensing techniques for describing the structure of forests. However, sloped terrain can be challenging for accurate estimation of tree locations and heights based on a Canopy Height Model (CHM) generated from ALS data; a CHM is a height-normalised Digital Surface Model (DSM) obtained by subtracting a Digital Terrain Model (DTM) from a DSM. On sloped terrain, points at the same elevation on a tree crown appear to increase in height in the downhill direction, based on the ground elevations at these points. A point will be incorrectly identified as the treetop by individual tree crown (ITC) recognition algorithms if its height is greater than that of the actual treetop in the CHM, which will be recorded as the tree height. In this study, the influence of terrain slope and crown characteristics on the detection of treetops and estimation of tree heights is assessed using ALS data in a tropical forest with complex terrain (i.e. micro-topography) and tree crown characteristics. Locations and heights of 11,442 trees based on a DSM are compared with those based on a CHM. The horizontal (DH) and vertical displacements (DV) increase with terrain slope (r = 0.47 and r = 0.54 respectively, p tree height are up to 16.6 m on slopes greater than 50° in our study area in Sumatra. The errors in locations (DH) and tree heights (DV) are modelled for trees with conical and spherical tree crowns. For a spherical tree crown, DH can be modelled as R sin θ, and DV as R (sec θ - 1). In this study, a model is developed for an idealised conical tree crown, DV = R (tan θ - tan ψ), where R is the crown radius, and θ and ψ are terrain and crown angles respectively. It is shown that errors occur only when terrain angle exceeds the crown angle, with the

  18. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.

    Science.gov (United States)

    Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi

    2017-07-12

    The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

  19. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  20. On the Flame Height Definition for Upward Flame Spread

    OpenAIRE

    Consalvi, Jean L; Pizzo, Yannick; Porterie, Bernard; Torero, Jose L

    2007-01-01

    Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from both numerical and theoretical results, a more quantifiable criterion is needed to define flame heights and must be in agreement with the experiments to allow comparisons. For wall flames, steady wall flame experiments revealed that flame height may be define...

  1. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  2. Evidence of inbreeding depression on human height.

    Directory of Open Access Journals (Sweden)

    Ruth McQuillan

    Full Text Available Stature is a classical and highly heritable complex trait, with 80%-90% of variation explained by genetic factors. In recent years, genome-wide association studies (GWAS have successfully identified many common additive variants influencing human height; however, little attention has been given to the potential role of recessive genetic effects. Here, we investigated genome-wide recessive effects by an analysis of inbreeding depression on adult height in over 35,000 people from 21 different population samples. We found a highly significant inverse association between height and genome-wide homozygosity, equivalent to a height reduction of up to 3 cm in the offspring of first cousins compared with the offspring of unrelated individuals, an effect which remained after controlling for the effects of socio-economic status, an important confounder (χ(2 = 83.89, df = 1; p = 5.2 × 10(-20. There was, however, a high degree of heterogeneity among populations: whereas the direction of the effect was consistent across most population samples, the effect size differed significantly among populations. It is likely that this reflects true biological heterogeneity: whether or not an effect can be observed will depend on both the variance in homozygosity in the population and the chance inheritance of individual recessive genotypes. These results predict that multiple, rare, recessive variants influence human height. Although this exploratory work focuses on height alone, the methodology developed is generally applicable to heritable quantitative traits (QT, paving the way for an investigation into inbreeding effects, and therefore genetic architecture, on a range of QT of biomedical importance.

  3. Luminescent Oxygen Gas Sensors Based on Nanometer-Thick Hybrid Films of Iridium Complexes and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Hisako Sato

    2014-01-01

    Full Text Available The use of Ir(III complexes in photo-responsive molecular devices for oxygen gas sensing is reviewed. Attention is focused on the immobilization of Ir(III complexes in organic or inorganic host materials such as polymers, silica and clays in order to enhance robustness and reliability. Our recent works on constructing nanometer-thick films comprised of cyclometalated cationic Ir(III complexes and clay minerals are described. The achievement of multi-emitting properties in response to oxygen pressure is demonstrated.

  4. [Influence of disc height on outcome of posterolateral fusion].

    Science.gov (United States)

    Drain, O; Lenoir, T; Dauzac, C; Rillardon, L; Guigui, P

    2008-09-01

    Experimentally, posterolateral fusion only provides incomplete control of flexion-extension, rotation and lateral inclination forces. The stability deficit increases with increasing height of the anterior intervertebral space, which for some warrants the adjunction of an intersomatic arthrodesis in addition to the posterolateral graft. Few studies have been devoted to the impact of disc height on the outcome of posterolateral fusion. The purpose of this work was to investigate the spinal segment immobilized by the posterolateral fusion: height of the anterior intervertebral space, the clinical and radiographic impact of changes in disc height, and the short- and long-term impact of disc height measured preoperatively on clinical and radiographic outcome. In order to obtain a homogeneous group of patients, the series was limited to patients undergoing posterolateral arthrodesis for degenerative spondylolisthesis, in combination with radicular release. This was a retrospective analysis of a consecutive series of 66 patients with mean 52 months follow-up (range 3-63 months). A dedicated self-administered questionnaire was used to collect data on pre- and postoperative function, the SF-36 quality of life score, and patient satisfaction. Pre- and postoperative (early, one year, last follow-up) radiographic data were recorded: olisthesic level, disc height, intervertebral angle, intervertebral mobility (angular, anteroposterior), and global measures of sagittal balance (thoracic kyphosis, lumbar lordosis, T9 sagittal tilt, pelvic version, pelvic incidence, sacral slope). SpineView was used for all measures. Univariate analysis searched for correlations between variation in disc height and early postoperative function and quality of fusion at last follow-up. Multivariate analysis was applied to the following preoperative parameters: intervertebral angle, disc height, intervertebral mobility, sagittal balance parameters, use of osteosynthesis or not. At the olisthesic

  5. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  6. Comparison of mixing height parameterizations with profiles measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jaquier, A.; Stuebi, R.; Tercier, P. [Swiss Meteorological Inst., SMI - MeteoSwiss, Payerne (Switzerland)

    1997-10-01

    Different meteorological pre-processors for dispersion studies are available to derive the atmospheric boundary layer mixing height (MH). The analysis of their performances has been reviewed in the framework of the European COST Action 710. In this project, the computed mixing height values have been compared with data derived mostly from aero-logical sounding analysis and Sodar measurements. Since then, a new analysis of a low-tropospheric wind profiler (WP) data has been performed taking advantage of its high data sampling ({delta}t {approx} 30 sec.). The comparison between these recent results and aero-logical sounding, Sodar data, as well as to meteorological pre-processors calculations are reported for three periods of several days corresponding to different meteorological situations. In convective conditions, the pre-processors give reasonable level, the mixing height growing rate is in fair agreement with the measured one. In stable cloudy daytime conditions, the modeled mixing height does not correspond to any measured height. (LN)

  7. A two-step superplastic forging forming of semi-continuously cast AZ70 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2015-03-01

    Full Text Available A two-step technology combined forging with superplastic forming has been developed to enhance the forgeability of semi-continuously cast AZ70 magnesium alloy and realize the application of the as-cast magnesium alloy in large deformation bullet shell. In the first step, fine-grained microstructure preforms that are suitable for superplastic forming were obtained by reasonably designing the size of the initial blanks with the specific height-to-diameter ratio, upsetting the blanks and subsequent annealing. In the second step, the heat treated preforms were forged into the end products at the superplastic conditions. The end products exhibit high quality surface and satisfied microstructure. Consequently, this forming technology that not only avoids complicating the material preparation but also utilizes higher strain rate superplastic provides a near net-shaped novel method on magnesium forging forming technology using as-cast billet.

  8. Step Tracking with Goals Increases Children's Weight Loss in Behavioral Intervention.

    Science.gov (United States)

    Staiano, Amanda E; Beyl, Robbie A; Hsia, Daniel S; Jarrell, Amber R; Katzmarzyk, Peter T; Mantzor, Savarra; Newton, Robert L; Tyson, Patrice

    2017-08-01

    This study examined the influence of step goals with pedometers to improve children's weight loss, physical activity, and psychosocial health during obesity treatment. Overweight and obese children ages 8-17 years (n = 105) participated in a 10-week family-based weight management intervention, including physical activity, nutrition, and behavioral modification. A quasi-experimental design was used to group eight cohorts into three conditions: no pedometer (n = 24), pedometer only (n = 25), and pedometer with step goals (i.e., 500 steps/day weekly increase above baseline; n = 56). Height and weight were measured at baseline and week 10 and used to calculate BMI. Analysis of covariance was performed to examine difference by condition for change in weight, BMI, and BMI z-score, controlling for age and baseline value. Differences in steps per day and psychosocial health were compared between the two pedometer conditions. Participants were 12.4 ± 2.5 years of age, including 70% girls and 64% African Americans. The pedometer with goals condition significantly reduced BMI (p = 0.02) and BMI z-score (p = 0.01) compared with the no-pedometer group. The pedometer with goals condition significantly increased steps per day (+1185 ± 425 steps/day) compared with the pedometer-only condition (-162 ± 620 steps/day; p goals was an effective approach to produce weight loss. Further work is needed to increase the strength of interventions to achieve clinically meaningful weight reduction for children with obesity.

  9. Small Town Energy Program (STEP) Final Report revised

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Charles (Chuck) T.

    2014-01-02

    University Park, Maryland (“UP”) is a small town of 2,540 residents, 919 homes, 2 churches, 1 school, 1 town hall, and 1 breakthrough community energy efficiency initiative: the Small Town Energy Program (“STEP”). STEP was developed with a mission to “create a model community energy transformation program that serves as a roadmap for other small towns across the U.S.” STEP first launched in January 2011 in UP and expanded in July 2012 to the neighboring communities of Hyattsville, Riverdale Park, and College Heights Estates, MD. STEP, which concluded in July 2013, was generously supported by a grant from the U.S. Department of Energy (DOE). The STEP model was designed for replication in other resource-constrained small towns similar to University Park - a sector largely neglected to date in federal and state energy efficiency programs. STEP provided a full suite of activities for replication, including: energy audits and retrofits for residential buildings, financial incentives, a community-based social marketing backbone and local community delivery partners. STEP also included the highly innovative use of an “Energy Coach” who worked one-on-one with clients throughout the program. Please see www.smalltownenergy.org for more information. In less than three years, STEP achieved the following results in University Park: • 30% of community households participated voluntarily in STEP; • 25% of homes received a Home Performance with ENERGY STAR assessment; • 16% of households made energy efficiency improvements to their home; • 64% of households proceeded with an upgrade after their assessment; • 9 Full Time Equivalent jobs were created or retained, and 39 contractors worked on STEP over the course of the project. Estimated Energy Savings - Program Totals kWh Electricity 204,407 Therms Natural Gas 24,800 Gallons of Oil 2,581 Total Estimated MMBTU Saved (Source Energy) 5,474 Total Estimated Annual Energy Cost Savings $61,343 STEP clients who

  10. Measuring perceived ceiling height in a visual comparison task.

    Science.gov (United States)

    von Castell, Christoph; Hecht, Heiko; Oberfeld, Daniel

    2017-03-01

    When judging interior space, a dark ceiling is judged to be lower than a light ceiling. The method of metric judgments (e.g., on a centimetre scale) that has typically been used in such tasks may reflect a genuine perceptual effect or it may reflect a cognitively mediated impression. We employed a height-matching method in which perceived ceiling height had to be matched with an adjustable pillar, thus obtaining psychometric functions that allowed for an estimation of the point of subjective equality (PSE) and the difference limen (DL). The height-matching method developed in this paper allows for a direct visual match and does not require metric judgment. It has the added advantage of providing superior precision. Experiment 1 used ceiling heights between 2.90 m and 3.00 m. The PSE proved sensitive to slight changes in perceived ceiling height. The DL was about 3% of the physical ceiling height. Experiment 2 found similar results for lower (2.30 m to 2.50 m) and higher (3.30 m to 3.50 m) ceilings. In Experiment 3, we additionally varied ceiling lightness (light grey vs. dark grey). The height matches showed that the light ceiling appeared significantly higher than the darker ceiling. We therefore attribute the influence of ceiling lightness on perceived ceiling height to a direct perceptual rather than a cognitive effect.

  11. Variability of the Mixed-Layer Height Over Mexico City

    Science.gov (United States)

    García-Franco, J. L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M.

    2018-02-01

    The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values > 3 km above ground level in the months of March-April, and are clearly lower (pollution episodes and the height of the mixed layer. The growth rate of the convective mixed-layer height has a seasonal behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.

  12. Towards nanometer-spaced silicon contacts to proteins

    Science.gov (United States)

    Schukfeh, Muhammed I.; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  13. Towards nanometer-spaced silicon contacts to proteins

    International Nuclear Information System (INIS)

    Schukfeh, Muhammed I; Behr, Pascal; Tornow, Marc; Sepunaru, Lior; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2016-01-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO_2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p"+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current–voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si–protein–Si configuration. (paper)

  14. Estimating Mixing Heights Using Microwave Temperature Profiler

    Science.gov (United States)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  15. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  16. Weighting of field heights for sharpness and noisiness

    Science.gov (United States)

    Keelan, Brian W.; Jin, Elaine W.

    2009-01-01

    Weighting of field heights is important in cases when a single numerical value needs to be calculated that characterizes an attribute's overall impact on perceived image quality. In this paper we report an observer study to derive the weighting of field heights for sharpness and noisiness. One-hundred-forty images were selected to represent a typical consumer photo space distribution. Fifty-three sample points were sampled per image, representing field heights of 0, 14, 32, 42, 51, 58, 71, 76, 86% and 100%. Six observers participated in this study. The field weights derived in this report include both: the effect of area versus field height (which is a purely objective, geometric factor); and the effect of the spatial distribution of image content that draws attention to or masks each of these image structure attributes. The results show that relative to the geometrical area weights, sharpness weights were skewed to lower field heights, because sharpness-critical subject matter was often positioned relatively near the center of an image. Conversely, because noise can be masked by signal, noisiness-critical content (such as blue skies, skin tones, walls, etc.) tended to occur farther from the center of an image, causing the weights to be skewed to higher field heights.

  17. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo

    2017-07-31

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2-7, metal-semiconductor contacts8-10, and metal-insulator barriers11-13 have been demonstrated. While 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions are also necessary. Although external one-dimensional (1D) carbon nanotubes14 can be used to locally gate 2D materials, this adds a non-trivial third dimension, complicating device integration and flexibility. Here, we report the direct synthesis of sub-nanometer 1D MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalyzed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Molecular dynamics (MD) simulations have identified other combinations of 2D materials that could form 1D channels. Density function theory (DFT) calculation predicts these 1D channels display type II band alignment needed for carrier confinement and charge separation to access the ultimate length scales necessary for future electronic applications.

  18. Falls from height: A retrospective analysis.

    Science.gov (United States)

    Turgut, Kasim; Sarihan, Mehmet Ediz; Colak, Cemil; Güven, Taner; Gür, Ali; Gürbüz, Sükrü

    2018-01-01

    Emergency services manage trauma patients frequently and falls from height comprise the main cause of emergency service admissions. In this study, we aimed to analyse the demographic characteristics of falls from height and their relationship to the mortality. A total of 460 patients, who admitted to the Emergency Department of Inonu University between November 2011 and November 2014 with a history of fall from height, were examined retrospectively. Demographic parameters, fall characteristics and their effect to mortality were evaluated statistically. The study comprised of 292 (63.5%) men and 168 (36.5%) women patients. The mean age of all patients was 27±24.99 years. Twenty-six (5.6%) patients died and the majority of them were in ≥62 years old group. The highest percentage of falls was at 0-5 years age group (28.3%). People fell mainly from 1.1-4 metres(m) level (46.1%). The causes of falls were ordered as unintentional (92.2%), workplace (8.1%) and suicidal (1.7%). Skin and soft tissue injuries (37.4%) were the main traumatic lesions. Age, fall height, fall place, lineer skull fracture, subarachnoidal hemorrhage, cervical fracture, thoracic vertebra fracture and trauma scores had statistically significant effect on mortality. The casualties died because of subarachnoid hemorrhage mostly.

  19. Development and Evaluation of Models for the Relationship between Tree Height and Diameter at Breast Height for Chinese-Fir Plantations in Subtropical China.

    Science.gov (United States)

    Li, Yan-qiong; Deng, Xiang-wen; Huang, Zhi-hong; Xiang, Wen-hua; Yan, Wen-de; Lei, Pi-feng; Zhou, Xiao-lu; Peng, Chang-hui

    2015-01-01

    Tree diameter at breast height (dbh) and height are the most important variables used in forest inventory and management as well as forest carbon-stock estimation. In order to identify the key stand variables that influence the tree height-dbh relationship and to develop and validate a suit of models for predicting tree height, data from 5961 tree samples aged from 6 years to 53 years and collected from 80 Chinese-fir plantation plots were used to fit 39 models, including 33 nonlinear models and 6 linear models, were developed and evaluated into two groups. The results showed that composite models performed better in height estimate than one-independent-variable models. Nonlinear composite Model 34 and linear composite Model 6 were recommended for predicting tree height in Chinese fir plantations with a dbh range between 4 cm and 40 cm when the dbh data for each tree and the quadratic mean dbh of the stand (Dq) and mean height of the stand (Hm) were available. Moreover, Hm could be estimated by using the formula Hm = 11.707 × l n(Dq)-18.032. Clearly, Dq was the primary stand variable that influenced the height-dbh relationship. The parameters of the models varied according to stand age and site. The inappropriate application of provincial or regional height-dbh models for predicting small tree height at local scale may result in larger uncertainties. The method and the recommended models developed in this study were statistically reliable for applications in growth and yield estimation for even-aged Chinese-fir plantation in Huitong and Changsha. The models could be extended to other regions and to other tree species only after verification in subtropical China.

  20. The height of watermelons with wall

    International Nuclear Information System (INIS)

    Feierl, Thomas

    2012-01-01

    We derive asymptotics for the moments as well as the weak limit of the height distribution of watermelons with p branches with wall. This generalizes a famous result of de Bruijn et al (1972 Graph Theory and Computing (New York: Academic) pp 15–22) on the average height of planted plane trees, and results by Fulmek (2007 Electron. J. Combin. 14 R64) and Katori et al (2008 J. Stat. Phys. 131 1067–83) on the expected value and higher moments, respectively, of the height distribution of watermelons with two branches. The asymptotics for the moments depend on the analytic behaviour of certain multidimensional Dirichlet series. In order to obtain this information, we prove a reciprocity relation satisfied by the derivatives of one of Jacobi’s theta functions, which generalizes the well-known reciprocity law for Jacobi’s theta functions. (paper)

  1. Nanometer-Scale Dissection of Chromosomes by Atomic Force Microscopy Combined with Heat-Denaturing Treatment

    Science.gov (United States)

    Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru

    2006-03-01

    We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.

  2. Predicting human height by Victorian and genomic methods.

    Science.gov (United States)

    Aulchenko, Yurii S; Struchalin, Maksim V; Belonogova, Nadezhda M; Axenovich, Tatiana I; Weedon, Michael N; Hofman, Albert; Uitterlinden, Andre G; Kayser, Manfred; Oostra, Ben A; van Duijn, Cornelia M; Janssens, A Cecile J W; Borodin, Pavel M

    2009-08-01

    In the Victorian era, Sir Francis Galton showed that 'when dealing with the transmission of stature from parents to children, the average height of the two parents, ... is all we need care to know about them' (1886). One hundred and twenty-two years after Galton's work was published, 54 loci showing strong statistical evidence for association to human height were described, providing us with potential genomic means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci genomic profile explained 4-6% of the sex- and age-adjusted height variance, and had limited ability to discriminate tall/short people, as characterized by the area under the receiver-operating characteristic curve (AUC). In a family-based study of 550 people, with both parents having height measurements, we find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted height variance, and showed high discriminative accuracy. We have also explored how much variance a genomic profile should explain to reach certain AUC values. For highly heritable traits such as height, we conclude that in applications in which parental phenotypic information is available (eg, medicine), the Victorian Galton's method will long stay unsurpassed, in terms of both discriminative accuracy and costs. For less heritable traits, and in situations in which parental information is not available (eg, forensics), genomic methods may provide an alternative, given that the variants determining an essential proportion of the trait's variation can be identified.

  3. Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles

    International Nuclear Information System (INIS)

    Li, Tianshu; Liu, Li; Zhang, Bin; Li, Ying; Yan, Fengkai; Tao, Nairong; Wang, Fuhui

    2014-01-01

    Highlights: • Nanometer-grains (NG) and bundles of nano-twins (NT) is synthesized in 316L. • (NG + NT) and NT enhance the concentration of active Fe Fe in the passive film. • (NG + NT) and NT enhance the passive ability. • A Cr 0 -enriched layer forms at the passive film/metal interface. - Abstract: The passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains (NG) and nano-twin bundles (NT) are investigated. The electrochemical results indicate that the spontaneous passivation ability and growth rate of passive film are improved. The X-ray photoelectron spectroscopy (XPS) shows that a Cr 0 -enriched layer forms at the passive film/metal interface. More nucleation sites afforded by the nanostructures and the enhanced diffusion rate of charged species across the passive film are believed to be responsible for the improved passive ability. The PDM model is introduced to elaborate the microscopic process of passivation

  4. Electrospraying and ultraviolet light curing of nanometer-thin polydimethylsiloxane membranes for low-voltage dielectric elastomer transducers

    Science.gov (United States)

    Osmani, Bekim; Töpper, Tino; Siketanc, Matej; Kovacs, Gabor M.; Müller, Bert

    2017-04-01

    Dielectric elastomer transducers (DETs) have attracted interest as actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. To reach strains of more than 10 %, they currently require operating voltages of several hundred volts. In medical applications for artificial muscles, however, their operation is limited to a very few tens of volts, which implies high permittivity materials and thin-film structures. Such micro- or nanostructures can be prepared using electro-spraying, a cost-effective technique that allows upscaling using multiple nozzles for the fabrication of silicone films down to nanometer thickness. Deposition rates of several micrometers per hour have already been reached. It has been recently demonstrated that such membranes can be fabricated by electro-spraying and subsequent ultraviolet light irradiation. Herein, we introduce a relatively fast deposition of a dimethyl silicone copolymer fluid that contains mercaptopropyl side chains in addition to the methyl groups. Its elastic modulus was tuned with the irradiation dose of the 200 W Hg-Xe lamp. We also investigated the formation of elastomer films, using polymer concentrations in ethyl acetate of 1, 2, 5 and 10 vol%. After curing, the surface roughness was measured by means of atomic force microscopy. This instrument also enabled us to determine the average elastic modulus out of, for example, 400 nanoindentation measurements, using a spherical tip with a radius of 500 nm. The elastomer films were cured for a period of less than one minute, a speed that makes it feasible to combine electro-spraying and in situ curing in a single process step for fabricating low-voltage, multilayer DETs.

  5. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty.

    Science.gov (United States)

    Tanner, J M; Whitehouse, R H

    1976-01-01

    New charts for height, weight, height velocity, and weight velocity are presented for clinical (as opposed to population survey) use. They are based on longitudinal-type growth curves, using the same data as in the British 1965 growth standards. In the velocity standards centiles are given for children who are early- and late-maturing as well as for those who mature at the average age (thus extending the use of the previous charts). Limits of normality for the age of occurrence of the adolescent growth spurt are given and also for the successive stages of penis, testes, and pubic hair development in boys, and for stages of breast and pubic hair development in girls. PMID:952550

  6. ANALYSIS AND CORRECTION OF SYSTEMATIC HEIGHT MODEL ERRORS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2016-06-01

    Full Text Available The geometry of digital height models (DHM determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC. Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3 has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP, but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM digital surface model (DSM or the new AW3D30 DSM, based on ALOS

  7. Anterior Face Height Values in a Nigerian Population | Folaranmi ...

    African Journals Online (AJOL)

    ... Anterior Upper Face Height 47.7 (4) mm, Anterior Total Face Height (ATFH) 108.5 (5) mm, ratio of ALFH to ATFH ALFH: ATFH 56 (4)%. Conclusion: This study provides anterior face height measurements, which will be of great significance in evaluating facial proportions andesthetics in orthodontics, orthognathic surgery, ...

  8. Dominant height-based height-diameter equations for trees in southern Indiana

    Science.gov (United States)

    John A., Jr. Kershaw; Robert C. Morrissey; Douglass F. Jacobs; John R. Seifert; James B. McCarter

    2008-01-01

    Height-diameter equations are developed based on dominant tree data collected in 1986 in 8- to 17-year-old clearcuts and the phase 2 Forest Inventory and Analysis plots on the Hoosier National Forest in south central Indiana. Two equation forms are explored: the basic, three-parameter Chapman-Richards function, and a modification of the three-parameter equation...

  9. Do centimetres matter? Self-reported versus estimated height measurements in parents.

    Science.gov (United States)

    Gozzi, T; Flück, Ce; L'allemand, D; Dattani, M T; Hindmarsh, P C; Mullis, P E

    2010-04-01

    An impressive discrepancy between reported and measured parental height is often observed. The aims of this study were: (a) to assess whether there is a significant difference between the reported and measured parental height; (b) to focus on the reported and, thereafter, measured height of the partner; (c) to analyse its impact on the calculated target height range. A total of 1542 individual parents were enrolled. The parents were subdivided into three groups: normal height (3-97th Centile), short (97%) stature. Overall, compared with men, women were far better in estimating their own height (p Women of normal stature underestimated the short partner and overestimated the tall partner, whereas male partners of normal stature overestimated both their short as well as tall partners. Women of tall stature estimated the heights of their short partners correctly, whereas heights of normal statured men were underestimated. On the other hand, tall men overestimated the heights of their female partners who are of normal and short stature. Furthermore, women of short stature estimated the partners of normal stature adequately, and the heights of their tall partners were overestimated. Interestingly, the short men significantly underestimated the normal, but overestimated tall female partners. Only measured heights should be used to perform accurate evaluations of height, particularly when diagnostic tests or treatment interventions are contemplated. For clinical trails, we suggest that only quality measured parental heights are acceptable, as the errors incurred in estimates may enhance/conceal true treatment effects.

  10. The determination of the mixing height. Current progress and problems

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.; Beyrich, F.; Batchvarova, E. [eds.

    1997-10-01

    This report contains extended abstracts of presentations given at a EURASAP Workshop on The Determination of the Mixing Height - Current Progress and Problems. The Workshop, initiated from discussions with Peter Builtjes, was held at Risoe National Laboratory 1-3 October 1997 within the framework of EURASAP (European Association for the Sciences of Air Pollution). The specific topics and chairpersons of the Workshop were: Theoretical Considerations (Sven-Erik Gryning), Mixing Height Estimation from Turbulence Measurements and In-Situ Soundings (Douw Steyn), Mixing Height Determination from NWP-Models (Han van Dop), Climatology and Global Aspects (Werner Klug), Mixing Height Determination from Remote Systems (Werner Klug), Verification of Mixing Height Parameterizations and Models (Frank Beyrich), Mixing Height over Complex Terrain (Ekaterina Batchvarova), Internal Boundary Layers: Mixing Height in Coastal Areas and Over Cities (Allen White). The discussion at the end of the Workshop was chaired by Robert Bornstein. (au)

  11. Step out - Step in Sequencing Games

    NARCIS (Netherlands)

    Musegaas, M.; Borm, P.E.M.; Quant, M.

    2014-01-01

    In this paper a new class of relaxed sequencing games is introduced: the class of Step out - Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order.

  12. Practical application of the geometric geoid for heighting over ...

    African Journals Online (AJOL)

    This is because a geoid model is required to convert ellipsoidal heights to orthometric heights that are used in practice. A local geometric geoid ... The geoid height is expressed as a function of the local plane coordinates through a biquadratic surface polynomial, using 14 GPS/levelling points. Five points have been used ...

  13. Step out-step in sequencing games

    NARCIS (Netherlands)

    Musegaas, Marieke; Borm, Peter; Quant, Marieke

    2015-01-01

    In this paper a new class of relaxed sequencing games is introduced: the class of Step out–Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order. First,

  14. Mechanical design of ultraprecision weak-link stages for nanometer-scale x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D [APS Engineering Support Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Maser, J, E-mail: shu@aps.anl.go [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-09-01

    A nanopositioning diagnostic setup has been built to support the Argonne Center for Nanoscale Materials (CNM) nanoprobe instrument commissioning process at the APS. Its laser Doppler interferometer system provides subnanometer positioning diagnostic resolution with large dynamic range. A set of original APS designed ultraprecision PZT-driven weak-link stages with high-stiffness motor-driven stages has been tested with this diagnostic setup. In this paper we present a preliminary test result of the ultraprecision weak-link stage system developed for the CNM hard x-ray nanoprobe instrument at APS sector 26. A test result for a novel laminar weak-link mechanism with sub-centimeter travel range and sub-nanometer positioning resolution is also introduced in this paper as a future work.

  15. Multilayer Laue Lens: A Path Toward One Nanometer X-Ray Focusing

    International Nuclear Information System (INIS)

    Yan, H.; Stephenson, G.B.; Maser, J.; Yan, H.; Conley, R.; Kang, H.C.; Stephenson, G.B.; Kang, H.C.; Maser, J.; Conley, R.; Liu, Ch.; Macrander, A.T.

    2010-01-01

    The multilayer Laue lens (MLL) is a novel diffractive optic for hard X-ray nano focusing, which is fabricated by thin film deposition techniques and takes advantage of the dynamical diffraction effect to achieve a high numerical aperture and efficiency. It overcomes two difficulties encountered in diffractive optics fabrication for focusing hard X-rays: (1) small outmost zone width and (2) high aspect ratio. Here, we will give a review on types, modeling approaches, properties, fabrication, and characterization methods of MLL optics. We show that a full-wave dynamical diffraction theory has been developed to describe the dynamical diffraction property of the MLL and has been employed to design the optimal shapes for nano focusing. We also show a 16 nm line focus obtained by a partial MLL and several characterization methods. Experimental results show a good agreement with the theoretical calculations. With the continuing development of MLL optics, we believe that an MLL-based hard x-ray microscope with true nanometer resolution is on the horizon

  16. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.

    2014-04-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  17. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2014-01-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  18. Bridging the Gap between the Nanometer-Scale Bottom-Up and Micrometer-Scale Top-Down Approaches for Site-Defined InP/InAs Nanowires.

    Science.gov (United States)

    Zhang, Guoqiang; Rainville, Christophe; Salmon, Adrian; Takiguchi, Masato; Tateno, Kouta; Gotoh, Hideki

    2015-11-24

    This work presents a method that bridges the gap between the nanometer-scale bottom-up and micrometer-scale top-down approaches for site-defined nanostructures, which has long been a significant challenge for applications that require low-cost and high-throughput manufacturing processes. We realized the bridging by controlling the seed indium nanoparticle position through a self-assembly process. Site-defined InP nanowires were then grown from the indium-nanoparticle array in the vapor-liquid-solid mode through a "seed and grow" process. The nanometer-scale indium particles do not always occupy the same locations within the micrometer-scale open window of an InP exposed substrate due to the scale difference. We developed a technique for aligning the nanometer-scale indium particles on the same side of the micrometer-scale window by structuring the surface of a misoriented InP (111)B substrate. Finally, we demonstrated that the developed method can be used to grow a uniform InP/InAs axial-heterostructure nanowire array. The ability to form a heterostructure nanowire array with this method makes it possible to tune the emission wavelength over a wide range by employing the quantum confinement effect and thus expand the application of this technology to optoelectronic devices. Successfully pairing a controllable bottom-up growth technique with a top-down substrate preparation technique greatly improves the potential for the mass-production and widespread adoption of this technology.

  19. Adult height, dietary patterns, and healthy aging.

    Science.gov (United States)

    Ma, Wenjie; Hagan, Kaitlin A; Heianza, Yoriko; Sun, Qi; Rimm, Eric B; Qi, Lu

    2017-08-01

    Background: Adult height has shown directionally diverse associations with several age-related disorders, including cardiovascular disease, cancer, decline in cognitive function, and mortality. Objective: We investigated the associations of adult height with healthy aging measured by a full spectrum of health outcomes, including incidence of chronic diseases, memory, physical functioning, and mental health, among populations who have survived to older age, and whether lifestyle factors modified such relations. Design: We included 52,135 women (mean age: 44.2 y) from the Nurses' Health Study without chronic diseases in 1980 and whose health status was available in 2012. Healthy aging was defined as being free of 11 major chronic diseases and having no reported impairment of subjective memory, physical impairment, or mental health limitations. Results: Of all eligible study participants, 6877 (13.2%) were classified as healthy agers. After adjustment for demographic and lifestyle factors, we observed an 8% (95% CI: 6%, 11%) decrease in the odds of healthy aging per SD (0.062 m) increase in height. Compared with the lowest category of height (≤1.57 m), the OR of achieving healthy aging in the highest category (≥1.70 m) was 0.80 (95% CI: 0.73, 0.87; P -trend healthy aging ( P -interaction = 0.005), and among the individual dietary factors characterizing the prudent dietary pattern, fruit and vegetable intake showed the strongest effect modification ( P -interaction = 0.01). The association of greater height with reduced odds of healthy aging appeared to be more evident among women with higher adherence to the prudent dietary pattern rich in vegetable and fruit intake. Conclusions: Greater height was associated with a modest decrease in the likelihood of healthy aging. A prudent diet rich in fruit and vegetables might modify the relation. © 2017 American Society for Nutrition.

  20. Relationships between diameter and height of trees in natural ...

    African Journals Online (AJOL)

    Relationships between diameter and height of trees in natural tropical forest in Tanzania. Wilson A Mugasha, Ole M Bollandsås, Tron Eid. Abstract. The relationship between tree height (h) and tree diameter at breast height (dbh) is an important element describing forest stands. In addition, h often is a required variable in ...

  1. Gradient-Based Optimization of Wind Farms with Different Turbine Heights

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew; Annoni, Jennifer; Dykes, Katherine; Fleming, Paul

    2017-01-09

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hub heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.

  2. Maternal and Paternal Height and the Risk of Preeclampsia.

    Science.gov (United States)

    Lee, Yunsung; Magnus, Per

    2018-04-01

    The etiology of preeclampsia is unknown. Tall women have been found to have lower incidence of preeclampsia. This points to a possible biological causal effect but may be because of socioeconomic confounding. We used paternal height as an unexposed control to examine confounding. The MoBa (Norwegian Mother and Child Cohort Study) was used to extract data on parental heights, maternal prepregnancy weight, other background factors, and pregnancy outcomes for 99 968 singleton births. Multiple logistic regression was used to estimate odds ratios for preeclampsia according to parental height. The adjusted odds ratio for preeclampsia was 0.74 (95% CI, 0.66-0.82) for women >172 cm as compared with women 186 cm was 1.03 (95% CI, 0.93-1.15) compared with men <178 cm. The association between maternal height and preeclampsia is unlikely to be because of confounding by familial, socioeconomic factors or by fetal genes related to height. The observed association between maternal height and preeclampsia merits further investigation. © 2018 American Heart Association, Inc.

  3. Calculations of shape and stability of menisci in Czochralski growth with tables to determine meniscus heights, maximum heights and capillary constants

    International Nuclear Information System (INIS)

    Uelhoff, W.; Mika, K.

    1975-05-01

    The shape and stability of menisci occurring during Czochralski growth have been studied by means of numerical methods for the case of the free surface. The existence of minimal joining angles is shown, beyond which the growing crystal will separate from the melt. The dependence of the interface height on the joining angle for different crystal diameters was calculated. The maximum stable heights and the corresponding joining angles were determined as a function of crystal diameter. A method for measuring the capillary constant of the melt during Czochralski growth is proposed. The results are compared with known analytical approximations. Limitations of the applications caused by a finite crucible radius or low g values are pointed out. For practical use the following functions have been tabulated: 1) meniscus height in dependence on joining angle and crystal radius, 2) the radius-height-ratio in dependence on radius and angle for the calculation of the capillary constant, 3) the maximum stable height and the corresponding growth angle as a function of crystal radius. (orig.) [de

  4. Height among Women is Curvilinearly Related to Life History Strategy

    Directory of Open Access Journals (Sweden)

    Abraham P. Buunk

    2009-10-01

    Full Text Available It was hypothesized that women of medium height would show a more secure, long-term mating pattern characterized by less jealousy, less intrasexual competition and a “slower” life history strategy. In three samples of female undergraduate students clear support was found for these hypotheses. In Study 1, among 120 participants, height was curvilinearly related to well-established measures of possessive and reactive jealousy, with women of medium height being less jealous than tall as well as short women. In Study 2, among 40 participants, height was curvilinearly related to intrasexual competition, with women of medium height being less competitive towards other women than tall as well as short women. In Study 3, among 299 participants, height was curvilinearly related to the Mini-K, a well-validated measure of “slower” life history strategy, with women of medium height having a slower life history strategy than tall as well as short women. The results suggest that women of medium height tend to follow a different mating strategy than either tall or short women. Various explanations and implications of these results are discussed.

  5. Sensitivity of the urban airshed model to mixing height profiles

    Energy Technology Data Exchange (ETDEWEB)

    Rao, S.T.; Sistla, G.; Ku, J.Y.; Zhou, N.; Hao, W. [New York State Dept. of Environmental Conservation, Albany, NY (United States)

    1994-12-31

    The United States Environmental Protection Agency (USEPA) has recommended the use of the Urban Airshed Model (UAM), a grid-based photochemical model, for regulatory applications. One of the important parameters in applications of the UAM is the height of the mixed layer or the diffusion break. In this study, we examine the sensitivity of the UAM-predicted ozone concentrations to (a) a spatially invariant diurnal mixing height profile, and (b) a spatially varying diurnal mixing height profile for a high ozone episode of July 1988 for the New York Airshed. The 1985/88 emissions inventory used in the EPA`s Regional Oxidant Modeling simulations has been regridded for this study. Preliminary results suggest that the spatially varying case yields a higher peak ozone concentrations compared to the spatially invariant mixing height simulation, with differences in the peak ozone ranging from a few ppb to about 40 ppb for the days simulated. These differences are attributed to the differences in the shape of the mixing height profiles and its rate of growth during the morning hours when peak emissions are injected into the atmosphere. Examination of the impact of emissions reductions associated with these two mixing height profiles indicates that NO{sub x}-focussed controls provide a greater change in the predicted ozone peak under spatially invariant mixing heights than under the spatially varying mixing height profile. On the other hand, VOC-focussed controls provide a greater change in the predicted peak ozone levels under spatially varying mixing heights than under the spatially invariant mixing height profile.

  6. 17 Years of Cloud Heights from Terra, and Beyond

    Science.gov (United States)

    Davies, R.

    2017-12-01

    The effective cloud height, H, is the integral of observed cloud-top heights, weighted by their frequency of occurrence. Here we look at changes in the effective cloud height, H', as measured by the Multiangle Imaging Spectroradiometer (MISR) on the first Earth Observing System platform, Terra. Terra was launched in December 1999, and now has over 17 years of consistently measured climate records. Globally, HG' has an important influence on Earth's climate, whereas regionally, HR' is a useful measure of low frequency changes in circulation patterns. MISR has a sampling error in the annual mean HG' of ≈11 m, allowing fairly small interannual variations to be detected. This paper extends the previous 15-year summary that showed significant differences in the long term mean hemispheric cloud height changes. Also of interest are the correlations in tropical cloud height changes and related teleconnections. The largest ephemeral values in the annual HR' [over 1.5 km] are noted over the Central Pacific and the Maritime Continent. These changes are strongly anticorrelated with each other, being directly related to changes in ENSO. They are also correlated with the largest ephemeral changes in HG'. Around the equator, we find at least four distinct centres of similar fluctuations in cloud height. This paper examines the relative time dependence of these regional height changes, separately for La Niña and El Niño events, and stresses the value of extending the time series of uniformly measured cloud heights from space beyond EOS-Terra.

  7. Simulation of ICESat-2 canopy height retrievals for different ecosystems

    Science.gov (United States)

    Neuenschwander, A. L.

    2016-12-01

    Slated for launch in late 2017 (or early 2018), the ICESat-2 satellite will provide a global distribution of geodetic measurements from a space-based laser altimeter of both the terrain surface and relative canopy heights which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to producing distribution of above ground vegetation structure. The ATLAS instrument designed for ICESat-2, will utilize a different technology than what is found on most laser mapping systems. The photon counting technology of the ATLAS instrument onboard ICESat-2 will record the arrival time associated with a single photon detection. That detection can occur anywhere within the vertical distribution of the reflected signal, that is, anywhere within the vertical distribution of the canopy. This uncertainty of where the photon will be returned from within the vegetation layer is referred to as the vertical sampling error. Preliminary simulation studies to estimate vertical sampling error have been conducted for several ecosystems including woodland savanna, montane conifers, temperate hardwoods, tropical forest, and boreal forest. The results from these simulations indicate that the canopy heights reported on the ATL08 data product will underestimate the top canopy height in the range of 1 - 4 m. Although simulation results indicate the ICESat-2 will underestimate top canopy height, there is, however, a strong correlation between ICESat-2 heights and relative canopy height metrics (e.g. RH75, RH90). In tropical forest, simulation results indicate the ICESat-2 height correlates strongly with RH90. Similarly, in temperate broadleaf forest, the simulated ICESat-2 heights were also strongly correlated with RH90. In boreal forest, the simulated ICESat-2 heights are strongly correlated with RH75 heights. It is hypothesized that the correlations between simulated ICESat-2 heights and canopy height metrics are a

  8. Pubertal Development and Prepubertal Height and Weight Jointly Predict Young Adult Height and Body Mass Index in a Prospective Study in South Africa.

    Science.gov (United States)

    Stein, Aryeh D; Lundeen, Elizabeth A; Martorell, Reynaldo; Suchdev, Parminder S; Mehta, Neil K; Richter, Linda M; Norris, Shane A

    2016-07-01

    Height and adiposity track over childhood, but few studies, to our knowledge, have longitudinally examined the mediating relation of the timing and progression of puberty. We assessed interrelations between prepubertal height and body mass index, the progression through puberty, and young adult height and adiposity. We analyzed data from the Birth to Twenty Plus study (females, n = 823; males, n = 765). Serial measures of anthropometry and pubertal development were obtained between ages 9 and 16 y. We used latent class growth analysis to categorize pubertal development with respect to pubic hair (females and males), breasts (females), and genitalia (males) development. Adult height and weight were obtained at ages 18 to 20 y. Among females, higher latent class (earlier initiation and faster progression through puberty) was associated with an increased risk of obesity [pubic hair class 3 compared with class 1: RR, 3.41 (95% CI: 1.57, 7.44)] and inconsistent associations with height. Among males, higher latent class was associated with increased adult height [pubic hair development class 3 compared with class 1: 2.43 cm (95% CI: 0.88, 4.00)] and increased risk of overweight/obesity [pubic hair development class 3 compared with class 1: OR, 3.44 (95% CI: 1.44, 8.20)]. In females, the association with adult height became inverse after adjusting for prepubertal height [pubic hair development class 3 compared with class 1: females, -1.31 cm (95% CI: -2.32, -0.31)]; in males, the association with height was attenuated with this adjustment [-0.56 cm (95% CI: -1.63, 0.52)]. Associations with adiposity were attenuated after adjusting for prepubertal adiposity. Progression through puberty modifies the relation between prepubertal and adult anthropometry. Screening for early or rapid progression of puberty might identify children at an increased risk of becoming overweight or obese adults.

  9. Factors influencing the height of Hawaiian lava fountains: implications for the use of fountain height as an indicator of magma gas content

    Science.gov (United States)

    Parfitt, E.A.; Wilson, L.; Neal, C.A.

    1995-01-01

    The heights of lava fountains formed in Hawaiian-style eruptions are controlled by magma gas content, volume flux and the amounts of lava re-entrainment and gas bubble coalescence. Theoretical models of lava fountaining are used to analyse data on lava fountain height variations collected during the 1983-1986 Pu'u 'O'o vent of Kilauea volcano, Hawaii. The results show that the variable fountain heights can be largely explained by the impact of variations in volume flux and amount of lava re-entrainment on erupting magmas with a constant gas content of ???0.32 wt.% H2O. However, the gas content of the magma apparently declined by ???0.05 wt.% during the last 10 episodes of the eruption series and this decline is attributed to more extensive pre-eruption degassing due to a shallowing of the sub-vent feeder dike. It is concluded that variations in lava fountain height cannot be simply interpreted as variations in gas content, as has previously been suggested, but that fountain height can still be a useful guide to minimum gas contents. Where sufficient data are available on eruptive volume fluxes and extent of lava entrainment, greatly improved estimates can be made of magma gas content from lava fountain height. ?? 1995 Springer-Verlag.

  10. Brain structure mediates the association between height and cognitive ability.

    Science.gov (United States)

    Vuoksimaa, Eero; Panizzon, Matthew S; Franz, Carol E; Fennema-Notestine, Christine; Hagler, Donald J; Lyons, Michael J; Dale, Anders M; Kremen, William S

    2018-05-11

    Height and general cognitive ability are positively associated, but the underlying mechanisms of this relationship are not well understood. Both height and general cognitive ability are positively associated with brain size. Still, the neural substrate of the height-cognitive ability association is unclear. We used a sample of 515 middle-aged male twins with structural magnetic resonance imaging data to investigate whether the association between height and cognitive ability is mediated by cortical size. In addition to cortical volume, we used genetically, ontogenetically and phylogenetically distinct cortical metrics of total cortical surface area and mean cortical thickness. Height was positively associated with general cognitive ability and total cortical volume and cortical surface area, but not with mean cortical thickness. Mediation models indicated that the well-replicated height-general cognitive ability association is accounted for by individual differences in total cortical volume and cortical surface area (highly heritable metrics related to global brain size), and that the genetic association between cortical surface area and general cognitive ability underlies the phenotypic height-general cognitive ability relationship.

  11. Sub-nanometer glass surface dynamics induced by illumination

    International Nuclear Information System (INIS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-01-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10 4 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses

  12. Retrieving Smoke Aerosol Height from DSCOVR/EPIC

    Science.gov (United States)

    Xu, X.; Wang, J.; Wang, Y.

    2017-12-01

    Unlike industrial pollutant particles that are often confined within the planetary boundary layer, smoke from forest and agriculture fires can inject massive carbonaceous aerosols into the upper troposphere due to the intense pyro-convection. Sensitivity of weather and climate to absorbing carbonaceous aerosols is regulated by the altitude of those aerosol layers. However, aerosol height information remains limited from passive satellite sensors. Here we present an algorithm to estimate smoke aerosol height from radiances in the oxygen A and B bands measured by the Earth Polychromatic Imaging Camera (EPIC) from the Deep Space Climate Observatory (DSCOVR). With a suit of case studies and validation efforts, we demonstrate that smoke aerosol height can be well retrieved over both ocean and land surfaces multiple times daily.

  13. Five-class height-weight mean and SD system applying Estonian reference values of height-weight mean and SD for systematization of seventeen-year-old conscripts' anthropometric data.

    Science.gov (United States)

    Lintsi, Mart; Kaarma, Helje; Aunapuu, Marina; Arend, Andres

    2007-03-01

    A study of 739 conscripts aged 17 years from the town of Tartu and from the Tartu county was performed. Height, weight, 33 anthropometric measurements and 12 skinfolds were measured. The data were classified into five height-weight mean and SD-classes applying the Estonian reference values for this age and sex (Grünberg et al. 1998). There were 3 classes with conformity between height and weight class: 1--small (small height and small weight), 2--medium (medium height and medium weight), 3--large (large height and large weight), 4--weight class dominating (pyknomorphic) and 5--height class dominating (leptomorphic). It was found, that in classes 1, 2 and 3 the height and weight increase was in accordance with the increase in all heights, breadths and depths, circumferences, skinfolds, body fat, muscle and bone mass. In class 4 circumferences, skinfolds, body fat and muscle mass were bigger. In class 5 all heights and the relative bone mass were bigger. The present investigation confirms the assumption that the five height-weight mean and SD five-class system applying the Estonian reference values for classifying the anthropometric variables is suitable for seventeen-year-old conscripts. As well the border values of 5%, 50% and 95% for every anthropometrical variable in the five-classes were calculated, which may be helpful for practical classifying.

  14. Effects of walking speed on the step-by-step control of step width.

    Science.gov (United States)

    Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C

    2018-02-08

    Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.

  15. Definition of Physical Height Systems for Telluric Planets and Moons

    Science.gov (United States)

    Tenzer, Robert; Foroughi, Ismael; Sjöberg, Lars E.; Bagherbandi, Mohammad; Hirt, Christian; Pitoňák, Martin

    2018-01-01

    In planetary sciences, the geodetic (geometric) heights defined with respect to the reference surface (the sphere or the ellipsoid) or with respect to the center of the planet/moon are typically used for mapping topographic surface, compilation of global topographic models, detailed mapping of potential landing sites, and other space science and engineering purposes. Nevertheless, certain applications, such as studies of gravity-driven mass movements, require the physical heights to be defined with respect to the equipotential surface. Taking the analogy with terrestrial height systems, the realization of height systems for telluric planets and moons could be done by means of defining the orthometric and geoidal heights. In this case, however, the definition of the orthometric heights in principle differs. Whereas the terrestrial geoid is described as an equipotential surface that best approximates the mean sea level, such a definition for planets/moons is irrelevant in the absence of (liquid) global oceans. A more natural choice for planets and moons is to adopt the geoidal equipotential surface that closely approximates the geometric reference surface (the sphere or the ellipsoid). In this study, we address these aspects by proposing a more accurate approach for defining the orthometric heights for telluric planets and moons from available topographic and gravity models, while adopting the average crustal density in the absence of reliable crustal density models. In particular, we discuss a proper treatment of topographic masses in the context of gravimetric geoid determination. In numerical studies, we investigate differences between the geodetic and orthometric heights, represented by the geoidal heights, on Mercury, Venus, Mars, and Moon. Our results reveal that these differences are significant. The geoidal heights on Mercury vary from - 132 to 166 m. On Venus, the geoidal heights are between - 51 and 137 m with maxima on this planet at Atla Regio and Beta

  16. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    Science.gov (United States)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  17. Comparison of dust-layer heights from active and passive satellite sensors

    Science.gov (United States)

    Kylling, Arve; Vandenbussche, Sophie; Capelle, Virginie; Cuesta, Juan; Klüser, Lars; Lelli, Luca; Popp, Thomas; Stebel, Kerstin; Veefkind, Pepijn

    2018-05-01

    Aerosol-layer height is essential for understanding the impact of aerosols on the climate system. As part of the European Space Agency Aerosol_cci project, aerosol-layer height as derived from passive thermal and solar satellite sensors measurements have been compared with aerosol-layer heights estimated from CALIOP measurements. The Aerosol_cci project targeted dust-type aerosol for this study. This ensures relatively unambiguous aerosol identification by the CALIOP processing chain. Dust-layer height was estimated from thermal IASI measurements using four different algorithms (from BIRA-IASB, DLR, LMD, LISA) and from solar GOME-2 (KNMI) and SCIAMACHY (IUP) measurements. Due to differences in overpass time of the various satellites, a trajectory model was used to move the CALIOP-derived dust heights in space and time to the IASI, GOME-2 and SCIAMACHY dust height pixels. It is not possible to construct a unique dust-layer height from the CALIOP data. Thus two CALIOP-derived layer heights were used: the cumulative extinction height defined as the height where the CALIOP extinction column is half of the total extinction column, and the geometric mean height, which is defined as the geometrical mean of the top and bottom heights of the dust layer. In statistical average over all IASI data there is a general tendency to a positive bias of 0.5-0.8 km against CALIOP extinction-weighted height for three of the four algorithms assessed, while the fourth algorithm has almost no bias. When comparing geometric mean height there is a shift of -0.5 km for all algorithms (getting close to zero for the three algorithms and turning negative for the fourth). The standard deviation of all algorithms is quite similar and ranges between 1.0 and 1.3 km. When looking at different conditions (day, night, land, ocean), there is more detail in variabilities (e.g. all algorithms overestimate more at night than during the day). For the solar sensors it is found that on average SCIAMACHY data

  18. A century of trends in adult human height

    DEFF Research Database (Denmark)

    Damsgaard, Camilla Trab; Michaelsen, Kim F.; Molbo, Drude

    2016-01-01

    in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over...... the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest...... and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries....

  19. Evolution of Human Body Height and Its Implications in Ergonomics

    Directory of Open Access Journals (Sweden)

    İzzet DUYAR

    2009-06-01

    Full Text Available Body height is an crucial variable in the design and production of all physical spaces, primarily in the manifacturing of clothes and means of transportation. Having such an ergonomic significance, the height of the human being has constantly changed during the course of history. There exist strong data suggesting that this change is still continue. To find out stages of evolution of human height throughout the ages up to the present will help us to illuminate the human-environment relations, and to predict the possible changes that the human height might be subjected to in the future. In view of these reasons, the changes that has occured in human height from the period at which hominids appeared until humans’ transition into settled life have been closely examined. The study was carried out on the basis of the data obtained from the earlier studies in literature. These data, when considered as a whole, reveal that the human height did not continuously increase in a linear fashion in its evolutionary path but recorded some increases and decreases at different stages. The difference between males and females (sexual dimorphism has not shown a steady decrease either; instead, it has exhibited an oscillating pattern. The modern humans as a species is not unique in terms of their height; as a matter of fact, two million years ago hominids had existed at approximately the same height as the Homo sapiens. Although the average height had shown some decrease in Homo erectus, its distribution pattern was not much different than the one observed in the modern human societies. In the findings dated to the early stages of the Upper Paleolithic Age, height showed a tendency to increase again

  20. One step geometrical calibration method for optical coherence tomography

    International Nuclear Information System (INIS)

    Díaz, Jesús Díaz; Ortmaier, Tobias; Stritzel, Jenny; Rahlves, Maik; Reithmeier, Eduard; Roth, Bernhard; Majdani, Omid

    2016-01-01

    We present a novel one-step calibration methodology for geometrical distortion correction for optical coherence tomography (OCT). A calibration standard especially designed for OCT is introduced, which consists of an array of inverse pyramidal structures. The use of multiple landmarks situated on four different height levels on the pyramids allow performing a 3D geometrical calibration. The calibration procedure itself is based on a parametric model of the OCT beam propagation. It is validated by experimental results and enables the reduction of systematic errors by more than one order of magnitude. In future, our results can improve OCT image reconstruction and interpretation for medical applications such as real time monitoring of surgery. (paper)

  1. Microwave-assisted one-step patterning of aqueous colloidal silver.

    Science.gov (United States)

    Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N

    2012-07-05

    A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.

  2. A century of trends in adult human height

    NARCIS (Netherlands)

    Bentham, J. (James); Di Cesare, M. (Mariachiara); Stevens, G.A. (Gretchen A.); Zhou, B. (Bin); Bixby, H. (Honor); Cowan, M. (Melanie); Fortunato, L. (Léa); Bennett, J.E. (James E.); G. Danaei (Goodarz); Hajifathalian, K. (Kaveh); Lu, Y. (Yuan); Riley, L.M. (Leanne M.); Laxmaiah, A. (Avula); Kontis, V. (Vasilis); Paciorek, C.J. (Christopher J.); M. Ezzati (Majid); Abdeen, Z.A. (Ziad A.); Hamid, Z.A. (Zargar Abdul); Abu-Rmeileh, N.M. (Niveen M.); Acosta-Cazares, B. (Benjamin); Adams, R. (Robert); Aekplakorn, W. (Wichai); C.A. Aguilar-Salinas (Carlos A.); C.O. Agyemang (Charles); Ahmadvand, A. (Alireza); W. Ahrens (W.); Al-Hazzaa, H.M. (Hazzaa M.); Al-Othman, A.R. (Amani Rashed); Raddadi, R.A. (Rajaa Al); Ali, M.M. (Mohamed M.); Alkerwi, A. (Ala’a); M. Alvarez-Pedrerol (Mar); Aly, E. (Eman); P. Amouyel (Philippe); A. Amuzu (Antoinette); Andersen, L.B. (Lars Bo); Anderssen, S.A. (Sigmund A.); Anjana, R.M. (Ranjit Mohan); Aounallah-Skhiri, H. (Hajer); Ariansen, I. (Inger); Aris, T. (Tahir); Arlappa, N. (Nimmathota); Arveiler, D. (Dominique); Assah, F.K. (Felix K.); Avdicová, M. (Mária); J. Azizi (Joshan); Babu, B.V. (Bontha V.); Bahijri, S. (Suhad); Balakrishna, N. (Nagalla); Bandosz, P. (Piotr); Banegas, J.R. (José R.); Barbagallo, C.M. (Carlo M.); Barceló, A. (Alberto); Barkat, A. (Amina); Barros, M.V. (Mauro V.); Bata, I. (Iqbal); Batieha, A.M. (Anwar M.); Batista, R.L. (Rosangela L.); Baur, L.A. (Louise A.); Beaglehole, R. (Robert); Romdhane, H.B. (Habiba Ben); Benet, M. (Mikhail); Bernabe-Ortiz, A. (Antonio); Bernotiene, G. (Gailute); Bettiol, H. (Heloisa); Bhagyalaxmi, A. (Aroor); Bharadwaj, S. (Sumit); Bhargava, S.K. (Santosh K.); Bhatti, Z. (Zaid); Z.A. Bhutta (Zulfiqar A); Bi, H. (Hongsheng); Bi, Y. (Yufang); Bjerregaard, P. (Peter); Bjertness, E. (Espen); Bjertness, M.B. (Marius B.); Björkelund, C. (Cecilia); Blokstra, A. (Anneke); Bo, S. (Simona); M. Bobak (Martin); Boddy, L.M. (Lynne M.); B.O. Boehm (Bernhard); H. Boeing (Heiner); Boissonnet, C.P. (Carlos P.); Bongard, V. (Vanina); P. Bovet (Pascal); Braeckman, L. (Lutgart); Bragt, M.C.E. (Marjolijn C. E.); Brajkovich, I. (Imperia); Branca, F. (Francesco); Breckenkamp, J. (Juergen); H. Brenner (Hermann); L.M. Brewster (Lizzy); Brian, G.R. (Garry R.); Bruno, G. (Graziella); Bueno-de-Mesquita, H.B. (H. Bas); Bugge, A. (Anna); Burns, C. (Con); De León, A.C. (Antonio Cabrera); Cacciottolo, J. (Joseph); Cama, T. (Tilema); Cameron, C. (Christine); Camolas, J. (José); G. Can (Günay); Cândido, A.P.C. (Ana Paula C.); Capuano, V. (Vincenzo); Cardoso, V.C. (Viviane C.); Carlsson, A.C. (Axel C.); Carvalho, M.J. (Maria J.); Casanueva, F.F. (Felipe F.); J.P. Casas (Juan Pablo); Caserta, C.A. (Carmelo A.); Chamukuttan, S. (Snehalatha); A.W.M. Chan (Angelique); Chan, Q. (Queenie); Chaturvedi, H.K. (Himanshu K.); Chaturvedi, N. (Nishi); Chen, C.-J. (Chien-Jen); Chen, F. (Fangfang); Chen, H. (Huashuai); Chen, S. (Shuohua); Chen, Z. (Zhengming); Cheng, C.-Y. (Ching-Yu); A. Chetrit (Angela); Chiolero, A. (Arnaud); Chiou, S.-T. (Shu-Ti); Chirita-Emandi, A. (Adela); Cho, B. (Belong); Cho, Y. (Yumi); Christensen, K. (Kaare); Chudek, J. (Jerzy); R. Cifkova (Renata); F. Claessens; E. Clays (Els); Concin, H. (Hans); C. Cooper (Charles); Cooper, R. (Rachel); Coppinger, T.C. (Tara C.); Costanzo, S. (Simona); D. Cottel (Dominique); Cowell, C. (Chris); Craig, C.L. (Cora L.); Crujeiras, A.B. (Ana B.); D’Arrigo, G. (Graziella); d’Orsi, E. (Eleonora); J. Dallongeville; Damasceno, A. (Albertino); Damsgaard, C.T. (Camilla T.); Dankner, R. (Rachel); Dauchet, L. (Luc); G. De Backer (Guy); D. De Bacquer (Dirk); de Gaetano, G. (Giovanni); De Henauw, S. (Stefaan); D. De Smedt (Delphine); Deepa, M. (Mohan); Deev, A.D. (Alexander D.); A. Dehghan (Abbas); Delisle, H. (Hélène); Delpeuch, F. (Francis); Deschamps, V. (Valérie); K. Dhana (Klodian); Di Castelnuovo, A.F. (Augusto F.); Dias-da-Costa, J.S. (Juvenal Soares); Diaz, A. (Alejandro); Djalalinia, S. (Shirin); Do, H.T.P. (Ha T. P.); Dobson, A.J. (Annette J.); C. Donfrancesco (Chiara); Donoso, S.P. (Silvana P.); A. Döring (Angela); Doua, K. (Kouamelan); Drygas, W. (Wojciech); Dzerve, V. (Vilnis); Egbagbe, E.E. (Eruke E.); Eggertsen, R. (Robert); U. Ekelund (Ulf); El Ati, J. (Jalila); P. Elliott (Paul); Engle-Stone, R. (Reina); Erasmus, R.T. (Rajiv T.); Erem, C. (Cihangir); Eriksen, L. (Louise); Escobedo-de la Peña, J. (Jorge); A. Evans (Alun); Faeh, D. (David); Fall, C.H. (Caroline H.); F. Farzadfar (Farshad); Felix-Redondo, F.J. (Francisco J.); Ferguson, T.S. (Trevor S.); Fernández-Bergés, D. (Daniel); Ferrante, D. (Daniel); Ferrari, M. (Marika); Ferreccio, C. (Catterina); J. Ferrieres (Jean); Finn, J.D. (Joseph D.); K. Fischer (Krista); Flores, E.M. (Eric Monterubio); Föger, B. (Bernhard); Foo, L.H. (Leng Huat); Forslund, A.-S. (Ann-Sofie); Forsner, M. (Maria); S.P. Fortmann (Stephen); Fouad, H.M. (Heba M.); Francis, D.K. (Damian K.); Do Carmo Franco, M. (Maria); O.H. Franco (Oscar); Frontera, G. (Guillermo); Fuchs, F.D. (Flavio D.); Fuchs, S.C. (Sandra C.); Fujita, Y. (Yuki); Furusawa, T. (Takuro); Gaciong, Z. (Zbigniew); Gafencu, M. (Mihai); Gareta, D. (Dickman); Garnett, S.P. (Sarah P.); J.-M. Gaspoz (Jean-Michel); Gasull, M. (Magda); Gates, L. (Louise); J.M. Geleijnse (Marianne); Ghasemian, A. (Anoosheh); S. Giampaoli (Simona); F. Gianfagna (Francesco); Giovannelli, J. (Jonathan); A. Giwercman (Aleksander); Goldsmith, R.A. (Rebecca A.); Gonçalves, H. (Helen); M. Gross; González Rivas, J.P. (Juan P.); Gorbea, M.B. (Mariano Bonet); Gottrand, F. (Frederic); Graff-Iversen, S. (Sidsel); Grafnetter, D. (Dušan); Grajda, A. (Aneta); Grammatikopoulou, M.G. (Maria G.); Gregor, R.D. (Ronald D.); T. Grodzicki (Tomasz); Grøntved, A. (Anders); Gruden, G. (Grabriella); Grujic, V. (Vera); Gu, D. (Dongfeng); Gualdi-Russo, E. (Emanuela); Guan, O.P. (Ong Peng); V. Gudnason (Vilmundur); Guerrero, R. (Ramiro); I. Guessous (Idris); Guimaraes, A.L. (Andre L.); Gulliford, M.C. (Martin C.); Gunnlaugsdottir, J. (Johanna); Gunter, M. (Marc); Guo, X. (Xiuhua); Guo, Y. (Yin); Gupta, P.C. (Prakash C.); Gureje, O. (Oye); Gurzkowska, B. (Beata); Gutierrez, L. (Laura); Gutzwiller, F. (Felix); J. Halkjær; Hambleton, I.R. (Ian R.); R. Hardy; Kumar, R.H. (Rachakulla Hari); Hata, J. (Jun); Hayes, A.J. (Alison J.); He, J. (Jiang); M.E. Hendriks (Marleen); Cadena, L.H. (Leticia Hernandez); Herrala, S. (Sauli); Heshmat, R. (Ramin); Hihtaniemi, I.T. (Ilpo Tapani); Ho, S.Y. (Sai Yin); Ho, S.C. (Suzanne C.); Hobbs, M. (Michael); Hofman, A. (Albert); Hormiga, C.M. (Claudia M.); Horta, B.L. (Bernardo L.); Houti, L. (Leila); Howitt, C. (Christina); Htay, T.T. (Thein Thein); Htet, A.S. (Aung Soe); Htike, M.M.T. (Maung Maung Than); Hu, Y. (Yonghua); A. Husseini (Abdullatif); Huu, C.N. (Chinh Nguyen); Huybrechts, I. (Inge); Hwalla, N. (Nahla); L. Iacoviello (Licia); Iannone, A.G. (Anna G.); Ibrahim, M.M. (Mohsen M.); Ikeda, N. (Nayu); M.A. Ikram (Arfan); V. Irazola (Vilma); M. Islam (Muhammad); Ivkovic, V. (Vanja); Iwasaki, M. (Masanori); Jackson, R.T. (Rod T.); Jacobs, J.M. (Jeremy M.); T.H. Jafar (Tazeen); Jamil, K.M. (Kazi M.); K. Jamrozik; Janszky, I. (Imre); Jasienska, G. (Grazyna); Jelakovic, B. (Bojan); Jiang, C.Q. (Chao Qiang); Joffres, M. (Michel); M. Johansson (Mattias); J.B. Jonas (Jost B.); T. Jorgensen (Torben); Joshi, P. (Pradeep); Juolevi, A. (Anne); Jurak, G. (Gregor); Jureša, V. (Vesna); R. Kaaks (Rudolf); Kafatos, A. (Anthony); Kalter-Leibovici, O. (Ofra); Kapantais, E. (Efthymios); Kasaeian, A. (Amir); Katz, J. (Joanne); Kaur, P. (Prabhdeep); M. Kavousi (Maryam); M. Keil (Mark); Boker, L.K. (Lital Keinan); S. Keinanen-Kiukaanniemi (Sirkka); Kelishadi, R. (Roya); H.C.G. Kemper; A.P. Kengne (Andre Pascal); Kersting, M. (Mathilde); T. Key (Tim); Y.S. Khader (Yousef Saleh); D. Khalili (Davood); Khang, Y.-H. (Young-Ho); K.-T. Khaw (Kay-Tee); Khouw, I.M.S.L. (Ilse M. S. L.); S. Kiechl (Stefan); Killewo, J. (Japhet); Kim, J. (Jeongseon); Klimont, J. (Jeannette); J. Klumbiene (Jurate); Koirala, B. (Bhawesh); Kolle, E. (Elin); P. Kolsteren (Patrick); Korrovits, P. (Paul); S. Koskinen (Seppo); Kouda, K. (Katsuyasu); Koziel, S. (Slawomir); W. Kratzer (Wolfgang); Krokstad, S. (Steinar); Kromhout, D. (Daan); Kruger, H.S. (Herculina S.); R. Kubinova; U.M. Kujala (Urho); Kula, K. (Krzysztof); Kulaga, Z. (Zbigniew); Krishna Kumar, R.; Kurjata, P. (Pawel); Kusuma, Y.S. (Yadlapalli S.); K. Kuulasmaa (Kari); Kyobutungi, C. (Catherine); Laamiri, F.Z. (Fatima Zahra); T. Laatikainen (Tiina); C. Lachat (Carl); Laid, Y. (Youcef); Lam, T.H. (Tai Hing); Landrove, O. (Orlando); Lanska, V. (Vera); Lappas, G. (Georg); Larijani, B. (Bagher); L.E. Laugsand (Lars E.); Bao, K.L.N. (Khanh Le Nguyen); Le, T.D. (Tuyen D.); Leclercq, C. (Catherine); J.J.M. Lee (Jeannette); Lee, J. (Jeonghee); T. Lehtimäki (Terho); Lekhraj, R. (Rampal); León-Muñoz, L.M. (Luz M.); Y. Li (Yanping); Lilly, C.L. (Christa L.); W.-Y. Lim (Wei-Yen); Fernanda Lima-Costa, M.; Lin, H.-H. (Hsien-Ho); X. Lin (Xu); A. Linneberg (Allan); L. Lissner (Lauren); Litwin, M. (Mieczyslaw); Liu, J. (Jing); R. Lorbeer (Roberto); P.A. Lotufo (Paulo A); Lozano, J.E. (José Eugenio); Luksiene, D. (Dalia); A. Lundqvist (Annamari); Lunet, N. (Nuno); Lytsy, P. (Per); Ma, G. (Guansheng); Ma, J. (Jun); Machado-Coelho, G.L.L. (George L. L.); Machi, S. (Suka); Maggi, S. (Stefania); D.J. Magliano; Maire, B. (Bernard); Makdisse, M. (Marcia); R. Malekzadeh (Reza); Malhotra, R. (Rahul); Rao, K.M. (Kodavanti Mallikharjuna); S. Malyutina; Y. Manios; Mann, J.I. (Jim I.); Manzato, E. (Enzo); Margozzini, P. (Paula); Markey, O. (Oonagh); P. Marques-Vidal (Pedro); J. Marrugat (Jaume); Martin-Prevel, Y. (Yves); Martorell, R. (Reynaldo); Masoodi, S.R. (Shariq R.); E.B. Mathiesen (Ellisiv); Matsha, T.E. (Tandi E.); Mazur, A. (Artur); Mbanya, J.C.N. (Jean Claude N.); McFarlane, S.R. (Shelly R.); McGarvey, S.T. (Stephen T.); McKee, M. (Martin); S. McLachlan (Stela); McLean, R.M. (Rachael M.); McNulty, B.A. (Breige A.); Yusof, S.M. (Safiah Md); Mediene-Benchekor, S. (Sounnia); A. Meirhaeghe (Aline); C. Meisinger (Christa); Menezes, A.M.B. (Ana Maria B.); Mensink, G.B.M. (Gert B. M.); Meshram, I.I. (Indrapal I.); A. Metspalu (Andres); J. Mi (Jie); K.F. Michaelsen; Mikkel, K. (Kairit); Miller, J.C. (Jody C.); Miquel, J.F. (Juan Francisco); Jaime Miranda, J.; Mišigoj-Durakovic, M. (Marjeta); Mohamed, M.K. (Mostafa K.); K. Mohammad (Kazem); Mohammadifard, N. (Noushin); V. Mohan (Viswanathan); Yusoff, M.F.M. (Muhammad Fadhli Mohd); Molbo, D. (Drude); Møller, N.C. (Niels C.); Molnár, D. (Dénes); Mondo, C.K. (Charles K.); Monterrubio, E.A. (Eric A.); Monyeki, K.D.K. (Kotsedi Daniel K.); Moreira, L.B. (Leila B.); Morejon, A. (Alain); Moreno, L.A. (Luis A.); Morgan, K. (Karen); Mortensen, E.L. (Erik Lykke); G. Moschonis; Mossakowska, M. (Malgorzata); Mostafa, A. (Aya); Mota, J. (Jorge); Motlagh, M.E. (Mohammad Esmaeel); Motta, J. (Jorge); Mu, T.T. (Thet Thet); M.L. Muiesan (Maria Lorenza); M. Müller-Nurasyid (Martina); Murphy, N. (Neil); Mursu, J. (Jaakko); Murtagh, E.M. (Elaine M.); Musa, K.I. (Kamarul Imran); Musil, V. (Vera); Nagel, G. (Gabriele); Nakamura, H. (Harunobu); Námešná, J. (Jana); Nang, E.E.K. (Ei Ei K.); M. Nangia (Monika); Nankap, M. (Martin); Narake, S. (Sameer); E.M. Navarrete-Muñoz; Neal, W.A. (William A.); Nenko, I. (Ilona); Neovius, M. (Martin); Nervi, F. (Flavio); Neuhauser, H.K. (Hannelore K.); Nguyen, N.D. (Nguyen D.); Nguyen, Q.N. (Quang Ngoc); Nieto-Martínez, R.E. (Ramfis E.); Ning, G. (Guang); T. Ninomiya (Toshiharu); Nishtar, S. (Sania); Noale, M. (Marianna); Norat, T. (Teresa); Noto, D. (Davide); Nsour, M.A. (Mohannad Al); O’Reilly, D. (Dermot); Oh, K. (Kyungwon); Olayan, I.H. (Iman H.); Olinto, M.T.A. (Maria Teresa Anselmo); Oltarzewski, M. (Maciej); Omar, M.A. (Mohd A.); A. Onat (Altan); Ordunez, P. (Pedro); Ortiz, A.P. (Ana P.); Osler, M. (Merete); Osmond, C. (Clive); Ostojic, S.M. (Sergej M.); Otero, J.A. (Johanna A.); K. Overvad (Kim); E. Owusu-Dabo (Ellis); Paccaud, F.M. (Fred Michel); Padez, C. (Cristina); Pahomova, E. (Elena); A. Pajak (Andrzej); D. Palli (Domenico); Palloni, A. (Alberto); Palmieri, L. (Luigi); S. Panda-Jonas (Songhomitra); F. Panza (Francesco); Parnell, W.R. (Winsome R.); Parsaeian, M. (Mahboubeh); Pecin, I. (Ivan); Pednekar, M.S. (Mangesh S.); P.H.M. Peeters; Peixoto, S.V. (Sergio Viana); Peltonen, M. (Markku); A. Pereira (A.); Pérez, C.M. (Cynthia M.); A. Peters; Petkeviciene, J. (Janina); Peykari, N. (Niloofar); Pham, S.T. (Son Thai); Pigeot, I. (Iris); H. Pikhart (Hynek); Pilav, A. (Aida); A. Pilotto (Alberto); Pistelli, F. (Francesco); Pitakaka, F. (Freda); Piwonska, A. (Aleksandra); Plans-Rubió, P. (Pedro); Poh, B.K. (Bee Koon); M. Porta; M.L.P. Portegies (Marileen); Poulimeneas, D. (Dimitrios); Pradeepa, R. (Rajendra); Prashant, M. (Mathur); J.F. Price (Jackie F.); Puiu, M. (Maria); M. Punab (Margus); Qasrawi, R.F. (Radwan F.); Qorbani, M. (Mostafa); Bao, T.Q. (Tran Quoc); Radic, I. (Ivana); Radisauskas, R. (Ricardas); Rahman, M.-M. (Mah-mudur); O. Raitakari (Olli); Raj, M. (Manu); Rao, S.R. (Sudha Ramachandra); Ramachandran, A. (Ambady); Ramke, J. (Jacqueline); Ramos, R. (Rafel); Rampal, S. (Sanjay); Rasmussen, F. (Finn); J. Redón (Josep); Reganit, P.F.M. (Paul Ferdinand M.); Ribeiro, R. (Robespierre); Riboli, E. (Elio); Rigo, F. (Fernando); T.F. Rinke de Wit (Tobias); Ritti-Dias, R.M. (Raphael M.); Rivera, J.A. (Juan A.); S.M. Robinson (Siân); Robitaille, C. (Cynthia); F. Rodríguez Artalejo (Fernando); Del Cristo Rodriguez-Perez, M. (María); Rodríguez-Villamizar, L.A. (Laura A.); Rojas-Martinez, R. (Rosalba); Rojroong-Wasinkul, N. (Nipa); Romaguera, D. (Dora); K. Ronkainen (Kimmo); A. Rosengren (Annika); Rouse, I. (Ian); Rubinstein, A. (Adolfo); Rühli, F.J. (Frank J.); Rui, O. (Ornelas); Ruiz-Betancourt, B.S. (Blanca Sandra); Russo Horimoto, A.R.V. (Andrea R. V.); Rutkowski, M. (Marcin); C. Sabanayagam (Charumathi); Sachdev, H.S. (Harshpal S.); Saidi, O. (Olfa); Salanave, B. (Benoit); Martinez, E.S. (Eduardo Salazar); V. Salomaa (Veikko); Salonen, J.T. (Jukka T.); M. Salvetti (Massimo); Sánchez-Abanto, J. (Jose); Sandjaja,; S. Sans (Susana); Santos, D.A. (Diana A.); Santos, O. (Osvaldo); Dos Santos, R.N. (Renata Nunes); Santos, R. (Rute); J. Saramies (Jouko); Sardinha, L.B. (Luis B.); Sarrafzadegan, N. (Nizal); Saum, K.-U. (Kai-Uwe); S. Savva; Scazufca, M. (Marcia); Rosario, A.S. (Angelika Schaffrath); Schargrodsky, H. (Herman); Schienkiewitz, A. (Anja); Schmidt, I.M. (Ida Maria); I.J.C. Schneider (Ione J C); C. Schultsz (Constance); Schutte, A.E. (Aletta E.); Sein, A.A. (Aye Aye); Sen, A. (Abhijit); Senbanjo, I.O. (Idowu O.); S.G. Sepanlou (Sadaf G); Shalnova, S.A. (Svetlana A.); Sharma, S.K. (Sanjib K.); J.E. Shaw; K. Shibuya (Kenji); Shin, D.W. (Dong Wook); Y. Shin (Youchan); R. Shiri (Rahman); R. Siantar (Rosalynn); Sibai, A.M. (Abla M.); Silva, A.M. (Antonio M.); Silva, D.A.S. (Diego Augusto Santos); Simon, M. (Mary); J. Simons (Judith); L.A. Simons (Leon); Sjostrom, M. (Michael); J. Slowikowska-Hilczer (Jolanta); Slusarczyk, P. (Przemyslaw); L. Smeeth (Liam); Smith, M.C. (Margaret C.); M.B. Snijder (Marieke); So, H.-K. (Hung-Kwan); Sobngwi, E. (Eugène); S. Söderberg (Stefan); Soekatri, M.Y.E. (Moesijanti Y. E.); Solfrizzi, V. (Vincenzo); E. Sonestedt (Emily); Song, Y. (Yi); T.I.A. Sørensen (Thorkild); Soric, M. (Maroje); Jérome, C.S. (Charles Sossa); Soumare, A. (Aicha); J.A. Staessen (Jan); Starc, G. (Gregor); Stathopoulou, M.G. (Maria G.); Staub, K. (Kaspar); Stavreski, B. (Bill); Steene-Johannessen, J. (Jostein); Stehle, P. (Peter); Stein, A.D. (Aryeh D.); Stergiou, G.S. (George S.); Stessman, J. (Jochanan); Stieber, J. (Jutta); D. Stöckl (Doris); Stocks, T. (Tanja); Stokwiszewski, J. (Jakub); Stratton, G. (Gareth); K. Stronks (Karien); Strufaldi, M.W. (Maria Wany); Sun, C.-A. (Chien-An); Sundström, J. (Johan); Sung, Y.-T. (Yn-Tz); J. Sunyer (Jordi); Suriyawongpaisal, P. (Paibul); Swinburn, B.A. (Boyd A.); Sy, R.G. (Rody G.); Szponar, L. (Lucjan); E. Shyong Tai; M.L. Tammesoo; A. Tamosiunas (Abdonas); Tang, L. (Line); Tang, X. (Xun); F. Tanser (Frank); Tao, Y. (Yong); Tarawneh, M.R. (Mohammed Rasoul); Tarp, J. (Jakob); Tarqui-Mamani, C.B. (Carolina B.); Taylor, A. (Anne); Tchibindat, F. (Félicité); Theobald, H. (Holger); L. Thijs (Lutgarde); L. Thuesen (Leif); A. Tjønneland (Anne); Tolonen, H.K. (Hanna K.); Tolstrup, J.S. (Janne S.); Topbas, M. (Murat); Topór-Madry, R. (Roman); M. Torrent (Maties); Toselli, S. (Stefania); Traissac, P. (Pierre); A. Trichopoulou (Antonia); Trichopoulos, D. (Dimitrios); Trinh, O.T.H. (Oanh T. H.); Trivedi, A. (Atul); Tshepo, L. (Lechaba); Tulloch-Reid, M.K. (Marshall K.); Tuomainen, T.-P. (Tomi-Pekka); J. Tuomilehto (Jaakko); Turley, M.L. (Maria L.); Tynelius, P. (Per); Tzotzas, T. (Themistoklis); C. Tzourio (Christophe); Ueda, P. (Peter); Ukoli, F.A.M. (Flora A. M.); Ulmer, H. (Hanno); Unal, B. (Belgin); Uusitalo, H.M.T. (Hannu M. T.); Valdivia, G. (Gonzalo); Vale, S. (Susana); D. Valvi (Damaskini); Y.T. van der Schouw (Yvonne); Van Herck, K. (Koen); Van Minh, H. (Hoang); L. van Rossem (Lenie); I. van Valkengoed (Irene); D. Vanderschueren (Dirk); D. Vanuzzo (Diego); L. Vatten (Lars); Vega, T. (Tomas); Velasquez-Melendez, G. (Gustavo); G. Veronesi (Giovanni); Monique Verschuren, W.M.; Verstraeten, R. (Roosmarijn); Victora, C.G. (Cesar G.); G. Viegi; L. Viet (Lucie); E. Viikari-Juntura (Eira); P. Vineis (Paolo); J. Vioque (Jesus); Virtanen, J.K. (Jyrki K.); S. Visvikis-Siest (Sophie); B. Viswanathan (Bharathi); P. Vollenweider (Peter); Voutilainen, S. (Sari); Vrdoljak, A. (Ana); M. Vrijheid (Martine); Wade, A.N. (Alisha N.); Wagner, A. (Aline); Walton, J. (Janette); Mohamud, W.N.W. (Wan Nazaimoon Wan); Wang, M.-D. (Ming-Dong); Wang, Q. (Qian); Y. Wang (Ying); Goya Wannamethee, S.; N.J. Wareham (Nick); Weerasekera, D. (Deepa); P.H. Whincup (Peter); Widhalm, K. (Kurt); Widyahening, I.S. (Indah S.); Wiecek, A. (Andrzej); A.H. Wijga (Alet); Wilks, R.J. (Rainford J.); J. Willeit (Johann); T. Wilsgaard (Tom); B. Wojtyniak (Bogdan); Wong, J.E. (Jyh Eiin); Wong, T.Y. (Tien Yin); Woo, J. (Jean); M. Woodward (Mark); F.C.W. Wu (Frederick C.); Wu, J. (Jianfeng); Wu, S.L. (Shou Ling); Xu, H. (Haiquan); Xu, L. (Liang); Yamborisut, U. (Uruwan); Yan, W. (Weili); Yang, X. (Xiaoguang); Yardim, N. (Nazan); X. Ye (Xingwang); P.K. Yiallouros (P.); Yoshihara, A. (Akihiro); You, Q.S. (Qi Sheng); Younger-Coleman, N.O. (Novie O.); Yusoff, A.F. (Ahmad F.); Zainuddin, A.A. (Ahmad A.); Zambon, S. (Sabina); T. Zdrojewski (T.); Zeng, Y. (Yi); Zhao, D. (Dong); Zhao, W. (Wenhua); Y. Zheng (Yingfeng); M. Zhou (Ming); Zhu, D. (Dan); E. Zimmermann; Cisneros, J.Z. (Julio Zuñiga)

    2016-01-01

    textabstractBeing taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The

  3. Measuring the fill height of sealed cans with a compound pendulum

    International Nuclear Information System (INIS)

    Rinard, P.M.

    1995-06-01

    A compound pendulum has been designed, fabricated, tested, and used to determine the fill height of material in sealed cans. The specific cans that stimulated this work are partially filled with uranium and plutonium oxide. Fill height affects nondestructive assays using fission neutrons, but corrections for various fill heights can be made once the height is known. Heights vary with use as the powder compacts or loosens, so it is necessary to determine the height at the time of the neutron measurement. The pendulum is small and readily portable so it can be taken to the location of the neutron measurement. Tests with open cans filled with sand to various known heights had accuracies generally within 3%. Factors that can affect the accuracy are examined and discussed. Experience in using the pendulum on sealed cans is related

  4. Nonmonotonic behaviour of superconducting critical temperature of Nb/CuNi bilayers with a nanometer range of layer thickness

    International Nuclear Information System (INIS)

    Morari, R.; Antropov, E.; Socrovisciuc, A.; Prepelitsa, A.; Zdravkov, V.I.; Tagirov, L.R.; Kupriyanov, M.Yu.; Sidorenko, A.S.

    2009-01-01

    Present work reports the result of the proximity effect investigation for superconducting Nb/CuNi-bilayers with the thickness of the ferromagnetic layer (Cu x Ni 1-x ) being in the sub-nanometer range. It was found a non-monotonic behavior of the critical temperature T c , i.e. its growth with the increasing of the ferromagnetic layer thickness dF, for the series of the samples with constant thickness of Nb layer, (d Nb = const). (authors)

  5. Estimation of Total Tree Height from Renewable Resources Evaluation Data

    Science.gov (United States)

    Charles E. Thomas

    1981-01-01

    Many ecological, biological, and genetic studies use the measurement of total tree height. Until recently, the Southern Forest Experiment Station's inventory procedures through Renewable Resources Evaluation (RRE) have not included total height measurements. This note provides equations to estimate total height based on other RRE measurements.

  6. Simulatie-onderzoek `mini halve STEP-barrier' in aardebaan : een simulatie-onderzoek in aardebaan van de N65 tussen Den Bosch en Tilburg. In opdracht van Directoraat-Generaal Rijkswaterstaat, Bouwdienst, Apeldoorn.

    NARCIS (Netherlands)

    Pol, W.H.M. van de

    1998-01-01

    By order of the Dutch Department of Public Works Civil Engineering Division, simulations involving the `Mini Half-STEP barrier' (MHS barrier) were conducted to assess its function. The MHS barrier has a profile similar to the STEP barrier, but with a height of only 0.500 metres. The posts have an

  7. Variability of the Mixed-Layer Height Over Mexico City

    Science.gov (United States)

    García-Franco, J. L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M.

    2018-06-01

    The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values > 3 km above ground level in the months of March-April, and are clearly lower (behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.

  8. Free Modal Algebras Revisited: The Step-by-Step Method

    NARCIS (Netherlands)

    Bezhanishvili, N.; Ghilardi, Silvio; Jibladze, Mamuka

    2012-01-01

    We review the step-by-step method of constructing finitely generated free modal algebras. First we discuss the global step-by-step method, which works well for rank one modal logics. Next we refine the global step-by-step method to obtain the local step-by-step method, which is applicable beyond

  9. A century of trends in adult human height

    NARCIS (Netherlands)

    Bentham, James; Di Cesare, Mariachiara; Stevens, Gretchen A.; Zhou, Bin; Bixby, Honor; Cowan, Melanie; Fortunato, Léa; Bennett, James E.; Danaei, Goodarz; Hajifathalian, Kaveh; Lu, Yuan; Riley, Leanne M.; Laxmaiah, Avula; Kontis, Vasilis; Paciorek, Christopher J.; Riboli, Elio; Ezzati, Majid; Abdeen, Ziad A.; Hamid, Zargar Abdul; Abu-Rmeileh, Niveen M.; Acosta-Cazares, Benjamin; Adams, Robert; Aekplakorn, Wichai; Aguilar-Salinas, Carlos A.; Agyemang, Charles; Ahmadvand, Alireza; Ahrens, Wolfgang; Al-Hazzaa, Hazzaa M.; Al-Othman, Amani Rashed; Raddadi, Rajaa Al; Ali, Mohamed M.; Alkerwi, Ala'a; Alvarez-Pedrerol, Mar; Aly, Eman; Amouyel, Philippe; Amuzu, Antoinette; Andersen, Lars Bo; Anderssen, Sigmund A.; Anjana, Ranjit Mohan; Aounallah-Skhiri, Hajer; Ariansen, Inger; Aris, Tahir; Arlappa, Nimmathota; Brewster, Lizzy M.; Hendriks, Marleen Elisabeth; Wit, Tobias F. Rinke de; Schultsz, Constance; Snijder, Marieke B.; Stronks, Karien; Valkengoed, Irene Gm van

    2016-01-01

    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in

  10. Neural network cloud top pressure and height for MODIS

    Science.gov (United States)

    Håkansson, Nina; Adok, Claudia; Thoss, Anke; Scheirer, Ronald; Hörnquist, Sara

    2018-06-01

    Cloud top height retrieval from imager instruments is important for nowcasting and for satellite climate data records. A neural network approach for cloud top height retrieval from the imager instrument MODIS (Moderate Resolution Imaging Spectroradiometer) is presented. The neural networks are trained using cloud top layer pressure data from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) dataset. Results are compared with two operational reference algorithms for cloud top height: the MODIS Collection 6 Level 2 height product and the cloud top temperature and height algorithm in the 2014 version of the NWC SAF (EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting) PPS (Polar Platform System). All three techniques are evaluated using both CALIOP and CPR (Cloud Profiling Radar for CloudSat (CLOUD SATellite)) height. Instruments like AVHRR (Advanced Very High Resolution Radiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) contain fewer channels useful for cloud top height retrievals than MODIS, therefore several different neural networks are investigated to test how infrared channel selection influences retrieval performance. Also a network with only channels available for the AVHRR1 instrument is trained and evaluated. To examine the contribution of different variables, networks with fewer variables are trained. It is shown that variables containing imager information for neighboring pixels are very important. The error distributions of the involved cloud top height algorithms are found to be non-Gaussian. Different descriptive statistic measures are presented and it is exemplified that bias and SD (standard deviation) can be misleading for non-Gaussian distributions. The median and mode are found to better describe the tendency of the error distributions and IQR (interquartile range) and MAE (mean absolute error) are found

  11. Lucas Heights technology park

    International Nuclear Information System (INIS)

    1987-01-01

    The proposed Lucas Heights Technology Park will pound together the applied research programs of Government, tertiary and industry sectors, aiming to foster technology transfer particularly to the high-technology manufacturing industry. A description of the site is given along with an outline of the envisaged development, existing facilities and expertise. ills

  12. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    Science.gov (United States)

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (Pgrain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the strongest evidence for

  13. Global Distribution of Planetary Boundary Layer Height Derived from CALIPSO

    Science.gov (United States)

    Huang, J.

    2015-12-01

    The global distribution of planetary boundary layer (PBL) height, which was estimated from the attenuated back-scatter observations of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), is presented. In general, the PBL is capped by a temperature inversion that tends to trap moisture and aerosols. The gradient of back-scatter observed by lidar is almost always associated with this temperature inversion and the simultaneous decrease of moisture content. Thus, the PBL top is defined as the location of the maximum aerosol scattering gradient, which is analogous to the more conventional thermodynamic definition. The maximum standard deviation method, developed by Jordan et al. (2010), is modified and used to derive the global PBL heights. The derived PBL heights are not only consistent with the results of McGrath-Spangler and Denning (2012) but also agree well with the ground-based lidar measurements. It is found that the correlation between CALIPSO and the ground-based lidar was 0.73. The seasonal mean patterns from 4-year mid-day PBL heights over global are demonstrated. Also it is found that the largest PBL heights occur over the Tibetan Plateau and the coastal areas. The smallest PBL heights appear in the Tarim Basin and the northeast of China during the local winter. The comparison of PBL heights from CALIPSO and ECMWF under different land-cover conditions showed that, over ocean and forest surface, the PBL height estimated from the CALIPSO back-scatter climatology is larger than the ones estimated from ECMWF data. However, the PBL heights from ECMWF, over grass land and bare land surface in spring and summer are larger than the ones from CALIPSO.

  14. Industrial Implementation of Environmentally Friendly Nanometal Electroplating Process for Chromium and Copper Beryllium Replacement using Low Cost Pulse Current Power Supplies

    Science.gov (United States)

    2014-09-10

    FINAL REPORT Industrial Implementation of Environmentally Friendly Nanometal Electroplating Process for Chromium and Copper Beryllium...35 3.2 Phase II – Development/Verification that Nanotechnology Based Electroplating Process to Replace EHC/Cu-Be Processes are Compatible With...36 3.3 Phase III – Development of 200kW Power Supply and Compatible Nanostructured Electroplating Processed for Commercialization

  15. Accurate tool height control by bearing gap adjustment

    NARCIS (Netherlands)

    Wielen, van der A.M.; Schellekens, P.H.J.; Jaartsveld, F.T.M.

    2002-01-01

    Face turning of optical surfaces on precision lathes needs high precision tool height adjustment, which may be a difficult and time-consuming task. In this paper we present a new tool adjustment mechanism based on varying the bearing gap height of the hydrostatic bearings present in precision lathe

  16. 49 CFR 231.31 - Drawbars for freight cars; standard height.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Drawbars for freight cars; standard height. 231.31... cars; standard height. (a) Except on cars specified in paragraph (b) of this section— (1) On standard gage (561/2-inch gage) railroads, the maximum height of drawbars for freight cars (measured...

  17. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    DEFF Research Database (Denmark)

    Sun, Ling; Laustsen, Milan; Mandsberg, Nikolaj

    2016-01-01

    We discuss the influence of surface structure, namely the height and opening angles of nano-and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll......-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic...

  18. A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE

    International Nuclear Information System (INIS)

    Puschmann, K. G.; Ruiz Cobo, B.; MartInez Pillet, V.

    2010-01-01

    Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion.

  19. Differences in Lower Extremity and Trunk Kinematics between Single Leg Squat and Step Down Tasks.

    Directory of Open Access Journals (Sweden)

    Cara L Lewis

    Full Text Available The single leg squat and single leg step down are two commonly used functional tasks to assess movement patterns. It is unknown how kinematics compare between these tasks. The purpose of this study was to identify kinematic differences in the lower extremity, pelvis and trunk between the single leg squat and the step down. Fourteen healthy individuals participated in this research and performed the functional tasks while kinematic data were collected for the trunk, pelvis, and lower extremities using a motion capture system. For the single leg squat task, the participant was instructed to squat as low as possible. For the step down task, the participant was instructed to stand on top of a box, slowly lower him/herself until the non-stance heel touched the ground, and return to standing. This was done from two different heights (16 cm and 24 cm. The kinematics were evaluated at peak knee flexion as well as at 60° of knee flexion. Pearson correlation coefficients (r between the angles at those two time points were also calculated to better understand the relationship between each task. The tasks resulted in kinematics differences at the knee, hip, pelvis, and trunk at both time points. The single leg squat was performed with less hip adduction (p ≤ 0.003, but more hip external rotation and knee abduction (p ≤ 0.030, than the step down tasks at 60° of knee flexion. These differences were maintained at peak knee flexion except hip external rotation was only significant in the 24 cm step down task (p ≤ 0.029. While there were multiple differences between the two step heights at peak knee flexion, the only difference at 60° of knee flexion was in trunk flexion (p < 0.001. Angles at the knee and hip had a moderate to excellent correlation (r = 0.51-0.98, but less consistently so at the pelvis and trunk (r = 0.21-0.96. The differences in movement patterns between the single leg squat and the step down should be considered when selecting a

  20. In vivo MR imaging of nanometer magnetically labeled bone marrow stromal cells transplanted via portal vein in rat liver

    International Nuclear Information System (INIS)

    Wang Ping; Wang Jianhua; Yan Zhiping; Hu Meiyu; Xu Pengju; Zhou Meiling; Ya Fuhua; Fan Sheung-tat; Luk John-m

    2006-01-01

    Objective: To evaluate in vivo magnetic resonance imaging with a conventional 1.5-T system for tracking of intra-portal vein transplantation nanometer magnetically labeled BMSCs in rat liver. Methods: BMSCs were isolated from 5 SD rats bone marrow with the density gradient centrifugation method. Then BMSCs were labeled with nanometer superpara-magnetic iron oxide and transfection agent. Cell labeling efficiency was assessed with determination of the percentage of Peris Prussian blue stain. Then BMSCs transplanted into normal rats' livers via portal vein. The receipts were divided into 5 groups ,including sham control,2 h ,3 d,7 d and 2 w after transplantation. Follow-up serial T 1 WI,T 2 WI and T 2 * -weighted gradient- echo MR imaging were performed at 1.5 T MRI system. MR imaging findings were compared with histology. Results: Cell labeling efficiency was more than 95% by Perls Prussian blue stain. After transplantation of labeled BMSCs via portal vein, liver's had diffuse granular signal intensity appearance in T 2 * WI MRI. Cells were detected for up to 2 w in receipts' liver's. At histologic analysis, signal intensity loss correlated with iron-loaded cells. Conclusion: MR imaging could aid in monitoring of magnetically labeled BMSCs administered via portal vein in vivo. (authors)

  1. Optimizing height presentation for aircraft cockpit displays

    Science.gov (United States)

    Jordan, Chris S.; Croft, D.; Selcon, Stephen J.; Markin, H.; Jackson, M.

    1997-02-01

    This paper describes an experiment conducted to investigate the type of display symbology that most effectively conveys height information to users of head-down plan-view radar displays. The experiment also investigated the use of multiple information sources (redundancy) in the design of such displays. Subjects were presented with eight different height display formats. These formats were constructed from a control, and/or one, two, or three sources of redundant information. The three formats were letter coding, analogue scaling, and toggling (spatially switching the position of the height information from above to below the aircraft symbol). Subjects were required to indicate altitude awareness via a four-key, forced-choice keyboard response. Error scores and response times were taken as performance measures. There were three main findings. First, there was a significant performance advantage when the altitude information was presented above and below the symbol to aid the representation of height information. Second, the analogue scale, a line whose length indicated altitude, proved significantly detrimental to performance. Finally, no relationship was found between the number of redundant information sources employed and performance. The implications for future aircraft and displays are discussed in relation to current aircraft tactical displays and in the context of perceptual psychological theory.

  2. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  3. The Effects of Microgravity on Seated Height (Spinal Elongation)

    Science.gov (United States)

    Young, K. S.; Rajulu, S.

    2011-01-01

    ABSTRACT Many physiological factors, such as spinal elongation, fluid shifts, bone atrophy, and muscle loss, occur during an exposure to a microgravity environment. Spinal elongation is just one of the factors that can also affect the safety and performance of a crewmember while in space. Spinal elongation occurs due to the lack of gravity/compression on the spinal column. This allows for the straightening of the natural spinal curve. There is a possible fluid shift in the inter-vertebral disks that may also result in changes in height. This study aims at collecting the overall change in seated height for crewmembers exposed to a microgravity environment. During previous Programs, Apollo-Soyuz Test Project (ASTP) and Skylab, spinal elongation data was collected from a small number of subjects in a standing posture but were limited in scope. Data from these studies indicated a quick increase in stature during the first few days of weightlessness, after which stature growth reached a plateau resulting in up to a 3% increase of the original measurement [1-5]. However, this data was collected only for crewmembers in standing posture and not in a seated posture. Seated height may have a different effect than standing height due to a change in posture as well as due to a compounded effect of wearing restraints and a potential compression of the gluteal area. Seated height was deemed as a critical measurement in the design of the Constellation Program s (CxP) Crew Exploration Vehicle (CEV), called Orion which is now the point-of-departure vehicle for the Multi-Purpose Crew Vehicle (MPCV) Program; therefore a better understanding of the effects of microgravity on seated height is necessary. Potential changes in seated height that may not have impacted crew accommodation in previous Programs will have significant effects on crew accommodation due to the layout of seats in the Orion.. The current and existing configuration is such that the four crewmembers are stacked two by

  4. Gradient-Based Optimization of Wind Farms with Different Turbine Heights: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew; Annoni, Jennifer; Dykes, Katherine; Fleming, Paul

    2017-05-08

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hub heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.

  5. Methane dissociation on the steps and terraces of Pt(211) resolved by quantum state and impact site

    Science.gov (United States)

    Chadwick, Helen; Guo, Han; Gutiérrez-González, Ana; Menzel, Jan Paul; Jackson, Bret; Beck, Rainer D.

    2018-01-01

    Methane dissociation on the step and terrace sites of a Pt(211) single crystal was studied by reflection absorption infrared spectroscopy (RAIRS) at a surface temperature of 120 K. The C—H stretch RAIRS signal of the chemisorbed methyl product species was used to distinguish between adsorption on step and terrace sites allowing methyl uptake to be monitored as a function of incident kinetic energy for both sites. Our results indicate a direct dissociation mechanism on both sites with higher reactivity on steps than on terraces consistent with a difference in an activation barrier height of at least 30 kJ/mol. State-specific preparation of incident CH4 with one quantum of antisymmetric (ν3) stretch vibration further increases the CH4 reactivity enabling comparison between translational and vibrational activation on both steps and terraces. The reaction is modeled with first principles quantum theory that accurately describes dissociative chemisorption at different sites on the surface.

  6. Sea Surface Height, Absolute, Aviso, 0.25 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviso Absolute Sea Surface Height is the Sea Surface Height Deviation plus the long term mean dynamic height. This is Science Quality data.

  7. APTCARE - Lucas Heights

    International Nuclear Information System (INIS)

    1986-05-01

    This plan details command co-ordination and support responses of Commonwealth and State Authorities in the event of an accident with offsite consequences at the Lucas Heights Research Laboratories. The plan has been prepared by the AAEC Local Liaison Working Party, comprising representatives of the Australian Atomic Energy Commission, NSW Police Department, NSW Board of Fire Commissioners, NSW State Emergency Services and Civil Defence Organisation, NSW Department of Health, NSW Department of Environment and Planning and Sutherland Shire Council

  8. A training approach to improve stepping automaticity while dual-tasking in Parkinson's disease

    Science.gov (United States)

    Chomiak, Taylor; Watts, Alexander; Meyer, Nicole; Pereira, Fernando V.; Hu, Bin

    2017-01-01

    Abstract Background: Deficits in motor movement automaticity in Parkinson's disease (PD), especially during multitasking, are early and consistent hallmarks of cognitive function decline, which increases fall risk and reduces quality of life. This study aimed to test the feasibility and potential efficacy of a wearable sensor-enabled technological platform designed for an in-home music-contingent stepping-in-place (SIP) training program to improve step automaticity during dual-tasking (DT). Methods: This was a 4-week prospective intervention pilot study. The intervention uses a sensor system and algorithm that runs off the iPod Touch which calculates step height (SH) in real-time. These measurements were then used to trigger auditory (treatment group, music; control group, radio podcast) playback in real-time through wireless headphones upon maintenance of repeated large amplitude stepping. With small steps or shuffling, auditory playback stops, thus allowing participants to use anticipatory motor control to regain positive feedback. Eleven participants were recruited from an ongoing trial (Trial Number: ISRCTN06023392). Fear of falling (FES-I), general cognitive functioning (MoCA), self-reported freezing of gait (FOG-Q), and DT step automaticity were evaluated. Results: While we found no significant effect of training on FES-I, MoCA, or FOG-Q, we did observe a significant group (music vs podcast) by training interaction in DT step automaticity (Ptraining to increase motor automaticity for people living with PD. The training approach described here can be implemented at home to meet the growing demand for self-management of symptoms by patients. PMID:28151878

  9. Dog behavior co-varies with height, bodyweight and skull shape.

    Science.gov (United States)

    McGreevy, Paul D; Georgevsky, Dana; Carrasco, Johanna; Valenzuela, Michael; Duffy, Deborah L; Serpell, James A

    2013-01-01

    Dogs offer unique opportunities to study correlations between morphology and behavior because skull shapes and body shape are so diverse among breeds. Several studies have shown relationships between canine cephalic index (CI: the ratio of skull width to skull length) and neural architecture. Data on the CI of adult, show-quality dogs (six males and six females) were sourced in Australia along with existing data on the breeds' height, bodyweight and related to data on 36 behavioral traits of companion dogs (n = 8,301) of various common breeds (n = 49) collected internationally using the Canine Behavioral Assessment and Research Questionnaire (C-BARQ). Stepwise backward elimination regressions revealed that, across the breeds, 33 behavioral traits all but one of which are undesirable in companion animals correlated with either height alone (n = 14), bodyweight alone (n = 5), CI alone (n = 3), bodyweight-and-skull shape combined (n = 2), height-and-skull shape combined (n = 3) or height-and-bodyweight combined (n = 6). For example, breed average height showed strongly significant inverse relationships (psensitivity, urination when left alone, dog-directed fear, separation-related problems, non-social fear, defecation when left alone, owner-directed aggression, begging for food, urine marking and attachment/attention-seeking, while bodyweight showed strongly significant inverse relationships (p<0.001) with excitability and being reported as hyperactive. Apart from trainability, all regression coefficients with height were negative indicating that, across the breeds, behavior becomes more problematic as height decreases. Allogrooming increased strongly (p<0.001) with CI and inversely with height. CI alone showed a strong significant positive relationship with self-grooming (p<0.001) but a negative relationship with chasing (p = 0.020). The current study demonstrates how aspects of CI (and therefore brain shape), bodyweight and height co-vary with behavior. The

  10. Optimum hub height of a wind turbine for maximizing annual net profit

    International Nuclear Information System (INIS)

    Lee, Jaehwan; Kim, Dong Rip; Lee, Kwan-Soo

    2015-01-01

    Highlights: • Annual Net Profit was proposed to optimize the hub height of a wind turbine. • Procedures of the hub height optimization method were introduced. • Effect of local wind speed characteristics on optimum hub height was illustrated. • Effect of rated power on optimum hub height was negligible in the range 0.75–3 MW. • Rated speed and cut-out speed had great effects on optimum hub height. - Abstract: The optimization method of the hub height, which can ensure the economic feasibility of the wind turbine, is proposed in this study. Annual Net Profit is suggested as an objective function and the optimization procedure is developed. The effects of local wind speed and wind turbine power characteristics on the optimum hub height are investigated. The optimum hub height decreased as the mean wind speed and wind shear exponent increased. Rated power had little effect on optimum hub height; it follows that the economies of scale are negligible in the rated power range of 0.75–3 MW. Among the wind turbine power characteristics, rated speed and cut-out speed most strongly affected the optimum hub height

  11. Quantum Control of Graphene Plasmon Excitation and Propagation at Heaviside Potential Steps.

    Science.gov (United States)

    Wang, Dongli; Fan, Xiaodong; Li, Xiaoguang; Dai, Siyuan; Wei, Laiming; Qin, Wei; Wu, Fei; Zhang, Huayang; Qi, Zeming; Zeng, Changgan; Zhang, Zhenyu; Hou, Jianguo

    2018-02-14

    Quantum mechanical effects of single particles can affect the collective plasmon behaviors substantially. In this work, the quantum control of plasmon excitation and propagation in graphene is demonstrated by adopting the variable quantum transmission of carriers at Heaviside potential steps as a tuning knob. First, the plasmon reflection is revealed to be tunable within a broad range by varying the ratio γ between the carrier energy and potential height, which originates from the quantum mechanical effect of carrier propagation at potential steps. Moreover, the plasmon excitation by free-space photos can be regulated from fully suppressed to fully launched in graphene potential wells also through adjusting γ, which defines the degrees of the carrier confinement in the potential wells. These discovered quantum plasmon effects offer a unified quantum-mechanical solution toward ultimate control of both plasmon launching and propagating, which are indispensable processes in building plasmon circuitry.

  12. The Sitting-Height Index of Build, (Body Mass/(Sitting Height3, as an Improvement on the Body Mass Index for Children, Adolescents and Young Adults

    Directory of Open Access Journals (Sweden)

    Richard Burton

    2018-02-01

    Full Text Available The body mass index (BMI is unsatisfactory in being affected by both relative leg length and height, and, for use with children and adolescents, therefore needs to be interpreted in relation to age. The sitting-height index of build (body mass/(sitting height3, is largely free of these disadvantages. Furthermore, because that index is independent of relative leg length, the latter can be treated as a separate indicator of nutritional history and health risks. Past studies on white children and adults have shown body mass to be approximately proportional to (sitting height3. Moreover, multiple regression of (body mass1/3 on sitting height and leg length, using year-by-year averages, has indicated that leg length is an insignificant predictor of body mass. The present study used data for individuals, namely 2–20 years old males and females, black as well as white. Regression analysis as above again showed leg length to be an insignificant predictor of body mass, but only above the age of about nine years. However, sitting height is still a stronger predictor of body mass than leg length at all ages. The advantages of the sitting-height index of build for use with young people are confirmed.

  13. Estrogen-mediated Height Control in Girls with Marfan Syndrome.

    Science.gov (United States)

    Lee, Dong-Yun; Hyun, Hye Sun; Huh, Rimm; Jin, Dong-Kyu; Kim, Duk-Kyung; Yoon, Byung-Koo; Choi, DooSeok

    2016-02-01

    This study evaluated the efficacy of a stepwise regimen of estradiol valerate for height control in girls with Marfan syndrome. Eight girls with Marfan syndrome who had completed estrogen treatment for height control were included. Estradiol valerate was started at a dose of 2 mg/day, and then was increased. The projected final height was estimated using the initial height percentile (on a disease-specific growth curve for Korean Marfan syndrome [gcPFHt]), and the initial bone age (baPFHt). After the estrogen treatment, the projected final height was compared to the actual final height (FHt). The median baseline chronological and bone age were 10.0 and 10.5 years, respectively. After a median of 36.5 months of treatment, the median FHt (172.6 cm) was shorter than the median gcPFHt (181.0 cm) and baPFHt (175.9 cm). In the six patients who started treatment before the age of 11 years, the median FHt (171.8 cm) was shorter than the median gcPFHt (181.5 cm) and baPFHt (177.4 cm) after treatment. The median differences between the FHt and gcPFHt and baPFHt were 9.2 and 8.3 cm, respectively. In two patients started treatment after the age of 11, the differences between FHt and gcPFHt, and baPFHt after treatment were -4 and 1.4 cm, and -1.2 and 0 cm for each case, respectively. A stepwise increasing regimen of estradiol valerate may be an effective treatment for height control in girls with Marfan syndrome, especially when started under 11 years old.

  14. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    Science.gov (United States)

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  15. Influence of real and virtual heights on standing balance.

    Science.gov (United States)

    Cleworth, Taylor W; Horslen, Brian C; Carpenter, Mark G

    2012-06-01

    Fear and anxiety induced by threatening scenarios, such as standing on elevated surfaces, have been shown to influence postural control in young adults. There is also a need to understand how postural threat influences postural control in populations with balance deficits and risk of falls. However, safety and feasibility issues limit opportunities to place such populations in physically threatening scenarios. Virtual reality (VR) has successfully been used to simulate threatening environments, although it is unclear whether the same postural changes can be elicited by changes in virtual and real threat conditions. Therefore, the purpose of this study was to compare the effects of real and virtual heights on changes to standing postural control, electrodermal activity (EDA) and psycho-social state. Seventeen subjects stood at low and high heights in both real and virtual environments matched in scale and visual detail. A repeated measures ANOVA revealed increases with height, independent of visual environment, in EDA, anxiety, fear, and center of pressure (COP) frequency, and decreases with height in perceived stability, balance confidence and COP amplitude. Interaction effects were seen for fear and COP mean position; where real elicited larger changes with height than VR. This study demonstrates the utility of VR, as simulated heights resulted in changes to postural, autonomic and psycho-social measures similar to those seen at real heights. As a result, VR may be a useful tool for studying threat related changes in postural control in populations at risk of falls, and to screen and rehabilitate balance deficits associated with fear and anxiety. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    Directory of Open Access Journals (Sweden)

    Takenobu Michioka

    2016-03-01

    Full Text Available Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the additional structure. When the source height is equivalent to the reactor building height, the additional structure enhances both the vertical and horizontal gas dispersion widths and decreases the ground gas concentration, and it means that the additional structure does not decrease the effective stack height. When the source height is larger than the reactor height, the additional structures might affect the effective stack height. As the distance between the source and the additional structure decreases, or as the height of the additional structure increases, the structure has a larger effect on the effective stack height.

  17. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.

    Science.gov (United States)

    Ren, Fang-Fang; Ang, Kah-Wee; Ye, Jiandong; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2011-03-09

    Bull's eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull's eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm. The nontraditional plasmonic metal aluminum has been implemented in the resonant antenna structure fabricated by standard complementary metal-oxide-semiconductor (CMOS) processing. A significant enhancement in photoresponse could be achieved over the conventional bull's eye scheme due to an increased optical near-field in the active region. Moreover, with this novel antenna design the effective grating area could be significantly reduced without sacrificing device performance. This work paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatible germanium-based optoelectronic devices.

  18. Mexico Geoid Heights (MEXICO97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for Mexico, and North-Central America, is the MEXICO97 geoid model. The computation used about one million terrestrial and marine gravity...

  19. Formation and Schottky barrier height of Au contacts to CuInSe2

    International Nuclear Information System (INIS)

    Nelson, A.J.; Gebhard, S.; Kazmerski, L.L.; Colavita, E.; Engelhardt, M.; Hoechst, H.

    1991-01-01

    Synchrotron radiation soft x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the Au/CuInSe 2 interface. Au overlayers were deposited in steps on single-crystal p and n-type CuInSe 2 at ambient temperature. Reflection high-energy electron diffraction analysis before and during growth of the Au overlayers indicated that the Au overlayer was amorphous. Photoemission measurements were acquired after each growth in order to observe changes in the valence band electronic structure as well as changes in the In 4d and Se 3d core lines. The results were used to correlate the interface chemistry with the electronic structure at these interfaces and to directly determine the Au/CuInSe 2 Schottky barrier height

  20. Developmental decline in height growth in Douglas-fir.

    Science.gov (United States)

    Barbara J. Bond; Nicole M. Czarnomski; Clifton Cooper; Michael E. Day; Michael S. Greenwood

    2007-01-01

    The characteristic decline in height growth that occurs over a tree's lifespan is often called "age-related decline." But is the reduction in height growth in aging trees a function of age or of size? We grafted shoot tips across different ages and sizes of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees to determine whether...

  1. A century of trends in adult human height

    DEFF Research Database (Denmark)

    Damsgaard, Camilla Trab; Michaelsen, Kim F.; Molbo, Drude

    2016-01-01

    the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest...

  2. Variation of boundary-layer wind spectra with height

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Petersen, Erik L.; Larsen, Søren Ejling

    2018-01-01

    This study revisits the height dependence of the wind speed power spectrum from the synoptic scale to the spectral gap. Measurements from cup anemometers and sonics at heights of 15 m to 244 m are used. The measurements are from one land site, one coastal land‐based site and three offshore sites...... the atmospheric tide. The second finding regards the height dependence of the general spectrum. We describe the dependence through a so‐called effective roughness, which is calculated from wind spectra and represents the energy removal at different frequencies, and thus surface conditions in the footprint areas....... The generalizable spectral properties of winds presented herein may prove useful for validating numerical models....

  3. Multiple Convective Cell Identification and Tracking Algorithm for documenting time-height evolution of measured polarimetric radar and lightning properties

    Science.gov (United States)

    Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.

    2017-12-01

    A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.

  4. Measuring the height-to-height correlation function of corrugation in suspended graphene

    International Nuclear Information System (INIS)

    Kirilenko, D.A.; Brunkov, P.N.

    2016-01-01

    Nanocorrugation of 2D crystals is an important phenomenon since it affects their electronic and mechanical properties. The corrugation may have various sources; one of them is flexural phonons that, in particular, are responsible for the thermal conductivity of graphene. A study of corrugation of just the suspended graphene can reveal much of valuable information on the physics of this complicated phenomenon. At the same time, the suspended crystal nanorelief can hardly be measured directly because of high flexibility of the 2D crystal. Moreover, the relief portion related to rapid out-of-plane oscillations (flexural phonons) is also inaccessible by such measurements. Here we present a technique for measuring the Fourier components of the height–height correlation function H(q) of suspended graphene which includes the effect of flexural phonons. The technique is based on the analysis of electron diffraction patterns. The H(q) is measured in the range of wavevectors q≈0.4–4.5 nm"−"1. At the upper limit of this range H(q) does follow the T/κq"4 law. So, we measured the value of suspended graphene bending rigidity κ=1.2±0.4 eV at ambient temperature T≈300 K. At intermediate wave vectors, H(q) follows a slightly weaker exponent than theoretically predicted q"−"3"."1"5 but is closer to the results of the molecular dynamics simulation. At low wave vectors, the dependence becomes even weaker, which may be a sign of influence of charge carriers on the dynamics of undulations longer than 10 nm. The technique presented can be used for studying physics of flexural phonons in other 2D materials. - Highlights: • A technique for measuring free-standing 2D crystal corrugation is proposed. • The height-to-height correlation function of the suspended graphene corrugation is measured. • Various parameters of the intrinsic graphene properties are experimentally determined.

  5. The relationship between tree height and leaf area: sapwood area ratio.

    Science.gov (United States)

    McDowell, N; Barnard, H; Bond, B; Hinckley, T; Hubbard, R; Ishii, H; Köstner, B; Magnani, F; Marshall, J; Meinzer, F; Phillips, N; Ryan, M; Whitehead, D

    2002-06-01

    The leaf area to sapwood area ratio (A l :A s ) of trees has been hypothesized to decrease as trees become older and taller. Theory suggests that A l :A s must decrease to maintain leaf-specific hydraulic sufficiency as path length, gravity, and tortuosity constrain whole-plant hydraulic conductance. We tested the hypothesis that A l :A s declines with tree height. Whole-tree A l :A s was measured on 15 individuals of Douglas-fir (Pseudotsuga menziesii var. menziesii) ranging in height from 13 to 62 m (aged 20-450 years). A l :A s declined substantially as height increased (P=0.02). Our test of the hypothesis that A l :A s declines with tree height was extended using a combination of original and published data on nine species across a range of maximum heights and climates. Meta-analysis of 13 whole-tree studies revealed a consistent and significant reduction in A l :A s with increasing height (P<0.05). However, two species (Picea abies and Abies balsamea) exhibited an increase in A l :A s with height, although the reason for this is not clear. The slope of the relationship between A l :A s and tree height (ΔA l :A s /Δh) was unrelated to mean annual precipitation. Maximum potential height was positively correlated with ΔA l :A s /Δh. The decrease in A l :A s with increasing tree size that we observed in the majority of species may be a homeostatic mechanism that partially compensates for decreased hydraulic conductance as trees grow in height.

  6. Reduced Height (Rht Alleles Affect Wheat Grain Quality.

    Directory of Open Access Journals (Sweden)

    Richard Casebow

    Full Text Available The effects of dwarfing alleles (reduced height, Rht in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c as well as those that retained GA-sensitivity (rht(tall, Rht8, Rht8 + Ppd-D1a, Rht12. Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05 reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there

  7. Height, fun and safety in the design of children's playground equipment.

    Science.gov (United States)

    Wakes, Sarah; Beukes, Amanda

    2012-01-01

    The study reported in this paper adopted a holistic design approach to investigate issues associated with height related playground injuries from a users' perspective. The main objective was to gain an understanding of the relationship between height and fun so as to establish practical guidelines for addressing the causes of height related injuries whilst maintaining the attributes of playground equipment that children find fun and challenging. Results show that, on the one hand, the risk of injury increases when height is coupled with the use of upper body strength and, on the other hand, that coordination is a greater source of fun and challenge than height for children. Accordingly, it is suggested that the level of risk of injury attached to children's playground equipment can be reduced when the use of lower body strength and coordination are combined with lower free fall heights.

  8. Ethnic differences in trabecular meshwork height by optical coherence tomography.

    Science.gov (United States)

    Chen, Rebecca I; Barbosa, Diego T; Hsu, Chi-Hsin; Porco, Travis C; Lin, Shan C

    2015-04-01

    Differences in ocular anatomy may contribute to ethnic differences in glaucoma risk. Because the trabecular meshwork (TM) plays an important role in aqueous outflow, its anatomy in relation to at-risk populations may provide insight into a potential contributor to elevated intraocular pressure and thus to probability of glaucoma development. To investigate whether differences exist in TM height between ethnic groups. This prospective study took place from January 1, 2012, to December 31, 2013. Adult patients who self-reported as being of white, Asian, Hispanic, or African American ethnicity were recruited from ophthalmology clinics at the University of California, San Francisco. The TM height was assessed using spectral-domain anterior segment optical coherence tomography. Trabecular meshwork height was measured from the scleral spur to the Schwalbe line. We hypothesized that ethnicities with a higher prevalence of glaucoma would tend to have shorter TM heights. We collected data from 460 eyes of 291 participants after excluding 34 optical coherence tomographic scans owing to poor image quality. The final sample was 32.2% white, 45.1% Asian, 10.5% African American, and 12.1% Hispanic. There were 64.2% women, and the mean age was 68.1 years. The mean (SD) TM height among all eyes included in the study was 836 (131) μm. The mean (SD) TM height was characterized among white (851 [131] μm), Asian (843 [126] μm), Hispanic (822 [147] μm), and African American (771 [118] μm) persons. Ethnicity was not associated with TM height overall (P = .23, linear mixed regression model). However, the TM heights of African American participants (771 μm) were shorter than those of white (851 μm; adjusted difference 95% CI, -119.8 to -8.1; P = .02) and Asian (843 μm; adjusted difference 95% CI, -117.4 to -10.8; P = .02) participants. Although TM height is not associated with ethnicity overall, African American individuals have shorter TM heights compared with Asian and white

  9. Alaska Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' geoid height grid for Alaska is distributed as a GEOID96 model. The computation used 1.1 million terrestrial and marine gravity data held in the...

  10. Three-dimensional nanometer scale analyses of precipitate structures and local compositions in titanium aluminide engineering alloys

    Science.gov (United States)

    Gerstl, Stephan S. A.

    Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.

  11. Optimally combined regional geoid models for the realization of height systems in developing countries - ORG4heights

    Science.gov (United States)

    Lieb, Verena; Schmidt, Michael; Willberg, Martin; Pail, Roland

    2017-04-01

    Precise height systems require high-resolution and high-quality gravity data. However, such data sets are sparse especially in developing or newly industrializing countries. Thus, we initiated the DFG-project "ORG4heights" for the formulation of a general scientific concept how to (1) optimally combine all available data sets and (2) estimate realistic errors. The resulting regional gravity field models then deliver the fundamental basis for (3) establishing physical national height systems. The innovative key aspects of the project incorporate the development of a method which links (low- up to mid-resolution) gravity satellite mission data and (high- down to low-quality) terrestrial data. Hereby, an optimal combination of the data utilizing their highest measure of information including uncertainty quantification and analyzing systematic omission errors is pursued. Regional gravity field modeling via Multi-Resolution Representation (MRR) and Least Squares Collocation (LSC) are studied in detail and compared based on their theoretical fundamentals. From the findings, MRR shall be further developed towards implementing a pyramid algorithm. Within the project, we investigate comprehensive case studies in Saudi Arabia and South America, i. e. regions with varying topography, by means of simulated data with heterogeneous distribution, resolution, quality and altitude. GPS and tide gauge records serve as complementary input or validation data. The resulting products include error propagation, internal and external validation. A generalized concept then is derived in order to establish physical height systems in developing countries. The recommendations may serve as guidelines for sciences and administration. We present the ideas and strategies of the project, which combines methodical development and practical applications with high socio-economic impact.

  12. Analysis of the nature of injuries in victims of fall from height

    Directory of Open Access Journals (Sweden)

    Magdalena E. Kusior

    2017-01-01

    Full Text Available Aim of study: To assess the types and extent of injuries sustained by victims of fall from height depending on the height of fall. Material and methods: The study included 338 bodies of victims of fatal falls from different heights (from the 1st to 10th floors who were subjected to medico-legal autopsy at the Department of Forensic Medicine, Jagiellonian University Medical College, between 1995 and 2014. For each individual, selected data were collected including gender, age, body height, injury types and presence of alcohol or other intoxicants in blood. The analysis comprised injuries to the brain, thoracic and abdominal organs, fractures of the skull, extremities, ribs and spine, and fractures of the scapula, clavicle and sternum (considered together. The study focused on determining the frequency of occurrence of different injuries in relation to one another and depending on the height of fall. Results : The number and extent of injuries was found to increase along with the height of fall. Three injury types, including injuries to the mesentery and both kidneys and fractures of upper extremity small bones, were shown to occur from the threshold heights of the 3rd, 4th and 6th floors. Eleven injuries demonstrated a statistically significant correlation with the height of fall. The study also revealed a number of correlations between the frequencies of occurrence of different injuries. Conclusions : Injuries found from the threshold value may suggest the minimal height of fall. The presence of injuries which correlate with increasing height, and the overall number of injuries observed in victims of fall from height, may be useful for inferring the height of the fall.

  13. Physiological pattern of lumbar disc height; Physiologisches Muster lumbaler Bandscheibenhoehen

    Energy Technology Data Exchange (ETDEWEB)

    Biggemann, M [Radiologische Klinik des Evangelischen Krankenhauses Bethesda, Duisburg (Germany); Frobin, W; Brinckmann, P [Muenster Univ. (Germany). Inst. fuer Experimentelle Biomechanik

    1997-07-01

    Purpose of this study is to present a new method of quantifying objectively the height of all discs in lateral radiographs of the lumbar spine and of analysing the normal craniocaudal sequence pattern of lumbar disc heights. Methods: The new parameter is the ventrally measured disc height corrected for the dependence on the angle of lordosis by normalisation to mean angles observed in the erect posture of healthy persons. To eliminate radiographic magnification, the corrected ventral height is related to the mean depth of the cranially adjoining vertebra. In this manner lumbar disc heights were objectively measured in young, mature and healthy persons (146 males and 65 females). The craniocaudal sequence pattern was analysed by mean values from all persons and by height differences of adjoining discs in each individual lumbar spine. Results: Mean normative values demonstrated an increase in disc height between L1/L2 and L4/L5 and a constant or decreasing disc height between L4/L5 and L5/S1. However, this `physiological sequence of disc height in the statistical mean` was observed in only 36% of normal males and 55% of normal females. Conclusion: The radiological pattern of the `physiological sequence of lumbar disc height` leads to a relevant portion of false positive pathological results especially at L4/L5. An increase of disc height from L4/L5 to L5/S1 may be normal. The recognition of decreased disc height should be based on an abrupt change in the heights of adjoining discs and not on a deviation from a craniocaudal sequence pattern. (orig.) [Deutsch] Ziel dieser Arbeit ist es, einen neuen Parameter zur objektiven Messung der Hoehen aller auf einer seitlichen Uebersichtsaufnahme der LWS erkennbaren Bandscheiben vorzustellen und die physiologische kraniokaudale Diskushoehensequenz neu zu dokumentieren. Methode: Bei dem neuen Messverfahren wird die Bandscheibenhoehe ventral gemessen, zur Korrektur ihrer Haltungsabhaengigkeit auf Standardwinkel (mittlere Winkel

  14. Experiences of ZAMG on mixing height determination

    Energy Technology Data Exchange (ETDEWEB)

    Piringer, M. [Zentralanstalt fuer Meteorologie und Geodynamik, ZAMG, Vienna (Austria)

    1997-10-01

    Temperature inversions in the boundary layer occur quite often, esp. in mountainous terrain by which Austria is covered to a large extent, and can lead to enhanced pollution at the surface because the air volume available for dilution is then vertically limited. The Department of Environmental Meteorology of ZAMG therefore set up several field programs in the past to study such conditions at a variety of sites in Austria, using tethersondes and Sodars. Early investigations aimed at comparing Sodar echo profiles to the tethersonde temperature profiles to derive mixing heights from the Sodar echo structure. More recently, evolving from KONGEX, the `convective boundary layer experiment`, mixing heights calculated for Vienna by the OML model were compared to those derived from radiosonde and tethersonde potential temperature profiles. Results of these investigations will be presented, focussing on the problems when using the different methods. New efforts to derive mixing heights from data were also undertaken and are discussed separately. (au)

  15. Height, Relationship Satisfaction, Jealousy, and Mate Retention

    Directory of Open Access Journals (Sweden)

    Gayle Brewer

    2009-07-01

    Full Text Available Male height is associated with high mate value. In particular, tall men are perceived as more attractive, dominant and of a higher status than shorter rivals, resulting in a greater lifetime reproductive success. Female infidelity and relationship dissolution may therefore present a greater risk to short men. It was predicted that tall men would report greater relationship satisfaction and lower jealousy and mate retention behavior than short men. Ninety eight heterosexual men in a current romantic relationship completed a questionnaire. Both linear and quadratic relationships were found between male height and relationship satisfaction, cognitive and behavioral jealousy. Tall men reported greater relationship satisfaction and lower levels of cognitive or behavioral jealousy than short men. In addition, linear and quadratic relationships were found between male height and a number of mate retention behaviors. Tall and short men engaged in different mate retention behaviors. These findings are consistent with previous research conducted in this area detailing the greater attractiveness of tall men.

  16. Secondary emission scintillation counter for microdosimetry at the nanometer level

    International Nuclear Information System (INIS)

    Goldhagen, P.

    1987-01-01

    The secondary emission scintillation (SES) counter is a device designed to count the positive ions of charged-particle tracks in gas volumes simulating sites in tissue with diameters of the order of 1 nanometer. Based on suggestions by H.H. Rossi and A.M. Kellerer, the basic idea of the device was developed by A. Kosiara, M. Biavati, and R.D. Colvett in the late 1970s. The device was substantially modified in 1982, but work on it was suspended before the new version could be tested, in order to devote full-time effort to rebuilding RARAF. Work resumed on the SES counter in 1986. A diagram of the prototype SES counter now being tested is shown. A weak electric field in the cylindrical collection region of the device drifts ions from a track to a small region (less than 1 mm) of high electric field where they are accelerated by several kilovolts onto a dynode, producing secondary electrons. The secondary electrons are then accelerated onto a plastic scintillator, and the resulting light is detected by a photomultiplier. The passage of a charged particle is established by a solid state detector, which triggers electronics detecting coincidences and measuring the timing and amplitude of pulses from the photomultiplier

  17. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    Science.gov (United States)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  18. Dog behavior co-varies with height, bodyweight and skull shape.

    Directory of Open Access Journals (Sweden)

    Paul D McGreevy

    Full Text Available Dogs offer unique opportunities to study correlations between morphology and behavior because skull shapes and body shape are so diverse among breeds. Several studies have shown relationships between canine cephalic index (CI: the ratio of skull width to skull length and neural architecture. Data on the CI of adult, show-quality dogs (six males and six females were sourced in Australia along with existing data on the breeds' height, bodyweight and related to data on 36 behavioral traits of companion dogs (n = 8,301 of various common breeds (n = 49 collected internationally using the Canine Behavioral Assessment and Research Questionnaire (C-BARQ. Stepwise backward elimination regressions revealed that, across the breeds, 33 behavioral traits all but one of which are undesirable in companion animals correlated with either height alone (n = 14, bodyweight alone (n = 5, CI alone (n = 3, bodyweight-and-skull shape combined (n = 2, height-and-skull shape combined (n = 3 or height-and-bodyweight combined (n = 6. For example, breed average height showed strongly significant inverse relationships (p<0.001 with mounting persons or objects, touch sensitivity, urination when left alone, dog-directed fear, separation-related problems, non-social fear, defecation when left alone, owner-directed aggression, begging for food, urine marking and attachment/attention-seeking, while bodyweight showed strongly significant inverse relationships (p<0.001 with excitability and being reported as hyperactive. Apart from trainability, all regression coefficients with height were negative indicating that, across the breeds, behavior becomes more problematic as height decreases. Allogrooming increased strongly (p<0.001 with CI and inversely with height. CI alone showed a strong significant positive relationship with self-grooming (p<0.001 but a negative relationship with chasing (p = 0.020. The current study demonstrates how aspects of CI (and therefore brain shape

  19. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.

    Science.gov (United States)

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-11-01

    Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P jump height (beta = 0.49, P jump height having the strongest impact (beta = 0.49, P jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.

  20. Gridded 5-day mean sea surface height anomaly and significant wave height from Jason-1 and OSTM/Jason-2 satellites (NODC Accession 0065055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the gridded 5-day mean sea surface height anomaly (SSHA) and Ku Band significant wave height (SWH-KU) observed from Jason-1 and OSTM/Jason-2...

  1. A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells

    Directory of Open Access Journals (Sweden)

    Marlière Christian

    2016-01-01

    Full Text Available In this paper is presented an innovative method to map in-vivo and at nanometer scale the electrical charge distribution on membranes of alive cells. It relies on a new atomic force microscopy (AFM mode based on an electro-mechanical coupling effect. Furthermore, an additional electrical signal detected by both the deflection of the AFM cantilever and simultaneous direct current measurements was detected at low scanning rates. It was attributed to the detection of the current stemming from ionic channels. It opens a new way to directly investigate in situ biological electrical surface processes involved in bacterial adhesion, biofilm formation, microbial fuel cells, etc.

  2. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution

    Science.gov (United States)

    Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.

    2014-09-01

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. We anticipate that u-TEMs with a product of temporal and spatial resolution beyond 10-19 ms will open up new opportunities in probing matter at ultrafast temporal and ultrasmall spatial scales.

  3. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate (nano-CaCO3) surface modified with (-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  4. Some applications of nanometer scale structures for current and future X-ray space research

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Abdali, S; Frederiksen, P K

    1994-01-01

    Nanometer scale structures such as multilayers, gratings and natural crystals are playing an increasing role in spectroscopic applications for X-ray astrophysics. A few examples are briefly described as an introduction to current and planned applications pursued at the Danish Space Research...... Institute in collaboration with the FOM Institute for Plasma Physics, Nieuwegein, the Max-Planck-Institut für Extraterrestrische Physik, Aussenstelle Berlin, the Space Research Institute, Russian Academy of Sciences, the Smithsonian Astrophysical Observatory, Ovonics Synthetic Materials Company and Lawrence...... Livermore National Laboratory. These examples include : 1. the application of multilayered Si crystals for simultaneous spectroscopy in two energy bands one centred around the SK-emission near 2.45 keV and the other below the CK absorption edge at 0.284 keV; 2. the use of in-depth graded period multilayer...

  5. Stereoscopic Roadside Curb Height Measurement using V-Disparity

    DEFF Research Database (Denmark)

    Matu, Florin-Octavian; Vlaykov, Iskren; Thøgersen, Mikkel

    2014-01-01

    Managing road assets, such as roadside curbs, is one of the interests of municipalities. As an interesting application of computer vision, this paper proposes a system for automated measurement of the height of the roadside curbs. The developed system uses the spatial information available...... results show that the system can measure the height of the roadside curb with good accuracy and precision....

  6. Improved pulse-height store for A/D conversion

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P [Montedel S.p.a., Laben Division, Via Bassini 15, Milano, Italy; Maranesi, P [Politecnico di Milano (Italy). Centro Studi Nucleari E. Fermi

    1979-11-15

    A new pulse-height store is described. Suitable contrivances improve integral linearity and reduce the differential errors that generally occur at signal amplitudes near the lower threshold. No degradations appear at high rates of input events. The electrical specifications of the pulse-height store are determined through a series of measurements described in the final part of the paper. In order to test the circuit in the most significant way, it has been connected to a fast successive-approximation conversion module which uses the sliding-scale technique for channel width equalisation, thus implementing a complete analog-to-digital converter (ADC) for nuclear spectrometry. The performances of the pulse-height store have been deduced from the behavior of the whole system.

  7. Three-dimensional vortex flow near the endwall of a short cylinder in crossflow: Stepped-diameter circular cylinder

    International Nuclear Information System (INIS)

    Chen, S.B.; Sanitjai, S.; Ghosh, K.; Goldstein, R.J.

    2012-01-01

    The effect of geometry on the flow around a cylinder in crossflow is investigated in this study. Three different stepped-diameter circular cylinders (SDCC s) with varying step heights are used. Extensive flow visualization using the oil-lampblack and smoke-wire techniques and near wake velocity measurements using a hotwire anemometer reveal complex secondary flows on and around the SDCC. Six vortices are observed in the horseshoe vortex system near the cylinder–endwall junction and six additional vortices are found in the step-induced vortex system on the step surface. Based on these experimental results, new secondary flow models are proposed. The step-induced vortices separate from the step surface at both sides and move toward the endwall, washing down the sides of the top/bottom larger diameter cylinders and interact with the separated shear layer and horseshoe vortices. In this process, they modify the near wake flow significantly: they produce an increase in velocity near the endwall region (below the step) and a decrease in velocity near the mid-span region, even altering the oscillatory behavior of the wake. - Highlights: ► Extensive flow visualization for stepped-diameter circular cylinders in crossflow. ► Six vortices in the horseshoe vortex system near the base. ► Six additional step-induced vortices on the upstream symmetry plane of step surface. ► Power spectral analysis for u′ shows oscillatory nature of the wake.

  8. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.

    Science.gov (United States)

    Asadi, R; Ouyang, Z; Mohammd, M M

    2015-07-14

    We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.

  9. Height, zinc and soil-transmitted helminth infections in schoolchildren

    DEFF Research Database (Denmark)

    de Gier, Brechje; Mpabanzi, Liliane; Vereecken, Kim

    2015-01-01

    Soil-transmitted helminth (STH) infections and zinc deficiency are often found in low- and middle-income countries and are both known to affect child growth. However, studies combining data on zinc and STH are lacking. In two studies in schoolchildren in Cuba and Cambodia, we collected data...... on height, STH infection and zinc concentration in either plasma (Cambodia) or hair (Cuba). We analyzed whether STH and/or zinc were associated with height for age z-scores and whether STH and zinc were associated. In Cuba, STH prevalence was 8.4%; these were mainly Ascaris lumbricoides and Trichuris...... trichiura infections. In Cambodia, STH prevalence was 16.8%, mostly caused by hookworm. In Cuban children, STH infection had a strong association with height for age (aB-0.438, p = 0.001), while hair zinc was significantly associated with height for age only in STH uninfected children. In Cambodian children...

  10. Childhood height increases the risk of prostate cancer mortality

    DEFF Research Database (Denmark)

    Aarestrup, J; Gamborg, M; Cook, M B

    2015-01-01

    cancers. Cox proportional hazards regressions were performed. RESULTS: 630 men had prostate cancer recorded as the underlying cause of death. Childhood height at age 13years was positively associated with prostate cancer-specific mortality (hazard ratio [HR]per z-score=1.2, 95% confidence interval [CI]: 1.1-1.3......). Associations were significant at all other childhood ages. Growth analyses showed that height at age 13years had a stronger association with prostate cancer-specific mortality than height at age 7, suggesting the association at age 7 is largely mediated through later childhood height. The tallest boys at age...... 13years had a significantly worse survival, but only when restricted to a diagnosis at years of age (HRz-score of 1=1.7, 95% CI: 1.3-2.4). These associations were significant at all other childhood ages. Childhood BMI was not associated with prostate cancer mortality or survival. CONCLUSION...

  11. A Correction Equation for Jump Height Measured Using the Just Jump System.

    Science.gov (United States)

    McMahon, John J; Jones, Paul A; Comfort, Paul

    2016-05-01

    To determine the concurrent validity and reliability of the popular Just Jump system (JJS) for determining jump height and, if necessary, provide a correction equation for future reference. Eighteen male college athletes performed 3 bilateral countermovement jumps (CMJs) on 2 JJSs (alternative method) that were placed on top of a force platform (criterion method). Two JJSs were used to establish consistency between systems. Jump height was calculated from flight time obtained from the JJS and force platform. Intraclass correlation coefficients (ICCs) demonstrated excellent within-session reliability of the CMJ height measurement derived from both the JJS (ICC = .96, P jump height (0.46 ± 0.09 m vs 0.33 ± 0.08 m) than the force platform (P jump height = (0.8747 × alternative jump height) - 0.0666. The JJS provides a reliable but overestimated measure of jump height. It is suggested, therefore, that practitioners who use the JJS as part of future work apply the correction equation presented in this study to resultant jump-height values.

  12. Behaviour of the intermediate region of the ionosphere at F1 heights

    International Nuclear Information System (INIS)

    Radicella, S.M.; Mosert Gonzalez, M. de; Scotto, C.; Zolesi, B.; Jadur, C.A.

    1997-01-01

    The characteristics and occurrence of the F1 ledge in the electron density profile are reviewed and discussed in terms of its relevance for the empirical modelling of the ionosphere. An updated and selected data base is used to confirm the validity the DuCharme et al. formula taking into account alternative solutions for the particular occurrence restrictions imposed by the formula and the IRI-90. The information considered includes also L conditions that indicates the presence of a less defined F1 cusp in the ionogram. A probability of occurrence of the F1 layer is introduced making use of the hourly ionogram scaling information given in monthly bulletins of ionospheric data. The possible prediction of the electron density at fixed heights in the F1 region is discussed and a formulation for such prediction is proposed as a preliminary step. (author). 10 refs, 7 figs, 2 tabs

  13. Comments on deriving the equilibrium height of the stable boundary layer

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2007-01-01

    Recently, the equilibrium height of the stable boundary layer received much attention in a series of papers by Zilitinkevich and co-workers. In these studies the stable boundary-layer height is derived in terms of inverse interpolation of different boundary-layer height scales, each representing a

  14. Agronomic characters and lodging resistance of plant height mutants of rice

    International Nuclear Information System (INIS)

    Zhang Zhonggui; Wu Yuejin; Liu Binmei; Xu Xue; Zhang Lili; Wang Min

    2010-01-01

    Fourteen plant height mutants of Nipponbare were used to study the effect of plant height on the agronomic characters and lodging resistance. The results indicated that the plant height was positively correlated with spike length, third internode length, height of gravity center, fresh weight of main stem, dry weight of main stem, thousand-grain weight, grain-yield per plant and biological yield, and the second internode length. Meanwhile, plant height played an important role in lodging resistance, it was significantly positively correlated with lodging index and negatively correlated with bending moment and culm type index. The correlation between agronomic characters and lodging resistance showed that several agronomic characters had strong impact on the lodging resistance, such as spike length, height of gravity center, basal internode length ( first and second internode), fresh and dry weight of main stem, dry weight of basal internode, seed setting, thousand-grain weight, grain-weight per plant and biological yield. (authors)

  15. New Finnish growth references for children and adolescents aged 0 to 20 years: Length/height-for-age, weight-for-length/height, and body mass index-for-age.

    Science.gov (United States)

    Saari, Antti; Sankilampi, Ulla; Hannila, Marja-Leena; Kiviniemi, Vesa; Kesseli, Kari; Dunkel, Leo

    2011-05-01

    Growth curves require regular updates due to secular trends in linear growth. We constructed contemporary growth curves, assessed secular trends in height, and defined body mass index (BMI) cut-off points for thinness, overweight, and obesity in Finnish children. Mixed cross-sectional/longitudinal data of 73,659 healthy subjects aged 0-20 years (born 1983-2008) were collected from providers in the primary health care setting. Growth references for length/height-for-age, weight-for-length/height, and BMI-for-age were fitted using generalized additive models for location, scale, and shape (GAMLSS). BMI percentile curves passing through BMIs 30, 25, 18.5, 17, and 16 kg/m(2) at the age of 18 years were calculated to define limits for obesity, overweight, and various grades of thinness. Increased length/height-for-age was seen in virtually all age-groups when compared to previous Finnish growth data from 1959 to 1971. Adult height was increased by 1.9 cm in girls and 1.8 cm in boys. The largest increases were seen during the peripubertal years: up to 2.8 cm in girls and 5.6 cm in boys. Median weight-for-length/height had not increased. New Finnish references for length/height-for-age, weight-for-length/height, and BMI-for-age were constructed and should be implemented to monitor growth of children in Finland.

  16. Internal friction behaviors of Ni-Mn-In magnetic shape memory alloy with two-step structural transformation

    Directory of Open Access Journals (Sweden)

    Zhen-ni Zhou

    2017-06-01

    Full Text Available The internal friction (IF behaviors of dual-phase Ni52Mn32In16 alloy with two-step structural transformation were investigated by dynamic mechanical analyzer. The IF peak for the martensite transformation (MT is an asymmetric shoulder rather than those sharp peaks for other shape memory alloys. The intermartensitic transformation (IMT peak has the maximum IF value. As the heating rate increases, the height of the IMT peak increases and its position is shifted to higher temperatures. In comparison with the IMT peak, the MT peak is independent on the heating rate. The starting temperatures of the IMT peak are strongly dependent on frequency, while the MT peak is weakly dependent. Meanwhile, the heights of both the MT and IMT peak rapidly decrease with increasing the frequency. This work also throws new light on their structural transformation mechanisms.

  17. Pulse height model for deuterated scintillation detectors

    International Nuclear Information System (INIS)

    Wang, Haitang; Enqvist, Andreas

    2015-01-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  18. Diagnosis of childhood hypertension: is blood pressure height ratio ...

    African Journals Online (AJOL)

    Blood pressure was also recorded according to the standard method. Systolic and diastolic blood pressure to height ratio were then calculated. Receiver operating curves was used to assess the ability of systolic blood and diastolic blood pressure height ratio to discriminate childhood prehypertension and hypertension.

  19. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  20. Determination of Vertical Datum Offset between the Regional and the Global Height Datum

    Directory of Open Access Journals (Sweden)

    LI Jiancheng

    2017-10-01

    Full Text Available The unification of the global height datum is a key problem to be solved for geodesy after the unification of global geodetic coordination system and three-dimension spatial datum, and the basis of global spatial information sharing and exchange. In this paper, the theoretical and practical problems of vertical datum offset between the regional height datum and the global height datum are studied. Based on the classical theory of the height system in physical geodesy, the definition of the height datum vertical offset is given, and the rigorous formulas for calculating the vertical offset are derived. The formulas can be used to deduce the three methods of the height datum vertical offset determination. On that basis, the influences of different reference system and reference ellipsoid parameters on the calculation of the vertical offset are analyzed. The results show that the reference system and the ellipsoid parameter conversion are very necessary. At the same time, the height anomaly differences method needs to consider the degree zero correction caused by the inconsistency between gravity potential of the global height datum and the one computed by the model. Based on potential difference approach and the height anomaly difference method, the vertical offset between the China 1985 national height datum and the global height datum corresponding to the normal gravity potential U0 of GRS80, WGS-84 and CGCS2000 reference ellipsoidal from the 152 GPS/leveling points near the origin of Qingdao height origin and the EGM2008, EIGEN-6C4 and SGG-UGM-1 model. The regional datum is 23.1 cm lower than the global datum based on EIGEN-6C4 and WGS-84. When the Gauss-Listing geoid (mean sea surface is selected as the global height datum, the China 1985 national height datum is 21.0 cm higher than the global height datum. The results also show that there are still large differences among the accuracies of the current gravity field models on these GPS

  1. The importance of postural cues for determining eye height in immersive virtual reality.

    Science.gov (United States)

    Leyrer, Markus; Linkenauger, Sally A; Bülthoff, Heinrich H; Mohler, Betty J

    2015-01-01

    In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height.

  2. The importance of postural cues for determining eye height in immersive virtual reality.

    Directory of Open Access Journals (Sweden)

    Markus Leyrer

    Full Text Available In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height.

  3. Effect of Aspect Ratio, Channel Orientation, Rib Pitch-to-Height Ratio, and Number of Ribbed Walls on Pressure Drop Characteristics in a Rotating Channel with Detached Ribs

    Directory of Open Access Journals (Sweden)

    K. Arun

    2007-01-01

    Full Text Available The present work involves experimental investigation of the effects of aspect ratio, channel orientation angle, rib pitch-to-height ratio (P/e, and number of ribbed walls on friction factor in orthogonally rotating channel with detached ribs. The ribs are separated from the base wall to provide a small region of flow between the base wall and the ribs. Experiments have been conducted at Reynolds number ranging from 10000–17000 with rotation numbers varying from 0–0.38. Pitch-to-rib height ratios (P/e of 5 and 10 at constant rib height-to-hydraulic diameter ratio (e/D of 0.1 and a clearance ratio (C/e of 0.38 are considered. The rib angle of attack with respect to mainstream flow is 90∘. The channel orientation at which the ribbed wall becomes trailing surface (pressure side on which the Coriolis force acts is considered as the 0∘ orientation angle. For one-wall ribbed case, channel is oriented from 0∘ to 180∘ about its axis in steps of 30∘ to change the orientation angle. For two-wall ribbed case, the orientation angle is changed from 0∘ to 90∘ in steps of 30∘. Friction factors for the detached ribbed channels are compared with the corresponding attached ribbed channel. It is found that in one-wall detached ribbed channel, increase in the friction factor ratio with the orientation angle is lower for rectangular channel compared to that of square channel for both the pitch-to-rib height ratios of 5 and 10 at a given Reynolds number and rotation number. Friction factor ratios of two-wall detached ribbed rectangular channel are comparable with corresponding two-wall detached ribbed square channel both under stationary and rotating conditions.

  4. Generalized height-diameter models for Populus tremula L. stands

    African Journals Online (AJOL)

    USER

    2010-07-12

    Jul 12, 2010 ... and stand density) into the base height-diameter models increased the accuracy of prediction for P. tremula. .... parameter estimates compared with those obtained with ... using coefficient of determination for non-linear regression (. 2. R ), ..... stochastic height-diameter model for maritime pine ecoregions in.

  5. The Analysis of Height System Definition and the High Precision GNSS Replacing Leveling Method

    Directory of Open Access Journals (Sweden)

    ZHANG Chuanyin

    2017-08-01

    Full Text Available Based on the definition of height system, the gravitational equipotential property of height datum surface is discussed in this paper, differences of the heights at ground points that defined in different height systems are tested and analyzed as well. A new method for replacing leveling using GNSS is proposed to ensure the consistency between GNSS replacing leveling and spirit leveling at mm accuracy level. The main conclusions include:①For determining normal height at centimeter accuracy level, the datum surface of normal height should be the geoid. The 1985 national height datum of China adopts normal height system, its datum surface is the geoid passing the Qingdao zero point.②The surface of equi-orthometric height in the near earth space is parallel to the geoid. The combination of GNSS precise positioning and geoid model can be directly used for orthometric height determination. However, the normal height system is more advantageous for describing the terrain and relief.③Based on the proposed method of GNSS replacing leveling, the errors in geodetic height affect more on normal height result than the errors of geoid model, the former is about 1.5 times of the latter.

  6. The association between Helicobacter pylori infection and adult height

    International Nuclear Information System (INIS)

    Moayyedi, Paul; Forman, David; Duffett, Sara; Mason, Su; Brown, Julia; Crocombe, Will; Feltbower, Richard; Axon, Anthony

    2005-01-01

    Objectives: A cross-sectional survey was performed to evaluate the association between H. pylori and adult height. Methods: H. pylori infection was assessed using a 13 C-urea breath test and height measured by a research nurse using a stadiometer in participants between the ages of 40-49 years. Results: Height was measured in 2932/3682 participants that attended and were evaluable. H. pylori infected women were 1.4 cm shorter than uninfected women (95% confidence interval, CI=0.7-2.1 cm) and this statistically significant difference persisted after adjusting for age, ethnicity, childhood and present socio-economic status (H. pylori positives 0.79 cm shorter; 95%CI: 0.05-1.52 cm). H. pylori positive men were 0.7 cm shorter than uninfected men but this did not reach statistical significance (95% CI: -0.1-1.5 cm). Conclusion: Although H. pylori infection is associated with reduced adult height in women, this maybe due to residual confounding

  7. Observing Crop-Height Dynamics Using a UAV

    Science.gov (United States)

    Ziliani, M. G.; Parkes, S. D.; McCabe, M.

    2017-12-01

    Retrieval of vegetation height during a growing season is a key indicator for monitoring crop status, offering insight to the forecast yield relative to previous planting cycles. Improvement in Unmanned Aerial Vehicle (UAV) technologies, supported by advances in computer vision and photogrammetry software, has enabled retrieval of crop heights with much higher spatial resolution and coverage. These methodologies retrieve a Digital Surface Map (DSM), which combine terrain and crop elements to obtain a Crop Surface Map (CSM). Here we describe an automated method for deriving high resolution CSMs from a DSM, using RGB imagery from a UAV platform. Importantly, the approach does not require the need for a digital terrain map (DTM). The method involves distinguishing between vegetation and bare-ground cover pixels, using vegetation index maps from the RGB orthomosaic derived from the same flight as the DSM. We show that the absolute crop height can be extracted to within several centimeters, exploiting the data captured from a single UAV flight. In addition, the method is applied across five surveys during a maize growing cycle and compared against a terrain map constructed from a baseline UAV survey undertaken prior to crop growth. Results show that the approach is able to reproduce the observed spatial variability of the crop height within the maize field throughout the duration of the growing season. This is particularly valuable since it may be employed to detect intra-field problems (i.e. fertilizer variability, inefficiency in the irrigation system, salinity etc.) at different stages of the season, from which remedial action can be initiated to mitigate against yield loss. The method also demonstrates that UAV imagery combined with commercial photogrammetry software can determine a CSM from a single flight without the requirement of a prior DTM. This, together with the dynamic crop height estimation, provide useful information with which to inform precision

  8. Peri-Implant Endosseous Healing Properties of Dual Acid-Etched Mini-Implants with a Nanometer-Sized Deposition of CaP : A Histological and Histomorphometric Human Study

    NARCIS (Netherlands)

    Telleman, Gerdien; Albrektsson, Tomas; Hoffman, Maria; Johansson, Carina B.; Vissink, Arjan; Meijer, Henny J. A.; Raghoebar, Gerry M.

    2010-01-01

    Purpose: The aim of this histological and histomorphometric study was to compare the early peri-implant endosseous healing properties of a dual acid-etched (DAE) surface (Osseotite (R), Implant Innovations Inc., Palm Beach Gardens, FL, USA) with a DAE surface modified with nanometer-sized calcium

  9. AIRBORNE X-HH INCIDENCE ANGLE IMPACT ON CANOPY HEIGHT RETREIVAL: IMPLICATIONS FOR SPACEBORNE X-HH TANDEM-X GLOBAL CANOPY HEIGHT MODEL

    Directory of Open Access Journals (Sweden)

    M. L. Tighe

    2012-07-01

    Full Text Available To support international climate change mitigation efforts, the United Nations REDD+ initiative (Reducing Emissions from Deforestation and Degradation seeks to reduce land use induced greenhouse gas emissions to the atmosphere. It requires independent monitoring of forest cover and forest biomass information in a spatially explicit form. It is widely recognised that remote sensing is required to deliver this information. Synthetic Aperture Radar interferometry (InSAR techniques have gained traction in the last decade as a viable technology from which vegetation canopy height and bare earth elevations can be derived. The viewing geometry of a SAR sensor is side-looking where the radar pulse is transmitted out to one side of the aircraft or satellite, defining an incidence angle (θ range. The incidence angle will change from near-range (NR to far-range (FR across of the track of the SAR platform. InSAR uses image pairs and thus, contain two set of incidence angles. Changes in the InSAR incidence angles can alter the relative contributions from the vegetation canopy and the ground surface and thus, affect the retrieved vegetation canopy height. Incidence angle change is less pronounced in spaceborne data than in airborne data and mitigated somewhat when multiple InSAR-data takes are combined. This study uses NEXTMap® single- and multi-pass X-band HH polarized InSAR to derive vegetation canopy height from the scattering phase centre height (hspc. Comparisons with in situ vegetation canopy height over three test sites (Arizona-1, Minnesota-2; the effect of incidence angle changes across swath on the X-HH InSAR hspc was examined. Results indicate at steep incidence angles (θ = 35º, more exposure of lower vegetation canopy structure (e.g. tree trunks led to greater lower canopy double bounce, increased ground scattering, and decreased volume scattering. This resulted in a lower scattering phase centre height (hspc or a greater underestimation of

  10. Heritability of adult body height

    DEFF Research Database (Denmark)

    Silventoinen, Karri; Sammalisto, Sampo; Perola, Markus

    2003-01-01

    /unique environment (AE) model. Among women the heritability estimates were generally lower than among men with greater variation between countries, ranging from 0.68 to 0.84 when an additive genes/shared environment/unique environment (ACE) model was used. In four populations where an AE model fit equally well...... countries; body height was least in Italy (177 cm in men and 163 cm in women) and greatest in the Netherlands (184 cm and 171 cm, respectively). In men there was no corresponding variation in heritability of body height, heritability estimates ranging from 0.87 to 0.93 in populations under an additive genes...... or better, heritability ranged from 0.89 to 0.93. This difference between the sexes was mainly due to the effect of the shared environmental component of variance, which appears to be more important among women than among men in our study populations. Our results indicate that, in general, there are only...

  11. Fiscal 2000 achievement report on the research and development of nanometer controlled optical disk system; 2000 nendo nanometer seigyo hikari disk system no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Development proceeded of nanometer controlled optical memory technologies as part of systematic research and development aiming at the reinforcement of industrial technology power in the field of data recording. Activities were conducted in the four fields of (1) high density signal processing technology, (2) high performance disk materials technology, (3) disk substrate fabrication technology, and (4) signal detection technology. Discussed in field (1) were multivalue ROM (read only memory) disk signal regeneration, SIL-LBR (solid immersion lens-laser beam recorder), dry etching process using RIE (reactive ion etching), SHG (second harmonic generation) blue laser, and a multivalue ROM disk evaluation system. Studied in field (2) were the evaluation of ROM disk performance dependent on recording materials, development of high density recording materials, and the evaluation of crystallization induction time using a static tester. Studied in the development of high density recording materials was the formation of microscopic recording marks in a phase shift/surface recording type disk comprising a 4-element (Ag-In-Sb-Te) recording layer and an Ag reflection layer. In fiscal 2000, an attempt was made at the 0.07 {mu}m level. (NEDO)

  12. Growth and Final Height Among Children With Phenylketonuria.

    Science.gov (United States)

    Thiele, Alena G; Gausche, Ruth; Lindenberg, Cornelia; Beger, Christoph; Arelin, Maria; Rohde, Carmen; Mütze, Ulrike; Weigel, Johannes F; Mohnike, Klaus; Baerwald, Christoph; Scholz, Markus; Kiess, Wieland; Pfäffle, Roland; Beblo, Skadi

    2017-11-01

    Growth is an important criterion to evaluate health in childhood and adolescence, especially in patients depending on special dietary treatment. Phenylketonuria (PKU) is the most common inherited disease of amino acid metabolism. Patients with PKU depend on a special phenylalanine-restricted diet, low in natural protein. The study aimed to evaluate growth, growth rate, and target height in 224 patients with PKU. Retrospective, longitudinal analysis of standardized, yearly measurements of height, weight, and calculated growth rate (SD score [SDS]) of patients with PKU aged 0 to 18 years were conducted by using the national computerized CrescNet database. Inclusion was restricted to patients carried to term with a confirmed diagnosis of PKU or mild hyperphenylalaninemia determined by newborn screening and early treatment initiation. From birth to adulthood, patients with PKU were significantly shorter than healthy German children (height SDS at 18 years: -0.882 ± 0.108, P < .001). They missed their target height by 3 cm by adulthood (women: P = .02) and 5 cm (men: P = .01). In patients receiving casein hydrolysate during childhood, this was more pronounced compared with patients receiving amino acid mixtures ( P < .001). Growth rate was significantly reduced during their first 2 years of life and in puberty (growth rate SDS: -1.1 to -0.5 m/year, P < .001 and -0.5; P < .02). Early diagnosed, treated, and continuously monitored patients with PKU showed reduced height from birth onward. During the last 2 decades, this phenomenon attenuated, probably because of advances in PKU therapy related to protein supplements and special low-protein foods. Copyright © 2017 by the American Academy of Pediatrics.

  13. Effects of stand density on top height estimation for ponderosa pine

    Science.gov (United States)

    Martin Ritchie; Jianwei Zhang; Todd Hamilton

    2012-01-01

    Site index, estimated as a function of dominant-tree height and age, is often used as an expression of site quality. This expression is assumed to be effectively independent of stand density. Observation of dominant height at two different ponderosa pine levels-of-growing-stock studies revealed that top height stability with respect to stand density depends on the...

  14. Global height datum unification: a new approach in gravity potential space

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  15. FERDO/FERD, Unfolding of Pulse-Height Spectrometer Spectra

    International Nuclear Information System (INIS)

    Rust, B.W.; Ingersoll, D.T.; Burrus, W.R.

    1985-01-01

    1 - Description of problem or function: FERDO and FERD are unfolding codes which can be used to correct observed pulse-height distributions for the non-ideal response of a pulse-height spectrometer or to solve poorly conditioned linear equations. 2 - Method of solution: It is assumed that the response of the spectrometer is given by Ax = b, where A is the spectrometer response function matrix, x is the unknown spectrum, and b is the pulse-height distribution. FERDO does not resolve directly for x but instead solves for p = Wx, where W is a 'window function matrix'. Typically, W is the resolution function of an ideal spectrometer which has a single Gaussian response. The effective resolution of the unfolding solution may be varied by the choice of W. Confidence intervals are found for each element of the solution p

  16. The association between height and birth order: evidence from 652 518 Swedish men

    OpenAIRE

    Myrskyla, Mikko; Silventoinen, Karri; Jelenkovic, Aline; Tynelius, Per; Rasmussen, Finn

    2013-01-01

    Background Birth order is associated with outcomes such as birth weight and adult socioeconomic position (SEP), but little is known about the association with adult height. This potential birth order-height association is important because height predicts health, and because the association may help explain population-level height trends. We studied the birth order-height association and whether it varies by family characteristics or birth cohort. Methods We used the Swedish Military Conscrip...

  17. Trend in Height of Turkish and Moroccan Children Living in The Netherlands

    Science.gov (United States)

    Schönbeck, Yvonne; van Dommelen, Paula; HiraSing, Remy A.; van Buuren, Stef

    2015-01-01

    Objectives To study trends in height of Turkish and Moroccan immigrant children living in The Netherlands, to investigate the association between height and background characteristics in these children, and to calculate height-for-age-references data for these groups. Design Nationwide cross-sectional data collection from children aged 0 to 18 years by trained professionals in 1997 and 2009. The study population consisted of 2,822 Turkish 2,779 Moroccan, and 13,705 Dutch origin children in 1997and 2,548 Turkish, 2,594 Moroccan, and 11,255 Dutch origin children in 2009. Main outcome measures: Mean height in cm, and mean height standard deviation scores. Results In 2009, mean height at the age of 18y was similar for Turkish and Moroccan children: 177 cm for boys and 163 cm for girls, which was 2 to 3 cm taller than in 1997. Still, Turkish and Moroccan adolescents were 5.5 cm (boys) to 7 cm (girls) shorter than their Dutch peers. No significant differences were found in mean height standard deviation scores across the educational level of the parents, geographical region, primary language spoken at home, and immigrant generation. Conclusions While the secular height increase in Dutch children came to a halt, the trend in Turkish and Moroccan children living in The Netherlands continued. However, large differences in height between Turkish and Moroccan children and Dutch children remain. We found no association with the background characteristics. We recommend the use of the new growth charts for children of Turkish and Moroccan origin who have a height-for-age below -2SD on the growth chart for Dutch children. PMID:25938671

  18. human pelvis height is associated with other pelvis measurements

    African Journals Online (AJOL)

    guyton2

    no study seeking to relate pelvis height to the other pelvis measurements of obstetric importance in Ugandans. In this paper we set out to answer the research question what are the associations between the various pelvis anthropometric measurements of obstetric importance with pelvis height in a sample of bones from the ...

  19. Serum osteoprotegerin levels are related to height loss: The Tromsø Study

    International Nuclear Information System (INIS)

    Jørgensen, Lone; Hansen, John-Bjarne; Brox, Jan; Mathiesen, Ellisiv; Vik, Anders; Jacobsen, Bjarne K.

    2011-01-01

    Severe loss of body height is often a consequence of osteoporotic vertebral fractures. Osteoprotegerin (OPG) and receptor activator of nuclear factor-kB ligand (RANKL) are cytokines essential for the regulation of bone resorption. The aim of this study was to assess the relationship between the OPG/RANKL system and height loss. A total of 4,435 inhabitants from the municipality of Tromsø, Norway (2,169 men and 2,266 women) were followed for 6 years. Baseline measurements included height, weight, bone mineral density, OPG, RANKL, serum parathyroid hormone and information about lifestyle, prevalent diseases and use of medication. Height was measured again at follow-up, and the loss of height was categorized into 4 groups: ≤1, 1.1–2, 2.1–3, >3 cm. We found increasing height loss with increasing baseline OPG levels in both men and women (P trend = 0.02 and 0.001, respectively), after adjustments for age and other confounders. However, when the women were stratified according to menopausal status and use of hormone replacement therapy (HRT), a significant relationship was present only among postmenopausal women not using HRT (P trend = 0.02). No relations between OPG and height loss were found in post-menopausal HRT-users and premenopausal women (P trend ≥0.39). We conclude that height loss is positively associated with OPG in men and in postmenopausal women not using HRT. No relationship was found between RANKL and height loss.

  20. Looking Like a Leader–Facial Shape Predicts Perceived Height and Leadership Ability

    Science.gov (United States)

    Re, Daniel E.; Hunter, David W.; Coetzee, Vinet; Tiddeman, Bernard P.; Xiao, Dengke; DeBruine, Lisa M.; Jones, Benedict C.; Perrett, David I.

    2013-01-01

    Judgments of leadership ability from face images predict the outcomes of actual political elections and are correlated with leadership success in the corporate world. The specific facial cues that people use to judge leadership remain unclear, however. Physical height is also associated with political and organizational success, raising the possibility that facial cues of height contribute to leadership perceptions. Consequently, we assessed whether cues to height exist in the face and, if so, whether they are associated with perception of leadership ability. We found that facial cues to perceived height had a strong relationship with perceived leadership ability. Furthermore, when allowed to manually manipulate faces, participants increased facial cues associated with perceived height in order to maximize leadership perception. A morphometric analysis of face shape revealed that structural facial masculinity was not responsible for the relationship between perceived height and perceived leadership ability. Given the prominence of facial appearance in making social judgments, facial cues to perceived height may have a significant influence on leadership selection. PMID:24324651

  1. Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data

    Science.gov (United States)

    Molod, Andrea M.; Salmun, H.; Dempsey, M

    2015-01-01

    An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

  2. Automated lidar-derived canopy height estimates for the Upper Mississippi River System

    Science.gov (United States)

    Hlavacek, Enrika

    2015-01-01

    Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.

  3. The influence of craniofacial to standing height proportion on perceived attractiveness.

    Science.gov (United States)

    Naini, F B; Cobourne, M T; McDonald, F; Donaldson, A N A

    2008-10-01

    An idealised male image, based on Vitruvian Man, was created. The craniofacial height was altered from a proportion of 1/6 to 1/10 of standing height, creating 10 images shown in random order to 89 observers (74 lay people; 15 clinicians), who ranked the images from the most to the least attractive. The main outcome was the preference ranks of image attractiveness given by the observers. Linear regressions were used to assess what influences the choice for the most and the least attractive images, followed by a multivariate rank ordinal logistic regression to test the influence of age, gender, ethnicity and professional status of the observer. A craniofacial height to standing height proportion of 1/7.5 was perceived as the most attractive (36%), followed by a proportion of 1/8 (26%). The images chosen as most attractive by more than 10% of observers had a mean proportion of 1/7.8(min=1/7; max=1/8.5). The images perceived as most unattractive had a proportion of 1/6 and 1/10. The choice of images was not influenced by the age, gender, ethnicity or professional status of the observers. The ideal craniofacial height to standing height proportion is in the range 1/7 to 1/8.5. This finding should be considered when planning treatment to alter craniofacial or facial height.

  4. Cloud Height Retrieval with Oxygen A and B Bands for the Deep Space Climate Observatory (DSCOVR) Mission

    Science.gov (United States)

    Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay

    2012-01-01

    Planned to fly in 2014, the Deep Space Climate Observatory (DSCOVR) would see the whole sunlit half of the Earth from the L 1 Lagrangian point and would provide simultaneous data on cloud and aerosol properties with its Earth Polychromatic Imaging Camera (EPIC). EPIC images the Earth on a 2Kx2K CCD array, which gives a horizontal resolution of about 10 km at nadir. A filter-wheel provides consecutive images in 10 spectral channels ranging from the UV to the near-IR, including the oxygen A and B bands. This paper presents a study of retrieving cloud height with EPIC's oxygen A and B bands. As the first step, we analyzed the effect of cloud optical and geometrical properties, sun-view geometry, and surface type on the cloud height determination. Second, we developed two cloud height retrieval algorithms that are based on the Mixed Lambertian-Equivalent Reflectivity (MLER) concept: one utilizes the absolute radiances at the Oxygen A and B bands and the other uses the radiance ratios between the absorption and reference channels of the two bands. Third, we applied the algorithms to the simulated EPIC data and to the data from SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) observations. Results show that oxygen A and B bands complement each other: A band is better suited for retrievals over ocean, while B band is better over vegetated land due to a much darker surface. Improvements to the MLER model, including corrections to surface contribution and photon path inside clouds, will also be discussed.

  5. Mobile Device Accuracy for Step Counting Across Age Groups.

    Science.gov (United States)

    Modave, François; Guo, Yi; Bian, Jiang; Gurka, Matthew J; Parish, Alice; Smith, Megan D; Lee, Alexandra M; Buford, Thomas W

    2017-06-28

    Only one in five American meets the physical activity recommendations of the Department of Health and Human Services. The proliferation of wearable devices and smartphones for physical activity tracking has led to an increasing number of interventions designed to facilitate regular physical activity, in particular to address the obesity epidemic, but also for cardiovascular disease patients, cancer survivors, and older adults. However, the inconsistent findings pertaining to the accuracy of wearable devices for step counting needs to be addressed, as well as factors known to affect gait (and thus potentially impact accuracy) such as age, body mass index (BMI), or leading arm. We aim to assess the accuracy of recent mobile devices for counting steps, across three different age groups. We recruited 60 participants in three age groups: 18-39 years, 40-64 years, and 65-84 years, who completed two separate 1000 step walks on a treadmill at a self-selected speed between 2 and 3 miles per hour. We tested two smartphones attached on each side of the waist, and five wrist-based devices worn on both wrists (2 devices on one wrist and 3 devices on the other), as well as the Actigraph wGT3X-BT, and swapped sides between each walk. All devices were swapped dominant-to-nondominant side and vice-versa between the two 1000 step walks. The number of steps was recorded with a tally counter. Age, sex, height, weight, and dominant hand were self-reported by each participant. Among the 60 participants, 36 were female (60%) and 54 were right-handed (90%). Median age was 53 years (min=19, max=83), median BMI was 24.1 (min=18.4, max=39.6). There was no significant difference in left- and right-hand step counts by device. Our analyses show that the Fitbit Surge significantly undercounted steps across all age groups. Samsung Gear S2 significantly undercounted steps only for participants among the 40-64 year age group. Finally, the Nexus 6P significantly undercounted steps for the group

  6. Arm-associated measurements as estimates of true height in black ...

    African Journals Online (AJOL)

    arm-associated measurements to true height included that of the World Health ... Conclusion: Findings indicate the need for gender and race-specific height estimation ..... New. York, NY: Springer; 2012. 12. Golshan M, Amra B, Hoghoghi MA.

  7. Trend in height of Turkish and Moroccan children living in the Netherlands

    NARCIS (Netherlands)

    Schönbeck, Y.; Dommelen, P. van; Hirasing, R.A.; Buuren, S. van

    2015-01-01

    Objectives To study trends in height of Turkish and Moroccan immigrant children living in The Netherlands, to investigate the association between height and background characteristics in these children, and to calculate height-for-age-references data for these groups. Design Nationwide

  8. Local mechanical spectroscopy with nanometer-scale lateral resolution

    Science.gov (United States)

    Oulevey, F.; Gremaud, G.; Sémoroz, A.; Kulik, A. J.; Burnham, N. A.; Dupas, E.; Gourdon, D.

    1998-05-01

    A new technique has been developed to probe the viscoelastic and anelastic properties of submicron phases of inhomogeneous materials. The measurement gives information related to the internal friction and to the variations of the dynamic modulus of nanometer-sized volumes. It is then the nanoscale equivalent to mechanical spectroscopy, a well-known macroscopic technique for materials studies, also sometimes called dynamic mechanical (thermal) analysis. The technique is based on a scanning force microscope, using the principle of scanning local-acceleration microscopy (SLAM), and allows the sample temperature to be changed. It is called variable-temperature SLAM, abbreviated T-SLAM. According to a recent proposition to systematize names of scanning probe microscope based methods, this technique should be included in the family of "mechanothermal analysis with scanning microscopy." It is suited for studying defect dynamics in nanomaterials and composites by locating the dissipative mechanisms in submicron phases. The primary and secondary relaxations, as well as the viscoplasticity, were observed in bulk PVC. The wide range of phenomena demonstrate the versatility of the technique. A still unexplained increase of the stiffness with increasing temperature was observed just below the glass transition. All of these observations, although their interpretation in terms of physical events is still tentative, are in agreement with global studies. This technique also permits one to image the variations of the local elasticity or of the local damping at a fixed temperature. This enables the study of, for instance, the homogeneity of phase transitions in multiphased materials, or of the interface morphologies and properties. As an illustration, the homogeneity of the glass transition temperature of PVC in a 50/50 wt % PVC/PB polymer blend has been demonstrated. Due to the small size of the probed volume, T-SLAM gives information on the mechanical properties of the near

  9. Oxygen–induced barrier height changes in aluminium – amorphous ...

    African Journals Online (AJOL)

    The results show that the application of voltage causes charge exchange between the surface states and the semiconductor leading to a change in the height of the potential barrier for electrons passing from aluminium into the a-Se films. The empirically determined values of barrier height of Al/a-Se diodes with thin and ...

  10. Stereoscopic, thermal, and true deep cumulus cloud top heights

    Science.gov (United States)

    Llewellyn-Jones, D. T.; Corlett, G. K.; Lawrence, S. P.; Remedios, J. J.; Sherwood, S. C.; Chae, J.; Minnis, P.; McGill, M.

    2004-05-01

    We compare cloud-top height estimates from several sensors: thermal tops from GOES-8 and MODIS, stereoscopic tops from MISR, and directly measured heights from the Goddard Cloud Physics Lidar on board the ER-2, all collected during the CRYSTAL-FACE field campaign. Comparisons reveal a persistent 1-2 km underestimation of cloud-top heights by thermal imagery, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The most severe underestimates occur for the tallest clouds. The MISR "best-sinds" and lidar estimates disagree in very similar ways with thermally estimated tops, which we take as evidence of excellent performance by MISR. Encouraged by this, we use MISR to examine variations in cloud penetration and thermal top height errors in several locations of tropical deep convection over multiple seasons. The goals of this are, first, to learn how cloud penetration depends on the near-tropopause environment; and second, to gain further insight into the mysterious underestimation of tops by thermal imagery.

  11. Diagnostic test of predicted height model in Indonesian elderly: a study in an urban area

    Directory of Open Access Journals (Sweden)

    Fatmah Fatmah

    2010-08-01

    Full Text Available Aim In an anthropometric assessment, elderly are frequently unable to measure their height due to mobility and skeletal deformities. An alternative is to use a surrogate value of stature from arm span, knee height, and sitting height. The equations developed for predicting height in Indonesian elderly using these three predictors. The equations put in the nutritional assessment card (NSA of older people. Before the card which is the first new technology in Indonesia will be applied in the community, it should be tested. The study aimed was to conduct diagnostic test of predicted height model in the card compared to actual height.Methods Model validation towards 400 healthy elderly conducted in Jakarta City with cross-sectional design. The study was the second validation test of the model besides Depok City representing semi urban area which was undertaken as the first study.Result Male elderly had higher mean age, height, weight, arm span, knee height, and sitting height as compared to female elderly. The highest correlation between knee height and standing height was similar in women (r = 0.80; P < 0.001 and men (r = 0.78; P < 0.001, and followed by arm span and sitting height. Knee height had the lowest difference with standing height in men (3.13 cm and women (2.79 cm. Knee height had the biggest sensitivity (92.2%, and the highest specificity on sitting height (91.2%.Conclusion Stature prediction equation based on knee-height, arm span, and sitting height are applicable for nutritional status assessment in Indonesian elderly. (Med J Indones 2010;19:199-204Key words: diagnostic test, elderly, predicted height model

  12. Comparative validation of the radiographic and tomographic measurement of patellar height

    Directory of Open Access Journals (Sweden)

    Marco Antonio Schueda

    2013-09-01

    Full Text Available OBJECTIVE: To evaluate and validate the radiographic measurement of patellar height with computerized tomography scans. METHODS: Measured the patellar height through the lateral radiographic image supported by one foot and sagittal tomographic view of the knee in extension, flexion of 20°, and quadriceps contraction of 40 patients (80 knees, asymptomatic and no history of knee injuries using Insall-Salvati index. There were 20 adult females and 20 adult males. RESULTS: The height patellar index was higher in women of all images taken, in proportion. There was no statistical difference of patellar height index between the radiographics and tomographics images. CONCLUSION: The Insall-Salvati index in females was higher in all cases evaluated. Furthermore, it is possible to measure the patellar height index during tomographic study without distorting the results obtained, using to define the presence of patella alta or patella baja.

  13. Roles of multi-step transfer in fusion process induced by heavy-ion reactions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1993-06-01

    In nucleus-nucleus collisions of the systems, 12 C+ 13 C and 13 C+ 16 O- 12 C+ 17 O, the effects of the multi-step transfers and inelastic excitations on the fusion cross sections are investigated in the framework of the coupled-reaction-channel (CRC) method. Strong CRC effects of the multi-step processes are observed. Namely, the valence neutron in 13 C or 17 O plays an important role in the enhancement of the fusion. The potential barrier is effectively lowered with the formation of the covalent molecule of the configuration, 12 C+n+ 12 C or 12 C+n+ 16 O. In the analyses of the system 12 C+ 13 C, however, it is still required to introduce core-core optical potential of lower barrier height in the state of the positive total parity. This could be due to the neck formation with the nucleons contained in two core nuclei. (author)

  14. Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures.

    Science.gov (United States)

    Joo, Woo-Deok; Kim, Seungman; Park, Jiyong; Lee, Keunwoo; Lee, Joohyung; Kim, Seungchul; Kim, Young-Jin; Kim, Seung-Woo

    2013-07-01

    Fast, precise 3-D measurement of discontinuous step-structures fabricated on microelectronic products is essential for quality assurance of semiconductor chips, flat panel displays, and photovoltaic cells. Optical surface profilers of low-coherence interferometry have long been used for the purpose, but the vertical scanning range and speed are limited by the micro-actuators available today. Besides, the lateral field-of-view extendable for a single measurement is restricted by the low spatial coherence of broadband light sources. Here, we cope with the limitations of the conventional low-coherence interferometer by exploiting unique characteristics of femtosecond laser pulses, i.e., low temporal but high spatial coherence. By scanning the pulse repetition rate with direct reference to the Rb atomic clock, step heights of ~69.6 μm are determined with a repeatability of 10.3 nm. The spatial coherence of femtosecond pulses provides a large field-of-view with superior visibility, allowing for a high volume measurement rate of ~24,000 mm3/s.

  15. Can height categories replace weight categories in striking martial arts competitions? A pilot study.

    Science.gov (United States)

    Dubnov-Raz, Gal; Mashiach-Arazi, Yael; Nouriel, Ariella; Raz, Raanan; Constantini, Naama W

    2015-09-29

    In most combat sports and martial arts, athletes compete within weight categories. Disordered eating behaviors and intentional pre-competition rapid weight loss are commonly seen in this population, attributed to weight categorization. We examined if height categories can be used as an alternative to weight categories for competition, in order to protect the health of athletes. Height and weight of 169 child and adolescent competitive karate athletes were measured. Participants were divided into eleven hypothetical weight categories of 5 kg increments, and eleven hypothetical height categories of 5 cm increments. We calculated the coefficient of variation of height and weight by each division method. We also calculated how many participants fit into corresponding categories of both height and weight, and how many would shift a category if divided by height. There was a high correlation between height and weight (r = 0.91, p<0.001). The mean range of heights seen within current weight categories was reduced by 83% when participants were divided by height. When allocating athletes by height categories, 74% of athletes would shift up or down one weight category at most, compared with the current categorization method. We conclude that dividing young karate athletes by height categories significantly reduced the range of heights of competitors within the category. Such categorization would not cause athletes to compete against much heavier opponents in most cases. Using height categories as a means to reduce eating disorders in combat sports should be further examined.

  16. Estimation of Height from Arm Span in 6-11 Years Children in Odisha, India

    Directory of Open Access Journals (Sweden)

    Snigdha Prava Mishra

    2017-10-01

    Full Text Available Introduction: Standing height is an important anthropometric parameter to track longitudinal growth, to estimate body fatness and to calculate energy requirement. Measurement of height may be difficult in children who cannot stand. Aim: To establish regression equation for estimation of height from arm span in children. To check comparative relevancy of this equation with fixed height-to-arm span ratio (HAR for estimation of height. Materials and Methods: A cross-sectional study was conducted with 6-11 years school children (n=1465, Boys=774, Girls=691 in state of Odisha, India. Height was measured by portable stadiometer and arm span was measured by fiberglass measuring tape to nearest 0.1 cm. Pearson correlation and regression analysis was carried out between height and arm span data. p<0.05 (two tail was considered statistically significant. Results: Mean height and arm span in boys (124.16±8.74 cm and 125.57±10.43 cm respectively was significantly more (p<0.001 than height and arm span in girls (121.18±10.37 cm and 121.50±11.68 cm respectively. Mean HAR was 0.9942±0.0279. Correlation between height and arm span in boys was r = 0.94 (p<0.001 and in girls was r = 0.96 (p<0.001. Overall correlation coefficient was r = 0.95 (p<0.001. Regression equation for estimation of height from arm span was established: Height (cm = 0.8192 * arm span (cm + 21.46. Conclusion: Height in children of 6-11 years showed strong positive correlation with arm span. Regression equation established from this study can be used to estimate height from arm span. This estimation is more reliable than estimation of height from HAR.

  17. An attempt to link the Brazilian Height System to a World Height System

    Directory of Open Access Journals (Sweden)

    V. G. Ferreira

    Full Text Available This paper deals with the geopotential approach to investigate the present Brazilian Height System (BHS. Geopotential numbers are derived from Global Positioning System (GPS satellite surveying and disturbing potential on selected benchmarks. A model for the disturbing potential can be obtained by an existing set of spherical harmonic coefficients such as the Earth Gravity Model 2008 (EGM08. The approach provides absolute evaluation of local normal geopotential numbers (aka spheropotential numbers related to a so-called World Height System (WHS. To test the validity of the proposed methodology, a numerical experiment was carried out related to a test region in Southern Brazil. The accuracy of the derived geopotential numbers was tested versus local normal geopotential numbers based on 262 GPS/leveling points. The root mean square error (RMSE value for metric offset of BHS derived from geopotential numbers and the disturbing potential modeling in the test area was estimated to be near 0.224 meters in the absolute view. Therefore, since these spheropotential numbers are referred to a local datum, these results of comparisons may be an indicator of the mean bias of local network due to the effect of local Sea Surface Topography (SSTop and possible offset between the unknown reference for the BHS and the quasigeoid model in the region.

  18. Large-scale freestanding nanometer-thick graphite pellicles for mass production of nanodevices beyond 10 nm.

    Science.gov (United States)

    Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Lee, Chang Gu; Yang, Cheol-Woong; Lee, Sungjoo; Cho, Sang Jin; Jeon, Hwan Chul; Kim, Mun Ja; Kim, Byung-Gook; Yoo, Ji-Beom

    2015-09-21

    Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by laser irradiation (λ = 800 nm) of 9.9 W cm(-2) was 267 °C, due to the high thermal conductivity of the NGF. The freestanding NGF was found to be chemically stable during annealing at 500 °C in a hydrogen environment. A 50 × 50 mm large area freestanding NGF was fabricated using the wet and dry transfer (WaDT) method. The NGF can be used as an EUVL pellicle for the mass production of nanodevices beyond 10 nm.

  19. EFFECT OF HYDRAULIC AND GEOMETRICAL PROPERTIES ON STEPPED CASCADE AERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    VEDHACHALAM RATHINAKUMAR

    2017-03-01

    Full Text Available Stepped cascade aeration system is commonly used to aerate the water and wastewater to increase the dissolved oxygen during pre and post treatment process. In the present research, experiments were conducted to evaluate the performance of a rectangular Cascade Aeration System with varying flow rates, risers and tread by maintaining constant width of the channel using water collected from reverse osmosis plant. The experiments were carried out with four different risers such as 0.15 m, 0.18 m, 0.225 m and 0.30 m. Each rise was investigated with five different tread of 0.60 m, 0.55 m, 0.50 m, 0.45 m and 0.40 m. Comprehensive experimental investigations were carried out for different hydraulic loading rates of 0.005 to 0.035 m3/s/m2. Results obtained from the experiments reveals that increasing dimensionless discharges promotes more aeration, attains a maximum up to dimensionless discharge= 2.22 and beyond this there was a significant decrease in aeration. In addition, the increased in number of steps significantly enhances air entertainment and surface fall rate in the Stepped Cascade Aeration System. A regression equation was derived by keeping aeration efficiency as response with dimensionless discharge and oxygen saturation concentration as influencing parameters. The dimension less discharge is a function of critical depth of the rectangular channel and step height, whereas oxygen saturation concentration represents the ratio of oxygen deficit and oxygen saturation concentration. Based on the experimental results, the optimum design and/or results such as number of steps (12 numbers and hydraulic loading rate (0.025 m3/s/m2 with fixed tread width of 0.6 m were identified to achieve maximum aeration rate (0.5-0.60 in Aeration system.

  20. The Influence of Tractor-Seat Height above the Ground on Lateral Vibrations

    Directory of Open Access Journals (Sweden)

    Jaime Gomez-Gil

    2014-10-01

    Full Text Available Farmers experience whole-body vibrations when they drive tractors. Among the various factors that influence the vibrations to which the driver is exposed are terrain roughness, tractor speed, tire type and pressure, rear axle width, and tractor seat height above the ground. In this paper the influence of tractor seat height above the ground on the lateral vibrations to which the tractor driver is exposed is studied by means of a geometrical and an experimental analysis. Both analyses show that: (i lateral vibrations experienced by a tractor driver increase linearly with tractor-seat height above the ground; (ii lateral vibrations to which the tractor driver is exposed can equal or exceed vertical vibrations; (iii in medium-size tractors, a feasible 30 cm reduction in the height of the tractor seat, which represents only 15% of its current height, will reduce the lateral vibrations by around 20%; and (iv vertical vibrations are scarcely influenced by tractor-seat height above the ground. The results suggest that manufacturers could increase the comfort of tractors by lowering tractor-seat height above the ground, which will reduce lateral vibrations.

  1. The Effect of Adolescent Experience on Labor Market Outcomes: The Case of Height.

    Science.gov (United States)

    Persico, Nicola; Postlewaite, Andrew; Silverman, Dan

    2004-01-01

    Taller workers receive a wage premium. Net of differences in family background, the disparity is similar in magnitude to the race and gender gaps. We exploit variation in an individual's height over time to explore how height affects wages. Controlling for teen height essentially eliminates the effect of adult height on wages for white men. The…

  2. Step dynamics and terrace-width distribution on flame-annealed gold films: The effect of step-step interaction

    International Nuclear Information System (INIS)

    Shimoni, Nira; Ayal, Shai; Millo, Oded

    2000-01-01

    Dynamics of atomic steps and the terrace-width distribution within step bunches on flame-annealed gold films are studied using scanning tunneling microscopy. The distribution is narrower than commonly observed for vicinal planes and has a Gaussian shape, indicating a short-range repulsive interaction between the steps, with an apparently large interaction constant. The dynamics of the atomic steps, on the other hand, appear to be influenced, in addition to these short-range interactions, also by a longer-range attraction of steps towards step bunches. Both types of interactions promote self-ordering of terrace structures on the surface. When current is driven through the films a step-fingering instability sets in, reminiscent of the Bales-Zangwill instability

  3. Traffic safety and step-by-step driving licence for young people

    DEFF Research Database (Denmark)

    Tønning, Charlotte; Agerholm, Niels

    2017-01-01

    presents a review of safety effects from step-by-step driving licence schemes. Most of the investigated schemes consist of a step-by-step driving licence with Step 1) various tests and education, Step 2) a period where driving is only allowed together with an experienced driver and Step 3) driving without...... companion is allowed but with various restrictions and, in some cases, additional driving education and tests. In general, a step-by-step driving licence improves traffic safety even though the young people are permitted to drive a car earlier on. The effects from driving with an experienced driver vary......Young novice car drivers are much more accident-prone than other drivers - up to 10 times that of their parents' generation. A central solution to improve the traffic safety for this group is implementation of a step-by-step driving licence. A number of countries have introduced a step...

  4. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions.

    Science.gov (United States)

    Tomer, D; Rajput, S; Hudy, L J; Li, C H; Li, L

    2015-05-29

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current-voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions.

  5. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions

    International Nuclear Information System (INIS)

    Tomer, D; Rajput, S; Hudy, L J; Li, L; Li, C H

    2015-01-01

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current–voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions. (paper)

  6. Does Height to Width Ratio Correlate with Mean Volume in Gastropods?

    Science.gov (United States)

    Barriga, R.; Seixas, G.; Payne, J.

    2012-12-01

    Marine organisms' shell shape and size show important biological information. For example, shape and size can dictate how the organism ranges for food and escapes predation. Due to lack of data and analysis, the evolution of shell size in marine gastropods (snails) remains poorly known. In this study, I attempt to find the relationship between height to width ratio and mean volume. I collected height and width measurements from primary literature sources and calculated volume from these measurements. My results indicate that there was no correlation between height to width ratio and mean volume between 500 to 200 Ma, but there was a correlation between 200 Ma to present where there is a steady increase in both height to width ratio and mean volume. This means that shell shape was not an important factor at the beginning of gastropod evolution but after 200 Ma body size evolution was increasingly driven by the height to width ratio.

  7. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.

  8. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R. [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Halder, Avik [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Yin, Chunrong [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Singh, Akansha [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Barcaro, Giovanni [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Sementa, Luca [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Bartling, Stephan [Institut für Physik, Universität Rostock, Rostock Germany; Meiwes-Broer, Karl-Heinz [Institut für Physik, Universität Rostock, Rostock Germany; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, Lemont IL USA; Sen, Prasenjit [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Nigam, Sandeep [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Fukui, Nobuyuki [East Tokyo Laboratory, Genesis Research Institute, Inc., Ichikawa Chiba 272-0001 Japan; Yasumatsu, Hisato [Cluster Research Laboratory, Toyota Technological Institute: in, East Tokyo Laboratory, Genesis Research Institute, Inc. Ichikawa, Chiba 272-0001 Japan; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Nanoscience and Technology Division, Argonne National Laboratory, Lemont IL USA; Institute for Molecular Engineering, University of Chicago, Chicago IL USA; Fortunelli, Alessandro [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Materials and Process Simulation Center, California Institute of Technology, Pasadena CA USA

    2017-12-29

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

  9. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution

    Science.gov (United States)

    Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.

    2013-12-01

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  10. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    International Nuclear Information System (INIS)

    Do, Van-Nam

    2014-01-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes. (review)

  11. Effect of cutting height and frequency on Leucaena leucocephala ...

    African Journals Online (AJOL)

    Leucaena leucocephala is a fast-growing tree that can provide both high quality forage and firewood. The objective of this trial was to determine the optimum height and frequency of cutting for both wood and forage production. Cutting heights at 0.3m, 0.6m and 1.0 m were superimposed on 3-month and 6-month cutting ...

  12. A Bayesian inversion framework for yield and height-of-burst/depth-of-burial for near-surface explosions

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Gardar [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bulaevskaya, Vera [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramirez, Abe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ford, Sean [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, Artie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-07

    A Bayesian inversion framework is presented to estimate the yield of an explosion and height-of-burst/depth-of-burial (HOB/DOB) using seismic and air pressure data. This is accomplished by first calibrating the parameters in the forward models that relate the observations to the yield and HOB/DOB and then using the calibrated model to estimate yield and HOB/DOB associated with a new set of seismic and air pressure observations. The MCMC algorithms required to perform these steps are outlined, and the results with real data are shown. Finally, an extension is proposed for a case when clustering in the seismic displacement occurs as a function of different types of rock and other factors.

  13. U.S. Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for the conterminous United States is the GEOID96 model. The computation used about 1.8 million terrestrial and marine gravity data held in...

  14. PR/VI Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for Puerto Rico and the Virgin Islands is distributed as a GEOID96 model. The computation used 26,000 terrestrial and marine gravity data...

  15. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  16. Effect of quantum confinement on the dielectric function of PbSe

    NARCIS (Netherlands)

    Hens, Z.; Vanmaekelbergh, D.; Kooij, Ernst S.; Wormeester, Herbert; Allan, G.; Delerue, C.

    2004-01-01

    Monolayers of lead selenide nanocrystals of a few nanometers in height have been made by electrodeposition on a Au(111) substrate. These layers show a thickness-dependent dielectric function, which was determined using spectroscopic ellipsometry. The experimental results are compared with electronic

  17. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...... to wind speed at the height 10 m only. The extrapolation of satellite wind fields to higher heights, which are more relevant for wind energy, remains a challenge which cannot be addressed by means of satellite data alone. As part of the EU-NORSEWInD project (2008-12), a hybrid method has been developed...

  18. A step-defined sedentary lifestyle index: <5000 steps/day.

    Science.gov (United States)

    Tudor-Locke, Catrine; Craig, Cora L; Thyfault, John P; Spence, John C

    2013-02-01

    Step counting (using pedometers or accelerometers) is widely accepted by researchers, practitioners, and the general public. Given the mounting evidence of the link between low steps/day and time spent in sedentary behaviours, how few steps/day some populations actually perform, and the growing interest in the potentially deleterious effects of excessive sedentary behaviours on health, an emerging question is "How many steps/day are too few?" This review examines the utility, appropriateness, and limitations of using a reoccurring candidate for a step-defined sedentary lifestyle index: 10 000) to lower (sedentary lifestyle index for adults is appropriate for researchers and practitioners and for communicating with the general public. There is little evidence to advocate any specific value indicative of a step-defined sedentary lifestyle index in children and adolescents.

  19. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M.; Mahmood, K.; Rabia, S.; BM, S.; Shahid, M. Y.; Hasan, M. A.

    2013-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 - 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Fap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Fap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(ds) (0.02 V) at zero bais. (author)

  20. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M; Mahmood, K; Rabia, S; M, Samaa B; Shahid, M Y; Hasan, M A

    2014-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 – 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Φ ap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Φ ap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(δ s ) (0.02 V) at zero bais