WorldWideScience

Sample records for nanomechanical near-field grating

  1. [Design of flat field holographic concave grating for near-infrared spectrophotometer].

    Science.gov (United States)

    Xiang, Xian-Yi; Wen, Zhi-Yu

    2008-07-01

    Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.

  2. Topography characterization of a deep grating using near-field imaging

    DEFF Research Database (Denmark)

    Gregersen, Niels; Tromborg, Bjarne; Volkov, Valentyn S.

    2006-01-01

    Using near-field optical microscopy at the wavelength of 633 nm, we image light intensity distributions at several distances above an ~2-mm deep and a 1-mm-period glass grating illuminated from below under the condition of total internal reflection. The intensity distributions are numerically mod...

  3. Nanomechanical electric and electromagnetic field sensor

    Science.gov (United States)

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  4. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating...

  5. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  6. On the smoothness of electric fields near plane gratings of cylindrical conductors

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D.L. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The electric field near an infinite plane grating of equally spaced round rods at the same potential, forming the boundary of a uniform field, is determined analytically to good accuracy by conformal transformations and evaluated numerically. This contribution, which has a frankly pedagogical flavor, to the Klaus Halbach Festschrift is offered to honor his displayed mastery of conformal techniques. Although the numerical work and the form of its presentation are new, the transformation used is not original. However, to locate its antecedents in an archival journal it was necessary to seek out a paper published in 1923 (close to the year of his birth, and of mine), in a place obscure to modern physicists, so the authors efforts cannot be said to replicate recent published work. A new insight is obtained in the form of a simple estimate of departures from field uniformity at all distances from rods of any size.

  7. Convergence analysis in near-field imaging

    International Nuclear Information System (INIS)

    Bao, Gang; Li, Peijun

    2014-01-01

    This paper is devoted to the mathematical analysis of the direct and inverse modeling of the diffraction by a perfectly conducting grating surface in the near-field regime. It is motivated by our effort to analyze recent significant numerical results, in order to solve a class of inverse rough surface scattering problems in near-field imaging. In a model problem, the diffractive grating surface is assumed to be a small and smooth deformation of a plane surface. On the basis of the variational method, the direct problem is shown to have a unique weak solution. An analytical solution is introduced as a convergent power series in the deformation parameter by using the transformed field and Fourier series expansions. A local uniqueness result is proved for the inverse problem where only a single incident field is needed. On the basis of the analytic solution of the direct problem, an explicit reconstruction formula is presented for recovering the grating surface function with resolution beyond the Rayleigh criterion. Error estimates for the reconstructed grating surface are established with fully revealed dependence on such quantities as the surface deformation parameter, measurement distance, noise level of the scattering data, and regularity of the exact grating surface function. (paper)

  8. Atomic probe Wigner tomography of a nanomechanical system

    International Nuclear Information System (INIS)

    Singh, Swati; Meystre, Pierre

    2010-01-01

    We propose a scheme to measure the quantum state of a nanomechanical oscillator cooled near its ground state of vibrational motion. This is an extension of the nonlinear atomic homodyning technique scheme first developed to measure the intracavity field in a micromaser. It involves the use of a detector atom that is simultaneously coupled to the resonator via a magnetic interaction and to (classical) optical fields via a Raman transition. We show that the probability for the atom to be found in the ground state is a direct measure of the Wigner characteristic function of the nanomechanical oscillator. We also investigate the back-action effect of this destructive measurement on the state of the resonator.

  9. Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces

    Science.gov (United States)

    Zheng, Zhiheng; Wang, Ao; Xuan, Yimin

    2018-03-01

    When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.

  10. Strain-induced modulation of near-field radiative transfer.

    Science.gov (United States)

    Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi

    2018-06-11

    In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.

  11. Near-infrared light-controlled tunable grating based on graphene/elastomer composites

    Science.gov (United States)

    Wang, Fei; Jia, Shuhai; Wang, Yonglin; Tang, Zhenhua

    2018-02-01

    A near-infrared (nIR) light actuated tunable transmission optical grating based on graphene nanoplatelet (GNP)/polydimethylsiloxane (PDMS) and PDMS is proposed. A simple fabrication protocol is studied that allows integration of the grating with the actuation mechanism; both components are made from soft elastomers, and this ensure the tunability and the light-driven operation of the grating. The resulting grating structure demonstrates continuous period tunability of 2.7% under an actuation power density of 220 mW cm-2 within a period of 3 s and also demonstrates a time-independent characteristic. The proposed infrared activated grating can be developed for wireless remote light splitting in bio/chemical sensing and optical telecommunications applications.

  12. Fundamentals of nanomechanical resonators

    CERN Document Server

    Schmid, Silvan; Roukes, Michael Lee

    2016-01-01

    This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...

  13. Biomolecule recognition using piezoresistive nanomechanical force probes

    Science.gov (United States)

    Tosolini, Giordano; Scarponi, Filippo; Cannistraro, Salvatore; Bausells, Joan

    2013-06-01

    Highly sensitive sensors are one of the enabling technologies for the biomarker detection in early stage diagnosis of pathologies. We have developed a self-sensing nanomechanical force probe able for detecting the unbinding of single couples of biomolecular partners in nearly physiological conditions. The embedding of a piezoresistive transducer into a nanomechanical cantilever enabled high force measurement capability with sub 10-pN resolution. Here, we present the design, microfabrication, optimization, and complete characterization of the sensor. The exceptional electromechanical performance obtained allowed us to detect biorecognition specific events underlying the biotin-avidin complex formation, by integrating the sensor in a commercial atomic force microscope.

  14. Quantum Nanomechanics: State Engineering and Measurement

    International Nuclear Information System (INIS)

    Woolley, M. J.; Milburn, G. J.; Doherty, A. C.

    2011-01-01

    There has recently been a surge of interest in the study of mechanical systems near the quantum limit. Such experiments are motivated by both fundamental interest in studying quantum mechanics with macroscopic engineered systems and potential applications as ultra-sensitive transducers, or even in quantum information processing. A particularly promising system is a microwave cavity optomechanical system, in which a nanomechanical resonator is embedded within (and capacitively coupled to) a superconducting microwave cavity. Here we discuss two schemes for the generation and measurement of quantum states of the nanomechanical resonator. A quantum squeezed state may be generated via mechanical parametric amplification, while a number state may be conditionally generated via continuous measurement and feedback control mediated by a superconducting qubit.

  15. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben

    1997-01-01

    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  16. Field analysis of two-dimensional focusing grating

    OpenAIRE

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

  17. Modulation of near-field heat transfer between two gratings

    OpenAIRE

    Biehs , Svend-Age; Da Rosa , Felipe S. S.; Ben-Abdallah , Philippe

    2011-01-01

    International audience; We present a theoretical study of near-field heat transfer between two uniaxial anisotropic planar structures. We investigate how the distance and relative orientation (with respect to their optical axes) between the objects affect the heat flux. In particular, we show that by changing the angle between the optical axes it is possible in certain cases to modulate the net heat flux up to 90% at room temperature, and discuss possible applications of such a strong effect.

  18. Photovoltaic dependence of photorefractive grating on the externally applied dc electric field

    Science.gov (United States)

    Maurya, M. K.; Yadav, R. A.

    2013-04-01

    Photovoltaic dependence of photorefractive grating (i.e., space-charge field and phase-shift of the index grating) on the externally applied dc electric field in photovoltaic-photorefractive materials has been investigated. The influence of photovoltaic field (EPhN), diffusion field and carrier concentration ratio r (donor/acceptor impurity concentration ratio) on the space-charge field (SCF) and phase-shift of the index grating in the presence and absence of the externally applied dc electric field have also been studied in details. Our results show that, for a given value of EPhN and r, the magnitude of the SCF and phase-shift of the index grating can be enhanced significantly by employing the lower dc electric field (EONphotovoltaic-photorefractive crystal and higher value of diffusion field (EDN>40). Such an enhancement in the magnitude of the SCF and phase-shift of the index grating are responsible for the strongest beam coupling in photovoltaic-photorefractive materials. This sufficiently strong beam coupling increases the two-beam coupling gain that may be exceed the absorption and reflection losses of the photovoltaic-photorefractive sample, and optical amplification can occur. The higher value of optical amplification in photovoltaic-photorefractive sample is required for the every applications of photorefractive effect so that technology based on the photorefractive effect such as holographic storage devices, optical information processing, acousto-optic tunable filters, gyro-sensors, optical modulators, optical switches, photorefractive-photovoltaic solitons, biomedical applications, and frequency converters could be improved.

  19. Trochoidal X-ray Vector Radiography: Directional dark-field without grating stepping

    Science.gov (United States)

    Sharma, Y.; Bachche, S.; Kageyama, M.; Kuribayashi, M.; Pfeiffer, F.; Lasser, T.; Momose, A.

    2018-03-01

    X-ray Vector Radiography (XVR) is an imaging technique that reveals the orientations of sub-pixel sized structures within a sample. Several dark-field radiographs are acquired by rotating the sample around the beam propagation direction and stepping one of the gratings to several positions for every pose of the sample in an X-ray grating interferometry setup. In this letter, we present a method of performing XVR of a continuously moving sample without the need of any grating motion. We reconstruct the orientations within a sample by analyzing the change in the background moire fringes caused by the sample moving and simultaneously rotating in plane (trochoidal trajectory) across the detector field-of-view. Avoiding the motion of gratings provides significant advantages in terms of stability and repeatability, while the continuous motion of the sample makes this kind of system adaptable for industrial applications such as the scanning of samples on a conveyor belt. Being the first step in the direction of utilizing advanced sample trajectories to replace grating motion, this work also lays the foundations for a full three dimensional reconstruction of scattering function without grating motion.

  20. Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Nori, Franco

    2009-01-01

    We study cooling and squeezing the fluctuations of a nanomechanical beam using quantum feedback control. In our model, the nanomechanical beam is coupled to a transmission line resonator via a superconducting quantum interference device. The leakage of the electromagnetic field from the transmission line resonator is measured using homodyne detection. This measured signal is then used to design a quantum feedback control signal to drive the electromagnetic field in the transmission line resonator. Although the control is imposed on the transmission line resonator, this quantum feedback control signal indirectly affects the thermal motion of the nanomechanical beam via the inductive beam-resonator coupling, making it possible to cool and squeeze the fluctuations of the beam, allowing it to approach the standard quantum limit.

  1. Nanotribology and nanomechanics an introduction

    CERN Document Server

    2017-01-01

    This textbook and comprehensive reference source and serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. This 4th edition has been completely revised and updated, concentrating on the key measurement techniques, their applications, and theoretical modeling of interfaces. It provides condensed knowledge of the field from the mechanics and materials science perspectives to graduate students, research workers, and practicing engineers.

  2. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    International Nuclear Information System (INIS)

    Liu, X. L.; Zhang, Z. M.

    2014-01-01

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  3. Self-excitation of single nanomechanical pillars

    Science.gov (United States)

    Kim, Hyun S.; Qin, Hua; Blick, Robert H.

    2010-03-01

    Self-excitation is a mechanism that is ubiquitous for electromechanical power devices such as electrical generators. This is conventionally achieved by making use of the magnetic field component in electrical generators (Nedic and Lipo 2000 IEEE/IAS Conf. Records (Rome, Italy) vol 1 pp 51-6), a good and widely visible example of which is the wind turbine farm (Muljadi et al 2005 J. Sol. Energy Eng. 127 581-7). In other words, a static force, such as the wind acting on rotor blades, can generate a resonant excitation at a certain mechanical frequency. For nanomechanical systems (Craighead 2000 Science 290 1532-5 Roukes 2001 Phys. World 14 25-31 Cleland 2003 Foundations of Nanomechanics (Berlin: Springer); Ayari et al 2007 Nano Lett. 7 2252-7 Koenig et al 2008 Nat. Nanotechnol. 3 482-4) such a self-excitation (SE) mechanism is also highly desirable, because it can generate mechanical oscillations at radio frequencies by simply applying a dc bias voltage. This is of great importance for low-power signal communication devices and detectors, as well as for mechanical computing elements. For a particular nanomechanical system—the single electron shuttle—this effect was predicted some time ago by Gorelik et al (Phys. Rev. Lett. 80 4526-9). Here, we use a nanoelectromechanical single electron transistor (NEMSET) to demonstrate self-excitation for both the soft and hard regimes, respectively. The ability to use self-excitation in nanomechanical systems may enable the detection of quantum mechanical backaction effects (Naik et al 2006 Nature 443 193-6) in direct tunneling, macroscopic quantum tunneling (Savelev et al 2006 New J. Phys. 8 105-15) and rectification (Pistolesi and Fazio 2005 Phys. Rev. Lett. 94 036806-4). All these effects have so far been overshadowed by the large driving voltages that had to be applied.

  4. Near-field imaging of out-of-plane light scattering in photonic crystal slabs

    DEFF Research Database (Denmark)

    Volkov, Valentyn; Bozhevolnyi, Sergey; Taillaert, Dirk

    2003-01-01

    A collection scanning near-field optical microscope (SNOM) is used to image the propagating of light at telecommunication wavelengths (1520-1570 nm) along photonic crystal (PC) slabs, which combine slab waveguides with in-plane PCs consisting of one- and two-dimensional gratings. The efficient out...

  5. Influence of Non-uniform Temperature Field on Spectra of Fibre Bragg Grating

    International Nuclear Information System (INIS)

    Yan, Zhou; Xing-Fang, He; Xiao-Yong, Fang; Jie, Yuan; Li-Qun, Yin; Mao-Sheng, Cao

    2009-01-01

    We simulate the spectrum characteristics of fibre Bragg grating (FBG) with non-uniform temperature using the transmission matrix method, and the results are analysed. It is found that firstly the modulated coefficient of average refractive index is a very important parameter that influences the spectrum characteristic of the fibre Bragg grating, and secondly the spectrum curves are different in different temperature fields at the same parameter. Hence, we can determine the metrical temperature by analysing the spectrum of fibre Bragg grating

  6. Nanomechanical molecular devices made of DNA origami.

    Science.gov (United States)

    Kuzuya, Akinori; Ohya, Yuichi

    2014-06-17

    CONSPECTUS: Eight years have passed since the striking debut of the DNA origami technique ( Rothemund, P. W. K. Nature 2006 , 440 , 297 - 302 ), in which long single-stranded DNA is folded into a designed nanostructure, in either 2D or 3D, with the aid of many short staple strands. The number of proposals for new design principles for DNA origami structures seems to have already reached a peak. It is apparent that DNA origami study is now entering the second phase of creating practical applications. The development of functional nanomechanical molecular devices using the DNA origami technique is one such application attracting significant interest from researchers in the field. Nanomechanical DNA origami devices, which maintain the characteristics of DNA origami structures, have various advantages over conventional DNA nanomachines. Comparatively high assembly yield, relatively large size visible via atomic force microscopy (AFM) or transmission electron microscopy (TEM), and the capability to assemble multiple functional groups with precision using multiple staple strands are some of the advantages of the DNA origami technique for constructing sophisticated molecular devices. This Account describes the recent developments of such nanomechanical DNA origami devices and reviews the emerging target of DNA origami studies. First, simple "dynamic" DNA origami structures with transformation capability, such as DNA origami boxes and a DNA origami hatch with structure control, are briefly summarized. More elaborate nanomechanical DNA origami devices are then reviewed. The first example describes DNA origami pinching devices that can be used as "single-molecule" beacons to detect a variety of biorelated molecules, from metal ions at the size of a few tens of atomic mass number units to relatively gigantic proteins with a molecular mass greater than a hundred kilodaltons, all on a single platform. Clamshell-like DNA nanorobots equipped with logic gates can discriminate

  7. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells

    International Nuclear Information System (INIS)

    Aguayo, S; Bozec, L; Donos, N; Spratt, D

    2015-01-01

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine. (topical review)

  8. Integrated optical electric field sensor based on a Bragg grating in lithium niobate

    Science.gov (United States)

    Runde, D.; Brunken, S.; Rüter, C. E.; Kip, D.

    2007-01-01

    We demonstrate a new sensor concept for the measurement of oscillating electric fields that is based on Bragg gratings in LiNbO3:Ti channel waveguides. This miniaturized sensor that works in a retroreflective scheme does not require metallic electrodes and can be directly immersed in an oscillating electric field. The electric field induces a shift of the Bragg wavelength of the reflection grating that is due to the electro-optic effect. The operating point of the sensor is chosen by adjusting the laser wavelength to the slope of the spectral reflectivity function of the grating. In this way the magnitude of an external electric field is measured precisely as the amplitude of modulated reflected light intensity by using a lock-in amplifier. The sensor principle is demonstrated by detecting low-frequency electric fields ranging from 50 V/cm to 5 kV/cm without any conducting parts of the sensor head. Furthermore, the ability of the sensor to determine the three-dimensional orientation of an external electric field by a single rotation along the waveguide direction is demonstrated.

  9. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    Directory of Open Access Journals (Sweden)

    Troy W. Lowry

    2015-08-01

    Full Text Available Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose.

  10. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    Science.gov (United States)

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  11. Uniquely identifiable tamper-evident device using coupling between subwavelength gratings

    Science.gov (United States)

    Fievre, Ange Marie Patricia

    Reliability and sensitive information protection are critical aspects of integrated circuits. A novel technique using near-field evanescent wave coupling from two subwavelength gratings (SWGs), with the input laser source delivered through an optical fiber is presented for tamper evidence of electronic components. The first grating of the pair of coupled subwavelength gratings (CSWGs) was milled directly on the output facet of the silica fiber using focused ion beam (FIB) etching. The second grating was patterned using e-beam lithography and etched into a glass substrate using reactive ion etching (RIE). The slightest intrusion attempt would separate the CSWGs and eliminate near-field coupling between the gratings. Tampering, therefore, would become evident. Computer simulations guided the design for optimal operation of the security solution. The physical dimensions of the SWGs, i.e. period and thickness, were optimized, for a 650 nm illuminating wavelength. The optimal dimensions resulted in a 560 nm grating period for the first grating etched in the silica optical fiber and 420 nm for the second grating etched in borosilicate glass. The incident light beam had a half-width at half-maximum (HWHM) of at least 7 microm to allow discernible higher transmission orders, and a HWHM of 28 microm for minimum noise. The minimum number of individual grating lines present on the optical fiber facet was identified as 15 lines. Grating rotation due to the cylindrical geometry of the fiber resulted in a rotation of the far-field pattern, corresponding to the rotation angle of moire fringes. With the goal of later adding authentication to tamper evidence, the concept of CSWGs signature was also modeled by introducing random and planned variations in the glass grating. The fiber was placed on a stage supported by a nanomanipulator, which permitted three-dimensional displacement while maintaining the fiber tip normal to the surface of the glass substrate. A 650 nm diode laser was

  12. Report of near field group

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Baggett, N.; Claus, J.; Fernow, R.; Stumer, I.; Figueroa, H.; Kroll, N.; Funk, W.; Lee-Whiting, G.; Pickup, M.

    1985-04-01

    Substantial progress since the Los Alamos Workshop two years ago is reported. A radio-frequency model of a grating accelerator has been tested at Cornell, and extensive calculations compared with observations. Alternative structures consisting of either hemispherical bumps on a plane, or conducting spheres in space, have also been rf modeled. The use of liquid droplets to form such structures has been proposed and a conceptual design studied. Calculations and experiments have examined the effects of surface plasmas, and shown that in this case the reflectivity is low. However, calculations and observations suggest that gradients in excess of 1 GeV/meter should be obtainable without forming such plasma. An examination of wake fields shows that, with Landau damping, these are independent of wavelength. The use of near field structures to act as high gradient focusing elements has been studied and shows promise, independent of the acceleration mechanism. A proposal has been made to establish a facility that would enable ''proof of principle experiments'' to be performed on these and other laser driven accelerator mechanisms. 11 refs., 10 figs.

  13. Report of near field group

    International Nuclear Information System (INIS)

    Palmer, R.B.; Baggett, N.; Claus, J.

    1985-04-01

    Substantial progress since the Los Alamos Workshop two years ago is reported. A radio-frequency model of a grating accelerator has been tested at Cornell, and extensive calculations compared with observations. Alternative structures consisting of either hemispherical bumps on a plane, or conducting spheres in space, have also been rf modeled. The use of liquid droplets to form such structures has been proposed and a conceptual design studied. Calculations and experiments have examined the effects of surface plasmas, and shown that in this case the reflectivity is low. However, calculations and observations suggest that gradients in excess of 1 GeV/meter should be obtainable without forming such plasma. An examination of wake fields shows that, with Landau damping, these are independent of wavelength. The use of near field structures to act as high gradient focusing elements has been studied and shows promise, independent of the acceleration mechanism. A proposal has been made to establish a facility that would enable ''proof of principle experiments'' to be performed on these and other laser driven accelerator mechanisms. 11 refs., 10 figs

  14. Large-area full field x-ray differential phase-contrast imaging using 2D tiled gratings

    Science.gov (United States)

    Schröter, Tobias J.; Koch, Frieder J.; Kunka, Danays; Meyer, Pascal; Tietze, Sabrina; Engelhardt, Sabine; Zuber, Marcus; Baumbach, Tilo; Willer, Konstantin; Birnbacher, Lorenz; Prade, Friedrich; Pfeiffer, Franz; Reichert, Klaus-Martin; Hofmann, Andreas; Mohr, Jürgen

    2017-06-01

    Grating-based x-ray differential phase-contrast imaging (DPCI) is capable of acquiring information based on phase-shift and dark-field signal, in addition to conventional x-ray absorption-contrast. Thus DPCI gives an advantage to investigate composite materials with component wise similar absorption properties like soft tissues. Due to technological challenges in fabricating high quality gratings over a large extent, the field of view (FoV) of the imaging systems is limited to a grating area of a couple of square centimeters. For many imaging applications (e.g. in medicine), however, a FoV that ranges over several ten centimeters is needed. In this manuscript we propose to create large area gratings of theoretically any extent by assembling a number of individual grating tiles. We discuss the precision needed for alignment of each microstructure tile in order to reduce image artifacts and to preserve minimum 90% of the sensitivity obtainable with a monolithic grating. To achieve a reliable high precision alignment a semiautomatic assembly system consisting of a laser autocollimator, a digital microscope and a force sensor together with positioning devices was built. The setup was used to tile a first four times four analyzer grating with a size of 200 mm  ×  200 mm together with a two times two phase grating. First imaging results prove the applicability and quality of the tiling concept.

  15. Phase control of electromagnetically induced acoustic wave transparency in a diamond nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Evangelou, Sofia, E-mail: Evangelousof@gmail.com

    2017-05-10

    Highlights: • A high-Q single-crystal diamond nanomechanical resonator embedded with nitrogen-vacancy (NV) centers is studied. • A Δ-type coupling configuration is formed. • The spin states of the ground state triplet of the NV centers interact with a strain field and two microwave fields. • The absorption and dispersion properties of the acoustic wave field are controlled by the use of the relative phase of the fields. • Phase-dependent acoustic wave absorption, transparency, and gain are obtained. • “Slow sound” and negative group velocities are also possible. - Abstract: We consider a high-Q single-crystal diamond nanomechanical resonator embedded with nitrogen-vacancy (NV) centers. We study the interaction of the transitions of the spin states of the ground state triplet of the NV centers with a strain field and two microwave fields in a Δ-type coupling configuration. We use the relative phase of the fields for the control of the absorption and dispersion properties of the acoustic wave field. Specifically, we show that by changing the relative phase of the fields, the acoustic field may exhibit absorption, transparency, gain and very interesting dispersive properties.

  16. Nanomechanical properties of hafnium nitride coating

    International Nuclear Information System (INIS)

    Chen Yao; Laha, Tapas; Balani, Kantesh; Agarwal, Arvind

    2008-01-01

    Nanomechanical properties of plasma-sprayed HfN coating with and without hot isostatic pressing (HIP) treatment were evaluated using nanoindentation. For HIPed HfN coating, the elastic modulus (E) and yield strength increase whereas the hardness (H), H/E ratio and fraction of the elastic work decrease. HIPed HfN coating shows a larger pile-up around the indent as compared to as-sprayed HfN. HIPing causes densification and improvement in inter-splat bonding which subsequently lead to increase in nanomechanical properties

  17. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    Science.gov (United States)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  18. HOLOGRAPHIC GRATING RECORDING IN “LYOTROPIC LIQUID CRYSTAL – VIOLOGEN” SYSTEM

    Directory of Open Access Journals (Sweden)

    Hanna Bordyuh

    2013-12-01

    Full Text Available This work presents the results of nonlinear optical experiment run on the samples of lyotropic liquid crystal (LLC with viologen admixtures. During the experiment we obtained dynamic grating recording on bilayered LLC-viologen samples and determined main characteristics of recoded gratings. It was found out that the recording takes place in a thin near-cathode coloured viologen layer. The analysis of kinetics of thermal gratings erasing showed that contribution of a thermal nonlinearity into general diffraction efficiency is negligible small. The last fact is connected with a separation of LLC-viologen samples under the action of an electric field and heat sink into the liquid crystal layer

  19. Entangling a nanomechanical resonator and a superconducting microwave cavity

    International Nuclear Information System (INIS)

    Vitali, D.; Tombesi, P.; Woolley, M. J.; Doherty, A. C.; Milburn, G. J.

    2007-01-01

    We propose a scheme able to entangle at the steady state a nanomechanical resonator with a microwave cavity mode of a driven superconducting coplanar waveguide. The nanomechanical resonator is capacitively coupled with the central conductor of the waveguide and stationary entanglement is achievable up to temperatures of tens of milliKelvin

  20. Spherical grating based x-ray Talbot interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  1. Spherical grating based x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  2. A soft X-Ray flat field grating spectrograph and its experimental applications

    International Nuclear Information System (INIS)

    Ni Yuanlong; Mao Chusheng

    2001-01-01

    The principle, structure, and application results of a flat field grating spectrograph for X-ray laser research is presented. There are two kinds of the spectrograph. One uses a varied space grating with nominal line spacing 1200 l/mm, the spectral detection range is 5 - 50 nm, and another uses a 2400 l/mm varied line space grating, detection range is 1 - 10 nm. The experimental results of the former is introduced only. Both experimental results of this instrument using the soft X-ray film and a streak camera as the detecting elements are given. The spectral resolutions are 0.01 nm and 0.05 nm, respectively. The temporal resolution is 30 ps. Finally, the stigmatic structure of the spectrograph is introduced, which uses cylindrical mirror and spherical mirror as a focusing system. The magnification is 5, spatial resolution is 25 μm. The experimental results are given as well

  3. Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths

    Science.gov (United States)

    Hu, Yao; Zeng, Lijiang; Li, Lifeng

    2007-01-01

    We propose an experimental method to coherently mosaic two planar diffraction gratings. The method uses a Twyman-Green interferometer to guarantee the planar parallelism of the two sub-aperture gratings, and obtains the in-plane rotational error and the two translational errors from analysis of the far-field diffraction intensity patterns in two alignment wavelengths. We adjust the relative attitude and position of the two sub-aperture gratings to produce Airy disk diffraction patterns in both wavelengths. In our experiment, the repeatability of in-plane rotation adjustment was 2.35 μrad and that of longitudinal adjustment was 0.11 μm. The accuracy of lateral adjustment was about 2.9% of the grating period.

  4. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    This thesis deals with theoretical investigations of a newly proposed grating structure, referred to as hybrid grating (HG) as well as vertical cavity lasers based on the grating reflectors. The HG consists of a near-subwavelength grating layer and an unpatterned high-refractive-index cap layer...... directions, which is analogous to electronic quantum wells in conduction or valence bands. Several interesting configurations of heterostructures have been investigated and their potential in fundamental physics study and applications are discussed. For numerical and theoretical studies, a three...... feasibility than the HCG-based ones. Furthermore, the concept of cavity dispersion in vertical cavities is introduced and its importance in the modal properties is numerically investigated. The dispersion curvature of a cavity mode is interpreted as the effective photon mass of the cavity mode. In a vertical...

  5. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope

    Science.gov (United States)

    Li, Tianwei; Zou, Qingze

    2017-12-01

    In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.

  6. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set

    Science.gov (United States)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.

    2014-08-01

    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  7. Varied line-space gratings and applications

    International Nuclear Information System (INIS)

    McKinney, W.R.

    1991-01-01

    This paper presents a straightforward analytical and numerical method for the design of a specific type of varied line-space grating system. The mathematical development will assume plane or nearly-plane spherical gratings which are illuminated by convergent light, which covers many interesting cases for synchrotron radiation. The gratings discussed will have straight grooves whose spacing varies across the principal plane of the grating. Focal relationships and formulae for the optical grating-pole-to-exist-slit distance and grating radius previously presented by other authors will be derived with a symbolic algebra system. It is intended to provide the optical designer with the tools necessary to design such a system properly. Finally, some possible advantages and disadvantages for application to synchrotron to synchrotron radiation beamlines will be discussed

  8. Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating.

    Science.gov (United States)

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2015-04-15

    The absolute refractive indices (RIs) of water and other liquids are determined with an uncertainty of ±0.001 at near-infrared wavelengths by using the tilted fiber Bragg grating (TFBG) cladding mode resonances of a standard single-mode fiber to measure the critical angle for total internal reflection at the interface between the fiber and its surroundings. The necessary condition to obtain absolute RIs (instead of measuring RI changes) is a thorough characterization of the dispersion of the core mode effective index of the TFBG across the full range of its cladding mode resonance spectrum. This technique is shown to be competitive with the best available measurements of the RIs of water and NaCl solutions at wavelengths in the vicinity of 1550 nm.

  9. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    Science.gov (United States)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  10. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles...... mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass spectrometer....

  11. Evidence of surface loss as ubiquitous limiting damping mechanism in SiN micro- and nanomechanical resonators

    DEFF Research Database (Denmark)

    Villanueva, Luis Guillermo; Schmid, Silvan

    2014-01-01

    Silicon nitride (SiN) micro- and nanomechanical resonators have attracted a lot of attention in various research fields due to their exceptionally high quality factors (Qs). Despite their popularity, the origin of the limiting loss mechanisms in these structures has remained controversial. In thi...

  12. Magnetic field sensor based on double-sided polished fibre-Bragg gratings

    International Nuclear Information System (INIS)

    Tien, Chuen-Lin; Hwang, Chang-Chou; Liu, Wen-Feng; Chen, Hong-Wei

    2009-01-01

    A new magnetic field sensor based on double-sided polished fibre-Bragg gratings (FBGs) coated with an iron thin film for measuring magnetic flux density was experimentally demonstrated with the sensitivity of 25.6 nm T −1 . The sensing mechanism is based on the Bragg wavelength shift as the magnetic field is measured by the proposed sensing head. Results of this study present the intensity of the reflected optical signal as a function of the applied strain on the FBG. This paper shows that an improved method for sensing the wavelength shift with changes in external magnetic field is developed by use of the double-sided polished FBGs

  13. Probing thermal evanescent waves with a scattering-type near-field microscope

    International Nuclear Information System (INIS)

    Kajihara, Y; Kosaka, K; Komiyama, S

    2011-01-01

    Long wavelength infrared (LWIR) waves contain many important spectra of matters like molecular motions. Thus, probing spontaneous LWIR radiation without external illumination would reveal detailed mesoscopic phenomena that cannot be probed by any other measurement methods. Here we developed a scattering-type scanning near-field optical microscope (s-SNOM) and demonstrated passive near-field microscopy at 14.5 µm wavelength. Our s-SNOM consists of an atomic force microscope and a confocal microscope equipped with a highly sensitive LWIR detector, called a charge-sensitive infrared phototransistor (CSIP). In our s-SNOM, photons scattered by a tungsten probe are collected by an objective of the confocal LWIR microscope and are finally detected by the CSIP. To suppress the far-field background, we vertically modulated the probe and demodulated the signal with a lock-in amplifier. With the s-SNOM, a clear passive image of 3 µm pitch Au/SiC gratings was successfully obtained and the spatial resolution was estimated to be 60 nm (λ/240). The radiation from Au and GaAs was suggested to be due to thermally excited charge/current fluctuations and surface phonons, respectively. This s-SNOM has the potential to observe mesoscopic phenomena such as molecular motions, biomolecular protein interactions and semiconductor conditions in the future

  14. Quantum Optics with Nanomechanical and Solid State Systems

    International Nuclear Information System (INIS)

    Jaehne, K.

    2009-01-01

    This thesis presents theoretical studies in an interfacing field of quantum optics, nanomechanics and mesoscopic solid state physics and proposes new methods for the generation of particular quantum states and quantum state transfer for selected hybrid systems. The first part of this thesis focuses on the quantum limit of a macroscopic object, a nanomechanical resonator. This is studied for two different physical systems. The first one is a nanomechanical beam incorporated in a superconducting circuit, in particular a loop-shaped Cooper pair box (CPB) - circuit. We present a scheme for ground state cooling of the flexural mode of the nanomechanical beam. Via the Lorentz force coupling of the beam motion to circulating CPB-circuit currents, energy is transferred to the CPB qubit which acts as a dissipative two-level system. The cooling process is driven by a detuned gate-voltage drive acting on the CPB. We analyze the cooling force spectrum and present analytical expressions for the cooling rate and final occupation number for a wide parameter regime. In particular, we find that cooling is optimized in a strong drive regime, and we present the necessary conditions for ground-state cooling. In a second system, we investigate the creation of squeezed states of a mechanical oscillator (a vibrating membrane or a movable mirror) in an optomechanical setup. An optical cavity is driven by squeezed light and couples via radiation pressure to the mechanical oscillator, effectively providing a squeezed heat-bath for the mechanical oscillator. Under the conditions of laser cooling to the ground state, we find an efficient transfer of squeezing with roughly 60% of light squeezing conveyed to the mechanical oscillator (on a dB scale). We determine the requirements on the carrier frequency and the bandwidth of squeezed light. Beyond the conditions for ground state cooling, we predict mechanical squashing to be observable in current systems. The second part of the thesis is

  15. Heat pumping in nanomechanical systems

    OpenAIRE

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2010-01-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  16. Suppressing Ghost Diffraction in E-Beam-Written Gratings

    Science.gov (United States)

    Wilson, Daniel; Backlund, Johan

    2009-01-01

    A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.

  17. High performance Si immersion gratings patterned with electron beam lithography

    Science.gov (United States)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error

  18. Nanomechanical characterization of multilayered thin film structures for digital micromirror devices

    International Nuclear Information System (INIS)

    Wei Guohua; Bhushan, Bharat; Joshua Jacobs, S.

    2004-01-01

    The digital micromirror device (DMD), used for digital projection displays, comprises a surface-micromachined array of up to 2.07 million aluminum micromirrors (14 μm square and 15 μm pitch), which switch forward and backward thousands of times per second using electrostatic attraction. The nanomechanical properties of the thin-film structures used are important to the performance of the DMD. In this paper, the nanomechanical characterization of the single and multilayered thin film structures, which are of interest in DMDs, is carried out. The hardness, Young's modulus and scratch resistance of TiN/Si, SiO 2 /Si, Al alloy/Si, TiN/Al alloy/Si and SiO 2 /TiN/Al alloy/Si thin-film structures were measured using nanoindentation and nanoscratch techniques, respectively. The residual (internal) stresses developed during the thin film growth were estimated by measuring the radius of curvature of the sample before and after deposition. To better understand the nanomechanical properties of these thin film materials, the surface and interface analysis of the samples were conducted using X-ray photoelectron spectroscopy. The nanomechanical properties of these materials are analyzed and the impact of these properties on micromirror performance is discussed

  19. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Directory of Open Access Journals (Sweden)

    Jakob Grilj

    2015-04-01

    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  20. Response of fiber Bragg gratings to longitudinal ultrasonic waves.

    Science.gov (United States)

    Minardo, Aldo; Cusano, Andrea; Bernini, Romeo; Zeni, Luigi; Giordano, Michele

    2005-02-01

    In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for

  1. Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Adolphsen, Jens Q

    2013-01-01

    Nanomechanical resonators have an unprecedented mass sensitivity sufficient to detect single molecules, viruses or nanoparticles. The challenge with nanomechanical mass sensors is the direction of nano-sized samples onto the resonator. In this work we present an efficient inertial sampling...... study of single filter-fiber behavior. We present the direct measurement of diffusive nanoparticle collection on a single filter-fiber qualitatively confirming Langmuir's model from 1942....

  2. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  3. The grating as an accelerating structure

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1991-02-01

    This report considers the use of a diffraction grating as an accelerating structure for charged particle beams. We examine the functional dependence of the electromagnetic fields above the surface of a grating. Calculations are made of the strength of the accelerating modes for structures with π and 2π phase advance per period and for incident waves polarized with either the E or H vector along the grooves of the grating. We consider examples of using gratings in a laser linac and in a grating lens. We also briefly examine previous results published about this subject. 36 refs

  4. Nanomechanical analysis of high performance materials

    CERN Document Server

    2014-01-01

    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On the one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in t...

  5. Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes

    International Nuclear Information System (INIS)

    Agarwal, G S; Huang, Sumei

    2014-01-01

    We demonstrate the existence of the phenomenon of the inverse electromagnetically induced transparency (IEIT) in an opto mechanical system consisting of a nanomechanical mirror placed in an optical cavity. We show that two weak counter-propagating identical classical probe fields can be completely absorbed by the system in the presence of a strong coupling field so that the output probe fields are zero. The light is completely confined inside the cavity and the energy of the incoming probe fields is shared between the cavity field and creation of a coherent phonon and resides primarily in one of the polariton modes. The energy can be extracted by a perturbation of the external fields or by suddenly changing the Q of the cavity. (paper)

  6. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  7. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz; Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  8. Towards freeform curved blazed gratings using diamond machining

    Science.gov (United States)

    Bourgenot, C.; Robertson, D. J.; Stelter, D.; Eikenberry, S.

    2016-07-01

    Concave blazed gratings greatly simplify the architecture of spectrographs by reducing the number of optical components. The production of these gratings using diamond-machining offers practically no limits in the design of the grating substrate shape, with the possibility of making large sag freeform surfaces unlike the alternative and traditional method of holography and ion etching. In this paper, we report on the technological challenges and progress in the making of these curved blazed gratings using an ultra-high precision 5 axes Moore-Nanotech machine. We describe their implementation in an integral field unit prototype called IGIS (Integrated Grating Imaging Spectrograph) where freeform curved gratings are used as pupil mirrors. The goal is to develop the technologies for the production of the next generation of low-cost, compact, high performance integral field unit spectrometers.

  9. Heat pumping in nanomechanical systems.

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society

  10. The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Huang, Yongjiang; Zhou, Binjun; Chiu, YuLung; Fan, Hongbo; Wang, Dongjun; Sun, Jianfei; Shen, Jun

    2014-01-01

    Highlights: • The effect of structural relaxation on the nano-mechanical behaviors of BMGs is studied. • The indent load at first pop-in event, the hardness and Young’s modulus are enhanced after annealing. • The differences in nanomechanical properties can be attributed to their different atomic structure. - Abstract: Indentation experiments were performed on the as-cast and the annealed Ti-based bulk metallic glass samples to investigate the effect of structural relaxation on the nanomechanical behaviors of the material. The onset of pop-in event, Young’s modulus, and hardness were found to be sensitive to the structural relaxation of the testing material. The difference in nanomechanical properties between the as-cast and annealed BMG samples is interpreted in terms of free volume theory

  11. The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongjiang, E-mail: yjhuang@hit.edu.cn [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Zhou, Binjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chiu, YuLung, E-mail: y.chiu@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Fan, Hongbo [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Dongjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Sun, Jianfei; Shen, Jun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-09-01

    Highlights: • The effect of structural relaxation on the nano-mechanical behaviors of BMGs is studied. • The indent load at first pop-in event, the hardness and Young’s modulus are enhanced after annealing. • The differences in nanomechanical properties can be attributed to their different atomic structure. - Abstract: Indentation experiments were performed on the as-cast and the annealed Ti-based bulk metallic glass samples to investigate the effect of structural relaxation on the nanomechanical behaviors of the material. The onset of pop-in event, Young’s modulus, and hardness were found to be sensitive to the structural relaxation of the testing material. The difference in nanomechanical properties between the as-cast and annealed BMG samples is interpreted in terms of free volume theory.

  12. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    Science.gov (United States)

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-04-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

  13. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    Science.gov (United States)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  14. Influence of dielectric protective layer on laser damage resistance of gold coated gratings

    Science.gov (United States)

    Wu, Kepeng; Ma, Ping; Pu, Yunti; Xia, Zhilin

    2016-03-01

    Aiming at the problem that the damage threshold of gold coated grating is relatively low, a dielectric film is considered on the gold coated gratings as a protective layer. The thickness range of the protective layer is determined under the prerequisite that the diffraction efficiency of the gold coated grating is reduced to an acceptable degree. In this paper, the electromagnetic field, the temperature field and the stress field distribution in the grating are calculated when the silica and hafnium oxide are used as protective layers, under the preconditions of the electromagnetic field distribution of the gratings known. The results show that the addition of the protective layer changes the distribution of the electromagnetic field, temperature field and stress field in the grating, and the protective layer with an appropriate thickness can improve the laser damage resistance of the grating.

  15. Plasmonic Transmission Gratings – Fabrication and Characterization

    DEFF Research Database (Denmark)

    Sierant, Aleksandra; Jany, Benedykt; Bartoszek-Bober, Dobrosława

    Surface plasmon polaritons (SPPs) are collective electron oscillations, confined at metal-dielectric interfaces. Coupling incident photons to SPPs may lead to spectrally broad field enhancement and confinement below the diffraction limit [1]. This phenomenon facilitates various applications......, including highly sensitive refractive index sensing [2], and plasmonic dipole mirrors for cold atoms [3]. Key to a successful application is a strong photon-to-SPP coupling. To this end, prism-based coupling is classically used, but this method contradicts compact device applications. An alternative...... the proposed plasmonic transmission gratings via near-field optical scanning microscopy (NSOM) and goniometric far field measurements. We support the evidence of our analyses with numerical calculations, carried out via rigorous coupled wave analysis (RCWA) and finite-difference in time-domain (FDTD...

  16. Nanomechanical DNA origami pH sensors.

    Science.gov (United States)

    Kuzuya, Akinori; Watanabe, Ryosuke; Yamanaka, Yusei; Tamaki, Takuya; Kaino, Masafumi; Ohya, Yuichi

    2014-10-16

    Single-molecule pH sensors have been developed by utilizing molecular imaging of pH-responsive shape transition of nanomechanical DNA origami devices with atomic force microscopy (AFM). Short DNA fragments that can form i-motifs were introduced to nanomechanical DNA origami devices with pliers-like shape (DNA Origami Pliers), which consist of two levers of 170-nm long and 20-nm wide connected at a Holliday-junction fulcrum. DNA Origami Pliers can be observed as in three distinct forms; cross, antiparallel and parallel forms, and cross form is the dominant species when no additional interaction is introduced to DNA Origami Pliers. Introduction of nine pairs of 12-mer sequence (5'-AACCCCAACCCC-3'), which dimerize into i-motif quadruplexes upon protonation of cytosine, drives transition of DNA Origami Pliers from open cross form into closed parallel form under acidic conditions. Such pH-dependent transition was clearly imaged on mica in molecular resolution by AFM, showing potential application of the system to single-molecular pH sensors.

  17. Nanomechanical IR spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials

    OpenAIRE

    Andersen, Alina Joukainen; Yamada, Shoko; Ek, Pramod Kumar; Andresen, Thomas Lars; Boisen, Anja; Schmid, Silvan

    2016-01-01

    The proliferated use of engineered nanomaterials (ENMs), e.g. in nanomedicine, calls for novel techniques allowing for fast and sensitive analysis of minute samples. Here we present nanomechanical IR spectroscopy (NAM-IR) for chemical analysis of picograms of ENMs. ENMs are nebulized directly from dispersion and efficiently collected on nanomechanical string resonators through a non-diffusion limited sampling method. Even very small amounts of sample can convert absorbed IR light into a measu...

  18. A Control and Detecting System of Micro-Near-Infrared Spectrometer Based on a MOEMS Scanning Grating Mirror

    Directory of Open Access Journals (Sweden)

    Haitao Liu

    2018-03-01

    Full Text Available Based on the scanning grating mirror we developed, this paper presents a method of the precise control of a scanning grating mirror and of high-speed spectrum data detection. In addition, the system circuit of the scanning grating mirror control and spectrum signal detecting is designed and manufactured in this paper. The mirror control system includes a drive generator module, an amplitude detection module, a feedback control module, and a variable gain amplification (VGA module; the detecting system includes a field programmable gate array (FPGA main control module, a synchronous trigger module, an analog-digital conversion (ADC module, and a universal serial bus (USB interface module. The final results of the experiment show that the control system has successfully realized the precision control of the swing of the scanning grating mirror and that the detecting system has successfully realized the high-speed acquisition and transmission of the spectral signal and the angle signals. The spectrum has been reconstructed according to the mathematical relationship between the wavelength λ and the angle β of the mirror. The resolution of the spectrometer reaches 10 nm in the wavelength range of 800–1800 nm, the signal-to-noise ratio (SNR of the spectrometer is 4562 at full scale, the spectrum data drift is 0.9% in 24 h, and the precision of the closed loop control is 0.06%.

  19. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  20. MEMS tunable grating micro-spectrometer

    Science.gov (United States)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  1. Switchable Bragg gratings

    DEFF Research Database (Denmark)

    Marckmann, Carl Johan

    2003-01-01

    Research Center (MIC) at the Technical University of Denmark. The Bragg gratings were fabricated at COM using UV irradiation of the planar waveguides using the phase mask method. The induction of a frozen-in DC electric field into the samples was performed by thermal poling of the Bragg gratings...... layers, it becam possible to investigate the symmetry properties of the third-order nonlinearities. Contrary to the expectations for an amorphous material, the measurements indicated an almost polarization independent third-order nonlinearity - the most probable explanation being electrostriction......The subject of this ph.d. thesis was the development of an electrically switchable Bragg grating made in an optical waveguide using thermal poling to be applied within optical telecommunication systems. The planar waveguides used in this thesis were fabricated at the Micro- and Nanotechnology...

  2. Nanomechanical cutting of boron nitride nanotubes by atomic force microscopy

    International Nuclear Information System (INIS)

    Zheng, Meng; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C; Pugno, Nicola M

    2013-01-01

    The length of nanotubes is a critical structural parameter for the design and manufacture of nanotube-based material systems and devices. High-precision length control of nanotubes by means of mechanical cutting using a scriber has not materialized due to the lack of the knowledge of the appropriate cutting conditions and the tube failure mechanism. In this paper, we present a quantitative nanomechanical study of the cutting of individual boron nitride nanotubes (BNNTs) using atomic force microscopy (AFM) probes. In our nanotube cutting measurements, a nanotube standing still on a flat substrate was laterally scribed by an AFM tip. The tip–tube collision force deformed the tube, and eventually fractured the tube at the collision site by increasing the cutting load. The mechanical response of nanotubes during the tip–tube collision process and the roles of the scribing velocity and the frictional interaction on the tip–tube collision contact in cutting nanotubes were quantitatively investigated by cutting double-walled BNNTs of 2.26–4.28 nm in outer diameter. The fracture strength of BNNTs was also quantified based on the measured collision forces and their structural configurations using contact mechanics theories. Our analysis reports fracture strengths of 9.1–15.5 GPa for the tested BNNTs. The nanomechanical study presented in this paper demonstrates that the AFM-based nanomechanical cutting technique not only enables effective control of the length of nanotubes with high precision, but is also promising as a new nanomechanical testing technique for characterizing the mechanical properties of tubular nanostructures. (paper)

  3. Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings

    Science.gov (United States)

    Szalai, A.; Szekeres, G.; Balázs, J.; Somogyi, A.; Csete, Maria

    2013-09-01

    Theoretical investigation of rotated grating coupling phenomenon was performed on a multilayer comprising 416-nmperiodic shallow rectangular polymer grating on bimetal film made of gold and silver layers. During the multilayer illumination by 532 nm wavelength p-polarized light the polar and azimuthal angles were varied. In presence of 0-35 nm, 0-50 nm and 15-50 nm thick polymer-layers at the valleys and hills splitting was observed on the dual-angle dependent reflectance in two regions: (i) close to 0° azimuthal angle corresponding to incidence plane parallel to the periodic pattern (P-orientation); and (ii) around ~33.5°/29°/30° azimuthal angle (C-orientation), in agreement with our previous experimental studies. The near-field study revealed that in P-orientation the E-field is enhanced at the glass side with p/2 periodicity at the first minimum appearing at 49°/50°/52° polar angles, and comprises maxima below both the valleys and hills; while E-field enhancement is observable both at the glass and polymer side with p-periodicity at the second minimum developing at 55°/63/64° tilting, comprising maxima intermittently below the valleys or above the hills. In Corientation coupled plasmonic modes are observable, involving modes propagating along the valleys at the secondary maxima appearing at ~35°/32°/32° azimuthal and ~49°/51°/56° polar angles, while modes confined along the polymer hills are observable at the primary minima, which are coupled most strongly at the ~31.5°/25°/28° azimuthal and ~55°/63°/66° polar angles. The secondary peak observable in C-orientation is proposed for biosensing applications, since the supported modes are confined along the valleys, where biomolecules prefer to attach.

  4. Nanomechanical DNA Origami pH Sensors

    Directory of Open Access Journals (Sweden)

    Akinori Kuzuya

    2014-10-01

    Full Text Available Single-molecule pH sensors have been developed by utilizing molecular imaging of pH-responsive shape transition of nanomechanical DNA origami devices with atomic force microscopy (AFM. Short DNA fragments that can form i-motifs were introduced to nanomechanical DNA origami devices with pliers-like shape (DNA Origami Pliers, which consist of two levers of 170-nm long and 20-nm wide connected at a Holliday-junction fulcrum. DNA Origami Pliers can be observed as in three distinct forms; cross, antiparallel and parallel forms, and cross form is the dominant species when no additional interaction is introduced to DNA Origami Pliers. Introduction of nine pairs of 12-mer sequence (5'-AACCCCAACCCC-3', which dimerize into i-motif quadruplexes upon protonation of cytosine, drives transition of DNA Origami Pliers from open cross form into closed parallel form under acidic conditions. Such pH-dependent transition was clearly imaged on mica in molecular resolution by AFM, showing potential application of the system to single-molecular pH sensors.

  5. Microstructure, Morphology, and Nanomechanical Properties Near Fine Holes Produced by Electro-Discharge Machining

    Science.gov (United States)

    Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.

    2012-08-01

    Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.

  6. Ultra-broadband and wide-angle perfect absorber based on composite metal-semiconductor grating

    Science.gov (United States)

    Li, Xu; Wang, Zongpeng; Hou, Yumin

    2018-01-01

    In this letter, we present an ultra-broadband and wide-angle perfect absorber based on composite Ge-Ni grating. Near perfect absorption above 90% is achieved in a wide frequency range from 150 nm to 4200 nm, which covers almost the full spectrum of solar radiation. The absorption keeps robust in a wide range of incident angle from 0º to 60º. The upper triangle Ge grating works as an antireflection coating. The lower Ni grating works as a reflector and an effective energy trapper. The guided modes inside Ge grating are excited due to reflection of the lower Ni grating surface. In longer wavelength band, gap surface plasmons (GSPs) in the Ni grating are excited and couple with the guided modes inside the Ge grating. The coupled modes extend the perfect absorption band to the near-infrared region (150 nm-4200 nm). This design has potential application in photovoltaic devices and thermal emitters.

  7. Polymeric flat focal field arrayed waveguide grating using electron-beam direct writing

    Science.gov (United States)

    Lu, Si; Yan, Yingbai; Jin, Guofan; Wong, W. H.; Pun, E. Y. B.

    2004-06-01

    A four-channel 400-GHz spacing flat focal field arrayed waveguide grating (AWG) demultiplexer is designed based on polymeric optical waveguide. The waveguide core-layer material is a newly developed negative tone epoxy Novolak resin (ENR) polymer with ultravoilet (UV) cured resin Norland optical adhesive 61 (NOA61) as the cladding layer. The device is fabricated using electron-beam direct writing, which has less processing steps than the reported polymeric AWGs. The experimental result is presented.

  8. High-mechanical-strength single-pulse draw tower gratings

    Science.gov (United States)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  9. Near-field interferometry of a free-falling nanoparticle from a point-like source

    Science.gov (United States)

    Bateman, James; Nimmrichter, Stefan; Hornberger, Klaus; Ulbricht, Hendrik

    2014-09-01

    Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology.

  10. Finite gratings of many thin silver nanostrips: Optical resonances and role of periodicity

    Directory of Open Access Journals (Sweden)

    Olga V. Shapoval

    2013-04-01

    Full Text Available We study numerically the optical properties of the periodic in one dimension flat gratings made of multiple thin silver nanostrips suspended in free space. Unlike other publications, we consider the gratings that are finite however made of many strips that are well thinner than the wavelength. Our analysis is based on the combined use of two techniques earlier verified by us in the scattering by a single thin strip of conventional dielectric: the generalized (effective boundary conditions (GBCs imposed on the strip median lines and the Nystrom-type discretization of the associated singular and hyper-singular integral equations (IEs. The first point means that in the case of the metal strip thickness being only a small fraction of the free-space wavelength (typically 5 nm to 50 nm versus 300 nm to 1 μm we can neglect the internal field and consider only the field limit values. In its turn, this enables reduction of the integration contour in the associated IEs to the strip median lines. This brings significant simplification of the scattering analysis while preserving a reasonably adequate modeling. The second point guarantees fast convergence and controlled accuracy of computations that enables us to compute the gratings consisting of hundreds of thin strips, with total size in hundreds of wavelengths. Thanks to this, in the H-polarization case we demonstrate the build-up of sharp grating resonances (a.k.a. as collective or lattice resonances in the scattering and absorption cross-sections of sparse multi-strip gratings, in addition to better known localized surface-plasmon resonances on each strip. The grating modes, which are responsible for these resonances, have characteristic near-field patterns that are distinctively different from the plasmons as can be seen if the strip number gets larger. In the E-polarization case, no such resonances are detectable however the build-up of Rayleigh anomalies is observed, accompanied by the reduced

  11. Application of nonlinear systems in nanomechanics and nanofluids analytical methods and applications

    CERN Document Server

    Ganji, Davood Domairry

    2015-01-01

    With Application of Nonlinear Systems in Nanomechanics and Nanofluids the reader gains a deep and practice-oriented understanding of nonlinear systems within areas of nanotechnology application as well as the necessary knowledge enabling the handling of such systems. The book helps readers understand relevant methods and techniques for solving nonlinear problems, and is an invaluable reference for researchers, professionals and PhD students interested in research areas and industries where nanofluidics and dynamic nano-mechanical systems are studied or applied. The book is useful in areas suc

  12. Impact of operation conditions, foulant adsorption, and chemical cleaning on the nanomechanical properties of ultrafiltraion hollow fiber membranes

    KAUST Repository

    Gutierrez, Leonardo; Keucken, Alexander; Aubry, Cyril; Zaouri, Noor A.; Teychene, Benoit; Croue, Jean-Philippe

    2018-01-01

    This study analyzed the change in nanomechanical properties of ultrafiltration hollow fiber membranes harvested from pilot-scale units after twelve months of operation. Quantitative Nanomechanical Mapping technique was used to distinguish between

  13. Second-harmonic generation in second-harmonic fiber Bragg gratings.

    Science.gov (United States)

    Steel, M J; de Sterke, C M

    1996-06-20

    We consider the production of second-harmonic light in gratings resonant with the generated field, through a Green's function approach. We recover some standard results and obtain new limits for the uniform grating case. With the extension to nonuniform gratings, we find the Green's function for the second harmonic in a grating with an arbitrary phase shift at some point. We then obtain closed form approximate expressions for the generated light for phase shifts close to π/2 and at the center of the grating. Finally, comparing the uniform and phase-shifted gratings with homogeneous materials, we discuss the enhancement in generated light and the bandwidth over which it occurs, and the consequences for second-harmonic generation in optical fiber Bragg gratings.

  14. Grating-based X-ray phase contrast for biomedical imaging applications

    International Nuclear Information System (INIS)

    Pfeiffer, Franz; Willner, Marian; Chabior, Michael; Herzen, Julia; Helmholtz-Zentrum Geesthacht, Geesthacht; Auweter, Sigrid; Reiser, Maximilian; Bamberg, Fabian

    2013-01-01

    In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography. (orig.)

  15. Varied line-space gratings: past, present and future

    International Nuclear Information System (INIS)

    Hettrick, M.C.

    1985-08-01

    A classically ruled diffraction grating consists of grooves which are equidistant, straight and parallel. Conversely, the so-called ''holographic'' grating (formed by the interfering waves of coherent visible light), although severely constrained by the recording wavelength and recording geometry, has grooves which are typically neither equidistant, straight nor parallel. In contrast, a varied line-space (VLS) grating, in common nomenclature, is a design in which the groove positions are relatively unconstrained yet possess sufficient symmetry to permit mechanical ruling. Such seemingly exotic gratings are no longer only a theoretical curiosity, but have been ruled and used in a wide variety of applications. These include: (1) aberration-corrected normal incidence concave gratings for Seya-Namioka monochromators and optical de-multiplexers, (2) flat-field grazing incidence concave gratings for plasma diagnostics, (3) aberration-corrected grazing incidence plane gratings for space-borne spectrometers, (4) focusing grazing incidence plane grating for synchrotron radiation monochromators, and (5) wavefront generators for visible interferometry of optical surfaces (particularly aspheres). Future prospects of VLS gratings as dispersing elements, wavefront correctors and beamsplitters appear promising. The author discusses the history of VLS gratings, their present applications, and their potential in the future. 61 refs., 24 figs

  16. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  17. Grating-Coupled Waveguide Cloaking

    International Nuclear Information System (INIS)

    Wang Jia-Fu; Qu Shao-Bo; Ma Hua; Wang Cong-Min; Wang Xin-Hua; Zhou Hang; Xu Zhuo; Xia Song

    2012-01-01

    Based on the concept of a grating-coupled waveguide (GCW), a new strategy for realizing EM cloaking is presented. Using metallic grating, incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind, enabling EM waves to pass around the obstacle. Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged. Circular, rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking. Electric field animations and radar cross section (RCS) comparisons convincingly demonstrate the cloaking effect

  18. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  19. Microstructure and nanomechanical properties of Fe+ implanted silicon

    International Nuclear Information System (INIS)

    Nunes, B.; Magalhães, S.; Franco, N.; Alves, E.; Colaço, R.

    2013-01-01

    Silicon wafers were implanted with iron ions at different fluences (from 5 × 10 15 up to 2 × 10 17 cm −2 ), followed by annealing treatments at temperatures from 550 °C to 1000 °C, aiming at evaluating the nanomechanical response of the samples and its relation with the microstructural features and characteristics of the modified layer. After implantation, a homogeneous amorphous layer with a thickness between 200 nm and 270 nm is formed, without damaging the surface smoothness neither introducing surface defects. After annealing, recrystallization and formation of nanometric precipitates of iron silicides is observed, with the corresponding changes in the hardness and stiffness of the modified layer. These results indicate that ion implantation of silicon followed by annealing at proper temperatures, can be an alternative route to be deeper explored in what concerns the precise control of the microstructure and, thus, the improvement of nanomechanical properties of silicon.

  20. Optical fiber Bragg gratings. Part II. Modeling of finite-length gratings and grating arrays.

    Science.gov (United States)

    Passaro, Vittorio M N; Diana, Roberto; Armenise, Mario N

    2002-09-01

    A model of both uniform finite-length optical fiber Bragg gratings and grating arrays is presented. The model is based on the Floquet-Bloch formalism and allows rigorous investigation of all the physical aspects in either single- or multiple-periodic structures realized on the core of a monomodal fiber. Analytical expressions of reflectivity and transmittivity for both single gratings and grating arrays are derived. The influence of the grating length and the index modulation amplitude on the reflected and transmitted optical power for both sinusoidal and rectangular profiles is evaluated. Good agreement between our method and the well-known coupled-mode theory (CMT) approach has been observed for both single gratings and grating arrays only in the case of weak index perturbation. Significant discrepancies exist there in cases of strong index contrast because of the increasing approximation of the CMT approach. The effects of intragrating phase shift are also shown and discussed.

  1. Opto-nanomechanical spectroscopic material characterization

    Science.gov (United States)

    Tetard, L.; Passian, A.; Farahi, R. H.; Thundat, T.; Davison, B. H.

    2015-10-01

    The non-destructive, simultaneous chemical and physical characterization of materials at the nanoscale is an essential and highly sought-after capability. However, a combination of limitations imposed by Abbe diffraction, diffuse scattering, unknown subsurface, electromagnetic fluctuations and Brownian noise, for example, have made achieving this goal challenging. Here, we report a hybrid approach for nanoscale material characterization based on generalized nanomechanical force microscopy in conjunction with infrared photoacoustic spectroscopy. As an application, we tackle the outstanding problem of spatially and spectrally resolving plant cell walls. Nanoscale characterization of plant cell walls and the effect of complex phenotype treatments on biomass are challenging but necessary in the search for sustainable and renewable bioenergy. We present results that reveal both the morphological and compositional substructures of the cell walls. The measured biomolecular traits are in agreement with the lower-resolution chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. These results should prove relevant in other fields such as cancer research, nanotoxicity, and energy storage and production, where morphological, chemical and subsurface studies of nanocomposites, nanoparticle uptake by cells and nanoscale quality control are in demand.

  2. The influence of aminophylline on the nanostructure and nanomechanics of T lymphocytes: an AFM study

    Science.gov (United States)

    Huang, Xun; He, Jiexiang; Liu, Mingxian; Zhou, Changren

    2014-09-01

    Although much progress has been made in the illustration of the mechanism of aminophylline (AM) treating asthma, there is no data about its effect on the nanostructure and nanomechanics of T lymphocytes. Here, we presented atomic force spectroscopy (AFM)-based investigations at the nanoscale level to address the above fundamental biophysical questions. As increasing AM treatment time, T lymphocytes' volume nearly double increased and then decreased. The changes of nanostructural features of the cell membrane, i.e., mean height of particles, root-mean-square roughness (Rq), crack and fragment appearance, increased with AM treatment time. T lymphocytes were completely destroyed with 96-h treatment, and they existed in the form of small fragments. Analysis of force-distance curves showed that the adhesion force of cell surface decreased significantly with the increase of AM treatment time, while the cell stiffness increased firstly and then decreased. These changes were closely correlated to the characteristics and process of cell oncosis. In total, these quantitative and qualitative changes of T lymphocytes' structure and nanomechanical properties suggested that AM could induce T lymphocyte oncosis to exert anti-inflammatory effects for treating asthma. These findings provide new insights into the T lymphocyte oncosis and the anti-inflammatory mechanism and immune regulation actions of AM.

  3. Magneto-Optic Fiber Gratings Useful for Dynamic Dispersion Management and Tunable Comb Filtering

    International Nuclear Information System (INIS)

    Bao-Jian, Wu; Xin, Lu; Kun, Qiu

    2010-01-01

    Intelligent control of dispersion management and tunable comb filtering in optical network applications can be performed by using magneto-optic fiber Bragg gratings (MFBGs). When a nonuniform magnetic field is applied to the MFBG with a constant grating period, the resulting grating response is equivalent to that of a conventional chirped grating. Under a linearly nonuniform magnetic field along the grating, a linear dispersion is achieved in the grating bandgap and the maximal dispersion slope can come to 1260 ps/nm 2 for a 10-mm-long fiber grating at 1550 nm window. Similarly, a Gaussian-apodizing sampled MFBG is also useful for magnetically tunable comb filtering, with potential application to clock recovery from return-to-zero optical signals and optical carrier tracking. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. A unidirectional subwavelength focusing near-field plate

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Mohammadreza F.; Grbic, Anthony [Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-01-28

    Near-field plates consist of non-periodically patterned surfaces that can overcome the diffraction limit and confine electromagnetic fields to subwavelength dimensions. Previous near-field plates experimentally demonstrated extreme field tailoring capabilities. However, their performance suffered from radiation/reflection in undesired directions, those other than the subwavelength focus. This issue can limit the practical use of near-field plates. In this paper, we address this issue by designing a unidirectional near-field plate that can form a subwavelength focal pattern, while suppressing the field radiated/reflected in other directions. The design and operation of the proposed unidirectional near-field plate are verified through full-wave simulation. The unidirectional near-field plate may find application in high resolution imaging and probing, high density data storage, and wireless power transfer systems. As an example, its utility as a high resolution probe is demonstrated through full-wave electromagnetic simulation.

  5. Near-field and far-field modeling of scattered surface waves. Application to the apertureless scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Muller, J.; Parent, G.; Fumeron, S.; Jeandel, G.; Lacroix, D.

    2011-01-01

    The detection of surface waves through scanning near-field optical microscopy (SNOM) is a promising technique for thermal measurements at very small scales. Recent studies have shown that electromagnetic waves, in the vicinity of a scattering structure such as an atomic force microscopy (AFM) tip, can be scattered from near to far-field and thus detected. In the present work, a model based on the finite difference time domain (FDTD) method and the near-field to far-field (NFTFF) transformation for electromagnetic waves propagation is presented. This model has been validated by studying the electromagnetic field of a dipole in vacuum and close to a dielectric substrate. Then simulations for a tetrahedral tip close to an interface are presented and discussed.

  6. The potential of diffraction grating for spatial applications

    Science.gov (United States)

    Jourlin, Y.; Parriaux, O.; Pigeon, F.; Tischenko, A. V.

    2017-11-01

    Diffraction gratings are know, and have been fabricated for more than one century. They are now making a come back for two reasons: first, because they are now better understood which leads to the efficient exploitation of what was then called their "anomalies"; secondly, because they are now fabricable by means of the modern manufacturing potential of planar technologies. Novel grating can now perform better than conventional gratings, and address new application fields which were not expected to be theirs. This is the case of spatial applications where they can offer multiple optical functions, low size, low weight and mechanical robustness. The proposed contribution will briefly discuss the use of gratings for spatial applications. One of the most important applications is in the measurement of displacement. Usual translation and rotation sensors are bulky devices, which impose a system breakdown leading to cumbersome and heavy assemblies. We are proposing a miniaturized version of the traditional moving grating technique using submicron gratings and a specific OptoASIC which enables the measurement function to be non-obtrusively inserted into light and compact electro-mechanical systems. Nanometer resolution is possible with no compromise on the length of the measurement range. Another family of spatial application is in the field of spectrometers where new grating types allow a more flexible processing of the optical spectrum. Another family of applications addresses the question of inter-satellite communications: the introduction of gratings in laser cavities or in the laser mirrors enables the stabilization of the emitted polarization, the stabilization of the frequency as well as wide range frequency sweeping without mobile parts.

  7. Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging.

    Science.gov (United States)

    Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco

    2017-05-04

    Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.

  8. Grism and immersion grating for space telescope

    Science.gov (United States)

    Ebizuka, Noboru; Oka, Kiko; Yamada, Akiko; Ishikawa, Mami; Kashiwagi, Masako; Kodate, Kashiko; Hirahara, Yasuhiro; Sato, Shuji; Kawabata, Koji S.; Wakaki, Moriaki; Morita, Shin-ya; Simizu, Tomoyuki; Yin, Shaohui; Omori, Hitoshi; Iye, Masanori

    2017-11-01

    The grism is a versatile dispersion element for an astronomical instrument ranging from ultraviolet to infrared. Major benefit of using a grism in a space application, instead of a reflection grating, is the size reduction of optical system because collimator and following optical elements could locate near by the grism. The surface relief (SR) grism is consisted a transmission grating and a prism, vertex angle of which is adjusted to redirect the diffracted beam straight along the direct vision direction at a specific order and wavelength. The volume phase holographic (VPH) grism consists a thick VPH grating sandwiched between two prisms, as specific order and wavelength is aligned the direct vision direction. The VPH grating inheres ideal diffraction efficiency on a higher dispersion application. On the other hand, the SR grating could achieve high diffraction efficiency on a lower dispersion application. Five grisms among eleven for the Faint Object Camera And Spectrograph (FOCAS) of the 8.2m Subaru Telescope with the resolving power from 250 to 3,000 are SR grisms fabricated by a replication method. Six additional grisms of FOCAS with the resolving power from 3,000 to 7,000 are VPH grisms. We propose "Quasi-Bragg grism" for a high dispersion spectroscopy with wide wavelength range. The germanium immersion grating for instance could reduce 1/64 as the total volume of a spectrograph with a conventional reflection grating since refractive index of germanium is over 4.0 from 1.6 to 20 μm. The prototype immersion gratings for the mid-InfraRed High dispersion Spectrograph (IRHS) are successfully fabricated by a nano-precision machine and grinding cup of cast iron with electrolytic dressing method.

  9. All-silicon nanorod-based Dammann gratings.

    Science.gov (United States)

    Li, Zile; Zheng, Guoxing; He, Ping'An; Li, Song; Deng, Qiling; Zhao, Jiangnan; Ai, Yong

    2015-09-15

    Established diffractive optical elements (DOEs), such as Dammann gratings, whose phase profile is controlled by etching different depths into a transparent dielectric substrate, suffer from a contradiction between the complexity of fabrication procedures and the performance of such gratings. In this Letter, we combine the concept of geometric phase and phase modulation in depth, and prove by theoretical analysis and numerical simulation that nanorod arrays etched on a silicon substrate have a characteristic of strong polarization conversion between two circularly polarized states and can act as a highly efficient half-wave plate. More importantly, only by changing the orientation angles of each nanorod can the arrays control the phase of a circularly polarized light, cell by cell. With the above principle, we report the realization of nanorod-based Dammann gratings reaching diffraction efficiencies of 50%-52% in the C-band fiber telecommunications window (1530-1565 nm). In this design, uniform 4×4 spot arrays with an extending angle of 59°×59° can be obtained in the far field. Because of these advantages of the single-step fabrication procedure, accurate phase controlling, and strong polarization conversion, nanorod-based Dammann gratings could be utilized for various practical applications in a range of fields.

  10. Nanomechanical Characterization of Indium Nano/Microwires

    Directory of Open Access Journals (Sweden)

    N Kiran MSR

    2010-01-01

    Full Text Available Abstract Nanomechanical properties of indium nanowires like structures fabricated on quartz substrate by trench template technique, measured using nanoindentation. The hardness and elastic modulus of wires were measured and compared with the values of indium thin film. Displacement burst observed while indenting the nanowire. ‘Wire-only hardness’ obtained using Korsunsky model from composite hardness. Nanowires have exhibited almost same modulus as indium thin film but considerable changes were observed in hardness value.

  11. Signal of microstrip scanning near-field optical microscope in far- and near-field zones.

    Science.gov (United States)

    Morozov, Yevhenii M; Lapchuk, Anatoliy S

    2016-05-01

    An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal.

  12. Data requirements for integrated near field models

    International Nuclear Information System (INIS)

    Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.

    1981-01-01

    The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities

  13. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction

    International Nuclear Information System (INIS)

    Hillenbrand, Rainer

    2004-01-01

    Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si 3 N 4 . Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics--a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics

  14. Nanomechanical resonant structures in single-crystal diamond

    OpenAIRE

    Burek, Michael J.; Ramos, Daniel; Patel, Parth; Frank, Ian W.; Lončar, Marko

    2013-01-01

    With its host of outstanding material properties, single-crystal diamond is an attractive material for nanomechanical systems. Here, the mechanical resonance characteristics of freestanding, single-crystal diamond nanobeams fabricated by an angled-etching methodology are reported. Resonance frequencies displayed evidence of significant compressive stress in doubly clamped diamond nanobeams, while cantilever resonance modes followed the expected inverse-length-squared trend. Q-factors on the o...

  15. On error estimation in the fourier modal method for diffractive gratings

    NARCIS (Netherlands)

    Hlod, A.; Maubach, J.M.L.

    2010-01-01

    The Fourier Modal Method (FMM, also called the Rigorous Coupled Wave Analysis, RCWA) is a numerical discretization method which is often used to calculate a scattered field from a periodic diffraction grating. For 1D periodic gratings in FMM the electromagnetic field is presented by a truncated

  16. Nanomechanical Pyrolytic Carbon Resonators: Novel Fabrication Method and Characterization of Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Maksymilian Kurek

    2016-07-01

    Full Text Available Micro- and nanomechanical string resonators, which essentially are highly stressed bridges, are of particular interest for micro- and nanomechanical sensing because they exhibit resonant behavior with exceptionally high quality factors. Here, we fabricated and characterized nanomechanical pyrolytic carbon resonators (strings and cantilevers obtained through pyrolysis of photoresist precursors. The developed fabrication process consists of only three processing steps: photolithography, dry etching and pyrolysis. Two different fabrication strategies with two different photoresists, namely SU-8 2005 (negative and AZ 5214e (positive, were compared. The resonant behavior of the pyrolytic resonators was characterized at room temperature and in high vacuum using a laser Doppler vibrometer. The experimental data was used to estimate the Young’s modulus of pyrolytic carbon and the tensile stress in the string resonators. The Young’s moduli were calculated to be 74 ± 8 GPa with SU-8 and 115 ± 8 GPa with AZ 5214e as the precursor. The tensile stress in the string resonators was 33 ± 7 MPa with AZ 5214e as the precursor. The string resonators displayed maximal quality factor values of up to 3000 for 525-µm-long structures.

  17. Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings

    International Nuclear Information System (INIS)

    Lee, K.-H.; Lin, M.-W.; Pai, C.-H.; Ha, L.-C.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings is demonstrated in the near-infrared regime. The quadratic dependence of the reflectivity of the probe pulse on plasma density indicates that the mixing is caused by the quasineutral plasma grating driven by the laser ponderomotive force. The experiment verifies that ponderomotive force is an effective means to produce a large-amplitude short-period plasma grating, which has many important applications in ultrahigh-intensity optics. In particular, such a grating is a crucial element for the development of plasma phase-conjugate mirrors that can be used to restore the wave-front distortion that is ubiquitous in nonlinear propagation

  18. Fabrication and characterization of optical-fiber nanoprobes for scanning near-field optical microscopy.

    Science.gov (United States)

    Essaidi, N; Chen, Y; Kottler, V; Cambril, E; Mayeux, C; Ronarch, N; Vieu, C

    1998-02-01

    The current scanning near-field optical microscopy has been developed with optical-fiber probes obtained by use of either laser-heated pulling or chemical etching. For high-resolution near-field imaging, the detected signal is rapidly attenuated as the aperture size of the probe decreases. It is thus important to fabricate probes optimized for both spot size and optical transmission. We present a two-step fabrication that allowed us to achieve an improved performance of the optical-fiber probes. Initially, a CO(2) laser-heated pulling was used to produce a parabolic transitional taper ending with a top thin filament. Then, a rapid chemical etching with 50% buffered hydrofluoric acid was used to remove the thin filament and to result in a final conical tip on the top of the parabolic transitional taper. Systematically, we obtained optical-fiber nanoprobes with the apex size as small as 10 nm and the final cone angle varying from 15 degrees to 80 degrees . It was found that the optical transmission efficiency increases rapidly as the taper angle increases from 15 degrees to 50 degrees , but a further increase in the taper angle gives rise to important broadening of the spot size. Finally, the fabricated nanoprobes were used in photon-scanning tunneling microscopy, which allowed observation of etched double lines and grating structures with periods as small as 200 nm.

  19. Chiral near-fields around chiral dolmen nanostructure

    International Nuclear Information System (INIS)

    Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue

    2017-01-01

    Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)

  20. Microfluidic Transducer for Detecting Nanomechanical Movements of Bacteria

    Science.gov (United States)

    Kara, Vural; Ekinci, Kamil

    2017-11-01

    Various nanomechanical movements of bacteria are currently being explored as an indication of bacterial viability. Most notably, these movements have been observed to subside rapidly and dramatically when the bacteria are exposed to an effective antibiotic. This suggests that monitoring bacterial movements, if performed with high fidelity, can offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and sensitive microfluidic transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microchannel which the bacteria populate. These electrical fluctuations are caused by the swimming of motile, planktonic bacteria and random oscillations of surface-immobilized bacteria. The technique provides enough sensitivity to detect even the slightest movements of a single cell and lends itself to smooth integration with other microfluidic methods and devices; it may eventually be used for rapid antibiotic susceptibility testing. We acknowledge support from Boston University Office of Technology Development, Boston University College of Engineering, NIH (1R03AI126168-01) and The Wallace H. Coulter Foundation.

  1. Comprehensive characterization of molecular interactions based on nanomechanics.

    Directory of Open Access Journals (Sweden)

    Murali Krishna Ghatkesar

    Full Text Available Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6 Da adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions.

  2. Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator

    International Nuclear Information System (INIS)

    Teufel, J D; Regal, C A; Lehnert, K W

    2008-01-01

    Recent theoretical work has shown that radiation pressure effects can in principle cool a mechanical degree of freedom to its ground state. In this paper, we apply this theory to our realization of an optomechanical system in which the motion of mechanical oscillator modulates the resonance frequency of a superconducting microwave circuit. We present experimental data demonstrating the large mechanical quality factors possible with metallic, nanomechanical beams at 20 mK. Further measurements also show damping and cooling effects on the mechanical oscillator due to the microwave radiation field. These data motivate the prospects for employing this dynamical backaction technique to cool a mechanical mode entirely to its quantum ground state.

  3. Near field plasmon and force microscopy

    NARCIS (Netherlands)

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the

  4. Nanomechanical detection of cholera toxin using microcantilevers functionalized with ganglioside nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Tark, Soo-Hyun; Dravid, Vinayak P [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Das, Aditi; Sligar, Stephen, E-mail: s-sligar@illinois.edu, E-mail: v-dravid@northwestern.edu [Department of Biochemistry and Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2010-10-29

    The label-free detection of cholera toxin is demonstrated using microcantilevers functionalized with ganglioside nanodiscs. The cholera toxin molecules bind specifically to the active membrane protein encased in nanodiscs, nanoscale lipid bilayers surrounded by an amphipathic protein belt, immobilized on the cantilever surface. The specific molecular binding results in cantilever deflection via the formation of a surface stress-induced bending moment. The nanomechanical cantilever response is quantitatively monitored by optical interference. The consistent and reproducible nanomechanical detection of cholera toxin in nanomolar range concentrations is demonstrated. The results validated with such a model system suggest that the combination of a microcantilever platform with receptor nanodiscs is a promising approach for monitoring invasive pathogens and other types of biomolecular detection relevant to drug discovery.

  5. Nanomechanical detection of cholera toxin using microcantilevers functionalized with ganglioside nanodiscs

    International Nuclear Information System (INIS)

    Tark, Soo-Hyun; Dravid, Vinayak P; Das, Aditi; Sligar, Stephen

    2010-01-01

    The label-free detection of cholera toxin is demonstrated using microcantilevers functionalized with ganglioside nanodiscs. The cholera toxin molecules bind specifically to the active membrane protein encased in nanodiscs, nanoscale lipid bilayers surrounded by an amphipathic protein belt, immobilized on the cantilever surface. The specific molecular binding results in cantilever deflection via the formation of a surface stress-induced bending moment. The nanomechanical cantilever response is quantitatively monitored by optical interference. The consistent and reproducible nanomechanical detection of cholera toxin in nanomolar range concentrations is demonstrated. The results validated with such a model system suggest that the combination of a microcantilever platform with receptor nanodiscs is a promising approach for monitoring invasive pathogens and other types of biomolecular detection relevant to drug discovery.

  6. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  7. Overview of diffraction gratings technologies for space-flight satellites and astronomy

    Science.gov (United States)

    Cotel, Arnaud; Liard, Audrey; Desserouer, Frédéric; Bonnemason, Francis; Pichon, Pierre

    2014-09-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, holographic blazed replica plane grating, high-groove density holographic toroidal and spherical grating and transmission Fused Silica Etched (FSE) grismassembled grating.

  8. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    Science.gov (United States)

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  9. Discrete dipole approximation simulation of bead enhanced diffraction grating biosensor

    International Nuclear Information System (INIS)

    Arif, Khalid Mahmood

    2016-01-01

    We present the discrete dipole approximation simulation of light scattering from bead enhanced diffraction biosensor and report the effect of bead material, number of beads forming the grating and spatial randomness on the diffraction intensities of 1st and 0th orders. The dipole models of gratings are formed by volume slicing and image processing while the spatial locations of the beads on the substrate surface are randomly computed using discrete probability distribution. The effect of beads reduction on far-field scattering of 632.8 nm incident field, from fully occupied gratings to very coarse gratings, is studied for various bead materials. Our findings give insight into many difficult or experimentally impossible aspects of this genre of biosensors and establish that bead enhanced grating may be used for rapid and precise detection of small amounts of biomolecules. The results of simulations also show excellent qualitative similarities with experimental observations. - Highlights: • DDA was used to study the relationship between the number of beads forming gratings and ratio of first and zeroth order diffraction intensities. • A very flexible modeling program was developed to design complicated objects for DDA. • Material and spatial effects of bead distribution on surfaces were studied. • It has been shown that bead enhanced grating biosensor can be useful for fast detection of small amounts of biomolecules. • Experimental results qualitatively support the simulations and thus open a way to optimize the grating biosensors.

  10. Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi

    2009-08-01

    We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of αatt=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to λ-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  11. Magnetic resonance of rubidium atoms passing through a multi-layered transmission magnetic grating

    International Nuclear Information System (INIS)

    Nagata, Y; Kurokawa, S; Hatakeyama, A

    2017-01-01

    We measured the magnetic resonance of rubidium atoms passing through periodic magnetic fields generated by two types of multi-layered transmission magnetic grating. One of the gratings reported here was assembled by stacking four layers of magnetic films so that the direction of magnetization alternated at each level. The other grating was assembled so that the magnetization at each level was aligned. For both types of grating, the experimental results were in good agreement with our calculations. We studied the feasibility of extending the frequency band of the grating and narrowing its resonance linewidth by performing calculations. For magnetic resonance precision spectroscopy, we conclude that the multi-layered transmission magnetic grating can generate periodic fields with narrower linewidths at higher frequencies when a larger number of layers are assembled at a shorter period length. Moreover, the frequency band of this type of grating can potentially achieve frequencies of up to hundreds of PHz. (paper)

  12. Performance analysis of the FDTD method applied to holographic volume gratings: Multi-core CPU versus GPU computing

    Science.gov (United States)

    Francés, J.; Bleda, S.; Neipp, C.; Márquez, A.; Pascual, I.; Beléndez, A.

    2013-03-01

    The finite-difference time-domain method (FDTD) allows electromagnetic field distribution analysis as a function of time and space. The method is applied to analyze holographic volume gratings (HVGs) for the near-field distribution at optical wavelengths. Usually, this application requires the simulation of wide areas, which implies more memory and time processing. In this work, we propose a specific implementation of the FDTD method including several add-ons for a precise simulation of optical diffractive elements. Values in the near-field region are computed considering the illumination of the grating by means of a plane wave for different angles of incidence and including absorbing boundaries as well. We compare the results obtained by FDTD with those obtained using a matrix method (MM) applied to diffraction gratings. In addition, we have developed two optimized versions of the algorithm, for both CPU and GPU, in order to analyze the improvement of using the new NVIDIA Fermi GPU architecture versus highly tuned multi-core CPU as a function of the size simulation. In particular, the optimized CPU implementation takes advantage of the arithmetic and data transfer streaming SIMD (single instruction multiple data) extensions (SSE) included explicitly in the code and also of multi-threading by means of OpenMP directives. A good agreement between the results obtained using both FDTD and MM methods is obtained, thus validating our methodology. Moreover, the performance of the GPU is compared to the SSE+OpenMP CPU implementation, and it is quantitatively determined that a highly optimized CPU program can be competitive for a wider range of simulation sizes, whereas GPU computing becomes more powerful for large-scale simulations.

  13. Two-port connecting-layer-based sandwiched grating by a polarization-independent design.

    Science.gov (United States)

    Li, Hongtao; Wang, Bo

    2017-05-02

    In this paper, a two-port connecting-layer-based sandwiched beam splitter grating with polarization-independent property is reported and designed. Such the grating can separate the transmission polarized light into two diffraction orders with equal energies, which can realize the nearly 50/50 output with good uniformity. For the given wavelength of 800 nm and period of 780 nm, a simplified modal method can design a optimal duty cycle and the estimation value of the grating depth can be calculated based on it. In order to obtain the precise grating parameters, a rigorous coupled-wave analysis can be employed to optimize grating parameters by seeking for the precise grating depth and the thickness of connecting layer. Based on the optimized design, a high-efficiency two-port output grating with the wideband performances can be gained. Even more important, diffraction efficiencies are calculated by using two analytical methods, which are proved to be coincided well with each other. Therefore, the grating is significant for practical optical photonic element in engineering.

  14. A new signal restoration method based on deconvolution of the Point Spread Function (PSF) for the Flat-Field Holographic Concave Grating UV spectrometer system

    Science.gov (United States)

    Dai, Honglin; Luo, Yongdao

    2013-12-01

    In recent years, with the development of the Flat-Field Holographic Concave Grating, they are adopted by all kinds of UV spectrometers. By means of single optical surface, the Flat-Field Holographic Concave Grating can implement dispersion and imaging that make the UV spectrometer system design quite compact. However, the calibration of the Flat-Field Holographic Concave Grating is very difficult. Various factors make its imaging quality difficult to be guaranteed. So we have to process the spectrum signal with signal restoration before using it. Guiding by the theory of signals and systems, and after a series of experiments, we found that our UV spectrometer system is a Linear Space- Variant System. It means that we have to measure PSF of every pixel of the system which contains thousands of pixels. Obviously, that's a large amount of calculation .For dealing with this problem, we proposes a novel signal restoration method. This method divides the system into several Linear Space-Invariant subsystems and then makes signal restoration with PSFs. Our experiments turn out that this method is effective and inexpensive.

  15. High-Q, in-plane modes of nanomechanical resonators operated in air

    Science.gov (United States)

    Waggoner, Philip S.; Tan, Christine P.; Bellan, Leon; Craighead, Harold G.

    2009-05-01

    Nanomechanical resonators have traditionally been limited to use in vacuum due to low quality factors that come as a result of viscous damping effects in air or liquid. We have fabricated arrays of 90 nm thick trampoline-shaped resonators, studied their resonant frequency spectrum as a function of pressure, and found that some high frequency modes exhibit quality factors over 2000 at atmospheric pressure. We have excited the in-plane resonances of these devices, verified their identities both experimentally and with finite element modeling, and demonstrated their advantageous characteristics for ambient sensing. Even after deposition of a relatively thick polymer layer, the in-plane resonant modes still boast quality factors on the order of 2000. These results show promise for the use of nanomechanical resonant sensors in real-time atmospheric sensing applications.

  16. Novel concepts in near-field optics: from magnetic near-field to optical forces

    Science.gov (United States)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  17. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan; Fenton, J. C.; Chiatti, O. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Warburton, P. A. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-07-15

    Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam–deposited tungsten cantilevers of radius ∼60–170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices.

  18. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    International Nuclear Information System (INIS)

    Soong, Ken; Peralta, E.A.; Byer, R.L.; Colby, E.

    2011-01-01

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry, as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a

  19. Strontium effects on root dentin tubule occlusion and nanomechanical properties.

    Science.gov (United States)

    Saeki, Kuniko; Marshall, Grayson W; Gansky, Stuart A; Parkinson, Charles R; Marshall, Sally J

    2016-02-01

    Dentin hypersensitivity often is treated by promotion of dentin tubule occlusion. In this in vitro study we evaluated nanomechanical properties and degree of tubule occlusion conferred to sound and demineralized human root dentin following treatment with a 10% (w/w) strontium acetate solution and its relation to the treatment duration and delivery method. 24 human cervical root dentin disks (8 groups of 3) were polished through 0.25 μm. 12 disks were subjected to an acid challenge (1% citric acid, pH 3.8) for 2 min. The specimens were incubated in artificial saliva, treated by soaking or brushing with deionized (DI) water or a solution of 10% strontium acetate for 2 min twice a day for 28 days. The occlusion percent and nanomechanical properties were determined at the baseline, 5, 14 and 28 days. Cross-sectioned specimens were prepared to evaluate the depth affected by strontium acetate / dentin interaction by SEM. Statistical analysis was performed using linear mixed effects models. A 10% strontium acetate treatment over 5-28 days significantly increased tubule occlusion for normal root dentin and to a lesser extent for demineralized dentin and increased the AFM based nanomechanical properties of demineralized dentin. Brushing was more effective than soaking in recovery of properties of demineralized dentin when treated with strontium. No difference in tubuleocclusion was found between the two delivery methods. Strontium acetate itself proved to have the ability to occlude dentin tubules and result in small changes in the mechanical properties of dentin. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Characteristics of near-field earthquake ground motion

    International Nuclear Information System (INIS)

    Kim, H. K.; Choi, I. G.; Jeon, Y. S.; Seo, J. M.

    2002-01-01

    The near-field ground motions exhibit special response characteristics that are different from those of ordinary ground motions in the velocity and displacement response. This study first examines the characteristics of near-field ground motion depending on fault directivity and fault normal and parallel component. And the response spectra of the near field ground motion are statistically processed, and are compared with the Regulatory Guide 1.60 spectrum that is present design spectrum of the nuclear power plant. The response spectrum of the near filed ground motions shows large spectral velocity and displacement in the low frequency range. The spectral accelerations of near field ground motion are greatly amplified in the high frequency range for the rock site motions, and in the low frequency range for the soil site motions. As a result, the near field ground motion effects should be considered in the seismic design and seismic safety evaluation of the nuclear power plant structures and equipment

  1. GaAs-based micro/nanomechanical resonators

    Science.gov (United States)

    Yamaguchi, Hiroshi

    2017-10-01

    Micro/nanomechanical resonators have been extensively studied both for device applications, such as high-performance sensors and high-frequency devices, and for fundamental science, such as quantum physics in macroscopic objects. The advantages of GaAs-based semiconductor heterostructures include improved mechanical properties through strain engineering, highly controllable piezoelectric transduction, carrier-mediated optomechanical coupling, and hybridization with quantum low-dimensional structures. This article reviews our recent activities, as well as those of other groups, on the physics and applications of mechanical resonators fabricated using GaAs-based heterostructures.

  2. Modeling of circular-grating surface-emitting lasers

    Science.gov (United States)

    Shams-Zadeh-Amiri, Ali M.

    Grating-coupled surface-emitting lasers became an area of growing interest due to their salient features. Emission from a broad area normal to the wafer surface, makes them very well suited in high power applications and two- dimensional laser arrays. These new possibilities have caused an interest in different geometries to fully develop their potential. Among them, circular-grating lasers have the additional advantage of producing a narrow beam with a circular cross section. This special feature makes them ideal for coupling to optical fibers. All existing theoretical models dealing with circular- grating lasers only consider first-order gratings, or second-order gratings, neglecting surface emission. In this thesis, the emphasis is to develop accurate models describing the laser performance by considering the radiation field. Toward this aim, and due to the importance of the radiation modes in surface-emitting structures, a theoretical study of these modes in multilayer planar structures has been done in a rigorous and systematic fashion. Problems like orthogonality of the radiation modes have been treated very accurately. We have considered the inner product of radiation modes using the distribution theory. Orthogonality of degenerate radiation modes is an important issue. We have examined its validity using the transfer matrix method. It has been shown that orthogonality of degenerate radiation modes in a very special case leads to the Brewster theorem. In addition, simple analytical formulas for the normalization of radiation modes have been derived. We have shown that radiation modes can be handled in a much easier way than has been thought before. A closed-form spectral dyadic Green's function formulation of multilayer planar structures has been developed. In this formulation, both rectangular and cylindrical structures can be treated within the same mathematical framework. The Hankel transform of some auxiliary functions defined on a circular aperture has

  3. Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2008-07-21

    In exact analogy with their electronic counterparts, photonic temporal integrators are fundamental building blocks for constructing all-optical circuits for ultrafast information processing and computing. In this work, we introduce a simple and general approach for realizing all-optical arbitrary-order temporal integrators. We demonstrate that the N(th) cumulative time integral of the complex field envelope of an input optical waveform can be obtained by simply propagating this waveform through a single uniform fiber/waveguide Bragg grating (BG) incorporating N pi-phase shifts along its axial profile. We derive here the design specifications of photonic integrators based on multiple-phase-shifted BGs. We show that the phase shifts in the BG structure can be arbitrarily located along the grating length provided that each uniform grating section (sections separated by the phase shifts) is sufficiently long so that its associated peak reflectivity reaches nearly 100%. The resulting designs are demonstrated by numerical simulations assuming all-fiber implementations. Our simulations show that the proposed approach can provide optical operation bandwidths in the tens-of-GHz regime using readily feasible photo-induced fiber BG structures.

  4. Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles

    International Nuclear Information System (INIS)

    Eom, Kilho; Park, Harold S.; Yoon, Dae Sung; Kwon, Taeyun

    2011-01-01

    Recent advances in nanotechnology have led to the development of nano-electro-mechanical systems (NEMS) such as nanomechanical resonators, which have recently received significant attention from the scientific community. This is not only due to their capability of label-free detection of bio/chemical molecules at single-molecule (or atomic) resolution for future applications such as the early diagnosis of diseases like cancer, but also due to their unprecedented ability to detect physical quantities such as molecular weight, elastic stiffness, surface stress, and surface elastic stiffness for adsorbed molecules on the surface. Most experimental works on resonator-based molecular detection have been based on the principle that molecular adsorption onto a resonator surface increases the effective mass, and consequently decreases the resonant frequencies of the nanomechanical resonator. However, this principle is insufficient to provide fundamental insights into resonator-based molecular detection at the nanoscale; this is due to recently proposed novel nanoscale detection principles including various effects such as surface effects, nonlinear oscillations, coupled resonance, and stiffness effects. Furthermore, these effects have only recently been incorporated into existing physical models for resonators, and therefore the universal physical principles governing nanoresonator-based detection have not been completely described. Therefore, our objective in this review is to overview the current attempts to understand the underlying mechanisms in nanoresonator-based detection using physical models coupled to computational simulations and/or experiments. Specifically, we will focus on issues of special relevance to the dynamic behavior of nanoresonators and their applications in biological/chemical detection: the resonance behavior of micro/nanoresonators; resonator-based chemical/biological detection; physical models of various nanoresonators such as nanowires, carbon

  5. Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions

    Directory of Open Access Journals (Sweden)

    Marcelo Jaime

    2017-11-01

    Full Text Available In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L as low as a few parts in one hundred million (≈10−8. The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.

  6. Nanointaglio fabrication of optical lipid multilayer diffraction gratings with applications in biosensing

    Science.gov (United States)

    Lowry, Troy Warren

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at microscopic and nanoscopic levels. Exploiting the self-organization and innate biofunctionality of lyotropic liquid crystalline phospholipids, a novel nanofabrication process called "nanointaglio" was invented in order to rapidly and scalably integrate lipid nanopatterns onto the surface. The work presented here focuses on using nanointaglio fabricated lipid diffraction micro- and nanopatterns for the development of new sensing and bioactivity studies. The lipids are patterned as diffraction gratings for sensor functionality. The lipid multilayer gratings operate as nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. To demonstrate the label free detection capabilities, lipid nanopatterns are shown to be suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering, indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. A second main application is demonstrated for the study of membrane binding proteins. Although in vitro methods for assaying the catalytic activity of individual enzymes are well established, quantitative methods for assaying the kinetics of

  7. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    Science.gov (United States)

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  8. Comparative study on nano-mechanics and thermodynamics of fish otoliths

    International Nuclear Information System (INIS)

    Dongni, Ren; Yonghua, Gao; Qingling, Feng

    2013-01-01

    Fish otolith is a kind of typical natural biomineral, which is composed of calcium carbonate and organic matrix. In fresh water carp otolith, the inorganic phase of lapillus is pure aragonite, and for asteriscus it is pure vaterite. In this research, the phase composition, phase transformation, mechanical property and solubility of lapillus and asteriscus were studied. And results showed that, the organic content of lapillus was higher than that of asteriscus; the phase-transition temperature of lapillus (aragonite–calcite) and asteriscus (vaterite–calcite) both happened between 520 and 640 °C; the nano-mechanical property of lapillus was better than that of asteriscus; the solubility of asteriscus powder was higher than that of lapillus powder. - Highlights: ► The nano-mechanical property of lapillus (aragonite) was better than that of asteriscus (vaterite). ► The phase-transition temperature of lapillus and asteriscus were both between 520 and 640 °C. ► The solubility property of asteriscus powder was better than that of lapillus powder.

  9. Near Field Communication: Introduction and Implications

    Science.gov (United States)

    McHugh, Sheli; Yarmey, Kristen

    2012-01-01

    Near field communication is an emerging technology that allows objects, such as mobile phones, computers, tags, or posters, to exchange information wirelessly across a small distance. Though primarily associated with mobile payment, near field communication has many different potential commercial applications, ranging from marketing to nutrition,…

  10. Sub-wavelength grating structure on the planar waveguide (Conference Presentation)

    Science.gov (United States)

    Qing-Song, Zhu; Sheng-Hui, Chen

    2016-10-01

    Making progress in recent years, with the technology of the grating, the grating period can be reduced to shrink the size of the light coupler on a waveguide. The working wavelength of the light coupler can be in the range from the near-infrared to visible. In this study , we used E-gun evaporation system with ion-beam-assisted deposition system to fabricate bottom cladding (SiO2), guiding layer (Ta2O5) and Distributed Bragg Reflector(DBR) of the waveguide on the silicon substrate. Electron-beam lithography is used to make sub-wavelength gratings and reflector grating on the planar waveguide which is a coupling device on the guiding layer. The best fabrication parameters were analyzed to deposit the film. The exposure and development times also influenced to fabricate the grating quality. The purpose is to reduce the device size and enhance coupling efficiency which maintain normal incidence of the light . We designed and developed the device using the Finite-Difference Time-Domain (FDTD) method. The grating period, depth, fill factor, film thickness, Distributed Bragg Reflector(DBR) numbers and reflector grating period have been discussed to enhance coupling efficiency and maintained normal incidence of the light. According to the simulation results, when the wavelength is 1300 nm, the coupling grating period is 720 nm and the Ta2O5 film is 460 nm with 360 nm of reflector grating period and 2 layers of Distributed Bragg Reflector, which had the optimum coupling efficiency and normal incidence angle. In the measurement, We successfully measured the TE wave coupling efficiency of the photoresist grating coupling device.

  11. Rocket flight of a multilayer coated high-density EUV toroidal grating

    Science.gov (United States)

    Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Davila, Joseph M.

    1992-01-01

    A multilayer coated high density toroidal grating was flown on a sounding rocket experiment in the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. To our knowledge this is the first space flight of a multilayer coated grating. Pre-flight performance evaluation showed that the application of a 10-layer Ir/Si multilayer coating to the 3600 l/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength around 30 nm in first order over the standard gold coating, with a measured EUV efficiency that peaked at 3.3 percent. In addition, the grating's spectral resolution of better than 5000 was maintained. The region of enhanced grating efficiency due to the multilayer coating is clearly evident in the flight data. Within the bandpass of the multilayer coating, the recorded film densities were roughly equivalent to those obtained with a factor of six longer exposure on the previous flight of the SERTS instrument.

  12. Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Nonplanar Substrates for Biomimetic Hierarchical Photonic Structures.

    Science.gov (United States)

    Kwon, Young Woo; Park, Junyong; Kim, Taehoon; Kang, Seok Hee; Kim, Hyowook; Shin, Jonghwa; Jeon, Seokwoo; Hong, Suck Won

    2016-04-26

    Multilevel hierarchical platforms that combine nano- and microstructures have been intensively explored to mimic superior properties found in nature. However, unless directly replicated from biological samples, desirable multiscale structures have been challenging to efficiently produce to date. Departing from conventional wafer-based technology, new and efficient techniques suitable for fabricating bioinspired structures are highly desired to produce three-dimensional architectures even on nonplanar substrates. Here, we report a facile approach to realize functional nanostructures on uneven microstructured platforms via scalable optical fabrication techniques. The ultrathin form (∼3 μm) of a phase grating composed of poly(vinyl alcohol) makes the material physically flexible and enables full-conformal contact with rough surfaces. The near-field optical effect can be identically generated on highly curved surfaces as a result of superior conformality. Densely packed nanodots with submicron periodicity are uniformly formed on microlens arrays with a radius of curvature that is as low as ∼28 μm. Increasing the size of the gratings causes the production area to be successfully expanded by up to 16 in(2). The "nano-on-micro" structures mimicking real compound eyes are transferred to flexible and stretchable substrates by sequential imprinting, facilitating multifunctional optical films applicable to antireflective diffusers for large-area sheet-illumination displays.

  13. Overview of diffraction gratings technologies for spaceflight satellites and ground-based telescopes

    Science.gov (United States)

    Cotel, A.; Liard, A.; Desserouer, F.; Pichon, P.

    2017-11-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, high-groove density holographic toroidal and spherical grating, and finally transmission Fused Silica Etched (FSE) grism-assembled grating. We will not present the Volume Phase Holographic (VPHG) grating type which is used in Astronomy.

  14. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn

    2017-07-12

    Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  15. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    Science.gov (United States)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis

    2014-07-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  16. Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zarghami, V. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Ghorbani, M., E-mail: Ghorbani@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)

    2014-06-15

    Highlights: • Preparing Ni/SiC coatings on the Cu substrate by using of rotating disk electrode. • Optimizing of pulse current density parameters. • Optimizing of SiC content in the bath. • Investigation the effect of codeposited SiC amount on the properties of coatings. - Abstract: Nickel/silicon carbide composite electrodeposits were prepared on a rotating disk electrode (RDE), under pulse current condition. The effect of pulse parameters, current density, SiC content in the electrolyte on the codeposition of SiC were studied. Afterwards, the effect of codeposited SiC amount was investigated on electrochemical behavior and nanomechanical properties of coatings. The coatings were analyzed with Scanning Electron Microscopy (SEM), linear polarization, nanoindentation and Atomic Force Microscopy (AFM). The Ni–SiC electrocomposites, prepared at optimum conditions, exhibited improved nanomechanical properties in comparison to pure nickel electrodeposits. With increasing current density the morphology changed from flat surface to cauliflower structure. The Ni–SiC electrocomposites exhibited improved nanomechanical properties and corrosion resistances in comparison to pure nickel electrodeposits and these properties were improving with increasing codeposited SiC particles in electrocomposites.

  17. Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Wu, Kaiyu; Larsen, Peter Emil

    2014-01-01

    We demonstrate the direct photothermal probing and mapping of single plasmonic nanostructures via the temperature-induced detuning of nanomechanical string resonators. Single Au nanoslits and nanorods are illuminated with a partially polarized focused laser beam (λ = 633 nm) with irradiances...... in the range of 0.26–38 μW/μm2. Photothermal heating maps with a resolution of ∼375 nm are obtained by scanning the laser over the nanostructures. Based on the string sensitivities, absorption efficiencies of 2.3 ± 0.3 and 1.1 ± 0.7 are extracted for a single nanoslit (53 nm × 1 μm) and nanorod (75 nm × 185 nm......). Our results show that nanomechanical resonators are a unique and robust analysis tool for the low-power investigation of thermoplasmonic effects in plasmonic hot spots....

  18. Control of the long period grating spectrum through low frequency flexural acoustic waves

    International Nuclear Information System (INIS)

    Oliveira, Roberson A; Possetti, Gustavo R C; Kamikawachi, Ricardo C; Fabris, José L; Muller, Marcia; Pohl, Alexandre A P; Marques, Carlos A F; Nogueira, Rogério N; Neves, Paulo T Jr; Cook, Kevin; Canning, John; Bavastri, C

    2011-01-01

    We have shown experimental results of the excitation of long period fiber gratings by means of flexural acoustic waves with a wavelength larger than the grating period, validated by numerical simulations. The effect of the acoustic wave on the grating is modeled with the method of assumed modes, which delivers the strain field inside the grating, then used as the input to the transfer matrix method, needed for calculating the grating spectrum. The experimental and numerical results are found to be in good agreement, even though only the strain-optic effects are taken into account

  19. Electrostatically Tunable Nanomechanical Shallow Arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-03

    We report an analytical and experimental study on the tunability of in-plane doubly-clamped nanomechanical arches under varied DC bias conditions at room temperature. For this purpose, silicon based shallow arches are fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a transduction gap of 1 μm between the beam and the driving/sensing electrodes. The high tunability of shallow arches paves the ways for highly tunable band pass filtering applications in high frequency range.

  20. Geometric effect on second harmonic generation from gold grating

    Science.gov (United States)

    Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin

    2018-05-01

    We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.

  1. Optical Transient-Grating Measurements of Spin Diffusion and Relaxation in a Two-Dimensional Electron Gas

    International Nuclear Information System (INIS)

    Weber, Christopher P.

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field

  2. Nanomechanical analysis of high performance materials (solid mechanics and its applications)

    CERN Document Server

    2013-01-01

    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in the i...

  3. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    International Nuclear Information System (INIS)

    Idrissi, Hosni; Kobler, Aaron; Amin-Ahmadi, Behnam; Schryvers, Dominique; Coulombier, Michael; Pardoen, Thomas; Galceran, Montserrat; Godet, Stéphane; Raskin, Jean-Pierre; Kübel, Christian

    2014-01-01

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected

  4. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Idrissi, Hosni, E-mail: hosni.idrissi@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-La-Neuve (Belgium); Kobler, Aaron [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD), Petersenstr. 32, 64287 Darmstadt (Germany); Amin-Ahmadi, Behnam; Schryvers, Dominique [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coulombier, Michael; Pardoen, Thomas [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-La-Neuve (Belgium); Galceran, Montserrat; Godet, Stéphane [Matters and Materials Department, Université Libre de Bruxelles, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Raskin, Jean-Pierre [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Université catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Kübel, Christian [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-03-10

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected.

  5. Near field plasmon and force microscopy

    OpenAIRE

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the probe size to about 20 nm. At variance to previous work, utilizing a scanning tunneling microscope (STM) with a metallic tip, a dielectric silicon-nitride tip is used in contact mode. This arrangement ...

  6. Thermal-grating contributions to degenerate four-wave mixing in nitric oxide

    International Nuclear Information System (INIS)

    Danehy, P.M.; Paul, P.H.; Farrow, R.L.

    1995-01-01

    We report investigations of degenerate four-wave mixing (DFWM) line intensities in the A 2 Σ + left-arrow X 2 Π electronic transitions of nitric oxide. Contributions from population gratings (spatially varying perturbations in the level populations of absorbing species) and thermal gratings (spatially varying perturbations in the overall density) were distinguished and compared by several experimental and analytical techniques. For small quantities of nitric oxide in a strongly quenching buffer gas (carbon dioxide), we found that thermal-grating contributions dominated at room temperature for gas pressures of ∼0.5 atm and higher. In a nearly nonquenching buffer (nitrogen) the population-grating mechanism dominated at pressures of ∼1.0 atm and lower. At higher temperatures in an atmospheric-pressure methane/air flame, population gratings of nitric oxide also dominated. We propose a simple model for the ratio of thermal- to population-grating scattering intensities that varies as P 4 T -4.4 . Preliminary investigations of the temperature dependence and detailed studies of the pressure dependence are in agreement with this model. Measurements of the temporal evolution and the peak intensity of isolated thermal-grating signals are in detailed agreement with calculations based on a linearized hydrodynamic model [J. Opt. Soc. Am. B 12, 384 (1995)]. copyright 1995 Optical Society of America

  7. Survey and review of near-field performance assessment

    International Nuclear Information System (INIS)

    Apted, M.J.

    1993-01-01

    Chemical reactions control the performance, stability, and rate of degradation of natural and engineered barriers to waste repositories of the near field. Chemical processes are overviewed in this context. Temperature, and associated temperature gradients, are also important parameters in near-field performance assessment. The mechanical conditions of the near-field rock will be perturbed by construction of the underground repository. Mechanical analysis in the near field is further complicated by the introduction of HLW canisters and associated engineered barrier materials. Hydrological processes important to near-field performance include those associated with fluid transport. Considerable discussions and studies have been conducted on the issue of coupling among chemical-thermal-mechanical-hydrological processes; they are overviewed. (R.P.) 2 figs., 2 tabs

  8. Point-by-point written fiber-Bragg gratings and their application in complex grating designs.

    Science.gov (United States)

    Marshall, Graham D; Williams, Robert J; Jovanovic, Nemanja; Steel, M J; Withford, Michael J

    2010-09-13

    The point-by-point technique of fabricating fibre-Bragg gratings using an ultrafast laser enables complete control of the position of each index modification that comprises the grating. By tailoring the local phase, amplitude and spacing of the grating's refractive index modulations it is possible to create gratings with complex transmission and reflection spectra. We report a series of grating structures that were realized by exploiting these flexibilities. Such structures include gratings with controlled bandwidth, and amplitude- and phase-modulated sampled (or superstructured) gratings. A model based on coupled-mode theory provides important insights into the manufacture of such gratings. Our approach offers a quick and easy method of producing complex, non-uniform grating structures in both fibres and other mono-mode waveguiding structures.

  9. Nanomechanical IR spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Yamada, Shoko; Ek, Pramod Kumar

    2016-01-01

    The proliferated use of engineered nanomaterials (ENMs), e.g. in nanomedicine, calls for novel techniques allowing for fast and sensitive analysis of minute samples. Here we present nanomechanical IR spectroscopy (NAM-IR) for chemical analysis of picograms of ENMs. ENMs are nebulized directly from...

  10. Nanomechanics of slip avalanches in amorphous plasticity

    Science.gov (United States)

    Cao, Penghui; Dahmen, Karin A.; Kushima, Akihiro; Wright, Wendelin J.; Park, Harold S.; Short, Michael P.; Yip, Sidney

    2018-05-01

    Discrete stress relaxations (slip avalanches) in a model metallic glass under uniaxial compression are studied using a metadynamics algorithm for molecular simulation at experimental strain rates. The onset of yielding is observed at the first major stress drop, accompanied, upon analysis, by the formation of a single localized shear band region spanning the entire system. During the elastic response prior to yielding, low concentrations of shear transformation deformation events appear intermittently and spatially uncorrelated. During serrated flow following yielding, small stress drops occur interspersed between large drops. The simulation results point to a threshold value of stress dissipation as a characteristic feature separating major and minor avalanches consistent with mean-field modeling analysis and mechanical testing experiments. We further interpret this behavior to be a consequence of a nonlinear interplay of two prevailing mechanisms of amorphous plasticity, thermally activated atomic diffusion and stress-induced shear transformations, originally proposed by Spaepen and Argon, respectively. Probing the atomistic processes at widely separate strain rates gives insight to different modes of shear band formation: percolation of shear transformations versus crack-like propagation. Additionally a focus on crossover avalanche size has implications for nanomechanical modeling of spatially and temporally heterogeneous dynamics.

  11. The spectral combination characteristic of grating and the bi-grating diffraction imaging effect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper reports on a new property of grating, namely spectral combination, and on bi-grating diffraction imaging that is based on spectral combination. The spectral combination characteristic of a grating is the capability of combining multiple light beams of different wavelengths incident from specific angles into a single beam. The bi-grating diffraction imaging is the formation of the image of an object with two gratings: the first grating disperses the multi-color light beams from the object and the second combines the dispersed light beams to form the image. We gave the conditions necessary for obtaining the spectral combination. We also presented the equations that relate the two gratings’ spatial frequencies, diffraction orders and positions necessary for obtaining the bi-grating diffraction imaging.

  12. Comparative study on nano-mechanics and thermodynamics of fish otoliths

    Energy Technology Data Exchange (ETDEWEB)

    Dongni, Ren; Yonghua, Gao [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Qingling, Feng, E-mail: biomater@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-01-01

    Fish otolith is a kind of typical natural biomineral, which is composed of calcium carbonate and organic matrix. In fresh water carp otolith, the inorganic phase of lapillus is pure aragonite, and for asteriscus it is pure vaterite. In this research, the phase composition, phase transformation, mechanical property and solubility of lapillus and asteriscus were studied. And results showed that, the organic content of lapillus was higher than that of asteriscus; the phase-transition temperature of lapillus (aragonite-calcite) and asteriscus (vaterite-calcite) both happened between 520 and 640 Degree-Sign C; the nano-mechanical property of lapillus was better than that of asteriscus; the solubility of asteriscus powder was higher than that of lapillus powder. - Highlights: Black-Right-Pointing-Pointer The nano-mechanical property of lapillus (aragonite) was better than that of asteriscus (vaterite). Black-Right-Pointing-Pointer The phase-transition temperature of lapillus and asteriscus were both between 520 and 640 Degree-Sign C. Black-Right-Pointing-Pointer The solubility property of asteriscus powder was better than that of lapillus powder.

  13. Cylinder and metal grating polarization beam splitter

    Science.gov (United States)

    Yang, Junbo; Xu, Suzhi

    2017-08-01

    We propose a novel and compact metal grating polarization beam splitter (PBS) based on its different reflected and transmitted orders. The metal grating exhibits a broadband high reflectivity and polarization dependence. The rigorous coupled wave analysis is used to calculate the reflectivity and the transmitting spectra and optimize the structure parameters to realize the broadband PBS. The finite-element method is used to calculate the field distribution. The characteristics of the broadband high reflectivity, transmitting and the polarization dependence are investigated including wavelength, period, refractive index and the radius of circle grating. When grating period d = 400 nm, incident wavelength λ = 441 nm, incident angle θ = 60° and radius of circle d/5, then the zeroth reflection order R0 = 0.35 and the transmission zeroth order T0 = 0.08 for TE polarization, however, T0 = 0.34 and R0 = 0.01 for TM mode. The simple fabrication method involves only single etch step and good compatibility with complementary metal oxide semiconductor technology. PBS designed here is particularly suited for optical communication and optical information processing.

  14. Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime

    Science.gov (United States)

    Shui, Tao; Yang, Wen-Xing; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu

    2018-03-01

    We propose and analyze an efficient scheme for the lopsided Raman-Nath diffraction of one-dimensional (1 D ) and two-dimensional (2 D ) atomic gratings with periodic parity-time (PT )-symmetric refractive index. The atomic grating is constructed by the cold-atomic vapor with two isotopes of rubidium, which is driven by weak probe field and space-dependent control field. Using experimentally achievable parameters, we identify the conditions under which PT -symmetric refractive index allows us to observe the lopsided Raman-Nath diffraction phenomenon and improve the diffraction efficiencies beyond what is achievable in a conventional atomic grating. The nontrivial atomic grating is a superposition of an amplitude grating and a phase grating. It is found that the lopsided Raman-Nath diffraction at the exceptional point (EP) of PT -symmetric grating originates from constructive and destructive interferences between the amplitude and phase gratings. Furthermore, we show that the PT -phase transition from unbroken to broken PT -symmetric regimes can modify the asymmetric distribution of the diffraction spectrum and that the diffraction efficiencies in the non-negative diffraction orders can be significantly enhanced when the atomic grating is pushed into a broken PT -symmetric phase. In addition, we also analyze the influence of the grating thickness on the diffraction spectrum. Our scheme may provide the possibility to design a gain-beam splitter with tunable splitting ratio and other optical components in integrated optics.

  15. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  16. Survey and review of near-field performance assessment

    International Nuclear Information System (INIS)

    Apted, M.J.

    1993-01-01

    The aim of this chapter is to describe the performance assessment (PA) context in which near-field models have been developed and applied. An overview is given of a number of PA studies. Although the focus is on near-field models, the overview covers the full context in which the PAs have been performed, including the purpose of the studies and regulatory context. Special emphasis has been given to the scenarios analyzed in the assessments; the scenarios set the framework for model development and application. Another aspect to consider in a study of near-field modeling from the perspective of total PA is the linking between near-field and far-field assessment. (R.P.) 6 tabs

  17. Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena

    CERN Document Server

    Sirenko, Yuriy K

    2010-01-01

    Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...

  18. Field theory of a terahertz staggered double-grating arrays waveguide Cerenkov traveling wave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wenqiu; He, Fangming [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zicheng; Luo, Jirun; Zhao, Ding; Liu, Qinglun [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-04-15

    Based on a rectilinear sheet electron beam propagating through the tunnel of a staggered double-grating arrays waveguide (SDGAW) slow-wave structure (SWS), a three dimensional field theory for describing the modes and the beam-wave interaction is presented, in which the higher order terms inside the grooves are retained. The fields' distribution and the conductivity losses are also calculated utilizing the theoretical model. With the optimized parameters of the SWS and the electron beam, a 1 THz SDGAW Cerenkov traveling wave amplifier may obtain a moderate net gain (the peak gain is 12.7 dB/cm) and an ultra 3 dB wideband (0.19 THz) considering the serious Ohmic losses. The theoretical results have been compared with those calculated by 3D HFSS code and CST STUDIO particle-in-cell simulations.

  19. Fabrication update on critical-angle transmission gratings for soft x-ray grating spectrometers

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alex; Mukherjee, Pran; Yam, Jonathan; Schattenburg, Mark L.

    2011-09-01

    Diffraction grating-based, wavelength dispersive high-resolution soft x-ray spectroscopy of celestial sources promises to reveal crucial data for the study of the Warm-Hot Intergalactic Medium, the Interstellar Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, and other areas of interest to the astrophysics community. Our recently developed critical-angle transmission (CAT) gratings combine the advantages of the Chandra high and medium energy transmission gratings (low mass, high tolerance of misalignments and figure errors, polarization insensitivity) with those of blazed reflection gratings (high broad band diffraction efficiency, high resolution through use of higher diffraction orders) such as the ones on XMM-Newton. Extensive instrument and system configuration studies have shown that a CAT grating-based spectrometer is an outstanding instrument capable of delivering resolving power on the order of 5,000 and high effective area, even with a telescope point-spread function on the order of many arc-seconds. We have fabricated freestanding, ultra-high aspect-ratio CAT grating bars from silicon-on-insulator wafers using both wet and dry etch processes. The 200 nm-period grating bars are supported by an integrated Level 1 support mesh, and a coarser external Level 2 support mesh. The resulting grating membrane is mounted to a frame, resulting in a grating facet. Many such facets comprise a grating array that provides light-weight coverage of large-area telescope apertures. Here we present fabrication results on the integration of CAT gratings and the different high-throughput support mesh levels and on membrane-frame bonding. We also summarize recent x-ray data analysis of 3 and 6 micron deep wet-etched CAT grating prototypes.

  20. Measurement of a discontinuous object based on a dual-frequency grating

    Institute of Scientific and Technical Information of China (English)

    Qiao Nao-Sheng; Cai Xin-Hua; Yao Chun-Mei

    2009-01-01

    The dual-frequency grating measurement theory is proposed in order to carry out the measurement of a discontinuous object. Firstly, the reason why frequency spectra are produced by low frequency gratings and high frequency gratings in the field of frequency is analysed, and the relationship between the wrapped-phase and the unwrappingphase is discussed. Secondly, a method to combine the advantages of the two kinds of gratings is proposed: one stripe is produced in the mutation part of the object measured by a suitable low frequency grating designed by MATLAB, then the phase produced by the low frequency grating need not be unfolded. The integer series of stripes is produced by a high frequency grating designed by MATLAB based on the frequency ratio of the two kinds of gratings and the high frequency wrapped-phase, and the high frequency unwrapping-phase is then obtained. In order to verify the correctness of the theoretical analysis, a steep discontinuous object of 600×600 pixels and 10.00 mm in height is simulated and a discontinuous object of ladder shape which is 32.00 mm in height is used in experiment. Both the simulation and the experiment can restore the discontinuous object height accurately by using the dual-frequency grating measurement theory.

  1. Aplanatic grazing incidence diffraction grating: a new optical element

    International Nuclear Information System (INIS)

    Hettrick, M.C.

    1986-01-01

    We present the theory of a grazing incidence reflection grating capable of imaging at submicron resolution. The optic is mechanically ruled on a spherical or cylindrical surface with varied groove spacings, delivering diffraction-limited response and a wide field of view at a selected wavelength. Geometrical aberrations are calculated on the basis of Fermat's principle, revealing significant improvements over a grazing incidence mirror. Aplanatic and quasi-aplanatic versions of the grating have applications in both imaging and scanning microscopes, microprobes, collimators, and telescopes. A 2-D crossed system of such gratings, similar to the grazing incidence mirror geometry of Kirkpatrick and Baez, could potentially provide spatial resolutions of --200 A

  2. The infrared imaging spectrograph (IRIS) for TMT: volume phase holographic grating performance testing and discussion

    Science.gov (United States)

    Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc

    2014-07-01

    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.

  3. Time-domain Brillouin scattering assisted by diffraction gratings

    Science.gov (United States)

    Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi

    2018-02-01

    Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.

  4. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  5. Biophysics of Human Hair Structural, Nanomechanical, and Nanotribological Studies

    CERN Document Server

    Bhushan, Bharat

    2010-01-01

    This book presents the biophysics of hair. It deals with the structure of hair, its mechanical properties, the nanomechanical characterization, tensile deformation, tribological characterization, the thickness distribution and binding interactions on hair surface. Another important topic of the book is the health of hair, human hair and skin, hair care, cleaning and conditioning treatments and damaging processes. It is the first book on the biophysical properties of hair.

  6. Near-Field Optical Microscopy of Fractal Structures

    DEFF Research Database (Denmark)

    Coello, Victor; Bozhevolnyi, Sergey I.

    1999-01-01

    Using a photon scanning tunnelling microscope combined with a shear-force feedback system, we image both topographical and near-field optical images (at the wavelengths of 633 and 594 nm) of silver colloid fractals. Near-field optical imaging is calibrated with a standing evanescent wave pattern...

  7. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    Science.gov (United States)

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  8. Fiber Optic Bragg Gratings

    National Research Council Canada - National Science Library

    Battiato, James

    1998-01-01

    Coupled mode theory was used to model reflection fiber gratings. The effects of experimental parameters on grating characteristics were modeled for both uniform and non-uniform grating profiles using this approach...

  9. Grating array systems having a plurality of gratings operative in a coherently additive mode and methods for making such grating array systems

    Science.gov (United States)

    Kessler, Terrance J [Mendon, NY; Bunkenburg, Joachim [Victor, NY; Huang, Hu [Pittsford, NY

    2007-02-13

    A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.

  10. Sampling Criterion for EMC Near Field Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    An alternative, quasi-empirical sampling criterion for EMC near field measurements intended for close coupling investigations is proposed. The criterion is based on maximum error caused by sub-optimal sampling of near fields in the vicinity of an elementary dipole, which is suggested as a worst......-case representative of a signal trace on a typical printed circuit board. It has been found that the sampling density derived in this way is in fact very similar to that given by the antenna near field sampling theorem, if an error less than 1 dB is required. The principal advantage of the proposed formulation is its...

  11. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology

    DEFF Research Database (Denmark)

    Bache, Michael; Bosco, Filippo; Brøgger, Anna Line

    2013-01-01

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels...

  12. Unidirectional transmission realized by two nonparallel gratings made of isotropic media.

    Science.gov (United States)

    Ye, Wei-Min; Yuan, Xiao-Dong; Zeng, Chun

    2011-08-01

    We realize a unidirectional transmission by cascading two nonparallel gratings (NPGs) made of isotropic, lossless, and linear media. For a pair of orthogonal linear polarizations, one of the gratings is designed as a polarizer, which is a reflector for one polarization and a transmitter for the other; another grating is designed as a polarization converter, which converts most of one polarized incident wave into another polarized transmitted wave. It is demonstrated by numerical calculation that more than 85% of the incident light energy can be transmitted with less than 1% transmission in the opposite direction for linearly polarized light at normal incidence, and the relative bandwidth of the unidirectional transmission is nearly 9%. The maximum transmission contrast ratio between the two directions is 62 dB. Unlike one-way diffraction grating, the transmitted light of the NPGs is collinear with the incident light, but their polarizations are orthogonal. © 2011 Optical Society of America

  13. Development of a flat-field spectrometer with a wideband Ni/C multilayer grating in the 1–3.5 keV range

    Energy Technology Data Exchange (ETDEWEB)

    Imazono, Takashi [Quantum Beam Science Center, Japan Atomic Energy Agency, 8-1-7, Umemidai, Kizugawa, Kyoto 619-0216 (Japan)

    2016-07-27

    To develop a flat-field spectrometer with coverage of the 1–3.5 keV range, a wideband Ni/C multilayer grating was invented. The multilayer consists of two kinds of layer structures. One is a conventional periodic multilayer of thickness D{sub 1} = 5.6 nm, Ni thickness ratio to the multilayer period γ{sub 1} = 0.5 and the number of layers N{sub 1} = 79. Both the first and last layers are Ni. The other is a C/Ni bilayer of D{sub 2} = 8.4 nm, γ{sub 2} = 0.53 and N{sub 2} = 2. The first layer is C and then Ni. The aperiodic multilayer from the topmost C/Ni bilayer was coated on a laminar-type grating having an effective grating constant of 1/2400 mm, groove depth of 2.8 nm, and duty ratio (land width/groove period) of 0.5. In a preliminary experiment, the diffraction efficiency was in excess of 0.8% in the energy range of 2.1-3.3 keV and the maximum of 5.4% at 3.1 keV at a constant angle of incidence of 88.54°, which is considerably higher than that of an Au-coated grating before deposition of the multilayer.

  14. Mass detection by means of the vibrating nanomechanical resonators

    Czech Academy of Sciences Publication Activity Database

    Stachiv, Ivo; Fedorchenko, Alexander I.; Chen, Y.-L.

    2012-01-01

    Roč. 100, č. 9 (2012), s. 1-3 ISSN 0003-6951 R&D Projects: GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100520 Keywords : mass detection * nanomechanical based resonators * mass sensitivity Subject RIV: BI - Acoustics Impact factor: 3.794, year: 2012 http://apl.aip.org/ resource /1/applab/v100/i9/p093110_s1?isAuthorized=no

  15. Tuning piezoresistive transduction in nanomechanical resonators by geometrical asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, J.; Sansa, M.; Lorenzoni, M.; Pérez-Murano, F., E-mail: francesc.perez@csic.es [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, 08193 Bellaterra (Spain); Borrisé, X. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra Spain (Spain); San Paulo, A. [Instituto de Microelectrónica de Madrid (IMM-CSIC), 28760 Tres Cantos, Madrid (Spain)

    2015-08-17

    The effect of geometrical asymmetries on the piezoresistive transduction in suspended double clamped beam nanomechanical resonators is investigated. Tapered silicon nano-beams, fabricated using a fast and flexible prototyping method, are employed to determine how the asymmetry affects the transduced piezoresistive signal for different mechanical resonant modes. This effect is attributed to the modulation of the strain in pre-strained double clamped beams, and it is confirmed by means of finite element simulations.

  16. Optimization for sinusoidal profiles in surface relief gratings ...

    Indian Academy of Sciences (India)

    2014-02-07

    Feb 7, 2014 ... filometry [7–9] and monitoring of surface self-diffusion of solids under ultrahigh vacuum conditions [10]. In the present work, recording parameters, i.e. exposure time and deve- lopment time for fabrication of such holographic gratings have been optimized to obtain nearly perfect sinusoidal profiles in the ...

  17. Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.

    Science.gov (United States)

    Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas

    2016-06-01

    The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters.

  18. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  19. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

    Science.gov (United States)

    Kuzuya, Akinori; Sakai, Yusuke; Yamazaki, Takahiro; Xu, Yan; Komiyama, Makoto

    2011-01-01

    DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. PMID:21863016

  20. High efficiency grating couplers based on shared process with CMOS MOSFETs

    International Nuclear Information System (INIS)

    Qiu Chao; Sheng Zhen; Wu Ai-Min; Wang Xi; Zou Shi-Chang; Gan Fu-Wan; Li Le; Albert Pang

    2013-01-01

    Grating couplers are widely investigated as coupling interfaces between silicon-on-insulator waveguides and optical fibers. In this work, a high-efficiency and complementary metal—oxide—semiconductor (CMOS) process compatible grating coupler is proposed. The poly-Si layer used as a gate in the CMOS metal—oxide—semiconductor field effect transistor (MOSFET) is combined with a normal fully etched grating coupler, which greatly enhances its coupling efficiency. With optimal structure parameters, a coupling efficiency can reach as high as ∼ 70% at a wavelength of 1550 nm as indicated by simulation. From the angle of fabrication, all masks and etching steps are shared between MOSFETs and grating couplers, thereby making the high performance grating couplers easily integrated with CMOS circuits. Fabrication errors such as alignment shift are also simulated, showing that the device is quite tolerant in fabrication. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Nanomanipulation using near field photonics.

    Science.gov (United States)

    Erickson, David; Serey, Xavier; Chen, Yih-Fan; Mandal, Sudeep

    2011-03-21

    In this article we review the use of near-field photonics for trapping, transport and handling of nanomaterials. While the advantages of traditional optical tweezing are well known at the microscale, direct application of these techniques to the handling of nanoscale materials has proven difficult due to unfavourable scaling of the fundamental physics. Recently a number of research groups have demonstrated how the evanescent fields surrounding photonic structures like photonic waveguides, optical resonators, and plasmonic nanoparticles can be used to greatly enhance optical forces. Here, we introduce some of the most common implementations of these techniques, focusing on those which have relevance to microfluidic or optofluidic applications. Since the field is still relatively nascent, we spend much of the article laying out the fundamental and practical advantages that near field optical manipulation offers over both traditional optical tweezing and other particle handling techniques. In addition we highlight three application areas where these techniques namely could be of interest to the lab-on-a-chip community, namely: single molecule analysis, nanoassembly, and optical chromatography. This journal is © The Royal Society of Chemistry 2011

  2. Scanning near-field infrared microscopy on semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rainer

    2011-01-15

    Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source. In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems. In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from

  3. Scanning near-field infrared microscopy on semiconductor structures

    International Nuclear Information System (INIS)

    Jacob, Rainer

    2011-01-01

    Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source. In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems. In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from

  4. Characterization of near-field optical probes

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    Radiation and collection characteristics of four different near-field optical-fiber probes, namely, three uncoated probes and an aluminium-coated small-aperture probe, are investigated and compared. Their radiation properties are characterized by observation of light-induced topography changes...... in a photo-sensitive film illuminated with the probes, and it is confirmed that the radiated optical field is unambigiously confined only for the coated probe. Near-field optical imaging of a standing evanescent-wave pattern is used to compare the detection characteristics of the probes, and it is concluded...... that, for the imaging of optical-field intensity distributions containing predominantly evanescent-wave components, a sharp uncoated tip is the probe of choice. Complementary results obtained with optical phase-conjugation experiments with he uncoated probes are discussed in relation to the probe...

  5. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  6. Reconfigurable terahertz grating with enhanced transmission of TE polarized light

    Directory of Open Access Journals (Sweden)

    J. W. He

    2017-07-01

    Full Text Available We demonstrate an optically reconfigurable grating with enhanced transmission of TE-polarized waves in the terahertz (THz waveband. This kind of grating is realized by projecting a grating image onto a thin Si wafer with a digital micromirror device (DMD. The enhanced transmission is caused by a resonance of the electromagnetic fields between the photoexcited strips. The position of the transmission peak shifts with the variation of the period and duty cycle of the photoinduced grating, which can be readily controlled by the DMD. Furthermore, a flattened Gaussian model was applied to describe the distribution of the photoexcited free carriers in the Si wafer, and the simulated transmittance spectra are shown to be in good agreement with the experimental results. In future, the photoexcited carriers could also be used to produce THz diffractive elements with reconfigurable functionality.

  7. Atomic spin resonance in a rubidium beam obliquely incident to a transmission magnetic grating

    International Nuclear Information System (INIS)

    Hatakeyama, A; Goto, K

    2016-01-01

    We studied atomic spin resonance induced by atomic motion in a spatially periodic magnetostatic field. A rubidium atomic beam, with a velocity of about 400 m s −1 , was obliquely incident to a transmission magnetic grating that produced a spatially periodic magnetic field. The magnetic grating was formed by a magnetic thin film on a polyimide substrate that had multiple slits at 150 μm intervals. The atoms experienced field oscillation, depending on their velocity and the field period when passing through the grating, and underwent magnetic resonance. Resonance spectra obtained with a perpendicular magnetization film were in clear contrast to ones obtained with an in-plane magnetization film. The former exhibited resonance peaks at odd multiples of the frequency, determined by the velocity over the period, while the latter had dips at the same frequencies. (paper)

  8. Polarization measurement by use of discrete space-variant sub wavelength dielectric gratings

    International Nuclear Information System (INIS)

    Biener, G.; Niv, A.; Gorodetski, Yu.; Kleiner, V.; Hasman, E.

    2004-01-01

    Full Text:Polarization measurement has been widely used for a large range of applications such as ellipsometry bio-imaging, imaging polarimetry and optical communications. A commonly used method is measuring of the time-dependent signal once the beam is transmitted through a photoelastic modulator or a rotating quarter-wave plate followed by an analyzer. The polarization state of the beam can be derived by Fourier analysis of the detected signal. This method, however, requires a sequence of consecutive measurements, thus making it impractical for real-time polarization measurement in an application such as adaptive polarization-mode dispersion compensation in optical communications. Recently, we developed a novel method for real-time polarization measurement by use of a discrete space-variant sub wavelength dielectric grating (DSG). The formation of the grating is done by discrete orientation of the local sub wavelength grooves. The complete polarization analysis of the incident beam is determined by spatial Fourier transform of the near-field intensity distribution transmitted through the DSG followed by a sub wavelength metal polarizer. We realized the gratings for CO 2 laser radiation at a wavelength of 10.6 micron on GaAs substrate utilizing advanced photo lithographic and etching techniques. We experimentally demonstrated the ability of our method to measure the polarization state for fully and partially polarized light. Unlike other methods based on Fourier analysis, no active elements are required. It is possible to integrate our polarimeter on a two-dimensional detector array for lab-on chip applications to achieve a high-throughput and low-cost commercial polarimeter for bio sensing. Currently we are investigating the possibility of using far-field measurement of the beam emerging from a DSG for polarization measurement

  9. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  10. Near-field probing of photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2006-01-01

    We report the design, fabrication and characterization of a photonic crystal directional with a size of ~20 x 20 mm2 fabricated in silicon-on-insulator material. Using a scanning near-field optical microscope we demonstrate a high coupling efficiency for TM polarized light at telecom wavelengths....... By comparing the near-field optical images recorded in and after the directional coupler area, the features of light distribution are analyzed. Finally, the scanning near-field optical microscope observations are found to be in agreement with the transmission measurements conducted with the same sample....

  11. Atomic Force Microscopy Investigation of Morphological and Nanomechanical Properties of Pseudomonas aeruginosa Cells

    DEFF Research Database (Denmark)

    Mortensen, Ninell Pollas

    2008-01-01

    changes in the fraction of individual bacteria and bacteria undergoing proliferation, and decrease of cell length of mother and daughter cells. The results indicated that colistin arrested the bacterial growth just after septum formation. Furthermore did the morphology change from a smooth bacterial......Atomic Force Microscopy (AFM) is unique in the aspect of studying living biological sample under physiological conditions. AFM was invented in 1986 by Binnig and Gerber and began in the early 1990’s to be implemented in life science. AFM can give a detailed three dimensional image of an intact cell......, but also be used to examine the nanomechanical properties on single cell level. These qualities make AFM a powerful tool in biology and can be used to examine both morphological and nanomechanical response to various liquids environments, such as osmotic pressure, but also the effects of e.g. antibiotic...

  12. Asymmetric active nano-particles for directive near-field radiation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Thorsen, Rasmus O.

    2016-01-01

    In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms...... of radiated power, near-field and power flow distributions as well as the far-field directivity....

  13. High-accuracy measurement and compensation of grating line-density error in a tiled-grating compressor

    Science.gov (United States)

    Zhao, Dan; Wang, Xiao; Mu, Jie; Li, Zhilin; Zuo, Yanlei; Zhou, Song; Zhou, Kainan; Zeng, Xiaoming; Su, Jingqin; Zhu, Qihua

    2017-02-01

    The grating tiling technology is one of the most effective means to increase the aperture of the gratings. The line-density error (LDE) between sub-gratings will degrade the performance of the tiling gratings, high accuracy measurement and compensation of the LDE are of significance to improve the output pulses characteristics of the tiled-grating compressor. In this paper, the influence of LDE on the output pulses of the tiled-grating compressor is quantitatively analyzed by means of numerical simulation, the output beams drift and output pulses broadening resulting from the LDE are presented. Based on the numerical results we propose a compensation method to reduce the degradations of the tiled grating compressor by applying angular tilt error and longitudinal piston error at the same time. Moreover, a monitoring system is setup to measure the LDE between sub-gratings accurately and the dispersion variation due to the LDE is also demonstrated based on spatial-spectral interference. In this way, we can realize high-accuracy measurement and compensation of the LDE, and this would provide an efficient way to guide the adjustment of the tiling gratings.

  14. Nonlinear dynamics in micromechanical and nanomechanical resonators and oscillators

    Science.gov (United States)

    Dunn, Tyler

    In recent years, the study of nonlinear dynamics in microelectromechanical and nanoelectromechanical systems (MEMS and NEMS) has attracted considerable attention, motivated by both fundamental and practical interests. One example is the phenomenon of stochastic resonance. Previous measurements have established the presence of this counterintuitive effect in NEMS, showing that certain amounts of white noise can effectively amplify weak switching signals in nanomechanical memory elements and switches. However, other types of noise, particularly noises with 1/falpha spectra, also bear relevance in these and many other systems. At a more fundamental level, the role which noise color plays in stochastic resonance remains an open question in the field. To these ends, this work presents systematic measurements of stochastic resonance in a nanomechanical resonator using 1/f alpha and Ornstein-Uhlenbeck noise types. All of the studied noise spectra induce stochastic resonance, proving that colored noise can also be beneficial; however, stronger noise correlations suppress the effect, decreasing the maximum signal-to-noise ratio and increasing the optimal noise intensity. Evidence suggests that 1/falpha noise spectra with increasing noise color lead to increasingly asymmetric switching, reducing the achievable amplification. Another manifestly nonlinear effect anticipated in these systems is modal coupling. Measurements presented here demonstrate interactions between various mode types on a wide scale, providing the first reported observations of coupling in bulk longitudinal modes of MEMS. As a result of anharmonic elastic effects, each mode shifts in frequency by an amount proportional to the squared displacement (or energy) of a coupled mode. Since all resonator modes couple in this manner, these effects enable nonlinear measurement of energy and mechanical nonlinear signal processing across a wide range of frequencies. Finally, while these experiments address nonlinear

  15. Plasmonic Optical Fiber-Grating Immunosensing: A Review.

    Science.gov (United States)

    Guo, Tuan; González-Vila, Álvaro; Loyez, Médéric; Caucheteur, Christophe

    2017-11-26

    Plasmonic immunosensors are usually made of a noble metal (in the form of a film or nanoparticles) on which bioreceptors are grafted to sense analytes based on the antibody/antigen or other affinity mechanism. Optical fiber configurations are a miniaturized counterpart to the bulky Kretschmann prism and allow easy light injection and remote operation. To excite a surface plasmon (SP), the core-guided light is locally outcoupled. Unclad optical fibers were the first configurations reported to this end. Among the different architectures able to bring light in contact with the surrounding medium, a great quantity of research is today being conducted on metal-coated fiber gratings photo-imprinted in the fiber core, as they provide modal features that enable SP generation at any wavelength, especially in the telecommunication window. They are perfectly suited for use with cost-effective high-resolution interrogators, allowing both a high sensitivity and a low limit of detection to be reached in immunosensing. This paper will review recent progress made in this field with different kinds of gratings: uniform, tilted and eccentric short-period gratings as well as long-period fiber gratings. Practical cases will be reported, showing that such sensors can be used in very small volumes of analytes and even possibly applied to in vivo diagnosis.

  16. Plasmonic Optical Fiber-Grating Immunosensing: A Review

    Directory of Open Access Journals (Sweden)

    Tuan Guo

    2017-11-01

    Full Text Available Plasmonic immunosensors are usually made of a noble metal (in the form of a film or nanoparticles on which bioreceptors are grafted to sense analytes based on the antibody/antigen or other affinity mechanism. Optical fiber configurations are a miniaturized counterpart to the bulky Kretschmann prism and allow easy light injection and remote operation. To excite a surface plasmon (SP, the core-guided light is locally outcoupled. Unclad optical fibers were the first configurations reported to this end. Among the different architectures able to bring light in contact with the surrounding medium, a great quantity of research is today being conducted on metal-coated fiber gratings photo-imprinted in the fiber core, as they provide modal features that enable SP generation at any wavelength, especially in the telecommunication window. They are perfectly suited for use with cost-effective high-resolution interrogators, allowing both a high sensitivity and a low limit of detection to be reached in immunosensing. This paper will review recent progress made in this field with different kinds of gratings: uniform, tilted and eccentric short-period gratings as well as long-period fiber gratings. Practical cases will be reported, showing that such sensors can be used in very small volumes of analytes and even possibly applied to in vivo diagnosis.

  17. Research on robot navigation vision sensor based on grating projection stereo vision

    Science.gov (United States)

    Zhang, Xiaoling; Luo, Yinsheng; Lin, Yuchi; Zhu, Lei

    2016-10-01

    A novel visual navigation method based on grating projection stereo vision for mobile robot in dark environment is proposed. This method is combining with grating projection profilometry of plane structured light and stereo vision technology. It can be employed to realize obstacle detection, SLAM (Simultaneous Localization and Mapping) and vision odometry for mobile robot navigation in dark environment without the image match in stereo vision technology and without phase unwrapping in the grating projection profilometry. First, we research the new vision sensor theoretical, and build geometric and mathematical model of the grating projection stereo vision system. Second, the computational method of 3D coordinates of space obstacle in the robot's visual field is studied, and then the obstacles in the field is located accurately. The result of simulation experiment and analysis shows that this research is useful to break the current autonomous navigation problem of mobile robot in dark environment, and to provide the theoretical basis and exploration direction for further study on navigation of space exploring robot in the dark and without GPS environment.

  18. Nonlinearity and nonclassicality in a nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Teklu, Berihu [Clermont Universite, Blaise Pascal University, CNRS, PHOTON-N2, Institut Pascal, Aubiere Cedex (France); Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Paris, Matteo G.A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy)

    2015-12-15

    We address quantitatively the relationship between the nonlinearity of a mechanical resonator and the nonclassicality of its ground state. In particular, we analyze the nonclassical properties of the nonlinear Duffing oscillator (being driven or not) as a paradigmatic example of a nonlinear nanomechanical resonator. We first discuss how to quantify the nonlinearity of this system and then show that the nonclassicality of the ground state, as measured by the volume occupied by the negative part of the Wigner function, monotonically increases with the nonlinearity in all the working regimes addressed in our study. Our results show quantitatively that nonlinearity is a resource to create nonclassical states in mechanical systems. (orig.)

  19. Monitoring the hydration of DNA self-assembled monolayers using an extensional nanomechanical resonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Kosaka, Priscila; Tamayo, Javier

    2012-01-01

    We have fabricated an ultrasensitive nanomechanical resonator based on the extensional vibration mode to weigh the adsorbed water on self-assembled monolayers of DNA as a function of the relative humidity. The water adsorption isotherms provide the number of adsorbed water molecules per nucleotid...

  20. High-Density Near-Field Optical Disc Recording

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Ide, Naoki; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2005-05-01

    We developed a high-density near-field optical recording disc system using a solid immersion lens. The near-field optical pick-up consists of a solid immersion lens with a numerical aperture of 1.84. The laser wavelength for recording is 405 nm. In order to realize the near-field optical recording disc, we used a phase-change recording media and a molded polycarbonate substrate. A clear eye pattern of 112 GB capacity with 160 nm track pitch and 50 nm bit length was observed. The equivalent areal density is 80.6 Gbit/in2. The bottom bit error rate of 3 tracks-write was 4.5× 10-5. The readout power margin and the recording power margin were ± 30.4% and ± 11.2%, respectively.

  1. Non-contact transportation using near-field acoustic levitation

    Science.gov (United States)

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described.

  2. Radiation Entropy and Near-Field Thermophotovoltaics

    Science.gov (United States)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  3. The geochemistry of the near-field

    International Nuclear Information System (INIS)

    McKinley, I.G.

    1985-10-01

    This report describes a study of the Swiss disposal concept used in 'Project Gewaehr 1985' safety analysis. The main components of the near-field of a high level waste repository are the waste glass matrix, the thick steel canister and the surrounding backfill of compressed bentonite. In this report it is concluded that mineralogical alteration of the backfill will be negligibly small over the million year period considered. Its physical and chemical properties can thus be relied on for such a period. The canister will retain its integrity for > 10/sup 3/ y and thereafter will act as an Eh/pH buffer. The near-field buffers ensure more alkaline and reducing conditions than in the far-field. Complete degradation of the glass matrix will take > 10/sup 5/ years and nuclide release will be limited by their congruent dissolution although it may be further constrained by low solubility. Diffusion of dissolved nuclides through the backfill is so slow that many species decay to insignificance within it. The large uptake capacity of the bentonite also significantly extends the release duration for longer lived, non-solubility limited nuclides thus decreasing output mixima. Possible perturbing factors such as radiolysis and hydrogen production by anoxic corrosion are of little importance but modelling of speciation/solubility in the near-field and, in particular, colloid formation and mobility are identified as areas in which more work is required. Although the main analysis aims to err on the side of conservatism, the extent of such pessimism is assessed in a 'realistic' appraisal of the near-field. This suggests that the engineered barriers will prevent any radiologically significant releases over periods in excess of a million years which would strengthen their role in the multiple barrier safety concept. (author)

  4. Deformation of nanotubes in peeling contact with flat substrate: An in situ electron microscopy nanomechanical study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoming; Zheng, Meng; Wei, Qing; Ke, Changhong, E-mail: cke@binghamton.edu [Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902-6000 (United States); Signetti, Stefano [Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento (Italy); Pugno, Nicola M. [Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento (Italy); Centre for Materials and Microsystems, Fondazione Bruno Kessler, Povo (Trento) (Italy); School of Engineering and Materials Science, Queen Mary University of London, London (United Kingdom)

    2016-04-21

    Peeling of one-dimensional (1D) nanostructures from flat substrates is an essential technique in studying their adhesion properties. The mechanical deformation of the nanostructure in the peeling experiment is critical to the understanding of the peeling process and the interpretation of the peeling measurements, but it is challenging to measure directly and quantitatively at the nanoscale. Here, we investigate the peeling deformation of a bundled carbon nanotube (CNT) fiber by using an in situ scanning electron microscopy nanomechanical peeling technique. A pre-calibrated atomic force microscopy cantilever is utilized as the peeling force sensor, and its back surface acts as the peeling contact substrate. The nanomechanical peeling scheme enables a quantitative characterization of the deformational behaviors of the CNT fiber in both positive and negative peeling configurations with sub-10 nm spatial and sub-nN force resolutions. Nonlinear continuum mechanics models and finite element simulations are employed to interpret the peeling measurements. The measurements and analysis reveal that the structural imperfections in the CNT fiber may have a substantial influence on its peeling deformations and the corresponding peeling forces. The research findings reported in this work are useful to the study of mechanical and adhesion properties of 1D nanostructures by using nanomechanical peeling techniques.

  5. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.

    Science.gov (United States)

    Rodriguez, Gilberto A; Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2014-03-15

    A porous silicon (PSi) grating-coupled Bloch surface and sub-surface wave (BSW/BSSW) biosensor is demonstrated to size selectively detect the presence of both large and small molecules. The BSW is used to sense large immobilized analytes at the surface of the structure while the BSSW that is confined inside but near the top of the structure is used to sensitively detect small molecules. Functionality of the BSW and BSSW modes is theoretically described by dispersion relations, field confinements, and simulated refractive index shifts within the structure. The theoretical results are experimentally verified by detecting two different small chemical molecules and one large 40 base DNA oligonucleotide. The PSi-BSW/BSSW structure is benchmarked against current porous silicon technology and is shown to have a 6-fold higher sensitivity in detecting large molecules and a 33% improvement in detecting small molecules. This is the first report of a grating-coupled BSW biosensor and the first report of a BSSW propagating mode. © 2013 Published by Elsevier B.V.

  6. Holographic Storage of Multiple Coherence Gratings in a Bose-Einstein Condensate

    International Nuclear Information System (INIS)

    Yoshikawa, Yutaka; Torii, Yoshio; Kuga, Takahiro; Nakayama, Kazuyuki

    2007-01-01

    We demonstrate superradiant conversion between a two-mode collective atomic state and a single-mode light field in an elongated cloud of Bose-condensed atoms. Two off-resonant write beams induce superradiant Raman scattering, producing two independent coherence gratings with different wave vectors in the cloud. By applying phase-matched read beams after a controllable delay, the gratings can be selectively converted into the light field also in a superradiant way. Because of the large optical density and the small velocity width of the condensate, a high conversion efficiency of >70% and a long storage time of >120 μs were achieved

  7. RFID Antenna Near-field Characterization Using a New 3D Magnetic Field Probe

    Directory of Open Access Journals (Sweden)

    Kassem Jomaa

    2017-05-01

    Full Text Available In this paper the design of a new 3D magnetic field (H-field probe with a near-field scanning system is presented, then the near electromagnetic fields radiated by a Library RFID system is characterized. The proposed system is developed in order to determine the magnetic near-field emitted by electronic devices. The designed isotropic H-field probe consists of three orthogonal and identical loops each of diameter of 6 mm having 3 turns. The antenna factor of the designed probe is presented for a frequency range from 10 MHz to 1 GHz. The designed probe is tested and validated using a standard passive circuit as a device under test. An RFID reader antenna is also designed and simulated on HFSS (high frequency structural simulator and the radiated magnetic field, obtained by simulations, is then compared to the real measured one above the fabricated circuit. The obtained levels are checked if they satisfy the European and ICNIRP Electromagnetic Fields Guidelines.

  8. Spherical near-field scanning at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Hansen, J. E.; Jensen, F.

    1988-01-01

    The early work (1969-79) on spherical near-field antenna measurements at the Technical University of Denmark (TUD) is outlined. A spherical near-field transmission formula is described and the first probe-corrected spherical near-field measurements are discussed. The TUD-ESA (European Space Agency...

  9. The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques

    International Nuclear Information System (INIS)

    Sorelli, Luca; Constantinides, Georgios; Ulm, Franz-Josef; Toutlemonde, Francois

    2008-01-01

    Advances in engineering the microstructure of cementitious composites have led to the development of fiber reinforced Ultra High Performance Concretes (UHPC). The scope of this paper is twofold, first to characterize the nano-mechanical properties of the phases governing the UHPC microstructure by means of a novel statistical nanoindentation technique; then to upscale those nanoscale properties, by means of continuum micromechanics, to the macroscopic scale of engineering applications. In particular, a combined investigation of nanoindentation, scanning electron microscope (SEM) and X-ray Diffraction (XRD) indicates that the fiber-matrix transition zone is relatively defect free. On this basis, a four-level multiscale model with defect free interfaces allows to accurately determine the composite stiffness from the measured nano-mechanical properties. Besides evidencing the dominant role of high density calcium silicate hydrates and the stiffening effect of residual clinker, the suggested model may become a useful tool for further optimizing cement-based engineered composites

  10. Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guohua [Nanotribology Laboratory for Information Storage and MEMS/NEMS, Ohio State University, 650 Ackerman Road, Suite 255, Columbus, OH 43202 (United States); Bhushan, Bharat [Nanotribology Laboratory for Information Storage and MEMS/NEMS, Ohio State University, 650 Ackerman Road, Suite 255, Columbus, OH 43202 (United States)]. E-mail: bhushan.2@osu.edu

    2006-06-15

    Human hair ({approx}50-100 {mu}m in diameter) is a nanocomposite biological fiber with well-characterized microstructures, and is of great interest for both cosmetic science and materials science. Characterization of nanotribological and nanomechanical properties of human hair including the coefficient of friction and scratch resistance is essential to develop better shampoo and conditioner products and advance biological and cosmetic science. In this paper, the coefficient of friction and scratch resistance of Caucasian and Asian hair at virgin, chemo-mechanically damaged, and conditioner-treated conditions are measured using a nanoscratch technique with a Nano Indenter II system. The scratch tests were performed on both the single cuticle cell and multiple cuticle cells of each hair sample, and the scratch wear tracks were studied using scanning electron microscopy (SEM) after the scratch tests. The effect of soaking on the coefficient of friction, scratch resistance, hardness and Young's modulus of hair surface were also studied by performing experiments on hair samples which had been soaked in de-ionized water for 5 min. The nanotribological and nanomechanical properties of human hair as a function of hair structure (hair of different ethnicity), damage, treatment and soaking are discussed.

  11. Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique

    International Nuclear Information System (INIS)

    Wei Guohua; Bhushan, Bharat

    2006-01-01

    Human hair (∼50-100 μm in diameter) is a nanocomposite biological fiber with well-characterized microstructures, and is of great interest for both cosmetic science and materials science. Characterization of nanotribological and nanomechanical properties of human hair including the coefficient of friction and scratch resistance is essential to develop better shampoo and conditioner products and advance biological and cosmetic science. In this paper, the coefficient of friction and scratch resistance of Caucasian and Asian hair at virgin, chemo-mechanically damaged, and conditioner-treated conditions are measured using a nanoscratch technique with a Nano Indenter II system. The scratch tests were performed on both the single cuticle cell and multiple cuticle cells of each hair sample, and the scratch wear tracks were studied using scanning electron microscopy (SEM) after the scratch tests. The effect of soaking on the coefficient of friction, scratch resistance, hardness and Young's modulus of hair surface were also studied by performing experiments on hair samples which had been soaked in de-ionized water for 5 min. The nanotribological and nanomechanical properties of human hair as a function of hair structure (hair of different ethnicity), damage, treatment and soaking are discussed

  12. In situ TEM visualization of superior nanomechanical flexibility of shear-exfoliated phosphorene.

    Science.gov (United States)

    Xu, Feng; Ma, Hongyu; Lei, Shuangying; Sun, Jun; Chen, Jing; Ge, Binghui; Zhu, Yimei; Sun, Litao

    2016-07-14

    Recently discovered atomically thin black phosphorus (called phosphorene) holds great promise for applications in flexible nanoelectronic devices. Experimentally identifying and characterizing nanomechanical properties of phosphorene are challenging, but also potentially rewarding. This work combines for the first time in situ transmission electron microscopy (TEM) imaging and an in situ micro-manipulation system to directly visualize the nanomechanical behaviour of individual phosphorene nanoflakes. We demonstrate that the phosphorene nanoflakes can be easily bent, scrolled, and stretched, showing remarkable mechanical flexibility rather than fracturing. An out-of-plane plate-like bending mechanism and in-plane tensile strain of up to 34% were observed. Moreover, a facile liquid-phase shear exfoliation route has been developed to produce such mono-layer and few-layer phosphorene nanoflakes in organic solvents using only a household kitchen blender. The effects of surface tensions of the applied solvents on the ratio of average length and thickness (L/T) of the nanoflakes were studied systematically. The results reported here will pave the way for potential industrial-scale applications of flexible phosphorene nanoelectronic devices.

  13. Perforated SiN membrane resonators for nanomechanical IR spectroscopy poster

    DEFF Research Database (Denmark)

    Kurek, Maksymilian; Carnoy, Matthias; Boisen, Anja

    Constant progress in micro- and nanofabrication provides a great opportunity in development of micro- and nanomechanical resonatorsthat can be used for sensing purposes. These sensors usually consist of singly-clamped cantilever beams, doubly-clamped bridges ormembranes that exhibit resonant......, lateral dimension of1×1 mm2 and 2 µm perforation grid pitch were used instead of strings which makes the IR beam alignment significantly simpler whilemaintaining similar sampling efficiency and photothermal IR absorption sensitivity....

  14. Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter

    International Nuclear Information System (INIS)

    Deng Yang; Liu Yuan; Gao Dingshan

    2011-01-01

    We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.

  15. Polarization resolved imaging with a reflection near-field optical microscope

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Xiao, Mufei; Hvam, Jørn Märcher

    1999-01-01

    Using a rigorous microscopic point-dipole description of probe-sample interactions, we study imaging with a reflection scanning near-field optical microscope. Optical content, topographical artifacts, sensitivity window-i.e., the scale on which near-field optical images represent mainly optical...... configuration is preferable to the cross-linear one, since it ensures more isotropic (in the surface plane) near-field imaging of surface features. The numerical results are supported with experimental near-field images obtained by using a reflection microscope with an uncoated fiber tip....

  16. An ultra-high-vacuum multiple grating chamber and scan drive with improved grating change

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Holly, D.J.; Middleton, F.H.; Wallace, D.J.; Wisconsin Univ., Stoughton, WI; Wisconsin Univ., Stoughton, WI

    1989-01-01

    We describe a new grating chamber and scan drive which has been designed, built, and tested by Physical Sciences Laboratory of the University of Wisconsin for the new high flux, high-resolution spectroscopy branch line of the TOK hybrid wiggler/undulator on the NSLS VUV ring. The chamber will contain spherical gratings to be used in the Spherical Grating Monochromator (SGM) configuration introduced by Chen and Sette. The grating chamber houses five 180 mm x 35 mm x 30 mm gratings capable of scanning a range of 12 degree (-14 degree to +8 degree with respect to the incoming beam direction) for VUV and soft X-ray diffraction. The gratings can be switched and precisely indexed while under ultra-high vacuum (UHV) at any scan angle and are mechanically isolated from the vacuum chamber to prevent inaccuracies due to chamber distortions. The gratings can separately be adjusted for height, yaw, pitch, and roll, with the latter three performed while in vacuo. The scan drive provides a resolution of 0.03 arc sec with linearity over the 12 degree range of ∼1.5 arc sec and absolute reproducibility of 1 arc sec. 5 refs., 5 figs

  17. Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase.

    Science.gov (United States)

    Gagné, Mathieu; Loranger, Sébastien; Lapointe, Jerome; Kashyap, Raman

    2014-01-13

    The fabrication and characterization of high quality ultra-long (up to 1m) fiber Bragg gratings (FBGs) is reported. A moving phase mask and an electro-optic phase-modulation (EOPM) based interferometer are used with a high precision 1-meter long translation stage and compared. A novel interferometer position feedback scheme to simplify the fabrication process is proposed and analyzed. The ultra-long uniform FBGs show near perfect characteristics of a few picometers bandwidth, symmetrical, near theory-matching group-delay and transmission spectra. Grating characterization using optical backscattering reflectometry and chirped FBGs are also demonstrated. Limitations of the schemes are discussed.

  18. Design and fabrication of an active polynomial grating for soft-X-ray monochromators and spectrometers

    CERN Document Server

    Chen, S J; Perng, S Y; Kuan, C K; Tseng, T C; Wang, D J

    2001-01-01

    An active polynomial grating has been designed for use in synchrotron radiation soft-X-ray monochromators and spectrometers. The grating can be dynamically adjusted to obtain the third-order-polynomial surface needed to eliminate the defocus and coma aberrations at any photon energy. Ray-tracing results confirm that a monochromator or spectrometer based on this active grating has nearly no aberration limit to the overall spectral resolution in the entire soft-X-ray region. The grating substrate is made of a precisely milled 17-4 PH stainless steel parallel plate, which is joined to a flexure-hinge bender shaped by wire electrical discharge machining. The substrate is grounded into a concave cylindrical shape with a nominal radius and then polished to achieve a roughness of 0.45 nm and a slope error of 1.2 mu rad rms. The long trace profiler measurements show that the active grating can reach the desired third-order polynomial with a high degree of figure accuracy.

  19. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    Energy Technology Data Exchange (ETDEWEB)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru; Soifer, V. A. [Russian Academy of Sciences, Image Processing Systems Institute (Russian Federation)

    2015-11-15

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has been obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.

  20. Color separation gratings for diverting the unconverted light away from the NIF target

    International Nuclear Information System (INIS)

    Dixit, S.N.; Rushford, M.C.; Thomas, I.M.; Herman, S.M.; Britten, J.A.; Shore, B.W.; Perry, M.D.

    1997-01-01

    Most of the glass laser based inertial confinement fusion systems around the world today employ non-linear frequency conversion for converting the 1.053 micrometer light at the fundamental frequency (referred to as 1ω light) to either its second harmonic (called 2ω) at 527 nm or to its third harmonic (called 3ω) at 351 nm. Shorter wavelengths are preferred for laser fusion because of the improved coupling of the laser light to the fusion targets due to reduced fast electron production at shorter wavelengths. The frequency conversion process, however, is only about 60-70% efficient and the residual 30-40% of the energy remains at 1ω and 2ω frequencies. Color separation gratings (CSGs) offer a versatile approach to reducing and possibly eliminating the unconverted light at the target region. A CSG consists of a three- level lamellar grating designed so that nearly all of the 3ω light passes through undiffracted while the residual 1ω and 2ω energy is diverted into higher diffraction orders. The diffraction angle is determined solely by the grating period. We have demonstrated the concept of using a color separation grating. We fabricated a 345 micrometer period CSG in fused silica using lithographic processes and wet etching. The measured far field indicates that greater than 95% of the incident light is preserved in the 3ω zeroth order while less than 5% of unconverted 1ω and 2ω light is remaining in the zeroth order. We would like to add that diffractive optics fabricated in fused silica by wet etching in hydrofluoric acid should have high damage threshold. Our experience suggests that the damage threshold of the etched substrate is at least as high as the unetched part. 6 refs., 4 figs., 1 tab

  1. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.

    Science.gov (United States)

    Zhang, Xiao; Ren, Juan; Wang, Jingren; Li, Shixie; Zou, Qingze; Gao, Nan

    2018-08-01

    Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals. © 2017 Wiley Periodicals, Inc.

  2. Effect of high energy X-ray irradiation on the nano-mechanical properties of human enamel and dentine

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xue; Zhang, Jing Yang; Cheng, Iek Ka [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu (China); Li, Ji Yao, E-mail: jiyao_li@aliyun.com [West China School of Stomatology, Sichuan University, Chengdu (China)

    2016-05-01

    Radiotherapy for malignancies in the head and neck can cause common complications that can result in tooth damage that are also known as radiation caries. The aim of this study was to examine damage to the surface topography and calculate changes in friction behavior and the nano-mechanical properties (elastic modulus, nano hardness and friction coefficient) of enamel and dentine from extracted human third molars caused by exposure to radiation. Enamel and dentine samples from 50 human third molars were randomly assigned to four test groups or a control group. The test groups were exposed to high energy X-rays at 2 Gy/day, 5 days/week for 5 days (10 Gy group), 15 days (30 Gy group), 25 days (50 Gy group), 35 days (70 Gy group); the control group was not exposed. The nano hardness, elastic modulus, and friction coefficient were analyzed using a Hysitron Triboindenter. The nano-mechanical properties of both enamel and dentine showed significant dose-response relationships. The nano hardness and elastic modulus were most variable between 30-50 Gy, while the friction coefficient was most variable between 0-10 Gy for dentine and 30-50 Gy for enamel. After exposure to X-rays, the fracture resistance of the teeth clearly decreased (rapidly increasing friction coefficient with increasing doses under the same load), and they were more fragile. These nano-mechanical changes in dental hard tissue may increase the susceptibility to caries. Radiotherapy caused nano-mechanical changes in dentine and enamel that were dose related. The key doses were 30-50 Gy and the key time points occurred during the 15{sup th}-25{sup th} days of treatment, which is when application of measures to prevent radiation caries should be considered. (author)

  3. Effect of high energy X-ray irradiation on the nano-mechanical properties of human enamel and dentine

    Directory of Open Access Journals (Sweden)

    Xue LIANG

    2016-01-01

    Full Text Available Abstract Radiotherapy for malignancies in the head and neck can cause common complications that can result in tooth damage that are also known as radiation caries. The aim of this study was to examine damage to the surface topography and calculate changes in friction behavior and the nano-mechanical properties (elastic modulus, nanohardness and friction coefficient of enamel and dentine from extracted human third molars caused by exposure to radiation. Enamel and dentine samples from 50 human third molars were randomly assigned to four test groups or a control group. The test groups were exposed to high energy X-rays at 2 Gy/day, 5 days/week for 5 days (10 Gy group, 15 days (30 Gy group, 25 days (50 Gy group, 35 days (70 Gy group; the control group was not exposed. The nanohardness, elastic modulus, and friction coefficient were analyzed using a Hysitron Triboindenter. The nano-mechanical properties of both enamel and dentine showed significant dose-response relationships. The nanohardness and elastic modulus were most variable between 30-50 Gy, while the friction coefficient was most variable between 0-10 Gy for dentine and 30-50 Gy for enamel. After exposure to X-rays, the fracture resistance of the teeth clearly decreased (rapidly increasing friction coefficient with increasing doses under the same load, and they were more fragile. These nano-mechanical changes in dental hard tissue may increase the susceptibility to caries. Radiotherapy caused nano-mechanical changes in dentine and enamel that were dose related. The key doses were 30-50 Gy and the key time points occurred during the 15th-25th days of treatment, which is when application of measures to prevent radiation caries should be considered.

  4. Effect of high energy X-ray irradiation on the nano-mechanical properties of human enamel and dentine

    International Nuclear Information System (INIS)

    Liang, Xue; Zhang, Jing Yang; Cheng, Iek Ka; Li, Ji Yao

    2016-01-01

    Radiotherapy for malignancies in the head and neck can cause common complications that can result in tooth damage that are also known as radiation caries. The aim of this study was to examine damage to the surface topography and calculate changes in friction behavior and the nano-mechanical properties (elastic modulus, nano hardness and friction coefficient) of enamel and dentine from extracted human third molars caused by exposure to radiation. Enamel and dentine samples from 50 human third molars were randomly assigned to four test groups or a control group. The test groups were exposed to high energy X-rays at 2 Gy/day, 5 days/week for 5 days (10 Gy group), 15 days (30 Gy group), 25 days (50 Gy group), 35 days (70 Gy group); the control group was not exposed. The nano hardness, elastic modulus, and friction coefficient were analyzed using a Hysitron Triboindenter. The nano-mechanical properties of both enamel and dentine showed significant dose-response relationships. The nano hardness and elastic modulus were most variable between 30-50 Gy, while the friction coefficient was most variable between 0-10 Gy for dentine and 30-50 Gy for enamel. After exposure to X-rays, the fracture resistance of the teeth clearly decreased (rapidly increasing friction coefficient with increasing doses under the same load), and they were more fragile. These nano-mechanical changes in dental hard tissue may increase the susceptibility to caries. Radiotherapy caused nano-mechanical changes in dentine and enamel that were dose related. The key doses were 30-50 Gy and the key time points occurred during the 15 th -25 th days of treatment, which is when application of measures to prevent radiation caries should be considered. (author)

  5. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  6. Computational lens for the near field

    DEFF Research Database (Denmark)

    Carney, P. Scott; Franzin, Richard A.; Bozhevolnyi, Sergey I.

    2004-01-01

    A method is presented to reconstruct the structure of a scattering object from data acquired with a photon scanning tunneling microscope . The data may be understood to form a Gabor type near-field hologram and are obtained at a distance from the sample where the field is defocused and normally...

  7. Magnetoresistance and magnetization in submicron ferromagnetic gratings

    Science.gov (United States)

    Shearwood, C.; Blundell, S. J.; Baird, M. J.; Bland, J. A. C.; Gester, M.; Ahmed, H.; Hughes, H. P.

    1994-05-01

    A technique for engineering micron and submicron scale structures from magnetic films of transition metals has been developed using a combination of electron- and ion-beam lithography enabling high-quality arrays of submicron magnetic Fe wires to be fabricated. This process can be used to fabricate novel devices from a variety of metal combinations which would not be possible by the usual liftoff metallization method. The structure and magnetic properties are reported of an epitaxial 25 nm Fe(001)/GaAs(001) film and the wire gratings which are fabricated from it. The width of the wires in the grating is 0.5 μm for all structures studied, but the separation of each wire is varied in the range 0.5 to 16 μm. An artificially induced shape anisotropy field of around 1 kG, consistent with a magnetostatic calculation, was observed for all separations studied. The field dependence of the magneto-optic Kerr effect and magnetoresistance (MR) data is consistent with a twisted magnetization configuration across the width of the sample beneath saturation for transverse applied fields. In this case, the detailed form of the field dependence of the MR is strikingly modified from that observed in the continuous film and is consistent with coherent rotation of the magnetization.

  8. Impact of operation conditions, foulant adsorption, and chemical cleaning on the nanomechanical properties of ultrafiltraion hollow fiber membranes

    KAUST Repository

    Gutierrez, Leonardo

    2018-04-06

    This study analyzed the change in nanomechanical properties of ultrafiltration hollow fiber membranes harvested from pilot-scale units after twelve months of operation. Quantitative Nanomechanical Mapping technique was used to distinguish between adhesion, dissipation, deformation, and modulus while simultaneously generating a topographic image of membranes. Nanomechanical maps of virgin membranes evidenced surfaces of heterogeneous properties and were described by probability density functions. Operating conditions and feed quality exerted an impact on membranes. Clean harvested membranes showed a higher mean modulus and dissipation, and a lower deformation than virgin membranes, indicating stiffer membranes of lower elastic deformation. A significant fraction of these measurements displayed peak values deviating from the distribution; which represents regions of the membrane with properties highly differing from the probability density function. The membrane polymeric material experienced severe physicochemical changes by foulant adsorption and reaction with cleaning agents. Foulant adsorption on membranes was heterogeneous in both morphology and mechanical properties and could not be statistically described. Foulants, i.e., mainly consisting of polysaccharides and proteinaceous structures, displayed low elastic deformation and high roughness and adhesion. The presence of foulants after chemical cleaning and their high adhesion would be a direct nanoscale evidence of irreversible fouling. By the end of the operation, the Trans-Membrane Pressure experienced a 40% increase. The cleaning process was not able to fully recover the initial TMP, indicating irreversible fouling, i.e., permanent change in membrane characteristics and decrease in performance. These results suggest a link between the macroscopic properties and nanomechanical characteristics of membranes. This study advances our nanoscale understanding of the impact of fouling and operating conditions on

  9. Near-field second-harmonic generation from gold nanoellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Celebrano, M; Zavelani-Rossi, M; Polli, D; Cerullo, G [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Biagioni, P; Finazzi, M; Duo, L [LNESS - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Labardi, M; Allegrini, M [CNR-INFM, polyLab, Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Grand, J; Adam, P M; Royer, P [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060 10010 Troyes cedex (France)

    2008-07-01

    Second-harmonic generation from single gold nanofabricated particles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). High peak power femtosecond polarized light pulses at the output of a hollow pyramid aperture allow for efficient second-harmonic imaging, with sub-100-nm spatial resolution and high contrast. The near-field nonlinear response is found to be directly related to both local surface plasmon resonances and particle morphology. The combined analysis of linear and second-harmonic SNOM images allows one to discriminate among near-field scattering, absorption and re-emission processes, which would not be possible with linear techniques alone. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Near-Field Source Localization by Using Focusing Technique

    Science.gov (United States)

    He, Hongyang; Wang, Yide; Saillard, Joseph

    2008-12-01

    We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007) is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics.

  11. Near-Field Source Localization by Using Focusing Technique

    Directory of Open Access Journals (Sweden)

    Joseph Saillard

    2008-12-01

    Full Text Available We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007 is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics

  12. Deep-etched sinusoidal polarizing beam splitter grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lv, Peng

    2010-04-01

    A sinusoidal-shaped fused-silica grating as a highly efficient polarizing beam splitter (PBS) is investigated based on the simplified modal method. The grating structure depends mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These ratios can be used as a guideline for the grating design at different wavelengths. A sinusoidal-groove PBS grating is designed at a wavelength of 1310 nm under Littrow mounting, and the transmitted TM and TE polarized waves are mainly diffracted into the zeroth order and the -1st order, respectively. The grating profile is optimized by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient (>95.98%) over the O-band wavelength range (1260-1360 nm) for both TE and TM polarizations. The sinusoidal grating can exhibit higher diffraction efficiency, larger extinction ratio, and less reflection loss than the rectangular-groove PBS grating. By applying wet etching technology on the rectangular grating, which was manufactured by holographic recording and inductively coupled plasma etching technology, the sinusoidal grating can be approximately fabricated. Experimental results are in agreement with theoretical values.

  13. The effect of shape anisotropy in giant magnetostrictive fiber Bragg grating sensors

    International Nuclear Information System (INIS)

    Pacheco, C J; Bruno, A C

    2010-01-01

    We study the role of shape anisotropy on the strain response of magnetic field sensors based on square cuboids with giant magnetostriction and fiber Bragg gratings. We measured a maximum sensitivity of 18 µε mT −1 when a biasing uniform field of 15 mT was applied to a Tb 0.3 Dy 0.7 Fe 1.92 cuboid with an aspect ratio of 5.0. When gradient fields were applied, we were able to measure a significant change in the magnetostrictive response at different positions, attaching fiber Bragg gratings along the cuboid face containing the main magnetostrictive axis. Depending on the magnitude of the applied gradient, the magnetostrictive response was reduced by up to 34%

  14. Design of a sensitive grating-based phase contrast mammography prototype (Conference Presentation)

    Science.gov (United States)

    Arboleda Clavijo, Carolina; Wang, Zhentian; Köhler, Thomas; van Stevendaal, Udo; Martens, Gerhard; Bartels, Matthias; Villanueva-Perez, Pablo; Roessl, Ewald; Stampanoni, Marco

    2017-03-01

    Grating-based phase contrast mammography can help facilitate breast cancer diagnosis, as several research works have demonstrated. To translate this technique to the clinics, it has to be adapted to cover a large field of view within a limited exposure time and with a clinically acceptable radiation dose. This indicates that a straightforward approach would be to install a grating interferometer (GI) into a commercial mammography device. We developed a wave propagation based optimization method to select the most convenient GI designs in terms of phase and dark-field sensitivities for the Philips Microdose Mammography (PMM) setup. The phase sensitivity was defined as the minimum detectable breast tissue electron density gradient, whereas the dark-field sensitivity was defined as its corresponding signal-to-noise Ratio (SNR). To be able to derive sample-dependent sensitivity metrics, a visibility reduction model for breast tissue was formulated, based on previous research works on the dark-field signal and utilizing available Ultra-Small-Angle X-ray Scattering (USAXS) data and the outcomes of measurements on formalin-fixed breast tissue specimens carried out in tube-based grating interferometers. The results of this optimization indicate the optimal scenarios for each metric are different and fundamentally depend on the noise behavior of the signals and the visibility reduction trend with respect to the system autocorrelation length. In addition, since the inter-grating distance is constrained by the space available between the breast support and the detector, the best way we have to improve sensitivity is to count on a small G2 pitch.

  15. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    Science.gov (United States)

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  16. Some variations of the Kristallin-I near-field model

    International Nuclear Information System (INIS)

    Smith, P.A.; Curti, E.

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because they are thought unlikely to occur to a significant degree, or because they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. (author) figs., tabs., refs

  17. Curved VPH gratings for novel spectrographs

    Science.gov (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  18. Motion of Charged Particles near Magnetic Field Discontinuities

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2000-01-01

    The motion of charged particles in slowly changing magnetic fields exhibits adiabatic invariance even in the presence of abrupt magnetic discontinuities. Particles near discontinuities in magnetic fields, what we call ''boundary particles'', are constrained to remain near an arbitrarily fractured boundary even as the particle drifts along the discontinuity. A new adiabatic invariant applies to the motion of these particles

  19. Near-field optical recording based on solid immersion lens system

    Science.gov (United States)

    Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng

    2002-09-01

    Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.

  20. Steering and filtering white light with resonant waveguide gratings

    Science.gov (United States)

    Quaranta, Giorgio; Basset, Guillaume; Martin, Olivier J. F.; Gallinet, Benjamin

    2017-08-01

    A novel thin-film single-layer structure based on resonant waveguide gratings (RWGs) allows to engineer selective color filtering and steering of white light. The unit cell of the structure consists of two adjacent finite-length and cross-talking RWGs, where the former acts as in-coupler and the latter acts as out-coupler. The structure is made by only one nano-imprint lithography replication and one thin film layer deposition, making it fully compatible with up-scalable fabrication processes. We characterize a fabricated optical security element designed to work with the flash and the camera of a smartphone in off-axis light steering configuration, where the pattern is revealed only by placing the smartphone in the proper position. Widespread applications are foreseen in a variety of fields, such as multifocal or monochromatic lenses, solar cells, biosensors, security devices and seethrough optical combiners for near-eye displays.

  1. Thermodynamics of the near field

    International Nuclear Information System (INIS)

    Apps, J.A.

    1985-01-01

    The near field is normally taken to mean the part of the geologic setting of a repository that is affected by mechanical or thermal perturbations resulting from repository excavations and emplacement of radioactive waste. The near-field host rocks, the waste package, and the intervening backfill constitute a series of engineered and natural barriers that should be designed to initially prevent and subsequently control radionuclide release. Nuclear Regulatory Commission regulations 10 CFR part 60 specify that the waste package must not allow any release of radionuclides for at least 300 years, and preferably 1000 years. Thereafter, the release rate of any radionuclide is not to exceed on part in 100,000 per year of the inventory that is calculated to be present 1000 years after closure. In this paper, the author briefly outlines recent developments and identifies important fundamental research in thermodynamics and related areas that is needed to resolve some of the current uncertainties

  2. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    Science.gov (United States)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  3. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.

    Science.gov (United States)

    Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J

    2012-11-09

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.

  4. Field emission from a single nanomechanical pillar

    International Nuclear Information System (INIS)

    Kim, Hyun S; Qin Hua; Westphall, Michael S; Smith, Lloyd M; Blick, Robert H

    2007-01-01

    We measured field emission from a silicon nanopillar mechanically oscillating between two electrodes. The pillar has a height of about 200 nm and a diameter of 50 nm, allowing resonant mechanical excitations at radio frequencies. The tunnelling barriers for field emission are mechanically modulated via displacement of the gold island on top of the pillar. We present a rich frequency-dependent response of the emission current in the frequency range of 300-400 MHz at room temperature. Modified Fowler-Nordheim field emission is observed and attributed to the mechanical oscillations of the nanopillar

  5. Near-Field Resonance Microwave Tomography and Holography

    Science.gov (United States)

    Gaikovich, K. P.; Smirnov, A. I.; Yanin, D. V.

    2018-02-01

    We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.

  6. Structural and nanomechanical properties of nanocrystalline carbon thin films for photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Ishpal [Department of Physics, Kirorimal College, University of Delhi, Delhi 110007 (India); Panwar, Omvir Singh, E-mail: ospanwar@mail.nplindia.ernet.in; Tripathi, Ravi Kant; Chockalingam, Sreekumar [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, Avanish Kumar [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Kumar, Mahesh [Ultrafast Optoelectronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2015-05-15

    This paper reports the effect of helium gas pressure upon the structural, nanomechanical, and photoconductive properties of nanocrystalline carbon thin (NCT) films deposited by the filtered cathodic jet carbon arc technique. High-resolution transmission electron microscopy images confirm the nanocrystalline nature of the deposited films with different crystallite sizes (3–7 nm). The chemical structure of the deposited films is further analyzed by x-ray photoelectron spectroscopy and Raman spectroscopy, which suggest that the deposited films change from graphitelike to diamondlike, increasing in sp{sup 3} content, with a minor change in the dilution of the inert gas (helium). The graphitic character is regained upon higher dilution of the helium gas, whereupon the films exhibit an increase in sp{sup 2} content. The nanomechanical measurements show that the film deposited at a helium partial pressure of 2.2 × 10{sup −4} has the highest value of hardness (37.39 GPa) and elastic modulus (320.50 GPa). At a light intensity of 100 mW/cm{sup 2}, the NCT films deposited at 2.2 × 10{sup −4} and 0.1 mbar partial pressures of helium gas exhibit good photoresponses of 2.2% and 3.6%, respectively.

  7. Near-field optical microscope using a silicon-nitride probe

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Tack, R.G.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.

    1993-01-01

    Operation of an alternative near-field optical microscope is presented. The microscope uses a microfabricated silicon- nitride probe with integrated cantilever, as originally developed for force microscopy. The cantilever allows routine close contact near-field imaging o­n arbitrary surfaces without

  8. Review of international near-field modeling for high-level waste disposal

    International Nuclear Information System (INIS)

    Apted, M.J.; Andersson, K.; Pescatore, C.

    1993-01-01

    The primary components of nuclear waste repositories that mitigate radionuclide release are the near-field and the far-field subsystems. The near-field encompasses the waste package, which is composed of engineered barriers; the far-field includes the natural barriers. An international survey and review is being conducted on the latest developments in modeling of near-field performance, with particular emphasis on the conceptual and mathematical models for source-term calculations. The objectives of this review will be to establish the status and commonality among models and methods for assessing near-field performance, as well as to identify possible future needs for continued comparison and collaboration. In parallel with the technical evaluation, an international technical Workshop on near-field performance assessment will be held, in association with the Nuclear Energy Agency, on May 11-13, 1993 in Cadarache, France

  9. Optical superimposed vortex beams generated by integrated holographic plates with blazed grating

    Science.gov (United States)

    Zhang, Xue-Dong; Su, Ya-Hui; Ni, Jin-Cheng; Wang, Zhong-Yu; Wang, Yu-Long; Wang, Chao-Wei; Ren, Fei-Fei; Zhang, Zhen; Fan, Hua; Zhang, Wei-Jie; Li, Guo-Qiang; Hu, Yan-Lei; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru

    2017-08-01

    In this paper, we demonstrate that the superposition of two vortex beams with controlled topological charges can be realized by integrating two holographic plates with blazed grating. First, the holographic plate with blazed grating was designed and fabricated by laser direct writing for generating well-separated vortex beam. Then, the relationship between the periods of blazed grating and the discrete angles of vortex beams was systemically investigated. Finally, through setting the discrete angle and different revolving direction of the holographic plates, the composite fork-shaped field was realized by the superposition of two vortex beams in a particular position. The topological charges of composite fork-shaped field (l = 1, 0, 3, and 4) depend on the topological charges of compositional vortex beams, which are well agreed with the theoretical simulation. The method opens up a wide range of opportunities and possibilities for applying in optical communication, optical manipulations, and photonic integrated circuits.

  10. Near-field photon wave mechanics in the Lorenz gauge

    International Nuclear Information System (INIS)

    Keller, Ole

    2007-01-01

    Optical near-field interactions are studied theoretically in the perspective of photon wave mechanics paying particular attention to the dynamics in the wave-vector time domain. A unitary transformation is used to replace the scalar and longitudinal photon variables by so-called near-field and gauge photon variables. Dynamical equations are established for these types of photon variables, and it is shown that these equations are invariant against gauge transformations within the Lorenz gauge. The near-field photon is absent in the free-field limit, and the gauge photon can be eliminated by a suitable gauge transformation. Implicit solutions for the near-field, gauge, and transverse photon variables are obtained and discussed. The general theory is applied to an investigation of transverse photon propagation in a uniform solid-state plasma dominated by the diamagnetic field-matter interaction. It is found that the diamagnetic response can be incorporated in a quantum mechanical wave equation for a massive transverse photon. The Compton wave number of the massive photon equals the plasma wave number of the electron system. A dynamical equation describing the emission of a massive transverse photon from a mesoscopic source embedded in the plasma is finally established

  11. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    Science.gov (United States)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  12. Control and near-field detection of surface plasmon interference patterns.

    Science.gov (United States)

    Dvořák, Petr; Neuman, Tomáš; Břínek, Lukáš; Šamořil, Tomáš; Kalousek, Radek; Dub, Petr; Varga, Peter; Šikola, Tomáš

    2013-06-12

    The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.

  13. Building Practical Apertureless Scanning Near-Field Microscopy

    Science.gov (United States)

    Gungordu, M. Zeki

    The fundamental objective of this study is to establish a functional, practical apertureless type scanning near-field optical microscope, and to figure out the working mechanism behind it. Whereas a far-field microscope can measure the propagating field's components, this gives us little information about the features of the sample. The resolution is limited to about half of the wavelength of the illuminating light. On the other hand, the a-SNOM system enables achieving non-propagating components of the field, which provides more details about the sample's features. It is really difficult to measure because the amplitude of this field decays exponentially when the tip is moved away from the sample. The sharpness of the tip is the only limitation for resolution of the a-SNOM system. Consequently, the sharp tips are achieved by using electrochemical etching, and these tips are used to detect near-field signal. Separating the weak a-SNOM system signals from the undesired background signal, the higher demodulation background suppression is utilized by lock-in detection.

  14. Cosmological models in globally geodesic coordinates. II. Near-field approximation

    International Nuclear Information System (INIS)

    Liu Hongya

    1987-01-01

    A near-field approximation dealing with the cosmological field near a typical freely falling observer is developed within the framework established in the preceding paper [J. Math. Phys. 28, xxxx(1987)]. It is found that for the matter-dominated era the standard cosmological model of general relativity contains the Newtonian cosmological model, proposed by Zel'dovich, as its near-field approximation in the observer's globally geodesic coordinate system

  15. Grating exchange system of independent mirror supported by floating rotary stage

    Science.gov (United States)

    Zhang, Jianhuan; Tao, Jin; Liu, Yan; Nan, Yan

    2015-10-01

    The performance of The Grating Exchange System can satisfy the Thirty Meter Telescope - TMT for astronomical observation WFOS index requirements and satisfy the requirement of accuracy in the grating exchange. It is used to install in the MOBIE and a key device of MOBIE. The Wide Field Optical Spectrograph (WFOS) is one of the three first-light observing capabilities selected by the TMT Science Advisory Committee. The Multi-Object Broadband Imaging Echellette (MOBIE) instrument design concept has been developed to address the WFOS requirements as described in the TMT Science-Based Requirements Document (SRD). The Grating Exchange System uses a new type of separate movement way of three grating devices and a mirror device. Three grating devices with a mirror are able to achieve independence movement. This kind of grating exchange system can effectively solve the problem that the volume of the grating change system is too large and that the installed space of MOBIE instruments is too limit. This system adopts the good stability, high precision of rotary stage - a kind of using air bearing (Air bearing is famous for its ultra-high precision, and can meet the optical accuracy requirement) and rotation positioning feedback gauge turntable to support grating device. And with a kind of device which can carry greater weight bracket fixed on the MOBIE instrument, with two sets of servo motor control rotary stage and the mirror device respectively. And we use the control program to realize the need of exercising of the grating device and the mirror device. Using the stress strain analysis software--SolidWorks for stress and strain analysis of this structure. And then checking the structure of the rationality and feasibility. And prove that this system can realize the positioning precision under different working conditions can meet the requirements of imaging optical grating diffraction efficiency and error by the calculation and optical performance analysis.

  16. Optimization of s-Polarization Sensitivity in Apertureless Near-Field Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Yuika Saito

    2012-01-01

    Full Text Available It is a general belief in apertureless near-field microscopy that the so-called p-polarization configuration, where the incident light is polarized parallel to the axis of the probe, is advantageous to its counterpart, the s-polarization configuration, where the incident light is polarized perpendicular to the probe axis. While this is true for most samples under common near-field experimental conditions, there are samples which respond better to the s-polarization configuration due to their orientations. Indeed, there have been several reports that have discussed such samples. This leads us to an important requirement that the near-field experimental setup should be equipped with proper sensitivity for measurements with s-polarization configuration. This requires not only creation of effective s-polarized illumination at the near-field probe, but also proper enhancement of s-polarized light by the probe. In this paper, we have examined the s-polarization enhancement sensitivity of near-field probes by measuring and evaluating the near-field Rayleigh scattering images constructed by a variety of probes. We found that the s-polarization enhancement sensitivity strongly depends on the sharpness of the apex of near-field probes. We have discussed the efficient value of probe sharpness by considering a balance between the enhancement and the spatial resolution, both of which are essential requirements of apertureless near-field microscopy.

  17. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  18. Visualizing Magnetic domain of Electric Steel using Grating Interferometer at NG6 of NIST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Oh, Oh Sung; Lee, Se Ho; Kim, Dae Seung; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Kim, Jong Yul [KAERI, Daejeon (Korea, Republic of); Kwon, Oh Yeoul [Pohang Iron and Steel Company, Pohang (Korea, Republic of); Hussey, D. S.; Jacobson, D. L.; Lamannad, J. M. [NIST, Gaithersburg (United States)

    2016-05-15

    The Grating Interferometer is one of new imaging techniques provides improved contrast images, Phase Contrast Image and Dark-Field Image, which have never been seen before by conventional radiography. Neutron Dark-Field Imaging (NDFI) suggests new approach for material science providing the scattering image caused by the micro-structure of object. We attracted to the application of NDFI for material science, the electric steel which produce magnetic scattering information especially. In this study, we developed 1 dimensional gratings using gadox filling method to make the Talbot-Lau Interferometer (TLI). The experiment was conducted at cold neutron imaging facility NG6 of National Institute of Standards and Technologies, NIST. We confirmed that the 3 order Talbot-Lau type of neutron grating interferometer which is composed of gratings made by gadox filling method is well operated at cold neutron imaging beamline. NDFI is definitely powerful visualizing tool for material science, especially magnetic materials. In further study, we will research electric steel more in realistic conditions when it is worked as a component of electric motor.

  19. The Flexibility of Pusher Furnace Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.A.

    2016-12-01

    Full Text Available The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression and lengthwise (parallel to the direction of compression, was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise, while the exact position of segments changes the grate flexibility by less than 1%.

  20. A MEMS torsion magnetic sensor with reflective blazed grating integration

    International Nuclear Information System (INIS)

    Long, Liang; Zhong, Shaolong

    2016-01-01

    A novel magnetic sensor based on a permanent magnet and blazed grating is presented in this paper. The magnetic field is detected by measuring the diffracted wavelength of the blazed grating which is changed by the torsion motion of a torsion sensitive micro-electromechanical system (MEMS) structure with a permanent magnet attached. A V-shape grating structure is obtained by wet etching on a (1 0 0) SOI substrate. When the magnet is magnetized in different directions, the in-plane or out-of-plane magnetic field is detected by a sensor. The MEMS magnetic sensor with a permanent magnet is fabricated after analytical design and bulk micromachining processes. The magnetic-sensing capability of the sensor is tested by fiber-optic detection system. The result shows the sensitivities of the in-plane and out-of-plane magnetic fields are 3.6 pm μ T −1 and 5.7 pm μ T −1 , respectively. Due to utilization of the permanent magnet and fiber-optic detection, the sensor shows excellent capability of covering the high-resolution detection of low-frequency signals. In addition, the sensitive direction of the magnetic sensor can be easily switched by varying the magnetized direction of the permanent magnet, which offers a simple way to achieve tri-axis magnetic sensor application. (paper)

  1. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  2. Near-field radiative heat transfer between clusters of dielectric nanoparticles

    International Nuclear Information System (INIS)

    Dong, J.; Zhao, J.M.; Liu, L.H.

    2017-01-01

    In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension. - Highlights: • Near-field radiative heat transfer between clusters of nanoparticles is studied. • The many-body radiative heat transfer theory is applied for rigorous analysis. • The accuracy of equivalent volume spheres approximation is examined. • Clusters with larger fractal dimension have larger radiative thermal conductance. • Many-body interaction inhibits the total radiative thermal conductance.

  3. Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2012-01-01

    . Corresponding samples of fuels, ash deposits and fly ash have provided information on the transformation of inorganics in the boiler. Generally, grate fired boilers provide a fly ash containing high contents of K, Cl and S compared to the fuel ash, while suspension fired boilers fly ash has a composition nearly...... similar to the fuel ash. Inner most biomass deposits are always salt-rich, while thicker deposit layers also contain some Si and Ca. Deposit probe formation rate measurements have been performed in different ways on several boilers. Grate and suspension fired boilers seems to cause similar deposit...... formation rates. Suspension fired boilers generate more fly ash, while grate boilers form a fly ash with a higher fraction of melt formation (and thereby a higher sticking probability) at similar temperatures. For suspension fired units it is observed that wood with a lower ash content than straw gives rise...

  4. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    Science.gov (United States)

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  5. New developments in near-field acoustic holography

    NARCIS (Netherlands)

    Roozen, N.B.; Geerlings, A.C.; Verhaar, B.T.; Vliegenthart, T.

    2007-01-01

    In the field of noise-control engineering, information about the individual strength, andlocation, of the most dominant sources is of vital importance. This information allows theacoustic engineer to take effective measures in his effort to reduce the emitted acoustic noiselevels. Near-field

  6. Near-field levitated quantum optomechanics with nanodiamonds

    Science.gov (United States)

    Juan, M. L.; Molina-Terriza, G.; Volz, T.; Romero-Isart, O.

    2016-08-01

    We theoretically show that the dipole force of an ensemble of quantum emitters embedded in a dielectric nanosphere can be exploited to achieve near-field optical levitation. The key ingredient is that the polarizability from the ensemble of embedded quantum emitters can be larger than the bulk polarizability of the sphere, thereby enabling the use of repulsive optical potentials and consequently the levitation using optical near fields. In levitated cavity quantum optomechanics, this could be used to boost the single-photon coupling by combining larger polarizability to mass ratio, larger field gradients, and smaller cavity volumes while remaining in the resolved sideband regime and at room temperature. A case study is done with a nanodiamond containing a high density of silicon-vacancy color centers that is optically levitated in the evanescent field of a tapered nanofiber and coupled to a high-finesse microsphere cavity.

  7. Near field optics and nanoscopy

    CERN Document Server

    Fillard, J P

    1996-01-01

    This book contains the most recent information on optical nanoscopy. Far-Field and Near-Field properties on e.m. waves are presented which illustrate how optical images can be obtained from sub-micron objects. Scanning Probe techniques and computer processing are covered here. An explanation is given on how propagating photons or evanescent waves can behave over distances shorter than the wavelength, taking into account the presence of small objects. Quantum tunneling of photons is explained comparatively with the electron mechanism. Technical details are given on photon tunneling microscopes.

  8. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  9. 100 MHz high-speed strain monitor using fiber Bragg grating and optical filter applied for magnetostriction measurements of cobaltite at magnetic fields beyond 100 T

    Science.gov (United States)

    Ikeda, Akihiko; Nomura, Toshihiro; Matsuda, Yasuhiro H.; Tani, Shuntaro; Kobayashi, Yohei; Watanabe, Hiroshi; Sato, Keisuke

    2018-05-01

    High-speed 100 MHz strain monitor using fiber Bragg grating (FBG) and an optical filter has been devised for the magnetostriction measurements under ultrahigh magnetic fields. The longitudinal magnetostriction of LaCoO 3 has been measured at room temperature, 115, 7 and 4.2 K up to the maximum magnetic field of 150 T. The field-induced lattice elongations are observed, which are attributed to the spin-state crossover from the low-spin ground state to excited spin-states.

  10. Continuous depth-sensing nano-mechanical characterization of living, fixed and dehydrated cells attached on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yun-Ta; Liao, Jiunn-Der; Chang, Chia-Wei [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Lin, Chou-Ching K [Department of Neurology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Ju, Ming-Shaung, E-mail: jdliao@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2010-07-16

    Continuous depth-sensing nano-indentation on living, fixed and dehydrated fibroblast cells was performed using a dynamic contact module and vertically measured from a pre-contact state to the glass substrate. The nano-indentation tip-on-cell approaches took advantage of finding a contact surface, followed by obtaining a continuous nano-mechanical profile along the nano-indentation depths. In the experiment, serial indentations from the leading edge, i.e., the lamellipodium to nucleus regions of living, fixed and dehydrated fibroblast cells were examined. Nano-indentations on a living cell anchored upon glass substrate were competent in finding the tip-on-cell contact surfaces and cell heights. For the result on the fixed and the dehydrated cells, cellular nano-mechanical properties were clearly characterized by continuous harmonic contact stiffness (HCS) measurements. The relations of HCS versus measured displacement, varied from the initial tip-on-cell contact to the glass substrate, were presumably divided into three stages, respectively induced by cellular intrinsic behavior, the substrate-dominant property, and the substrate property. This manifestation is beneficial to elucidate how the underlying substrate influences the interpretation of the nano-mechanical property of thin soft matter on a hard substrate. These findings, based upon continuous depth-sensing nano-indentations, are presumably valuable as a reference to related work, e.g., accomplished by atomic force microscopy.

  11. Continuous depth-sensing nano-mechanical characterization of living, fixed and dehydrated cells attached on a glass substrate

    International Nuclear Information System (INIS)

    Yang, Yun-Ta; Liao, Jiunn-Der; Chang, Chia-Wei; Lin, Chou-Ching K; Ju, Ming-Shaung

    2010-01-01

    Continuous depth-sensing nano-indentation on living, fixed and dehydrated fibroblast cells was performed using a dynamic contact module and vertically measured from a pre-contact state to the glass substrate. The nano-indentation tip-on-cell approaches took advantage of finding a contact surface, followed by obtaining a continuous nano-mechanical profile along the nano-indentation depths. In the experiment, serial indentations from the leading edge, i.e., the lamellipodium to nucleus regions of living, fixed and dehydrated fibroblast cells were examined. Nano-indentations on a living cell anchored upon glass substrate were competent in finding the tip-on-cell contact surfaces and cell heights. For the result on the fixed and the dehydrated cells, cellular nano-mechanical properties were clearly characterized by continuous harmonic contact stiffness (HCS) measurements. The relations of HCS versus measured displacement, varied from the initial tip-on-cell contact to the glass substrate, were presumably divided into three stages, respectively induced by cellular intrinsic behavior, the substrate-dominant property, and the substrate property. This manifestation is beneficial to elucidate how the underlying substrate influences the interpretation of the nano-mechanical property of thin soft matter on a hard substrate. These findings, based upon continuous depth-sensing nano-indentations, are presumably valuable as a reference to related work, e.g., accomplished by atomic force microscopy.

  12. Near-field mapping by laser ablation of PMMA coatings

    DEFF Research Database (Denmark)

    Fiutowski, J.; Maibohm, C.; Kostiucenko, O.

    2011-01-01

    The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field...... that the different stages in the ablation process can be controlled and characterized making the technique suitable for characterizing optical near-fields of metal nanostructures....

  13. AFM lithography of aluminum for fabrication of nanomechanical systems

    DEFF Research Database (Denmark)

    Davis, Zachary James; Abadal, G.; Hansen, Ole

    2003-01-01

    Nanolithography by local anodic oxidation of surfaces using atomic force microscopy (AFM) has proven to be more reproducible when using dynamic, non-contact mode. Hereby, the tip/sample interaction forces are reduced dramatically compared to contact mode, and thus tip wear is greatly reduced....... Anodic oxidation of Al can be used for fabricating nanomechanical systems, by using the Al oxide as a highly selective dry etching mask. In our experiments, areas as large as 2 mum x 3 mum have been oxidized repeatedly without any sign of tip-wear. Furthermore, line widths down to 10 nm have been...

  14. The FIREBall-2 UV sample grating efficiency at 200-208nm

    Science.gov (United States)

    Quiret, S.; Milliard, B.; Grange, R.; Lemaitre, G. R.; Caillat, A.; Belhadi, M.; Cotel, A.

    2014-07-01

    The FIREBall-2 (Faint Intergalactic Redshifted Emission Balloon-2) is a balloon-borne ultraviolet spectro-imaging mission optimized for the study of faint diffuse emission around galaxies. A key optical component of the new spectrograph design is the high throughput cost-effective holographic 2400 ℓ =mm, 110x130mm aspherized reflective grating used in the range 200 - 208nm, near 28°deviation angle. In order to anticipate the efficiency in flight conditions, we have developed a PCGrate model for the FIREBall grating calibrated on linearly polarized measurements at 12° deviation angle in the range 240-350nm of a 50x50mm replica of the same master selected for the flight grating. This model predicts an efficiency within [64:7; 64:9]+/-0:7% (S polarization) and [38:3; 45]+/-2:2% (P-polarization) for the baseline aluminum coated grating with an Al2O3 natural oxidation layer and within [63:5; 65] +/-1% (S-polarization) and [51:3; 54:8] +/-2:8% (P-polarization) for an aluminum plus a 70nm MgF2 coating, in the range 200 - 208nm and for a 28°deviation angle. The model also shows there is room for significant improvements at shorter wavelengths, of interest for future deep UV spectroscopic missions.

  15. Talbot Carpet Simulation for X-ray grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngju; Oh, Ohsung; Jeong, Hanseong; Kim, Jeongho; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Kim, Jongyul; Moon, Myungkook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this study, Talbot carpet simulator has been developed to visualize the X-ray grating interference patterns in grating interferometer. We have simulated X-ray interference for a variety of simulations and demonstrated a few examples in this summary. Grating interferometer produces interference of X-ray called Talbot pattern with gratings manufactured in micro scale. Talbot pattern is self-images of phase grating which develops interference as beam splitter that is one of gratings consisted of interferometer. As the other gratings, there are source grating makes coherence and analyze grating is used to analyze interference onto detector. Talbot carpet has been studied as the beam behavior which is distinguished with common X-ray imaging systems. It is helpful to understand grating interferometer and possible to expect beams' oscillation for designing theoretically. We confirm pattern has periodicity produced by interference after pi and pi/2 phase grating and changes in the perpendicular direction to entrance face according to phase objects.

  16. Imaging properties of high aspect ratio absorption gratings for use in preclinical x-ray grating interferometry.

    Science.gov (United States)

    Trimborn, Barbara; Meyer, Pascal; Kunka, Danays; Zuber, Marcus; Albrecht, Frederic; Kreuer, Sascha; Volk, Thomas; Baumbach, Tilo; Koenig, Thomas

    2016-01-21

    X-ray grating interferometry is one among various methods that allow extracting the so-called phase and visibility contrasts in addition to the well-known transmission images. Crucial to achieving a high image quality are the absorption gratings employed. Here, we present an in-depth analysis of how the grating type and lamella heights influence the final images. Benchmarking gratings of two different designs, we show that a frequently used proxy for image quality, a grating's so-called visibility, is insufficient to predict contrast-to-noise ratios (CNRs). Presenting scans from an excised rat lung, we demonstrate that the CNRs obtained for transmission and visibility images anti-correlate. This is explained by the stronger attenuation implied by gratings that are engineered to provide high visibilities by means of an increased lamella height. We show that even the visibility contrast can suffer from this effect when the associated reduced photon flux on the detector is not outweighed by a corresponding gain in visibility. Resulting in an inevitable trade-off between the quality of the two contrasts, the question of how an optimal grating should be designed can hence only be answered in terms of Pareto optimality.

  17. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    Directory of Open Access Journals (Sweden)

    Grégory Francius

    Full Text Available The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM and electrokinetics (electrophoresis. Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus. From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively. Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the

  18. Some variations of the Kristallin-I near-field model

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P A; Curti, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because (i) they are thought unlikely to occur to a significant degree, or because (ii) they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. This work addresses the following topics: - radionuclide transport at the bentonite-host rock interface, - canister settlement, -chemical conditions and radionuclide transport at the glass-bentonite interface. (author) figs., tabs., refs.

  19. Some variations of the Kristallin-I near-field model

    International Nuclear Information System (INIS)

    Smith, P.A.; Curti, E.

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because (i) they are thought unlikely to occur to a significant degree, or because (ii) they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. This work addresses the following topics: - radionuclide transport at the bentonite-host rock interface, - canister settlement, -chemical conditions and radionuclide transport at the glass-bentonite interface. (author) figs., tabs., refs

  20. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...

  1. Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters

    International Nuclear Information System (INIS)

    Dryakhlushin, V F; Veiko, V P; Voznesenskii, N B

    2007-01-01

    A brief review of modern applications of scanning near-field optical (SNO) devices in microscopy, spectroscopy, and lithography is presented in the introduction. The problem of the development of SNO probes, as the most important elements of SNO devices determining their resolution and efficiency, is discussed. Based on the works of the authors, two different methods for fabricating SNO probes by using the adiabatic tapering of an optical fibre are considered: the laser-heated mechanical drawing and chemical etching. A nondestructive optical method for controlling the nanometre aperture of SNO probes is proposed, substantiated, and tested experimentally. The method is based on the reconstruction of a near-field source with the help of a theoretical algorithm of the inverse problem from the experimental far-filed intensity distribution. Some prospects for a further refinement of the construction and technology of SNO probes are discussed. (optical microscopy)

  2. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings

    International Nuclear Information System (INIS)

    Bialiayeu, A; Albert, J; Bottomley, A; Prezgot, D; Ianoul, A

    2012-01-01

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ∼100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre. (paper)

  3. Topology Optimization of Nano-Mechanical Cantilever Sensors Using a C0 Discontinuous Galerkin-Type Approach

    DEFF Research Database (Denmark)

    Marhadi, Kun Saptohartyadi; Evgrafov, Anton; Sørensen, Mads Peter

    2011-01-01

    We demonstrate the use of a C0 discontinuous Galerkin method for topology optimization of nano-mechanical sensors, namely temperature, surface stress, and mass sensors. The sensors are modeled using classical thin plate theory, which requires C1 basis functions in the standard finite element method...

  4. Compound grating structures in photonic crystals for resonant excitation of azobenzene

    DEFF Research Database (Denmark)

    Jahns, Sabrina; Kallweit, Christine; Adam, Jost

    Photo-switchable molecules such as azobenzene are of high interest for “smart” surfaces. Such “smart” surfaces respond to external light excitation by changing their macroscopic properties. The absorbance of light on a single normal path through a layer of azobenzene immobilized on a surface......-difference time-domain (FDTD) calculations for determination of resonance positions and electric field strengths in compound grating structures. By superimposing two single-period gratings a photonic crystal can be designed supporting multiple guided mode resonances suitable to switch azobenzenes between...

  5. A Compact RFID Reader Antenna for UHF Near-Field and Far-Field Operations

    Directory of Open Access Journals (Sweden)

    Lai Xiao zheng

    2013-01-01

    Full Text Available A compact loop antenna is presented for mobile ultrahigh frequency (UHF radio frequency identification (RFID application. This antenna, printed on a 0.8 mm thick FR4 substrate with a small size of 31 mm × 31 mm, achieves good impedance bandwidth from 897 to 928 MHz, which covers USA RFID Band (902–928 MHz. The proposed loop configuration, with a split-ring resonator (SRR coupled inside it, demonstrates strong and uniform magnetic field distribution in the near-field antenna region. Its linearly polarized radiation pattern provides available far-field gain. Finally, the reading capabilities of antenna are up to 56 mm for near-field and 1.05 m for far-field UHF RFID operations, respectively.

  6. Tunable coupled nanomechanical resonators for single-electron transport

    International Nuclear Information System (INIS)

    Scheible, Dominik V; Erbe, Artur; Blick, Robert H

    2002-01-01

    Nano-electromechanical systems (NEMS) are ideal for sensor applications and ultra-sensitive force detection, since their mechanical degree of freedom at the nanometre scale can be combined with semiconductor nano-electronics. We present a system of coupled nanomechanical beam resonators in silicon which is mechanically fully Q-tunable ∼700-6000. This kind of resonator can also be employed as a mechanical charge shuttle via an insulated metallic island at the tip of an oscillating cantilever. Application of our NEMS as an electromechanical single-electron transistor (emSET) is introduced and experimental results are discussed. Three animation clips demonstrate the manufacturing process of the NEMS, the Q-tuning experiment and the concept of the emSET

  7. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution

    International Nuclear Information System (INIS)

    Park, K.; Basu, S.; King, W.P.; Zhang, Z.M.

    2008-01-01

    This paper elucidates the energy transfer and conversion processes in near-field thermophotovoltaic (TPV) systems, considering local radiation absorption and photocurrent generation in the TPV cell. Radiation heat transfer in a multilayered structure is modeled using the fluctuation-dissipation theorem, and the electric current generation is evaluated based on the photogeneration and recombination of electron-hole pairs in different regions of the TPV cell. The effects of near-field radiation on the photon penetration depth, photocurrent generation, and quantum efficiency are examined in the spectral region of interest. The detailed analysis performed in the present work demonstrates that, while the near-field operation can enhance the power throughput, the conversion efficiency is not much improved and may even be reduced. Subsequently, a modified design of near-field TPV systems is proposed to improve the efficiency

  8. Apodized grating coupler using fully-etched nanostructures

    International Nuclear Information System (INIS)

    Wu Hua; Li Chong; Guo Xia; Li Zhi-Yong

    2016-01-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. (paper)

  9. Enhancement of terahertz radiation in a Smith-Purcell backward-wave oscillator by an inverse wet-etched grating

    International Nuclear Information System (INIS)

    Kim, Jung-Il; Jeon, Seok-Gy; Kim, Geun-Ju; Kim, Jaehong

    2011-01-01

    A terahertz (THz) Smith-Purcell (SP) backward-wave oscillator with an inverse wet-etched grating based on silicon has been proposed to enhance radiation intensity. This grating strengthens the interactions between an electron beam and the evanescent wave due to the adjacent surface structure between gratings that improves the magnitude of the electric field up to 1.7 times compared to the conventional rectangular gratings. A two-dimensional particle-in-cell (PIC) simulation shows that the radiated power is increased up to 2.3 times higher at the radiated frequency of 0.66 THz for an electron-beam energy of 30 keV.

  10. Optical and nanomechanical study of anti-scratch layers on polycarbonate lenses

    Science.gov (United States)

    Charitidis, C.; Laskarakis, A.; Kassavetis, S.; Gravalidis, C.; Logothetidis, S.

    2004-07-01

    In recent years, as the optical-electronic industry developed, polymeric materials were gradually increasing in importance. Polycarbonate (PC) is a good candidate for eyewear applications due to its low weight and transparency. In the case of PC lenses, the deposition of anti-scratch (AS) coatings on the polymer surface is essential for the improvement of the mechanical behavior of the lens. In this work, we present a detailed investigation of the optical and nanomechanical properties of a PC based optical lens and coated by an AS coating as a protective overcoat. The study of the effect of the AS coating on the optical response of the PC lens has been performed by the use of Spectroscopic Ellipsometry (SE) in the IR spectral region, where the characteristic features corresponding to the different bonding configuration of the PC lens and the AS coating were studied. Also, the nanomechanical study of the PC lens, before and after the deposition of the AS coating, performed by nanoindentation measurements revealed the significant enhancement of the mechanical response of the AS/PC lens. More specifically, the AS/PC lens is characterized by enhanced values of hardness and elastic modulus. Finally, the use of AS coating has found to lead to a better scratch resistance and to the reduction of the coefficient of friction (μ) of the PC lens.

  11. Transfer function and near-field detection of evanescent waves

    DEFF Research Database (Denmark)

    Radko, Ylia P.; Bozhevolnyi, Sergey I.; Gregersen, Niels

    2006-01-01

    of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe...... for the transfer function, which is derived by introducing an effective pointof (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near......-field transfer function can serve as a simple, rational, and sufficiently reliable means of fiber probe characterization....

  12. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  13. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  14. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  15. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  16. Near-field Spectroscopy of Surface Plasmons in Flat Gold Nanoparticles

    International Nuclear Information System (INIS)

    Achermann, Marc; Shuford, Kevin L.; Schatz, George C.; Dahanayaka, D.H.; Bumm, Lloyd A; Klimov, Victor I.

    2007-01-01

    We use near-field interference spectroscopy with a broadband femtosecond, white-light probe to study local surface plasmon resonances in flat gold nanoparticles (FGNPs). Depending on nanoparticle dimensions, local near-field extinction spectra exhibit none, one, or two resonances in the range of visible wavelengths (1.6-2.6 eV). The measured spectra can be accurately described in terms of interference between the field emitted by the probe aperture and the field reradiated by driven FGNP surface plasmon oscillations. The measured resonances are in good agreement with those predicted by calculations using discrete dipole approximation. We observe that the amplitudes of these resonances are dependent upon the spatial position of the near-field probe, which indicates the possibility of spatially selective excitation of specific plasmon modes

  17. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.

    2011-01-01

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  18. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.

    2011-08-21

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  19. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  20. Nanomechanical properties of bone around cement-retained abutment implants. A minipig study

    Directory of Open Access Journals (Sweden)

    R.R.M. de Barros

    2016-06-01

    Full Text Available Aim The nanomechanical evaluation can provide additional information about the dental implants osseointegration process. The aim of this study was to quantify elastic modulus and hardness of bone around cemented-retained abutment implants positioned at two different crestal bone levels. Materials and methods The mandibular premolars of 7 minipigs were extracted. After 8 weeks, 8 implants were inserted in each animal: crestally on one side of the mandible and subcrestally on the other (crestal and subcrestal groups. Functional loading were immediately provided with abutments cementation and prostheses installation. Eight weeks later, the animals euthanasia was performed and nanoindentation analyses were made at the most coronal newly formed bone region (coronal group, and below in the threaded region (threaded group of histologic sections. Results The comparisons between subcrestal and crestal groups did not achieve statistical relevance; however the elastic modulus and hardness levels were statistically different in the two regions of evaluation (coronal and threaded. Conclusions The crestal and subcrestal placement of cement-retained abutment implants did not affect differently the nanomechanical properties of the surrounding bone. However the different regions of newly formed bone (coronal and threaded groups were extremely different in both elastic modulus and hardness, probably reflecting their differences in bone composition and structure.

  1. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    Science.gov (United States)

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  2. An elastomeric grating coupler

    NARCIS (Netherlands)

    Kocabas, A.; Ay, F.; Dana, A.; Aydinli, A.

    We report on a novel nondestructive and reversible method for coupling free space light to planar optical waveguides. In this method, an elastomeric grating is used to produce an effective refractive index modulation on the surface of the optical waveguide. The external elastomeric grating binds to

  3. Bragg gratings in Topas

    DEFF Research Database (Denmark)

    Zhang, C.; Webb, D.J.; Kalli, K.

    We report for the first time fibre Bragg grating inscription in microstructured optical fibre fabricated from Topas® cyclic olefin copolymer. The temperature sensitivity of the grating was studied revealing a positive Bragg wavelength shift of approximately 0.8 nmK-1,the largest sensitivity yet...

  4. Geochemical evolution of the near field of a KBS-3 repository

    International Nuclear Information System (INIS)

    Arcos, David; Grandia, Fidel; Domenech, Cristina

    2006-09-01

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier

  5. Geochemical evolution of the near field of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, David; Grandia, Fidel; Domenech, Cristina [Enviros Spain S.L., Barcelona (Spain)

    2006-09-15

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier.

  6. Biophysics of skin and its treatments structural, nanotribological, and nanomechanical studies

    CERN Document Server

    Bhushan, Bharat

    2017-01-01

    This book provides a comprehensive overview of the structural, nanotribological and nanomechanical properties of skin with and without cream treatment as a function of operating environment. The biophysics of skin as the outer layer covering human or animal body is discussed as a complex biological structure. Skin cream is used to improve skin health and create a smooth, soft, and flexible surface with moist perception by altering the surface roughness, friction, adhesion, elastic modulus, and surface charge of the skin surface. .

  7. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking

    Science.gov (United States)

    Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2018-03-01

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  8. Near-field millimeter - wave imaging of nonmetallic materials

    International Nuclear Information System (INIS)

    Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1996-01-01

    A near-field millimeter-wave (mm-wave) imaging system has been designed and built in the 94-GHz range for on-line inspection of nonmetallic (dielectric) materials. The imaging system consists of a transceiver block coupled to an antenna that scans the material to be imaged; a reflector plate is placed behind the material. A quadrature IF mixer in the transceiver block enables measurement of in-phase and quadrature-phase components of reflected signals with respect to the transmitted signal. All transceiver components, with the exception of the Gunn-diode oscillator and antenna, were fabricated in uniform blocks and integrated and packaged into a compact unit (12.7 x 10.2 x 2.5 cm). The objective of this work is to test the applicability of a near-field compact mm-wave sensor for on-line inspection of sheetlike materials such as paper, fabrics, and plastics. This paper presents initial near-field mm-wave images of paper and fabric samples containing known artifacts

  9. Thermal and Structural Analysis of FIMS Grating

    Directory of Open Access Journals (Sweden)

    K.-I. Seon

    2001-06-01

    Full Text Available Far ultraviolet IMaging Spectrograph (FIMS should be designed to maintain its structural stability and to minimize optical performance degradation in launch and in operation enviroments. The structural and thermal analyzes of grating and grating mount system, which are directly related to FIMS optical performance, was performed using finite element method. The grating mount was made to keep the grating stress down, while keeping the natural frequency of the grating mount higher than 100 Hz. Transient and static thermal analyzes were also performed and the results shows that the thermal stress on the grating can be attenuated sufficiently The optical performance variation due to temperature variation was within the allowed range.

  10. Embedded high-contrast distributed grating structures

    Science.gov (United States)

    Zubrzycki, Walter J.; Vawter, Gregory A.; Allerman, Andrew A.

    2002-01-01

    A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.

  11. Biosensing with optical fiber gratings

    Science.gov (United States)

    Chiavaioli, Francesco; Baldini, Francesco; Tombelli, Sara; Trono, Cosimo; Giannetti, Ambra

    2017-06-01

    Optical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  12. Biosensing with optical fiber gratings

    Directory of Open Access Journals (Sweden)

    Chiavaioli Francesco

    2017-06-01

    Full Text Available Optical fiber gratings (OFGs, especially long-period gratings (LPGs and etched or tilted fiber Bragg gratings (FBGs, are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors, and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  13. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells.

    Science.gov (United States)

    Baba, Akira; Aoki, Nobutaka; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2011-06-01

    In this study, we demonstrate the fabrication of grating-coupled surface plasmon resonance (SPR) enhanced organic thin-film photovoltaic cells and their improved photocurrent properties. The cell consists of a grating substrate/silver/P3HT:PCBM/PEDOT:PSS structure. Blu-ray disk recordable substrates are used as the diffraction grating substrates on which silver films are deposited by vacuum evaporation. P3HT:PCBM films are spin-coated on silver/grating substrates. Low conductivity PEDOT:PSS/PDADMAC layer-by-layer ultrathin films deposited on P3HT:PCBM films act as the hole transport layer, whereas high conductivity PEDOT:PSS films deposited by spin-coating act as the anode. SPR excitations are observed in the fabricated cells upon irradiation with white light. Up to a 2-fold increase in the short-circuit photocurrent is observed when the surface plasmon (SP) is excited on the silver gratings as compared to that without SP excitation. The finite-difference time-domain simulation indicates that the electric field in the P3HT:PCBM layer can be increased using the grating-coupled SP technique. © 2011 American Chemical Society

  14. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Barzanjeh, Sh. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441 Isfahan (Iran, Islamic Republic of); School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Vitali, D.; Tombesi, P. [School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Milburn, G. J. [Centre for Engineered Quantum Systems, School of Physical Sciences, University of Queensland, Saint Lucia, Queensland 4072 (Australia)

    2011-10-15

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  15. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    International Nuclear Information System (INIS)

    Barzanjeh, Sh.; Vitali, D.; Tombesi, P.; Milburn, G. J.

    2011-01-01

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  16. Near field communication recent developments and library implications

    CERN Document Server

    McHugh, Sheli

    2014-01-01

    Near Field Communication is a radio frequency technology that allows objects, such as mobile phones, computers, tags, or posters, to exchange information wirelessly across a small distance. This report on the progress of Near Field Communication reviews the features and functionality of the technology and summarizes the broad spectrum of its current and anticipated applications. We explore the development of NFC technology in recent years, introduce the major stakeholders in the NFC ecosystem, and project its movement toward mainstream adoption. Several examples of early implementation of NFC

  17. Geometrical optics modeling of the grating-slit test.

    Science.gov (United States)

    Liang, Chao-Wen; Sasian, Jose

    2007-02-19

    A novel optical testing method termed the grating-slit test is discussed. This test uses a grating and a slit, as in the Ronchi test, but the grating-slit test is different in that the grating is used as the incoherent illuminating object instead of the spatial filter. The slit is located at the plane of the image of a sinusoidal intensity grating. An insightful geometrical-optics model for the grating-slit test is presented and the fringe contrast ratio with respect to the slit width and object-grating period is obtained. The concept of spatial bucket integration is used to obtain the fringe contrast ratio.

  18. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  19. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    Science.gov (United States)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  20. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  1. Near field communications handbook

    CERN Document Server

    Ahson, Syed A; Furht, Borko

    2011-01-01

    Near Field Communication, or NFC, is a short-range high frequency wireless communication technology that enables the exchange of data between devices over about a decimeter. The technology is a simple extension of the ISO 14443 proximity-card standard (contact less card, RFID) that combines the interface of a smart card and a reader into a single device with practical implications. A complete reference for NFC, this handbook provides technical information about all aspects of NFC, as well as applications. It covers basic concepts as well as research grade material and includes a discussion of

  2. Speed and the coherence of superimposed chromatic gratings.

    Science.gov (United States)

    Bosten, J M; Smith, L; Mollon, J D

    2016-05-01

    On the basis of measurements of the perceived coherence of superimposed drifting gratings, Krauskopf and Farell (1990) proposed that motion is analysed independently in different chromatic channels. They found that two gratings appeared to slip if each modulated one of the two 'cardinal' color mechanisms S/(L+M) and L/(L+M). If the gratings were defined along intermediate color directions, observers reported a plaid, moving coherently. We hypothesised that slippage might occur in chromatic gratings if the motion signal from the S/(L+M) channel is weak and equivalent to a lower speed. We asked observers to judge coherence in two conditions. In one, S/(L+M) and L/(L+M) gratings were physically the same speed. In the other, the two gratings had perceptually matched speeds. We found that the relative incoherence of cardinal gratings is the same whether gratings are physically or perceptually matched in speed. Thus our hypothesis was firmly contradicted. In a control condition, observers were asked to judge the coherence of stationary gratings. Interestingly, the difference in judged coherence between cardinal and intermediate gratings remained as strong as it was when the gratings moved. Our results suggest a possible alternative interpretation of Krauskopf and Farell's result: the processes of object segregation may precede the analysis of the motion of chromatic gratings, and the same grouping signals may prompt object segregation in the stationary and moving cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Laser terahertz emission microscopy with near-field probes

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Mittleman, Daniel M.

    2016-01-01

    Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm.......Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm....

  4. Ultra-sensitive bio-sensor based on GMR in self-suspended-membrane-type germanium grating

    International Nuclear Information System (INIS)

    Ma, Jianyong; Zhang, Dawei

    2012-01-01

    In this paper, an ultra-sensitive bio-sensor based on the GMR effect in self-suspended-membrane-type gratings (SSGs) is proposed using multilayer plane waveguide theory. It is demonstrated from our calculations that the sensitivity of our bio-sensor is near the theoretical limit compared with a conventional GMR sensor. Based on the normalized eigenfunction of a single-layer homogeneous grating, the resonance curves with respect to different refractive indices of surrounding media are calculated, which confirm the estimated sensitivity. In addition, we design a highly sensitive bio-sensor in the near- and mid-IR wavelength region for liquid and gas detection respectively, the sensor can deliver a resolution over 1 × 10 −5 in the near-IR region in a large refractive index (1.3–1.7) range and provide better than 1 × 10 −6 in the mid-IR region, which is enough for various bio-material detections. Therefore, the bio-sensor we proposed is one or two orders more sensitive than conventional GMR sensors. (paper)

  5. Quantification of source-term profiles from near-field geochemical models

    International Nuclear Information System (INIS)

    McKinley, I.G.

    1985-01-01

    A geochemical model of the near-field is described which quantitatively treats the processes of engineered barrier degradation, buffering of aqueous chemistry by solid phases, nuclide solubilization and transport through the near-field and release to the far-field. The radionuclide source-terms derived from this model are compared with those from a simpler model used for repository safety analysis. 10 refs., 2 figs., 2 tabs

  6. Fabrication of Polymer Optical Fibre (POF Gratings

    Directory of Open Access Journals (Sweden)

    Yanhua Luo

    2017-03-01

    Full Text Available Gratings inscribed in polymer optical fibre (POF have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings.

  7. A Broadband UHF Tag Antenna For Near-Field and Far-Field RFID Communications

    Directory of Open Access Journals (Sweden)

    M. Dhaouadi

    2014-12-01

    Full Text Available The paper deals with the design of passive broadband tag antenna for Ultra-High Frequency (UHF band. The antenna is intended for both near and far fields Radio Frequency Identification (RFID applications. The meander dipole tag antenna geometry modification is designed for frequency bandwidth increasing. The measured bandwidth of the proposed broadband Tag antenna is more than 140 MHz (820–960 MHz, which can cover the entire UHF RFID band. A comparison between chip impedance of datasheet and the measured chip impedance has been used in our simulations. The proposed progressive meandered antenna structure, with an overall size of 77 mm × 14 mm × 0.787 mm, produces strong and uniform magnetic field distribution in the near-field zone. The antenna impedance is matched to common UHF chips in market simply by tuning its capacitive and inductive values since a perfect matching is required in the antenna design in order to enhance the near and the far field communications. Measurements confirm that the designed antenna exhibits good performance of Tag identification for both near-field and far-field UHF RFID applications.

  8. Studies of solar magnetic fields. V. The true average field strengths near the poles

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R [Hale Observatories, Pasadena, Calif. (USA)

    1977-05-01

    An estimate of the average magnetic field strength at the poles of the Sun from Mount Wilson measurements is made by comparing low latitude magnetic measurements in the same regions made near the center of the disk and near the limb. There is still some uncertainty because the orientation angle of the field lines in the meridional plane is unknown, but the most likely possibility is that the true average field strengths are about twice the measured values (0-2 G), with an absolute upper limit on the underestimation of the field strengths of about a factor 5. The measurements refer to latitudes below about 80/sup 0/.

  9. Unidirectional wireless power transfer using near-field plates

    International Nuclear Information System (INIS)

    Imani, Mohammadreza F.; Grbic, Anthony

    2015-01-01

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop to the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency

  10. Unidirectional wireless power transfer using near-field plates

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Mohammadreza F., E-mail: mohamad.imani@gmail.com [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Grbic, Anthony [Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-05-14

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop to the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.

  11. Near-Field Nanolasers based on Nonradiating Anapole Modes

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2016-01-01

    By employing ab-initio simulations of Maxwell-Bloch equations with a source of quantum noise, we study a new laser concept based on photonic dark-matter nanostructures that emit only in the near-field, with no far-field radiation pattern.

  12. Near-Field Nanolasers based on Nonradiating Anapole Modes

    KAUST Repository

    Gongora, J. S. Totero

    2016-05-31

    By employing ab-initio simulations of Maxwell-Bloch equations with a source of quantum noise, we study a new laser concept based on photonic dark-matter nanostructures that emit only in the near-field, with no far-field radiation pattern.

  13. Fiber facet gratings for high power fiber lasers

    Science.gov (United States)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel

    2017-12-01

    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  14. The inside–outside duality for inverse scattering problems with near field data

    International Nuclear Information System (INIS)

    Lechleiter, Armin; Peters, Stefan

    2015-01-01

    We derive an inside–outside duality for near field scattering data generated by time-harmonic scattering of acoustic point sources from a sound-soft scatterer. This duality in particular rigorously characterizes interior Dirichlet eigenvalues of the scattering object by near field operators for an interval of wave numbers. As a crucial new concept to prove this duality we exploit the numerical ranges of certain modifications of these near field operators. We also show that our theoretical results can be numerically used to approximate interior Dirichlet eigenvalues from multi-frequency near field measurements. (paper)

  15. Near-field NanoThermoMechanical memory

    International Nuclear Information System (INIS)

    Elzouka, Mahmoud; Ndao, Sidy

    2014-01-01

    In this letter, we introduce the concept of NanoThermoMechanical Memory. Unlike electronic memory, a NanoThermoMechanical memory device uses heat instead of electricity to record, store, and recover data. Memory function is achieved through the coupling of near-field thermal radiation and thermal expansion resulting in negative differential thermal resistance and thermal latching. Here, we demonstrate theoretically via numerical modeling the concept of near-field thermal radiation enabled negative differential thermal resistance that achieves bistable states. Design and implementation of a practical silicon based NanoThermoMechanical memory device are proposed along with a study of its dynamic response under write/read cycles. With more than 50% of the world's energy losses being in the form of heat along with the ever increasing need to develop computer technologies which can operate in harsh environments (e.g., very high temperatures), NanoThermoMechanical memory and logic devices may hold the answer

  16. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    Science.gov (United States)

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  17. Phase retrieval in near-field measurements by array synthesis

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm

    1991-01-01

    The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array......The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array...

  18. Maximal near-field radiative heat transfer between two plates

    OpenAIRE

    Nefzaoui, Elyes; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl

    2013-01-01

    International audience; Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the r...

  19. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  20. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-01-01

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure. PMID:28788148

  1. Running gratings in photoconductive materials

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Lyuksyutov, S. F.

    2005-01-01

    Starting from the three-dimensional version of a standard photorefractive model (STPM), we obtain a reduced compact Set of equations for an electric field based on the assumption of a quasi-steady-state fast recombination. The equations are suitable for evaluation of a current induced by running...... gratings at small-contrast approximation and also are applicable for the description of space-charge wave domains. We discuss spatial domain and subharmonic beam formation in bismuth silicon oxide (BSO) crystals in the framework of the small-contrast approximation of STPM. The experimental results...

  2. Nanomechanical mapping of graphene layers and interfaces in suspended graphene nanostructures grown via carbon diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.J. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Rabot, C. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Mazzocco, R. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Delamoreanu, A. [Microelectronics Technology Laboratory (LTM), Joseph Fourier University, French National Research Center (CNRS), 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Zenasni, A. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Kolosov, O.V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-01-01

    Graphene's remarkable mechanical, electronic and thermal properties are strongly determined by both the mechanism of its growth and its interaction with the underlying substrate. Evidently, in order to explore the fundamentals of these mechanisms, efficient nanoscale methods that enable observation of features hidden underneath the immediate surface are needed. In this paper we use nanomechanical mapping via ultrasonic force microscopy that employs MHz frequency range ultrasonic vibrations and allows the observation of surface composition and subsurface interfaces with nanoscale resolution, to elucidate the morphology of few layer graphene (FLG) films produced via a recently reported method of carbon diffusion growth (CDG) on platinum-metal based substrate. CDG is known to result in FLG suspended over large areas, which could be of high importance for graphene transfer and applications where a standalone graphene film is required. This study directly reveals the detailed mechanism of CDG three-dimensional growth and FLG film detachment, directly linking the level of graphene decoupling with variations of the substrate temperature during the annealing phase of growth. We also show that graphene initially and preferentially decouples at the substrate grain boundaries, likely due to its negative expansion coefficient at cooling, forming characteristic “nano-domes” at the intersections of the grain boundaries. Furthermore, quantitative nanomechanical mapping of flexural stiffness of suspended FLG “nano-domes” using kHz frequency range force modulation microscopy uncovers the progression of “nano-dome” stiffness from single to bi-modal distribution as CDG growth progresses, suggesting growth instability at advanced CDG stages. - Highlights: • Exploring growth and film-substrate decoupling in carbon diffusion grown graphene • Nanomechanical mapping of few layer graphene and graphene–substrate interfaces • Quantitative stiffness mapping of

  3. Gold nanocone probes for near-field scanning optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, Bastian; Schaefer, Christian; Nill, Peter; Fleischer, Monika; Kern, Dieter P. [Institute of Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen (Germany)

    2010-07-01

    Apertureless near-field scanning optical microscopy (ANSOM) provides the possibility to collect simultaneously high-resolution topographical and sub-diffraction limited optical information from a surface. When optically excited, the scanning probes act as optical antennae with a strong near-field enhancement near the tip apex. Spatial resolution and optical near-field enhancement depend strongly on the properties and geometry of the scanning probe - in particular on very sharp tip radii. Various possibilities for fabricating good antennae have been pursued. Most commonly, scanning probes consist of electrochemically etched gold wires which are sharp but not well-defined in geometry. We present two different approaches for ultra sharp and well-defined antennae based upon fabricating gold nanocones with a tip radius smaller than 10 nm which can be used in ANSOM. A transfer process is presented that can be used to attach single gold nanocones to non-metallic probes such as sharp glass fiber tips. Alternatively, new processes are presented to fabricate cones directly on pillars of different materials such as silicon or bismuth, which can be applied to cantilever tips for ANSOM scanning applications.

  4. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  5. Core-to-core uniformity improvement in multi-core fiber Bragg gratings

    Science.gov (United States)

    Lindley, Emma; Min, Seong-Sik; Leon-Saval, Sergio; Cvetojevic, Nick; Jovanovic, Nemanja; Bland-Hawthorn, Joss; Lawrence, Jon; Gris-Sanchez, Itandehui; Birks, Tim; Haynes, Roger; Haynes, Dionne

    2014-07-01

    Multi-core fiber Bragg gratings (MCFBGs) will be a valuable tool not only in communications but also various astronomical, sensing and industry applications. In this paper we address some of the technical challenges of fabricating effective multi-core gratings by simulating improvements to the writing method. These methods allow a system designed for inscribing single-core fibers to cope with MCFBG fabrication with only minor, passive changes to the writing process. Using a capillary tube that was polished on one side, the field entering the fiber was flattened which improved the coverage and uniformity of all cores.

  6. Waveguide silicon nitride grating coupler

    Science.gov (United States)

    Litvik, Jan; Dolnak, Ivan; Dado, Milan

    2016-12-01

    Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.

  7. Modeling of Coastal Effluent Transport: an Approach to Linking of Far-field and Near-field Models

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Khangaonkar, Tarang P.

    2008-01-01

    One of the challenges in effluent transport modeling in coastal tidal environments is the proper calculation of initial dilution in connection with the far-field transport model. In this study, an approach of external linkage of far-field and near-field effluent transport models is presented, and applied to simulate the effluent transport in the Port Angeles Harbor, Washington in the Strait of Juan de Fuca. A near-field plume model was used to calculate the effluent initial dilution and a three-dimensional (3-D) hydrodynamic model was developed to simulate the tidal circulation and far-field effluent transport in the Port Angeles Harbor. In the present study, the hydrodynamic model was driven by tides and surface winds. Observed water surface elevation and velocity data were used to calibrate the model over a period covering the neap-spring tidal cycle. The model was also validated with observed surface drogue trajectory data. The model successfully reproduced the tidal dynamics in the study area and good agreements between model results and observed data were obtained. This study demonstrated that the linkage between the near-field and far-field models in effluent transport modeling can be achieved through iteratively adjusting the model grid sizes such that the far-field modeled dilution ratio and effluent concentration in the effluent discharge model grid cell match the concentration calculated by the near-field plume model

  8. The near-field acoustic levitation of high-mass rotors

    International Nuclear Information System (INIS)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-01-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope

  9. The near-field acoustic levitation of high-mass rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  10. The near-field acoustic levitation of high-mass rotors.

    Science.gov (United States)

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  11. Nonlinear Dynamics of Nanomechanical Resonators

    Science.gov (United States)

    Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym

    2007-03-01

    Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).

  12. Near-field scanning optical microscopy based nanostructuring of glass

    International Nuclear Information System (INIS)

    Chimmalgi, A; Hwang, D J; Grigoropoulos, C P

    2007-01-01

    Nanofabrication, at lateral resolutions beyond the capability of conventional optical lithography techniques, is demonstrated here. Femtosecond laser was used in conjunction with Near-field Scanning Optical Microscopes (NSOMs) to nanostructure thin metal films. Also, the possibility of using these nanostructured metal films as masks to effectively transfer the pattern to the underlying substrate by wet etching process is shown. Two different optical nearfiled processing schemes were studied for near-field nanostructuring. In the first scheme, local field enhancement in the near-field of a scanning probe microscope (SPM) probe tip irradiated with femtosecond laser pulses was utilized (apertureless NSOM mode) and as a second approach, femtosecond laser beam was spatially confined by cantilevered NSOM fiber tip (apertured NOSM mode). The minimized heat- and shock-affected areas introduced during ultrafast laser based machining process, allows processing of even high conductivity thin metal films with minimized formation of any interfacial compounds between the metal films and the underlying substrate. Potential applications of this method may be in the fields of nanolithography, nanofluidics, nanoscale chemical and gas sensors, high-density data storage, nano-opto-electronics, as well as biotechnology related applications

  13. Field noise near ferromagnetic films

    Science.gov (United States)

    McMichael, Robert; Liu, Hau-Jian; Yoon, Seungha

    Thermally driven magnetization fluctuations can be viewed as a nuisance noise source or as interesting physics. For example, mag noise in a field sensor may set the minimum detectable field of that sensor. On the other hand, the field noise spectrum reflects the dynamics of the magnetic components, which are essential for device operation. Here, we model the field noise spectrum near the surface of a magnetic film due to thermal spin waves, and we calculate its effect on the T1 relaxation rate of a nearby nitrogen-vacancy (NV) center spin. The model incorporates four components: the spin wave dispersion of the magnetization in a finite-thickness film, thermal excitation of spin waves, the coupling geometry between waves in the film and an external point dipole and finally, the relaxation dynamics of the NV spin. At a distance of 100 nm above a 50 nm thick permalloy film, we find that the strongest stray fields are along the film normal and parallel to the magnetization, on the order of 1 mA m-1 Hz- 1 / 2 or 1 nT Hz- 1 / 2, yielding relaxation times on the order of 10 μs. The spin wave field noise can dominate the intrinsic relaxation, (T1 1 ms) of the NV center spin.

  14. Access Platforms for Offshore Wind Turbines Using Gratings

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.

    2008-01-01

    The paper deals with forces generated by a stationary jet on different types of gratings and a solid plate. The force reduction factors for the different gratings compared to the solid plate mainly depend on the porosity of the gratings, but the geometry of the grating is also of some importance........ The derived reduction factors are expected to be applicable to design of offshore wind turbine access platforms with gratings where slamming also is an important factor....

  15. Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser.

    Science.gov (United States)

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Qiaoni; Yang, Kaiming; Sun, Bing; Yin, Guolu; Liu, Shen; Zhou, Jiangtao; Zhao, Jing

    2015-05-01

    We demonstrate a highly birefringent phase-shifted fiber Bragg grating (PS-FBG) inscribed in H2-free fiber with a near-infrared femtosecond Gaussian laser beam and uniform phase mask. The PS-FBG was fabricated from an ordinary fiber Bragg grating (FBG) in a case in which overexposure was applied. The spectral evolution from FBG to FS-FBG was observed experimentally with a decrease in transmission loss at dip wavelength, blueshift of the dip wavelength, decrease in the cladding mode loss, and an increase in the insertion loss. A high birefringence was demonstrated experimentally with the existence of PS-FBG only in TM polarization. The formation of the PS-FBG may be due to a negative index change induced by the higher intensity in the center of the Gaussian laser beam.

  16. Graphene as a local probe to investigate near-field properties of plasmonic nanostructures

    Science.gov (United States)

    Wasserroth, Sören; Bisswanger, Timo; Mueller, Niclas S.; Kusch, Patryk; Heeg, Sebastian; Clark, Nick; Schedin, Fredrik; Gorbachev, Roman; Reich, Stephanie

    2018-04-01

    Light interacting with metallic nanoparticles creates a strongly localized near-field around the particle that enhances inelastic light scattering by several orders of magnitude. Surface-enhanced Raman scattering describes the enhancement of the Raman intensity by plasmonic nanoparticles. We present an extensive Raman characterization of a plasmonic gold nanodimer covered with graphene. Its two-dimensional nature and energy-independent optical properties make graphene an excellent material for investigating local electromagnetic near-fields. We show the localization of the near-field of the plasmonic dimer by spatial Raman measurements. Energy- and polarization-dependent measurements reveal the local near-field resonance of the plasmonic system. To investigate the far-field resonance we perform dark-field spectroscopy and find that near-field and far-field resonance energies differ by 170 meV, much more than expected from the model of a damped oscillator (40 meV).

  17. Optical design of a versatile FIRST high-resolution near-IR spectrograph

    Science.gov (United States)

    Zhao, Bo; Ge, Jian

    2012-09-01

    We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.

  18. Efficient Calculation of Near Fields in the FDTD Method

    DEFF Research Database (Denmark)

    Franek, Ondrej

    2011-01-01

    When calculating frequency-domain near fields by the FDTD method, almost 50 % reduction in memory and CPU operations can be achieved if only E-fields are stored during the main time-stepping loop and H-fields computed later. An improved method of obtaining the H-fields from Faraday's Law is prese...

  19. Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source

    Science.gov (United States)

    Ahn, Jae-Kwang; Park, Duhee

    2017-11-01

    Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.

  20. Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating.

    Science.gov (United States)

    Zhang, Yu; Lin, Bo; Tjin, Swee Chuan; Zhang, Han; Wang, Guanghui; Shum, Ping; Zhang, Xinliang

    2010-12-06

    A fiber Bragg grating written in a photosensitive microfiber using KrF excimer laser via a uniform phase mask is demonstrated. We have successfully fabricated two Bragg gratings in microfibers having different diameters. In the reflection spectrum of a microfiber Bragg grating (MFBG), we observed two reflection peaks,which agrees with our numerical simulation results. Compared with the fundamental mode reflection, the higher-order reflection mode is more sensitive to the refractive index (RI) variation of the surrounding fluid due to its larger evanescent field. The measured maximum sensitivity is ~102 nm/RIU (RI unit) at an RI value of 1.378 in an MFBG with a diameter of 6 μm.

  1. Precise rotational alignment of x-ray transmission diffraction gratings

    International Nuclear Information System (INIS)

    Hill, S.L.

    1988-01-01

    Gold transmission diffraction gratings used for x-ray spectroscopy must sometimes be rotationally aligned to the axis of a diagnostic instrument to within sub-milliradian accuracy. We have fabricated transmission diffraction gratings with high line-densities (grating period of 200 and 300 nm) using uv holographic and x-ray lithography. Since the submicron features of the gratings are not optically visible, precision alignment is time consuming and difficult to verify in situ. We have developed a technique to write an optically visible alignment pattern onto these gratings using a scanning electron microscope (SEM). At high magnification (15000 X) several submicron lines of the grating are observable in the SEM, making it possible to write an alignment pattern parallel to the grating lines in an electron-beam-sensitive coating that overlays the grating. We create an alignment pattern by following a 1-cm-long grating line using the SEM's joystick-controlled translation stage. By following the same grating line we are assured the traveled direction of the SEM electron beam is parallel to the grating to better than 10 μradian. The electron-beam-exposed line-width can be large (5 to 15 μm wide) depending on the SEM magnification, and is therefore optically visible. The exposed pattern is eventually made a permanent feature of the grating by ion beam etching or gold electroplating. The pattern can be used to accurately align the grating to the axis of a diagnostic instrument. More importantly, the alignment of the grating can be quickly verified in situ

  2. [Emission characteristics of fine particles from grate firing boilers].

    Science.gov (United States)

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  3. Superconducting Material - A study on the near field of a superconducting antenna

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soon Chil; Lee, Seung Chul; Doe, Joong Hoe; Hoe, Mi Ra [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    The pulse spectroscopy in combination with piezoelectric resonance makes an ideal non-disturbing tool for the measurement of electric field near an antenna. This new field sensing technique was used to investigate the field of a ring antenna the near field of which is widely used such as the plasma generation and NMR. The superconducting wire also have the dominant capacitive AC field in near regions, meaning that the net charge on the ring surface is not due to the ohm`s law as in DC. 23 refs., 8 figs. (author)

  4. Specific detection of proteins using Nanomechanical resonators

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Wright, V.A.; Guthy, C.

    2008-01-01

    of probes onto their surfaces in order to enable the specificity of the detection. Such nanoresonator-based specific detection of proteins is here reported using streptavidin as target system, and immobilized biotin as probe. Nanomechanical resonators resistant to stiction were first realized from silicon...... carbonitride using a novel fabrication method. Vapor-phase deposition of mercaptopropyl trimethoxysilane was performed, and an added mass of 2.22 +/- 0.07 fg/mu m(2) was measured. This linker molecule was used to attach biotin onto the devices, enabling the specific detection of streptavidin. A mass of 3.6 fg....../mu m(2) was attributed to the added streptavidin, corresponding to one molecule per 27 nm(2). The specificity of this recognition was confirmed by exposing the devices to a solution of streptavidin that was already saturated with biotin. An additional negative control was also performed by also...

  5. Strain Measurement during Stress Rupture of Composite Over-Wrapped Pressure Vessel with Fiber Bragg Gratings Sensors

    Science.gov (United States)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-01-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner.

  6. Salinity measurement in water environment with a long period grating based interferometer

    International Nuclear Information System (INIS)

    Possetti, G R C; Kamikawachi, R C; Muller, M; Fabris, J L; Prevedello, C L

    2009-01-01

    In this work, a comparative study of the behaviour of an in-fibre Mach–Zehnder interferometer for salinity measurement in a water solution is presented. The fibre transducer is composed of two nearly identical long period gratings forming an in-series 7.38 cm long device written in the same fibre optic. Two inorganic and one organic salts (NaCl, KCl, NaCOOH) were characterized within the concentration range from 0 to 150 g L −1 . For the long period grating interferometer, the average obtained sensitivities were −6.61, −5.58 and −3.83 pm/(g L −1 ) for the above salts, respectively, or equivalently −40.8, −46.5 and −39.1 nm RIU −1 . Salinity measured by means of fibre refractometry is compared with measurements obtained using an Abbe refractometer as well as via electrical conductivity. For the long period grating refractometer, the best resolutions attained were 1.30, 1.54 and 2.03 g of salt per litre for NaCl, KCl and NaCOOH, respectively, about two times better than the resolutions obtained by the Abbe refractometer. An average thermal sensitivity of 53 pm °C −1 was measured for the grating transducer immersed in water, indicating the need for the thermal correction of the sensor. Resolutions for the same ionic constituent in different salts are also analysed

  7. THz near-field imaging of biological tissues employing synchrotron radiation

    International Nuclear Information System (INIS)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried, Daniel

    2004-01-01

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin

  8. Fundamental limit of light trapping in grating structures

    KAUST Repository

    Yu, Zongfu

    2010-08-11

    We use a rigorous electromagnetic approach to analyze the fundamental limit of light-trapping enhancement in grating structures. This limit can exceed the bulk limit of 4n 2, but has significant angular dependency. We explicitly show that 2D gratings provide more enhancement than 1D gratings. We also show the effects of the grating profile’s symmetry on the absorption enhancement limit. Numerical simulations are applied to support the theory. Our findings provide general guidance for the design of grating structures for light-trapping solar cells.

  9. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  10. EUV properties of two diffraction gratings

    International Nuclear Information System (INIS)

    Cotton, D.; Chakrabarti, S.; Edelstein, J.; Pranke, J.; Christensen, A.B.

    1988-01-01

    The efficiency and scattering characteristics of a mechanically ruled grating (MRG) and a holographically ruled grating (HRG) are presented. One of these gratings will be employed in the Extreme Ultraviolet Spectrometer, an instrument of the Remote Atmospheric and Ionospheric Detector System to be flown aboard a TIROS satellite in 1991. The HRG showed much less Lyman alpha scattering, while the MRG had the better efficiency over most of the spectral range covered. 8 refs

  11. An analysis on mode selection by V-I transmission matrix in DBR laser with asymmetric fiber gratings

    Science.gov (United States)

    Li, Zhuoxuan; Pei, Li; Li, Qi; Ning, Tigang; Liu, Chao; Gao, Song

    2013-02-01

    The V-I Transmission Matrix Method (VITMM) which is well known in the microwave engineering field was firstly applied to analyze the output spectra of the Distributed Bragg Reflector (DBR) laser, formed by asymmetric fiber gratings as resonator mirrors. One mirror is the uniform Bragg grating and the other is chirped grating. A theoretical model of grating was established, and then a numerical simulation of the mode selection in DBR laser with asymmetric fiber gratings was presented. Simulation results show that VITMM, with calculation error less than 0.1%, could save the calculation time compared to the Rouard method. In the experiment, the setup design of the single-longitudinal-mode laser output at 1544.7 nm was carried out, and the result, which lasted about 10 min, observed on an optical spectrum analyzer, demonstrates the feasibility of VITMM to address the mode output issues of DBR fiber laser.

  12. High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs

    Science.gov (United States)

    Hu, Feng; Wen, Jian; Chen, Xiaofei

    2018-03-01

    We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.

  13. Dispersion characteristics of planar grating with arbitrary grooves for terahertz Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Cao, Miaomiao; Li, Ke; Liu, Wenxin; Wang, Yong

    2015-01-01

    In this paper, a novel method of getting the dispersion relations in planar grating with arbitrary grooves for terahertz Smith-Purcell radiation is investigated analytically. The continuous profile of the groove is approximately replaced by a series of rectangular steps. By making use of field matches method and the continuity of transverse admittance, the universal dispersion equation for grating with arbitrarily shaped grooves is derived. By solving the dispersion equation in presence of electron beam, the growth rate is obtained directly and the dependence on beam parameters is analyzed. Comparisons of the dispersion characteristics among some special groove shapes have been made by numerical calculation. The results show that the rectangular-step approximation method provides a novel approach to obtain the universal dispersion relation for grating with arbitrary grooves for Smith-Purcell radiation

  14. Hybrid grating reflectors: Origin of ultrabroad stopband

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well ...

  15. Superresolution Near-field Imaging with Surface Waves

    KAUST Repository

    Fu, Lei; Liu, Zhaolun; Schuster, Gerard T.

    2017-01-01

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve

  16. Distributed grating-assisted coupler for optical all-dielectric electron accelerator

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang

    2005-07-01

    Full Text Available A Bragg waveguide consisting of multiple dielectric layers with alternating index of refraction becomes an excellent option to form electron accelerating structure powered by high power laser sources. It provides confinement of a synchronous speed-of-light mode with extremely low loss. However, laser field cannot be coupled into the structure collinearly with the electron beam. There are three requirements in designing input coupler for a Bragg electron accelerator: side coupling, selective mode excitation, and high coupling efficiency. We present a side-coupling scheme using a distributed grating-assisted coupler to inject the laser power into the waveguide. Side coupling is achieved by a grating with a period on the order of an optical wavelength. The phase matching condition results in resonance coupling thus providing selective mode excitation capability. The coupling efficiency is limited by profile matching between the outgoing beam and the incoming beam, which has normally a Gaussian profile. We demonstrate a nonuniform distributed grating structure generating an outgoing beam with a Gaussian profile, therefore, increasing the coupling efficiency.

  17. Chemical and microbiological effects in the near field: current status

    International Nuclear Information System (INIS)

    Ewart, F.T.; Pugh, S.Y.R.; Wisbey, S.J.; Woodwark, D.R.

    1988-12-01

    The radionuclide inventory of a radioactive waste repository, influenced by the chemical conditions in the near-field, determines the source term for radionuclides entering the geosphere. The research described in this report is focussed on providing the information necessary to quantify this source term. The processes which interact to determine near field behaviour over a long period of time are complex and a simplified representation is required for radiological assessment modelling. The assumptions made in formulating the near field assessment methodology are discussed and justified in this report. The techniques for acquiring the necessary large body of data for a wide range of relevant radionuclides are also described and the values used in the CASCADE I exercise are given. (author)

  18. Simultaneous near field imaging of electric and magnetic field in photonic crystal nanocavities

    NARCIS (Netherlands)

    Vignolini, S.; Intonti, F.; Riboli, F.; Wiersma, D.S.; Balet, L.P.; Li, L.H.; Francardi, M.; Gerardino, A.; Fiore, A.; Gurioli, M.

    2012-01-01

    The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity

  19. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    Science.gov (United States)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  20. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  1. Extended asymmetric-cut multilayer X-ray gratings.

    Science.gov (United States)

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  2. Diffraction from relief gratings on a biomimetic elastomer cast

    International Nuclear Information System (INIS)

    Guerrero, Raphael A.; Aranas, Erika B.

    2010-01-01

    Biomimetic optical elements combine the optimized designs of nature with the versatility of materials engineering. We employ a beetle carapace as the template for fabricating relief gratings on an elastomer substrate. Biological surface features are successfully replicated by a direct casting procedure. Far-field diffraction effects are discussed in terms of the Fraunhofer approximation in Fourier space.

  3. Adaptable Diffraction Gratings With Wavefront Transformation

    Science.gov (United States)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  4. Laser formation of Bragg gratings in polymer nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, M M; Khaydukov, K V; Sokolov, V I; Khaydukov, E V [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2016-01-31

    The method investigated in this work is based on the laser-induced, spatially inhomogeneous polymerisation of nanocomposite materials and allows control over the motion and structuring of nanoparticles. The mechanisms of nanoparticle concentration redistribution in the process of radical photopolymerisation are studied. It is shown that under the condition of spatially inhomogeneous illumination of a nanocomposite material, nanoparticles are diffused from the illuminated areas into the dark fields. Diffraction gratings with a thickness of 8 μm and a refractive index modulation of 1 × 10{sup -2} are written in an OCM-2 monomer impregnated by silicon nanoparticles. The gratings may be used in the development of narrowband filters, in holographic information recording and as dispersion elements in integrated optical devices. (interaction of laser radiation with matter. laser plasma)

  5. Diffraction efficiency of radially-profiled off-plane reflection gratings

    Science.gov (United States)

    Miles, Drew M.; Tutt, James H.; DeRoo, Casey T.; Marlowe, Hannah; Peterson, Thomas J.; McEntaffer, Randall L.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Laubis, Christian; Scholze, Frank

    2015-09-01

    Future X-ray missions will require gratings with high throughput and high spectral resolution. Blazed off-plane reflection gratings are capable of meeting these demands. A blazed grating profile optimizes grating efficiency, providing higher throughput to one side of zero-order on the arc of diffraction. This paper presents efficiency measurements made in the 0.3 - 1.5 keV energy band at the Physikalisch-Technische Bundesanstalt (PTB) BESSY II facility for three holographically-ruled gratings, two of which are blazed. Each blazed grating was tested in both the Littrow configuration and anti-Littrow configuration in order to test the alignment sensitivity of these gratings with regard to throughput. This paper outlines the procedure of the grating experiment performed at BESSY II and discuss the resulting efficiency measurements across various energies. Experimental results are generally consistent with theory and demonstrate that the blaze does increase throughput to one side of zero-order. However, the total efficiency of the non-blazed, sinusoidal grating is greater than that of the blazed gratings, which suggests that the method of manufacturing these blazed profiles fails to produce facets with the desired level of precision. Finally, evidence of a successful blaze implementation from first diffraction results of prototype blazed gratings produce via a new fabrication technique at the University of Iowa are presented.

  6. Geochemical evolution of the L/ILW near-field

    International Nuclear Information System (INIS)

    Kosakowski, G.; Berner, U.; Wieland, E.; Glaus, M.; Degueldre, C.

    2014-10-01

    The deep geological repository for low- and intermediate-level radioactive waste (L/ILW) contains large amounts of cement based materials used for waste conditioning, tunnel support and the backfill of cavities. The waste inventory is composed of a wide range of organic and inorganic materials. This study describes the spatial and temporal geochemical evolution of the cementitious near-field, and the interactions with the technical barriers and the surrounding host rock. This evolution is governed by several coupled processes, an important one being the development of saturation by groundwater ingress from the host rock. Saturation of the near-field is controlled by the inflow of water from the host rock, by the transport of dissolved gases from the near-field into the host rock and in the engineered gas transport system, and by the transport of humidity in the gas phase. The production of gas by anoxic corrosion of metals and by microbial degradation of organic wastes consumes water. The mineral reactions which give rise to concrete degradation, such as carbonation or alkali-silica-aggregate reactions may also consume or produce water. The first phase of cementitious near-field degradation, which persists only for a short period of time, is related to the hydration of cement minerals. The pore water has a pH of 13 or even higher because of the high content of dissolved alkali hydroxides. A constant pH of 12.5 determines the second phase of the cement degradation. The alkali concentration is reduced by mineral reactions and/or solute transport. This phase persists for a long time. In the third phase the portlandite is completely dissolved due to the reaction with silicates/aluminates present in the near-field and carbonate in the groundwater of the host rock or associated with reactive waste materials. The pore water is in equilibrium with calcium-silicate-hydrates (C-S-H) which gives rise to a pH value near 11 or lower. The Ca/Si ratio of C-S-H changes towards

  7. Geochemical evolution of the L/ILW near-field

    Energy Technology Data Exchange (ETDEWEB)

    Kosakowski, G.; Berner, U.; Wieland, E.; Glaus, M.; Degueldre, C.

    2014-10-15

    The deep geological repository for low- and intermediate-level radioactive waste (L/ILW) contains large amounts of cement based materials used for waste conditioning, tunnel support and the backfill of cavities. The waste inventory is composed of a wide range of organic and inorganic materials. This study describes the spatial and temporal geochemical evolution of the cementitious near-field, and the interactions with the technical barriers and the surrounding host rock. This evolution is governed by several coupled processes, an important one being the development of saturation by groundwater ingress from the host rock. Saturation of the near-field is controlled by the inflow of water from the host rock, by the transport of dissolved gases from the near-field into the host rock and in the engineered gas transport system, and by the transport of humidity in the gas phase. The production of gas by anoxic corrosion of metals and by microbial degradation of organic wastes consumes water. The mineral reactions which give rise to concrete degradation, such as carbonation or alkali-silica-aggregate reactions may also consume or produce water. The first phase of cementitious near-field degradation, which persists only for a short period of time, is related to the hydration of cement minerals. The pore water has a pH of 13 or even higher because of the high content of dissolved alkali hydroxides. A constant pH of 12.5 determines the second phase of the cement degradation. The alkali concentration is reduced by mineral reactions and/or solute transport. This phase persists for a long time. In the third phase the portlandite is completely dissolved due to the reaction with silicates/aluminates present in the near-field and carbonate in the groundwater of the host rock or associated with reactive waste materials. The pore water is in equilibrium with calcium-silicate-hydrates (C-S-H) which gives rise to a pH value near 11 or lower. The Ca/Si ratio of C-S-H changes towards

  8. An X-ray grazing incidence phase multilayer grating

    CERN Document Server

    Chernov, V A; Mytnichenko, S V

    2001-01-01

    An X-ray grazing incidence phase multilayer grating, representing a thin grating placed on a multilayer mirror, is proposed. A high efficiency of grating diffraction can be obtained by the possibility of changing the phase shift of the wave diffracted from the multilayer under the Bragg and total external reflection conditions. A grazing incidence phase multilayer grating consisting of Pt grating stripes on a Ni/C multilayer and optimized for the hard X-ray range was fabricated. Its diffraction properties were studied at photon energies of 7 and 8 keV. The obtained maximum value of the diffraction efficiency of the +1 grating order was 9% at 7 keV and 6.5% at 8 keV. The data obtained are in a rather good accordance with the theory.

  9. Apodized grating coupler using fully-etched nanostructures

    Science.gov (United States)

    Wu, Hua; Li, Chong; Li, Zhi-Yong; Guo, Xia

    2016-08-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501, 61335004, and 61505003), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019), the Postdoctoral Science Foundation of Beijing Funded Project, China (Grant No. Q6002012201502), and the Science and Technology Research Project of Jiangxi Provincial Education Department, China (Grant No. GJJ150998).

  10. Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors.

    Science.gov (United States)

    Wang, Rui; Li, Tao; Shao, Xiumei; Li, Xue; Huang, Xiaqi; Shao, Jinhai; Chen, Yifang; Gong, Haimei

    2015-07-08

    There are currently growing needs for polarimetric imaging in infrared wavelengths for broad applications in bioscience, communications and agriculture, etc. Subwavelength metallic gratings are capable of separating transverse magnetic (TM) mode from transverse electric (TE) mode to form polarized light, offering a reliable approach for the detection in polarization way. This work aims to design and fabricate subwavelength gold gratings as polarizers for InP-based InGaAs sensors in 1.0-1.6 μm. The polarization capability of gold gratings on InP substrate with pitches in the range of 200-1200 nm (fixed duty cycle of 0.5) has been systematically studied by both theoretical modeling with a finite-difference time-domain (FDTD) simulator and spectral measurements. Gratings with 200 nm lines/space in 100-nm-thick gold have been fabricated by electron beam lithography (EBL). It was found that subwavelength gold gratings directly integrated on InP cannot be applied as good polarizers, because of the existence of SPP modes in the detection wavelengths. An effective solution has been found by sandwiching the Au/InP bilayer using a 200 nm SiO2 layer, leading to significant improvement in both TM transmission and extinction ratio. At 1.35 μm, the improvement factors are 8 and 10, respectively. Therefore, it is concluded that the Au/SiO2/InP trilayer should be a promising candidate of near-infrared polarizers for the InP-based InGaAs sensors.

  11. Diffraction of electromagnetic waves by a metallic bar grating with a defect in dielectric filling of the slits

    Science.gov (United States)

    Kochetova, Lyudmila A.; Prosvirnin, Sergey L.

    2018-04-01

    The problem of electromagnetic wave diffraction by the metallic bar grating with inhomogeneous dielectric filling of each slit between bars has been investigated by using the mode matching technique. The transmission and the inner field distribution have been analyzed for the structure which has a single defect in the periodic filling of slits. Such periodic structures are of particular interest for applications in optics, as they have the ability to concentrate a strong inner electromagnetic field and are characterized by high-Q transmission resonances. We use a simple approach to control the width and location of the stopband of the structure by placing a defect in the periodic filling of the grating slits. As a result, we observe the narrow resonance of transmission in terms of stopband width of the defect-free grating and confinement of strong inner electromagnetic field. By changing the permittivity of the defect layer we can shift the frequency of the resonant transmission.

  12. Phased Array Excitations For Efficient Near Field Wireless Power Transmission

    Science.gov (United States)

    2016-09-01

    channeled to the battery or power plant. Figure 2. WPT System Block Diagram for Battery Charging. Source : [2]. Wireless power transfer has gained...EXCITATIONS FOR EFFICIENT NEAR-FIELD WIRELESS POWER TRANSMISSION by Sean X. Hong September 2016 Thesis Advisor: David Jenn Second Reader...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE PHASED ARRAY EXCITATIONS FOR EFFICIENT NEAR-FIELD WIRELESS POWER TRANSMISSION 5

  13. Diffraction by m-bonacci gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Giménez, Marcos H; Furlan, Walter D; Barreiro, Juan C; Saavedra, Genaro

    2015-01-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed. (paper)

  14. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    Science.gov (United States)

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  15. Nanohybrids Near-Field Optical Microscopy: From Image Shift to Biosensor Application

    Directory of Open Access Journals (Sweden)

    Nayla El-Kork

    2016-01-01

    Full Text Available Near-Field Optical Microscopy is a valuable tool for the optical and topographic study of objects at a nanometric scale. Nanoparticles constitute important candidates for such type of investigations, as they bear an important weight for medical, biomedical, and biosensing applications. One, however, has to be careful as artifacts can be easily reproduced. In this study, we examined hybrid nanoparticles (or nanohybrids in the near-field, while in solution and attached to gold nanoplots. We found out that they can be used for wavelength modulable near-field biosensors within conditions of artifact free imaging. In detail, we refer to the use of topographic/optical image shift and the imaging of Local Surface Plasmon hot spots to validate the genuineness of the obtained images. In summary, this study demonstrates a new way of using simple easily achievable comparative methods to prove the authenticity of near-field images and presents nanohybrid biosensors as an application.

  16. Simple design of slanted grating with simplified modal method.

    Science.gov (United States)

    Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun

    2014-02-15

    A simplified modal method (SMM) is presented that offers a clear physical image for subwavelength slanted grating. The diffraction characteristic of the slanted grating under Littrow configuration is revealed by the SMM as an equivalent rectangular grating, which is in good agreement with rigorous coupled-wave analysis. Based on the equivalence, we obtained an effective analytic solution for simplifying the design and optimization of a slanted grating. It offers a new approach for design of the slanted grating, e.g., a 1×2 beam splitter can be easily designed. This method should be helpful for designing various new slanted grating devices.

  17. Defect grating modes as superimposed grating states

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; de Ridder, R.M.; Altena, G; Altena, G.; Geuzebroek, D.H.; Geuzenboek, D.; Dekker, R.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  18. Near-field photometry for organic light-emitting diodes

    Science.gov (United States)

    Li, Rui; Harikumar, Krishnan; Isphording, Alexandar; Venkataramanan, Venkat

    2013-03-01

    Organic Light Emitting Diode (OLED) technology is rapidly maturing to be ready for next generation of light source for general lighting. The current standard test methods for solid state lighting have evolved for semiconductor sources, with point-like emission characteristics. However, OLED devices are extended surface emitters, where spatial uniformity and angular variation of brightness and colour are important. This necessitates advanced test methods to obtain meaningful data for fundamental understanding, lighting product development and deployment. In this work, a near field imaging goniophotometer was used to characterize lighting-class white OLED devices, where luminance and colour information of the pixels on the light sources were measured at a near field distance for various angles. Analysis was performed to obtain angle dependent luminous intensity, CIE chromaticity coordinates and correlated colour temperature (CCT) in the far field. Furthermore, a complete ray set with chromaticity information was generated, so that illuminance at any distance and angle from the light source can be determined. The generated ray set is needed for optical modeling and design of OLED luminaires. Our results show that luminance non-uniformity could potentially affect the luminaire aesthetics and CCT can vary with angle by more than 2000K. This leads to the same source being perceived as warm or cool depending on the viewing angle. As OLEDs are becoming commercially available, this could be a major challenge for lighting designers. Near field measurement can provide detailed specifications and quantitative comparison between OLED products for performance improvement.

  19. Near-field interference for the unidirectional excitation of electromagnetic guided modes.

    Science.gov (United States)

    Rodríguez-Fortuño, Francisco J; Marino, Giuseppe; Ginzburg, Pavel; O'Connor, Daniel; Martínez, Alejandro; Wurtz, Gregory A; Zayats, Anatoly V

    2013-04-19

    Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.

  20. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  1. Undergraduate experiment with fractal diffraction gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Furlan, Walter D; Pons, Amparo; Barreiro, Juan C; Gimenez, Marcos H

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results.

  2. Bragg Fibers with Soliton-like Grating Profiles

    Directory of Open Access Journals (Sweden)

    Bugaychuk S.

    2016-01-01

    Full Text Available Nonlinear dynamical system corresponding to the optical holography in a nonlocal nonlinear medium with dissipation contains stable localized spatio-temporal states, namely the grid dissipative solitons. These solitons display a non-uniform profile of the grating amplitude, which has the form of the dark soliton in the reflection geometry. The transformation of the grating amplitude gives rise many new atypical effects for the beams diffracted on such grating, and they are very suitable for the fiber Brass gratings. The damped nonlinear Schrodinger equation is derived that describes the properties of the grid dissipative soliton.

  3. Optical near-field lithography on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Madsen, Steen; Müllenborn, Matthias; Birkelund, Karen

    1996-01-01

    by the optical near field, were observed after etching in potassium hydroxide. The uncoated fibers can also induce oxidation without light exposure, in a manner similar to an atomic force microscope, and linewidths of 50 nm have been achieved this way. (C) 1996 American Institute of Physics.......We report on a novel lithography technique for patterning of hydrogen-passivated amorphous silicon surfaces. A reflection mode scanning near-field optical microscope with uncoated fiber probes has been used to locally oxidize a thin amorphous silicon layer. Lines of 110 nm in width, induced...

  4. Extracting 220 Hz information from 55 Hz field data by near-field superresolution imaging

    KAUST Repository

    Dutta, Gaurav

    2016-05-31

    Field experiments are used to unequivocally demonstrate seismic superresolution imaging of subwavelength objects in the near-field region of the source. The field test is for a conventional hammer source striking a metal plate near subwavelength scatterers and the seismic data are recorded by vertical-component geophones in the far-field locations of the sources. Time-reversal mirrors (TRMs) are then used to refocus the scattered energy with subwavelength resolution to the position of the original source. A spatial resolution of lambda/10, where lambda is the dominant wavelength associated with the data, is seen in the field tests that exceeds the Abbe resolution limit of lambda/2.

  5. Extracting 220 Hz information from 55 Hz field data by near-field superresolution imaging

    KAUST Repository

    Dutta, Gaurav; AlTheyab, Abdullah; Tarhini, Ahmad; Hanafy, Sherif; Schuster, Gerard T.

    2016-01-01

    Field experiments are used to unequivocally demonstrate seismic superresolution imaging of subwavelength objects in the near-field region of the source. The field test is for a conventional hammer source striking a metal plate near subwavelength scatterers and the seismic data are recorded by vertical-component geophones in the far-field locations of the sources. Time-reversal mirrors (TRMs) are then used to refocus the scattered energy with subwavelength resolution to the position of the original source. A spatial resolution of lambda/10, where lambda is the dominant wavelength associated with the data, is seen in the field tests that exceeds the Abbe resolution limit of lambda/2.

  6. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  7. Control strategies for active noise barriers using near-field error sensing

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    In this paper active noise control strategies for noise barriers are presented which are based on the use of sensors near the noise barrier. Virtual error signals are derived from these near-field sensor signals such that reductions of the far-field sound pressure are obtained with the active

  8. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization

    Science.gov (United States)

    Hong Dong; Kenneth E. Strawhecker; James A. Snyder; Joshua A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric...

  9. Neutron diffraction from holographic gratings in PMMA

    International Nuclear Information System (INIS)

    Havermeyer, F.; Kraetzig, E.; Rupp, R.A.; Schubert, D.W.

    1999-01-01

    Complete text of publication follows. By definition photorefractive materials change the refractive index for light under the action of light. Using the spatially modulated light intensity pattern from the interference of two plane waves, volume phase gratings with accurately defined spacings can be produced. Depending on the material there are many physical origins for these gratings, but in most cases they are linked to a density modulation and, consequently, to a refractive index grating for neutrons. By diffraction of light or neutrons from such gratings even small refractive index changes down to Δn ∼ 10 -7 - 10 -9 can be measured. In our photopolymer system PMMA/MMA (poly(methyl methacrylate) with a content of 10-20% of the residual monomer methyl methacrylate) inhomogeneous illumination leads to local post-polymerisation processes of the residual monomer. The resulting light-optical refractive index grating is caused by the modulation of the monomer/polymer ratio as well as by the modulation of the total density. Only by the unique combination of methods for light and neutron diffraction, available at HOLONS (Holography and Neutron Scattering, instrument at the GKSS research centre), both contributions can be separated. We discuss the angular dependence of the neutron diffraction efficiency for weakly and strongly (efficiencies up to 60% have been achieved) modulated gratings and propose a simple model for the evaluation of the gratings. (author)

  10. Application of a long-period fibre grating-based transducer in the fuel industry

    International Nuclear Information System (INIS)

    Possetti, G R C; De Arruda, L V R; Muller, M; Fabris, J L; Côcco, L C; Yamamoto, C I; Falate, R

    2009-01-01

    This work shows prospects of long-period fibre grating applications as transducers for fuel conformity analysis. The proposed long-period grating transducer was employed to assess the gasoline conformity in commercial gas stations. Grating responses were used to train and validate a radial base function topology of an artificial neural network. The obtained results show that fibre optic sensors supervised by artificial neural networks can integrate systems for smart sensing with high applicability in the petrochemical field. The radial base function had reached a correct classification probability of approximately 94%. The device applicability in the analysis of hydrated ethanol fuel was also investigated by measuring the concentration of ethanol in ethanol–water mixtures. The results showed that the developed transducer can be used to infer the ethanol–water concentration with a resolution of up to 0.23%

  11. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  12. Light distribution analysis of optical fibre probe-based near-field optical tweezers using FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B H; Yang, L J; Wang, Y [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150001 (China)], E-mail: richelaw@163.com

    2009-09-01

    Optical fibre probe-based near-field optical tweezers overcomes the diffraction limit of conventional optical tweezers, utilizing strong mechanical forces and torque associated with highly enhanced electric fields to trap and manipulate nano-scale particles. Near-field evanescent wave generated at optical fibre probe decays rapidly with the distance that results a significant reduced trapping volume, thus it is necessary to analyze the near-field distribution of optical fibre probe. The finite difference time domain (FDTD) method is applied to characterize the near-field distribution of optical fibre probe. In terms of the distribution patterns, depolarization and polarization, the near-field distributions in longitudinal sections and cross-sections of tapered metal-coated optical fibre probe are calculated. The calculation results reveal that the incident polarized wave becomes depolarized after exiting from the nano-scale aperture of probe. The near-field distribution of the probe is unsymmetrical, and the near-field distribution in the cross-section vertical to the incident polarized wave is different from that in the cross-section parallel to the incident polarized wave. Moreover, the polarization of incident wave has a great impact on the light intensity distribution.

  13. Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system.

    Science.gov (United States)

    Geng, Qi; Zhu, Ka-Di

    2016-07-10

    We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.

  14. Room-temperature near-field reflection spectrocopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Hvam, Jørn Märcher; Madsen, Steen

    1999-01-01

    We investigate the properties of near-field reflection spectroscopy in different polarization and detection modes using uncoated fiber probes. The results show, that cross-polarized detection suppresses to a large extent far-field contributions. Using the fiber dithering as a modulation source fo...

  15. Hard-x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating

    International Nuclear Information System (INIS)

    Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-01-01

    We report on a hard-x-ray imaging microscope consisting of a lens, a sample, and a transmission grating. After the theoretical framework of self-imaging phenomenon by the grating in the system is presented, equations for the electric field on the image plane are derived for ideal and real lenses and an equation for the intensity on the image plane for partially coherent illumination is derived. The equations are simple and similar to those applying to a projection microscope consisting of a transmission grating except that there is no defocusing effect, regardless of whether the grating is in front of or behind the lens. This means that x-ray phase-imaging microscopy can be done without the defocusing effect. It is also shown that, by resolving the self-image on the image plane, high-sensitive x-ray phase-imaging microscopy can be attained without degradation in the spatial resolution due to diffraction by the grating. Experimental results obtained using partially coherent illumination from a synchrotron x-ray source confirm that hard-x-ray phase-imaging microscopy can be quantitatively performed with high sensitivity and without the spatial resolution degradation.

  16. Mean-field theory of anyons near Bose statistics

    International Nuclear Information System (INIS)

    McCabe, J.; MacKenzie, R.

    1992-01-01

    The validity of a mean-field approximation for a boson-based free anyon gas near Bose statistics is shown. The magnetic properties of the system is discussed in the approximation that the statistical magnetic field is uniform. It is proved that the anyon gas does not exhibit a Meissner effect in the domain of validity the approximation. (K.A.) 7 refs

  17. Near-field heat transfer between graphene/hBN multilayers

    Science.gov (United States)

    Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro

    2017-06-01

    We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.

  18. Fibre gratings for high temperature sensor applications

    Science.gov (United States)

    Canning, J.; Sommer, K.; Englund, M.

    2001-07-01

    Phosphosilicate fibre gratings can be stabilized at temperatures in excess of 500 °C for sensor applications by optimizing thermal and UV presensitization recipes. Furthermore, the use of 193 nm presensitization prevents the formation of OH absorption bands, extending the use of fibre gratings across the entire wavelength spectrum. Gratings for operation at 700 °C retaining up to 70% reflectivity after 30 min are demonstrated.

  19. Polarization sensitivity testing of off-plane reflection gratings

    Science.gov (United States)

    Marlowe, Hannah; McEntaffer, Randal L.; DeRoo, Casey T.; Miles, Drew M.; Tutt, James H.; Laubis, Christian; Soltwisch, Victor

    2015-09-01

    Off-Plane reflection gratings were previously predicted to have different efficiencies when the incident light is polarized in the transverse-magnetic (TM) versus transverse-electric (TE) orientations with respect to the grating grooves. However, more recent theoretical calculations which rigorously account for finitely conducting, rather than perfectly conducting, grating materials no longer predict significant polarization sensitivity. We present the first empirical results for radially ruled, laminar groove profile gratings in the off-plane mount which demonstrate no difference in TM versus TE efficiency across our entire 300-1500 eV bandpass. These measurements together with the recent theoretical results confirm that grazing incidence off-plane reflection gratings using real, not perfectly conducting, materials are not polarization sensitive.

  20. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  1. Preliminary analysis for evolution of redox conditions in the near field

    International Nuclear Information System (INIS)

    Chiba, Tamotsu; Miki, Takahito; Inagaki, Manabu; Sasamoto, Hiroshi; Yui, Mikazu

    1999-06-01

    It is planned that high level radioactive waste is going to be disposed under deep geological environment. It is believed that the chemical condition of deep groundwater is generally anoxic and reducing. However, during construction and operation phase of repository, oxygen will diffuse some distance into the surrounding rock mass, and diffused oxygen may remain in the surrounding rock mass even after repository closure. In such a case, the transitional redox condition around the drift is not preferable in view point of safety assessment for HLW disposal. Hence, it is very important to evaluate evolution of redox conditions in the near field. This report describes results of preliminary analysis for evolution of redox conditions in the near field rock mass and buffer after repository closure based on the model developed by Chiba et al. (1999). The results of preliminary analysis are summarized as follows: The decrease of oxygen in the near field rock mass and buffer are affected by pH of groundwater and surface area of iron-bearing minerals. The decrease of oxygen in the near field rock mass takes place at time scales lower than 500 years in considering the hypothetical reference groundwater pH range for H12 report. It is implicated that the redox conditions in the near field rock mass will recover to reducing conditions. The decrease of oxygen in the buffer takes place at time scales lower several tens years under neutral to weakly alkaline pH values of porewater in the buffer, even if it is assumed that residual oxygen in the near field rock mass after repository closure will diffuse into the buffer. On the other hand, under weakly acid pH values of porewater in the buffer, it may be presumed that oxygen remain in the buffer at time scale more than 500 years. (author)

  2. Near-Field Antenna Measurements Using Photonic Sensor of Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Masanobu Hirose

    2012-01-01

    Full Text Available We have been developing a photonic sensor system to measure the electric near-field distribution at a distance shorter than one wavelength from the aperture of an antenna. The photonic sensor is a type of Mach-Zehnder interferometer and consists of an array antenna of 2.4 mm height and 2 mm width on a LiNbO3 substrate (0.5 mm thickness, 8 mm length, and 3 mm width supported by a glass pipe. The photonic sensor can be considered to be a receiving infinitesimal dipole antenna that is a tiny metallic part printed on a small dielectric plate at microwave frequency. Those physical and electrical features make the photonic sensor attractive when used as a probe for near-field antenna measurements. We have demonstrated that the system can be applied to planar, spherical, and cylindrical near-field antenna measurements without any probe compensation approximately below 10 GHz. We show the theories and the measurements using the photonic sensor in the three near-field antenna measurement methods.

  3. Plasmonic Devices for Near and Far-Field Applications

    KAUST Repository

    Alrasheed, Salma

    2017-11-30

    Plasmonics is an important branch of nanophotonics and is the study of the interaction of electromagnetic fields with the free electrons in a metal at metallic/dielectric interfaces or in small metallic nanostructures. The electric component of an exciting electromagnetic field can induce collective electron oscillations known as surface plasmons. Such oscillations lead to the localization of the fields that can be at sub-wavelength scale and to its significant enhancement relative to the excitation fields. These two characteristics of localization and enhancement are the main components that allow for the guiding and manipulation of light beyond the diffraction limit. This thesis focuses on developing plasmonic devices for near and far-field applications. In the first part of the thesis, we demonstrate the detection of single point mutation in peptides from multicomponent mixtures for early breast cancer detection using selfsimilar chain (SCC) plasmonic devices that show high field enhancement and localization. In the second part of this work, we investigate the anomalous reflection of light for TM polarization for normal and oblique incidence in the visible regime. We propose gradient phase gap surface plasmon (GSP) metasurfaces that exhibit high conversion efficiency (up to ∼97% of total reflected light) to the anomalous reflection angle for blue, green and red wavelengths at normal and oblique incidence. In the third part of the thesis, we present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. In the fourth part of this work, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. In the fifth and final part of the

  4. Study on talbot pattern for grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Oh, Oh Sung; Lee, Seung Wook [Dept. of School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Kim, Jong Yul [Neutron Instrument Division, Korea Atomic Energy Reserch Institute, Daejeon (Korea, Republic of)

    2015-04-15

    One of properties which X-ray and Neutron can be applied nondestructive test is penetration into the object with interaction leads to decrease in intensity. X-ray interaction with the matter caused by electrons, Neutron caused by atoms. They share applications in nondestructive test area because of their similarities of interaction mechanism. Grating interferometer is the one of applications produces phase contrast image and dark field image. It is defined by Talbot interferometer and Talbot-Lau interferometer according to Talbot effect and Talbot-Lau effect respectively. Talbot interferometer works with coherence beam like X-ray, and Talbot-Lau has an effect with incoherence beam like Neutron. It is important to expect the interference in grating interferometer compared normal nondestructive system. In this paper, simulation works are conducted according to Talbot and Talbot-Lau interferometer in case of X-ray and Neutron. Variation of interference intensity with X-ray and Neutron based on wave theory is constructed and calculate elements consist the system. Additionally, Talbot and Talbot-Lau interferometer is simulated in different kinds of conditions.

  5. Vortex rings and jets recent developments in near-field dynamics

    CERN Document Server

    Yu, Simon

    2015-01-01

    In this book, recent developments in our understanding of fundamental vortex ring and jet dynamics will be discussed, with a view to shed light upon their near-field behaviour which underpins much of their far-field characteristics. The chapters provide up-to-date research findings by their respective experts and seek to link near-field flow physics of vortex ring and jet flows with end-applications in mind. Over the past decade, our knowledge on vortex ring and jet flows has grown by leaps and bounds, thanks to increasing use of high-fidelity, high-accuracy experimental techniques and numerical simulations. As such, we now have a much better appreciation and understanding on the initiation and near-field developments of vortex ring and jet flows under many varied initial and boundary conditions. Chapter 1 outlines the vortex ring pinch-off phenomenon and how it relates to the initial stages of jet formations and subsequent jet behaviour, while Chapter 2 takes a closer look at the behaviour resulting from vor...

  6. Graphene-on-Silicon Near-Field Thermophotovoltaic Cell

    NARCIS (Netherlands)

    Svetovoy, V. B.; Palasantzas, G.

    2014-01-01

    A graphene layer on top of a dielectric can dramatically influence the ability of the material for radiative heat transfer. This property of graphene is used to improve the performance and reduce costs of near-field thermophotovoltaic cells. Instead of low-band-gap semiconductors it is proposed to

  7. A Study on Analysis of EEG Caused by Grating Stimulation Imaging

    Science.gov (United States)

    Urakawa, Hiroshi; Nishimura, Toshihiro; Tsubai, Masayoshi; Itoh, Kenji

    Recently, many researchers have studied a visual perception. Focus is attended to studies of the visual perception phenomenon by using the grating stimulation images. The previous researches have suggested that a subset of retinal ganglion cells responds to motion in the receptive field center, but only if the wider surround moves with a different trajectory. We discuss the function of human retina, and measure and analysis EEG(electroencephalography) of a normal subject who looks on grating stimulation images. We confirmed the visual perception of human by EEG signal analysis. We also have obtained that a sinusoidal grating stimulation was given, asymmetry was observed the α wave element in EEG of the symmetric part in a left hemisphere and a right hemisphere of the brain. Therefore, it is presumed that projected image is even when the still picture is seen and the image projected onto retinas of right and left eyes is not even for the dynamic scene. It evaluated it by taking the envelope curve for the detected α wave, and using the average and standard deviation.

  8. Quantitative Near-field Microscopy of Heterogeneous and Correlated Electron Oxides

    Science.gov (United States)

    McLeod, Alexander Swinton

    Scanning near-field optical microscopy (SNOM) is a novel scanning probe microscopy technique capable of circumventing the conventional diffraction limit of light, affording unparalleled optical resolution (down to 10 nanometers) even for radiation in the infrared and terahertz energy regimes, with light wavelengths exceeding 10 micrometers. However, although this technique has been developed and employed for more than a decade to a qualitatively impressive effect, researchers have lacked a practically quantitative grasp of its capabilities, and its application scope has so far remained restricted by implementations limited to ambient atmospheric conditions. The two-fold objective of this dissertation work has been to address both these shortcomings. The first half of the dissertation presents a realistic, semi-analytic, and benchmarked theoretical description of probe-sample near-field interactions that form the basis of SNOM. Owing its name to the efficient nano-focusing of light at a sharp metallic apex, the "lightning rod model" of probe-sample near-field interactions is mathematically developed from a flexible and realistic scattering formalism. Powerful and practical applications are demonstrated through the accurate prediction of spectroscopic near-field optical contrasts, as well as the "inversion" of these spectroscopic contrasts into a quantitative description of material optical properties. Thus enabled, this thesis work proceeds to present quantitative applications of infrared near-field spectroscopy to investigate nano-resolved chemical compositions in a diverse host of samples, including technologically relevant lithium ion battery materials, astrophysical planetary materials, and invaluable returned extraterrestrial samples. The second half of the dissertation presents the design, construction, and demonstration of a sophisticated low-temperature scanning near-field infrared microscope. This instrument operates in an ultra-high vacuum environment

  9. Near-field radiative heat transfer in mesoporous alumina

    International Nuclear Information System (INIS)

    Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)

  10. Single- and two-phase flow characterization using optical fiber bragg gratings.

    Science.gov (United States)

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  11. The status of near-field modelling

    International Nuclear Information System (INIS)

    Apted, M.J.

    1993-01-01

    The near-field of a high-level nuclear waste repository consists of the waste itself and of the man-made barriers engineered around it (Engineered Barrier System, EBS). The conceptual and mathematical models of repositories and EBS, and the state of the air of performance assessment of waste repositories with EBS are discussed at the meeting. 18 individual items have been indexed and abstracted for the INIS database. (R.P.)

  12. A model for electron currents near a field null

    International Nuclear Information System (INIS)

    Stark, R.A.; Miley, G.H.

    1987-01-01

    The fluid approximation is invalid near a field null, since the local electron orbit size and the magnetic scale length are comparable. To model the electron currents in this region we propose a single equation of motion describing the bulk electron dynamics. The equation applies to the plasma within one thermal orbit size of the null. The region is treated as unmagnetized; electrons are accelerated by the inductive electric field and drag on ions; damping is provided by viscosity due to electrons and collisions with ions. Through variational calculations and a particle tracking code for electrons, the size of the terms in the equation of motion have been estimated. The resulting equation of motion combines with Faraday's Law to produce a governing equation which implicitly contains the self inductive field of the electrons. This governing equation predicts that viscosity prevents complete cancellation of the ion current density by the electrons in the null region. Thus electron dynamics near the field null should not prevent the formation and deepening of field reversal using neutral-beam injection

  13. Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin.

    Science.gov (United States)

    Siewert, F; Löchel, B; Buchheim, J; Eggenstein, F; Firsov, A; Gwalt, G; Kutz, O; Lemke, St; Nelles, B; Rudolph, I; Schäfers, F; Seliger, T; Senf, F; Sokolov, A; Waberski, Ch; Wolf, J; Zeschke, T; Zizak, I; Follath, R; Arnold, T; Frost, F; Pietag, F; Erko, A

    2018-01-01

    Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170 mm, the new GTM-24 will have the capacity for 600 mm (24 inch) gratings with groove densities between 50 lines mm -1 and 1200 lines mm -1 . A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500 mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.

  14. Near-field characterization of low-loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2005-01-01

    -nm-period lattices with different filling factors (0.76 and 0.82) and connected to access ridge waveguides. Using the near-field optical images we investigate the light propagation along PCWs for TM and TE polarization (the electric field is perpendicular/parallel to the sample surface). Efficient...

  15. Laser self-mixing interferometry in VCSELs - an ultra-compact and massproduceable deflection detection system for nanomechanical polymer cantilever sensors

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2008-01-01

    We have realised an ultra-compact deflection detection system based on laser self-mixing interferometry in a Vertical-Cavity Surface-Emitting Laser (VCSEL). The system can be used together with polymer nanomechanical cantilevers to form chemical sensors capable of detecting less than 1nm deflection....

  16. Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging

    Directory of Open Access Journals (Sweden)

    Wyatt Adams

    2016-10-01

    Full Text Available Near-field optics and superlenses for imaging beyond Abbe’s diffraction limit are reviewed. A comprehensive and contemporary background is given on scanning near-field microscopy and superlensing. Attention is brought to recent research leveraging scanning near-field optical microscopy with superlenses for new nano-imaging capabilities. Future research directions are explored for realizing the goal of low-cost and high-performance sub-diffraction-limited imaging systems.

  17. Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification.

    Science.gov (United States)

    Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P

    2015-09-01

    We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035  nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.

  18. Corrugated grating on organic multilayer Bragg reflector

    Science.gov (United States)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  19. Dynamic optical coupled system employing Dammann gratings

    Science.gov (United States)

    Di, Caihui; Zhou, Changhe; Ru, Huayi

    2004-10-01

    With the increasing of the number of users in optical fiber communications, fiber-to-home project has a larger market value. Then the need of dynamic optical couplers, especially of N broad-band couplers, becomes greater. Though some advanced fiber fusion techniques have been developed, they still have many shortcomings. In this paper we propose a dynamic optical coupled system employing even-numbered Dammann gratings, which have the characteristic that the phase distribution in the first half-period accurately equals to that in the second-period with π phase inversion. In our experiment, we divide a conventional even-numbered Dammann grating into two identical gratings. The system can achieve the beam splitter and combiner as the switch between them according to the relative shift between two complementary gratings. When there is no shift between the gratings, the demonstrated 1×8 dynamic optical coupler achieves good uniformity of 0.06 and insertion loss of around 10.8 dB for each channel as a splitter. When the two gratings have an accurate shift of a half-period between them, our system has a low insertion loss of 0.46 dB as a combiner at a wavelength of 1550 nm.

  20. Fabrication of high edge-definition steel-tape gratings for optical encoders

    Science.gov (United States)

    Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei

    2017-10-01

    High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.

  1. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  2. Near-field characteristics of highly non-paraxial subwavelength optical fields with hybrid states of polarization

    International Nuclear Information System (INIS)

    Chen Rui-Pin; Gao Teng-Yue; Chew Khian-Hooi; Dai Chao-Qing; Zhou Guo-Quan; He Sai-Ling

    2017-01-01

    The vectorial structure of an optical field with hybrid states of polarization (SoP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions. (paper)

  3. Near-field interaction of colloid near wavy walls

    Science.gov (United States)

    Luo, Yimin; Serra, Francesca; Wong, Denise; Steager, Edward; Stebe, Kathleen

    Anisotropic media can be used to manipulate colloids, in tandem with carefully designed boundary conditions. For example, in bulk nematic liquid crystal, a wall with homeotropic anchoring repels a colloid with the same anchoring; yet by changing the surface topography from planar to concave, one can turn repulsion into attraction. We explore the behaviors of micro-particles with associated topological defects (hedgehogs or Saturn rings) near wavy walls. The walls locally excite disturbance, which decays into bulk. The range of influence is related to the curvature. The distortion can be used to position particles, either directly on the structure or at a distance away, based on the ``splay-matching'' rules. When distortion becomes stronger through the deepening of the well, the splay field created by the wall can prompt transformation from a Saturn ring to a hedgehog. We combine wells of different wavelength and depth to direct colloid movement. We apply a magnetic field to reset the initial position of ferromagnetic colloids and subsequently release them to probe the elastic energy landscape. Our platform enables manipulation, particle selection, and a detailed study of defect structure under the influence of curvature. Army Research Office.

  4. Photodetachment of negative ion in a gradient electric field near a metal surface

    International Nuclear Information System (INIS)

    Liu Tian-Qi; Wang De-Hua; Han Cai; Liu Jiang; Liang Dong-Qi; Xie Si-Cheng

    2012-01-01

    Based on closed-orbit theory, the photodetachment of H − in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H − near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps. (atomic and molecular physics)

  5. On the Seismic Response of Protected and Unprotected Middle-Rise Steel Frames in Far-Field and Near-Field Areas

    Directory of Open Access Journals (Sweden)

    Dora Foti

    2014-01-01

    Full Text Available Several steel moment-resisting framed buildings were seriously damaged during Northridge (1994; Kobe (1995; Kocaeli, Turkey (1999, earthquakes. Indeed, for all these cases, the earthquake source was located under the urban area and most victims were in near-field areas. In fact near-field ground motions show velocity and displacement peaks higher than far-field ones. Therefore, the importance of considering near-field ground motion effects in the seismic design of structures is clear. This study analyzes the seismic response of five-story steel moment-resisting frames subjected to Loma Prieta (1989 earthquake—Gilroy (far-field register and Santa Cruz (near-field register. The design of the frames verifies all the resistance and stability Eurocodes’ requirements and the first mode has been determined from previous shaking-table tests. In the frames two diagonal braces are installed in different positions. Therefore, ten cases with different periods are considered. Also, friction dampers are installed in substitution of the braces. The behaviour of the braced models under the far-field and the near-field records is analysed. The responses of the aforementioned frames equipped with friction dampers and subjected to the same ground motions are discussed. The maximum response of the examined model structures with and without passive dampers is analysed in terms of damage indices, acceleration amplification, base shear, and interstory drifts.

  6. Near-field radiation between graphene-covered carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Richard Z.; Liu, Xianglei; Zhang, Zhuomin M., E-mail: zhuomin.zhang@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-05-15

    It has been shown that at small separation distances, thermal radiation between hyperbolic metamaterials is enhanced over blackbodies. This theoretical study considers near-field radiation when graphene is covered on the surfaces of two semi-infinite vertically aligned carbon nanotube (VACNT) arrays separated by a sub-micron vacuum gap. Doped graphene is found to improve photon tunneling in a broad hyperbolic frequency range, due to the interaction with graphene-graphene surface plasmon polaritons (SPP). In order to elucidate the SPP resonance between graphene on hyperbolic substrates, vacuum-suspended graphene sheets separated by similar gap distances are compared. Increasing the Fermi energy through doping shifts the spectral heat flux peak toward higher frequencies. Although the presence of graphene on VACNT does not offer huge near-field heat flux enhancement over uncovered VACNT, this study identifies conditions (i.e., gap distance and doping level) that best utilize graphene to augment near-field radiation. Through the investigation of spatial Poynting vectors, heavily doped graphene is found to increase penetration depths in hyperbolic modes and the result is sensitive to the frequency regime. This study may have an impact on designing carbon-based vacuum thermophotovoltaics and thermal switches.

  7. Maximal near-field radiative heat transfer between two plates

    Science.gov (United States)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  8. Analytic Optimization of Near-Field Optical Chirality Enhancement

    Science.gov (United States)

    2017-01-01

    We present an analytic derivation for the enhancement of local optical chirality in the near field of plasmonic nanostructures by tuning the far-field polarization of external light. We illustrate the results by means of simulations with an achiral and a chiral nanostructure assembly and demonstrate that local optical chirality is significantly enhanced with respect to circular polarization in free space. The optimal external far-field polarizations are different from both circular and linear. Symmetry properties of the nanostructure can be exploited to determine whether the optimal far-field polarization is circular. Furthermore, the optimal far-field polarization depends on the frequency, which results in complex-shaped laser pulses for broadband optimization. PMID:28239617

  9. Nanomechanical measurements of hair as an example of micro-fibre analysis using atomic force microscopy nanoindentation

    International Nuclear Information System (INIS)

    Clifford, Charles A.; Sano, Naoko; Doyle, Peter; Seah, Martin P.

    2012-01-01

    The characterisation of nanoscale surface properties of textile and hair fibres is key to developing new effective laundry and hair care products. Here, we develop nanomechanical methods to characterise fibres using an atomic force microscope (AFM) to give their nanoscale modulus. Good mounting methods for the fibre that are chemically inert, clean and give strong mechanical coupling to a substrate are important and here we detail two methods to do this. We show, for elastic nanoindentation measurements, the situation when the tip radius significantly affects the result via a function of the ratio of the radii of the tip and fibre and indicate the importance of using an AFM for such work. A valid method to measure the nanoscale modulus of fibres using AFM is thus detailed and exampled on hair to show that bleaching changes the nanoscale reduced modulus at the outer surface. -- Highlights: ► Valid AFM nanomechanical characterisation of fibres developed. ► Good mounting methods detailed. ► Errors of not taking the fibre radius into account in indentation theory highlighted. ► Modulus of bleached and unbleached hair compared.

  10. Nanomechanical measurements of hair as an example of micro-fibre analysis using atomic force microscopy nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, Charles A., E-mail: charles.clifford@npl.co.uk [Analytical Science Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Sano, Naoko [Analytical Science Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Doyle, Peter [Unilever R and D, Port Sunlight, Wirral, Merseyside, CH63 3JW (United Kingdom); Seah, Martin P. [Analytical Science Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2012-03-15

    The characterisation of nanoscale surface properties of textile and hair fibres is key to developing new effective laundry and hair care products. Here, we develop nanomechanical methods to characterise fibres using an atomic force microscope (AFM) to give their nanoscale modulus. Good mounting methods for the fibre that are chemically inert, clean and give strong mechanical coupling to a substrate are important and here we detail two methods to do this. We show, for elastic nanoindentation measurements, the situation when the tip radius significantly affects the result via a function of the ratio of the radii of the tip and fibre and indicate the importance of using an AFM for such work. A valid method to measure the nanoscale modulus of fibres using AFM is thus detailed and exampled on hair to show that bleaching changes the nanoscale reduced modulus at the outer surface. -- Highlights: Black-Right-Pointing-Pointer Valid AFM nanomechanical characterisation of fibres developed. Black-Right-Pointing-Pointer Good mounting methods detailed. Black-Right-Pointing-Pointer Errors of not taking the fibre radius into account in indentation theory highlighted. Black-Right-Pointing-Pointer Modulus of bleached and unbleached hair compared.

  11. All-Si photodetector for telecommunication wavelength based on subwavelength grating structure and critical coupling

    Directory of Open Access Journals (Sweden)

    Alireza Taghizadeh

    2017-09-01

    Full Text Available We propose an efficient planar all-Si internal photoemission photodetector operating at the telecommunication wavelength of 1550 nm and numerically investigate its optical and electrical properties. The proposed polarization-sensitive detector is composed of an appropriately engineered subwavelength grating structure topped with a silicide layer of nanometers thickness as an absorbing material. It is shown that a nearly-perfect light absorption is possible for the thin silicide layer by its integration to the grating resonator. The absorption is shown to be maximized when the critical coupling condition is satisfied. Simulations show that the external quantum efficiency of the proposed photodetector with a 2-nm-thick PtSi absorbing layer at the center wavelength of 1550 nm can reach up to ∼60%.

  12. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel...

  13. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    Science.gov (United States)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  14. Perturbative approach to continuum generation in a fiber Bragg grating.

    Science.gov (United States)

    Westbrook, P S; Nicholson, J W

    2006-08-21

    We derive a perturbative solution to the nonlinear Schrödinger equation to include the effect of a fiber Bragg grating whose bandgap is much smaller than the pulse bandwidth. The grating generates a slow dispersive wave which may be computed from an integral over the unperturbed solution if nonlinear interaction between the grating and unperturbed waves is negligible. Our approach allows rapid estimation of large grating continuum enhancement peaks from a single nonlinear simulation of the waveguide without grating. We apply our method to uniform and sampled gratings, finding good agreement with full nonlinear simulations, and qualitatively reproducing experimental results.

  15. The application of diffraction grating in the design of virtual reality (VR) system

    Science.gov (United States)

    Chen, Jiekang; Huang, Qitai; Guan, Min

    2017-10-01

    Virtual Reality (VR) products serve for human eyes ultimately, and the optical properties of VR optical systems must be consistent with the characteristic of human eyes. The monocular coaxial VR optical system is simulated in ZEMAX. A diffraction grating is added to the optical surface next to the eye, and the lights emitted from the diffraction grating are deflected, which can forming an asymmetrical field of view(FOV). Then the lateral chromatic aberration caused by the diffraction grating was corrected by the chromatic dispersion of the prism. Finally, the aspheric surface was added to further optimum design. During the optical design of the system, how to balance the dispersion of the diffraction grating and the prism is the main problem. The balance was achieved by adjusting the parameters of the grating and the prism constantly, and then using aspheric surfaces finally. In order to make the asymmetric FOV of the system consistent with the angle of the visual axis, and to ensure the stereo vision area clear, the smaller half FOV of monocular system is required to reach 30°. Eventually, a system with asymmetrical FOV of 30°+40° was designed. In addition, the aberration curve of the system was analyzed by ZEMAX, and the binocular FOV was calculated according to the principle of binocular overlap. The results show that the asymmetry of FOV of VR monocular optical system can fit to human eyes and the imaging quality match for the human visual characteristics. At the same time, the diffraction grating increases binocular FOV, which decreases the requirement for the design FOV of monocular system.

  16. Effects of Different pH-Values on the Nanomechanical Surface Properties of PEEK and CFR-PEEK Compared to Dental Resin-Based Materials

    Directory of Open Access Journals (Sweden)

    Shuai Gao

    2015-07-01

    Full Text Available The study determines the stability and durability of polyetheretherketone (PEEK and a carbon fiber-reinforced PEEK (CFR-PEEK with 30% short carbon fibers, a dental composite based on Bis-GMA and polymethylmethacrylate (PMMA under the influence of different pH-values of the oral environment in vitro. Nanomechanical properties were investigated by nanoindentation and nanoscratch tests before and after incubation of the specimens at 37 °C for 30 days in artificial saliva with pH-values of 3, 7 and 10, respectively. Nanoindentation and nanoscratching tests were performed using the Hysitron TI950 TriboIndenter to evaluate the reduced elastic moduli, nanohardness, viscoelasticity, friction coefficient and residual scratch profiles. After treatment, the nanomechanical properties of unfilled PEEK did not change. The reduced elastic moduli and nanohardness of the carbon fiber-reinforced PEEK increased significantly. The reduced elastic moduli and nanohardness of CHARISMA decreased. The plasticity of all materials except that of the unfilled PEEK increased. This indicates that different pH-values of the artificial saliva solutions had no obvious influences on the nanomechanical properties of the PEEK matrix. Therefore, the aging resistance of the unfilled PEEK was higher than those of other materials. It can be deduced that the PEEK matrix without filler was more stable than with filler in the nanoscale.

  17. Topological study of magnetic field near a neutral point

    International Nuclear Information System (INIS)

    Fukao, Shoichiro; Ugai, Masayuki; Tsuda, Takao.

    1975-01-01

    Configuration of magnetic fields near a neutral point is re-examined by a topological analysis. The so-called X-and 0-type magnetic fields respectively occupy their own seat in our classified table. Then the existence of the spiral and node types of configuration will be shown by the analysis. (auth.)

  18. Exploiting a Transmission Grating Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  19. Exploiting a Transmission Grating Spectrometer

    International Nuclear Information System (INIS)

    Bell, Ronald E.

    2004-01-01

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics

  20. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  1. Quantum vacuum energy near a black hole: the Maxwell field

    International Nuclear Information System (INIS)

    Elster, T.

    1984-01-01

    A quantised Maxwell field is considered propagating in the gravitational field of a Schwarzschild black hole. The vector Hartle-Hawking propagator is defined on the Riemannian section of the analytically continued space-time and expanded in terms of four-dimensional vector spherical harmonics. The equations for the radial functions appearing in the expansion are derived for both odd and even parity. Using the expansion of the vector Hartle-Hawking propagator, the point-separated expectation value of the Maxwellian energy-momentum tensor in the Hartle-Hawking vacuum is derived. The renormalised values of radial pressure, tangential pressure and energy density are obtained near the horizon of the black hole. In contrast to the scalar field, the Maxwell field exhibits a positive energy density near the horizon in the Hartle-Hawking vacuum state. (author)

  2. Quantum field theory near surfaces of discontinuity

    International Nuclear Information System (INIS)

    Onishi, H.T.

    1981-01-01

    This work deals with the problem of a quantized scalar field propagating near a surface of discontinuity. The proper time formalism is employed to express the Green's function and stress tensor as proper time integrals of a transformation function. The transformation function is calculated by a WKB approximation which exhibits the essential singularities generated by the high frequency behavior of waves propagating near the surface. Two singularities are present, the usual direct singularity and an additional reflected singularity generated by the high frequency behavior of waves reflected by the discontinuity. The stress tensor is calculated by dimensional continuation. The results are employed to analyze energy generated by the surface

  3. Study on guided-mode resonance characteristic of multilayer dielectric grating with broadband and wide using-angle

    International Nuclear Information System (INIS)

    Jian-Peng, Wang; Yun-Xia, Jin; Jian-Yong, Ma; Jian-Da, Shao; Zheng-Xiu, Fan

    2010-01-01

    Guided-mode resonance in a diffraction band of multilayer dielectric gratings may lead to a catastrophic result in laser system, especially in the ultrashort pulse laser system, so the inhibition of guided-mode resonance is very important. In this paper the characteristics of guided-mode resonance in multilayer dielectric grating are studied with the aim of better understanding the physical process of guided-mode resonance and designing a broadband multilayer dielectric grating with no guided-mode resonance. By employing waveguide theory, all guided-wave modes appearing in multilayer dielectric grating are found, and the incident conditions, separately, corresponding to each guided-wave mode are also obtained. The electric field enhancement in multilayer dielectric grating is shown obviously. Furthermore, from the detailed analyses on the guided-mode resonance conditions, it is found that the reduction of the grating period would effectively avoid the appearing of guided-mode resonance. And the expressions for calculating maximum periods, which ensure that no guided-mode resonance occurs in the requiring broad angle or wavelength range, are first reported. The above results calculated by waveguide theory and Fourier mode method are compared with each other, and they are coincident completely. Moreover, the method that relies on waveguide theory is more helpful for understanding the guided-mode resonance excited process and analyzing how each parameter affects the characteristic of guided-mode resonance. Therefore, the effects of multilayer dielectric grating parameters, such as period, fill factor, thickness of grating layer, et al., on the guided-mode resonance characteristic are discussed in detail based on waveguide theory, and some meaningful results are obtained. (classical areas of phenomenology)

  4. Study on the Nanomechanical and Nanotribological Behaviors of PEEK and CFRPEEK for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jian Song

    2018-02-01

    Full Text Available This study was to investigate the nanomechanical and nanotribological properties of polyether ether ketone (PEEK-based composites for biomedical applications and to gain a fundamental understanding of the effects of carbon fibers in carbon-fiber-reinforced PEEK (CFRPEEK on the mechanical properties and wear performance in a microscale. Nanoindentation tests with a Berkovich indenter and nanoscratch experiments with a diamond stylus were performed on PEEK and CFRPEEK samples. The nanowear features and mechanisms of the tested samples were analyzed using 3D white-light interfering profilometry and scanning electron microscopy (SEM. The obtained results indicated that the reinforced carbon fibers increased the nanohardness and elastic modulus and decreased the friction coefficient and wear rate of PEEK. Different to many existing studies where a constant load was used in a nanoscratch test and the normal load was a key factor influencing the scratch performances of the tested specimens, stick–slip phenomena were observed on both PEEK and CFRPEEK in the nanoscratch tests with load increasing progressively. In constant load conditions, it was found that the major nanowear mechanisms of PEEK are adhesion, abrasion, and plastic deformation, while the nanowear mechanisms of CFRPEEK are dominated by severe adhesive wear, abrasive wear and mild fatigue. CFRPEEK has demonstrated superior nanomechanical and nanotribological performances, and hence can be considered a potential candidate for biomedical applications.

  5. Dual-function beam splitter of a subwavelength fused-silica grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng

    2009-05-10

    We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550 nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.

  6. Biological applications of near-field scanning optical microscopy

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, Marco H.P.; Ruiter, A.G.T.; Jalocha, A.; Jalocha, Alain; van Hulst, N.F.

    1995-01-01

    Near-field Scanning Optical Microscopy (NSOM) is a true optical microscopic technique allowing fluorescence, absorption, reflection and polarization contrast with the additional advantage of nanometer lateral resolution, unlimited by diffraction and operation at ambient conditions. NSOM based on

  7. Structural Design of a Compact in-Plane Nano-Grating Accelerometer

    International Nuclear Information System (INIS)

    Yao Bao-Yin; Zhou Zhen; Feng Li-Shuang; Wang Wen-Pu; Wang Xiao

    2012-01-01

    A combination of large mass, weak spring and nano-grating is the key for a nano-grating accelerometer to measure nano-G acceleration. A novel compact nano-grating accelerometer integrating a large mass with nano-grating is proposed. First, the numbers of diffraction orders are calculated. Then, structure parameters are optimized by finite element analysis to achieve a high sensitivity in an ideal vibration mode. Finally, we design the fabrication method to form such a compact nano-grating accelerometer and successfully fabricate the uniform and well-designed nano-gratings with a period of 847 nm, crater of 451 nm by an FIB/SEM dual beam system. Based on the ANSYS simulation, a nano-grating accelerometer is predicted to work in the first modal and enables the accelerometer to have displacement sensitivity at 197 nm/G with a measurement range of ±1 G, corresponding to zeroth diffraction beam optical sensitivity 1%/mG. The nano-gratings fabricated are very close to those designed ones within experimental error to lay the foundation for the sequent fabrication. These results provide a theoretical basis for the design and fabrication of nano-grating accelerometers

  8. Development of a Novel Spectrophotometer for Biochemical Analyzer Based on Volume Holography Transmissive Grating and Linear CCD

    International Nuclear Information System (INIS)

    Ren Zhong; Liu Guodong; Huang Zhen; Zeng Lvming; Dai Longmin

    2011-01-01

    The classical surface-embossed plane and concave grating are usually used as the diffraction grating in some spectrophotometers. But the minute cracks are produced on the surface of the gratings' grooves, which leads to generate the stray-light and decrease the efficiency of instrument. Therefore, a novel custom-built spectrophotometer for BCA is developed in this paper. Meanwhile, the volume holography transmissive (VHT) grating is used as the diffraction grating in this spectrophotometer. Additionally, a high resolution CCD and data acquisition (DAQ) card with combined the virtual software platform based on LabVIEW are used to design the spectral acquisition and analysis system. Experimental results show that the spectral range and the diffraction efficiency of the spectrophotometer for BCA are greatly increased. The spectral range of the spectrophotometer for BCA can reach 300-1000 nm, its wavelength resolution can reach 1nm. And, it uses the back-splitting-light technology and multi-channel parallel analysis. Compared with other same types, this spectrophotometer has many advantages, such as, higher efficiency, simpler algorithm, higher accuracy, cheaper cost and fewer stray-light and higher imaging quality, etc. Therefore, this spectrophotometer for BCA based on VHT grating will has the greatly potential values in the fields of the biochemical or medical research.

  9. Near field studies within the SKB 91 Project

    International Nuclear Information System (INIS)

    Widen, H.; Bengtsson, A.; Grundfelt, B.

    1991-06-01

    A number of near field studies was preformed during the early part of the SKB91 project. This report summaries this work and includes: - Simulation of the steady release from the near field with different time for canister penetration. - Simulation of the release from a repository with 5300 canisters with different penetration times for different parts of the canisters due to manufacturing error, glaciations, inner over pressure and corrosion. - Calculation with a numerical model of the transient release of the instantaneously dissolvable species and the effect of different boundary conditions both at the canister/bentonite and the bentonite/rock interface. - Description of the implementation of a resistance network model for the calculation of the steady state transport resistances in the different pathways from the canisters. - Comparison of two analytical models for the calculation of the release of the instantaneously dissolvable species. (au)

  10. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques.

    Science.gov (United States)

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-04-05

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS 2 ) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS 2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics.

  11. Fast Near-Field Calculation for Volume Integral Equations for Layered Media

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2005-01-01

    . Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since......An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density...

  12. Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.

    Science.gov (United States)

    Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung

    2017-07-25

    Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T modulation, NIR light reflection, and on-demand heat transfer.

  13. Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction.

    Science.gov (United States)

    Böckmann, Hannes; Gawinkowski, Sylwester; Waluk, Jacek; Raschke, Markus B; Wolf, Martin; Kumagai, Takashi

    2018-01-10

    Optical near-field excitation of metallic nanostructures can be used to enhance photochemical reactions. The enhancement under visible light illumination is of particular interest because it can facilitate the use of sunlight to promote photocatalytic chemical and energy conversion. However, few studies have yet addressed optical near-field induced chemistry, in particular at the single-molecule level. In this Letter, we report the near-field enhanced tautomerization of porphycene on a Cu(111) surface in a scanning tunneling microscope (STM) junction. The light-induced tautomerization is mediated by photogenerated carriers in the Cu substrate. It is revealed that the reaction cross section is significantly enhanced in the presence of a Au tip compared to the far-field induced process. The strong enhancement occurs in the red and near-infrared spectral range for Au tips, whereas a W tip shows a much weaker enhancement, suggesting that excitation of the localized plasmon resonance contributes to the process. Additionally, using the precise tip-surface distance control of the STM, the near-field enhanced tautomerization is examined in and out of the tunneling regime. Our results suggest that the enhancement is attributed to the increased carrier generation rate via decay of the excited near-field in the STM junction. Additionally, optically excited tunneling electrons also contribute to the process in the tunneling regime.

  14. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.

    Science.gov (United States)

    Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2007-08-01

    Scanning near-field optical microscopes (SNOMs) with fluorescence-based probes are promising tools for evaluating the optical characteristics of nanoaperture devices used for biological investigations, and this article reports on the development of a microfabricated fluorescence-based SNOM probe with a piezoresistor. The piezoresistor was built into a two-legged root of a 160-microm-long cantilever. To improve the displacement sensitivity of the cantilever, the piezoresistor's doped area was shallowly formed on the cantilever surface. A fluorescent bead, 500 nm in diameter, was attached to the bottom of the cantilever end as a light-intensity-sensitive material in the visible-light range. The surface of the scanned sample was simply detected by the probe's end being displaced by contact with the sample. Measuring displacements piezoresistively is advantageous because it eliminates the noise arising from the use of the optical-lever method and is free of any disturbance in the absorption or the emission spectrum of the fluorescent material at the probe tip. The displacement sensitivity was estimated to be 6.1 x 10(-6) nm(-1), and the minimum measurable displacement was small enough for near-field measurement. This probe enabled clear scanning images of the light field near a 300 x 300 nm(2) aperture to be obtained in the near-field region where the tip-sample distance is much shorter than the light wavelength. This scanning result indicates that the piezoresistive way of tip-sample distance regulation is effective for characterizing nanoaperture optical devices.

  15. Direct subwavelength imaging and control of near-field localization in individual silver nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Mårsell, Erik; Svärd, Robin; Miranda, Miguel; Guo, Chen; Harth, Anne; Lorek, Eleonora; Mauritsson, Johan; Arnold, Cord L.; L' Huillier, Anne; Mikkelsen, Anders; Losquin, Arthur, E-mail: arthur.losquin@fysik.lth.se [Department of Physics, Lund University, PO Box 118, 221 00 Lund (Sweden); Xu, Hongxing [Department of Physics, Lund University, PO Box 118, 221 00 Lund (Sweden); School of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2015-11-16

    We demonstrate the control of near-field localization within individual silver nanocubes through photoemission electron microscopy combined with broadband, few-cycle laser pulses. We find that the near-field is concentrated at the corners of the cubes, and that it can be efficiently localized to different individual corners depending on the polarization of the incoming light. The experimental results are confirmed by finite-difference time-domain simulations, which also provide an intuitive picture of polarization dependent near-field localization in nanocubes.

  16. Near-Field Source Localization Using a Special Cumulant Matrix

    Science.gov (United States)

    Cui, Han; Wei, Gang

    A new near-field source localization algorithm based on a uniform linear array was proposed. The proposed algorithm estimates each parameter separately but does not need pairing parameters. It can be divided into two important steps. The first step is bearing-related electric angle estimation based on the ESPRIT algorithm by constructing a special cumulant matrix. The second step is the other electric angle estimation based on the 1-D MUSIC spectrum. It offers much lower computational complexity than the traditional near-field 2-D MUSIC algorithm and has better performance than the high-order ESPRIT algorithm. Simulation results demonstrate that the performance of the proposed algorithm is close to the Cramer-Rao Bound (CRB).

  17. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    International Nuclear Information System (INIS)

    Zheng, L; Zheng, J; Zhang, Y F; Qian, L M; Zhou, Z R

    2013-01-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel. (paper)

  18. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    Science.gov (United States)

    Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.

    2013-10-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.

  19. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  20. 21 CFR 133.146 - Grated cheeses.

    Science.gov (United States)

    2010-04-01

    ... Products § 133.146 Grated cheeses. (a) Description. Grated cheeses is the class of foods prepared by..., and skim milk cheese for manufacturing may not be used. All cheese ingredients used are either made... ___ cheese”, the name of the cheese filling the blank. (ii) If only parmesan and romano cheeses are used and...