WorldWideScience

Sample records for nanomaterials governance industrial

  1. The missing link in nanomaterials governance: industrial dynamics and downstream policies

    OpenAIRE

    Rafols, Ismael; van Zwanenberg, Patrick; Morgan, Molly; Nightingale, Paul; Smith, Adrian

    2009-01-01

    In this article we explore the analytical and policy implications of widening the governance of nanomaterials from the focus on risk regulation to a broader focus on the governance of innovation. To do this, we have analysed the impact of industrial activities on nanotechnology governance, while previous studies have concentrated on risk appraisal, public perceptions, public engagement, regulatory frameworks and related policies. We argue that the specific characteristics of the industrial dy...

  2. Chemical Industry R&D Roadmap for Nanomaterials By Design. From Fundamentals to Function

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-01

    Vision2020 agreed to join NNI and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (DOE/EERE) in sponsoring the "Nanomaterials and the Chemical Industry Roadmap Workshop" on September 30-October 2, 2002. This roadmap, Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function, is based on the scientific priorities expressed by workshop participants from the chemical industry, universities, and government laboratories.

  3. Nanomaterials in Lubricants: An Industrial Perspective on Current Research

    Directory of Open Access Journals (Sweden)

    Boris Zhmud

    2013-11-01

    Full Text Available This paper presents an overview on the use of various classes of nanomaterials in lubricant formulations. The following classes of nanomaterials are considered: fullerenes, nanodiamonds, ultradispersed boric acid and polytetrafluoroethylene (PTFE. Current advances in using nanomaterials in engine oils, industrial lubricants and greases are discussed. Results of numerous studies combined with formulation experience of the authors strongly suggest that nanomaterials do indeed have potential for enhancing certain lubricant properties, yet there is a long way to go before balanced formulations are developed.

  4. Emerging roles of engineered nanomaterials in the food industry.

    Science.gov (United States)

    Morris, V J

    2011-10-01

    Nanoscience is the study of phenomena and the manipulation of materials at the atomic or molecular level. Nanotechnology involves the design, production and use of structures through control of the size and shape of the materials at the nanometre scale. Nanotechnology in the food sector is an emerging area with considerable research and potential products. There is particular interest in the definition and regulation of engineered nanomaterials. This term covers three classes of nanomaterials: natural and processed nanostructures in foods; particulate nanomaterials metabolized or excreted on digestion; and particulate nanomaterials not broken down on digestion, which accumulate in the body. This review describes examples of these classes and their likely status in the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. 77 FR 24722 - Draft Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability

    Science.gov (United States)

    2012-04-25

    ...] Draft Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability AGENCY: Food and... safety assessment of nanomaterials in cosmetic products. This guidance is intended to assist industry in... Cosmetic Products.'' The draft guidance is intended to assist industry in identifying the potential safety...

  6. Relative risk analysis of several manufactured nanomaterials: an insurance industry context.

    Science.gov (United States)

    Robichaud, Christine Ogilvie; Tanzil, Dicksen; Weilenmann, Ulrich; Wiesner, Mark R

    2005-11-15

    A relative risk assessment is presented for the industrial fabrication of several nanomaterials. The production processes for five nanomaterials were selected for this analysis, based on their current or near-term potential for large-scale production and commercialization: single-walled carbon nanotubes, bucky balls (C60), one variety of quantum dots, alumoxane nanoparticles, and nano-titanium dioxide. The assessment focused on the activities surrounding the fabrication of nanomaterials, exclusive of any impacts or risks with the nanomaterials themselves. A representative synthesis method was selected for each nanomaterial based on its potential for scaleup. A list of input materials, output materials, and waste streams for each step of fabrication was developed and entered into a database that included key process characteristics such as temperature and pressure. The physical-chemical properties and quantities of the inventoried materials were used to assess relative risk based on factors such as volatility, carcinogenicity, flammability, toxicity, and persistence. These factors were first used to qualitatively rank risk, then combined using an actuarial protocol developed by the insurance industry for the purpose of calculating insurance premiums for chemical manufacturers. This protocol ranks three categories of risk relative to a 100 point scale (where 100 represents maximum risk): incident risk, normal operations risk, and latent contamination risk. Results from this analysis determined that relative environmental risk from manufacturing each of these five materials was comparatively low in relation to other common industrial manufacturing processes.

  7. Biomedical Applications of Nanotechnology and Nanomaterials

    OpenAIRE

    Vinay Bhardwaj; Ajeet Kaushik

    2017-01-01

    The spurring growth and clinical adoption of nanomaterials and nanotechnology in medicine, i.e. “nanomedicine”, to shape global health care system is a collective effort that comprises academia research, industrial drive, and political and financial support from government.[...

  8. Governance of nanotechnology and nanomaterials: principles, regulation, and renegotiating the social contract.

    Science.gov (United States)

    Kimbrell, George A

    2009-01-01

    Good governance for nanotechnology and nanomaterials is predicated on principles of general good governance. This paper discusses on what lessons we can learn from the oversight of past emerging technologies in formulating these principles. Nanotechnology provides us a valuable opportunity to apply these lessons and a duty to avoid repeating past mistakes. To do that will require mandatory regulation, grounded in precaution, that takes into account the uniqueness of nanomaterials. Moreover, this policy dialogue is not taking place in a vacuum. In applying the lessons of the past, nanotechnology provides a window to renegotiate our public's social contract on chemicals, health, the environment, and risks. Emerging technologies illuminate structural weaknesses, providing a crucial chance to ameliorate lingering regulatory inadequacies and provide much needed updates of existing laws.

  9. Governance implications of nanomaterials companies’ inconsistent risk perceptions and safety practices

    International Nuclear Information System (INIS)

    Engeman, Cassandra D.; Baumgartner, Lynn; Carr, Benjamin M.; Fish, Allison M.; Meyerhofer, John D.; Satterfield, Terre A.; Holden, Patricia A.; Harthorn, Barbara Herr

    2012-01-01

    Current research on the nanotechnology industry indicates its downstream expansion at a rapid pace, while toxicological research and best practices for environmental health and safety are still being developed. Companies that use and/or produce engineered nanomaterials (ENMs) have enormous potential to influence safe-handling practices for ENMs across the product life cycle. Knowledge of both industry practices and leaders’ perceptions of risk is vital for understanding how companies will act to control potential environmental and health risks. This article reports results from a new international survey of nanomaterials companies in 14 countries. In this survey, company participants reported relatively high levels of uncertainty and/or perceived risk with regard to ENMs. However, these perspectives were not accompanied by expected risk-avoidant practices or preferences for regulatory oversight. A majority of companies indicated “lack of information” as a significant impediment to implementing nano-specific safety practices, but they also reported practices that were inconsistent with widely available guidance. Additionally, in the absence of safe-handling regulations, companies reported nano-specific health and safety programs that were narrow in scope. Taken together, these findings indicate that health and safety guidance is not reaching industry. While industry leaders’ reluctance toward regulation might be expected, their own reported unsafe practices and recognition of possible risks suggest a more top-down approach from regulators is needed to protect workers and the environment.

  10. Governance implications of nanomaterials companies' inconsistent risk perceptions and safety practices

    Science.gov (United States)

    Engeman, Cassandra D.; Baumgartner, Lynn; Carr, Benjamin M.; Fish, Allison M.; Meyerhofer, John D.; Satterfield, Terre A.; Holden, Patricia A.; Harthorn, Barbara Herr

    2012-03-01

    Current research on the nanotechnology industry indicates its downstream expansion at a rapid pace, while toxicological research and best practices for environmental health and safety are still being developed. Companies that use and/or produce engineered nanomaterials (ENMs) have enormous potential to influence safe-handling practices for ENMs across the product life cycle. Knowledge of both industry practices and leaders' perceptions of risk is vital for understanding how companies will act to control potential environmental and health risks. This article reports results from a new international survey of nanomaterials companies in 14 countries. In this survey, company participants reported relatively high levels of uncertainty and/or perceived risk with regard to ENMs. However, these perspectives were not accompanied by expected risk-avoidant practices or preferences for regulatory oversight. A majority of companies indicated "lack of information" as a significant impediment to implementing nano-specific safety practices, but they also reported practices that were inconsistent with widely available guidance. Additionally, in the absence of safe-handling regulations, companies reported nano-specific health and safety programs that were narrow in scope. Taken together, these findings indicate that health and safety guidance is not reaching industry. While industry leaders' reluctance toward regulation might be expected, their own reported unsafe practices and recognition of possible risks suggest a more top-down approach from regulators is needed to protect workers and the environment.

  11. Comparative assessment of nanomaterial definitions and safety evaluation considerations.

    Science.gov (United States)

    Boverhof, Darrell R; Bramante, Christina M; Butala, John H; Clancy, Shaun F; Lafranconi, Mark; West, Jay; Gordon, Steve C

    2015-10-01

    Nanomaterials continue to bring promising advances to science and technology. In concert have come calls for increased regulatory oversight to ensure their appropriate identification and evaluation, which has led to extensive discussions about nanomaterial definitions. Numerous nanomaterial definitions have been proposed by government, industry, and standards organizations. We conducted a comprehensive comparative assessment of existing nanomaterial definitions put forward by governments to highlight their similarities and differences. We found that the size limits used in different definitions were inconsistent, as were considerations of other elements, including agglomerates and aggregates, distributional thresholds, novel properties, and solubility. Other important differences included consideration of number size distributions versus weight distributions and natural versus intentionally-manufactured materials. Overall, the definitions we compared were not in alignment, which may lead to inconsistent identification and evaluation of nanomaterials and could have adverse impacts on commerce and public perceptions of nanotechnology. We recommend a set of considerations that future discussions of nanomaterial definitions should consider for describing materials and assessing their potential for health and environmental impacts using risk-based approaches within existing assessment frameworks. Our intent is to initiate a dialogue aimed at achieving greater clarity in identifying those nanomaterials that may require additional evaluation, not to propose a formal definition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Risk management strategy to increase the safety of workers in the nanomaterials industry

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Min-Pei, E-mail: lingmp@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung 40402, Taiwan, ROC (China); Lin, Wei-Chao; Liu, Chia-Chyuan [Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC (China); Huang, Yi-Shiao; Chueh, Miao-Ju [Industrial Safety and Health Association of the ROC, Taipei 11670, Taiwan, ROC (China); Shih, Tung-Sheng [Institute of Occupational Safety and Health, Council of Labor Affairs, Taipei 22143, Taiwan, ROC (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer On-site assessment of nanomaterials using physiochemical and cytotoxic analysis can help identify risks for each nanomaterials manufacturing plant. Black-Right-Pointing-Pointer The risk of the nanomaterials manufacturing plants can be divided into three levels based on exposure routes (tier 1), aspect identification (tier 2), and toxicological screening (tier 3). Black-Right-Pointing-Pointer According to the different risk levels, the precautionary risk management (PRM) such as technology control, engineering control, and personal protective equipment were applied. Black-Right-Pointing-Pointer The PRM strategy can be effectively reduced workers risks for nanomaterial industries. - Abstract: In recent years, many engineered nanomaterials (NMs) have been produced, but increasing research has revealed that these may have toxicities far greater than conventional materials and cause significant adverse health effects. At present, there is insufficient data to determine the permissible concentrations of NMs in the workplace. There is also a lack of toxicity data and environmental monitoring results relating to complete health risk assessment. In view of this, we believe that workers in the NMs industry should be provided with simple and practical risk management strategy to ensure occupational health and safety. In this study, we developed a risk management strategy based on the precautionary risk management (PRM). The risk of the engineered NMs manufacturing plants can be divided into three levels based on aspect identification, solubility tests, dermal absorption, and cytotoxic analyses. The risk management strategies include aspects relating to technology control, engineering control, personal protective equipment, and monitoring of the working environment for each level. Here we report the first case in which a simple and practical risk management strategy applying in specific engineered NMs manufacturing plants. We are

  13. Risk management strategy to increase the safety of workers in the nanomaterials industry

    International Nuclear Information System (INIS)

    Ling, Min-Pei; Lin, Wei-Chao; Liu, Chia-Chyuan; Huang, Yi-Shiao; Chueh, Miao-Ju; Shih, Tung-Sheng

    2012-01-01

    Highlights: ► On-site assessment of nanomaterials using physiochemical and cytotoxic analysis can help identify risks for each nanomaterials manufacturing plant. ► The risk of the nanomaterials manufacturing plants can be divided into three levels based on exposure routes (tier 1), aspect identification (tier 2), and toxicological screening (tier 3). ► According to the different risk levels, the precautionary risk management (PRM) such as technology control, engineering control, and personal protective equipment were applied. ► The PRM strategy can be effectively reduced workers risks for nanomaterial industries. - Abstract: In recent years, many engineered nanomaterials (NMs) have been produced, but increasing research has revealed that these may have toxicities far greater than conventional materials and cause significant adverse health effects. At present, there is insufficient data to determine the permissible concentrations of NMs in the workplace. There is also a lack of toxicity data and environmental monitoring results relating to complete health risk assessment. In view of this, we believe that workers in the NMs industry should be provided with simple and practical risk management strategy to ensure occupational health and safety. In this study, we developed a risk management strategy based on the precautionary risk management (PRM). The risk of the engineered NMs manufacturing plants can be divided into three levels based on aspect identification, solubility tests, dermal absorption, and cytotoxic analyses. The risk management strategies include aspects relating to technology control, engineering control, personal protective equipment, and monitoring of the working environment for each level. Here we report the first case in which a simple and practical risk management strategy applying in specific engineered NMs manufacturing plants. We are confident that our risk management strategy can be effectively reduced engineered NM industries risks for

  14. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-04-01

    The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.

  15. Governance implications of nanomaterials companies' inconsistent risk perceptions and safety practices

    Energy Technology Data Exchange (ETDEWEB)

    Engeman, Cassandra D. [University of California, Santa Barbara, Department of Sociology (United States); Baumgartner, Lynn; Carr, Benjamin M.; Fish, Allison M.; Meyerhofer, John D. [UC Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara (United States); Satterfield, Terre A. [University of California, Santa Barbara, NSF Center for Nanotechnology and Society (United States); Holden, Patricia A. [UC Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara (United States); Harthorn, Barbara Herr, E-mail: harthorn@cns.ucsb.edu [University of California, Santa Barbara, NSF Center for Nanotechnology and Society (United States)

    2012-03-15

    Current research on the nanotechnology industry indicates its downstream expansion at a rapid pace, while toxicological research and best practices for environmental health and safety are still being developed. Companies that use and/or produce engineered nanomaterials (ENMs) have enormous potential to influence safe-handling practices for ENMs across the product life cycle. Knowledge of both industry practices and leaders' perceptions of risk is vital for understanding how companies will act to control potential environmental and health risks. This article reports results from a new international survey of nanomaterials companies in 14 countries. In this survey, company participants reported relatively high levels of uncertainty and/or perceived risk with regard to ENMs. However, these perspectives were not accompanied by expected risk-avoidant practices or preferences for regulatory oversight. A majority of companies indicated 'lack of information' as a significant impediment to implementing nano-specific safety practices, but they also reported practices that were inconsistent with widely available guidance. Additionally, in the absence of safe-handling regulations, companies reported nano-specific health and safety programs that were narrow in scope. Taken together, these findings indicate that health and safety guidance is not reaching industry. While industry leaders' reluctance toward regulation might be expected, their own reported unsafe practices and recognition of possible risks suggest a more top-down approach from regulators is needed to protect workers and the environment.

  16. The Nanomaterial Registry: facilitating the sharing and analysis of data in the diverse nanomaterial community

    Directory of Open Access Journals (Sweden)

    Ostraat ML

    2013-09-01

    Full Text Available Michele L Ostraat, Karmann C Mills, Kimberly A Guzan, Damaris MurryRTI International, Durham, NC, USAAbstract: The amount of data being generated in the nanotechnology research space is significant, and the coordination, sharing, and downstream analysis of the data is complex and consistently deliberated. The complexities of the data are due in large part to the inherently complicated characteristics of nanomaterials. Also, testing protocols and assays used for nanomaterials are diverse and lacking standardization. The Nanomaterial Registry has been developed to address such challenges as the need for standard methods, data formatting, and controlled vocabularies for data sharing. The Registry is an authoritative, web-based tool whose purpose is to simplify the community's level of effort in assessing nanomaterial data from environmental and biological interaction studies. Because the registry is meant to be an authoritative resource, all data-driven content is systematically archived and reviewed by subject-matter experts. To support and advance nanomaterial research, a set of minimal information about nanomaterials (MIAN has been developed and is foundational to the Registry data model. The MIAN has been used to create evaluation and similarity criteria for nanomaterials that are curated into the Registry. The Registry is a publicly available resource that is being built through collaborations with many stakeholder groups in the nanotechnology community, including industry, regulatory, government, and academia. Features of the Registry website (https://www.nanomaterialregistry.org/ currently include search, browse, side-by-side comparison of nanomaterials, compliance ratings based on the quality and quantity of data, and the ability to search for similar nanomaterials within the Registry. This paper is a modification and extension of a proceedings paper for the Institute of Electrical and Electronics Engineers.Keywords: nanoinformatics

  17. Nanomaterials environmental risks and recycling: Actual issues

    Directory of Open Access Journals (Sweden)

    Živković Dragana

    2014-01-01

    Full Text Available Nanotechnologies are being spoken of as the driving force behind a new industrial revolution. Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. The size of nanoparticles allows them to interact strongly with biological structures, so they present potential human and environmental health risk. Nanometer size presents also a problem for separation, recovery, and reuse of the particulate matter. Therefore, industrial-scale manufacturing and use of nanomaterials could have strong impact on human health and the environment or the problematic of nanomaterials recycling. The catch-all term ''nanotechnology' is not sufficiently precise for risk governance and risk management purposes. The estimation of possible risks depends on a consideration of the life cycle of the material being produced, which involves understanding the processes and materials used in manufacture, the likely interactions between the product and individuals or the environment during its manufacture and useful life, and the methods used in its eventual disposal. From a risk-control point of view it will be necessary to systematically identify those critical issues, which should be looked at in more detail. Brief review of actual trends in nanomaterials environmental risks and recycling is given in this paper.

  18. Industrial Production and Professional Application of Manufactured Nanomaterials-Enabled End Products in Dutch Industries: Potential for Exposure

    NARCIS (Netherlands)

    Bekker, C.; Brouwer, D.H.; Tielemans, E.; Pronk, A.

    2013-01-01

    Background: In order to make full use of the opportunities while responsibly managing the risks of working with manufactured nanomaterials (MNM), we need to gain insight into the potential level of exposure to MNM in the industry. Therefore, the goal of this study was to obtain an overview of the

  19. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  20. Application of nanotechnologies and nanomaterials

    International Nuclear Information System (INIS)

    Vissokov, G.

    2011-01-01

    Full text: In the present report, we give a brief description of the present state, development, and application of nanotechnologies (NT) and nanomaterials (NM) in some key industries, such as chemical industry and power industry (nanocatalysts, and nanocatalysis, hydrogen storage and fuel cells, artificial photosynthesis and Gratzel's cell, energy efficiency, energy storage); fabrication of consolidated nanostructures (ceramic nano-materials, nanostructured coatings, production of low-combustibility plastics, nanostructured hard materials, nanostructures with colossal magnetoresistance); fabrication of ultra-high strength carbon fibres; nano-technologies for environmental protection (adsorption of heavy metals by self-ordered self-organized nano-structure ensembles, photocatalyric purification of liquids, fabrication of mesoporous materials, application of nanoporous polymers for water purification, nanoparticles and environment); medical applications; military applications and fight against terrorism; household applications; energetic and some other [1-7].; In 2010, the European Union and the governments of the USA and Japan each invested over $ 2 billion in nanoscience, which is ample evidence to substantiate the claim that the 21 st century will be the century of nanotechnologies. Some of the optimistic forecasts predict that in 2014 the total revenues from NT will exceed those brought by the information technologies and telecommunications combined. At present, more than 800 companies are involved in R&TD in this field (including giants such as Intel, IBM, Samsung, and Mitsubishi) while more than ten Nobel prizes were awarded for research in nanoscience

  1. Towards Safer Nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Baun, Anders

    2014-01-01

    As nanomaterials become more widespread in everything from industrial processes to consumer products, concerns about human and environmental safety are being taken increasingly more seriously. In our research we are working with minimizing the impact and risks of engineered nanomaterials by looking...... or the exposure and optimally both. Examples include the 5 SAFER principles (Morose, 2010) or screenings of early warning signs (Hansen et al., 2013). Taking the full life cycle of nanomaterials into account, the principles of Green chemistry and Green engineering could also prove useful to reduce...... the environmental impact of nanomaterials (Eckelman et al., 2008). Our research interests include the feasibility of “safer-­‐by-­‐design” approaches, the production of greener nanomaterials and operationalization, adaption and creation of frameworks to facilitate safety engineering. Research and insight...

  2. Modeling Engineered Nanomaterials (ENMs) Fate and ...

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  3. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  4. Government--Industry Data Exchange Program

    International Nuclear Information System (INIS)

    Nelson, F.M.

    1977-01-01

    The origin and evolution of the Government--Industry Data Exchange Program, its content, method of operation, and utilization are briefly described. Major sponsoring and participating government agencies are identified, and the methodology to become a program participant is provided

  5. Industry Evidence on the Effects of Government Spending

    OpenAIRE

    Christopher J. Nekarda; Valerie A. Ramey

    2010-01-01

    This paper investigates industry-level effects of government purchases in order to shed light on the transmission mechanism for government spending on the aggregate economy. We begin by highlighting the different theoretical predictions concerning the effects of government spending on industry labor market equilibrium. We then create a panel data set that matches output and labor variables to shifts in industry-specific government demand. The empirical results indicate that increases in gover...

  6. Standardization of nanomaterials characterization by scanning probe microscopy for societal acceptance

    International Nuclear Information System (INIS)

    Fujita, Daisuke; Onishi, Keiko; Xu, Mingsheng

    2009-01-01

    Novel nanomaterials are expected to play key roles for the promotion of innovations in the various industrial products. In order to make such novel nanomaterials to be socially acceptable and widely used, it is very important and necessary to establish the reliable nano-characterization methodology for the industrial nanomaterials under the authorized international scheme for standardization. Among the nano-characterization methods, scanning probe microscopy (SPM) is the most versatile both in the measurement functions and the operational environments. Whereas there are various nanomaterials of industrial application, fullerene nanomaterials (FNM) have attracted much attention due to their unique physical properties. Here we show the importance of the quantitative analysis and standardization of SPM using FNM as a typical example.

  7. Standardization of nanomaterials characterization by scanning probe microscopy for societal acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Daisuke [International Center for Materials Nanoarchitectonics (MANA) and Advanced Nano Characterization Center (ANCC), National Institute for Materials Science - NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Onishi, Keiko [Advanced Nano Characterization Center (ANCC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Mingsheng [International Center for Young Scientists-Interdisciplinary Materials Research (ICYS-IMAT), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: fujita.daisuke@nims.go.jp

    2009-04-01

    Novel nanomaterials are expected to play key roles for the promotion of innovations in the various industrial products. In order to make such novel nanomaterials to be socially acceptable and widely used, it is very important and necessary to establish the reliable nano-characterization methodology for the industrial nanomaterials under the authorized international scheme for standardization. Among the nano-characterization methods, scanning probe microscopy (SPM) is the most versatile both in the measurement functions and the operational environments. Whereas there are various nanomaterials of industrial application, fullerene nanomaterials (FNM) have attracted much attention due to their unique physical properties. Here we show the importance of the quantitative analysis and standardization of SPM using FNM as a typical example.

  8. Regulation, Governance and Adaptation. Governance transformations in the Dutch and French liberalizing electricity industries

    Energy Technology Data Exchange (ETDEWEB)

    Niesten, E.M.M.I.

    2009-06-11

    For more than a decade, the European governments have focused their energy policies on creating one European competitive electricity market. Several regulations are introduced into the European electricity industries for this purpose: the energy firms have to unbundle the electricity networks from electricity generation and retail, and the consumers should be able to choose their electricity retailer. This thesis analyses which new governance structures emerged in the Dutch and French electricity industries as a result of these regulations for four types of electricity transactions: the network connection, network access, balancing and switching transactions. The parties in these electricity industries did not adopt a market, but hybrid forms of governance that remained extensively regulated. The efficiency of these new governance structures cannot be explained with the attributes of the transactions, as is proposed by transaction cost economics. This thesis therefore introduces the concept of adaptation into transaction cost economics. Adaptation is the adjustment by economic actors from one governance structure to another, and is characterized by three attributes: the identity of the future contracting party, the laterality of the adaption, and the type of response in the adaptation process. These attributes explain the governance transformations and the new governance structures in the two industries. Regulation continues to play a pervasive role in the liberalized electricity industries. It influences the attributes of the transactions, the new governance structures and the adaptation process.

  9. Regulation, Governance and Adaptation. Governance transformations in the Dutch and French liberalizing electricity industries

    International Nuclear Information System (INIS)

    Niesten, E.M.M.I.

    2009-01-01

    For more than a decade, the European governments have focused their energy policies on creating one European competitive electricity market. Several regulations are introduced into the European electricity industries for this purpose: the energy firms have to unbundle the electricity networks from electricity generation and retail, and the consumers should be able to choose their electricity retailer. This thesis analyses which new governance structures emerged in the Dutch and French electricity industries as a result of these regulations for four types of electricity transactions: the network connection, network access, balancing and switching transactions. The parties in these electricity industries did not adopt a market, but hybrid forms of governance that remained extensively regulated. The efficiency of these new governance structures cannot be explained with the attributes of the transactions, as is proposed by transaction cost economics. This thesis therefore introduces the concept of adaptation into transaction cost economics. Adaptation is the adjustment by economic actors from one governance structure to another, and is characterized by three attributes: the identity of the future contracting party, the laterality of the adaption, and the type of response in the adaptation process. These attributes explain the governance transformations and the new governance structures in the two industries. Regulation continues to play a pervasive role in the liberalized electricity industries. It influences the attributes of the transactions, the new governance structures and the adaptation process.

  10. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage.

    Science.gov (United States)

    Zhang, Qiang; Huang, Jia-Qi; Qian, Wei-Zhong; Zhang, Ying-Ying; Wei, Fei

    2013-04-22

    The innovation on the low dimensional nanomaterials brings the rapid growth of nano community. Developing the controllable production and commercial applications of nanomaterials for sustainable society is highly concerned. Herein, carbon nanotubes (CNTs) with sp(2) carbon bonding, excellent mechanical, electrical, thermal, as well as transport properties are selected as model nanomaterials to demonstrate the road of nanomaterials towards industry. The engineering principles of the mass production and recent progress in the area of CNT purification and dispersion are described, as well as its bulk application for nanocomposites and energy storage. The environmental, health, and safety considerations of CNTs, and recent progress in CNT commercialization are also included. With the effort from the CNT industry during the past 10 years, the price of multi-walled CNTs have decreased from 45 000 to 100 $ kg(-1) and the productivity increased to several hundred tons per year for commercial applications in Li ion battery and nanocomposites. When the prices of CNTs decrease to 10 $ kg(-1) , their applications as composites and conductive fillers at a million ton scale can be anticipated, replacing conventional carbon black fillers. Compared with traditional bulk chemicals, the controllable synthesis and applications of CNTs on a million ton scale are still far from being achieved due to the challenges in production, purification, dispersion, and commercial application. The basic knowledge of growth mechanisms, efficient and controllable routes for CNT production, the environmental and safety issues, and the commercialization models are still inadequate. The gap between the basic scientific research and industrial development should be bridged by multidisciplinary research for the rapid growth of CNT nano-industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanomaterials and Nanochemistry

    CERN Document Server

    Bréchignac, Catherine; Lahmani, Marcel

    2007-01-01

    Nanomaterials are a fast developing field of research and applications lie in many separate domains, such as in hi-tech (optics, electronics, biology, aeronautics), but also in consumer industries (automotive, concrete, surface treatments (including paints), cosmetics, etc.).

  12. A Reference Searching Related To Nanomaterials,Food Packaging and Sustainability

    OpenAIRE

    Tonnie, Aruoture Onome

    2007-01-01

    This report focuses on the study of nanomaterials as a packaging material for the food industries. Reviews were carried out and the various properties exhibited by various nanomaterial used in the packaging industry were looked into. An investigation was also done on carbon nanotubes which are used to a large extent as reinforcing materials in the development of new class of nanocomposites. This report also traces the cause of sustainability problems associated with the use of nanomaterials i...

  13. Nordic Corporate Governance and Industrial Foundations

    DEFF Research Database (Denmark)

    Thomsen, Steen

    to the international audience. This paper therefore reviews the Nordic corporate governance model with special emphasis on a unique ownership structure, industrial foundations (foundations that own business companies). Rather than a meticulous description of details it emphasizes the Nordic model as a mode......The Nordic countries have attracted considerable attention in recent years as a benchmark for good governance. However, while the political governance characteristics of the Nordic model – particularly the welfare state - are well understood, its corporate governance characteristics remain elusive...

  14. Co-evolution of Industry Strategies and Government Policies: The Case of the Brazilian Automotive Industry

    Directory of Open Access Journals (Sweden)

    Roberto Gonzalez Duarte

    2017-07-01

    Full Text Available This study examines the evolution of the automotive industry in Brazil and its key drivers. We argue that the rules of the game – industry policies – are an outcome of exchanges between the host government and industry. These arise from changes in economic and political environments and interdependence between industry and the country’s economy. To this end, we draw upon literature on institutions and co-evolution to understand the industry footprint over a 50-year period, as well as its relationship with changes in government policies. This study generates new insights on institutional and co-evolution political perspectives by showing that the rules of the game are not only the making of the government, but are also the result of interdependencies between industry and government.

  15. Renewing Modes of Governance : Extractive Industries and the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Renewing Modes of Governance : Extractive Industries and the Reduction of Poverty in Africa. The C.-A. Poissant research chair on governance and development assistance at the Université du Québec à Montréal ... Corporate Social Responsibility in the Latin American Extractive Industry : Challenges and Best Practices.

  16. Environmental assessment of nanomaterial use in Denmark

    DEFF Research Database (Denmark)

    Kjølholt, Jesper; Gottschalk, Fadri; Brinch, Anna

    This is the concluding report of the project "Nanomaterials – occurrence and effects in the Danish environment" (abbreviated NanoDEN), which part the Danish Government's initiative "Better Control of Nanomaterials" (“Bedre styr på nanomaterialer”) which is administered by the Danish Environmental...... Protection Agency. The projects in NanoDEN have aimed to investigate and generate new environmentally relevant knowledge on of nanomaterials on the Danish market and to assess the possible associated risks to the environment. The results from the sub-projects are summarized in the current report...... and it is assessed whether and how nanomaterials may pose a risk for the environment in Denmark. The assessment is based on investigations of nine selected nanomaterials, which are expected to be environmentally relevant based on knowledge of consumption quantities or how they are used. These data contribute...

  17. In vitro assessments of nanomaterial toxicity.

    Science.gov (United States)

    Jones, Clinton F; Grainger, David W

    2009-06-21

    Nanotechnology has grown from a scientific interest to a major industry with both commodity and specialty nanomaterial exposure to global populations and ecosystems. Sub-micron materials are currently used in a wide variety of consumer products and in clinical trials as drug delivery carriers and imaging agents. Due to the expected growth in this field and the increasing public exposure to nanomaterials, both from intentional administration and inadvertent contact, improved characterization and reliable toxicity screening tools are required for new and existing nanomaterials. This review discusses current methodologies used to assess nanomaterial physicochemical properties and their in vitro effects. Current methods lack the desired sensitivity, reliability, correlation and sophistication to provide more than limited, often equivocal, pieces of the overall nanomaterial performance parameter space, particularly in realistic physiological or environmental models containing cells, proteins and solutes. Therefore, improved physicochemical nanomaterial assays are needed to provide accurate exposure risk assessments and genuine predictions of in vivo behavior and therapeutic value. Simpler model nanomaterial systems in buffer do not accurately duplicate this complexity or predict in vivo behavior. A diverse portfolio of complementary material characterization tools and bioassays are required to validate nanomaterial properties in physiology.

  18. Joint ventures between industry and government

    International Nuclear Information System (INIS)

    Vant, T.R.

    1991-01-01

    Joint venture projects undertaken between government and industry in western Canada are reviewed. The first significant involvement of the Alberta government was with the Syncrude oil sands project. In 1974, one of the original participants, Atlantic Richfield, pulled out of Syncrude for financial reasons. After a government review and search for replacement participation, three provincial governments took equity positions in the project. The Syncrude project has since had a very significant impact on Alberta and Canada in terms of oil production, employment, investment, and profits. The Other Six Leases Operation (OSLO), the OSLO New Ventures Project, and the Lloydminster Bi-Provincial Upgrader would also not have advanced to their present stages of development without government participation. Since oil sand/heavy oil development requires significant capital investment over long lead times, and since there are few private companies that can undertake such a commitment, government assistance is often required. It also makes sense for governments to share upfront risk in such projects for both the long-term economic gain and such immediate benefits as job creation and energy supply security. An industry/government joint venture provides a means of getting large, inherently economic projects such as oil sands developments under way while protecting taxpayers' interests. The success of such a joint venture depends not only on the financing brought to the project but also on the expertise, decision making capability, and balanced management of regulatory and policy issues

  19. Broadening Industry Governance to Include Nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hund, Gretchen; Seward, Amy M.

    2008-11-11

    As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security that—through collaborative means—the effectiveness of the international nonproliferation system—can be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a company’s corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

  20. Pathophysiologic mechanisms of biomedical nanomaterials

    International Nuclear Information System (INIS)

    Wang, Liming; Chen, Chunying

    2016-01-01

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs

  1. Pathophysiologic mechanisms of biomedical nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.

  2. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory

    Directory of Open Access Journals (Sweden)

    Marina E. Vance

    2015-08-01

    Full Text Available To document the marketing and distribution of nano-enabled products into the commercial marketplace, the Woodrow Wilson International Center for Scholars and the Project on Emerging Nanotechnologies created the Nanotechnology Consumer Products Inventory (CPI in 2005. The objective of this present work is to redevelop the CPI by leading a research effort to increase the usefulness and reliability of this inventory. We created eight new descriptors for consumer products, including information pertaining to the nanomaterials contained in each product. The project was motivated by the recognition that a diverse group of stakeholders from academia, industry, and state/federal government had become highly dependent on the inventory as an important resource and bellweather of the pervasiveness of nanotechnology in society. We interviewed 68 nanotechnology experts to assess key information needs. Their answers guided inventory modifications by providing a clear conceptual framework best suited for user expectations. The revised inventory was released in October 2013. It currently lists 1814 consumer products from 622 companies in 32 countries. The Health and Fitness category contains the most products (762, or 42% of the total. Silver is the most frequently used nanomaterial (435 products, or 24%; however, 49% of the products (889 included in the CPI do not provide the composition of the nanomaterial used in them. About 29% of the CPI (528 products contain nanomaterials suspended in a variety of liquid media and dermal contact is the most likely exposure scenario from their use. The majority (1288 products, or 71% of the products do not present enough supporting information to corroborate the claim that nanomaterials are used. The modified CPI has enabled crowdsourcing capabilities, which allow users to suggest edits to any entry and permits researchers to upload new findings ranging from human and environmental exposure data to complete life cycle

  3. REACH and nanomaterials: current status

    International Nuclear Information System (INIS)

    Alessandrelli, Maria; Di Prospero Fanghella, Paola; Polci, Maria Letizia; Castelli, Stefano; Pettirossi, Flavio

    2015-01-01

    New challenges for regulators are emerging about a specific assessment and appropriate management of the potential risks of nanomaterials. In the framework of European legislation on chemicals, Regulation (EC) No. 1907/2006 REACH aims to ensure the safety of human health and the environment through the collection of information on the physico-chemical characteristics of the substances and on their profile (eco) toxicological and the identification of appropriate risk management linked to 'exposure to these substances without impeding scientific progress and the competitiveness of industry. In order to cover the current shortage of information on the safety of nanomaterials and tackle the acknowledged legal vacuum, are being a rich activities, carried out both by regulators both by stake holders, and discussions on the proposals for adapting the European regulatory framework for chemicals . The European Commission is geared to strengthen the REACH Regulation by means of updates of its annexes. The importance of responding to the regulatory requirements has highlighted the need for cooperation between European organizations, scientists and industries to promote and ensure the safe use of nanomaterials. [it

  4. Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment

    Science.gov (United States)

    Ono-Ogasawara, Mariko; Serita, Fumio; Takaya, Mitsutoshi

    2009-10-01

    As the production of engineered nanomaterials quantitatively expands, the chance that workers involved in the manufacturing process will be exposed to nanoparticles also increases. A risk management system is needed for workplaces in the nanomaterial industry based on the precautionary principle. One of the problems in the risk management system is difficulty of exposure assessment. In this article, examples of exposure assessment in nanomaterial industries are reviewed with a focus on distinguishing engineered nanomaterial particles from background nanoparticles in workplace atmosphere. An approach by JNIOSH (Japan National Institute of Occupational Safety and Health) to quantitatively measure exposure to carbonaceous nanomaterials is also introduced. In addition to real-time measurements and qualitative analysis by electron microscopy, quantitative chemical analysis is necessary for quantitatively assessing exposure to nanomaterials. Chemical analysis is suitable for quantitative exposure measurement especially at facilities with high levels of background NPs.

  5. AMTEX: A university, government, industry, partnership

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.J. [Auburn Univ., AL (United States); Cheatham, R.L. [Pacific Northwest Lab., Richland, WA (United States); Peskin, A.M. [Brookhaven National Lab., Upton, NY (United States)

    1993-12-01

    The AMTEX Partnership is a research and development collaboration between the US Department of Energy (DOE), the DOE`s multiprogram laboratories, universities, and the integrated textile industry. The integrated industry includes fibers, textiles, apparel, and other fabricated products. The goal of AMTEX is to strengthen the competitiveness of this vital industry and thereby preserve and create new jobs. AMTEX is a role model for government, industry and universities working together to achieve a specified goal. Under the oversight of the Laboratory Technology Transfer Program in DOE`s Office of Energy Research, the multiprogram laboratories, universities and industry are pursuing a broad, industry-driven research agenda. It combines the research and development capabilities of industry and universities with the unique expertise and facilities of the DOE laboratory system.

  6. Nanomaterials for Defense Applications

    Science.gov (United States)

    Turaga, Uday; Singh, Vinitkumar; Lalagiri, Muralidhar; Kiekens, Paul; Ramkumar, Seshadri S.

    Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.

  7. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  8. Impact and effectiveness of risk mitigation strategies on the insurability of nanomaterial production: evidences from industrial case studies.

    Science.gov (United States)

    Bergamaschi, Enrico; Murphy, Finbarr; Poland, Craig A; Mullins, Martin; Costa, Anna L; McAlea, Eamonn; Tran, Lang; Tofail, Syed A M

    2015-01-01

    Workers involved in producing nanomaterials or using nanomaterials in manufacturing plants are likely to have earlier and higher exposure to manufactured/engineered nanomaterials (ENM) than the general population. This is because both the volume handled and the probability of the effluence of 'free' nanoparticles from the handled volume are much higher during a production process than at any other stage in the lifecycle of nanomaterials and nanotechnology-enabled products. Risk assessment (RA) techniques using control banding (CB) as a framework for risk transfer represents a robust theory but further progress on implementing the model is required so that risk can be transferred to insurance companies. Following a review of RA in general and hazard measurement in particular, we subject a Structural Alert Scheme methodology to three industrial case studies using ZrO2 , TiO2 , and multi-walled carbon nanotubes (MWCNT). The materials are tested in a pristine state and in a remediated (coated) state, and the respective emission and hazard rates are tested alongside the material performance as originally designed. To our knowledge, this is the first such implementation of a CB RA in conjunction with an ENM performance test and offers both manufacturers and underwriters an insight into future applications. © 2015 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  9. Techniques for Investigating Molecular Toxicology of Nanomaterials.

    Science.gov (United States)

    Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong

    2016-06-01

    Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods.

  10. Energy Device Applications of Synthesized 1D Polymer Nanomaterials.

    Science.gov (United States)

    Huang, Long-Biao; Xu, Wei; Hao, Jianhua

    2017-11-01

    1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Nanomaterials in cosmetics--present situation and future].

    Science.gov (United States)

    Masunaga, Takuji

    2014-01-01

    Cosmetics are consumer products intended to contribute to increasing quality of life and designed for long-term daily use. Due to such features of cosmetics, they are required to ensure quality and safety at a high level, as well as to perform well, in response to consumers' demands. Recently, the technology associated with nanomaterials has progressed rapidly and has been applied to various products, including cosmetics. For example, nano-sized titanium dioxide has been formulated in sunscreen products in pursuit of improving its performance. As some researchers and media have expressed concerns about the safety of nanomaterials, a vague feeling of anxiety has been raised in society. In response to this concern, the Japan Cosmetic Industry Association (JCIA) has begun original research related to the safety assurance of nanomaterials formulated in cosmetics, to allow consumers to use cosmetics without such concerns. This paper describes the activities of the JCIA regarding safety research on nanomaterials, including a survey of the actual usage of nanomaterials in cosmetics, analysis of the existence of nanomaterials on the skin, and assessment of skin carcinogenicity of nano-sized titanium dioxide. It also describes the international status of safety assurance and regulation regarding nanomaterials in cosmetics.

  12. Nanotechnologies and Nanomaterials: Scientific, Economic and Political Realia of the New Century

    Directory of Open Access Journals (Sweden)

    Zaporotskova Irina Vladimirovna

    2015-05-01

    Full Text Available The current state and problems of nanotechnology development in the Russian Federation in modern economic, political and scientific conditions are presented. Nanotechnologies and nanomaterials have already been used in all developed countries of the world in the most significant areas of human activity industry, defense, information sphere, radio electronics, energy drinks, transport, biotechnology, medicine. The Government of the Russian Federation formulated the main objectives of scientific and economic community for the development of nanotechnologies in the conditions of the demanded import substitution. In the developed countries the comprehension of the key role of nanotechnologies led to the elaboration of large-scale programs for their development on the basis of state support. Similar programs are adopted more than in thirty countries around the world, including the Russian Federation. The author of the present article studies the current state of nanotech industry in Russia and classifies nanotechnologies according to the intrinsic principle. As a result, four main directions in the field of nanotechnologies are allocated: 1 nanomaterials; 2 photonics, spintronics, nanoelectronics (devices based on the nanoprinciples; 3 nanometrology, nanomanipulators and modeling; 4 nanosensors and nanodetectors. Some perspective scientific and technological projects of nanotech industry development in Russia are also considered. The author points to economic, social, ecological, and scientific and technical opportunities of nanotechnologies development in Russia, as well as their threats.

  13. Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure.

    Science.gov (United States)

    Bekker, Cindy; Brouwer, Derk H; Tielemans, Erik; Pronk, Anjoeka

    2013-04-01

    In order to make full use of the opportunities while responsibly managing the risks of working with manufactured nanomaterials (MNM), we need to gain insight into the potential level of exposure to MNM in the industry. Therefore, the goal of this study was to obtain an overview of the potential MNM exposure scenarios within relevant industrial sectors, applied exposure controls, and number of workers potentially exposed to MNM in Dutch industrial sectors producing and applying MNM-enabled end products in the Netherlands. A survey was conducted in three phases: (i) identification of MNM-enabled end products; (ii) identification of relevant industrial sectors; and (iii) a tiered telephone survey to estimate actual use of the products among 40 sector organizations/knowledge centres (Tier 1), 350 randomly selected companies (Tier 2), and 110 actively searched companies (Tier 3). The most dominant industrial sectors producing or applying MNM-enabled end products (market penetration >5%) are shoe repair shops, automotive, construction, paint, metal, and textile cleaning industry. In the majority of the companies (76%), potential risks related to working with MNM are not a specific point of interest. The total number of workers potentially exposed to MNM during the production or application of MNM-enabled end products was estimated at approximately 3000 workers in the Netherlands. The results of this study will serve as a basis for in-depth exposure and health surveys that are currently planned in the Netherlands. In addition, the results can be used to identify the most relevant sectors for policy makers and future studies focussing on evaluating the risks of occupational exposure to MNM.

  14. Management of nanomaterials safety in research environment

    Directory of Open Access Journals (Sweden)

    Riediker Michael

    2010-12-01

    Full Text Available Abstract Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health. The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard. Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal. The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and

  15. Management of nanomaterials safety in research environment.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Magrez, Arnaud; Riediker, Michael; Meyer, Thierry

    2010-12-10

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3--highest hazard to Nano1--lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  16. Safety Aspects of Bio-Based Nanomaterials.

    Science.gov (United States)

    Catalán, Julia; Norppa, Hannu

    2017-12-01

    Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi-cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  17. Safety Aspects of Bio-Based Nanomaterials

    Directory of Open Access Journals (Sweden)

    Julia Catalán

    2017-12-01

    Full Text Available Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi­cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  18. Government/Industry Partnership on the Security of Radioactive Sources

    International Nuclear Information System (INIS)

    Cefus, Greg; Colhoun, Stefan C.; Freier, Keith D.; Wright, Kyle A.; Herdes, Gregory A.

    2006-01-01

    In the past, industry radiation protection programs were built almost exclusively around radiation safety and the minimization of radiation dose exposure to employees. Over the last decade, and especially the last few years, the emphasis has shifted to include the physical security and enhanced control of radioactive materials. The threat of nuclear and radiological terrorism is a genuine international security concern. In May 2004, the U.S. Department of Energy/U.S. National Nuclear Security Administration unveiled the Global Threat Reduction Initiative (GTRI) to respond to a growing international concern for the proper control and security of radioactive and nuclear materials. An integral part of the GTRI, the International Radiological Threat Reduction (IRTR) Program, was established in February 2002, originally as a Task Force. The IRTR Program is foremost a government-to-government cooperative program with the mission to reduce the risk posed by vulnerable radioactive materials that could be used in a Radioactive Dispersal Device (RDD). However, governments alone cannot prevent the misuse and illicit trafficking of radioactive sources. By expanding the role of private industry as a partner, existing government regulatory infrastructures can be enhanced by formulating and adopting industry self-regulation and self-policing measures. There is international concern regarding the security and control of the vast number of well-logging sources used during oil exploration operations. The prevalence of these sources, coupled with their portability, is a legitimate security concern. The energy exploration industry has well established safety and security protocols and the IRTR Program seeks to build on this foundation. However, the IRTR Program does not have sufficient resources to address the issue without industry assistance, so it is looking to the oil and gas industry to help identify alternative means for accomplishing our mutual objectives. This paper describes

  19. Simulating Exposure Concentrations of Engineered Nanomaterials in Surface Water Systems: Release of WASP8

    Science.gov (United States)

    Knightes, C. D.; Bouchard, D.; Zepp, R. G.; Henderson, W. M.; Han, Y.; Hsieh, H. S.; Avant, B. K.; Acrey, B.; Spear, J.

    2017-12-01

    The unique properties of engineered nanomaterials led to their increased production and potential release into the environment. Currently available environmental fate models developed for traditional contaminants are limited in their ability to simulate nanomaterials' environmental behavior. This is due to an incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. The well-known Water Quality Analysis Simulation Program (WASP) was updated to incorporate nanomaterial-specific processes, specifically hetero-aggregation with particulate matter. In parallel with this effort, laboratory studies were used to quantify parameter values parameters necessary for governing processes in surface waters. This presentation will discuss the recent developments in the new architecture for WASP8 and the newly constructed Advanced Toxicant Module. The module includes advanced algorithms for increased numbers of state variables: chemicals, solids, dissolved organic matter, pathogens, temperature, and salinity. This presentation will focus specifically on the incorporation of nanomaterials, with the applications of the fate and transport of hypothetical releases of Multi-Walled Carbon Nanotubes (MWCNT) and Graphene Oxide (GO) into the headwaters of a southeastern US coastal plains river. While this presentation focuses on nanomaterials, the advanced toxicant module can also simulate metals and organic contaminants.

  20. A Relationship on the Rocks: Industry-Government Partnership for Cyber Defense

    Directory of Open Access Journals (Sweden)

    Larry Clinton

    2011-01-01

    Full Text Available Cyber security is a complex issue that requires a smart, balanced approach to public-private partnership. However, there is not a simple gold standard or mandatory minimum standard of cyber security, which can cause friction in the relationship between government and private industry. There are fundamental differences in these two unevenly yoked partners: government's fundamental role under the U.S. Constitution is to provide for the common defense; industry's role, backed by nearly a hundred years of case law, is to maximize shareholder value. Further differences are that government partners and industry players often assess risk differently, based on their differing missions and objectives. To be successful, both government and industry need to remain committed to the relationship and continue working on it by understanding the complexity of the situation, adapting where appropriate to their partner's perspective. For the public-private partnership to endure and grow, an appreciation of these differing perspectives—born from different legally mandated responsibilities—must be reached. Ultimately, the government should compensate private entities for making investments that align with the government's perspective, such as the social contract, rather than mandating that the shareholders subsidize the government function of providing for the common defense.

  1. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review.

    Science.gov (United States)

    Khan, Avik; Wen, Yangbing; Huq, Tanzina; Ni, Yonghao

    2018-01-10

    Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.

  2. Health and safety implications of occupational exposure to engineered nanomaterials.

    Science.gov (United States)

    Stebounova, Larissa V; Morgan, Hallie; Grassian, Vicki H; Brenner, Sara

    2012-01-01

    The rapid growth and commercialization of nanotechnology are currently outpacing health and safety recommendations for engineered nanomaterials. As the production and use of nanomaterials increase, so does the possibility that there will be exposure of workers and the public to these materials. This review provides a summary of current research and regulatory efforts related to occupational exposure and medical surveillance for the nanotechnology workforce, focusing on the most prevalent industrial nanomaterials currently moving through the research, development, and manufacturing pipelines. Their applications and usage precedes a discussion of occupational health and safety efforts, including exposure assessment, occupational health surveillance, and regulatory considerations for these nanomaterials. Copyright © 2011 Wiley Periodicals, Inc.

  3. The role of state government in advancing the solar industries

    International Nuclear Information System (INIS)

    Kling, C.

    1999-01-01

    The New Jersey Sustainable Business Office (NJOSB) was created within the New Jersey Commerce Commission in order to support and promote environmentally preferable businesses and to make policy changes that support sustainability throughout New Jersey. This paper will discuss the role that this new office has taken in order to advance the solar industries. The work of the office, to this end, has focused on: surveying the solar energy industry to discover barriers to market, advocating policy change to address level playing field issues, developing strong communication channels between government and industry and leveraging traditional commerce and government programs to provide structured business assistance to the solar industries

  4. The relation between external governance environment and over-investment: Evidence from industry regulation

    Directory of Open Access Journals (Sweden)

    Kejing Chen

    2014-11-01

    Full Text Available Based on the Law and Finance theory, and the regulatory capture theory, external governance environment and industrial regulations can exert a certain influence on corporate over-investment. On the basis of qualitative analysis of the relationship between external governance environment and corporate over-investment under different industrial regulation conditions, this paper, using data of non-financial companies listed in Shanghai and Shenzhen Stock Exchanges in the period 2001-2010, describes the regional distribution characteristics of over-investment of Chinese listed companies, and establishes an OLS regression model of the relationship between external governance environment and over-investment. The study respectively groups data from regulated and non-regulated industries as a sample and empirically tests the OLS regression model. Results show that: from the perspective of economic geography, there exists a local spatial cluster phenomenon in the distribution of over-investment of listed companies in regulated industries, while non-regulated industries conform to no regularity. In regulated industries, external governance environment factors (level of government intervention, rule of law and financial development may exert a significant negative influence on the degree of over-investment of listed companies, but on non-regulated industries, their effect is reversed. Also, government intervention, legal enforcement and financial development are positively correlated to over-investment. Further research indicates that, compared with government intervention and financial development, legal enforcement influences over-investment the most.

  5. Studies and Development of Radiation Processed Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree [Radiation Technology Development Section, Bhabha Atomic Research Centre, Mumbai (India)

    2009-07-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  6. Studies and Development of Radiation Processed Nanomaterials

    International Nuclear Information System (INIS)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree

    2009-01-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  7. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  8. Government perspective on current and likely future developments affecting the nuclear industry

    International Nuclear Information System (INIS)

    Walker, A.

    2000-01-01

    In October 1998 the Government published its Energy Sources White Paper, making it clear that what it wanted was an energy policy developed in a competitive market framework. The Government considers a competitive market is absolutely essential for both industrial and domestic energy users but the challenge for energy in the twenty-first century, not only in the UK but increasingly the world over, is how to deliver a competitive market and at the same time fulfil broader expectations for energy, particularly social, environmental, security and diversity objectives. Quite clearly, the nuclear industry needs to fit into this policy and the Government recognizes that it is a key player in achieving these goals. But it must be the industry itself, not the Government, that is the driver for change. The DTI believes that if the current and future economic opportunities in the nuclear industry are to be realized then there are challenges to be met in three areas: cost; waste management; and safety, environment and public confidence. This paper discusses the ways in which the industry can, with the Government's help, successfully meet these challenges. (author)

  9. Research into industrial technology policy trends in Australia. Role of government in promoting industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The paper reported the investigation into strategies of industrial technology, results of the R and D support plans, management of support fund plans, etc. by the Australian government. The present government introduced policies on industrial innovation and industrial technology, research and higher education, etc. from the end of 1997 to the end of 1999. Especially, recently the R and D preferential taxation system was introduced. As to organizations pertaining to science, technology, engineering and innovation, PMSEIC (prime minister's science, engineering and innovation council) under the direct control of prime minister is a top self-supporting organization, in which minister from each ministry join. Further, the assembly committee, which is not the bureaucratic organization, was separately established. In February 2000, the innovation summit was held, in which a lot of organizations from the industrial circle, government and research institutes participated. The conclusion was as follows: Australia is now at the crossroads of the resource dependent economy. The solution adopted in the past cannot meet the age of new knowledge. The rapidly advancing globalization makes the society more competitive. Enterprises that avoid the innovative investment are to expose themselves to danger. Australia is requested to make continued efforts for more innovative creation. (NEDO)

  10. Research into industrial technology policy trends in Australia. Role of government in promoting industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The paper reported the investigation into strategies of industrial technology, results of the R and D support plans, management of support fund plans, etc. by the Australian government. The present government introduced policies on industrial innovation and industrial technology, research and higher education, etc. from the end of 1997 to the end of 1999. Especially, recently the R and D preferential taxation system was introduced. As to organizations pertaining to science, technology, engineering and innovation, PMSEIC (prime minister's science, engineering and innovation council) under the direct control of prime minister is a top self-supporting organization, in which minister from each ministry join. Further, the assembly committee, which is not the bureaucratic organization, was separately established. In February 2000, the innovation summit was held, in which a lot of organizations from the industrial circle, government and research institutes participated. The conclusion was as follows: Australia is now at the crossroads of the resource dependent economy. The solution adopted in the past cannot meet the age of new knowledge. The rapidly advancing globalization makes the society more competitive. Enterprises that avoid the innovative investment are to expose themselves to danger. Australia is requested to make continued efforts for more innovative creation. (NEDO)

  11. Co-evolution of industry strategies and government policies: The case of the brazilian automotive industry

    NARCIS (Netherlands)

    Duarte, R.G. (Roberto Gonzalez); S.B. Rodrigues (Suzana)

    2017-01-01

    textabstractThis study examines the evolution of the automotive industry in Brazil and its key drivers. We argue that the rules of the game – industry policies – are an outcome of exchanges between the host government and industry. These arise from changes in economic and political environments and

  12. Purifying Nanomaterials

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  13. Safety of Nanotechnology in Food Industries

    Science.gov (United States)

    Amini, Seyed Mohammad; Gilaki, Marzieh; Karchani, Mohsen

    2014-01-01

    The arrival of nanotechnology in various industries has been so rapid and widespread because of its wide-ranging applications in our daily lives. Nutrition and food service is one of the biggest industries to be affected by nanotechnology in all areas, changing even the nature of food itself. Whether it’s farming, food packaging, or the prevention of microbial contamination the major food industries have seen dramatic changes because of nanotechnology. Different nanomaterials such as nanopowders, nanotubes, nano-fibers, quantum dots, and metal and metal-oxide nanoparticles are globally produced in large quantities due to their broad applicability in food-related industries. Because of the unique properties of nanostructures and nanomaterials – such as a large surface area, high activity, and small size, there is some concern about the potential for harmful adverse effects of used nanomaterials on health or the environment. However, because of tremendous advances in different industries, this concern may be unnecessary. This paper presents some uses of nanomaterials in food and related industries and their possible side-effects. This review covers the various aspects of nanomaterials and their impact on human exposure, safety, and environmental concerns. PMID:25763176

  14. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  15. Use of nanomaterials in the European construction industry and some occupational health aspects thereof

    Science.gov (United States)

    van Broekhuizen, Pieter; van Broekhuizen, Fleur; Cornelissen, Ralf; Reijnders, Lucas

    2011-02-01

    In the European construction industry in 2009, the use of engineered nanoparticles appears to be confined to a limited number of products, predominantly coatings, cement and concrete. A survey among representatives of workers and employers from 14 EU countries suggests a high level of ignorance about the availability and use of nanomaterials for the construction industry and the safety aspects thereof. Barriers for a large-scale acceptance of products containing engineered nanoparticles (nanoproducts) are high costs, uncertainties about long-term technical material performance, as well as uncertainties about health risks of nanoproducts. Workplace measurements suggest a modest exposure of construction workers to nanoparticles (NPs) associated with the use of nanoproducts. The measured particles were within a size range of 20-300 nm, with the median diameter below 53 nm. Positive assignment of this exposure to the nanoproduct or to additional sources of ultrafine particles, like the electrical equipment used was not possible within the scope of this study and requires further research. Exposures were below the nano reference values proposed on the basis of a precautionary approach.

  16. Use of nanomaterials in the European construction industry and some occupational health aspects thereof

    International Nuclear Information System (INIS)

    Broekhuizen, Pieter van; Broekhuizen, Fleur van; Cornelissen, Ralf; Reijnders, Lucas

    2011-01-01

    In the European construction industry in 2009, the use of engineered nanoparticles appears to be confined to a limited number of products, predominantly coatings, cement and concrete. A survey among representatives of workers and employers from 14 EU countries suggests a high level of ignorance about the availability and use of nanomaterials for the construction industry and the safety aspects thereof. Barriers for a large-scale acceptance of products containing engineered nanoparticles (nanoproducts) are high costs, uncertainties about long-term technical material performance, as well as uncertainties about health risks of nanoproducts. Workplace measurements suggest a modest exposure of construction workers to nanoparticles (NPs) associated with the use of nanoproducts. The measured particles were within a size range of 20–300 nm, with the median diameter below 53 nm. Positive assignment of this exposure to the nanoproduct or to additional sources of ultrafine particles, like the electrical equipment used was not possible within the scope of this study and requires further research. Exposures were below the nano reference values proposed on the basis of a precautionary approach.

  17. Nanomaterials application in electrochemical detection of heavy metals

    International Nuclear Information System (INIS)

    Aragay, Gemma; Merkoçi, Arben

    2012-01-01

    Highlights: ► We review the recent trends in the application of nanomaterials for electrochemical detection of heavy metals. ► Different types of nanomaterials including metal nanoparticles, different carbon nanomaterials or nanochannels have been applied on the electrochemical analysis of heavy metals in various sensing formats/configurations. ► The great properties of nanomaterials allow the new devices to show advantages in terms of sensing performance (i.e. increase the sensitivity, decrease the detection limits and improve the stability). ► Between the various electrochemical techniques, voltammetric and potentiometric based ones are particularly taking interesting advantages by the incorporation of new nanomaterials due to the improved electrocatalytic properties beside the increase of the sensor's transducing area. - Abstract: Recent trends in the application of nanomaterials for electrochemical detection of heavy metals are shown. Various nanomaterials such as nanoparticles, nanowires, nanotubes, nanochannels, graphene, etc. have been explored either as modifiers of electrodes or as new electrode materials with interest to be applied in electrochemical stripping analysis, ion-selective detection, field-effect transistors or other indirect heavy metals (bio)detection alternatives. The developed devices have shown increased sensitivity and decreased detection limits between other improvements of analytical performance data. The phenomena behind nanomaterials responses are also discussed and some typical responses data of the developed systems either in standard solutions or in real samples are given. The developed nanomaterials based electrochemical systems are giving new inputs to the existing devices or leading to the development of novel heavy metal detection tools with interest for applications in field such as diagnostics, environmental and safety and security controls or other industries.

  18. Engineered nanomaterials: Exposures, hazards and risk prevention.

    Science.gov (United States)

    Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public) are either developing or using engineered nanomaterials (ENMs). However, understanding of the health and sa...

  19. Government and the petroleum industry in Ontario: a new business approach

    International Nuclear Information System (INIS)

    Pichette, R. J.

    1998-01-01

    The principles and concepts behind the development of the new business plan of the Ontario Ministry of Natural Resources, as it relates to the petroleum/salt industries in the province are described. The business planning approach adopted by the Progressive Government of the Province, is expected to provide the framework within which to examine alternate service delivery mechanisms in an environment of reducing budgets and staff. It is expected to implement a new business approach with client industries which focuses on innovative concepts of alternative service delivery and government/industry partnership. The foundation of this new approach is Bill 52, proclaimed in June 1997, which created new legislation, called the 'Oil, Gas and Salt Resources Act' which facilitated implementation of the new business approach. According to the business plan, the provincial focus will be confined to the development of new policies and standards, provision of technical approvals, assurance of compliance and maintenance of a technical and administrative database. It is expected that the new government/industry partnership will result in greater self-reliance, co-operative accountability and responsibility by industry, and a stronger and more vibrant industry sector. 1 ref

  20. The importance and quality of cluster governance in the Chilean wine industry

    NARCIS (Netherlands)

    Visser, E.J.; Langen, de P.W.

    2006-01-01

    The central theme of this paper is the issue of the governance of cooperation within the Chilean wine industry. The effects of the internationalization of this industry for the importance and the quality of governance of intra-cluster cooperation involving firms and other actors are analysed. Two

  1. Magnetic characterization techniques for nanomaterials

    CERN Document Server

    2017-01-01

    Sixth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Magnetic Characterization Techniques for Nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  2. Advances in nanomaterials

    CERN Document Server

    Khan, Zishan

    2016-01-01

    This book provides a review of the latest research findings and key applications in the field of nanomaterials. The book contains twelve chapters on different aspects of nanomaterials. It begins with key fundamental concepts to aid readers new to the discipline of nanomaterials, and then moves to the different types of nanomaterials studied. The book includes chapters based on the applications of nanomaterials for nano-biotechnology and solar energy. Overall, the book comprises chapters on a variety of topics on nanomaterials from expert authors across the globe. This book will appeal to researchers and professional alike, and may also be used as a reference for courses in nanomaterials.

  3. Advanced nanomaterials

    Science.gov (United States)

    Titus, Elby; Ventura, João; Pedro Araújo, João; Campos Gil, João

    2017-12-01

    Nanomaterials provide a remarkably novel outlook to the design and fabrication of materials. The know-how of designing, modelling and fabrication of nanomaterials demands sophisticated experimental and analytical techniques. The major impact of nanomaterials will be in the fields of electronics, energy and medicine. Nanoelectronics hold the promise of improving the quality of life of electronic devices through superior performance, weight reduction and lower power consumption. New energy production systems based on hydrogen, solar and nuclear sources have also benefited immensely from nanomaterials. In modern medicine, nanomaterials research will have great impact on public health care due to better diagnostic methods and design of novel drugs.

  4. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance

    International Nuclear Information System (INIS)

    Subramanian, Vrishali; Semenzin, Elena; Hristozov, Danail; Zabeo, Alex; Malsch, Ineke; McAlea, Eamonn; Murphy, Finbarr; Mullins, Martin; Harmelen, Toon van; Ligthart, Tom; Linkov, Igor; Marcomini, Antonio

    2016-01-01

    The significant uncertainties associated with the (eco)toxicological risks of engineered nanomaterials pose challenges to the development of nano-enabled products toward greatest possible societal benefit. This paper argues for the use of risk governance approaches to manage nanotechnology risks and sustainability, and considers the links between these concepts. Further, seven risk assessment and management criteria relevant to risk governance are defined: (a) life cycle thinking, (b) triple bottom line, (c) inclusion of stakeholders, (d) risk management, (e) benefit–risk assessment, (f) consideration of uncertainty, and (g) adaptive response. These criteria are used to compare five well-developed nanotechnology frameworks: International Risk Governance Council framework, Comprehensive Environmental Assessment, Streaming Life Cycle Risk Assessment, Certifiable Nanospecific Risk Management and Monitoring System and LICARA NanoSCAN. A Sustainable Nanotechnology Decision Support System (SUNDS) is proposed to better address current nanotechnology risk assessment and management needs, and makes. Stakeholder needs were solicited for further SUNDS enhancement through a stakeholder workshop that included representatives from regulatory, industry and insurance sectors. Workshop participants expressed the need for the wider adoption of sustainability assessment methods and tools for designing greener nanomaterials.

  6. Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Vrishali, E-mail: vrishali.subramanian@unive.it; Semenzin, Elena; Hristozov, Danail; Zabeo, Alex [University Ca’ Foscari of Venice, Department of Environmental Sciences, Informatics and Statistics (Italy); Malsch, Ineke [Malsch TechnoValuation (Netherlands); McAlea, Eamonn; Murphy, Finbarr; Mullins, Martin [University of Limerick, Kemmy Business School (Ireland); Harmelen, Toon van; Ligthart, Tom [TNO (Netherlands); Linkov, Igor; Marcomini, Antonio, E-mail: marcom@unive.it [University Ca’ Foscari of Venice, Department of Environmental Sciences, Informatics and Statistics (Italy)

    2016-04-15

    The significant uncertainties associated with the (eco)toxicological risks of engineered nanomaterials pose challenges to the development of nano-enabled products toward greatest possible societal benefit. This paper argues for the use of risk governance approaches to manage nanotechnology risks and sustainability, and considers the links between these concepts. Further, seven risk assessment and management criteria relevant to risk governance are defined: (a) life cycle thinking, (b) triple bottom line, (c) inclusion of stakeholders, (d) risk management, (e) benefit–risk assessment, (f) consideration of uncertainty, and (g) adaptive response. These criteria are used to compare five well-developed nanotechnology frameworks: International Risk Governance Council framework, Comprehensive Environmental Assessment, Streaming Life Cycle Risk Assessment, Certifiable Nanospecific Risk Management and Monitoring System and LICARA NanoSCAN. A Sustainable Nanotechnology Decision Support System (SUNDS) is proposed to better address current nanotechnology risk assessment and management needs, and makes. Stakeholder needs were solicited for further SUNDS enhancement through a stakeholder workshop that included representatives from regulatory, industry and insurance sectors. Workshop participants expressed the need for the wider adoption of sustainability assessment methods and tools for designing greener nanomaterials.

  7. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites

    Science.gov (United States)

    Dufresne, Alain

    2017-12-01

    Unexpected and attractive properties can be observed when decreasing the size of a material down to the nanoscale. Cellulose is no exception to the rule. In addition, the highly reactive surface of cellulose resulting from the high density of hydroxyl groups is exacerbated at this scale. Different forms of cellulose nanomaterials, resulting from a top-down deconstruction strategy (cellulose nanocrystals, cellulose nanofibrils) or bottom-up strategy (bacterial cellulose), are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer nanocomposites, the basis for low-density foams, additives in adhesives and paints, as well as a wide variety of filtration, electronic, food, hygiene, cosmetic and medical products. This paper focuses on the use of cellulose nanomaterials as a filler for the preparation of polymer nanocomposites. Impressive mechanical properties can be obtained for these materials. They obviously depend on the type of nanomaterial used, but the crucial point is the processing technique. The emphasis is on the melt processing of such nanocomposite materials, which has not yet been properly resolved and remains a challenge. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  8. How Might Industry Governance Be Broadened To Include Nonproliferation

    International Nuclear Information System (INIS)

    Hund, Gretchen; Seward, Amy M.

    2009-01-01

    Broadening industry governance to support nonproliferation could provide significant new leverage in preventing the spread/diversion of nuclear, radiological, or dual-use material or technology that could be used in making a nuclear or radiological weapon. Industry is defined broadly to include (1) the nuclear industry, (2) dual-use industries, and (3) radioactive source manufacturers and selected radioactive source-user industries worldwide. This paper describes how industry can be an important first line of defense in detecting and thwarting proliferation, such as an illicit trade network or an insider theft case, by complementing and strengthening existing governmental efforts. For example, the dual-use industry can play a critical role by providing export, import, or security control information that would allow a government or the International Atomic Energy Agency (IAEA) to integrate this information with safeguards, export, import, and physical protection information it has to create a more complete picture of the potential for proliferation. Because industry is closest to users of the goods and technology that could be illicitly diverted throughout the supply chain, industry information can potentially be more timely and accurate than other sources of information. Industry is in an ideal position to help ensure that such illicit activities are detected. This role could be performed more effectively if companies worked together within a particular industry to promote nonproliferation by implementing an industry-wide self-regulation program. Performance measures could be used to ensure their materials and technologies are secure throughout the supply chain and that customers are legitimately using and/or maintaining oversight of these items. Nonproliferation is the overarching driver that industry needs to consider in adopting and implementing a self-regulation approach. A few foreign companies have begun such an approach to date; it is believed that

  9. [International trend of guidance for nanomaterial risk assessment].

    Science.gov (United States)

    Hirose, Akihiko

    2013-01-01

    In the past few years, several kinds of opinions or recommendations on the nanomaterial safety assessment have been published from international or national bodies. Among the reports, the first practical guidance of risk assessment from the regulatory body was published from the European Food Safety Authorities in May 2011, which included the determination of exposure scenario and toxicity testing strategy. In October 2011, European Commission (EC) adopted the definition of "nanomaterial" for regulation. And more recently, Scientific Committee on Consumer Safety of EC released guidance for assessment of nanomaterials in cosmetics in June 2012. A series of activities in EU marks an important step towards realistic safety assessment of nanomaterials. On the other hand, the US FDA announced a draft guidance for industry in June 2011, and then published draft guidance documents for both "Cosmetic Products" and "Food Ingredients and Food Contact Substances" in April 2012. These draft documents do not restrictedly define the physical properties of nanomaterials, but when manufacturing changes alter the dimensions, properties, or effects of an FDA-regulated product, the products are treated as new products. Such international movements indicate that most of nanomaterials with any new properties would be assessed or regulated as new products by most of national authorities in near future, although the approaches are still case by case basis. We will introduce such current international activities and consideration points for regulatory risk assessment.

  10. CE and nanomaterials - Part II: Nanomaterials in CE.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    The scope of this two-part review is to summarize publications dealing with CE and nanomaterials together. This topic can be viewed from two broad perspectives, and this article is trying to highlight these two approaches: (i) CE of nanomaterials, and (ii) nanomaterials in CE. The second part aims at summarization of publications dealing with application of nanomaterials for enhancement of CE performance either in terms of increasing the separation resolution or for improvement of the detection. To increase the resolution, nanomaterials are employed as either surface modification of the capillary wall forming open tubular column or as additives to the separation electrolyte resulting in a pseudostationary phase. Moreover, nanomaterials have proven to be very beneficial for increasing also the sensitivity of detection employed in CE or even they enable the detection (e.g., fluorescent tags of nonfluorescent molecules). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanomaterials in glucose sensing

    CERN Document Server

    Burugapalli, Krishna

    2013-01-01

    The smartness of nano-materials is attributed to their nanoscale and subsequently unique physicochemical properties and their use in glucose sensing has been aimed at improving performance, reducing cost and miniaturizing the sensor and its associated instrumentation. So far, portable (handheld) glucose analysers were introduced for hospital wards, emergency rooms and physicians' offices; single-use strip systems achieved nanolitre sampling for painless and accurate home glucose monitoring; advanced continuous monitoring devices having 2 to 7 days operating life are in clinical and home use; and continued research efforts are being made to develop and introduce increasingly advanced glucose monitoring systems for health as well as food, biotechnology, cell and tissue culture industries. Nanomaterials have touched every aspect of biosensor design and this chapter reviews their role in the development of advanced technologies for glucose sensing, and especially for diabetes. Research shows that overall, nanomat...

  12. The Pharmaceutical Industry and the Canadian Government: Folie à Deux.

    Science.gov (United States)

    Lexchin, Joel

    2017-08-01

    The interest of the pharmaceutical industry is in achieving a profit for its shareholders while the interest of the Canadian government should be in protecting public health. However, over the course of the past few decades the actions of the Canadian government have been tilted in favour of industry in two areas. The first is in the relationship between industry and Health Canada and is manifested in the regulation of clinical trials, the drug approval system, drug safety and promotion. The second is in economic policy as it applies to policies about patent protection, the price of medications and measures taken to incentivize research and development. The problems in the relationship are structural and will only be solved through systemic changes. Copyright © 2017 Longwoods Publishing.

  13. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  14. Continuous production of fullerenes and other carbon nanomaterials on a semi-industrial scale using plasma technology

    International Nuclear Information System (INIS)

    Gruenberger, T.M.; Gonzalez-Aguilar, J.; Fulcheri, L.; Fabry, F.; Grivei, E.; Probst, N.; Flamant, G.; Charlier, J.-C.

    2002-01-01

    A new production method is presented allowing the production of bulk quantities of fullerenes and other carbon nanomaterials using a 3-phase thermal plasma (260 kW). The main characteristics of this method lie in the independent control of the carbon throughput by injection of a solid carbon feedstock, and the immediate extraction of the synthesised product from the reactor, allowing production on a continuous basis. The currently investigated plasma facility is of an intermediate scale between lab-size and an industrial pilot plant, ready for further up scaling to an industrial size. The influence of a large number of different carbon precursors, plasma gases and operating conditions on the fullerene yield has been studied. At this state, quantities of up to 1 kg of carbon can be processed per hour with further scope for increase, leading to production rates for this type of materials not achievable with any other technology at present

  15. Applications of radiotracer techniques for the toxicology studies of nanomaterials

    International Nuclear Information System (INIS)

    Ma Yuhui; Zhang Zhiyong; Zhang Yuan; He Xiao; Zhang Haifeng; Chai Zhifang

    2008-01-01

    With the rapid development of nanosciences and nanotechnology, a wide variety of manufactured nanomaterials are now used in commodities, pharmaceutics, cosmetics, biomedical products, and industries. While nanomaterials possess more novel and unique physicochemical properties than bulk materials, they also have an unpredictable impact on human health. In the toxicology studies of nanomaterials, it is essential to know the basic behaviors in vivo, that is absorption, distribution, metabolism, and excretion (ADME) of these newly designed materials. Radiotracer techniques are especially well suited to such studies and has got the chance to demonstrate its enchantment. In this presentation, studies on radiotracer techniques used in nanotoxicology will be reviewed and new progresses at Institute of High Energy Physics, including the label methods and behaviors of labeled nanomaterials, such as fullerene, carbon nanotubes, and nanometer metal oxide in animals and in aquatic environments will be reported. (authors)

  16. An empirical investigation of governance structures in the hotel industry

    OpenAIRE

    Dahlstrom, Robert; Haugland, Sven Arne; Nygaard, Arne; Rokkan, Aksel Ivar

    2002-01-01

    The study investigates alternative governance forms in the hotel industry. We analyze the choice among independently owned firms, voluntary chains, franchising, and vertically integrated chains. Based on agency theory, we argue that the need for control over service quality, financial risk, and the market environment affect the choice of governance form. Prior agency research emphasizes alternative governance structures employed by principals given local market conditions, agent incentives, a...

  17. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-01-01

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  18. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-04-14

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  19. Assessing organisational governance maturity: A retail industry case study

    Directory of Open Access Journals (Sweden)

    Hendrik Marius Wessels

    2016-05-01

    Full Text Available For any business to operate effectively, a governance framework that operates at the relevant maturity level is required. An organisational governance maturity framework is a tool that leadership can use to determine governance maturity. This study aims to determine whether the organisational governance maturity framework (developed by Wilkinson can be applied to the selected retail industry organisation to assess the maturity of the organisation’s governance, limited to the ‘leadership’ attribute. Firstly, a high-level literature review on ethical leadership, ethical decision-making, ethical foundation and culture (‘tone at the top’, and organisational governance and maturity was conducted. Secondly, a Johannesburg Stock Exchange (JSE listed South African-based company was selected for the empirical part of the study using a single case study research design. The empirical results confirmed that the organisational governance maturity framework can be used to determine the maturity level of organisational governance for the selected attribute of ‘leadership’

  20. Partnering between Government and Industry, and Acquisition Reform Initiative

    National Research Council Canada - National Science Library

    Jones, Richard

    1997-01-01

    The diminishing use of technical Military Specifications (Mil-specs) and the increased emphasis on performance based requirements due to acquisition reform has limited technical communication between government and industry...

  1. MAPLE deposition of nanomaterials

    International Nuclear Information System (INIS)

    Caricato, A.P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P.D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-01-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  2. MAPLE deposition of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P., E-mail: annapaola.caricato@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Arima, V.; Catalano, M. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Cesaria, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Cozzoli, P.D. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Martino, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Taurino, A.; Rella, R. [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce (Italy); Scarfiello, R. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Tunno, T. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Zacheo, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy)

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  3. Surface science tools for nanomaterials characterization

    CERN Document Server

    2015-01-01

    Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  4. The effects of nanomaterials on blood coagulation in hemostasis and thrombosis.

    Science.gov (United States)

    Simak, Jan; De Paoli, Silvia

    2017-09-01

    The blood coagulation balance in the organism is achieved by the interaction of the blood platelets (PLTs) with the plasma coagulation system (PCS) and the vascular endothelial cells. In healthy organism, these systems prevent thrombosis and, in events of vascular damage, enable blood clotting to stop bleeding. The dysregulation of hemostasis may cause serious thrombotic and/or hemorrhagic pathologies. Numerous engineered nanomaterials are being investigated for biomedical purposes and are unavoidably exposed to the blood. Also, nanomaterials may access vascular system after occupational, environmental, or other types of exposure. Thus, it is essential to evaluate the effects of engineered nanomaterials on hemostasis. This review focuses on investigations of nanomaterial interactions with the blood components involved in blood coagulation: the PCS and PLTs. Particular emphases include the pathophysiology of effects of nanomaterials on the PCS, including the kallikrein-kinin system, and on PLTs. Methods for investigating these interactions are briefly described, and a review of the most important studies on the interactions of nanomaterials with plasma coagulation and platelets is provided. WIREs Nanomed Nanobiotechnol 2017, 9:e1448. doi: 10.1002/wnan.1448 For further resources related to this article, please visit the WIREs website. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Nanomaterials in consumer's goods: the problems of risk assessment

    Science.gov (United States)

    Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanotechnology and engineered nanomaterials are currently used in wide variety of cosmetic products, while their use in food industry, packaging materials, household chemicals etc. still includes a limited number of items and does not show a significant upward trend. However, the problem of priority nanomaterials associated risks is relevant due to their high production volumes and an constantly growing burden on the environment and population. In accordance with the frequency of use in mass-produced consumer goods, leading priority nanomaterials are silver nanoparticles (NPs) and (by a wide margin) NPs of gold, platinum, and titanium dioxide. Frequency of nanosized silica introduction into food products as a food additive, at the moment, seems to be underestimated, since the use of this nanomaterial is not declared by manufacturers of products and objective control of its content is difficult. Analysis of literature data on toxicological properties of nanomaterials shows that currently accumulated amount of information is sufficient to establish the safe doses of nanosized silver, gold and titanium dioxide. Data have been provided in a series of studies concerning the effect of oral intake of nanosized silica on the condition of laboratory animals, including on the performance of the immune system. The article examines the existing approaches to the assessment of population exposure to priority nanomaterials, characteristics of existing problems and risk management.

  6. Institutional aspects of corporate governance (publishing and printing industry

    Directory of Open Access Journals (Sweden)

    Malik Irina Petrovna

    2014-06-01

    Full Text Available An analysis of the fundamental principles of the corporate governance theory is carried out with substantiation of the use of institutional theory to ensure the effective development of the corporate sector of Ukrainian economy. The proposals on the allocation of corporate governance models on the example of publishing and printing industry are elaborated and institute of shareholder ownership was laid in the basis of construction. Institutional support at the macro-, meso-and micro-economic level is considered, that corresponds to the current state of Ukrainian economy and helps to improve the efficiency of corporate governance by domestic companies.

  7. Government and industry roles in heavy oil resource development

    International Nuclear Information System (INIS)

    Sharp, D.A.

    1994-01-01

    Developing a heavy oil deposit in Canada requires proper reservoir selection and ongoing resrvoir management. The number of unexploited heavy oil reservoirs whch can be economically produced through primary methods is rapidly declining. In addition, primary recoveries of 5-10% of the heavy oil in place are unacceptable and recovery rates of over 50% are needed. Enhanced thermal recovery projects are therefore needed, but these entail significant technical and commodity pricing risks. It is suggested that provincial governments recognize those risks and offer incentives by not encumbering such projects with up-front royalties. If industry is to assume the risks, governments must develop a fiscal regime that allows for a satisfactory return on capital and acceptable sharing of profits. At the federal level, it is suggested to broaden the interpretation of research and development activity to include enhanced recovery projects, making the tax breaks available to scientific research also available to heavy oil development. Government policies favoring heavy oil in Saskatchewan and Alberta are cited as good examples of ways to encourage the heavy oil industry

  8. Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids.

    Science.gov (United States)

    Eichmann, Shannon L; Burnham, Nancy A

    2017-09-14

    Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.

  9. Government inaction on ratings and government subsidies to the US film industry help promote youth smoking.

    OpenAIRE

    Christopher Millett; Jonathan R Polansky; Stanton A Glantz

    2011-01-01

    Christopher Millett and colleagues examine government inaction on the WHO recommendation for adult content ratings in films with smoking, and highlight the generous film industry subsidies these countries provide.

  10. Mutagenicity of carbon nanomaterials

    DEFF Research Database (Denmark)

    Wallin, Håkan; Jacobsen, Nicklas Raun; White, Paul A

    2011-01-01

    Carbon nanomaterials such carbon nanotubes, graphene and fullerenes are some the most promising nanomaterials. Although carbon nanomaterials have been reported to possess genotoxic potential, it is imperitive to analyse the data on the genotoxicity of carbon nanomaterials in vivo and in vitro...

  11. NaKnowBaseTM: The EPA Nanomaterials Research Database

    Science.gov (United States)

    The ability to predict the environmental and health implications of engineered nanomaterials is an important research priority due to the exponential rate at which nanotechnology is being incorporated into consumer, industrial and biomedical applications. To address this need and...

  12. Government-industry conference on airborne radioiodine

    International Nuclear Information System (INIS)

    Burchsted, C.A.

    1975-01-01

    The Working Group on Airborne Radioiodine met at AEC Headquarters on March 28, 1974. Dr. Alex Perge gave the introduction for the Division of Waste Management and Transportation, noting the Commission hopes that private industry will take a bigger share in the future in funding and initiating needed research; that there should be a greater effort in the direction of reducing the quantity of material that becomes contaminated as an avenue toward reducing the airborne radioiodine problem, and toward reducing the waste generated to a form suitable for direct storage; and that the Commission must ensure valid bases for future regulations governing airborne releases and contamination. Dr. First discussed the background of the review committee and its outgrowth from the earlier organization meeting. He noted that its function will be the coordination of efforts concerned with the radioiodine problem and the dissemination of information and research data. A major objective of this meeting was to identify subjects for discussion at the Government-Industry Conference of Adsorbers and Adsorbents which will be held in conjunction with the 13th AEC Air Cleaning Conference in August. Mr. Dempsey noted that the gaseous effluent program had been inherited by WMT from the Division of Operational Safety, and that an important function of these continuing meetings of the Working Group will be to guide WMT in the expenditure of funds and assignment of research related to the radioiodine problem. (U.S.)

  13. Occupational Exposure Assessment of Nanomaterials using Control Banding Tools

    DEFF Research Database (Denmark)

    Liguori, Biase

    , are relatively advanced, and they are good foundations for an advanced exposure assessment. Considering the tiered approach for workplace assessment proposed by the OECD, these two tools could be situated, between Tier 1 (Information gathering) and Tier 2 (Basic exposure assessment). Moreover, the thesis......Nanotechnology can be termed as the “new industrial revolution”. A broad range of potential benefits in various applications for the environment and everyday life of humans can be related to the use of nanotechnology. Nanomaterials are used in a large variety of products already in the market......, and because of their novel physical and chemical characteristics, the application of nanomaterials is projected to increase further. This will inevitably increase the production of nanomaterials with potential increase of exposure for the workers which are the first in line expected to become exposed...

  14. Is the risk from nanomaterials perceived as different from the risk of 'chemicals' by the Australian public?

    Science.gov (United States)

    Capon, Adam; Rolfe, Margaret; Gillespie, James; Smith, Wayne

    2016-04-15

    Manufactured nanomaterials in Australia are managed predominantly through existing chemical regulatory frameworks. Many Australian government regulators have suggested the framing of manufactured nanomaterials as 'chemicals' when communicating about manufactured nanomaterials to the general public. This paper aims to determine whether the Australian public perception of manufactured nanomaterials differs to that of 'chemicals', and to examine the relationship between attitudes towards chemicals and perceptions of nanomaterial risk. We undertook a computerised assisted telephone survey of the Australian public. Analysis was undertaken using descriptive, paired tests of proportion, paired t-test and logistic regression techniques. We explored perceptions of nanomaterial risk and their relationship to perceptions of chemical risk and 'chemical attitudes'. We found that the public perceives nanomaterials in a more favourable light than it does chemicals. Perception of risk from chemicals had the greatest association with perceived nanomaterial risk (adjusted odds ratios between 0.1 and 0.2) and that attitudes to chemicals were associated with perception of nanomaterial risk in some cases. Risk communicators and policy makers need to consider the differences and associations between nanomaterials and chemicals when addressing the regulatory aspects of nanomaterials with the public. This is relevant for communication strategies that attempt to normalise the risks from nanomaterials compared with those of chemicals, especially as nanomaterials are perceived to be less risky than chemicals.

  15. Bioengineered nanomaterials

    CERN Document Server

    Tiwari, Atul

    2013-01-01

    Many varieties of new, complex diseases are constantly being discovered, which leaves scientists with little choice but to embrace innovative methods for controlling the invasion of life-threatening problems. The use of nanotechnology has given scientists an opportunity to create nanomaterials that could help medical professionals in diagnosing and treating problems quickly and effectively. Bioengineered Nanomaterials presents in-depth information on bioengineered nanomaterials currently being developed in leading research laboratories around the world. In particular, the book focuses on nanom

  16. Government intervention in green industries: lessons from the wind turbine and the organic food industries in Denmark

    DEFF Research Database (Denmark)

    Daugbjerg, Carsten; Svendsen, Gert Tinggaard

    2011-01-01

    . While the electricity market share of wind energy reached 20% in 2007, organic food consumption lags behind with a food market share of approximately 8.5% in 2007. This paper compares the packages of policy instruments applied in the two industrial sectors and assesses whether differences in instrument...... choice may explain the significant differences in market shares. It is demonstrated that government intervention in the wind turbine industry has emphasised the use of policy instruments designed to increase demand for wind energy, whereas organic farming policy has put more emphasis on instruments...... motivating farmers to increase supply. This may be an important factor explaining variance in growth. Finally, the paper analyses whether the lessons from government policy aimed at promoting the wind turbine industry can be transferred to organic farming policy....

  17. Extending the potential of x-ray free-electron lasers to industrial applications—an initiatory attempt at coherent diffractive imaging on car-related nanomaterials

    International Nuclear Information System (INIS)

    Yoshida, Rikiya; Kimura, Takashi; Kuramoto, Mayumi; Yu, Jian; Khakurel, Krishna; Nishino, Yoshinori; Yamashige, Hisao; Miura, Masahide; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Bessho, Yoshitaka; Ishikawa, Tetsuya

    2015-01-01

    Recent advances in x-ray free-electron lasers (XFELs) open up new pathways for contributing to industrial research-and-development activities. In this article, we describe our initiatory attempt at using the SPring-8 Ångström compact free-electron laser (SACLA) for industrial applications. The attempt was conducted by the authors through the industry-academia partnership program initiated by RIKEN, aimed at examining the potential of XFELs for the analysis of car-related nanomaterials. Using the infrastructures developed at SACLA, we performed single-shot coherent diffractive imaging experiments on automotive exhaust catalysts and succeeded in obtaining the reconstructed images. This effort has paved the way for the future use of XFELs in the research-and-development activity of automotive exhaust catalysts. (paper)

  18. Uncertainty and sensitivity analysis of environmental and health risks of nanomaterials

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Hansen, Steffen Foss; Baun, Anders

    Scientific uncertainty about the environmental, health and safety issues (EHS) of nanomaterials has been recognized by scientists, regulators, NGO’s as well as industry as a possible barrier towards nanotechnology reaching its full potential. Historically, research efforts tend to be directed...... within EHS knowledge and research for the sake of science itself, it is also crucial that these research efforts are strategically focused and prioritized in order to assist regulators, industry, as well as scientists in the EHS challenges that face them in developing nanomaterials. Therefore, this study...... characterisation of engineered nanoparticles according to several reports. This includes establishing, developing and standardising reference materials, monitoring and detection equipment and estimating human and environmental exposure concentrations. These issues ultimately lead to significant challenges...

  19. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  20. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  1. Molecular toxicity of nanomaterials.

    Science.gov (United States)

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  2. ISO 14001 ENVIRONMENTL MANAGEMENT SYSTEMS IN GOVERNMENT AND INDUSTRY

    Science.gov (United States)

    Two new USEPA documents address environmental management systems (EMS) from the perspectives of government and industry and are offered as tools for understanding the process of the ISO 14000 Standards development and usefulness of an EMS approach. The first document, ISO 14001 -...

  3. Price tag in nanomaterials?

    Science.gov (United States)

    Gkika, D. A.; Vordos, N.; Nolan, J. W.; Mitropoulos, A. C.; Vansant, E. F.; Cool, P.; Braet, J.

    2017-05-01

    With the evolution of the field of nanomaterials in the past number of years, it has become apparent that it will be key to future technological developments. However, while there are unlimited research undertakings on nanomaterials, limited research results on nanomaterial costs exist; all in spite of the generous funding that nanotechnology projects have received. There has recently been an exponential increase in the number of studies concerning health-related nanomaterials, considering the various medical applications of nanomaterials that drive medical innovation. This work aims to analyze the effect of the cost factor on acceptability of health-related nanomaterials independently or in relation to material toxicity. It appears that, from the materials studied, those used for cancer treatment applications are more expensive than the ones for drug delivery. The ability to evaluate cost implications improves the ability to undertake research mapping and develop opinions on nanomaterials that can drive innovation.

  4. Sustainability of Governing Structures in Bulgarian Farming Industry

    Directory of Open Access Journals (Sweden)

    Hrabrin Bachev

    2017-08-01

    Full Text Available The issue of assessment of absolute and comparative sustainability of major governing structures in agrarian and farming industries is among the most topical issues for researchers, farmers, investors, administrators, politicians, interests groups, and the public worldwide. Despite this issue, practically there are no assessments on the sustainability level of the major types of Bulgarian farming enterprises in the conditions of European Union Common Agricultural Policy implementation. This study applies a holistic framework and assesses the absolute and comparative sustainability of major governing structures in Bulgarian farming industry—unregistered holdings, sole traders, cooperatives, and companies of various types. In this paper, the method of the study is outlined, the inclusion of a novel “governance aspect” of sustainability is justified, and the overall characteristics of the surveyed farming enterprises are presented. Then, the integral, governance, economic, social, and environmental sustainability of the farming structures of different juridical types is assessed. Next, the structure of farming enterprises with different sustainability levels is analyzed. Finally, the conclusion from this study and the directions for further research and amelioration of sustainability assessments are presented.

  5. NaKnowBaseTM: The EPA Nanomaterials Research ...

    Science.gov (United States)

    The ability to predict the environmental and health implications of engineered nanomaterials is an important research priority due to the exponential rate at which nanotechnology is being incorporated into consumer, industrial and biomedical applications. To address this need and develop predictive capability, we have created the NaKnowbaseTM, which provides a platform for the curation and dissemination of EPA nanomaterials data to support functional assay development, hazard risk models and informatic analyses. To date, we have combined relevant physicochemical parameters from other organizations (e.g., OECD, NIST), with those requested for nanomaterial data submitted to EPA under the Toxic Substances Control Act (TSCA). Physiochemical characterization data were collated from >400 unique nanomaterials including metals, metal oxides, carbon-based and hybrid materials evaluated or synthesized by EPA researchers. We constructed parameter requirements and table structures for encoding research metadata, including experimental factors and measured response variables. As a proof of concept, we illustrate how SQL-based queries facilitate a range of interrogations including, for example, relationships between nanoparticle characteristics and environmental or toxicological endpoints. The views expressed in this poster are those of the authors and may not reflect U.S. EPA policy. The purpose of this submission for clearance is an abstract for submission to a scientific

  6. Biosensors based on nanomaterials and nanodevices

    CERN Document Server

    Li, Jun

    2013-01-01

    Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-lumine

  7. IPAD: A unique approach to government/industry cooperation for technology development and transfer

    Science.gov (United States)

    Fulton, Robert E.; Salley, George C.

    1985-01-01

    A key element to improved industry productivity is effective management of Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) information. To stimulate advancement, a unique joint government/industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) was carried out from 1971 to 1984. The goal was to raise aerospace industry productivity through advancement of computer based technology to integrate and manage information involved in the design and manufacturing process. IPAD research was guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies. The project complemented traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer Aided Manufacturing (ICAM) program to advance CAM technology. IPAD had unprecedented industry support and involvement and served as a unique approach to government industry cooperation in the development and transfer of advanced technology. The IPAD project background, approach, accomplishments, industry involvement, technology transfer mechanisms and lessons learned are summarized.

  8. Best Practices for Operating Government-Industry Partnerships in Cyber Security

    Directory of Open Access Journals (Sweden)

    Larry Clinton

    2015-12-01

    Full Text Available Since the publication of the first National Strategy to Secure Cyber Space in 2003 the US federal government has realized that due to the interconnected nature of the Internet, securing the system would require an industry-government partnership. However, defining exactly what that new partnership would look like and how it would operate has been unclear. The ramifications of this ambiguous strategy have been noted elsewhere including the 2011 JSS article “A Relationship on the Brink” which described the dysfunctional state of public private partnerships with respect to cyber security. Subsequently, a joint industry-government study of partnership programs has generated a consensus list of “best practices” for operating such programs successfully. Moreover, subsequent use of these principles seems to confirm their ability to enhance the partnership and hopefully helps ameliorate, to some degree, the growing cyber threat. This article provides a brief history of the evolution of public-private partnerships in cyber security, the joint study to assess them and the 12 best practices generated by that analysis.

  9. Innovation by the wind power industry to meet government requirements

    International Nuclear Information System (INIS)

    Badger, D.

    2001-01-01

    This introductory paper to the Conference summarises suggestions for innovation in the wind power industry generally. Such innovation is needed as governments world-wide grapple with the demands of abating fossil fuel use in the face of the threat of Global Climate Change. As the major sponsor of the BWEA 22 Conference, Enron Wind Corp is conscious of the corporate responsibility of the modern wind power industry. (Author)

  10. 48 CFR 1446.170 - Government-Industry Data Exchange Program (GIDEP).

    Science.gov (United States)

    2010-10-01

    ... THE INTERIOR CONTRACT MANAGEMENT QUALITY ASSURANCE General 1446.170 Government-Industry Data Exchange..., metrology, product information, and reliability-maintain ability data on products, components (including construction materials), manufacturing processes, environmental issues associated with those manufacturing...

  11. NANoREG framework for the safety assessment of nanomaterials

    OpenAIRE

    Gottardo, Stefania; Alessandrelli, Maria; Amenta, Valeria; Atluri, Rambabu; Barberio, Grazia; Bekker, Cindy; Bergonzo, Philippe; Bleeker, Eric; Booth, Andy; Borges, Teresa; Buttol, Patrizia; Carlander, David; Castelli, Stefano; Chevillard, Sylvie

    2017-01-01

    The NANoREG framework addresses the need to ease the nanomaterials safety assessment in the REACH Regulation context. It offers forward-looking strategies: Safe-by-Design, a Nanospecific Prioritisation and Risk Assessment, and Life Cycle Assessment. It is intended for scientific experts, regulatory authorities and industry.

  12. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets

    Science.gov (United States)

    2016-01-01

    A national survey on workplace environment nanomaterial handling and manufacturing was conducted in 2014. Workplaces relevant to nanomaterials were in the order of TiO2 (91), SiO2 (88), carbon black (84), Ag (35), Al2O3 (35), ZnO (34), Pb (33), and CeO2 (31). The survey results indicated that the number of workplaces handling or manufacturing nanomaterials was 340 (0.27% of total 126,846) workplaces. The number of nanomaterials used and products was 546 (1.60 per company) and 583 (1.71 per company), respectively. For most workplaces, the results on exposure to hazardous particulate materials, including nanomaterials, were below current OELs, yet a few workplaces were above the action level. As regards the health status of workers, 9 workers were diagnosed with a suspected respiratory occupational disease, where 7 were recommended for regular follow-up health monitoring. 125 safety data sheets (SDSs) were collected from the nanomaterial-relevant workplaces and evaluated for their completeness and reliability. Only 4 CNT SDSs (3.2%) included the term nanomaterial, while most nanomaterial SDSs were not regularly updated and lacked hazard information. When taken together, the current analysis provides valuable national-level information on the exposure and health status of workers that can guide the next policy steps for nanomaterial management in the workplace. PMID:27556041

  13. Nanomaterials in consumer's goods: the problems of risk assessment

    International Nuclear Information System (INIS)

    Gmoshinski, I V; Khotimchenko, S A

    2015-01-01

    Nanotechnology and engineered nanomaterials are currently used in wide variety of cosmetic products, while their use in food industry, packaging materials, household chemicals etc. still includes a limited number of items and does not show a significant upward trend. However, the problem of priority nanomaterials associated risks is relevant due to their high production volumes and an constantly growing burden on the environment and population. In accordance with the frequency of use in mass-produced consumer goods, leading priority nanomaterials are silver nanoparticles (NPs) and (by a wide margin) NPs of gold, platinum, and titanium dioxide. Frequency of nanosized silica introduction into food products as a food additive, at the moment, seems to be underestimated, since the use of this nanomaterial is not declared by manufacturers of products and objective control of its content is difficult. Analysis of literature data on toxicological properties of nanomaterials shows that currently accumulated amount of information is sufficient to establish the safe doses of nanosized silver, gold and titanium dioxide. Data have been provided in a series of studies concerning the effect of oral intake of nanosized silica on the condition of laboratory animals, including on the performance of the immune system. The article examines the existing approaches to the assessment of population exposure to priority nanomaterials, characteristics of existing problems and risk management. (paper)

  14. Tobacco industry globalization and global health governance: towards an interdisciplinary research agenda

    Science.gov (United States)

    Lee, Kelley; Eckhardt, Jappe; Holden, Chris

    2016-01-01

    Shifting patterns of tobacco production and consumption, and the resultant disease burden worldwide since the late twentieth century, prompted efforts to strengthen global health governance through adoption of the Framework Convention on Tobacco Control. While the treaty is rightfully considered an important achievement, to address a neglected public health issue through collective action, evidence suggests that tobacco industry globalization continues apace. In this article, we provide a systematic review of the public health literature and reveal definitional and measurement imprecision, ahistorical timeframes, transnational tobacco companies and the state as the primary units and levels of analysis, and a strong emphasis on agency as opposed to structural power. Drawing on the study of globalization in international political economy and business studies, we identify opportunities to expand analysis along each of these dimensions. We conclude that this expanded and interdisciplinary research agenda provides the potential for fuller understanding of the dual and dynamic relationship between the tobacco industry and globalization. Deeper analysis of how the industry has adapted to globalization over time, as well as how the industry has influenced the nature and trajectory of globalization, is essential for building effective global governance responses. This article is published as part of a thematic collection dedicated to global governance. PMID:28458910

  15. Tobacco industry globalization and global health governance: towards an interdisciplinary research agenda.

    Science.gov (United States)

    Lee, Kelley; Eckhardt, Jappe; Holden, Chris

    2016-01-01

    Shifting patterns of tobacco production and consumption, and the resultant disease burden worldwide since the late twentieth century, prompted efforts to strengthen global health governance through adoption of the Framework Convention on Tobacco Control. While the treaty is rightfully considered an important achievement, to address a neglected public health issue through collective action, evidence suggests that tobacco industry globalization continues apace. In this article, we provide a systematic review of the public health literature and reveal definitional and measurement imprecision, ahistorical timeframes, transnational tobacco companies and the state as the primary units and levels of analysis, and a strong emphasis on agency as opposed to structural power. Drawing on the study of globalization in international political economy and business studies, we identify opportunities to expand analysis along each of these dimensions. We conclude that this expanded and interdisciplinary research agenda provides the potential for fuller understanding of the dual and dynamic relationship between the tobacco industry and globalization. Deeper analysis of how the industry has adapted to globalization over time, as well as how the industry has influenced the nature and trajectory of globalization, is essential for building effective global governance responses. This article is published as part of a thematic collection dedicated to global governance.

  16. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian

    2018-01-30

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  17. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian; Zhang, Lianbin; Wang, Peng

    2018-01-01

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  18. Intracellular signal modulation by nanomaterials.

    Science.gov (United States)

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  19. Characterization of nanomaterials in food by electron microscopy

    DEFF Research Database (Denmark)

    Dudkiewicz, Agnieszka; Tiede, Karen; Löschner, Katrin

    2011-01-01

    (e.g., size and shape).This review presents an overview of electron microscopy (EM)-based methods that have been, or have the potential to be, applied to imaging ENMs in foodstuffs. We provide an overview of approaches to sample preparation, including drying, chemical treatment, fixation......Engineered nanomaterials (ENMs) are increasingly being used in the food industry. In order to assess the efficacy and the risks of these materials, it is essential to have access to methods that not only detect the nanomaterials, but also provide information on the characteristics of the materials...... and cryogenic methods. We then describe standard and non-standard EM-based approaches that are available for imaging prepared samples. Finally, we present a strategy for selecting the most appropriate method for a particular foodstuff....

  20. Industry/University/Government partnerships in metrology: A new paradigm for the future

    International Nuclear Information System (INIS)

    Helms, C. R.

    1998-01-01

    A business process is described where Industry/University/Government interactions are optimized for highest productivity across these three sectors. This cross-functional approach provides for the rapid development of differentiated products for competitive advantage in industry, best of class scholarship and academically free university research, and the assurance of U.S. economic and military strength. The major focus of this paper will be R and D. However, the above objectives will only be met if effective transition from R and D into final product marketing, design, and manufacturing are included as an additional required concurrent, cross-functional activity. Metrology will be shown as an area that meets all the requirements for the development of a broad cross-functional partnership between industry, academia, and the Government that creates significant value for each sector

  1. Export Controls and Industry Outreach Mutual Benefits of Business - Government Partnerships (OPCW)

    International Nuclear Information System (INIS)

    Johnston, D. R.

    2007-01-01

    This presentation is intended to acquaint one and all with the strategy and benefits for developing a mutually contributory relationship between government and industry as a means to support and strengthen an effective nonproliferation export control regime. The study will provide background into the basis for development of multilateral regimes for export controls along with an overview covering the historical involvement of industry and their responsibility in dual-use research and development. The paper will then offer an examination of the unique composition and status of the dual-use industry which makes them vulnerable to the illicit diversion of their products and identify and discuss the recognized indicators of that process. The focus will then move toward explaining justification for establishing a close working relationship or partnership between industry and government and how the process of that partnership can deter access and opportunity for the illicit diversion of dual-use goods. Finally, in summation the presentation will highlight the mutual benefits that result from that relationship.(author)

  2. Revision of the law governing the energy industry; Neuregelung des Energierechts

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1993-11-03

    In its report on measures for safeguarding the competitiveness of the German industry, the Federal Government announced a number of reforms covering among others a revision of the regulatory framework governing the electricity and gas industry. Major goals in this context are deregulation and an enhancement of competition. The Federal Ministry of Economics prepared a draft plan for action addressing the need for an amendment of the Energy Management Act and the Act Against Restraints on Competition. Implementation of the measures given in the draft plan would create completely new conditions for the pipeline energy supply industry. (orig./HSCH) [Deutsch] Die Bundesregierung hat in ihrem Bericht zur Zukunftssicherung des Wirtschaftsstandorts Deutschland auch die Reform des Ordnungsrahmens fuer Strom und Gas angekuendigt. Ziel dieser Reform sollen Wettbewerb und Deregulierung sein. Das Bundeswirtschaftsministerium hat dazu auf Fachebene ein Konzept erarbeitet, das ein neues Energiewirtschaftsgesetz sowie eine Aenderung des Gesetzes gegen Wettbewerbsbeschraenkungen umfasst. Das Konzept wuerde die leitungsgebundene Versorgungswirtschaft auf eine voellig neue Grundlage stellen. (orig./HSCH)

  3. Removal of Pharmaceutical Compounds from Hospital Wastewaters Using Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Hasan Bagheri

    2016-06-01

    Full Text Available Over the past few years, residual pharmaceuticals (antibiotics, anticonvulsants, antipyretics drugs, hormones have begun to be considered as emerging environmental pollutants due to their continuous input and persistence to aquatic ecosystem even at low concentrations. Therefore, the development of efficient, cost-effective, and stable methods and materials for the wastewaters treatment have gained more recognition in recent years. In the path of meeting these developments, nanomaterials have attracted much attention as economical, convenient and ecofriendly tools for removing of pharmaceuticals from the hospital wastewaters because of their unique properties. The present review deals with recent advances in removal and/or destruction of residual pharmaceutical in wastewater samples using nanomaterials including metal nanoparticles, carbon nanotubes and nanofilters. In spite of using a variety of nanomaterials to remove the residual of pharmaceuticals, there is still a dearth of successful applicability of them in industrial processes. Therefore, some defects of nanomaterials to be used for the removal of pharmaceutical contaminate in environmental samples and their impacts on human health and environment is briefly discussed.

  4. Government intervention in the Canadian nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Doern, G B [Carleton Univ., Ottawa, Ontario (Canada). School of Public Administration

    1980-01-01

    Several facets of government intervention in the Canadian nuclear industry are examined by reviewing the general historical evolution of intervention since the Second World War and by a more detailed analysis of three case studies. The case studies are the public sector - private sector content of the initial CANDU reactor program in the 1950's, the regulation of the health and safety of uranium miners in the late 1960's and early 1970's, and the Ontario Hydro decision in 1978 to enter into longer-term (40 year) contracts for uranium for its power reactors.

  5. How can nanobiotechnology oversight advance science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS)

    International Nuclear Information System (INIS)

    Wang Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kuhlbusch, Thomas A. J.; Thompson, Drew; Pui, David Y. H.

    2011-01-01

    Nanotechnology has great potential to transform science and industry in the fields of energy, material, environment, and medicine. At the same time, more concerns are being raised about the occupational health and safety of nanomaterials in the workplace and the implications of nanotechnology on the environment and living systems. Studies on environmental, health, and safety (EHS) issues of nanomaterials have a strong influence on public acceptance of nanotechnology and, eventually, affect its sustainability. Oversight and regulation by government agencies and non-governmental organizations (NGOs) play significant roles in ensuring responsible and environmentally friendly development of nanotechnology. The EHS studies of nanomaterials can provide data and information to help the development of regulations and guidelines. We present research results on three aspects of EHS studies: physico-chemical characterization and measurement of nanomaterials; emission, exposure, and toxicity of nanomaterials; and control and abatement of nanomaterial releases using filtration technology. Measurement of nanoparticle agglomerates using a newly developed instrument, the Universal NanoParticle Analyzer (UNPA), is discussed. Exposure measurement results for silicon nanoparticles in a pilot scale production plant are presented, as well as exposure measurement and toxicity study of carbon nanotubes (CNTs). Filtration studies of nanoparticle agglomerates are also presented as an example of emission control methods.

  6. Cellulose Nanomaterials — A Path Towards Commercialization Workshop Report

    Science.gov (United States)

    Fred Hansen; Victoria Brun; Emily Keller; World Nieh; Theodore Wegner; Michael Meador; Lisa Friedersdorf

    2014-01-01

    Cellulose nanomaterials are primarily isolated from trees and other organisms; are naturally occurring polymeric materials that have demonstrated great promise for commercial applications across an array of industrial sectors; are renewable and environmentally sustainable; and have the potential to be produced in large volumes (i.e., millions of tons per year). The...

  7. Reliable nanomaterial classification of powders using the volume-specific surface area method

    International Nuclear Information System (INIS)

    Wohlleben, Wendel; Mielke, Johannes; Bianchin, Alvise; Ghanem, Antoine; Freiberger, Harald; Rauscher, Hubert; Gemeinert, Marion; Hodoroaba, Vasile-Dan

    2017-01-01

    The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of “nanomaterial” for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the chemical composition, size, polydispersity, shape, porosity, and aggregation of the particles in the powder. Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly characterized benchmark materials from the NanoDefine EU FP7 project, we derive a tiered screening strategy for the purpose of implementing the definition of nanomaterials. We finally apply the screening strategy to further industrial materials, which were classified correctly and left only borderline cases for EM. On platelet-shaped nanomaterials, VSSA is essential to prevent false-negative classification by EM. On porous materials, approaches involving extended adsorption isotherms prevent false positive classification by VSSA. We find no false negatives by VSSA, neither in Tier 1 nor in Tier 2, despite real-world industrial polydispersity and diverse composition, shape, and coatings. The VSSA screening strategy is recommended for inclusion in a technical guidance for the implementation of the definition.

  8. Reliable nanomaterial classification of powders using the volume-specific surface area method

    Energy Technology Data Exchange (ETDEWEB)

    Wohlleben, Wendel, E-mail: wendel.wohlleben@basf.com [Department of Material Physics, BASF SE (Germany); Mielke, Johannes [BAM–Federal Institute for Materials Research and Testing (Germany); Bianchin, Alvise [MBN Nanomaterialia s.p.a (Italy); Ghanem, Antoine [R& I Centre Brussels, Solvay (Belgium); Freiberger, Harald [Department of Material Physics, BASF SE (Germany); Rauscher, Hubert [European Commission, Nanobiosciences Unit, Joint Research Centre (Italy); Gemeinert, Marion; Hodoroaba, Vasile-Dan, E-mail: dan.hodoroaba@bam.de [BAM–Federal Institute for Materials Research and Testing (Germany)

    2017-02-15

    The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of “nanomaterial” for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the chemical composition, size, polydispersity, shape, porosity, and aggregation of the particles in the powder. Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly characterized benchmark materials from the NanoDefine EU FP7 project, we derive a tiered screening strategy for the purpose of implementing the definition of nanomaterials. We finally apply the screening strategy to further industrial materials, which were classified correctly and left only borderline cases for EM. On platelet-shaped nanomaterials, VSSA is essential to prevent false-negative classification by EM. On porous materials, approaches involving extended adsorption isotherms prevent false positive classification by VSSA. We find no false negatives by VSSA, neither in Tier 1 nor in Tier 2, despite real-world industrial polydispersity and diverse composition, shape, and coatings. The VSSA screening strategy is recommended for inclusion in a technical guidance for the implementation of the definition.

  9. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    Science.gov (United States)

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  10. X-ray and neutron techniques for nanomaterials characterization

    CERN Document Server

    2016-01-01

    Fifth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about X-ray and Neutron Techniques for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  11. Handbook of nanomaterials properties

    CERN Document Server

    Luo, Dan; Schricker, Scott R; Sigmund, Wolfgang; Zauscher, Stefan

    2014-01-01

    Nanomaterials attract tremendous attention in recent researches. Although extensive research has been done in this field it still lacks a comprehensive reference work that presents data on properties of different Nanomaterials. This Handbook of Nanomaterials Properties will be the first single reference work that brings together the various properties with wide breadth and scope.

  12. Nanomaterial-based x-ray sources

    Science.gov (United States)

    Cole, Matthew T.; Parmee, R. J.; Milne, William I.

    2016-02-01

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

  13. Antimicrobial nanomaterials for food packaging applications

    Directory of Open Access Journals (Sweden)

    Radusin Tanja I.

    2016-01-01

    Full Text Available Food packaging industry presents one of the fastest growing industries nowadays. New trends in this industry, which include reducing food as well as packaging waste, improved preservation of food and prolonged shelf-life together with substitution of petrochemical sources with renewable ones are leading to development of this industrial area in diverse directions. This multidisciplinary challenge is set up both in front of food and material scientists. Nanotechnology is recently answering to these challenges, with different solutions-from improvements in materials properties to active packaging solutions, or both at the same time. Incorporation of nanoparticles into polymer matrix and preparation of hybrid materials is one of the methods of modification of polymer properties. Nano scaled materials with antimicrobial properties can act as active components when added into polymer, thereby leading to prolonged protective function of pristine food packaging material. This paper presents a review in the field of antimicrobial nanomaterials for food packaging in turn of technology, application and regulatory issues.

  14. Nanomaterials in preventive dentistry

    Science.gov (United States)

    Hannig, Matthias; Hannig, Christian

    2010-08-01

    The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.

  15. Characterization of nanomaterials

    International Nuclear Information System (INIS)

    Montone, Amelia; Aurora, Annalisa; Di Girolamo, Giovanni

    2015-01-01

    This paper provides an overview of the main techniques used for the characterization of nanomaterials. The knowledge of some basic characteristics, inherent morphology, microstructure, the distribution phase and chemical composition, it is essential to evaluate the functional properties of nanomaterials and make predictions about their behavior in operation. For the characterization of nanomaterials can be used in both imaging techniques both analytic techniques. Among the first found wide application optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Among the latter some types of spectroscopy and X-ray diffraction (XRD). For each type of material to characterize the choice of the most appropriate technique it is based on the type of details that you want to obtain, and on their scale. In this paper are discussed in detail some examples and the main methods used for the characterization of nanomaterials. [it

  16. Preparation and characterization of flower-like gold nanomaterials and iron oxide/gold composite nanomaterials

    International Nuclear Information System (INIS)

    Yang Zusing; Lin, Z H; Tang, C-Y; Chang, H-T

    2007-01-01

    We have successfully synthesized flower-like gold nanomaterials and Fe 3 O 4 /Au composite nanomaterials through the use of wet chemical methods in aqueous solution. In the presence of 0.5 mM citrate, 0.313 mM poly(ethylene glycol), and 109.72 mM sodium acetate (NaOAc), we prepared Au nanoflowers (NFs) having diameters ranging from 300 to 400 nm in aqueous solution after the reduction of Au ions at room temperature for 10 min. In the presence of spherical Fe 3 O 4 nanomaterials, we applied a similar synthetic method to prepare Fe 3 O 4 /Au composite nanomaterials, including nanowires (NWs) that have a length of 1.58 μm and a width of 28.3 nm. We conducted energy-dispersive x-ray analysis, scanning electron microscopy, transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, and x-ray powder diffraction measurements to characterize the as-prepared flower-like Au nanomaterials and Fe 3 O 4 /Au composite nanomaterials. From time-evolution TEM measurements, we suggested that Au atoms that were bound to the Fe 3 O 4 nanomaterials grew to form Fe 3 O 4 /Au composite nanomaterials. The as-prepared Au NFs absorbed light strongly in the visible-near-infrared (Vis-NIR) region (500-1200 nm). The Fe 3 O 4 /Au composite nanomaterials had electronic conductivities greater than 100 nA at an applied voltage of 20 mV, which induced a temperature increase of 20.5 ± 0.5 deg. C under an alternating magnetic field (62 μT)

  17. Nanotherapeutics--product development along the "nanomaterial" discussion.

    Science.gov (United States)

    Wacker, Matthias G

    2014-03-01

    Nanomaterials have become part of formulation development in the pharmaceutical industry and offer exciting opportunities in the area of targeted drug delivery. But they may also exert unexpected toxicities and potentially pose a threat to human health and the environment. Since the Scientific Committee on Emerging and Newly Identified Health Risks recommended a definition of "nanomaterials" for implementation into the existing and upcoming regulatory framework in the European Union, a discussion about safety requirements of new nanoscale products has emerged. At the same time, the Food and Drug Administration of the United States still observes recent developments in this area. Although the impact on the pharmaceutical product chain is still uncertain, guidelines on risk assessment in food products and cosmetics are available and offer a preview of future developments in the regimens of pharmaceuticals. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. A standardized non-instrumental tool for characterizing workstations concerned with exposure to engineered nanomaterials

    Science.gov (United States)

    Canu I, Guseva; C, Ducros; S, Ducamp; L, Delabre; S, Audignon-Durand; C, Durand; Y, Iwatsubo; D, Jezewski-Serra; Bihan O, Le; S, Malard; A, Radauceanu; M, Reynier; M, Ricaud; O, Witschger

    2015-05-01

    The French national epidemiological surveillance program EpiNano aims at surveying mid- and long-term health effects possibly related with occupational exposure to either carbon nanotubes or titanium dioxide nanoparticles (TiO2). EpiNano is limited to workers potentially exposed to these nanomaterials including their aggregates and agglomerates. In order to identify those workers during the in-field industrial hygiene visits, a standardized non-instrumental method is necessary especially for epidemiologists and occupational physicians unfamiliar with nanoparticle and nanomaterial exposure metrology. A working group, Quintet ExpoNano, including national experts in nanomaterial metrology and occupational hygiene reviewed available methods, resources and their practice in order to develop a standardized tool for conducting company industrial hygiene visits and collecting necessary information. This tool, entitled “Onsite technical logbook”, includes 3 parts: company, workplace, and workstation allowing a detailed description of each task, process and exposure surrounding conditions. This logbook is intended to be completed during the company industrial hygiene visit. Each visit is conducted jointly by an industrial hygienist and an epidemiologist of the program and lasts one or two days depending on the company size. When all collected information is computerized using friendly-using software, it is possible to classify workstations with respect to their potential direct and/or indirect exposure. Workers appointed to workstations classified as concerned with exposure are considered as eligible for EpiNano program and invited to participate. Since January 2014, the Onsite technical logbook has been used in ten company visits. The companies visited were mostly involved in research and development. A total of 53 workstations with potential exposure to nanomaterials were pre-selected and observed: 5 with TiO2, 16 with single-walled carbon nanotubes, 27 multiwalled

  19. A standardized non-instrumental tool for characterizing workstations concerned with exposure to engineered nanomaterials

    International Nuclear Information System (INIS)

    I, Guseva Canu; S, Ducamp; L, Delabre; Y, Iwatsubo; D, Jezewski-Serra; C, Ducros; S, Audignon-Durand; C, Durand; O, Le Bihan; S, Malard; A, Radauceanu; M, Reynier; M, Ricaud; O, Witschger

    2015-01-01

    The French national epidemiological surveillance program EpiNano aims at surveying mid- and long-term health effects possibly related with occupational exposure to either carbon nanotubes or titanium dioxide nanoparticles (TiO 2 ). EpiNano is limited to workers potentially exposed to these nanomaterials including their aggregates and agglomerates. In order to identify those workers during the in-field industrial hygiene visits, a standardized non-instrumental method is necessary especially for epidemiologists and occupational physicians unfamiliar with nanoparticle and nanomaterial exposure metrology. A working group, Quintet ExpoNano, including national experts in nanomaterial metrology and occupational hygiene reviewed available methods, resources and their practice in order to develop a standardized tool for conducting company industrial hygiene visits and collecting necessary information. This tool, entitled “Onsite technical logbook”, includes 3 parts: company, workplace, and workstation allowing a detailed description of each task, process and exposure surrounding conditions. This logbook is intended to be completed during the company industrial hygiene visit. Each visit is conducted jointly by an industrial hygienist and an epidemiologist of the program and lasts one or two days depending on the company size. When all collected information is computerized using friendly-using software, it is possible to classify workstations with respect to their potential direct and/or indirect exposure. Workers appointed to workstations classified as concerned with exposure are considered as eligible for EpiNano program and invited to participate. Since January 2014, the Onsite technical logbook has been used in ten company visits. The companies visited were mostly involved in research and development. A total of 53 workstations with potential exposure to nanomaterials were pre-selected and observed: 5 with TiO 2 , 16 with single-walled carbon nanotubes, 27 multiwalled

  20. Government intervention in the Canadian nuclear industry

    International Nuclear Information System (INIS)

    Doern, G.B.

    1980-01-01

    Several facets of government intervention in the Canadian nuclear industry are examined by reviewing the general historical evolution of intervention since the Second World War and by a more detailed analysis of three case studies. The case studies are the public sector - private sector content of the initial CANDU reactor program in the 1950's, the regulation of the health and safety of uranium miners in the late 1960's and early 1970's, and the Ontario Hydro decision in 1978 to enter into longer-term (40 year) contracts for uranium for its power reactors. (auth)

  1. Settling into the midstream? Lessons for governance from the decade of nanotechnology

    International Nuclear Information System (INIS)

    Bosso, Christopher

    2016-01-01

    This paper analyzes scholarly papers published from 2003 through 2013 on the general theme of nanotechnology and governance. It considers three general points: (1) the “problem” of nanotechnology; (2) general lessons for governance obtained; and (3) prospects for aligning the US regulatory system to the next generation of complex engineered nano-materials. It argues that engineered nano-materials and products are coming to market within an already mature regulatory framework of decade-old statutes, long-standing bureaucratic rules and routines, narrowly directive judicial decisions, and embedded institutional norms. That extant regulatory regime shapes how policymakers perceive, define, and address the relative benefits and risks of both proximate and yet-to-be idealized nano-materials and applications. The paper concludes that fundamental reforms in the extant regime are unlikely short of a perceived crisis.

  2. Settling into the midstream? Lessons for governance from the decade of nanotechnology

    Science.gov (United States)

    Bosso, Christopher

    2016-06-01

    This paper analyzes scholarly papers published from 2003 through 2013 on the general theme of nanotechnology and governance. It considers three general points: (1) the "problem" of nanotechnology; (2) general lessons for governance obtained; and (3) prospects for aligning the US regulatory system to the next generation of complex engineered nano-materials. It argues that engineered nano-materials and products are coming to market within an already mature regulatory framework of decade-old statutes, long-standing bureaucratic rules and routines, narrowly directive judicial decisions, and embedded institutional norms. That extant regulatory regime shapes how policymakers perceive, define, and address the relative benefits and risks of both proximate and yet-to-be idealized nano-materials and applications. The paper concludes that fundamental reforms in the extant regime are unlikely short of a perceived crisis.

  3. Settling into the midstream? Lessons for governance from the decade of nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bosso, Christopher, E-mail: c.bosso@neu.edu [Northeastern University, School of Public Policy and Urban Affairs (United States)

    2016-06-15

    This paper analyzes scholarly papers published from 2003 through 2013 on the general theme of nanotechnology and governance. It considers three general points: (1) the “problem” of nanotechnology; (2) general lessons for governance obtained; and (3) prospects for aligning the US regulatory system to the next generation of complex engineered nano-materials. It argues that engineered nano-materials and products are coming to market within an already mature regulatory framework of decade-old statutes, long-standing bureaucratic rules and routines, narrowly directive judicial decisions, and embedded institutional norms. That extant regulatory regime shapes how policymakers perceive, define, and address the relative benefits and risks of both proximate and yet-to-be idealized nano-materials and applications. The paper concludes that fundamental reforms in the extant regime are unlikely short of a perceived crisis.

  4. UV-VIS and photoluminescence spectroscopy for nanomaterials characterization

    CERN Document Server

    2013-01-01

    Second volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about UV-visible and photoluminescence spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry in the related fields.

  5. Nanomaterials in construction and demolition - how can we assess the risk if we don't know where they are?

    International Nuclear Information System (INIS)

    Jones, Wendy; Gibb, Alistair; Goodier, Chris; Bust, Phil; Jin, Jie; Song, Mo

    2015-01-01

    This research, funded by the Institution of Occupational Safety and Health in the United Kingdom, has used a combination of literature review, web searching and unstructured interviews with a range of industry professionals to compile a list of products used in construction and the built environment which might contain nanomaterials. Samples of these products have been analysed using Scanning Electron Microscopy and Energy Dispersive X- Ray Spectroscopy to investigate whether nanomaterials are actually present and to what extent. Preliminary results of this testing are presented here. It is concluded that there is a discrepancy between the academic literature and the reality regarding the current application of nanomaterials in the construction industry and the built environment. There are also inaccuracies and deficiencies in the information provided by manufacturers which makes it difficult to accurately assess the location and application of nanomaterials within the industry. Further testing is planned to evaluate the risk of nanoparticle release from nano-enabled building products at their end of life by reproducing common demolition and recycling processes such as crushing, grinding, burning and melting. Results of this will form the basis of practical guidance for the construction, demolition and recycling industries to help them identify where particular protection or control measures may be appropriate as well as providing reassurance where no additional action is required. (paper)

  6. NASA Symposium on Productivity and Quality: Strategies for Improving Operations in Government and Industry

    Science.gov (United States)

    1984-01-01

    The purpose of the Symposium is to increase the awareness of productivity and quality issues in the United States, and to foster national initiatives through government and industry executive leadership. The Symposium will provide a forum for discussion of white-collar productivity issues by experienced executives from successful organizations and an opportunity to share information learned through Productivity initiatives in govemment, industry and academic organizations. It will focus on white-collar organizational issues that are common to large companies and technology oriented organizations. The Symposium program will include strategies for improving operations in government and industry and will be responsive to the management issues viewed necessary to increase our nation's productivity growth rate.

  7. A Comprehensive Framework for Information Technology Governance and Localizing it for Automotive Industry of Iran (Case Study: ATLAS Automotive Holding

    Directory of Open Access Journals (Sweden)

    Mohammad Mosakhani

    2017-03-01

    Full Text Available Due to the absence of a comprehensive framework for IT governance, the main objective of the study is to identify all components of IT governance and present them in the form of a comprehensive IT governance framework .The localization of provided framework for the automotive industry is the secondary objective of the study. In this regard, the research questions are: what is the comprehensive framework of IT governance? What are the components and dimensions of a comprehensive framework of IT governance? What is the localized comprehensive framework of IT governance for the Iranian automotive industry? All researches on IT governance were investigated using meta-synthesis qualitative method and were limited to 96 selected articles by performing a meta-synthesis process. Then, the five categories, 19 concepts and 79 codes of IT governance were identified through detailed study of these articles. Then, a comprehensive framework of IT governance was presented. For localizing, a questionnaire designed based on the identified IT governance components, and distributed among the automotive industry experts. Statistical hypothesis testing of collected data led to the rejection of cross/functional job rotation component in the automotive industry. To demonstrate the applicability of the framework, the IT governance status of ATLAS holding company was evaluated based on the comprehensive framework that localized for automotive industry.

  8. Nanomaterials and Water Purification: Opportunities and Challenges

    Science.gov (United States)

    Savage, Nora; Diallo, Mamadou S.

    2005-10-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification.

  9. Nanomaterials and Water Purification: Opportunities and Challenges

    International Nuclear Information System (INIS)

    Savage, Nora; Diallo, Mamadou S.

    2005-01-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification

  10. Plasma nanofabrication and nanomaterials safety

    International Nuclear Information System (INIS)

    Han, Z J; Levchenko, I; Kumar, S; Yajadda, M M A; Yick, S; Seo, D H; Martin, P J; Ostrikov, K; Peel, S; Kuncic, Z

    2011-01-01

    The fast advances in nanotechnology have raised increasing concerns related to the safety of nanomaterials when exposed to humans, animals and the environment. However, despite several years of research, the nanomaterials safety field is still in its infancy owing to the complexities of structural and surface properties of these nanomaterials and organism-specific responses to them. Recently, plasma-based technology has been demonstrated as a versatile and effective way for nanofabrication, yet its health and environment-benign nature has not been widely recognized. Here we address the environmental and occupational health and safety effects of various zero- and one-dimensional nanomaterials and elaborate the advantages of using plasmas as a safe nanofabrication tool. These advantages include but are not limited to the production of substrate-bound nanomaterials, the isolation of humans from harmful nanomaterials, and the effective reforming of toxic and flammable gases. It is concluded that plasma nanofabrication can minimize the hazards in the workplace and represents a safe way for future nanofabrication technologies.

  11. The Influence of Corporate Governance Perception Index, Profit Management, and Industrial Type To Environmental Disclosure.

    Directory of Open Access Journals (Sweden)

    Amanda Chrysanti

    2015-12-01

    Full Text Available Thisresearchaims to empirically analyze the influence ofCorporate Governance Perception Index, earnings management,and industry type on environmental disclosure. Environmental Disclosure is the dependent variables in this research were measured by scoring technique based on GRI3.1 Guidelines. For the independent variables in this research, using Corporate Governance Perception Index were measured by CGPI index score, earnings management were measured by discretionary accruals, and industry type were measured bycategorial. This research uses secondary data which population are companies entered Corporate Governance Perception Index in 2009-2012. While the sampling method used was purposive sampling method which is overall 44 sample choose. This research uses multiple regression method to test the hypothesis with SPSS computer program. From the analysis performed in this research, it can be concluded that Corporate Governance Perception Index has positively and significant influence to environmental disclosure. The other hand earnings management has no significant influence to environmental disclosure. The last one industry type has negatively and significant influence to environmental disclosure.

  12. Airborne engineered nanomaterials in the workplace—a review of release and worker exposure during nanomaterial production and handling processes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yaobo [Institute for Work and Health (IST), Universities of Lausanne and Geneva, Route de la Corniche 2, 1066, Epalinges (Switzerland); Kuhlbusch, Thomas A.J. [Institute of Energy and Environmental Technology (IUTA), Air Quality & Sustainable Nanotechnology Unit, Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Centre for Nanointegration (CENIDE), University Duisburg-Essen, Duisburg (Germany); Van Tongeren, Martie; Jiménez, Araceli Sánchez [Centre for Human Exposure Science, Institute of Occupational Medicine (IOM), Research Avenue North, Edinburgh EH14 4AP (United Kingdom); Tuinman, Ilse [TNO, Lange Kleiweg 137, Rijswijk (Netherlands); Chen, Rui [CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190 (China); Alvarez, Iñigo Larraza [ACCIONA Infrastructure, Materials Area, Innovation Division, C/Valportillo II 8, 28108, Alcobendas (Spain); Mikolajczyk, Urszula [Nofer Institute of Occupational Medicine, Lodz (Poland); Nickel, Carmen; Meyer, Jessica; Kaminski, Heinz [Institute of Energy and Environmental Technology (IUTA), Air Quality & Sustainable Nanotechnology Unit, Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Wohlleben, Wendel [Dept. Material Physics, BASF SE, Advanced Materials Research, Ludwigshafen (Germany); Stahlmecke, Burkhard [Institute of Energy and Environmental Technology (IUTA), Air Quality & Sustainable Nanotechnology Unit, Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Clavaguera, Simon [NanoSafety Platform, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Univ. Grenoble Alpes, Grenoble, 38054 (France); and others

    2017-01-15

    Highlights: • Release characteristics can be grouped by the type of occupational activities. • Release levels may be linked to process energy. • A better data reporting practice will facilitate exposure assessment. • The results help prioritize industrial processes for human risk assessment. - Abstract: For exposure and risk assessment in occupational settings involving engineered nanomaterials (ENMs), it is important to understand the mechanisms of release and how they are influenced by the ENM, the matrix material, and process characteristics. This review summarizes studies providing ENM release information in occupational settings, during different industrial activities and using various nanomaterials. It also assesses the contextual information — such as the amounts of materials handled, protective measures, and measurement strategies — to understand which release scenarios can result in exposure. High-energy processes such as synthesis, spraying, and machining were associated with the release of large numbers of predominantly small-sized particles. Low-energy processes, including laboratory handling, cleaning, and industrial bagging activities, usually resulted in slight or moderate releases of relatively large agglomerates. The present analysis suggests that process-based release potential can be ranked, thus helping to prioritize release assessments, which is useful for tiered exposure assessment approaches and for guiding the implementation of workplace safety strategies. The contextual information provided in the literature was often insufficient to directly link release to exposure. The studies that did allow an analysis suggested that significant worker exposure might mainly occur when engineering safeguards and personal protection strategies were not carried out as recommended.

  13. Airborne engineered nanomaterials in the workplace—a review of release and worker exposure during nanomaterial production and handling processes

    International Nuclear Information System (INIS)

    Ding, Yaobo; Kuhlbusch, Thomas A.J.; Van Tongeren, Martie; Jiménez, Araceli Sánchez; Tuinman, Ilse; Chen, Rui; Alvarez, Iñigo Larraza; Mikolajczyk, Urszula; Nickel, Carmen; Meyer, Jessica; Kaminski, Heinz; Wohlleben, Wendel; Stahlmecke, Burkhard; Clavaguera, Simon

    2017-01-01

    Highlights: • Release characteristics can be grouped by the type of occupational activities. • Release levels may be linked to process energy. • A better data reporting practice will facilitate exposure assessment. • The results help prioritize industrial processes for human risk assessment. - Abstract: For exposure and risk assessment in occupational settings involving engineered nanomaterials (ENMs), it is important to understand the mechanisms of release and how they are influenced by the ENM, the matrix material, and process characteristics. This review summarizes studies providing ENM release information in occupational settings, during different industrial activities and using various nanomaterials. It also assesses the contextual information — such as the amounts of materials handled, protective measures, and measurement strategies — to understand which release scenarios can result in exposure. High-energy processes such as synthesis, spraying, and machining were associated with the release of large numbers of predominantly small-sized particles. Low-energy processes, including laboratory handling, cleaning, and industrial bagging activities, usually resulted in slight or moderate releases of relatively large agglomerates. The present analysis suggests that process-based release potential can be ranked, thus helping to prioritize release assessments, which is useful for tiered exposure assessment approaches and for guiding the implementation of workplace safety strategies. The contextual information provided in the literature was often insufficient to directly link release to exposure. The studies that did allow an analysis suggested that significant worker exposure might mainly occur when engineering safeguards and personal protection strategies were not carried out as recommended.

  14. Governance mode vs. governance fit? : Performance implications of make-or-ally choices for product innovation in the worldwide aircraft industry, 1942-2000

    OpenAIRE

    Castaner, X.; Mulotte, L.; Garrette, B.; Dussauge, P.

    2014-01-01

    We examine the impact of governance mode and governance fit on performance in make-or-ally decisions. We argue that while horizontal collaboration and autonomous governance have direct and countervailing performance implications, the alignment of make-or-ally choices with the focal firm's resource endowment and the activity's resource requirements leads to better performance. Data on the aircraft industry show that relative to aircraft developed autonomously, collaborative aircraft exhibit gr...

  15. Towards a comprehensive framework to govern the main sustainability issues of inland industrial complexes

    CSIR Research Space (South Africa)

    Mvuma, GG

    2010-04-01

    Full Text Available for inland industrial complexes in South Africa. The social and economic benefits warrant the government support of such industrial complexes, but the negative consequences, for present and future generations, need to be considered in a comprehensive manner...

  16. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. NANOMATERIAL HEALTH EFFECTS RESEARCH CONTRIBUTES TO RISK MANAGEMENT STRATEGIES THROUGH THE RISK ASSESSMENT PARADIGM

    Science.gov (United States)

    Nanotechnology continues to produce a diversity of engineered nanomaterials displaying novel physicochemical properties with applications in commercial, consumer, electronic, biomedical, energy, and environmental sectors. Nanotechnology has been referred to as the next industrial...

  18. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

    Science.gov (United States)

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar

    2014-01-01

    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232

  19. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  20. Biomedical nanomaterials from design to implementation

    CERN Document Server

    Webster, Thomas

    2016-01-01

    Biomedical Nanomaterials brings together the engineering applications and challenges of using nanostructured surfaces and nanomaterials in healthcare in a single source. Each chapter covers important and new information in the biomedical applications of nanomaterials.

  1. The applications of carbon nanomaterials in fiber-shaped energy storage devices

    Science.gov (United States)

    Wu, Jingxia; Hong, Yang; Wang, Bingjie

    2018-01-01

    As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices. Project supported by the National Natural Science Foundation of China (Nos. 21634003, 21604012).

  2. Analysis of Government Policies to Support Sustainable Domestic Defense Industries

    Science.gov (United States)

    2015-06-01

    the form of tax receipts from home and overseas sales, such as income taxes , corporate taxes , as well as avoiding unemployment pay (if workers are...Economic Co-Operation and Development [ OECD ], 2015) .............................................................30 Figure 3. Classification of Offset...domestic defense industry, the end result may be an unacceptably high cost to the government and the population. To avoid this outcome, the main function

  3. Applications of nanomaterials in sensors and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Tuantranont, Adisorn (ed.) [National Electronics and Computer Technology Center (NECTEC), Pathumthani (Thailand). Nanoelectronics and MEMS Laboratory

    2013-11-01

    Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology.

  4. Safe use of nanomaterials

    CERN Multimedia

    2013-01-01

    The use of nanomaterials  is on the increase worldwide, including at CERN. The HSE Unit has established a safety guideline to inform you of the main requirements for the safe handling and disposal of nanomaterials at CERN.   A risk assessment tool has also been developed which guides the user through the process of evaluating the risk for his or her activity. Based on the calculated risk level, the tool provides a list of recommended control measures.   We would therefore like to draw your attention to: Safety Guideline C-0-0-5 - Safe handling and disposal of nanomaterials; and Safety Form C-0-0-2 - Nanomaterial Risk Assessment   You can consult all of CERN’s safety rules and guidelines here. Please contact the HSE Unit for any questions you may have.   The HSE Unit

  5. Sandmining - government rules confuse industry

    International Nuclear Information System (INIS)

    Grayson, R.

    1989-01-01

    Australia is the world's largest supplier of the mineral sands rutile, ilmenite, zircon and monazite. A combined total of two million tonnes are mined annually, most of which is exported. Western Australia accounts for about 75% of Australia's mineral sands production, worth about $343 million. The remainder is mined along an eastern coastal strip between the New South Wales central coast and Fraser Island in southern Queensland where there has been a revival of past controversies over environmental and radiation concerns. The NSW Government has approved a proposal by Australmin Holdings to mine mineral sands at Newrybar on the far north coast. It has also issued draft guidelines which will exclude sand mining from national parks, nature reserves, sites designated as coastal wetlands and littoral rainforest, beaches and frontal dunes. These guidelines which miners say will make about 50% of east coast reserves, an estimated $6 billion worth of mineral sands untouchable, have been attacked by the mining industry which argues that sand mining and environmental protection are not incompatible and which warns of a loss of economic opportunities for NSW

  6. Treatment of nanomaterial-containing waste in thermal waste treatment facilities; Behandlung nanomaterialhaltiger Abfaelle in thermischen Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Julia; Weiss, Volker [Umweltbundesamt, Dessau-Rosslau (Germany); Oischinger, Juergen; Meiller, Martin; Daschner, Robert [Fraunhofer Umsicht, Sulzbach-Rosenberg (Germany)

    2016-09-15

    There is already a multitude of products on the market, which contain synthetic nanomaterials (NM), and for the coming years an increase of such products can be expected. Consequently, it is predictable that more nanomaterial-containing waste will occur in the residual waste that is predominately disposed in thermal waste treatment plants. However, the knowledge about the behaviour and effects of nanomaterials from nanomaterial-containing waste in this disposal route is currently still low. A research project of the German Environment Agency on the ''Investigation of potential environmental impacts when disposing nanomaterial-containing waste in waste treatment plants'' will therefore dedicate itself to a detailed examination of emission pathways in the thermal waste treatment facilities. The tests carried out i.a. on an industrial waste incineration plant and a sludge incineration plant with controlled addition of titanium dioxide at the nanoscale, showed that no increase in the emissions of NM in the exhaust gas was detected. The majority of the NM was found in the combustion residues, particularly the slag.

  7. Nanomaterials and Retinal Toxicity

    Science.gov (United States)

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  8. Modeling of nanotoxicity molecular interactions of nanomaterials with bionanomachines

    CERN Document Server

    Zhou, Ruhong

    2015-01-01

    This book provides a comprehensive overview of the fundamentals of nanotoxicity modeling and its implications for the development of novel nanomedicines. It lays out the fundamentals of nanotoxicity modeling for an array of nanomaterial systems, ranging from carbon-based nanoparticles to noble metals, metal oxides, and quantum dots. The author illustrates how molecular (classical mechanics) and atomic (quantum mechanics) modeling approaches can be applied to bolster our understanding of many important aspects of this critical nanotoxicity issue. Each chapter is organized by types of nanomaterials for practicality, making this an ideal book for senior undergraduate students, graduate students, and researchers in nanotechnology, chemistry, physics, molecular biology, and computer science. It is also of interest to academic and industry professionals who work on nanodrug delivery and related biomedical applications, and aids readers in their biocompatibility assessment efforts in the coming age of nanotechnology...

  9. Program for educating nuclear engineers in Japan. Partnership with industry, government and academe begins

    International Nuclear Information System (INIS)

    Meshii, Toshiyuki

    2007-01-01

    Since the beginning of the 21st century, educating the next generation of nuclear engineers has been of interest to groups who are concerned with the recent decline in the number of nuclear engineers in universities and industries. Discussions and proposals have been summarized in independent reports by industry (JAIF; Japan Atomic Industrial Forum), government (Science Council of Japan) and the academe (AESJ; Atomic Energy Society of Japan). In June 2005 a Committee on Education (CE) was established within AESJ with the intention of coordinating the groups interested in nuclear education in Japan. The birth of CE was timely, because the importance of nuclear education was emphasized in 'Framework for Nuclear Energy Policy (Oct., 2005)' which was adopted by the Atomic Energy Commission. The Nuclear Energy Subcommittee of the METI (Ministry of Economy, Trade and Industry) Advisory Committee deliberated concrete actions for achieving the basic goals of the Framework for Nuclear Energy Policy and their recommendations were drawn up as a 'Nuclear Energy National Plan'. This was the MEXT (Ministry of Education, Culture, Sports, Science and Technology) and METI action plan to create nuclear energy training programs for universities, etc. A task group, consisting of members from industry, government and academe was organized within JAIF to give advice to these training programs. The author of this paper (and chairman of CE) participated in and made proposals to the task group as a representative of the academe. In this paper, the proposal made by CE and the outline of the final program will be reported. Furthermore, the importance of the partnership between industry, government and academe will be emphasized. (author)

  10. Ningxia update: Government policy and measures for promoting a sustainable wine industry

    OpenAIRE

    Hao Linhai; Li Xueming; Cao Kailong; Ma Huiqin

    2016-01-01

    The rapidly growing wine industry in the Ningxia region of north-central China had 35,300 ha of wine grapes and 184 registered wineries as of mid-2016. Ningxia's mission is to develop a sustainable wine industry based on small-scale producers and high-quality products in order to distinguish itself from other key regions in China. Government measures over the last two years have included diversifying grape varieties, encouraging vineyard mechanization, awarding cash to medalists in renown win...

  11. Self-assembled nanomaterials for photoacoustic imaging

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  12. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  13. Antimicrobial and biocompatible properties of nanomaterials.

    Science.gov (United States)

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  14. Export strategy risks and governance in the clothing industry

    Directory of Open Access Journals (Sweden)

    Arthur Mapanga

    2016-08-01

    Full Text Available This paper investigates the export strategy implementation risks in Zimbabwe’s clothing sector with a view to build a framework for improving strategy implementation and governance. The government of Zimbabwe has formulated a five year export strategic blue-print to resuscitate the clothing value chain. However, to date, no visible movement towards implementing the export strategy has materialised. The sector is on the brink of collapse putting the welfare and livelihood of over two million people dependent on the sector at risk. A desk research and key informant interviews were conducted to understand the barriers causing inertia in the implementation of the export strategy. Cotton farmers’ unions’ representatives, the cotton ginners association members, the spinning industry members and garment manufacturers representatives, clothing retailers’ representatives, workers’ unions’ members and government officials were important sources of information towards the discovery of the risks. From the research, six of the strategy implementation risks were linked to human elements. Leadership, consensus and commitment deficiencies militated against the implementation of the export strategy in the clothing value chain. There is also a lack of trust among the value chain actors leading to the dislocation of efforts to resuscitate the sector

  15. Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials

    DEFF Research Database (Denmark)

    Baun, Anders; Sayre, Phil; Steinhäuser, Klaus Günter

    2017-01-01

    The widespread use of manufactured nanomaterials (MN) increases the need for describing and predicting their environmental fate and behaviour. A number of recent reviews have addressed the scientific challenges in disclosing the governing processes for the environmental fate and behaviour of MNs,...... data. Gaps do however exist in test methods for environmental fate, such as methods to estimate heteroagglomeration and the tendency for MNs to transform in the environment.......The widespread use of manufactured nanomaterials (MN) increases the need for describing and predicting their environmental fate and behaviour. A number of recent reviews have addressed the scientific challenges in disclosing the governing processes for the environmental fate and behaviour of MNs......, however there has been less focus on the regulatory adequacy of the data available for MN. The aim of this paper is therefore to review data, testing protocols and guidance papers which describe the environmental fate and behaviour of MN with a focus on their regulatory reliability and relevance. Given...

  16. Nanomaterials for In Vivo Imaging.

    Science.gov (United States)

    Smith, Bryan Ronain; Gambhir, Sanjiv Sam

    2017-02-08

    In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.

  17. Risk of dust explosions of combustible nanomaterials

    International Nuclear Information System (INIS)

    Dobashi, Ritsu

    2009-01-01

    Nanomaterials have several valuable properties and are widely used for various practical applications. However, safety matters are suspected such as the influence on health and environment, and fire and explosion hazards. To minimize the risk of nanomaterials, appropriate understanding of these hazards is indispensable. Nanoparticles of combustible materials have potential hazard of dust explosion accidents. However, the explosion risk of nanomaterials has not yet been understood adequately because of the lack of data for nanomaterials. In this presentation, the risk of dust explosions of nanomaterials is discussed.

  18. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications.

    Science.gov (United States)

    Barako, Michael T; Gambin, Vincent; Tice, Jesse

    2018-04-02

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  19. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications

    Science.gov (United States)

    Barako, Michael T.; Gambin, Vincent; Tice, Jesse

    2018-04-01

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  20. Risk-based classification system of nanomaterials

    International Nuclear Information System (INIS)

    Tervonen, Tommi; Linkov, Igor; Figueira, Jose Rui; Steevens, Jeffery; Chappell, Mark; Merad, Myriam

    2009-01-01

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  1. Nano-material and method of fabrication

    Science.gov (United States)

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  2. Nanomaterials for Engineering Stem Cell Responses.

    Science.gov (United States)

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chapter 1.2 Occupational Exposure Characterization during the Manufacture of Cellulose Nanomaterials

    Science.gov (United States)

    Kenneth F. Martinez; Adrienne Eastlake; Alan Rudie; Charles Geraci

    2013-01-01

    The forest products industry accounts for approximately 6% of total U.S. manufacturing output; nanotechnology could play an increasing role. As with any emerging technology, cellulose nanomaterials may become commercially available in a range of products before society obtains sufficient knowledge of the risk they pose to workers, consumers, and the environment. In...

  4. Industry and government perspectives on First Nations' participation in the British Columbia environmental assessment process

    International Nuclear Information System (INIS)

    Booth, Annie L.; Skelton, Norm W.

    2011-01-01

    Research was conducted with West Moberly First Nations, Halfway First Nation and the Treaty 8 Tribal Association (located in northeastern British Columbia, Canada) on effective engagement in environmental assessment processes. As part of this research, we examined the perspectives of a subset of resource industry proponents and their consultants, as well as staff from the British Columbia Environmental Assessment Office on their experiences with the requirement to consult with Canada's indigenous peoples. Research into the perspectives of industry proponents and consultants is almost non-existent, yet industry and governments are key participants within environmental assessments. This research found that industry proponents were disenfranchised by the British Columbia environmental assessment process and its mechanisms for consulting with First Nations, and that they sought changes to that process. Their concerns and their implications are documented and some recommendations are offered for addressing those concerns. Understanding industry and government views on First Nations engagement could suggest not only potential improvements in EA processes that facilitate all parties but provide common grounds for mutually engaging to resolve challenges.

  5. Regional Knowledge Production in Nanomaterials

    DEFF Research Database (Denmark)

    Grimpe, Christoph; Patuelli, Roberto

    2011-01-01

    Nanomaterials are seen as a key technology for the twenty-first century, and much is expected of them in terms of innovation and economic growth. They could open the way to many radically new applications, which would form the basis of innovative products. As nanomaterials are still in their infa......Nanomaterials are seen as a key technology for the twenty-first century, and much is expected of them in terms of innovation and economic growth. They could open the way to many radically new applications, which would form the basis of innovative products. As nanomaterials are still...... in their infancy, universities, public research institutes and private businesses seem to play a vital role in the innovation process. Existing literature points to the importance of knowledge spillovers between these actors and suggests that the opportunities for these depend on proximity, with increasing...... on nanomaterial patenting. Based on European Patent Office data at the German district level (NUTS-3), we estimate two negative binomial models in a knowledge production function framework and include a spatial filtering approach to adjust for spatial autocorrelation. Our results indicate...

  6. One-dimensional nanomaterials for energy storage

    Science.gov (United States)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  7. Is adaptation or transformation needed? Active nanomaterials and risk analysis

    Science.gov (United States)

    Kuzma, Jennifer; Roberts, John Patrick

    2016-07-01

    Nanotechnology has been a key area of funding and policy for the United States and globally for the past two decades. Since nanotechnology research and development became a focus and nanoproducts began to permeate the market, scholars and scientists have been concerned about how to assess the risks that they may pose to human health and the environment. The newest generation of nanomaterials includes biomolecules that can respond to and influence their environments, and there is a need to explore whether and how existing risk-analysis frameworks are challenged by such novelty. To fill this niche, we used a modified approach of upstream oversight assessment (UOA), a subset of anticipatory governance. We first selected case studies of "active nanomaterials," that are early in research and development and designed for use in multiple sectors, and then considered them under several, key risk-analysis frameworks. We found two ways in which the cases challenge the frameworks. The first category relates to how to assess risk under a narrow framing of the term (direct health and environmental harm), and the second involves the definition of what constitutes a "risk" worthy of assessment and consideration in decision making. In light of these challenges, we propose some changes for risk analysis in the face of active nanostructures in order to improve risk governance.

  8. Is adaptation or transformation needed? Active nanomaterials and risk analysis

    International Nuclear Information System (INIS)

    Kuzma, Jennifer; Roberts, John Patrick

    2016-01-01

    Nanotechnology has been a key area of funding and policy for the United States and globally for the past two decades. Since nanotechnology research and development became a focus and nanoproducts began to permeate the market, scholars and scientists have been concerned about how to assess the risks that they may pose to human health and the environment. The newest generation of nanomaterials includes biomolecules that can respond to and influence their environments, and there is a need to explore whether and how existing risk-analysis frameworks are challenged by such novelty. To fill this niche, we used a modified approach of upstream oversight assessment (UOA), a subset of anticipatory governance. We first selected case studies of “active nanomaterials,” that are early in research and development and designed for use in multiple sectors, and then considered them under several, key risk-analysis frameworks. We found two ways in which the cases challenge the frameworks. The first category relates to how to assess risk under a narrow framing of the term (direct health and environmental harm), and the second involves the definition of what constitutes a “risk” worthy of assessment and consideration in decision making. In light of these challenges, we propose some changes for risk analysis in the face of active nanostructures in order to improve risk governance.

  9. Is adaptation or transformation needed? Active nanomaterials and risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuzma, Jennifer, E-mail: jkuzma@ncsu.edu [North Carolina State University, School of Public and International Affairs and Genetic Engineering and Society Center (United States); Roberts, John Patrick [North Carolina State University, School of Public and International Affairs (United States)

    2016-07-15

    Nanotechnology has been a key area of funding and policy for the United States and globally for the past two decades. Since nanotechnology research and development became a focus and nanoproducts began to permeate the market, scholars and scientists have been concerned about how to assess the risks that they may pose to human health and the environment. The newest generation of nanomaterials includes biomolecules that can respond to and influence their environments, and there is a need to explore whether and how existing risk-analysis frameworks are challenged by such novelty. To fill this niche, we used a modified approach of upstream oversight assessment (UOA), a subset of anticipatory governance. We first selected case studies of “active nanomaterials,” that are early in research and development and designed for use in multiple sectors, and then considered them under several, key risk-analysis frameworks. We found two ways in which the cases challenge the frameworks. The first category relates to how to assess risk under a narrow framing of the term (direct health and environmental harm), and the second involves the definition of what constitutes a “risk” worthy of assessment and consideration in decision making. In light of these challenges, we propose some changes for risk analysis in the face of active nanostructures in order to improve risk governance.

  10. Risk-based classification system of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tervonen, Tommi, E-mail: t.p.tervonen@rug.n [University of Groningen, Faculty of Economics and Business (Netherlands); Linkov, Igor, E-mail: igor.linkov@usace.army.mi [US Army Research and Development Center (United States); Figueira, Jose Rui, E-mail: figueira@ist.utl.p [Technical University of Lisbon, CEG-IST, Centre for Management Studies, Instituto Superior Tecnico (Portugal); Steevens, Jeffery, E-mail: jeffery.a.steevens@usace.army.mil; Chappell, Mark, E-mail: mark.a.chappell@usace.army.mi [US Army Research and Development Center (United States); Merad, Myriam, E-mail: myriam.merad@ineris.f [INERIS BP 2, Societal Management of Risks Unit/Accidental Risks Division (France)

    2009-05-15

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  11. The JRC Nanomaterials Repository: A unique facility providing representative test materials for nanoEHS research.

    Science.gov (United States)

    Totaro, Sara; Cotogno, Giulio; Rasmussen, Kirsten; Pianella, Francesca; Roncaglia, Marco; Olsson, Heidi; Riego Sintes, Juan M; Crutzen, Hugues P

    2016-11-01

    The European Commission has established a Nanomaterials Repository that hosts industrially manufactured nanomaterials that are distributed world-wide for safety testing of nanomaterials. In a first instance these materials were tested in the OECD Testing Programme. They have then also been tested in several EU funded research projects. The JRC Repository of Nanomaterials has thus developed into serving the global scientific community active in the nanoEHS (regulatory) research. The unique Repository facility is a state-of-the-art installation that allows customised sub-sampling under the safest possible conditions, with traceable final sample vials distributed world-wide for research purposes. This paper describes the design of the Repository to perform a semi-automated subsampling procedure, offering high degree of flexibility and precision in the preparation of NM vials for customers, while guaranteeing the safety of the operators, and environmental protection. The JRC nanomaterials are representative for part of the world NMs market. Their wide use world-wide facilitates the generation of comparable and reliable experimental results and datasets in (regulatory) research by the scientific community, ultimately supporting the further development of the OECD regulatory test guidelines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Assembly of ordered carbon shells on semiconducting nanomaterials

    Science.gov (United States)

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2012-10-02

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  13. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    Science.gov (United States)

    Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f

  14. Determinants of Corporate Governance and Corporate Performance among Consumer Product Industry in Malaysia: A Theoretical Model

    OpenAIRE

    Kogilavani Apadore; Siti Subaryani Binti Zainol

    2014-01-01

    This study discusses on the relationship between corporate governance mechanisms and corporate performance of public listed companies in Bursa Malaysia among the consumer product industry. It investigates the corporate governance mechanisms such as ownership concentration, audit quality, board independence and CEO duality, are used to test on the relationship between both corporate governance and corporate performance. The proposed model indicates that the proportion of independent non-execut...

  15. Impact of graphene-based nanomaterials (GBNMs) on the structural and functional conformations of hepcidin peptide

    Science.gov (United States)

    Singh, Krishna P.; Baweja, Lokesh; Wolkenhauer, Olaf; Rahman, Qamar; Gupta, Shailendra K.

    2018-03-01

    Graphene-based nanomaterials (GBNMs) are widely used in various industrial and biomedical applications. GBNMs of different compositions, size and shapes are being introduced without thorough toxicity evaluation due to the unavailability of regulatory guidelines. Computational toxicity prediction methods are used by regulatory bodies to quickly assess health hazards caused by newer materials. Due to increasing demand of GBNMs in various size and functional groups in industrial and consumer based applications, rapid and reliable computational toxicity assessment methods are urgently needed. In the present work, we investigate the impact of graphene and graphene oxide nanomaterials on the structural conformations of small hepcidin peptide and compare the materials for their structural and conformational changes. Our molecular dynamics simulation studies revealed conformational changes in hepcidin due to its interaction with GBMNs, which results in a loss of its functional properties. Our results indicate that hepcidin peptide undergo severe structural deformations when superimposed on the graphene sheet in comparison to graphene oxide sheet. These observations suggest that graphene is more toxic than a graphene oxide nanosheet of similar area. Overall, this study indicates that computational methods based on structural deformation, using molecular dynamics (MD) simulations, can be used for the early evaluation of toxicity potential of novel nanomaterials.

  16. Government spending on Canada's oil and gas industry : undermining Canada's Kyoto commitment

    International Nuclear Information System (INIS)

    Taylor, A.; Bramley, M.; Winfield, M.

    2005-01-01

    This study investigates government spending in the Canadian oil and gas industry within the context of greenhouse gas emission trends and Kyoto commitments. Various forms of provincial and federal government support provided between 1996 and 2002 through grants, tax expenditures, and government program expenditures for conventional oil and gas and oil sands sectors are presented. The paper contextualizes government support for oil and gas production, discusses what constitutes a subsidy, presents the methodology and approach used to establish expenditure estimates, presents the study findings and discusses expenditure estimates and puts the results into the context of other public policy work. The conclusion recommends policy changes and describes important areas for future research related to public expenditure on oil and gas production. The study concludes that while it is understood that reform or removal of environmentally harmful subsidies will not solve environmental problems alone, such actions are important in order to achieve environmental improvements and objectives. 163 refs., 24 tabs, 5 figs

  17. Environmental effects of engineered nanomaterials

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Hartmann, Nanna B.; Brinch, Anna

    This report presents ecotoxicological data and Predicted No-Effect Concentrations (PNECs) for nine selected nanomaterials which are considered to be environmentally relevant due to high usage or how they are used. These data will together with data from other reports/projects be used in an overall...... assessment of the environmental risk of nanomaterials in Denmark. The nine investigated nanomaterials are: Titanium Dioxide, Zinc Oxide, Silver, Carbon Nanotubes, Copper Oxide, Nano Zero Valent Iron, Cerium Dioxide, Quantum Dots and Carbon Black. To support the assessment of the data found in the peer...

  18. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  19. Job-Related Perceptions of Male and Female Government, Industrial, and Public Accountants.

    Science.gov (United States)

    Touliatos, John; And Others

    1984-01-01

    Examined the relationships among role stress (i.e., role conflict and ambiguity), job-related tension, job satisfaction, and propensity to terminate employment for a national sample of both male and female accountants (N=1080) in public, industrial, and government accounting. Results indicated that accountants cannot be treated as a homogeneous…

  20. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  1. Critical analysis of frameworks and approaches to assess the environmental risks of nanomaterials

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Linkov, Igor; Hansen, Steffen Foss

    and approaches which have been developed or proposed by large organizations or regulatory bodies for NM. These frameworks and approaches were evaluated and assessed based on a select number of criteria which have been previously proposed as important parameters for inclusion in successful risk assessment......7.1.7 Critical analysis of frameworks and approaches to assess the environmental risks of nanomaterials Khara D. Grieger1, Igor Linkov2, Steffen Foss Hansen1, Anders Baun1 1Technical University of Denmark, Kgs. Lyngby, Denmark 2Environmental Laboratory, U.S. Army Corps of Engineers, Brookline, USA...... Email: kdg@env.dtu.dk Scientists, organizations, governments, and policy-makers are currently involved in reviewing, adapting, and formulating risk assessment frameworks and strategies to understand and assess the potential environmental risks of engineered nanomaterials (NM). It is becoming...

  2. Nanomaterials and future aerospace technologies: opportunities and challenges

    Science.gov (United States)

    Vaia, Richard A.

    2012-06-01

    Two decades of extensive investment in nanomaterials, nanofabrication and nanometrology have provided the global engineering community a vast array of new technologies. These technologies not only promise radical change to traditional industries, such as transportation, information and aerospace, but may create whole new industries, such as personalized medicine and personalized energy harvesting and storage. The challenge today for the defense aerospace community is determining how to accelerate the conversion of these technical opportunities into concrete benefits with quantifiable impact, in conjunction with identifying the most important outstanding scientific questions that are limiting their utilization. For example, nanomaterial fabrication delivers substantial tailorablity beyond a traditional material data sheet. How can we integrate this tailorability into agile manufacturing and design methods to further optimize the performance, cost and durability of future resilient aerospace systems? The intersection of nano-based metamaterials and nanostructured devices with biotechnology epitomizes the technological promise of autonomous systems and enhanced human-machine interfaces. What then are the key materials and processes challenges that are inhibiting current lab-scale innovation from being integrated into functioning systems to increase effectiveness and productivity of our human resources? Where innovation is global, accelerating the use of breakthroughs, both for commercial and defense, is essential. Exploitation of these opportunities and finding solutions to the associated challenges for defense aerospace will rely on highly effective partnerships between commercial development, scientific innovation, systems engineering, design and manufacturing.

  3. Progress in electronics and photonics with nanomaterials

    DEFF Research Database (Denmark)

    Mishra, Yogendra Kumar; Murugan, Arul; Kotakoski, Jani

    2017-01-01

    Nanomaterials have been at the center of attraction for almost five decades as their contributions to different disciplines such as electronics, photonics and medicine are enormous. Various kinds of nanomaterials have been developed and are currently utilized in innumerable applications. Neverthe......Nanomaterials have been at the center of attraction for almost five decades as their contributions to different disciplines such as electronics, photonics and medicine are enormous. Various kinds of nanomaterials have been developed and are currently utilized in innumerable applications...

  4. International Implications of Labeling Foods Containing Engineered Nanomaterials

    DEFF Research Database (Denmark)

    Grieger, Khara D.; Hansen, Steffen Foss; Mortensen, Ninell P.

    2016-01-01

    To provide greater transparency and comprehensive information to consumers regarding their purchase choices, the European Parliament and the Council have mandated via Regulation 1169/2011 that foods containing engineered nanomaterials (ENMs) be labeled. This review covers the main concerns related...... additives used for decades. We recommend that food industries and food safety authorities be more proactive in communicating with the public and consumer groups regarding the potential benefits and risks of using ENMs in foods. Efforts should be made to improve harmonization of information requirements...... between countries to avoid potential international trade barriers....

  5. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  6. Improving policy making through government-industry policy learning: The case of a novel Swedish policy framework

    International Nuclear Information System (INIS)

    Stigson, Peter; Dotzauer, Erik; Yan Jinyue

    2009-01-01

    Climate change poses an unprecedented challenge for policy makers. This paper analyzes how industry sector policy expertise can contribute to improved policy making processes. Previous research has identified that policy making benefit by including non-governmental policy analysts in learning processes. Recent climate and energy policy developments, including amendments and the introduction of new initiatives, have rendered current policy regimes as novel to both governments and the industry. This increases business investment risk perceptions and may thus reduce the effectiveness and efficiency of the policy framework. In order to explore how government-industry policy learning can improve policy making in this context, this article studied the Swedish case. A literature survey analyzed how policy learning had been previously addressed, identifying that the current situation regarding novel policies had been overlooked. Interviews provided how industrial actors view Swedish policy implementation processes and participatory aspects thereof. The authors conclude that an increased involvement of the industry sector in policy design and management processes can be an important measure to improve the effectiveness and efficiency of climate and energy policies

  7. LCA of Nanomaterials

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Olsen, Stig Irving

    2018-01-01

    Application of nanomaterials in products has led to an increase in number of nanoproducts introduced to the consumer market. However, along with new and improved products, there is a concern about the potential life cycle environmental impacts. Life cycle assessment is able to include a wide range...... of environmental impacts but, due to data limitations, it is commonly applied with focus on the cradle-to-gate part of the nanoproducts life cycle, neglecting use and disposal of the products. These studies conclude that nanomaterials are more energy demanding and have an inferior environmental profile than...

  8. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  9. Environmental Risk Assessment of Nanomaterials

    Science.gov (United States)

    Bayramov, A. A.

    In this paper, various aspects of modern nanotechnologies and, as a result, risks of nanomaterials impact on an environment are considered. This very brief review of the First International Conference on Material and Information Sciences in High Technologies (2007, Baku, Azerbaijan) is given. The conference presented many reports that were devoted to nanotechnology in biology and business for the developing World, formation of charged nanoparticles for creation of functional nanostructures, nanoprocessing of carbon nanotubes, magnetic and optical properties of manganese-phosphorus nanowires, ultra-nanocrystalline diamond films, and nanophotonics communications in Azerbaijan. The mathematical methods of simulation of the group, individual and social risks are considered for the purpose of nanomaterials risk reduction and remediation. Lastly, we have conducted studies at a plant of polymeric materials (and nanomaterials), located near Baku. Assessments have been conducted on the individual risk of person affection and constructed the map of equal isolines and zones of individual risk for a plant of polymeric materials (and nanomaterials).

  10. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  11. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment

    Science.gov (United States)

    Marambio-Jones, Catalina; Hoek, Eric M. V.

    2010-06-01

    Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver-dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules—all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.

  12. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Marambio-Jones, Catalina; Hoek, Eric M. V., E-mail: emvhoek@ucla.ed [University of California, Los Angeles, Department of Civil and Environmental Engineering, California NanoSystems Institute (United States)

    2010-06-15

    Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver-dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules-all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.

  13. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment

    International Nuclear Information System (INIS)

    Marambio-Jones, Catalina; Hoek, Eric M. V.

    2010-01-01

    Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver-dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules-all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.

  14. Multi-metal oxide ceramic nanomaterial

    Science.gov (United States)

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  15. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  16. Nanomaterials: Opportunities and Challenges for Aerospace

    National Research Council Canada - National Science Library

    Obieta, Isabel; Marcos, J

    2005-01-01

    Nanomaterials are regarded world-wide as key materials of the 21st Century. Also, in aerospace a high potential for nanomaterials applications is postulated and technological breakthroughs are expected in this area...

  17. 77 FR 36606 - Pipeline Safety: Government/Industry Pipeline Research and Development Forum, Public Meeting

    Science.gov (United States)

    2012-06-19

    ...: Threat Prevention --Working Group 2: Leak Detection/Mitigation & Storage --Working Group 3: Anomaly... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0146] Pipeline Safety: Government/Industry Pipeline Research and Development Forum, Public...

  18. The cooperation of the government and digital media industry in social development (a study in Cirebon city, West Java, Indonesia)

    Science.gov (United States)

    Kusuma, M.; Mariana, D.; Anwar, R. K.

    2018-03-01

    This study explores the role of government in encouraging and providing a model of economic growth, including in the field of micro, small, and medium enterprises. The case studied in this research is the digital media industry. It could be a potential in creating public welfare. The questions in this research are about how to model a development of community-based digital media industry in Cirebon City, West Java; whether the government could bring people to the digital media industry to foster a productive economic society; and how the community appreciates and becomes a part of the digital media industry. By using descriptive and qualitative methods, this study finds that the government has sufficiently active roles in the development of the digital media industry in the society. The society itself has already been open-minded in responding the government’s programs and the development of contemporary technology, such as in the field of selling goods and services. Still, some obstacles might continue to be refined for the success of the community’s digital media industry.

  19. Nanomaterial Registry

    Data.gov (United States)

    U.S. Department of Health & Human Services — By leveraging and developing a set of Minimal Information About Nanomaterials (MIAN), ontology and standards through a community effort, it has developed a data...

  20. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    Science.gov (United States)

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  1. Engineered Nanomaterials Elicit Cellular Stress Responses

    Science.gov (United States)

    Engineered nanomaterials are being developed continuously and incorporated into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on toxicity endpoints without further investigating potential mechanisms or pathway...

  2. Red barons or robber barons? : governance and financing in Russian financial-industrial groups

    NARCIS (Netherlands)

    Perotti, E.C.; Gelfer, S.

    1999-01-01

    We study the governance role of Russian Financial-Industrial Groups (FIG) and their impact on financing of investment. We compare member firms of a group with a control set of large firms categorized by dispersed ownership or/and management and employee control. We find that investment is sensitive

  3. Nanomaterials on flexible substrates to explore innovative functions: From energy harvesting to bio-integrated electronics

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja Hoon; Seo, Jungmok; Lee, Taeyoon, E-mail: taeyoon.lee@yonsei.ac.kr

    2012-12-01

    Recent efforts in the semiconductor industry have focused on the realization of electronics with unusual form factors and functions which are not achievable using the current planar Si-based technology. Deposition of high-quality films or nanomaterials on low-temperature elastomeric substrates has been a technical challenge for flexible electronics. However, together with the development of new synthesis routes that enable the formation of robust thin films and nanomaterials on compliant substrates, including the dry transfer printing technique and fabrication of uniform nanogaps/nanowrinkles using the unique stretchable characteristics of elastomeric substrates, flexible electronics has emerged as a promising technology that can enrich our lives in a variety of ways. As examples, potential applications include skin-like smart prostheses, paper-like displays, disposable electronic noses, and hemispherically-shaped electronic eye cameras. Here, we review recent results demonstrating ingenious new functionalities using nanomaterials on flexible substrates, focusing on fabrication techniques, materials, operation mechanisms, and signal outputs.

  4. Nanomaterials on flexible substrates to explore innovative functions: From energy harvesting to bio-integrated electronics

    International Nuclear Information System (INIS)

    Koo, Ja Hoon; Seo, Jungmok; Lee, Taeyoon

    2012-01-01

    Recent efforts in the semiconductor industry have focused on the realization of electronics with unusual form factors and functions which are not achievable using the current planar Si-based technology. Deposition of high-quality films or nanomaterials on low-temperature elastomeric substrates has been a technical challenge for flexible electronics. However, together with the development of new synthesis routes that enable the formation of robust thin films and nanomaterials on compliant substrates, including the dry transfer printing technique and fabrication of uniform nanogaps/nanowrinkles using the unique stretchable characteristics of elastomeric substrates, flexible electronics has emerged as a promising technology that can enrich our lives in a variety of ways. As examples, potential applications include skin-like smart prostheses, paper-like displays, disposable electronic noses, and hemispherically-shaped electronic eye cameras. Here, we review recent results demonstrating ingenious new functionalities using nanomaterials on flexible substrates, focusing on fabrication techniques, materials, operation mechanisms, and signal outputs.

  5. Implementation of energy-saving policies in China: How local governments assisted industrial enterprises in achieving energy-saving targets

    International Nuclear Information System (INIS)

    Zhao, Xiaofan; Li, Huimin; Wu, Liang; Qi, Ye

    2014-01-01

    Local governments have replaced the national ministries that are in charge of various industries to become the primary implementer of energy-saving policies in China since 2000. This paper employs a case study-based approach to demonstrate the significance of local governments’ policy measures in assisting industrial enterprises with energy-saving activities in China. Based on the longitudinal case of the Jasmine Thermal Electric Power Company, this paper hypothesizes that sub-national governments have played a major role in implementing energy-saving policies in China since the 11th Five-year-plan period. A wide range of provincial and municipal agencies collaborated in implementing five types of policy measures – informational policy, skill building, improved enforcement of central directives, price adjustment, and funding – that reduced barriers to energy saving and motivated active pursuit of energy-saving activities at industrial enterprises. The case study demonstrates how an enterprise and local governments work together to achieve the enterprise's energy-saving target. The authors will investigate the hypothesis of this paper in the context of multiple case studies that they plan to undertake in the future. - Highlights: • We employ a case study-based approach to study policy implementation in China. • Local governments have played a major role in implementing energy-saving policies. • Local public agencies collaborated in implementing five types of policy measures. • Local policy measures reduced barriers to energy saving at industrial enterprises. • Enterprises and local governments work together to achieve energy-saving targets

  6. Efficiency in the United States electric industry: Transaction costs, deregulation, and governance structures

    Science.gov (United States)

    Peterson, Carl

    Transaction costs economics (TCE) posits that firms have an incentive to bypass the market mechanisms in situations where the cost of using the market is prohibitive. Vertical integration, among other governance mechanisms, can be used to minimize the transactions costs associated with the market mechanism. The study analyses different governance mechanisms, which range from complete vertical integration to the use of market mechanisms, for firms in the US electric sector. This sector has undergone tremendous change in the past decade including the introduction of retail competition in some jurisdictions. As a result of the push toward deregulation of the industry, vertically integration, while still significant in the sector, has steadily been replaced by alternative governance structures. Using a sample of 136 investor-owned electric utilities that reported data the US Federal Energy Regulatory Commission between 1996 and 2002, this study estimates firm level efficiency using Data Envelopment Analysis (DEA) and relates these estimates to governance structure and public policies. The analysis finds that vertical integration is positively related to firm efficiency, although in a non-linear fashion suggesting that hybrid governance structures tend to be associated with lower efficiency scores. In addition, while some evidence is found for negative short-term effects on firm efficiency from the choice to deregulate, this result is sensitive to DEA model choice. Further, competition in retail markets is found to be positively related to firm level efficiency, but the retreat from deregulation, which occurred after 2000, is negatively associated with firm-level efficiency. These results are important in the ongoing academic and public policy debates concerning deregulation of the electric section and indicate that vertical economies remain in the industry, but that competition has provided incentives for improving firm level efficiency.

  7. NEIMiner: nanomaterial environmental impact data miner.

    Science.gov (United States)

    Tang, Kaizhi; Liu, Xiong; Harper, Stacey L; Steevens, Jeffery A; Xu, Roger

    2013-01-01

    As more engineered nanomaterials (eNM) are developed for a wide range of applications, it is crucial to minimize any unintended environmental impacts resulting from the application of eNM. To realize this vision, industry and policymakers must base risk management decisions on sound scientific information about the environmental fate of eNM, their availability to receptor organisms (eg, uptake), and any resultant biological effects (eg, toxicity). To address this critical need, we developed a model-driven, data mining system called NEIMiner, to study nanomaterial environmental impact (NEI). NEIMiner consists of four components: NEI modeling framework, data integration, data management and access, and model building. The NEI modeling framework defines the scope of NEI modeling and the strategy of integrating NEI models to form a layered, comprehensive predictability. The data integration layer brings together heterogeneous data sources related to NEI via automatic web services and web scraping technologies. The data management and access layer reuses and extends a popular content management system (CMS), Drupal, and consists of modules that model the complex data structure for NEI-related bibliography and characterization data. The model building layer provides an advanced analysis capability for NEI data. Together, these components provide significant value to the process of aggregating and analyzing large-scale distributed NEI data. A prototype of the NEIMiner system is available at http://neiminer.i-a-i.com/.

  8. Green processes for nanotechnology from inorganic to bioinspired nanomaterials

    CERN Document Server

    Basiuk, Elena

    2015-01-01

    This book provides the state-of-the-art survey of green techniques in preparation of different classes of nanomaterials, with an emphasis on the use of renewable sources. Key topics covered include fabrication of nanomaterials using green techniques as well as their properties and applications, the use of renewable sources to obtain nanomaterials of different classes, from simple metal and metal oxide nanoparticles to complex bioinspired nanomaterials, economic contributions of nanotechnology to green and sustainable growth, and more. This is an ideal book for students, lecturers, researchers and engineers dealing with versatile (mainly chemical, biological, and medical) aspects of nanotechnology, including fabrication of nanomaterials using green techniques and their properties and applications. This book also: Maximizes reader insights into the design and fabrication of bioinspired nanomaterials and the design of complex bio-nanohybrids Covers many different applications for nanomaterials, bioinspired nanom...

  9. Nanomaterials as stationary phases and supports in liquid chromatography.

    Science.gov (United States)

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Lessons from industry: one school's transformation toward "lean" curricular governance.

    Science.gov (United States)

    Stratton, Terry D; Rudy, David W; Sauer, Marlene J; Perman, Jay A; Jennings, C Darrell

    2007-04-01

    As medical education grapples with organizational calls for centralized curricular oversight, programs may be compelled to respond by establishing highly vertical, stacked governance structures. Although these models offer discrete advantages over the horizontal, compartmentalized structures they are designed to replace, they pose new challenges to ensuring curricular quality and the educational innovations that drive the curricula. The authors describe a hybrid quality-assurance (QA) governance structure introduced in 2003 at the University of Kentucky College of Medicine (UKCOM) that ensures centralized curricular oversight of the educational product while allowing individualized creative control over the educational process. Based on a Lean production model, this approach draws on industry experiences that strategically separate institutional accountability (management) for a quality curriculum from the decision-making processes required to ensure it (production). In so doing, the authors acknowledge general similarities and key differences between overseeing the manufacture of a complex product versus the education of a physician-emphasizing the structured, sequential, and measurable nature of each process. Further, the authors briefly trace the emergence of quality approaches in manufacturing and discuss the philosophical changes that accompany transition to an institutional governance system that relies on vigorous, robust performance measures to offer continuous feedback on curricular quality.

  11. 2D nanomaterials assembled from sequence-defined molecules

    International Nuclear Information System (INIS)

    Mu, Peng; State University of New York; Zhou, Guangwen; Chen, Chun-Long

    2017-01-01

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges and opportunities in this new field.

  12. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Science.gov (United States)

    Lu, Danqing; He, Lei; Zhang, Ge; Lv, Aiping; Wang, Ruowen; Zhang, Xiaobing; Tan, Weihong

    2017-01-01

    Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX), represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  13. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  14. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    Science.gov (United States)

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Techniques for physicochemical characterization of nanomaterials

    Science.gov (United States)

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  16. Nanomaterials for membrane fouling control: accomplishments and challenges.

    Science.gov (United States)

    Yang, Qian; Mi, Baoxia

    2013-11-01

    We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  17. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Braakhuis, Hedwig M., E-mail: hedwig.braakhuis@rivm.nl [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht (Netherlands); Oomen, Agnes G. [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Cassee, Flemming R. [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Institute of Risk Assessment Sciences, Utrecht University, PO Box 80.163, 3508 TD Utrecht (Netherlands)

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation are

  18. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    International Nuclear Information System (INIS)

    Braakhuis, Hedwig M.; Oomen, Agnes G.; Cassee, Flemming R.

    2016-01-01

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation are

  19. Characterization of nanomaterial test solutions for terrestrial plant dose-response studies: A comparative study of DLS and SAXS

    Science.gov (United States)

    Industrial applications of nanomaterials have expanded at an increasing rate in recent years, accompanied by the need for comprehensive toxicological assessments to establish environmental health and safety standards. Relatively few studies have examined the effects of nanoparti...

  20. Health hazards associated with nanomaterials.

    Science.gov (United States)

    Pattan, Gurulingappa; Kaul, Gautam

    2014-07-01

    Nanotechnology is a major scientific and economic growth area and presents a variety of hazards for human health and environment. It is widely believed that engineered nanomaterials will be increasingly used in biomedical applications (as therapeutics and as diagnostic tools). However, before these novel materials can be safely applied in a clinical setting, their toxicity needs to be carefully assessed. Nanoscale materials often behave different from the materials with a larger structure, even when the basic material is same. Many mammals get exposed to these nanomaterials, which can reach almost every cell of the mammalian body, causing the cells to respond against nanoparticles (NPs) resulting in cytotoxicity and/or genotoxicity. The important key to understand the toxicity of nanomaterials is that their minute size, smaller than cellular organelles, allows them to penetrate the basic biological structures, disrupting their normal function. There is a wealth of evidence for the noxious and harmful effects of engineered NPs as well as other nanomaterials. The rapid commercialization of nanotechnology field requires thoughtful, attentive environmental, animal and human health safety research and should be an open discussion for broader societal impacts and urgent toxicological oversight action. While 'nanotoxicity' is a relatively new concept to science, this comprehensive review focuses on the nanomaterials exposure through the skin, respiratory tract, and gastrointestinal tract and their mechanism of toxicity and effect on various organs of the body. © The Author(s) 2012.

  1. Can control banding be useful for the safe handling of nanomaterials? A systematic review

    Science.gov (United States)

    Eastlake, Adrienne; Zumwalde, Ralph; Geraci, Charles

    2016-06-01

    CB to existing exposure controls previously recommended by an industrial hygienist. It was determined that the selection of exposure controls using CB were consistent with those recommended by an industrial hygienist for 19 out of 32 (59.4 %) job activities. A higher level of exposure control was recommended for nine out of 32 (28.1 %) job activities using CB, while four out of 32 (12.5 %) job activities had in-place exposure controls that were more stringent than those recommended using CB. After evaluation using GRADE, evidence indicated that the use of CB Nanotool can recommend exposure controls for many ENM job activities that would be consistent with those recommended by an experienced industrial hygienist. The use of CB for reducing exposures to ENMs has the potential to be an effective risk management strategy when information is limited on the health risk to the nanomaterial and/or there is an absence of an occupational exposure limit. However, there remains a lack of evidence to conclude that the use of CB can provide adequate exposure control in all work environments. Additional validation work is needed to provide more data to support the use of CB for the safe handling of ENMs.

  2. Development of an Integrative Program of Nanosafety: Promote the Coordination Between Industries and Risk Assessor

    International Nuclear Information System (INIS)

    Emond, Claude; Kouassi, Serge; Schuster, Frédéric

    2013-01-01

    Nanomaterials are widely present in many industrial sectors (e.g., chemical, biomedical, environment), and their application is expected to significantly expand in the coming years. However, nanomaterial use raises many questions about the potential risks to human health and the environment and, more specifically, to occupational health. The available literature supports the ability of the lung, gastrointestinal tract, and skin to act as significant barriers against systemic exposure to many nanomaterials. However, because a potential risk issue exists about the toxicity of nanomaterials to the biological material, tools need to be developed for improving the risk management of the regulators. The goal is to develop a tool that examines the current knowledge base regarding the health risks posed by engineered nanoparticles to improve nanotechnology safety prior to the marketing phase. The approach proposed during this work was to establish a safety assessment constructed on a decision-control pathway regarding nanomaterial production and consumer's product to integrate different aspects. These aspects include: (1) primarily research and identification of the nanomaterial base of physicochemical properties, toxicity, and application; (2) the occupational exposure risk during the manufacturing process; (3) and the engineered nanomaterial upon the consumer product. This approach provides important parameters to reduce the uncertainty related to the production of nanomaterials prior their commercialization, reduce the reluctance from the industry, and provide a certification tool of sanitary control for the regulators. This work provides a better understanding of a critical issue of nanomaterials and consumer safety.

  3. Development of an Integrative Program of Nanosafety: Promote the Coordination Between Industries and Risk Assessor

    Science.gov (United States)

    Emond, Claude; Kouassi, Serge; Schuster, Frédéric

    2013-04-01

    Nanomaterials are widely present in many industrial sectors (e.g., chemical, biomedical, environment), and their application is expected to significantly expand in the coming years. However, nanomaterial use raises many questions about the potential risks to human health and the environment and, more specifically, to occupational health. The available literature supports the ability of the lung, gastrointestinal tract, and skin to act as significant barriers against systemic exposure to many nanomaterials. However, because a potential risk issue exists about the toxicity of nanomaterials to the biological material, tools need to be developed for improving the risk management of the regulators. The goal is to develop a tool that examines the current knowledge base regarding the health risks posed by engineered nanoparticles to improve nanotechnology safety prior to the marketing phase. The approach proposed during this work was to establish a safety assessment constructed on a decision-control pathway regarding nanomaterial production and consumer's product to integrate different aspects. These aspects include: (1) primarily research and identification of the nanomaterial base of physicochemical properties, toxicity, and application; (2) the occupational exposure risk during the manufacturing process; (3) and the engineered nanomaterial upon the consumer product. This approach provides important parameters to reduce the uncertainty related to the production of nanomaterials prior their commercialization, reduce the reluctance from the industry, and provide a certification tool of sanitary control for the regulators. This work provides a better understanding of a critical issue of nanomaterials and consumer safety.

  4. Technological Development in Automotive Industry and Transformation in Corporate Governance System

    Directory of Open Access Journals (Sweden)

    Kazuyuki Shimizu

    2017-10-01

    Full Text Available This study aims to understand how governance change is triggered by cybernetics issues, such as the development of automotive navigation systems in German, Japanese and US automotive industry. Six points are discussed for the central question which are 1 GDP Trends for Manufacturing Activities, 2 Organizational Structure for Supply Chain Management (SCM, 3 Viewpoint related to Internet of Things (IoT usability, 4 National IoT planning, 5 Definition of IoT, 6 Developing Navigation Systems. At first, the trend in manufacturing activity reveals two different trends: a downward trend in Japan and the USA, and a stable trend in Germany. We see several possible reasons for this difference; first, the “smiling curve concept” is applied to visualize the difference. And the organizational structure of SCM is concerned such as “Keiretsu” in Japan, “Konzern” in Germany and the “Anglo-American” model. Then, this paper addresses how the unique organizational features of SCM might react to the technological developments in the automotive industry such as autonomous driving, which has shaken the core of the industry. For this gradual change, the IoT technology is necessary. IoT means the progress of certain embedded system, which adds a network function into it. The embedded system for automobile orientation on a map (hardware and software has to be upgraded with the network function. These technological developments could influence their corporate governance system. Then, the discussion matrix is formed for the six points, which are discussed in this paper and reveal the boundaries between Japan, Germany and the US. According to Beer, the societary maps (the cybernetic maps are required for this structural progress to find the right way to go. Finally, we think a dynamic industrial movement is ensured by keeping fair competition, which ensures diversity as well as technological development. It could be the last resort to protect our

  5. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    Science.gov (United States)

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a β-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is

  6. Corporate governance – research of key indicators on market of processing industry in the Czech Republic via cluster analysis

    Directory of Open Access Journals (Sweden)

    Iveta Šimberová

    2012-01-01

    Full Text Available The discussion on corporate governance has oriented on practical problems, including corporate fraud, the abuse of managerial power and social irresponsibility. Contemporary cognition implicates the fact that the questions regarding to corporate governance are very actual especially in relation to company competitiveness, company performance and sustainability of success (long term viability. Paper is focused to the current questions regarding to the definition of corporate governance, looking for the appropriate conceptual framework and identification of key corporate governance indicators in selected industrial market in the Czech Republic via cluster analysis. The scientific aim is looking for the appropriate key indicators in processing industry as a base for the corporate governance performance measurement. The presentations of the results in the paper are just part of selected results in the framework of the elaborated research project titled “Construction of Methods for Multifactor Assessment of Company Complex Performance in Selected Sectors”.

  7. Government policy uncertainty and stock prices: The case of Australia's uranium industry

    International Nuclear Information System (INIS)

    Ferguson, Andrew; Lam, Peter

    2016-01-01

    We investigate effects of government policy uncertainty on stock prices, reflecting tension between ‘private interest’ (economic benefits) and ‘public interest’ arguments over uranium mining. Using a sample of Australian-listed uranium firms from January 2005 through June 2008, we document a positive contemporaneous correlation between stock returns and volatility and two measures of government policy uncertainty, proxied by the spread in voters' opinion polls between the two major political parties and a news-based sentiment index. Event-study results show significant stock price reactions to key uranium-related policy events, with cross-sectional variation in event returns predicted by models incorporating firm- and project-level characteristics. Our research design and findings may inform future research on the capital market effects of government policy uncertainty in other regulated industries. - Highlights: • Government policy uncertainty has direct effects on stock prices of uranium explorers. • Stock returns are positively related to the spread in two-party-preferred voting intention. • Stock volatility is positively related to a uranium news-based sentiment index. • Event-study results show significant market reaction to key uranium policy events.

  8. The potential of protein-nanomaterial interaction for advanced drug delivery

    DEFF Research Database (Denmark)

    Peng, Qiang; Mu, Huiling

    2016-01-01

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself...... of such interaction for advanced drug delivery are presented........ Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized...

  9. Reinforcement of cement-based matrices with graphite nanomaterials

    Science.gov (United States)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  10. Effective science advice for governments in the developing world ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Most often, researchers and scientific organizations lack the skills, visibility, or networks that can allow them to effectively influence government policy and programs. ... This project aims to use nanomaterials (a nanometer is one billionth of a meter) to provide new, inexpensive techniques to purify water that also address the ...

  11. Porous substrates filled with nanomaterials

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  12. Engineered nanomaterials for solar energy conversion.

    Science.gov (United States)

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  13. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  14. Biological interactions of carbon-based nanomaterials: From coronation to degradation.

    Science.gov (United States)

    Bhattacharya, Kunal; Mukherjee, Sourav P; Gallud, Audrey; Burkert, Seth C; Bistarelli, Silvia; Bellucci, Stefano; Bottini, Massimo; Star, Alexander; Fadeel, Bengt

    2016-02-01

    Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. [Prevention of overweight and obesity--the role of government, the food industry and the individual].

    Science.gov (United States)

    Eichhorn, C; Nagel, E

    2010-01-01

    Obesity is a growing health problem in Germany and other industrial nations. There is an urgent need for action in order to stop this development. Government and food industry, as well as individuals, have to act. Governmental interventions could consist in direct regulation - as in, e. g., regulations on food offered in schools and restrictions on advertising unwholesome nutrition for children, -, or in economic incentives like taxes on unhealthy food and subsidisation of wholesome school food and information (food education, campaigns, food labelling etc.). The government should provide an environment that makes a healthy life style easy. But, at present, governmental interventions are too much focused on personal behaviour and responsibility. The role of the food industry could, for example, consist in clear food labelling and the production of healthy food. Each individual holds a personal responsibility for his or her health, but there are limits to it, like social, financial, biological, and other environmental factors. Especially social factors ought to be considered more seriously. Hence, personal responsibility should only be demanded in an adequate environment.

  16. Electron accelerators and nanomaterials - a symbiosis

    International Nuclear Information System (INIS)

    Dixit, Kavita P.; Mittal, K.C.

    2011-01-01

    Electron Accelerators and Nanomaterials share a symbiotic relationship. While electron accelerators are fast emerging as popular tools in the field of nanomaterials, use of nanomaterials so developed for sub-systems of accelerators is being explored. Material damage studies, surface modification and lithography in the nanometre scale are some of the areas in which electron accelerators are being extensively used. New methods to characterize the structure of nanoparticles use intense X-ray sources, generated from electron accelerators. Enhancement of field emission properties of carbon nanotubes using electron accelerators is another important area that is being investigated. Research on nanomaterials for use in the field of accelerators is still in the laboratory stage. Yet, new trends and emerging technologies can effectively produce materials which can be of significant use in accelerators. Properties such as enhanced field emission can be put to use in cathodes of electron guns. Superconducting properties some materials may also be useful in accelerators. This paper focusses on the electron accelerators used for synthesis, characterization and property-enhancement of nanomaterials. The details of electron accelerators used for these applications will be highlighted. Some light will be thrown on properties of nano materials which can have potential use in accelerators. (author)

  17. Carbon Nanomaterials for Breast Cancer Treatment

    Directory of Open Access Journals (Sweden)

    M. L. Casais-Molina

    2018-01-01

    Full Text Available Currently, breast cancer is considered as a health problem worldwide. Furthermore, current treatments neither are capable of stopping its propagation and/or recurrence nor are specific for cancer cells. Therefore, side effects on healthy tissues and cells are common. An increase in the efficiency of treatments, along with a reduction in their toxicity, is desirable to improve the life quality of patients affected by breast cancer. Nanotechnology offers new alternatives for the design and synthesis of nanomaterials that can be used in the identification, diagnosis, and treatment of cancer and has now become a very promising tool for its use against this disease. Among the wide variety of nanomaterials, the scientific community is particularly interested in carbon nanomaterials (fullerenes, nanotubes, and graphene due to their physical properties, versatile chemical functionalization, and biocompatibility. Recent scientific evidence shows the potential uses of carbon nanomaterials as therapeutic agents, systems for selective and controlled drug release, and contrast agents for diagnosing and locating tumors. This generates new possibilities for the development of innovative systems to treat breast cancer and can be used to detect this disease at much earlier stages. Thus, applications of carbon nanomaterials in breast cancer treatment are discussed in this article.

  18. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    Science.gov (United States)

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Size effects of latex nanomaterials on lung inflammation in mice

    International Nuclear Information System (INIS)

    Inoue, Ken-ichiro; Takano, Hirohisa; Yanagisawa, Rie; Koike, Eiko; Shimada, Akinori

    2009-01-01

    Effects of nano-sized materials (nanomaterials) on sensitive population have not been well elucidated. This study examined the effects of pulmonary exposure to (latex) nanomaterials on lung inflammation related to lipopolysaccharide (LPS) or allergen in mice, especially in terms of their size-dependency. In protocol 1, ICR male mice were divided into 8 experimental groups that intratracheally received a single exposure to vehicle, latex nanomaterials (250 μg/animal) with three sizes (25, 50, and 100 nm), LPS (75 μg/animal), or LPS plus latex nanomaterials. In protocol 2, ICR male mice were divided into 8 experimental groups that intratracheally received repeated exposure to vehicle, latex nanomaterials (100 μg/animal), allergen (ovalbumin: OVA; 1 μg/animal), or allergen plus latex nanomaterials. In protocol 1, latex nanomaterials with all sizes exacerbated lung inflammation elicited by LPS, showing an overall trend of amplified lung expressions of proinflammatory cytokines. Furthermore, LPS plus nanomaterials, especially with size less than 50 nm, significantly elevated circulatory levels of fibrinogen, macrophage chemoattractant protein-1, and keratinocyte-derived chemoattractant, and von Willebrand factor as compared with LPS alone. The enhancement tended overall to be greater with the smaller nanomaterials than with the larger ones. In protocol 2, latex nanomaterials with all sizes did not significantly enhance the pathophysiology of allergic asthma, characterized by eosinophilic lung inflammation and Igs production, although latex nanomaterials with less than 50 nm significantly induced/enhanced neutrophilic lung inflammation. These results suggest that latex nanomaterials differentially affect two types of (innate and adaptive immunity-dominant) lung inflammation

  20. Sustainable individual mobility - critical choices for government and industry. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1996-11-01

    The Alliance for Global Sustainability, a partnership between the Massachusetts Institute of Technology, the Tokyo University and the Swiss Federal Institute of Technology, planned the International Conference on `Sustainable Individual Mobility - Critical Choices for Government and Industry` to be held in November, 1996. The conference had to be cancelled. However, nearly all authors delivered their papers which are now published in this volume. The five planned sections dealt with the following topics: sustainable individual mobility, long term worldwide demand scenarios to the year 2020, how to satisfy demand, assessment of impact `supply-demand`, and policies. (author) figs., tabs., refs.

  1. A framework for health-related nanomaterial grouping.

    Science.gov (United States)

    Gkika, D A; Nolan, J W; Vansant, E F; Vordos, N; Kontogoulidou, C; Mitropoulos, A Ch; Cool, P; Braet, J

    2017-06-01

    Nanotechnology has been in the limelight since its emergence and its products affect everyday lives. Nanomaterials are characterized by features such as size and shape, thus rendering their possible number essentially unlimited, which in turn makes them difficult to study and categorize regarding possible dangers. This work suggests that grouping could allow studying them with limited testing efforts without endangering safety. Initially, the materials are identified and grouped according to their applications in health/medicine, as well as on their environmentally-friendly potential. The materials are then categorized using various toxicity classification methods to identify those with highest risks and group them with others that demonstrate similar behavior. The materials studied show promising uses in diagnostics, drug delivery, biosensors, water purification, oil spill cleaning, emission control and other fields. The toxicity risk assessment shows that the majority pose little to moderate risk, however there are certain materials that can be extremely hazardous or even cause death under specific circumstances. A risk mitigation plan was also developed. Nanomaterials applications, including drug delivery, cancer treatment, waste treatment, solar energy generation etc. can be very beneficiary, but at the same time, these materials can be extremely harmful or even cause death, thus making the need to prioritize research on high risk materials crucial. A clear regulatory framework that addresses both benefits and risks and communicates that information effectively should play an important part in European and worldwide efforts. The risk analysis validated the impression that there is limited research on nanomaterial toxicity risks, which calls for a more organized approach. The framework outlined in this work can be utilized by researchers as well as government bodies, in order to form regulatory policies and adopt a universally accepted labeling system. This

  2. A multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans

    Science.gov (United States)

    Jung, Sang-Kyu; Qu, Xiaolei; Aleman-Meza, Boanerges; Wang, Tianxiao; Riepe, Celeste; Liu, Zheng; Li, Qilin; Zhong, Weiwei

    2015-01-01

    The booming nanotech industry has raised public concerns about the environmental health and safety impact of engineered nanomaterials (ENMs). High-throughput assays are needed to obtain toxicity data for the rapidly increasing number of ENMs. Here we present a suite of high-throughput methods to study nanotoxicity in intact animals using Caenorhabditis elegans as a model. At the population level, our system measures food consumption of thousands of animals to evaluate population fitness. At the organism level, our automated system analyzes hundreds of individual animals for body length, locomotion speed, and lifespan. To demonstrate the utility of our system, we applied this technology to test the toxicity of 20 nanomaterials under four concentrations. Only fullerene nanoparticles (nC60), fullerol, TiO2, and CeO2 showed little or no toxicity. Various degrees of toxicity were detected from different forms of carbon nanotubes, graphene, carbon black, Ag, and fumed SiO2 nanoparticles. Aminofullerene and UV irradiated nC60 also showed small but significant toxicity. We further investigated the effects of nanomaterial size, shape, surface chemistry, and exposure conditions on toxicity. Our data are publicly available at the open-access nanotoxicity database www.QuantWorm.org/nano. PMID:25611253

  3. Recent applications of nanomaterials in capillary electrophoresis.

    Science.gov (United States)

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ali Mostofizadeh

    2011-01-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. Carbon nanomaterials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional carbon nanomaterials (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nanomaterials.

  5. Environmental fate and behaviour of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Skjolding, Lars Michael; Hansen, Steffen Foss

    In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified.......In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified....

  6. Nanomaterials for practical functional uses

    International Nuclear Information System (INIS)

    Lines, M.G.

    2008-01-01

    The term nanotechnology, which enjoys wide public use, is a concept that covers a wide range of developments in the field of nanoscale electronic components, along with its decades-old application in nanocarbon-black particles or silicates manufactured using the sol-gel process. When we refer to nanotechnology today, the term is limited to dealing with particles or assemblies whose dimensions range in size from a few nanometres up to around 100 nm. Intensive development work is now being carried out in new fields in many industrial and university research facilities, with the help of nanoscale particles or subassemblies. Along with the already familiar items, this applications-oriented research has covered such new developments as carbon nanotubes or electronic circuits. All materials are composed of grains, which consist of many atoms. Grains of conventional materials vary in size from tens of microns to one or more millimetres. Nanomaterials are no longer merely a laboratory curiosity and have now reached the stage of commercialization being lead by activity, often government supported, in the USA, UK, Japan, Singapore, Malaysia, Taiwan, Korea, Germany and in recent years China and Australia. This is the opening of a whole new science in some respects, and the usefulness to our everyday lives will become increasingly apparent. The potential of nanominerals, as just one sector of nanomaterials technology have some very real and useful outcomes: ·Production of materials and products with new properties. ·Contribution to solutions of environmental problems. ·Improvement of existing technologies and development of new applications. ·Optimisation of primary conditions for practical applications. These materials are revolutionizing the functionality of material systems. Due to the materials very small size, they have some remarkable, and in some cases, novel properties. Significant enhancement of optical, mechanical, electrical, structural and magnetic properties

  7. Electrochemical properties of polyaniline-modified sodium vanadate nanomaterials

    International Nuclear Information System (INIS)

    Reddy Channu, V.S.; Holze, Rudolf; Yeo, In-Hyeong; Mho, Sun-il; Kalluru, Rajamohan R.

    2011-01-01

    Sodium vanadate nanomaterials were synthesized at different pH-values of a sodium hydroxide solution of vanadium pentoxide. Polyaniline-modified sodium vanadate nanomaterials were prepared at room temperature and at 3 C by a chemical polymerization method. The crystal structure and phase purity of the samples have been examined by powder XRD. The samples were identified as HNaV 6 O 16 .4H 2 O and Na 1.1 V 3 O 7.9 . The electrochemical measurements show that polyaniline-modified sodium vanadate hydrated nanomaterials provide higher current density than the sodium vanadate nanomaterials. (orig.)

  8. Government, utilities, industry and universities: partners for nuclear development in Canada and abroad

    International Nuclear Information System (INIS)

    Hurst, D.G.; Woolston, J.E.

    1971-09-01

    In Canada, eleven power reactors installed or committed at four sites will provide 5 520 MW(e) for an investment of $1 800 million. Uranium production during the decade 1958-1967 totalled 79 700 tonnes U 3 O 8 worth $1 621 million. For nuclear research, development and control, the federal government employs about 6 000 people and spends about $80 million/year which includes the cost of operating three major research reactors (> 30 MW each). Aggregate commercial isotope production has reached 14 megacuries, and Canada has about 3 000 licensed users. Three power and two research reactors of Canadian design are or will be installed in developing countries overseas. Legislation in 1946 made atomic energy a federal responsibility and established an Atomic Energy Control Board. The Board's regulations, which deal primarily with health, safety and security, are administered with the co-operation of appropriate departments of the federal and provincial governments. Large-scale nuclear research began in 1941 and continued under the National Research Council until 1952 when the federal government created a public corporation, Atomic Energy of Canada Limited, to take over both research and the exploitation of atomic energy. Another public corporation, Eldorado Nuclear Limited, conducts research and development on the processing of uranium and operates Canada's only uranium refinery, but prospecting and mining is undertaken largely by private companies. The publicly owned electrical utilities of Ontario and Quebec operate nuclear power stations and participate, with governments, in their financing. Private industry undertakes extensive development and manufacturing, mainly under contract to Atomic Energy of Canada Limited and the utilities, and industry has formed its own Canadian Nuclear Association. Canadian universities undertake nuclear research, and receive significant government support; one has operated a research reactor since 1959. Canada's nuclear program is

  9. Graphene-Based Nanomaterials as Heterogeneous Acid Catalysts: A Comprehensive Perspective

    Directory of Open Access Journals (Sweden)

    Bhaskar Garg

    2014-09-01

    Full Text Available Acid catalysis is quite prevalent and probably one of the most routine operations in both industrial processes and research laboratories worldwide. Recently, “graphene”, a two dimensional single-layer carbon sheet with hexagonal packed lattice structure, imitative of nanomaterials, has shown great potential as alternative and eco-friendly solid carbocatalyst for a variety of acid-catalyzed reactions. Owing to their exceptional physical, chemical, and mechanical properties, graphene-based nanomaterials (G-NMs offer highly stable Brønsted acidic sites, high mass transfer, relatively large surface areas, water tolerant character, and convenient recoverability as well as recyclability, whilst retaining high activity in acid-catalyzed chemical reactions. This comprehensive review focuses on the chemistry of G-NMs, including their synthesis, characterization, properties, functionalization, and up-to-date applications in heterogeneous acid catalysis. In line with this, in certain instances readers may find herein some criticisms that should be taken as constructive and would be of value in understanding the scope and limitations of current approaches utilizing graphene and its derivatives for the same.

  10. Transformation and distribution processes governing the fate and behaviour of nanomaterials in the environment: an overview

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Hartmann, Nanna B.; Baun, Anders

    2015-01-01

    assessment. Chemical fate modelling is one approach to fill this gap within a short time frame. To ensure the reliability of predicted environmental concentrations informed choices are needed during model formulation and development. A major knowledge gap, hampering the further development of such model...... present in the environment. Specific nanomaterials are used as case studies to illustrate these processes. Key environmental processes are identified and ranked and key knowledge gaps are identified, feeding into the longer-term goal of improving the existing models for predicted environmental...

  11. The potential of protein-nanomaterial interaction for advanced drug delivery.

    Science.gov (United States)

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Consumer cooperatives as an alternative form of governance: the case of the broadband industry

    NARCIS (Netherlands)

    Sadowski, B.M.

    2017-01-01

    With a growing number of consumer cooperatives in non-agrarian industries such as energy and broadband, there is a need to better understand their emergence as a viable form of governance. In this context, the paper uses Mikami’s (2010) model on consumer cooperatives to explain their emergence as a

  13. Exploring the possibilities and limitations of a nanomaterials genome.

    Science.gov (United States)

    Qian, Chenxi; Siler, Todd; Ozin, Geoffrey A

    2015-01-07

    What are we going to do with the cornucopia of nanomaterials appearing in the open and patent literature, every day? Imagine the benefits of an intelligent and convenient means of categorizing, organizing, sifting, sorting, connecting, and utilizing this information in scientifically and technologically innovative ways by building a Nanomaterials Genome founded upon an all-purpose Periodic Table of Nanomaterials. In this Concept article, inspired by work on the Human Genome project, which began in 1989 together with motivation from the recent emergence of the Materials Genome project initiated in 2011 and the Nanoinformatics Roadmap 2020 instigated in 2010, we envision the development of a Nanomaterials Genome (NMG) database with the most advanced data-mining tools that leverage inference engines to help connect and interpret patterns of nanomaterials information. It will be equipped with state-of-the-art visualization techniques that rapidly organize and picture, categorize and interrelate the inherited behavior of complex nanomatter from the information programmed in its constituent nanomaterials building blocks. A Nanomaterials Genome Initiative (NMGI) of the type imagined herein has the potential to serve the global nanoscience community with an opportunity to speed up the development continuum of nanomaterials through the innovation process steps of discovery, structure determination and property optimization, functionality elucidation, system design and integration, certification and manufacturing to deployment in technologies that apply these versatile nanomaterials in environmentally responsible ways. The possibilities and limitations of this concept are critically evaluated in this article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Can Control Banding be Useful for the Safe Handling of Nanomaterials? A Systematic Review

    Science.gov (United States)

    Eastlake, Adrienne; Zumwalde, Ralph; Geraci, Charles

    2016-01-01

    studies by comparing the recommended exposure controls using CB to existing exposure controls previously recommended by an industrial hygienist. It was determined that the selection of exposure controls using CB were consistent with those recommended by an industrial hygienist for 19 out of 32 (59.4%) job activities. A higher level of exposure control was recommended for nine out of 32 (28.1%) job activities using CB while four out of 32 (12.5%) job activities had in place exposure controls that were more stringent than those recommended using CB. After evaluation using GRADE, evidence indicated that the use of CB Nanotool can recommend exposure controls for many ENM job activities that would be consistent with those recommended by an experienced industrial hygienist. Conclusion The use of CB for reducing exposures to ENMs has the potential to be an effective risk management strategy when information is limited on the health risk to the nanomaterial and/or there is an absence of an occupational exposure limit (OEL). However, there remains a lack of evidence to conclude that the use of CB can provide adequate exposure control in all work environments. Additional validation work is needed to provide more data to support the use of CB for the safe handling of ENMs. PMID:27471426

  15. Can control banding be useful for the safe handling of nanomaterials? A systematic review

    International Nuclear Information System (INIS)

    Eastlake, Adrienne; Zumwalde, Ralph; Geraci, Charles

    2016-01-01

    exposure controls using CB to existing exposure controls previously recommended by an industrial hygienist. It was determined that the selection of exposure controls using CB were consistent with those recommended by an industrial hygienist for 19 out of 32 (59.4 %) job activities. A higher level of exposure control was recommended for nine out of 32 (28.1 %) job activities using CB, while four out of 32 (12.5 %) job activities had in-place exposure controls that were more stringent than those recommended using CB. After evaluation using GRADE, evidence indicated that the use of CB Nanotool can recommend exposure controls for many ENM job activities that would be consistent with those recommended by an experienced industrial hygienist. The use of CB for reducing exposures to ENMs has the potential to be an effective risk management strategy when information is limited on the health risk to the nanomaterial and/or there is an absence of an occupational exposure limit. However, there remains a lack of evidence to conclude that the use of CB can provide adequate exposure control in all work environments. Additional validation work is needed to provide more data to support the use of CB for the safe handling of ENMs.

  16. Can control banding be useful for the safe handling of nanomaterials? A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Eastlake, Adrienne, E-mail: aeastlake@cdc.gov [National Institute for Occupational Safety and Health, Nanotechnology Research Center (United States); Zumwalde, Ralph [RCS Corporation (United States); Geraci, Charles [National Institute for Occupational Safety and Health, Nanotechnology Research Center (United States)

    2016-06-15

    exposure controls using CB to existing exposure controls previously recommended by an industrial hygienist. It was determined that the selection of exposure controls using CB were consistent with those recommended by an industrial hygienist for 19 out of 32 (59.4 %) job activities. A higher level of exposure control was recommended for nine out of 32 (28.1 %) job activities using CB, while four out of 32 (12.5 %) job activities had in-place exposure controls that were more stringent than those recommended using CB. After evaluation using GRADE, evidence indicated that the use of CB Nanotool can recommend exposure controls for many ENM job activities that would be consistent with those recommended by an experienced industrial hygienist. The use of CB for reducing exposures to ENMs has the potential to be an effective risk management strategy when information is limited on the health risk to the nanomaterial and/or there is an absence of an occupational exposure limit. However, there remains a lack of evidence to conclude that the use of CB can provide adequate exposure control in all work environments. Additional validation work is needed to provide more data to support the use of CB for the safe handling of ENMs.

  17. The industrial relevance of nanotechnology and nanomaterial

    International Nuclear Information System (INIS)

    Porcari, Andrea; Mantovani, Elvio

    2015-01-01

    The article consists of four parts: a brief summary of the EU policy for nanotechnology and for Key Enabling Technologies; a general information framework, including definitions, fields of application, on production and market data; a general examination of the actors and of the application areas in Italy; conclusions. Nanotechnology, along with five other Key Enabling Technologies (Kets), have been identified as the engine for industrial growth in Europe within the Horizon 2020 program and other EU initiatives. These technologies promise to have a growing impact on materials, tools and processes through a great variety of industries important to the Italian economy and the European one. Nanotechnology is still largely a phase of research and development and other challenges are still to be solved for their full value. The Innovation and Research Manager are among those challenges, and are critical to their success [it

  18. Antibacterial properties and toxicity from metallic nanomaterials

    Directory of Open Access Journals (Sweden)

    Vimbela GV

    2017-05-01

    Full Text Available Gina V Vimbela,1,* Sang M Ngo,2,* Carolyn Fraze,3 Lei Yang,4,5 David A Stout5–7 1Department of Chemical Engineering, 2Department of Electrical Engineering, California State University, Long Beach, CA, 3Brigham Young University Idaho, Rexburg, ID, USA; 4Department of Orthopaedics, Orthopaedic Institute, The First Affiliated Hospital, 5International Research Center for Translational Orthopaedics (IRCTO, Soochow University, Suzhou, Jiangsu, People’s Republic of China; 6Department of Mechanical and Aerospace Engineering, 7Department of Biomedical Engineering, California State University, Long Beach, CA, USA *These authors contributed equally to this work Abstract: The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. Keywords

  19. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Duleep, K. G. [ICF International; Upreti, Girish [ORNL

    2011-06-01

    Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

  20. Black Titanium Dioxide Nanomaterials in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Xiaodong Yan

    2017-01-01

    Full Text Available Titanium dioxide (TiO2 nanomaterials are widely considered to be state-of-the-art photocatalysts for environmental protection and energy conversion. However, the low photocatalytic efficiency caused by large bandgap and rapid recombination of photo-excited electrons and holes is a challenging issue that needs to be settled for their practical applications. Structure engineering has been demonstrated to be a highly promising approach to engineer the optical and electronic properties of the existing materials or even endow them with unexpected properties. Surface structure engineering has witnessed the breakthrough in increasing the photocatalytic efficiency of TiO2 nanomaterials by creating a defect-rich or amorphous surface layer with black color and extension of optical absorption to the whole visible spectrum, along with markedly enhanced photocatalytic activities. In this review, the recent progress in the development of black TiO2 nanomaterials is reviewed to gain a better understanding of the structure-property relationship with the consideration of preparation methods and to project new insights into the future development of black TiO2 nanomaterials in photocatalytic applications.

  1. NANOMATERIALS, NANOTECHNOLOGY: APPLICATIONS, CONSUMER PRODUCTS, AND BENEFITS

    Science.gov (United States)

    Nanotechnology is a platform technology that is finding more and more applications daily. Today over 600 consumer products are available globally that utilize nanomaterials. This chapter explores the use of nanomaterials and nanotechnology in three areas, namely Medicine, Environ...

  2. Industry, university and government partnership to address research, education and human resource challenges for nuclear industry in Canada

    International Nuclear Information System (INIS)

    Mathur, R.M.

    2004-01-01

    professors from all supported universities and which can be completed through part-time studies; Create a pool of nuclear expertise in universities that can be accessed by public and governments for impartial and trustworthy advice. The Canadian Nuclear Safety Commission (CNSC), the Canadian Regulator, and Candu Owners Group are also participating in UNENE activities. Nuclear industries have linked with a select group of Canadian universities agreeable to committing to nuclear research and education and seeking investment from governments to match cash and in-kind contributions from industry. The University Network of Excellence in Nuclear Engineering (UNENE) was thus created involving universities of McMaster, Queen's, Toronto, Waterloo, Western Ontario and the new University of Ontario Institute of Technology. These universities are recipients of funds for setting up NSERC-UNENE Industry Research Chairs in Nuclear Engineering. Also, Ecole Polytechnique and the University of New Brunswick, supported respectively by Hydro Quebec and New Brunswick Power, and Royal Military College - operating a joint graduate program with Queen's University, are participants in UNENE. The following Industrial Research Chairs are either in place or approved to start within the next few months. In each case there is a provision for hiring a junior Research Chair. - Dr. John Luxat, Nuclear Safety Analysis and Thermal Hydraulics, McMaster University; - Dr. Rick Holt, Advanced Nuclear Materials, Queen's University; - Dr. Roger Newman, Nano-Engineering of Alloys for Nuclear Power Systems, University of Toronto; - Dr. Mahesh Pandey, Risk-Based Life Cycle Management of Engineering Systems, University of Waterloo; - Dr. Jin Jiang, Control, Instrumentation and Electrical Systems of Nuclear Power Plants, University of Western Ontario. Progress is being made to find a candidate and define a research program for an Industrial Research Chair:- Knowledge Management, University of Ontario Institute of

  3. The applicability of chemical alternatives assessment for engineered nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case......, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials both as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. This article is protected...... for alternatives assessment approaches as they can be considered both emerging “chemicals” of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging and critical elements...

  4. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  5. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  6. Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance

    NARCIS (Netherlands)

    Subramanian, V.; Semenzin, E.; Hristozov, D.; Zabeo, A.; Malsch, I.; McAlea, E.; Murphy, F.; Mullins, M.; Harmelen, T. van; Ligthart, T.; Linkov, I.; Marcomini, A.

    2016-01-01

    The significant uncertainties associated with the (eco)toxicological risks of engineered nanomaterials pose challenges to the development of nano-enabled products toward greatest possible societal benefit. This paper argues for the use of risk governance approaches to manage nanotechnology risks and

  7. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  8. Ningxia update: Government policy and measures for promoting a sustainable wine industry

    Directory of Open Access Journals (Sweden)

    Hao Linhai

    2016-01-01

    Full Text Available The rapidly growing wine industry in the Ningxia region of north-central China had 35,300 ha of wine grapes and 184 registered wineries as of mid-2016. Ningxia's mission is to develop a sustainable wine industry based on small-scale producers and high-quality products in order to distinguish itself from other key regions in China. Government measures over the last two years have included diversifying grape varieties, encouraging vineyard mechanization, awarding cash to medalists in renown wine competitions, subsidizing international wine cooperation and education programs, and promoting local producers through Ningxia wine centers in major Chinese cities. These efforts have significantly improved wine quality, lowered costs and raised Ningxia's image as a region. The good reputation of Ningxia wine is now spreading from the trade to general consumers.

  9. Nanomaterials and Autophagy: New Insights in Cancer Treatment

    International Nuclear Information System (INIS)

    Panzarini, Elisa; Inguscio, Valentina; Tenuzzo, Bernardetta Anna; Carata, Elisabetta; Dini, Luciana

    2013-01-01

    Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is involved in several diseases. Recent evidences support a relationship between several classes of nanomaterials and autophagy perturbation, both induction and blockade, in many biological models. In fact, the autophagic mechanism represents a common cellular response to nanomaterials. On the other hand, the dynamic nature of autophagy in cancer biology is an intriguing approach for cancer therapeutics, since during tumour development and therapy, autophagy has been reported to trigger both an early cell survival and a late cell death. The use of nanomaterials in cancer treatment to deliver chemotherapeutic drugs and target tumours is well known. Recently, autophagy modulation mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as adjuvant in chemotherapy or in the development of cancer vaccines or as a potential anti-cancer agent. Herein, we summarize the effects of nanomaterials on autophagic processes in cancer, also considering the therapeutic outcome of synergism between nanomaterials and autophagy to improve existing cancer therapies

  10. The emperor and the cowboys: The role of government policy and industry in the adoption of domestic solar microgeneration systems

    International Nuclear Information System (INIS)

    Simpson, Genevieve; Clifton, Julian

    2015-01-01

    While domestic solar microgeneration installations have increased in popularity, there is potential for their adoption to slow as financial incentives are reduced or phased out. This study uses a postal survey of 362 solar adopters in Western Australia to identify areas of policy improvement for the adoption of domestic solar systems. Research included quantitative analysis of Likert-type statements and analysis of qualitative comments by survey respondents, including testing the validity of inferences in comments using publicly-available data. While the vast majority of respondents were satisfied with their systems, satisfaction rates were lower for consumers not receiving the premium feed-in tariff and where information on systems was not self-sourced. Consumers considered governments to be untrustworthy and information provided by industry was perceived as inconsistent and inaccessible. Consumers felt they did not receive a fair price for electricity exported to the network and feared that changes in utility prices could render their investment uneconomical. Concerns regarding members of industry may be allayed by certification schemes, but these remain voluntary and limited in effectiveness. These findings underscore the need for increased government activity in providing independent information to consumers and regulating the solar industry, including commitments to long term policies and certification schemes. -- Highlights: •A postal survey identified issues with solar microgeneration adoption policies. •Consumers not receiving subsidies had lower overall satisfaction with installations. •Government lacked stability in policy application and transparency in tariff pricing. •Evidence indicated solar industry members are seen as potentially untrustworthy. •Governments should improve regulation of industry and provide reliable information

  11. Toward cellulose nanomaterial commercialization: knowledge gap analysis for safety data sheets according to the globally harmonized system

    Science.gov (United States)

    Jo Anne Shatkin; Kimberly J. Ong; James D. Ede; Theodore H. Wegner; Michael Goergen

    2016-01-01

    Commercialization of cellulose nanomaterials (CNs) is rapidly advancing, to the benefit of many end-use product sectors, and providing information about the safe manufacturing and handling for CNs is a priority. Safety Data Sheets (SDS) are required for industrially produced materials to communicate information on their potential health, fire, reactivity, and...

  12. Occupational exposure limits for nanomaterials: state of the art

    International Nuclear Information System (INIS)

    Schulte, P. A.; Murashov, V.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.

    2010-01-01

    Assessing the need for and effectiveness of controlling airborne exposures to engineered nanomaterials in the workplace is difficult in the absence of occupational exposure limits (OELs). At present, there are practically no OELs specific to nanomaterials that have been adopted or promulgated by authoritative standards and guidance organizations. The vast heterogeneity of nanomaterials limits the number of specific OELs that are likely to be developed in the near future, but OELs could be developed more expeditiously for nanomaterials by applying dose-response data generated from animal studies for specific nanoparticles across categories of nanomaterials with similar properties and modes of action. This article reviews the history, context, and approaches for developing OELs for particles in general and nanoparticles in particular. Examples of approaches for developing OELs for titanium dioxide and carbon nanotubes are presented and interim OELs from various organizations for some nanomaterials are discussed. When adequate dose-response data are available in animals or humans, quantitative risk assessment methods can provide estimates of adverse health risk of nanomaterials in workers and, in conjunction with workplace exposure and control data, provide a basis for determining appropriate exposure limits. In the absence of adequate quantitative data, qualitative approaches to hazard assessment, exposure control, and safe work practices are prudent measures to reduce hazards in workers.

  13. Granular biodurable nanomaterials: No convincing evidence for systemic toxicity.

    Science.gov (United States)

    Moreno-Horn, Marcus; Gebel, Thomas

    2014-11-01

    Nanomaterials are usually defined by primary particle diameters ranging from 1 to 100 nm. The scope of this review is an evaluation of experimental animal studies dealing with the systemic levels and putative systemic effects induced by nanoparticles which can be characterized as being granular biodurable particles without known specific toxicity (GBP). Relevant examples of such materials comprise nanosized titanium dioxide (TiO2) and carbon black. The question was raised whether GBP nanomaterials systemically accumulate and may possess a relevant systemic toxicity. With few exceptions, the 56 publications reviewed were not performed using established standard protocols, for example, OECD guidelines but used non-standard study designs. The studies including kinetic investigations indicated that GBP nanomaterials were absorbed and systemically distributed to rather low portions only. There was no valid indication that GPB nanomaterials possess novel toxicological hazard properties. In addition, no convincing evidence for a relevant specific systemic toxicity of GBP nanomaterials could be identified. The minority of the papers reviewed (15/56) investigated both nanosized and microsized GBP materials in parallel. A relevant different translocation of GBP nanomaterials in contrast to GBP micromaterials was not observed in these studies. There was no evidence that GPB nanomaterials possess toxicological properties other than their micromaterial counterparts.

  14. Occupational exposure limits for nanomaterials: state of the art

    Science.gov (United States)

    Schulte, P. A.; Murashov, V.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.

    2010-08-01

    Assessing the need for and effectiveness of controlling airborne exposures to engineered nanomaterials in the workplace is difficult in the absence of occupational exposure limits (OELs). At present, there are practically no OELs specific to nanomaterials that have been adopted or promulgated by authoritative standards and guidance organizations. The vast heterogeneity of nanomaterials limits the number of specific OELs that are likely to be developed in the near future, but OELs could be developed more expeditiously for nanomaterials by applying dose-response data generated from animal studies for specific nanoparticles across categories of nanomaterials with similar properties and modes of action. This article reviews the history, context, and approaches for developing OELs for particles in general and nanoparticles in particular. Examples of approaches for developing OELs for titanium dioxide and carbon nanotubes are presented and interim OELs from various organizations for some nanomaterials are discussed. When adequate dose-response data are available in animals or humans, quantitative risk assessment methods can provide estimates of adverse health risk of nanomaterials in workers and, in conjunction with workplace exposure and control data, provide a basis for determining appropriate exposure limits. In the absence of adequate quantitative data, qualitative approaches to hazard assessment, exposure control, and safe work practices are prudent measures to reduce hazards in workers.

  15. Governance of innovative cleantech retrofitting in the shipping industry?

    DEFF Research Database (Denmark)

    Hermann, Roberto Rivas; Smink, Carla; Kerndrup, Søren

    Air pollution from maritime transportation has become an important public health and environmental concern. As result, new international regulations seek to reduce the pollutants issuing from marine fuels combustion. Marine cleaner technology has been regarded as the key solution to comply...... with regulations and reduce operation costs. However, definitions of maritime cleantech differ and range from end-of-pipe pollution control equipment, more efficient engines, improved hull-design and alternate propulsion fuels (LNG, methanol). Different constellations of actors seem to follow different cleantech...... trajectories. It is therefore important to develop new forms of governance in order to create innovations which are comparable with the state of art in other industries and new ways of building networks and partnerships. The paper aims to improve the understanding of cleaner technology as innovative...

  16. A functional assay-based strategy for nanomaterial risk forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, Christine Ogilvie, E-mail: christine.hendren@duke.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Lowry, Gregory V., E-mail: glowry@andrew.cmu.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Plant and Soil Sciences, University of Kentucky, Agricultural Science Center, Lexington, KY 40546 (United States); Wiesner, Mark R., E-mail: wiesner@duke.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall PO Box 90287, Durham, NC 27708 (United States)

    2015-12-01

    The study of nanomaterial impacts on environment, health and safety (nanoEHS) has been largely predicated on the assumption that exposure and hazard can be predicted from physical–chemical properties of nanomaterials. This approach is rooted in the view that nanoöbjects essentially resemble chemicals with additional particle-based attributes that must be included among their intrinsic physical–chemical descriptors. With the exception of the trivial case of nanomaterials made from toxic or highly reactive materials, this approach has yielded few actionable guidelines for predicting nanomaterial risk. This article addresses inherent problems in structuring a nanoEHS research strategy based on the goal of predicting outcomes directly from nanomaterial properties, and proposes a framework for organizing data and designing integrated experiments based on functional assays (FAs). FAs are intermediary, semi-empirical measures of processes or functions within a specified system that bridge the gap between nanomaterial properties and potential outcomes in complex systems. The three components of a functional assay are standardized protocols for parameter determination and reporting, a theoretical context for parameter application and reference systems. We propose the identification and adoption of reference systems where FAs may be applied to provide parameter estimates for environmental fate and effects models, as well as benchmarks for comparing the results of FAs and experiments conducted in more complex and varied systems. Surface affinity and dissolution rate are identified as two critical FAs for characterizing nanomaterial behavior in a variety of important systems. The use of these FAs to predict bioaccumulation and toxicity for initial and aged nanomaterials is illustrated for the case of silver nanoparticles and Caenorhabditis elegans. - Highlights: • Approaches to predict risk directly from nanomaterial (NM) properties are problematic. • We propose

  17. A functional assay-based strategy for nanomaterial risk forecasting

    International Nuclear Information System (INIS)

    Hendren, Christine Ogilvie; Lowry, Gregory V.; Unrine, Jason M.; Wiesner, Mark R.

    2015-01-01

    The study of nanomaterial impacts on environment, health and safety (nanoEHS) has been largely predicated on the assumption that exposure and hazard can be predicted from physical–chemical properties of nanomaterials. This approach is rooted in the view that nanoöbjects essentially resemble chemicals with additional particle-based attributes that must be included among their intrinsic physical–chemical descriptors. With the exception of the trivial case of nanomaterials made from toxic or highly reactive materials, this approach has yielded few actionable guidelines for predicting nanomaterial risk. This article addresses inherent problems in structuring a nanoEHS research strategy based on the goal of predicting outcomes directly from nanomaterial properties, and proposes a framework for organizing data and designing integrated experiments based on functional assays (FAs). FAs are intermediary, semi-empirical measures of processes or functions within a specified system that bridge the gap between nanomaterial properties and potential outcomes in complex systems. The three components of a functional assay are standardized protocols for parameter determination and reporting, a theoretical context for parameter application and reference systems. We propose the identification and adoption of reference systems where FAs may be applied to provide parameter estimates for environmental fate and effects models, as well as benchmarks for comparing the results of FAs and experiments conducted in more complex and varied systems. Surface affinity and dissolution rate are identified as two critical FAs for characterizing nanomaterial behavior in a variety of important systems. The use of these FAs to predict bioaccumulation and toxicity for initial and aged nanomaterials is illustrated for the case of silver nanoparticles and Caenorhabditis elegans. - Highlights: • Approaches to predict risk directly from nanomaterial (NM) properties are problematic. • We propose

  18. The potential use of silica sand as nanomaterials for mortar

    Science.gov (United States)

    Setiati, N. Retno

    2017-11-01

    The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.

  19. Comparative evaluation of methods to quantify dissolution of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna B.; Kruse, Susanne; Baun, Anders

    2015-01-01

    Effects and behaviour of nanomaterials in the environment depends on the materials' specific physical and chemical properties and for certain nanomaterials (e.g., Ag, ZnO and CuO) aqueous solubility is of outmost importance. The solubility of metals salts is normally described as a maximum...... dissolved concentration or by the solubility constant (Ksp). For nanomaterials it is essential to also assess solubility kinetics as nanomaterials will often not dissolve instantaneously upon contact with artificial aqueous media or natural waters. Dissolution kinetics will thereby influence their short...... and long-term environmental fate as well as laboratory test results. This highlights the need to evaluate and improve the reliability of methods applied to assess the solubility kinetics of nanomaterials. Based on existing OECD guidelines and guidance documents on aqueous dissolution of metals and metal...

  20. Engineered Nanomaterials, Sexy New Technology and Potential Hazards

    International Nuclear Information System (INIS)

    Beaulieu, R.A.

    2009-01-01

    Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lung deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls

  1. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  2. Synthesis of camptothecin-loaded gold nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhimin [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu Zhiguo, E-mail: zguoliu@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Zu Yuangang, E-mail: nefunano@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  3. Nanomaterials in the environment

    Science.gov (United States)

    Mrowiec, Bozena

    2017-11-01

    This paper considers engineered nanomaterials, deliberately engineered and manufactured to have certain properties and have at least one primary dimension of less than 100 nm. Materials produced with the aid of nanotechnologies are used in many areas of everyday life. Researches with nanomaterials have shown that the physiochemical characteristic of particles can influence their effects in biological systems. The field of nanotechnology has created risk for environment and human health. The toxicity of nanoparticles may be affected by different physicochemical properties, including size, shape, chemistry, surface properties, agglomeration, solubility, and charge, as well as effects from attached functional groups and crystalline structure. The greater surface-area-to-mass ratio of nanoparticles makes them generally more reactive than their macro-sized counterparts. Exposure to nanomaterials can occur at different life-cycle stages of the materials and/or products. The knowledge gaps limiting the understanding of the human and environment hazard and risk of nanotechnology should be explained by the scientific investigations for help to protect human and environmental health and to ensure the benefits of the nanotechnology products without excessive risk of this new technology. In this review are presented the proposal measurement methods for NMs characteristic.

  4. Nanomaterials in the field of design ergonomics: present status.

    Science.gov (United States)

    Chowdhury, Anirban; Sanjog, J; Reddy, Swathi Matta; Karmakar, Sougata

    2012-01-01

    Application of nanotechnology and nanomaterials is not new in the field of design, but a recent trend of extensive use of nanomaterials in product and/or workplace design is drawing attention of design researchers all over the world. In the present paper, an attempt has been made to describe the diverse use of nanomaterials in product and workplace design with special emphasis on ergonomics (occupational health and safety; thermo-regulation and work efficiency, cognitive interface design; maintenance of workplace, etc.) to popularise the new discipline 'nanoergonomics' among designers, design users and design researchers. Nanoergonomics for sustainable product and workplace design by minimising occupational health risks has been felt by the authors to be an emerging research area in coming years. Use of nanomaterials in the field of design ergonomics is less explored till date. In the present review, an attempt has been made to extend general awareness among ergonomists/designers about applications of nanomaterials/nanotechnology in the field of design ergonomics and about health implications of nanomaterials during their use.

  5. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  6. Generating Electricity from Water through Carbon Nanomaterials.

    Science.gov (United States)

    Xu, Yifan; Chen, Peining; Peng, Huisheng

    2018-01-09

    Over the past ten years, electricity generation from water in carbon-based materials has aroused increasing interest. Water-induced mechanical-to-electrical conversion has been discovered in carbon nanomaterials, including carbon nanotubes and graphene, through the interaction with flowing water as well as moisture. In this Concept article, we focus on the basic principles of electric energy harvesting from flowing water through carbon nanomaterials, and summarize the material modification and structural design of these nanogenerators. The current challenges and potential applications of power conversion with carbon nanomaterials are finally highlighted. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization of nanomaterials with transmission electron microscopy

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-01

    The field of nanotechnology is about research and development on materials whose at least one dimension is in the range of 1 to 100 nanometers. In recent years, the research activity for developing nano-materials has grown exponentially owing to the fact that they offer better solutions to the challenges faced by various fields such as energy, food, and environment. In this paper, the importance of transmission electron microscopy (TEM) based techniques is demonstrated for investigating the properties of nano-materials. Specifically the nano-materials that are investigated in this report include gold nano-particles (Au-NPs), silver atom-clusters (Ag-ACs), tantalum single-atoms (Ta-SAs), carbon materials functionalized with iron cobalt (Fe-Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF-STEM), electron energy-loss spectroscopy (EELS), and BF-TEM electron tomography (ET). With the help presented of results in this report, it is proved herein that as many TEM techniques as available in a given instrument are essential for a comprehensive nano-scale analysis of nanomaterials.

  8. Organizing by covenant : the organization of transitional labor markets : paper IREC Conference 2004 'Governance issues in shifting industrial and employment relations' Utrecht, The Netherlands, August 26-28, 2004 : session potential and limits of national level socio-economic governance

    NARCIS (Netherlands)

    Korver, T.; Oeij, P.R.A.

    2004-01-01

    From 26-28 August 2004 in Utrecht the Industrial Relations in Europe Conference (IREC) was held on governance issues in shifting industrial and employment relations. As part of the session 'potential and limits of national level socio-economic governance' this paper about the organization of

  9. The OECD expert meeting on ecotoxicology and environmental fate--towards the development of improved OECD guidelines for the testing of nanomaterials.

    Science.gov (United States)

    Kühnel, Dana; Nickel, Carmen

    2014-02-15

    On behalf of the OECD Working Party on Manufactured Nanomaterials (WPMN) an expert meeting on ecotoxicology and environmental fate of nanomaterials (NMs) took place in January 2013 in Berlin. At this meeting experts from science, industry and regulatory bodies discussed the applicability of OECD test guidelines (TGs) for chemicals to nanomaterials. The objective was to discuss the current state of the relevant science and provide recommendations to the OECD WPMN on (1) the need for updating current OECD TGs and the need for developing new ones specific to nanomaterials; and (2) guidance needed for the appropriate and valid testing of environmental fate and ecotoxicity endpoints for NMs. Experts at the workshop agreed that the majority of the OECD TG for chemicals were generally applicable for the testing of NM, with the exception of TG 105 (water solubility) and 106 (adsorption-desorption). Additionally, the workshop also highlighted considerations when conducting OECD chemical TG on nanomaterials (e.g., sample preparation, dispersion, analysis, dosimetry and characterisation). These considerations will lead to the future development of proposals for new TG and guidance documents (GDs) to ensure that OECD TG give meaningful, repeatable, and accurate results when used for nanomaterials. This report provides a short overview of topics discussed during the meeting and the main outcomes. A more detailed report of the workshop will become available through the OECD, however, due to the urgency of having OECD TG relevant for nanomaterials, this brief report is being shared with the scientific community through this communication. Copyright © 2013. Published by Elsevier B.V.

  10. Technology S-curves in renewable energy alternatives: Analysis and implications for industry and government

    International Nuclear Information System (INIS)

    Schilling, Melissa A.; Esmundo, Melissa

    2009-01-01

    Plotting the performance of a technology against the money or effort invested in it most often yields an S-shaped curve: slow initial improvement, then accelerated improvement, then diminishing improvement. These S-curves can be used to gain insight into the relative payoff of investment in competing technologies, as well as providing some insight into when and why some technologies overtake others in the race for dominance. Analyzing renewable energies from such a technology S-curve perspective reveals some surprising and important implications for both government and industry. Using data on government R and D investment and technological improvement (in the form of cost reductions), we show that both wind energy and geothermal energy are poised to become more economical than fossil fuels within a relatively short time frame. The evidence further suggests that R and D for wind and geothermal technologies has been under-funded by national governments relative to funding for solar technologies, and government funding of fossil fuel technologies might be excessive given the diminishing performance of those technologies.

  11. Oil on the water: Government regulation of a carcinogen in the twentieth-century Lancashire cotton spinning industry.

    Science.gov (United States)

    Higgins, David; Tweedale, Geoffrey

    2010-01-01

    In the Lancashire cotton textile industry, mule spinners were prone to a chronic and sometimes fatal skin cancer (often affecting the groin). The disease had reached epidemic proportions by the 1920s, which necessitated action by the government, employers, and trade unions. In contrast to previous accounts, this article focuses on the government's reaction to mule spinners' cancer. Using official records in the National Archives, the slow introduction of health and safety measures by the government is explored in detail. Although obstructionism by the employers played a key role, one of the reasons for government inaction was the ambiguity of scientific research on engineering oils. On the other hand, prolonged scientific research suited a government policy that was framed around self regulation - a policy that had proved largely ineffective by the 1950s.

  12. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    NARCIS (Netherlands)

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-01-01

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in

  13. Chemical Sensing Applications of ZnO Nanomaterials

    Science.gov (United States)

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  14. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    Science.gov (United States)

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

    Science.gov (United States)

    Peng, Fei; Su, Yuanyuan; Zhong, Yiling; Fan, Chunhai; Lee, Shuit-Tong; He, Yao

    2014-02-18

    Silicon nanomaterials are an important class of nanomaterials with great potential for technologies including energy, catalysis, and biotechnology, because of their many unique properties, including biocompatibility, abundance, and unique electronic, optical, and mechanical properties, among others. Silicon nanomaterials are known to have little or no toxicity due to favorable biocompatibility of silicon, which is an important precondition for biological and biomedical applications. In addition, huge surface-to-volume ratios of silicon nanomaterials are responsible for their unique optical, mechanical, or electronic properties, which offer exciting opportunities for design of high-performance silicon-based functional nanoprobes, nanosensors, and nanoagents for biological analysis and detection and disease treatment. Moreover, silicon is the second most abundant element (after oxygen) on earth, providing plentiful and inexpensive resources for large-scale and low-cost preparation of silicon nanomaterials for practical applications. Because of these attractive traits, and in parallel with a growing interest in their design and synthesis, silicon nanomaterials are extensively investigated for wide-ranging applications, including energy, catalysis, optoelectronics, and biology. Among them, bioapplications of silicon nanomaterials are of particular interest. In the past decade, scientists have made an extensive effort to construct a silicon nanomaterials platform for various biological and biomedical applications, such as biosensors, bioimaging, and cancer treatment, as new and powerful tools for disease diagnosis and therapy. Nonetheless, there are few review articles covering these important and promising achievements to promote the awareness of development of silicon nanobiotechnology. In this Account, we summarize recent representative works to highlight the recent developments of silicon functional nanomaterials for a new, powerful platform for biological and

  16. NanoRisk - A Conceptual Decision Support Tool for Nanomaterials

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Baun, Anders; Alstrup Jensen, K.

    2011-01-01

    Only a few risk assessment methodologies and approaches are useful for assessing the risk for professional end-users, consumers and the environment. We have developed a generic framework (NanoRiskCat) that can be used by companies and risk assessors to categorize nanomaterials considering existing...... environmental, health and safety information and known uncertainties. In NanoRiskCat’s simplest form, the final evaluation outcome for a specific nanomaterial in a given application will be communicated in the form of a short title (e.g. TiO2 in sunscreen) describing the use of the nanomaterial. This short...... to the exposure and hazard potential are green , yellow corresponding to none, possible, expected and unknown, respectively. The exposure potential was evaluated based on 1) the location of the nanomaterial and 2) a judgment of the potential of nanomaterial exposure based on the description and explanation...

  17. Nanomaterial-based drug delivery carriers for cancer therapy

    CERN Document Server

    Feng, Tao

    2017-01-01

    This brief summarizes different types of organic and inorganic nanomaterials for drug delivery in cancer therapy. It highlights that precisely designed nanomaterials will be the next-generation therapeutic agents for cancer treatment.

  18. Nanomaterials Toxicity and Cell Death Modalities

    Directory of Open Access Journals (Sweden)

    Daniela De Stefano

    2012-01-01

    Full Text Available In the last decade, the nanotechnology advancement has developed a plethora of novel and intriguing nanomaterial application in many sectors, including research and medicine. However, many risks have been highlighted in their use, particularly related to their unexpected toxicity in vitro and in vivo experimental models. This paper proposes an overview concerning the cell death modalities induced by the major nanomaterials.

  19. Utah ITS/CVO business plan : using technology to maximize highway safety and improve government and industry productivity

    Science.gov (United States)

    1997-12-31

    This plan was produced to maximize highway safety and increase government and industry productivity through the application of Intelligent Transportation System/Commercial Vehicle Operations (ITS/CVO) technologies to support regulatory and enforcemen...

  20. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  1. The impact of the government policy on the Chinese electric gehicle industry and business strategy management : Case of FAW

    OpenAIRE

    Li, Zhe; Lu, Sun

    2011-01-01

    Background: The electric vehicle industry is an emerging industry worldwide. In China the development of the electric vehicle industry is rapid. The government policy is of great influence on the economy in the Chinese context. The Chinese electric vehicle company has to design the right business strategy to maintain and enhance its competitive advantages in order to respond to challenges. Aim: This study analyzes the five competitive forces of the Chinese electric vehicle industry and the ef...

  2. Government-industry-uUniversity and rResearch lLaboratories cCoordination for new product development: Session 2. Government research laboratory perspective

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1997-01-01

    This talk is the second in an expanded series of presentations on the Government-Industry-University and Research Laboratories Coordination for new product development, which is a timely and important public policy issue. Such interactions have become particularly timely in light of the present decline in funding for research and development (R ampersand D) in the nation''s budget and in the private sector. These interactions, at least in principle, provide a means to maximize benefits for the greater good of the nation by pooling the diminishing resources. National laboratories, which traditionally interacted closely with the universities in educational training, now are able to also participate closely with industry in joint R ampersand D thanks to a number of public laws legislated since the early 80s. A review of the experiences with such interactions at Argonne National Laboratory, which exemplifies the national laboratories, shows that, despite differences in their traditions and the missions, the national laboratory-industry-university triangle can work together

  3. Two dimensional nanomaterials for flexible supercapacitors.

    Science.gov (United States)

    Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi

    2014-05-21

    Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.

  4. Overview of Risk Management for Engineered Nanomaterials

    Science.gov (United States)

    Schulte, P. A.; Geraci, C. L.; Hodson, L. L.; Zumwalde, R. D.; Kuempel, E. D.; Murashov, V.; Martinez, K. F.; Heidel, D. S.

    2013-04-01

    Occupational exposure to engineered nanomaterials (ENMs) is considered a new and challenging occurrence. Preliminary information from laboratory studies indicates that workers exposed to some kinds of ENMs could be at risk of adverse health effects. To protect the nanomaterial workforce, a precautionary risk management approach is warranted and given the newness of ENMs and emergence of nanotechnology, a naturalistic view of risk management is useful. Employers have the primary responsibility for providing a safe and healthy workplace. This is achieved by identifying and managing risks which include recognition of hazards, assessing exposures, characterizing actual risk, and implementing measures to control those risks. Following traditional risk management models for nanomaterials is challenging because of uncertainties about the nature of hazards, issues in exposure assessment, questions about appropriate control methods, and lack of occupational exposure limits (OELs) or nano-specific regulations. In the absence of OELs specific for nanomaterials, a precautionary approach has been recommended in many countries. The precautionary approach entails minimizing exposures by using engineering controls and personal protective equipment (PPE). Generally, risk management utilizes the hierarchy of controls. Ideally, risk management for nanomaterials should be part of an enterprise-wide risk management program or system and this should include both risk control and a medical surveillance program that assesses the frequency of adverse effects among groups of workers exposed to nanomaterials. In some cases, the medical surveillance could include medical screening of individual workers to detect early signs of work-related illnesses. All medical surveillance should be used to assess the effectiveness of risk management; however, medical surveillance should be considered as a second line of defense to ensure that implemented risk management practices are effective.

  5. Overview of Risk Management for Engineered Nanomaterials

    International Nuclear Information System (INIS)

    Schulte, P A; Geraci, C L; Hodson, L L; Zumwalde, R D; Kuempel, E D; Murashov, V; Martinez, K F; Heidel, D S

    2013-01-01

    Occupational exposure to engineered nanomaterials (ENMs) is considered a new and challenging occurrence. Preliminary information from laboratory studies indicates that workers exposed to some kinds of ENMs could be at risk of adverse health effects. To protect the nanomaterial workforce, a precautionary risk management approach is warranted and given the newness of ENMs and emergence of nanotechnology, a naturalistic view of risk management is useful. Employers have the primary responsibility for providing a safe and healthy workplace. This is achieved by identifying and managing risks which include recognition of hazards, assessing exposures, characterizing actual risk, and implementing measures to control those risks. Following traditional risk management models for nanomaterials is challenging because of uncertainties about the nature of hazards, issues in exposure assessment, questions about appropriate control methods, and lack of occupational exposure limits (OELs) or nano-specific regulations. In the absence of OELs specific for nanomaterials, a precautionary approach has been recommended in many countries. The precautionary approach entails minimizing exposures by using engineering controls and personal protective equipment (PPE). Generally, risk management utilizes the hierarchy of controls. Ideally, risk management for nanomaterials should be part of an enterprise-wide risk management program or system and this should include both risk control and a medical surveillance program that assesses the frequency of adverse effects among groups of workers exposed to nanomaterials. In some cases, the medical surveillance could include medical screening of individual workers to detect early signs of work-related illnesses. All medical surveillance should be used to assess the effectiveness of risk management; however, medical surveillance should be considered as a second line of defense to ensure that implemented risk management practices are effective.

  6. Alberta's labour force and the energy industry : how the Alberta government is collaborating with the energy industry to improve the supply of skilled workers

    Energy Technology Data Exchange (ETDEWEB)

    Williams, S. [Alberta Ministry of Human Resources and Employment, Edmonton, AB (Canada)

    2005-07-01

    This presentation described the potential short- and long-term impacts that a lack of skilled labour may have on the energy industry in Alberta. Currently, one in six Albertans are directly or indirectly employed in the energy industry, which generated 28.1 per cent of the total provincial revenue. A chart of industry employment changes in 2004 was presented along with a description of what the provincial and federal governments are doing to help bring in more skilled workers. The presentation examined the options that are currently available to companies seeking skilled workers in light of an aging population. The challenge of a shortage in skilled labour can be addressed by increasing training opportunities, reviewing hiring standards, changing workplace technology and using migration or immigration. The barriers to labour market adjustment were identified as being a lack of labour market information, the time required for individuals to acquire skills, and financial constraints on employers. Some of the options for companies seeking skilled workers include the Provincial Nominee Program, internal training and apprenticeship. The presentation also described how the Alberta government is collaborating with the energy industry to develop and implement training and apprenticeship programs. tabs., figs.

  7. Konsep ABG (Academic-Business-Government dalam Rencana Sistem Industri Berbasis Potensi Daerah Kabupaten Sleman dan Gunung Kidul

    Directory of Open Access Journals (Sweden)

    Muhammad Prasanto Bimantio

    2018-01-01

    Full Text Available Daerah Istimewa Yogyakarta (DIY mempunyai potensi industri yang cukup tinggi, baik industri kecil, menengah, maupun besar. Namun daya saing produk industri pengolahan di DIY rendah karena beberapa faktor, yakni masih lemahnya keterkaitan antar industri, keterbatasan produksi barang setengah jadi dan komponen di dalam negeri, keterbatasan industri berteknologi tinggi, kesenjangan kemampuan ekonomi antardaerah, serta ketergantungan ekspor pada beberapa komoditas tertentu. Penelitian ini bertujuan untuk membuat rancangan konsep kawasan industri berbasis potensi daerah (Domestic Based Industry/ DBI menggunakan pendekatan sinergi Academic-Business-Government (ABG. Pendekatan ini dilakukan dengan fokus pada pemanfaatan bahan baku, sumber daya manusia, dan pemenuhan permintaan pasar lokal. Hasil kajian ini menghasilkan tiga konsep kawasan DBI yang diusulkan: (i pengolahan produk turunan salak pondoh di Turi Sleman, (ii pengolahan zeolit di Gedangsari Gunungkidul, dan (iii pengolahan limbah produk biogas di Cangkringan Sleman. Ketiga konsep kawasan industri pengolahan tersebut saling terkait dan akan membentuk jejaring yang terintegrasi mulai dari bahan baku hingga produk, baik dengan industri rancangan baru maupun dengan industri yang sudah ada.

  8. Report of minutes of government-industry meeting on filters, media, and media testing

    International Nuclear Information System (INIS)

    Anderson, W.L.

    1985-01-01

    Many of the accomplishments of the air filtration programs achieved thus far have been due to the efforts of an informed working group concerned with high efficiency filters. The existence of this group has now spanned eleven conferences and has drawn expanded attendance and technical contributions at each one. From the original participants and their open and often argumentative mode of operation, the sessions have progressed to an invited audience with a permanent chairman and a prepared agenda. The most recent session of this group was devoted to a series of discussions on current interest subjects. Although the major portion of the group were from industry, government agencies, academic and contract investigators, over eight international groups were represented. All of the facets of the industrial complex were present, from the basic fiber suppliers, through media producers and, finally, to the filter unit fabricators. Various test facilities and evaluation groups also contributed to the overall process. R and D organizations from government and national laboratories, and academic institutions, all contributed status reports on work currently underway. Users at various levels expressed their problems and actively participated in the discussions. A review, in abstract form, of the items of deliberation is presented. The items are addressed in the order of their discussion, and not in any priority

  9. Pulmonary exposure to carbonaceous nanomaterials and sperm quality

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Lauvas, Anna Jacobsen; Christensen, Preben

    2018-01-01

    Background: Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung...... inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model.Methods: Effects on sperm quality after pulmonary inflammation induced by carbonaceous...... nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 mu g/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks...

  10. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  11. Performance Enhancement of Carbon Nanomaterials for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Amin M. Saleem

    2016-01-01

    Full Text Available Carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and graphene are exploited extensively due to their unique electrical, mechanical, and thermal properties and recently investigated for energy storage application (supercapacitor due to additional high specific surface area and chemical inertness properties. The supercapacitor is an energy storage device which, in addition to long cycle life (one million, can give energy density higher than parallel plate capacitor and power density higher than battery. In this paper, carbon nanomaterials and their composites are reviewed for prospective use as electrodes for supercapacitor. Moreover, different physical and chemical treatments on these nanomaterials which can potentially enhance the capacitance are also reviewed.

  12. Reproductive toxicity of carbon nanomaterials: a review

    Science.gov (United States)

    Vasyukova, I.; Gusev, A.; Tkachev, A.

    2015-11-01

    In the current review, we assembled the experimental evidences of an association between carbon nanomaterials including carbon black, graphite nanoplatelets, graphene, single- and multi-walled carbon nanotubes, and fullerene exposure and adverse reproductive and developmental effects, in vitro and in vivo studies. It is shown that carbon nanomaterials reveal toxic effect on reproductive system and offspring development of the animals of various system groups to a certain degree depending on carbon crystal structure. Although this paper provides initial information about the potential male and female reproductive toxicity of carbon nanomaterials, further studies, using characterized nanoparticles, relevant routes of administration, and doses closely reflecting all the expected levels of exposure are needed.

  13. The EU regulation of nanomaterials - Smoother or harder : The precautionary tool chest as the basis for better regulating nanomaterials

    NARCIS (Netherlands)

    Gellert, Raphaël; Mantovani, Eugenio; de Hert, Paul; Dolez, P.I.

    2015-01-01

    The EU regulatory framework on nanomaterials falls mainly within the shared competence of the EU and of its member states. This means that the sources of the regu- lation of nanomaterials are found primarily in the law promulgated in Brussels,. The EU regulatory toolbox in- cludes directives and

  14. Summary report of PQRI Workshop on Nanomaterial in Drug Products: current experience and management of potential risks.

    Science.gov (United States)

    Bartlett, Jeremy A; Brewster, Marcus; Brown, Paul; Cabral-Lilly, Donna; Cruz, Celia N; David, Raymond; Eickhoff, W Mark; Haubenreisser, Sabine; Jacobs, Abigail; Malinoski, Frank; Morefield, Elaine; Nalubola, Ritu; Prud'homme, Robert K; Sadrieh, Nakissa; Sayes, Christie M; Shahbazian, Hripsime; Subbarao, Nanda; Tamarkin, Lawrence; Tyner, Katherine; Uppoor, Rajendra; Whittaker-Caulk, Margaret; Zamboni, William

    2015-01-01

    At the Product Quality Research Institute (PQRI) Workshop held last January 14-15, 2014, participants from academia, industry, and governmental agencies involved in the development and regulation of nanomedicines discussed the current state of characterization, formulation development, manufacturing, and nonclinical safety evaluation of nanomaterial-containing drug products for human use. The workshop discussions identified areas where additional understanding of material attributes, absorption, biodistribution, cellular and tissue uptake, and disposition of nanosized particles would continue to inform their safe use in drug products. Analytical techniques and methods used for in vitro characterization and stability testing of formulations containing nanomaterials were discussed, along with their advantages and limitations. Areas where additional regulatory guidance and material characterization standards would help in the development and approval of nanomedicines were explored. Representatives from the US Food and Drug Administration (USFDA), Health Canada, and European Medicines Agency (EMA) presented information about the diversity of nanomaterials in approved and newly developed drug products. USFDA, Health Canada, and EMA regulators discussed the applicability of current regulatory policies in presentations and open discussion. Information contained in several of the recent EMA reflection papers was discussed in detail, along with their scope and intent to enhance scientific understanding about disposition, efficacy, and safety of nanomaterials introduced in vivo and regulatory requirements for testing and market authorization. Opportunities for interaction with regulatory agencies during the lifecycle of nanomedicines were also addressed at the meeting. This is a summary of the workshop presentations and discussions, including considerations for future regulatory guidance on drug products containing nanomaterials.

  15. Finding Political Opportunities: Civil Society, Industrial Power, and the Governance of Nanotechnology in the European Union

    Directory of Open Access Journals (Sweden)

    Anna Lamprou

    2016-06-01

    Full Text Available The European Union encourages and institutionalizes participation by environmental, consumer, and labor organizations in the governance of nanotechnology. Interviews with leaders of the civil society organizations (CSOs show that they identified multiple problems with nanotechnology policy but had only limited success in gaining the changes that they sought. CSO leaders explain their lack of success as due to the overwhelming power of industry and the support of the European Commission for new industrial development, including nanotechnology. We analyze the perspectives of CSO leaders about their difficulties to develop the theory of the political opportunity structure in the situation of a highly scientized policy field with strong industrial monitoring. We suggest the need to extend the theory to pay more attention to the strategies that reformers can use to maneuver in and to open a relatively closed political opportunity structure. We argue that formal stakeholder engagement is not very effective and suggest instead the importance of the following: building coalitions with government actors, threatening or mobilizing grassroots mobilization, making the issue salient to the public, and pursuing the full range of institutional repertoires.

  16. LCA of metal nanomaterial production

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Diaz, Elsa Gabriela Alvarado; Olsen, Stig Irving

    The use of engineered nanomaterials (ENMs) in commercial product has reached a new stage, where consumers in their daily life are frequently encountered with products containing this new material class. Metal and metal-oxide nanomaterials are among the most commonly used ENMs in products. Potential......(OH)2 applied as additives in polypropylene (PP), and the production of PP with conventional additives that provide similar properties as the ENMs. Different scenarios of nanoproducts consisting of metal ENMs and PP were compared with current use of additives in PP products through a detailed cradle...

  17. Industrial initiatives in the wind industry

    International Nuclear Information System (INIS)

    Edworthy, J.

    1992-01-01

    Industrial initiatives are methods of lobbying and marketing to increase the activity, revenues, profits, and commercial viability of an industry. They may be undertaken by industry individuals or firms, industry groups, government agencies, or combinations of all these. In Canada, one example of an industrial initiative is the Canadian Wind Energy Association. Other initiatives relevant to the wind power industry include Technology Inflow Programs sponsored by External Affairs Canada, used for visiting foreign firms with the view to licensing foreign technology, and Industrial Research Assistance Programs to develop or adapt new technologies in partnership with government. The Conservation/Renewable Energy Council, Small Power Producers of Alberta, and Independent Power Producers Society of Ontario are also active in supporting wind energy initiatives. In other countries, notable initiatives for wind energy include the Danish wind turbine warranty guarantee program. The Western Wind Industry Network of Canada conducts regional lobbying. It is suggested that in Canada, more such networks are needed, as well as joint ventures with utilities and governments, and more work with the regulatory agencies, to promote wind energy

  18. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine☆

    Science.gov (United States)

    Zhang, Xue-Qing; Xu, Xiaoyang; Bertrand, Nicolas; Pridgen, Eric; Swami, Archana; Farokhzad, Omid C.

    2012-01-01

    The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials. PMID:22917779

  19. Governance Assessment Corporate Financial Industries in the Core PEIEX POLI - USP - between 2012-2013

    Directory of Open Access Journals (Sweden)

    José Flávio Messias

    2015-06-01

    Full Text Available This present article is an applied research based on micro, small and medium enterprises - SMEs, assisted by Export Industrial Extension Project - PEIEX, APEX Brazil, in partnership with the Center Vanzolini - POLI / USP - SP. In this sense, we tried to identify the adoption of corporate governance practices and financial controls as a management tool in business, since some of them had been met and trained in the previous period. We use the information obtained from the questionnaires applied in PEIEX Project participating companies, as well as information obtained specifically in the visits, trying to identify the importance attached by them to financial controls and assess improvement in the level of corporate governance gathered by these companies

  20. A novel approach to enhance food safety: industry-academia-government partnership for applied research.

    Science.gov (United States)

    Osterholm, Michael T; Ostrowsky, Julie; Farrar, Jeff A; Gravani, Robert B; Tauxe, Robert V; Buchanan, Robert L; Hedberg, Craig W

    2009-07-01

    An independent collaborative approach was developed for stimulating research on high-priority food safety issues. The Fresh Express Produce Safety Research Initiative was launched in 2007 with $2 million in unrestricted funds from industry and independent direction and oversight from a scientific advisory panel consisting of nationally recognized food safety experts from academia and government agencies. The program had two main objectives: (i) to fund rigorous, innovative, and multidisciplinary research addressing the safety of lettuce, spinach, and other leafy greens and (ii) to share research findings as widely and quickly as possible to support the development of advanced safeguards within the fresh-cut produce industry. Sixty-five proposals were submitted in response to a publicly announced request for proposals and were competitively evaluated. Nine research projects were funded to examine underlying factors involved in Escherichia coli O157:H7 contamination of lettuce, spinach, and other leafy greens and potential strategies for preventing the spread of foodborne pathogens. Results of the studies, published in the Journal of Food Protection, help to identify promising directions for future research into potential sources and entry points of contamination and specific factors associated with harvesting, processing, transporting, and storing produce that allow contaminants to persist and proliferate. The program provides a model for leveraging the strengths of industry, academia, and government to address high-priority issues quickly and directly through applied research. This model can be productively extended to other pathogens and other leafy and nonleafy produce.

  1. “NaKnowBase”: A Nanomaterials Relational Database

    Science.gov (United States)

    NaKnowBase is an internal relational database populated with data from peer-reviewed ORD nanomaterials research publications. The database focuses on papers describing the actions of nanomaterials in environmental or biological media including their interactions, transformations...

  2. Integration of data: the Nanomaterial Registry project and data curation

    International Nuclear Information System (INIS)

    Guzan, K A; Mills, K C; Gupta, V; Murry, D; Ostraat, M L; Scheier, C N; Willis, D A

    2013-01-01

    Due to the use of nanomaterials in multiple fields of applied science and technology, there is a need for accelerated understanding of any potential implications of using these unique and promising materials. There is a multitude of research data that, if integrated, can be leveraged to drive toward a better understanding. Integration can be achieved by applying nanoinformatics concepts. The Nanomaterial Registry is using applied minimal information about nanomaterials to support a robust data curation process in order to promote integration across a diverse data set. This paper describes the evolution of the curation methodology used in the Nanomaterial Registry project as well as the current procedure that is used. Some of the lessons learned about curation of nanomaterial data are also discussed. (paper)

  3. The challenges of ecotox testing of nanomaterials and the BPR

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss

    2015-01-01

    The European Biocidal Product Regulation (BPR) requires dedicated risk assessment of nanomaterials. When it comes to ecotoxicological testing of nanomaterials, meeting these requirements is especially challenging. Overall, these challenges fall into four overall categories: 1) materials character......The European Biocidal Product Regulation (BPR) requires dedicated risk assessment of nanomaterials. When it comes to ecotoxicological testing of nanomaterials, meeting these requirements is especially challenging. Overall, these challenges fall into four overall categories: 1) materials...... characterization, 2) exposure preparation, 3) monitoring stability and 4) monitoring time. In this paper, the challenges are presented and discussed. There is no easy manner in which to deal with the challenges related to ecotoxicological testing of nanomaterials in the light of the BPR requirements. It short...

  4. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Applications of nanomaterials as vaccine adjuvants

    Science.gov (United States)

    Zhu, Motao; Wang, Rongfu; Nie, Guangjun

    2014-01-01

    Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials’ physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants. PMID:25483497

  6. Occupational Health and Safety: reflection on potential risks and the safety handling of nanomaterials

    Directory of Open Access Journals (Sweden)

    Guilherme Frederico Bernardo Lenz e Silva

    2013-11-01

    Full Text Available Every day the nanotechnology, that refers to a field whose theme is the control of matter on an atomic and molecular scale working with nanometric structures (<100 nm, is more present in the development of products and industrial processes. The particle manipulation of nanometric structures has created opportunities in the development of new products and materials. However, synthesis, handling, storage, stabilization and the incorporation of these materials, with nanometric dimensions, demand a new perspective of analysis and evaluation of old manufacturing processes, procedures and industrial devices, in order to guarantee collective and individual protection to workers and society. With the increasing of scale and production of nanoestrutuctured materials, a big part of labour community starts to be in contact with different nanomaterials (forms and ways. In this work the main aspects and involved risks of manufacture, storage, synthesis, stabilization and incorporation of nanomaterials on new products are evaluated in order to reduce, decrease and eliminate chemical, physical and biological risks for the employees. A bibliographic review was conducted about risk, safety and nanotechnology based on available English literature focusing safety and environmental agencies from different countries such as USA, Canada, EU (France, UK, Germany, Den-mark, Australia and Japan.

  7. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment

    Directory of Open Access Journals (Sweden)

    Vega-Alvarez S

    2014-04-01

    Full Text Available Sasha Vega-Alvarez,1 Adriana Herrera,2 Carlos Rinaldi,2–4 Franklin A Carrero-Martínez1,5 1Department of Biology, 2Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico; 3J Crayton Pruitt Family Department of Biomedical Engineering, 4Department of Chemical Engineering, University of Florida, Gainesville, FL, USA; 5Department of Anatomy and Neuroscience, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico Abstract: Nanomaterials are the subject of intense research, focused on their synthesis, modification, and biomedical applications. Increased nanomaterial production and their wide range of applications imply a higher risk of human and environmental exposure. Unfortunately, neither environmental effects nor toxicity of nanomaterials to organisms are fully understood. Cost-effective, rapid toxicity assays requiring minimal amounts of materials are needed to establish both their biomedical potential and environmental safety standards. Drosophila exemplifies an efficient and cost-effective model organism with a vast repertoire of in vivo tools and techniques, all with high-throughput scalability and screening feasibility throughout its life cycle. Here we report tissue specific nanomaterial assessment through direct microtransfer into target tissues. We tested several nanomaterials with potential biomedical applications such as single-wall carbon nanotubes, multiwall carbon nanotubes, silver, gold, titanium dioxide, and iron oxide nanoparticles. Assessment of nanomaterial toxicity was conducted by evaluating progression through developmental morphological milestones in Drosophila. This cost-effective assessment method is amenable to high-throughput screening. Keywords: nanotoxicity, Drosophila, microtransfer, nanoparticle, iron oxide, silver, gold, titanium dioxide, carbon nanotube

  8. “NaKnowBase”: A Nanomaterials Relational Database

    Science.gov (United States)

    NaKnowBase is a relational database populated with data from peer-reviewed ORD nanomaterials research publications. The database focuses on papers describing the actions of nanomaterials in environmental or biological media including their interactions, transformations and poten...

  9. Toxicity of nanomaterials

    NARCIS (Netherlands)

    Sharifi, Shahriar; Behzadi, Shahed; Laurent, Sophie; Forrest, M. Laird; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There

  10. Recent advances in applications of nanomaterials for sample preparation.

    Science.gov (United States)

    Xu, Linnan; Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A practical approach to determine dose metrics for nanomaterials.

    Science.gov (United States)

    Delmaar, Christiaan J E; Peijnenburg, Willie J G M; Oomen, Agnes G; Chen, Jingwen; de Jong, Wim H; Sips, Adriënne J A M; Wang, Zhuang; Park, Margriet V D Z

    2015-05-01

    Traditionally, administered mass is used to describe doses of conventional chemical substances in toxicity studies. For deriving toxic doses of nanomaterials, mass and chemical composition alone may not adequately describe the dose, because particles with the same chemical composition can have completely different toxic mass doses depending on properties such as particle size. Other dose metrics such as particle number, volume, or surface area have been suggested, but consensus is lacking. The discussion regarding the most adequate dose metric for nanomaterials clearly needs a systematic, unbiased approach to determine the most appropriate dose metric for nanomaterials. In the present study, the authors propose such an approach and apply it to results from in vitro and in vivo experiments with silver and silica nanomaterials. The proposed approach is shown to provide a convenient tool to systematically investigate and interpret dose metrics of nanomaterials. Recommendations for study designs aimed at investigating dose metrics are provided. © 2015 SETAC.

  12. Carbon nanomaterial based electrochemical sensors for biogenic amines

    International Nuclear Information System (INIS)

    Yang, Xiao; He, Xiulan; Li, Fangping; Fei, Junjie; Feng, Bo; Ding, Yonglan

    2013-01-01

    This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references. (author)

  13. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  14. Center for Functional Nanomaterials

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Functional Nanomaterials (CFN) explores the unique properties of materials and processes at the nanoscale. The CFN is a user-oriented research center...

  15. Nanomaterial characterization through image treatment, 3D reconstruction and AI techniques

    Science.gov (United States)

    Lopez de Uralde Huarte, Juan Jose

    Nanotechnology is not only the science of the future, but it is indeed the science of today. It is used in all sectors, from health to energy, including information technologies and transport. For the present investigation, we have taken carbon black as a use case. This nanomaterial is mixed with a wide variety of materials to improve their properties, like abrasion resistance, tire and plastic wear or tinting strength in pigments. Nowadays, indirect methods of analysis, like oil absorption or nitrogen adsorption are the most common techniques of the nanomaterial industry. These procedures measure the change in the physical state while adding oil and nitrogen. In this way, the superficial area is estimated and related with the properties of the material. Nevertheless, we have chosen to improve the existent direct methods, which consist in analysing microscopy images of nanomaterials. We have made progress in the image processing treatments and in the extracted features. In fact, some of them have overcome the existing features in the literature. In addition, we have applied, for the first time in the literature, machine learning to aggregate categorization. In this way, we identify automatically their morphology, which will determine the final properties of the material that is mixed with. Finally, we have presented an aggregate reconstruction genetic algorithm that, with only two orthogonal images, provides more information than a tomography, which needs a lot of images. To summarize, we have improved the state of the art in direct analysing techniques, allowing in the near future the replacement of the current indirect techniques.

  16. Synthesis and Characterization of Bio-based Nanomaterials from Jabon (Anthocephalus cadamba (Roxb. Miq Wood Bark: an Organic Waste Material from Community Forest

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2015-06-01

    Full Text Available The application of nanotechnology to produce nanomaterials from renewable bio-based materials, like wood bark, has great potential to benefit the wood processing industry. To support this issue, we investigated the production of bio-based nanomaterials using conventional balls milling. Jabon (Anthocephalus cadamba(Roxb. Miq wood bark (JWB, an organic waste material from a community forest was subjected to conventional balls milling for 96 h and was converted into bio-based nanomaterial. The morphology and particle size, chemical components, functional groups and crystallinity of the bio-based nanomaterial were evaluated using scanning electron microscopy (SEM, scanning electron microscopy extended with energy dispersive X-ray spectroscopy (SEM-EDS, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The particle-sizes obtained for the JWB bio-based nanomaterial were between 43 nm to 469 nm and the functional groups were detected as cellulose. The chemical components found were carbon, oxygen, chloride, potassium and calcium, except for the sample produced from sieve type T14, which did not contain chloride. The crystalline structure was calcium oxalate hydrate (C2CaO4.H2O with crystalline sizes 21 nm and 15 nm, produced from sieve types T14 and T200 respectively.

  17. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  18. An overview of nanomaterials applied for removing dyes from wastewater.

    Science.gov (United States)

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  19. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.

    Science.gov (United States)

    Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai

    2014-04-01

    There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Eating nanomaterials: cruelty-free and safe? the EFSA guidance on risk assessment of nanomaterials in food and feed.

    Science.gov (United States)

    Sauer, Ursula G

    2011-12-01

    Nanomaterials are increasingly being added to food handling and packaging materials, or directly, to human food and animal feed. To ensure the safety of such engineered nanomaterials (ENMs), in May 2011, the European Food Safety Authority (EFSA) published a guidance document on Risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. It states that risk assessment should be performed by following a step-wise procedure. Whenever human or animal exposure to nanomaterials is expected, the general hazard characterisation scheme requests information from in vitro genotoxicity, toxicokinetic and repeated dose 90-day oral toxicity studies in rodents. Numerous prevailing uncertainties with regard to nanomaterial characterisation and their hazard and risk assessment are addressed in the guidance document. This article discusses the impact of these knowledge gaps on meeting the goal of ensuring human safety. The EFSA's guidance on the risk assessment of ENMs in food and animal feed is taken as an example for discussion, from the point of view of animal welfare, on what level of uncertainty should be considered acceptable for human safety assessment of products with non-medical applications, and whether animal testing should be considered ethically acceptable for such products.

  1. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.

    Science.gov (United States)

    Miralles, Pola; Church, Tamara L; Harris, Andrew T

    2012-09-04

    To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.

  2. The OECD expert meeting on ecotoxicology and environmental fate — Towards the development of improved OECD guidelines for the testing of nanomaterials

    International Nuclear Information System (INIS)

    Kühnel, Dana; Nickel, Carmen

    2014-01-01

    On behalf of the OECD Working Party on Manufactured Nanomaterials (WPMN) an expert meeting on ecotoxicology and environmental fate of nanomaterials (NMs) took place in January 2013 in Berlin. At this meeting experts from science, industry and regulatory bodies discussed the applicability of OECD test guidelines (TGs) for chemicals to nanomaterials. The objective was to discuss the current state of the relevant science and provide recommendations to the OECD WPMN on (1) the need for updating current OECD TGs and the need for developing new ones specific to nanomaterials; and (2) guidance needed for the appropriate and valid testing of environmental fate and ecotoxicity endpoints for NMs. Experts at the workshop agreed that the majority of the OECD TG for chemicals were generally applicable for the testing of NM, with the exception of TG 105 (water solubility) and 106 (adsorption-desorption). Additionally, the workshop also highlighted considerations when conducting OECD chemical TG on nanomaterials (e.g., sample preparation, dispersion, analysis, dosimetry and characterisation). These considerations will lead to the future development of proposals for new TG and guidance documents (GDs) to ensure that OECD TG give meaningful, repeatable, and accurate results when used for nanomaterials. This report provides a short overview of topics discussed during the meeting and the main outcomes. A more detailed report of the workshop will become available through the OECD, however, due to the urgency of having OECD TG relevant for nanomaterials, this brief report is being shared with the scientific community through this communication. - Highlights: • OECD test guidelines (TGs) were developed for the testing of conventional chemicals. • Need for discussion on applicability of current TGs to nanomaterials • An expert meeting addressing this issue was held. • The focus was on TGs covering ecotoxicology and environmental fate. • Recommendations for updating current OECD

  3. Mobility of coated and uncoated TiO2 nanomaterials in soil columns--Applicability of the tests methods of OECD TG 312 and 106 for nanomaterials.

    Science.gov (United States)

    Nickel, Carmen; Gabsch, Stephan; Hellack, Bryan; Nogowski, Andre; Babick, Frank; Stintz, Michael; Kuhlbusch, Thomas A J

    2015-07-01

    Nanomaterials are commonly used in everyday life products and during their life cycle they can be released into the environment. Soils and sediments are estimated as significant sinks for those nanomaterials. To investigate and assess the behaviour of nanomaterials in soils and sediments standardized test methods are needed. In this study the applicability of two existing international standardized test guidelines for the testing of nanomaterials, OECD TG 106 "Adsorption/Desorption using a Bath Equilibrium Method" and the OECD TG 312 "Leaching in Soil Columns", were investigated. For the study one coated and two uncoated TiO2 nanomaterials were used, respectively. The results indicate that the OECD TG 106 is not applicable for nanomaterials. However, the test method according to OECD TG 312 was found to be applicable if nano-specific adaptations are applied. The mobility investigations of the OECD TG 312 indicated a material-dependent mobility of the nanomaterials, which in some cases may lead to an accumulation in the upper soil layers. Whereas no significant transport was observed for the uncoated materials for the double-coated material (coating with dimethicone and aluminiumoxide) a significant transport was detected and attributed to the coating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects.

    Science.gov (United States)

    Chimene, David; Alge, Daniel L; Gaharwar, Akhilesh K

    2015-12-02

    Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nanomaterials A Danger or a Promise? A Chemical and Biological Perspective

    CERN Document Server

    Fiévet, Fernand; Coradin, Thibaud

    2013-01-01

    With the increased presence of nanomaterials in commercial products such as cosmetics and sunscreens, fillers in dental fillings, water filtration process, catalysis, photovoltaic cells, bio-detection, a growing public debate is emerging on toxicological and environmental effects of direct and indirect exposure to these materials. Nanomaterials: A Danger or a Promise? forms a balanced overview of the health and environmental issues of nanoscale materials.   By considering both the benefits and risks associated with nanomaterials, Nanomaterials: A Danger or a Promise? compiles a complete and detailed image of the many aspects of the interface between nanomaterials and their real-life application. The full cycle of nanomaterials life will be presented and critically assessed to consider and answer questions such as: ·         How are nanomaterials made? ·         What they are used for? ·         What is their environmental fate? ·         Can we make them better?   Includi...

  6. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    Science.gov (United States)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  7. Magnetic nanomaterials undamentals, synthesis and applications

    CERN Document Server

    Sellmyer, David J

    2017-01-01

    Timely and comprehensive, this book presents recent advances in magnetic nanomaterials research, covering the latest developments, including the design and preparation of magnetic nanoparticles, their physical and chemical properties as well as their applications in different fields, including biomedicine, magnetic energy storage, wave–absorbing and water remediation. By allowing researchers to get to the forefront developments related to magnetic nanomaterials in various disciplines, this is invaluable reading for the nano, magnetic, energy, medical, and environmental communities.

  8. Carbon nanomaterials for non-volatile memories

    Science.gov (United States)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  9. Industries and environment - 2014 edition

    International Nuclear Information System (INIS)

    Maurice, Delphine

    2014-04-01

    After a general overview of the French economic context (composition of the French industry, the manufacturing industry, industry production and trade balance), this report presents industrial installations with risks: installations classified for the protection of the environment and submitted to industrial authorizations (ICPEA), basic nuclear installations, Seveso industrial facilities, IPPC industrial installations. The next part analyzes the various pressures exerted by the industry on the environment: material production and consumption, water taking, consumption of energetic products, release of pollutants in waters of industrial ICPE, releases in the air, greenhouse gas emissions, production of wastes, accidents and incidents with environmental consequences, polluted sites and soils, hazardous chemical products in the industry, industrial companies involved in nano-technologies and nano-materials. The last part proposes an overview of responses to these issues: implementation of environmental management system, corporate societal responsibility, investments and expenditures for the protection of the environment, industrial eco-activities, eco-labelled products manufactured by the industry

  10. Computational studies on the interactions of nanomaterials with proteins and their impacts

    International Nuclear Information System (INIS)

    An De-Yi; Li Jing-Yuan; Su Ji-Guo; Li Chun-Hua

    2015-01-01

    The intensive concern over the biosafety of nanomaterials demands the systematic study of the mechanisms underlying their biological effects. Many of the effects of nanomaterials can be attributed to their interactions with proteins and their impacts on protein function. On the other hand, nanomaterials show potential for a variety of biomedical applications, many of which also involve direct interactions with proteins. In this paper, we review some recent computational studies on this subject, especially those investigating the interactions of carbon and gold nanomaterials. Beside hydrophobic and π-stacking interactions, the mode of interaction of carbon nanomaterials can also be regulated by their functional groups. The coatings of gold nanomaterials similarly adjust their mode of interaction, in addition to coordination interactions with the sulfur groups of cysteine residues and the imidazole groups of histidine residues. Nanomaterials can interact with multiple proteins and their impacts on protein activity are attributed to a wide spectrum of mechanisms. These findings on the mechanisms of nanomaterial–protein interactions can further guide the design and development of nanomaterials to realize their application in disease diagnosis and treatment. (paper)

  11. THE INTERNATIONAL EXPERIENCE OF INTERACTION BETWEEN GOVERNMENT AND BUSINESS IN THE SPHERE OF INNOVATION: NEW TOOLS FOR INDUSTRIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Anastasiya Yurievna Nikitaeva

    2015-09-01

    Full Text Available The article is devoted to the study of international experience of interaction between government and business in the innovative development of the industrial sector. Purpose of the paper is to determine the features and content of the new mechanisms of industrial development, based on integration platform of economic agents’ partnership.Methodology. The complex of system, synergy, institutional, evolutionary, and endogenous approaches is used as a methodological basis of research. Methodological apparatus of the article is presented by methods of the analysis, synthesis, abstraction, logical generalization.Results: the assessment of influence of government and commercial structures partnership on the innovative industrial development is given; the tendency of expansion of a partnership segment in the innovative sphere of the industry is empirically illustrated; features and key technologies of the new integration mechanism of industrial development are given.Conclusion: complication of innovative processes in combination with other factors results in expediency of development of partnership of economic entities in the sphere of industrial development. The extent and effectiveness of partnership practices in innovation is largely determined by the role of state institutions. For innovation of industrial development it is expedient to form the mechanisms using the integrated capacity of public and private institutions.Practical implications: the results of the study can be used in the justification of the priorities and measures of the state innovation and industrial policy, the development of concepts and programs of clustering of the regions and the development of public-private partnerships, and also formation of strategy of development of industrial structures.

  12. Managing the Life Cycle Risks of Nanomaterials

    Science.gov (United States)

    2009-07-01

    Nanomaterials Report Research to date focuses predominantly on aquatic organisms of the oceans or seas; no groundwater or soil exposure scenarios have been...pollution, create medical innovations, or develop new materials based on old concepts (e.g., plastics , thin films, and transistors). As already...Risks of Nanomaterials Report consumption, land use, ozone depletion, global warming, acidification , eutrophication, tropospheric ozone formation

  13. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers

    Directory of Open Access Journals (Sweden)

    Niina J. Ronkainen

    2014-06-01

    Full Text Available Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon.

  14. Production of nanomaterials: physical and chemical technologies

    International Nuclear Information System (INIS)

    Giorgi, Leonardo; Salernitano, Elena

    2015-01-01

    Are define nanomaterials those materials which have at least one dimension in the range between 1 and 100 nm. By the term nanotechnology refers, instead, to the study of phenomena and manipulation of materials at the atomic and molecular level. The materials brought to the nanometric dimensions take particular chemical-physical properties different from the corresponding conventional macro materials. Speaking about the structure of nanoscale, you can check some basic properties materials (eg. Melting temperature, magnetic and electrical properties) without changing its chemical composition. In this perspective are crucial knowledge and control of production processes in order to design and get the nanomaterial more suitable for a specific application. For this purpose, it describes a series of processes of production of nanomaterials with application examples. [it

  15. Co-creation of innovation: Investment with and in social capital. Studies on collaboration between education - industry - government

    NARCIS (Netherlands)

    Ehlen, Corry

    2017-01-01

    This study unravels the concept of 'CO-CREATION‘ in two large scale inter-organisational innovation programmes. Co-creation becomes internationally recognized as a leading innovative approach for regional collaboration between education, industry and government. 'SOCIAL CAPITAL’ is found to be

  16. Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications.

    Science.gov (United States)

    Feng, Feng; Wu, Junchi; Wu, Changzheng; Xie, Yi

    2015-02-11

    Recent years have witnessed great developments in inorganic 2D nanomaterials for their unique dimensional confinement and diverse electronic energy bands. Precisely regulating their intrinsic electrical behaviors would bring superior electrical conductivity, rendering 2D nanomaterials ideal candidates for active materials in electrochemical applications when combined with the excellent reaction activity from the inorganic lattice. This Concept focuses on highly conducting inorganic 2D nanomaterials, including intrinsic metallic 2D nanomaterials and artificial highly conductive 2D nanomaterials. The intrinsic metallicity of 2D nanomaterials is derived from their closely packed atomic structures that ensure maximum overlapping of electron orbitals, while artificial highly conductive 2D nanomaterials could be achieved by designed methodologies of surface modification, intralayer ion doping, and lattice strain, in which atomic-scale structural modulation plays a vital role in realizing conducting behaviors. Benefiting from fast electron transfer, high reaction activity, as well as large surface areas arising from the 2D inorganic lattice, highly conducting 2D nanomaterials open up prospects for enhancing performance in electrochemical catalysis and electrochemical capacitors. Conductive 2D inorganic nanomaterials promise higher efficiency for electrochemical applications of energy conversion and storage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Government's expectations for nuclear energy

    International Nuclear Information System (INIS)

    Fraser, Lord.

    1997-01-01

    After the thorough review of nuclear policy in 1994/95, the United Kingdom government remains committed to the view that there is no justification for, and no foreseeable to return to the large-scale public funding of new nuclear power plants. The nuclear industry's relationships with government has changed in some respects as a consequence of the privatisation of British Energy and AEA (Technology). This does not, however, mean a loss of government interest and involvement in other respects. There will be a continuing close interest in the safety, security and prosperity of the industry; the regulatory framework for the industry will be as rigorous as ever. Public expectation that nuclear liabilities will be managed safely and effectively is a responsibility both for government and the industry. Internationally, nuclear developments present considerable challenges and opportunities which require the government and the industry to work closely together in order to maximise the value of Britain's contribution. (UK)

  18. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    Science.gov (United States)

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Multifunctional ZnO Nanomaterials for Efficient Energy Conversion and Sensing

    Science.gov (United States)

    2015-12-02

    Final Report: Multifunctional ZnO Nanomaterials for Efficient Energy Conversion and Sensing The views, opinions and/or findings contained in this...ADDRESS. Fisk University 1000 17th Avenue North Nashville, TN 37208 -3045 31-May-2015 ABSTRACT Final Report: Multifunctional ZnO Nanomaterials for...and reproducible nanomaterials growth/synthesis with control of nanostructure size, shape, and functionality, in uniform functionalization with both

  20. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    Science.gov (United States)

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  1. Role of University-Industry-Government Linkages in the Innovation Processes of a Small Catching-Up Economy

    Science.gov (United States)

    Varblane, Urmas; Mets, Tonis; Ukrainski, Kadri

    2008-01-01

    During the transformation process from a command economy, the extraordinary statist university-industry-government (UIG) linkages model was replaced by an extreme version of laissez-faire relationships. A more modern interaction-based UIG model could be implemented only by changing the whole national innovation system of catching-up economies. The…

  2. Globalisation, corporate governance and the construction industry

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2004-11-01

    Full Text Available good corporate governance expectations generally. It reviews the development of globalisation with particular reference to the establishment of a common code of conduct, undertakes a review of the definition and evolution of good corporate governance...

  3. Systemic Absorption of Nanomaterials by Oral Exposure

    DEFF Research Database (Denmark)

    Binderup, Mona-Lise; Bredsdorff, Lea; Beltoft, Vibe Meister

    This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches.......This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches....

  4. Nanomaterials: a challenge for toxicological risk assessment?

    Science.gov (United States)

    Haase, Andrea; Tentschert, Jutta; Luch, Andreas

    2012-01-01

    Nanotechnology has emerged as one of the central technologies in the twenty-first century. This judgment becomes apparent by considering the increasing numbers of people employed in this area; the numbers of patents, of scientific publications, of products on the market; and the amounts of money invested in R&D. Prospects originating from different fields of nanoapplication seem unlimited. However, nanotechnology certainly will not be able to meet all of the ambitious expectations communicated, yet has high potential to heavily affect our daily life in the years to come. This might occur in particular in the field of consumer products, for example, by introducing nanomaterials in cosmetics, textiles, or food contact materials. Another promising area is the application of nanotechnology in medicine fueling hopes to significantly improve diagnosis and treatment of all kinds of diseases. In addition, novel technologies applying nanomaterials are expected to be instrumental in waste remediation and in the production of efficient energy storage devices and thus may help to overcome world's energy problems or to revolutionize computer and data storage technologies. In this chapter, we will focus on nanomaterials. After a brief historic and general overview, current proposals of how to define nanomaterials will be summarized. Due to general limitations, there is still no single, internationally accepted definition of the term "nanomaterial." After elaborating on the status quo and the scope of nanoanalytics and its shortcomings, the current thinking about possible hazards resulting from nanoparticulate exposures, there will be an emphasis on the requirements to be fulfilled for appropriate health risk assessment and regulation of nanomaterials. With regard to reliable risk assessments, until now there is still the remaining issue to be resolved of whether or not specific challenges and unique features exist on the nanoscale that have to be tackled and distinctively

  5. Public science policy and administration. [cooperation of government industry, foundations, and educational institutions

    Science.gov (United States)

    Rosenthal, A. H. (Editor)

    1973-01-01

    Science, the overwhelming concern of our time, is no longer a matter of private research and development but one of public policy and administration, in which government, industry, foundations, and educational institutions must all work together as never before. Few other single tasks are of such decisive importance to the collective and individual welfare of American citizens as the formulation of public science policy and the administration of scientific programs. Eleven national authorities of varied background in science, education, and government administration contribute their experience and their judgment in an effort to deal with the major aspects of the subject. Their focus is on the meeting of actual problems; they consider the decision making process in both public and public-private organizations. Topics are grouped in three general categories: personnel needs and resources, organizational problems and techniques, and the administrative role in policy leadership.

  6. Nanoscience and nanotechnologies in food industries: opportunities and research trends

    Science.gov (United States)

    Ranjan, Shivendu; Dasgupta, Nandita; Chakraborty, Arkadyuti Roy; Melvin Samuel, S.; Ramalingam, Chidambaram; Shanker, Rishi; Kumar, Ashutosh

    2014-06-01

    Nanomaterials have gained importance in various fields of science, technology, medicine, colloid technologies, diagnostics, drug delivery, personal care applications and others due to their small size and unique physico-chemical characteristic. Apart from above mentioned area, it is also extensively being used in food sector specifically in preservation and packaging. The future applications in food can also be extended to improve the shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food or food packaging. Different types and shapes of nanomaterials are being employed depending upon the need and nature of the food. Characterisation of these nanomaterials is essential to understand the interaction with the food matrix and also with biological compartment. This review is focused on application of nanotechnology in food industries. It also gives insight on commercial products in market with usage of nanomaterials, current research and future aspects in these areas. Currently, they are being incorporated into commercial products at a faster rate than the development of knowledge and regulations to mitigate potential health and environmental impacts associated with their manufacturing, application and disposal. As nanomaterials are finding new application every day, care should be taken about their potential toxic effects.

  7. Nanomaterials and nanotechnologies in nuclear energy chemistry

    International Nuclear Information System (INIS)

    Shi, W.Q.; Yuan, L.Y.; Li, Z.J.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F.

    2012-01-01

    With the rapid growth of human demands for nuclear energy and in response to the challenges of nuclear energy development, the world's major nuclear countries have started research and development work on advanced nuclear energy systems in which new materials and new technologies are considered to play important roles. Nanomaterials and nanotechnologies, which have gained extensive attention in recent years, have shown a wide range of application potentials in future nuclear energy system. In this review, the basic research progress in nanomaterials and nanotechnologies for advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental remediation is selectively highlighted, with the emphasis on Chinese research achievements. In addition, the challenges and opportunities of nanomaterials and nanotechnologies in future advanced nuclear energy system are also discussed. (orig.)

  8. Engineering of Multifunctional Nanomaterials for Cancer Theranostics

    Science.gov (United States)

    Goel, Shreya

    Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. Silica, "generally recognized as safe" (GRAS) by the Food and Drug Administration (FDA) of the United States, has emerged as one of the leading nanomaterials employed for molecular imaging and therapy of a wide variety of diseases, including cancer. However in vivo biodistribution and active targeting of silica-based nanomaterials has remained a relatively under explored area, based mainly on semi-quantitative techniques such as fluorescence imaging. In this dissertation, I explore the concept of radiolabeled silica nanoparticles for vasculature-targeted imaging of different tumor types. Both chelator-based and chelator-free radiolabeling techniques were employed for accurate and quantitative analysis of the in vivo pharmacokinetics of radiolabeled silica nanomaterials. (Chapters 2 and 3) The large surface area, ease of tunability and facile silica chemistry were employed to create multifunctional silica-based materials to simultaneously seek-and-treat cancers, by incorporating multiple components into a single nanoplatform. Photodynamic agent, porphyrin was loaded into the central cavity of hollow mesoporous silica nanoparticles, and the shell was decorated with photothermal nanoparticles, CuS, yielding a multimodal theranostic nanoplatform which could synergistically annihilate the tumor without relapse. (Chapter 4). A major hurdle in the successful clinical translation of nanomaterials is their rapid sequestration by the organs of the

  9. Artifacts by marker enzyme adsorption on nanomaterials in cytotoxicity assays with tissue cultures

    International Nuclear Information System (INIS)

    Wohlleben, Wendel; Kolle, Susanne N; Hasenkamp, Laura-Carolin; Boeser, Alexander; Vogel, Sandra; Vacano, Bernhard von; Ravenzwaay, Ben van; Landsiedel, Robert

    2011-01-01

    We used precision cut lung slices (PCLS) to study the cytotoxicity of cobalt ferrite nanomaterials with and without bovine serum albumin (BSA) stabilization. Using mitochondrial activity as an indicator of cytotoxicity (WST-1 assay) increasing concentrations of cobalt ferrite nanomaterial caused increasing levels of cytotoxicity in PCLS irrespective of BSA stabilization. However, there was no increase in released lactate dehydrogenase (LDH) levels caused by BSA stabilized nanomaterial indicating concentration depended cytotoxictiy. Moreover, non-stabilized nanomaterial caused a decrease of background LDH levels in the PCLS culture supernatant confirmed by complementary methods. Direct characterization of the protein corona of extracted nanomaterial shows that the LDH decrease is due to adsorption of LDH onto the surface of the non-stabilized nanomaterial, correlated with strong agglomeration. Preincubation with serum protein blocks the adsorption of LDH and stabilizes the nanomaterial at low agglomeration. We have thus demonstrated the cytotoxicity of nanomaterials in PCLS does not correlate with disrupted membrane integrity followed by LDH release. Furthermore, we found that intracellular enzymes such as the marker enzyme LDH are able to bind onto surfaces of nanomaterial and thereby adulterate the detection of toxic effects. A replacement of BSA by LDH or a secondary LDH-on-BSA-corona were not observed, confirming earlier indications that the protein corona exchange rate are slow or vanishing on inorganic nanomaterial. Thus, the method(s) to assess nanomaterial-mediated effects have to be carefully chosen based on the cellular effect and possible nano-specific artifacts.

  10. Implementing shared governance in a patient care support industry: information technology leading the way.

    Science.gov (United States)

    Hartley, Lou Ann

    2014-06-01

    Implementing technology in the clinical setting is not a project but rather a journey in transforming care delivery. As nursing leaders in healthcare and patient care support organizations embrace technology to drive reforms in quality and efficiency, growing opportunities exist to share experiences between these industries. This department submission describes the journey to nursing shared governance from the perspective of an information technology-based company realizing the goal of supporting patient care.

  11. Japan's shift to a proactive defense architecture: Challenges faced by industry, government, and society

    OpenAIRE

    Chung, Hoyoon

    2017-01-01

    Approved for public release; distribution is unlimited As a result of the changing security environment in the Asia-Pacific, Japan is shifting to a more proactive defense policy, as outlined in the National Defense Program Guidelines (NDPG). This thesis investigates the challenges faced by Japan's industry, government, and society in meeting the NDPG objectives. To do this, this thesis probes the following problem areas: difficulties with indigenous production of weapons systems, inability...

  12. How should the completeness and quality of curated nanomaterial data be evaluated?

    Science.gov (United States)

    Marchese Robinson, Richard L.; Lynch, Iseult; Peijnenburg, Willie; Rumble, John; Klaessig, Fred; Marquardt, Clarissa; Rauscher, Hubert; Puzyn, Tomasz; Purian, Ronit; Åberg, Christoffer; Karcher, Sandra; Vriens, Hanne; Hoet, Peter; Hoover, Mark D.; Hendren, Christine Ogilvie; Harper, Stacey L.

    2016-05-01

    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated?Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict

  13. Government intervention in women entrepreneurship development: opportunities and challenges for Bumiputera women entrepreneurs (BWEs) in the handicraft industry in Malaysia

    OpenAIRE

    Topimin, S

    2015-01-01

    This study provides insights into the influences of government intervention on the business survival of Bumiputera women entrepreneurs in the handicraft industry in Malaysia in which Bumiputera refers to the indigenous people and the largest population group in the country. The Malaysian handicraft industry is largely made up of Bumiputera women entrepreneurs (BWEs). While very little is known about how BWEs in the handicraft industry in Malaysia manage the survival of their businesses, the i...

  14. Understanding the biological and environmental implications of nanomaterials

    Science.gov (United States)

    Lin, Sijie

    The last two decades have witnessed the discovery, development, and large-scale manufacturing of novel nanomaterials. While nanomaterials bring in exciting and extraordinary properties in all areas of materials, electronics, mechanics, and medicine, they also could generate potential adverse effects in biological systems and in the environment. The currently limited application of nanomaterials in biological and ecological systems results from the insufficient and often controversial data on describing the complex behaviors of nanomaterials in living systems. The purpose of this dissertation intends to fill such a knowledge void with methodologies from the disciplines of biophysics, biology, and materials science and engineering. Chapter 1 of this dissertation provides a comprehensive review on the structures and properties of carbon nanomaterials (CBNMs), metal oxides, and quantum dots (QDs). This chapter also details the state-of-the-art on the biological applications, ecological applications, and toxicity of nanomaterials. With Chapter 1 serving as a background, Chapters 2-5 present my PhD research, an inquiry on the fate of nanomaterials in biological and ecological systems, on the whole organism and cellular levels. Specifically, CBNMs are introduced to rice plant seedlings and the uptake, translocation and generational transfer of fullerene C70 in the plant compartments are imaged and characterized. The interactions between CBNMs and rice plants on the whole organism level are initiated by the binding between CBNMs and natural organic matter (NOM), driven by the transpiration of water from the roots to the leaves of the plants and mediated by both the physiochemical properties of the CBNMs and plant physiology. In Chapter 3, semiconducting nanocrystals quantum dots (QDs) are introduced to green algae Chlamydomonas to probe the interactions of nanomaterials with ecological systems on the cellular level. The adsorption of QDs onto the algal cell wall is

  15. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    Science.gov (United States)

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  16. Surface engineering of graphene-based nanomaterials for biomedical applications.

    Science.gov (United States)

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  17. Smart nanomaterials for biomedics.

    Science.gov (United States)

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials.

  18. Financial risk of the biotech industry versus the pharmaceutical industry.

    Science.gov (United States)

    Golec, Joseph; Vernon, John A

    2009-01-01

    The biotech industry now accounts for a substantial and growing proportion of total R&D spending on new medicines. However, compared with the pharmaceutical industry, the biotech industry is financially fragile. This article illustrates the financial fragility of the biotech and pharmaceutical industries in the US and the implications of this fragility for the effects that government regulation could have on biotech firms. Graphical analysis and statistical tests were used to show how the biotech industry differs from the pharmaceutical industry. The two industries' characteristics were measured and compared, along with various measures of firms' financial risk and sensitivity to government regulation. Data from firms' financial statements provided accounting-based measures and firms' stock returns applied to a multifactor asset pricing model provided financial market measures. The biotech industry was by far the most research-intensive industry in the US, averaging 38% R&D intensity (ratio of R&D spending to total firm assets) over the past 25 years, compared with an average of 25% for the pharmaceutical industry and 3% for all other industries. Biotech firms exhibited lower and more volatile profits and higher market-related and size-related risk, and they suffered more negative stock returns in response to threatened government price regulation. Biotech firms' financial risks increase their costs of capital and make them more sensitive to government regulations that affect their financial prospects. As biotech products grow to represent a larger share of new medicines, general stock market conditions and government regulations could have a greater impact on the level of innovation of new medicines.

  19. Application of nanomaterials in the bioanalytical detection of disease-related genes.

    Science.gov (United States)

    Zhu, Xiaoqian; Li, Jiao; He, Hanping; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-12-15

    In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences. Copyright © 2015. Published by Elsevier B.V.

  20. Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence

    International Nuclear Information System (INIS)

    Gu Cuiping; Huang Jiarui; Ni Ning; Li Minqiang; Liu Jinhuai

    2008-01-01

    In this paper, enhanced fluorescence emissions were firstly investigated based on SnO 2 nanomaterial, and its application in the detection of DNA hybridization was also demonstrated. The microarray of SnO 2 nanomaterial was fabricated by the vapour phase transport method catalyzed by patterned Au nanoparticles on a silicon substrate. A probe DNA was immobilized on the substrate with patterned SnO 2 nanomaterial, respectively, by covalent and non-covalent linking schemes. When a fluorophore labelled target DNA was hybridized with a probe DNA on the substrate, fluorescence emissions were only observed on the surface of SnO 2 nanomaterial, which indicated the property of enhancing fluorescence signals from the SnO 2 nanomaterial. By comparing the different fluorescence images from covalent and non-covalent linking schemes, the covalent method was confirmed to be more effective for immobilizing a probe DNA. With the combined use of SnO 2 nanomaterial and the covalent linking scheme, the target DNA could be detected at a very low concentration of 10 fM. And the stability of SnO 2 nanomaterial under the experimental conditions was also compared with silicon nanowires. The findings strongly suggested that SnO 2 nanomaterial could be extensively applied in detections of biological samples with enhancing fluorescence property and high stability

  1. Copper-based nanomaterials for environmental decontamination - An overview on technical and toxicological aspects.

    Science.gov (United States)

    Khalaj, Mohammadreza; Kamali, Mohammadreza; Khodaparast, Zahra; Jahanshahi, Akram

    2018-02-01

    Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Development of risk-based nanomaterial groups for occupational exposure control

    Science.gov (United States)

    Kuempel, E. D.; Castranova, V.; Geraci, C. L.; Schulte, P. A.

    2012-09-01

    Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose-response data, based on standard testing, to systematically evaluate the nanomaterials' physical-chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.

  3. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of nanoparticles and nanomaterials biological approaches

    CERN Document Server

    Abdullaeva, Zhypargul

    2017-01-01

    This book covers biological synthesis approaches for nanomaterials and nanoparticles, including introductory material on their structure, phase compositions and morphology, nanomaterials chemical, physical, and biological properties. The chapters of this book describe in sequence the synthesis of various nanoparticles by microorganisms, bacteria, yeast, algae, and actynomycetes; plant and plant extract-based synthesis; and green synthesis methods. Each chapter provides basic knowledge on the synthesis of nanomaterials, defines fundamental terms, and aims to build a solid foundation of knowledge, followed by explanations, examples, visual photographs, schemes, tables and illustrations. Each chapter also contains control questions, problem drills, as well as case studies that clarify theory and the explanations given in the text. This book is ideal for researchers and advanced graduate students in materials engineering, biotechnology, and nanotechnology fields. As a reference book this work is also appropriate ...

  5. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    Science.gov (United States)

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Food decontamination using nanomaterials

    Science.gov (United States)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  7. Exploring release and recovery of nanomaterials from commercial polymeric nanocomposites

    International Nuclear Information System (INIS)

    Busquets-Fité, Martí; Puntes, Víctor; Fernandez, Elisabet; Janer, Gemma; Vilar, Gemma; Vázquez-Campos, Socorro; Zanasca, R; Citterio, C; Mercante, L

    2013-01-01

    Much concern has been raised about the risks associated with the broad use of polymers containing nanomaterials. Much is known about degradation and aging of polymers and nanomaterials independently, but very few studies have been done in order to understand degradation of polymeric nanocomposites containing nanomaterials and the fate of these nanomaterials, which may occur in suffering many processes such as migration, release and physicochemical modifications. Throughout the UE funded FP7 project NANOPOLYTOX, studies on the migration, release and alteration of mechanical properties of commercial nanocomposites due to ageing and weathering have been performed along with studies on the feasibility of recovery and recycling of the nanomaterials. The project includes the use as model nanocomposites of Polyamide-6 (PA), Polypropylene (PP) and Ethyl Vinyl Acetate (EVA) as polymeric matrix filled with a 3% in mass of a set of selected broadly used nanomaterials; from inorganic metal oxides nanoparticles (SiO2, TiO2 and ZnO) to multi-walled carbon nanotubes (MWCNT) and Nanoclays. These model nanocomposites were then treated under accelerated ageing conditions in climatic chamber. To determine the degree of degradation of the whole nanocomposite and possible processes of migration, release and modification of the nanofillers, nanocomposites were characterized by different techniques. Additionally, recovery of the nanomaterials fro m the polymeric matrix was addressed, being successfully achieved for PA and PP based nanocomposites. In the case of PA, dissolution of the polymeric matrix using formic acid and further centrifugation steps was the chosen approach, while for PP based nanocomposites calcination was performed.

  8. Center for Functional Nanomaterials (CFN)

    Data.gov (United States)

    Federal Laboratory Consortium — The CFN at Brookhaven National Laboratory focuses on understanding the chemical and physical response of nanomaterials to make functional materials such as sensors,...

  9. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  10. Final Report: ''Energetics of Nanomaterials''

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra; Ross, Nancy; Woodfield, Brian F

    2016-01-01

    Nanomaterials, solids with very small particle size, form the basis of new technologies that are revolutionizing fields such as energy, lighting, electronics, medical diagnostics, and drug delivery. These nanoparticles are different from conventional bulk materials in many ways we do not yet fully understand. This project focused on their structure and thermodynamics and emphasized the role of water in nanoparticle surfaces. Using a unique and synergistic combination of high-tech techniques-namely oxide melt solution calorimetry, cryogenic heat capacity measurements, and inelastic neutron scattering-this work has identified differences in structure, thermodynamic stability, and water behavior on nanoparticles as a function of composition and particle size. The systematics obtained increase the fundamental understanding needed to synthesize, retain, and apply these technologically important nanomaterials and to predict and tailor new materials for enhanced functionality, eventually leading to a more sustainable way of life. Highlights are reported on the following topics: surface energies, thermochemistry of nanoparticles, and changes in stability at the nanoscale; heat capacity models and the gapped phonon spectrum; control of pore structure, acid sites, and thermal stability in synthetic γ-aluminas; the lattice contribution is the same for bulk and nanomaterials; and inelastic neutron scattering studies of water on nanoparticle surfaces.

  11. Governance and regulation of the tourism industry: An internet marketing perspective

    Directory of Open Access Journals (Sweden)

    Lebambo, M.

    2016-05-01

    Full Text Available The purpose of this qualitative study is to establish governance and regulation issues pertaining to Internet marketing approaches within the South African tourism sector. The study focuses on the norms and practices of Internet marketing among small-scale lodging establishments in Bushbuckridge – a small tourist town in northeast South Africa. In-depth interviews were collected from eight participating bed and breakfast (B&B owners. Findings revealed that, while Internet awareness was quite high, only a few B&Bs utilised the Internet for marketing. Participants cited lack of clear industry guidelines on Internet marketing approaches as well as limited Internet experience, among others, as barriers to adoption. Implications and recommendations of the study are presented within the ambit of the existing literature

  12. Octanol-water distribution of engineered nanomaterials.

    Science.gov (United States)

    Hristovski, Kiril D; Westerhoff, Paul K; Posner, Jonathan D

    2011-01-01

    The goal of this study was to examine the effects of pH and ionic strength on octanol-water distribution of five model engineered nanomaterials. Distribution experiments resulted in a spectrum of three broadly classified scenarios: distribution in the aqueous phase, distribution in the octanol, and distribution into the octanol-water interface. Two distribution coefficients were derived to describe the distribution of nanoparticles among octanol, water and their interface. The results show that particle surface charge, surface functionalization, and composition, as well as the solvent ionic strength and presence of natural organic matter, dramatically impact this distribution. Distributions of nanoparticles into the interface were significant for nanomaterials that exhibit low surface charge in natural pH ranges. Increased ionic strengths also contributed to increased distributions of nanoparticle into the interface. Similarly to the octanol-water distribution coefficients, which represent a starting point in predicting the environmental fate, bioavailability and transport of organic pollutants, distribution coefficients such as the ones described in this study could help to easily predict the fate, bioavailability, and transport of engineered nanomaterials in the environment.

  13. The Government-University-Industry Research Roundtable. Annual reports for 1997, 1998, 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-12-31

    The Roundtable was created in 1984 to provide a unique forum for dialog among top government, university, and industry leaders of the national science and technology enterprise. The purpose is to facilitate personal working relationships and exchange of ideas regarding issues, problems, and promising opportunities that are facing those charged with developing and deploying science and technology resources. These annual reports begin by describing the purpose, structure, and mode of operation of the Roundtable. There follow sections devoted to the council activities, major projects, and follow-up planning, and the activities of the Roundtable working groups. Meeting agendas and publications lists are also included.

  14. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 1. Nanochemistry and nanomaterials

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 1 - Nanochemistry and nanomaterials) there are the abstracts concerning the different methods of preparation of various inorganic and organic nanomaterials, their structure and use [ru

  15. In Situ Formation of Carbon Nanomaterials on Bulk Metallic Materials

    Directory of Open Access Journals (Sweden)

    J. Y. Xu

    2014-01-01

    Full Text Available Carbon nanomaterials were synthesized in situ on bulk 316L stainless steel, pure cobalt, and pure nickel by hybrid surface mechanical attrition treatment (SMAT. The microstructures of the treated samples and the resulted carbon nanomaterials were investigated by SEM and TEM characterizations. Different substrates resulted in different morphologies of products. The diameter of carbon nanomaterials is related to the size of the nanograins on the surface layer of substrates. The possible growth mechanism was discussed. Effects of the main parameters of the synthesis, including the carbon source and gas reactant composition, hydrogen, and the reaction temperature, were studied. Using hybrid SMAT is proved to be an effective way to synthesize carbon nanomaterials in situ on surfaces of metallic materials.

  16. Optical Properties of Hybrid Nanomaterials

    Indian Academy of Sciences (India)

    owner

    K. George Thomas. Photosciences & Photonics Group. National Institute for Interdisciplinary. Science and Technology (NIIST), CSIR,. Trivandrum- 695 019, INDIA. (kgt@vsnl.com). Optical Properties of Hybrid. Nanomaterials ...

  17. Corporate Governance and its Impact on Firm Performance and Risk in Food and Beverages Industry: Empirical Analysis on Dutch Lady Berhad

    OpenAIRE

    Erizal, Nurulhidayu

    2017-01-01

    The main objective of this study was to investigate the relationship between Corporate Governance and its impaction firm performance and risk in food and beverage industry. Specifically, this study examined liquidity risk, credit risk and leverage and how they affect to the Corporate Governance. For the firm performance was measured with using Return on Asset (ROA). In this study it found that a strong relationship exists between the Corporate Governance practices under study and the firm’s f...

  18. 78 FR 36784 - Survey of Nanomaterial Risk Management Practices

    Science.gov (United States)

    2013-06-19

    ...-0010, Docket Number NIOSH-265] Survey of Nanomaterial Risk Management Practices AGENCY: National...), Department of Health and Human Services (HHS). ACTION: Proposed NIOSH Survey of Nanomaterial Risk Management... questions addressing risk management practices for ENMs? (5) What should be the maximum amount of time...

  19. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  20. Relationship between Saskatchewan government regulatory agencies and the oil and gas industry

    International Nuclear Information System (INIS)

    Lechner, L.J.; Mathieson, B.

    1998-01-01

    The roles and responsibilities of various government agencies as they interact with the oil and gas industry in Saskatchewan were described. The regulatory agencies featured in this paper were Saskatchewan Energy and Mines (SEM), Saskatchewan Environment and Resource Management (SERM), and Saskatchewan Agriculture and Food (SAF). The management of land sales, seismic activities, exploration and oil and gas production activities were reviewed. While each of the agencies has a different mandate, they have a common goal regarding petroleum resources, and that is to ensure that the oil and gas industry carries out its activities in a sustainable manner while protecting and conserving the environment. The mandate of SEM is to facilitate the discovery, development and use of Saskatchewan's energy and mineral resources. SERM's mandate is to manage, enhance and protect Saskatchewan's natural and environmental resources such as fish, wildlife, lands, forests, parks, air, water and soil, for conservation, recreation, social and economic purposes. The mandate of SAF is to manage crown land in the province and to control surface access to these lands

  1. Nanomaterials for fresh-keeping and sterilization in food preservation.

    Science.gov (United States)

    Liu, Dongfang; Gu, Ning

    2009-06-01

    Food sterilizing and antistaling technologies are very important to the public's health and safety and have been attracting more and more attentions. In the past several years, new development chance was created by the introduction of nanomaterials to this critical field. Nanomaterials possess lots of outstanding properties, such as unique quantum size effect, large surface area and catalytic properties, which jointly facilitate high effective fresh-keeping, and thus were considered as promising materials in food sterilization and antistale. This review article focuses on the patented applications of nanomaterials as food biocidal agents, bacteriostatic agents, catalysts and carriers for antistaling agents.

  2. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    Directory of Open Access Journals (Sweden)

    Jiali Ying

    2015-10-01

    Full Text Available Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests.

  3. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  4. Entrepreneurial orientation and corporate governance structures at the firm level in the South African oil and gas industry

    Directory of Open Access Journals (Sweden)

    Vincent B. Molokwu

    2013-03-01

    Full Text Available Orientation: Corporate governance systems (CGS have been observed as one of the most important structures and mechanisms that regulate the relationships between executives and shareholders. By having well-defined and established CGS, company board members and executives are able to shape company vision and increase managerial commitment towards formulating strategies that espouse an entrepreneurial orientation (EO. Firms with high levels of EO tend to be innovative and encourage creative initiatives in new products and technology developments. Research purpose: In an emerging economy such as South Africa, one of the primary goals of an organisation is growth and good governance, which can be achieved through wellgoverned structures and continuous innovation in the face of challenges. This study identified potential links between the multidimensional constructs of CGS and EO at the firm level in the South African oil and gas industry. Motivation for the study: One of the greatest challenges faced by organisations when implementing CGS is to ensure compliance. Research design, approach and method: Board members and senior decision-makers were surveyed in the South African oil and gas industry, using a structured questionnaire. A series of correlational analyses were used to determine the strength of relationships between the dimensions of EO and CGS. Main findings: By drawing extensively on existing theory on EO, this study found that the different dimensions of CGS have a significant and positive relationship with each of the EO dimensions – innovation, risk-taking and proactiveness. Practical/managerial implications: Corporate boards supportive of entrepreneurship must provide appropriate reward systems, top management support, explicit goals and appropriate organisational values which signal to employees that entrepreneurial behaviour action is desirable. Practitioners should scrutinise their governance structures in their organisations to

  5. Entrepreneurial orientation and corporate governance structures at the firm level in the South African oil and gas industry

    Directory of Open Access Journals (Sweden)

    Vincent B. Molokwu

    2013-03-01

    Full Text Available Orientation: Corporate governance systems (CGS have been observed as one of the most important structures and mechanisms that regulate the relationships between executives and shareholders. By having well-defined and established CGS, company board members and executives are able to shape company vision and increase managerial commitment towards formulating strategies that espouse an entrepreneurial orientation (EO. Firms with high levels of EO tend to be innovative and encourage creative initiatives in new products and technology developments.Research purpose: In an emerging economy such as South Africa, one of the primary goals of an organisation is growth and good governance, which can be achieved through wellgoverned structures and continuous innovation in the face of challenges. This study identified potential links between the multidimensional constructs of CGS and EO at the firm level in the South African oil and gas industry.Motivation for the study: One of the greatest challenges faced by organisations when implementing CGS is to ensure compliance.Research design, approach and method: Board members and senior decision-makers were surveyed in the South African oil and gas industry, using a structured questionnaire. A series of correlational analyses were used to determine the strength of relationships between the dimensions of EO and CGS.Main findings: By drawing extensively on existing theory on EO, this study found that the different dimensions of CGS have a significant and positive relationship with each of the EO dimensions – innovation, risk-taking and proactiveness.Practical/managerial implications: Corporate boards supportive of entrepreneurship must provide appropriate reward systems, top management support, explicit goals and appropriate organisational values which signal to employees that entrepreneurial behaviour action is desirable. Practitioners should scrutinise their governance structures in their organisations to ensure

  6. 4th International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2017-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 4th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2016) held in Lviv, Ukraine on August 24-27, 2016. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engineering and medical applications Co...

  7. 3rd International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2016-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 3rd International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2015) held in Lviv, Ukraine on August 26-30, 2015. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), Ivan Franko National University of Lviv (Ukraine), University of Turin (Italy), Pierre and Marie Curie University (France), and European Profiles A.E. (Greece). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engine...

  8. Over a barrel: Government influence and mergers and acquisitions in the petroleum industry. The case of Sun Oil Company, 1938-1980

    Energy Technology Data Exchange (ETDEWEB)

    Powers, W.P. Jr.

    1993-01-01

    This dissertation examines the nature of government business relations, as perceived by the owners and managers of the Sun Oil Company, a large integrated oil and gas producer, transporter, refiner, and marketer. Sun has had a long and profitable career in the oil industry, success which came despite a complex, often bitter relationship with government in its regulatory and antitrust capacity. The founding Pew family has historically been quite outspoken in its opposition to what they perceived to be the government's chronic, unwelcome intrusion into the affairs of business. Sun's almost one hundred year history can be readily divided into two distinct phases. The first, the period from 1938-1947, could best be characterized as the time when Sun Company officials fought bitterly against what they thought to be excessive government domination over their industry, fearing either the government's outright takeover, or its imposition of burdensome restrictions. After freeing themselves from the government's oppression, Sun management then set out to build a growing, profitable oil concern. From 1938 to the present, Sun has undertaken several transactions that have established the firm as a highly successful petroleum company, including a merger, an aborted takeover, and a successful acquisition. Sun's survival in an endeavor where many perish, either purchased or driven out, provides the focus of this dissertation.

  9. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials.

    Science.gov (United States)

    Oomen, Agnes G; Bleeker, Eric A J; Bos, Peter M J; van Broekhuizen, Fleur; Gottardo, Stefania; Groenewold, Monique; Hristozov, Danail; Hund-Rinke, Kerstin; Irfan, Muhammad-Adeel; Marcomini, Antonio; Peijnenburg, Willie J G M; Rasmussen, Kirsten; Jiménez, Araceli Sánchez; Scott-Fordsmand, Janeck J; van Tongeren, Martie; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-10-26

    Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS), as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-)activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics) and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments.

  10. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials

    Directory of Open Access Journals (Sweden)

    Agnes G. Oomen

    2015-10-01

    Full Text Available Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS, as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments.

  11. The industrial policy experience of the electronics industry in Malaysia

    OpenAIRE

    Rasiah, Rajah

    2015-01-01

    Despite the use of industrial policies to stimulate economic growth by several successful developers, latecomers have faced mixed experiences. Hence, this paper analyses the industrial policy experience of the electronics industry in Malaysia. A blend of institutions have guided technological upgrading in the industry, especially in the state of Penang. Smooth co-ordination between the state government, multinational corporations, national firms, and the federal government helped stimulate te...

  12. Third Space Weather Summit Held for Industry and Government Agencies

    Science.gov (United States)

    Intriligator, Devrie S.

    2009-12-01

    The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.

  13. Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods

    DEFF Research Database (Denmark)

    Dudkiewicz, Agnieszka; Boxall, Alistair B. A.; Chaudhry, Qasim

    2015-01-01

    Electron microscopy is a recognized standard tool for nanomaterial characterization, and recommended by the European Food Safety Authority for the size measurement of nanomaterials in food. Despite this, little data have been published assessing the reliability of the method, especially for size...... measurement of nanomaterials characterized by a broad size distribution and/or added to food matrices. This study is a thorough investigation of the measurement uncertainty when applying electron microscopy for size measurement of engineered nanomaterials in foods. Our results show that the number of measured...

  14. Influence of Nanomaterial Compatibilization Strategies on Polyamide Nanocomposites Properties and Nanomaterial Release during the Use Phase.

    Science.gov (United States)

    Fernández-Rosas, Elisabet; Vilar, Gemma; Janer, Gemma; González-Gálvez, David; Puntes, Victor; Jamier, Vincent; Aubouy, Laurent; Vázquez-Campos, Socorro

    2016-03-01

    The incorporation of small amounts of nanofillers in polymeric matrices has enabled new applications in several industrial sectors. The nanofiller dispersion can be improved by modifying the nanomaterial (NM) surface or predispersing the NMs to enhance compatibility. This study evaluates the effect of these compatibilization strategies on migration/release of the nanofiller and transformation of polyamide-6 (PA6), a thermoplastic polymer widely used in industry during simulated outdoors use. Two nanocomposites (NCs) containing SiO2 nanoparticles (NPs) with different surface properties and two multiwalled carbon nanotube (MWCNT) NCs obtained by different addition methods were produced and characterized, before and after accelerated wet aging conditions. Octyl-modified SiO2 NPs, though initially more aggregated than uncoated SiO2 NPs, reduced PA6 hydrolysis and, consequently, NM release. Although no clear differences in dispersion were observed between the two types of MWCNT NCs (masterbatch vs direct addition) after manufacture, the use of the MWCNT masterbatch reduced PA6 degradation during aging, preventing MWCNT accumulation on the surface and further release or potential exposure by direct contact. The amounts of NM released were lower for MWCNTs (36 and 108 mg/m(2)) than for SiO2 NPs (167 and 730 mg/m(2)), being lower in those samples where the NC was designed to improve the nanofiller-matrix interaction. Hence, this study shows that optimal compatibilization between NM and matrix can improve NC performance, reducing polymer degradation and exposure and/or release of the nanofiller.

  15. Upstream petroleum industry financial conditions and distribution of industry generated revenue

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A review of profitability of Canada's upstream petroleum industry and of the direct fiscal burden (all payments to governments) on the industry was presented based on a study conducted during June-September 1996. Information was collected from 200 companies that represent over 90 per cent of the total oil and gas production revenue and most of the refining and fuel sales. Part 2 of the review examined taxes and other payments to government by 58 companies. It was concluded that the Canadian oil and gas industry is a major contributor of taxes to all three levels of government. While the industry has made concerted efforts to reduce its controllable costs and increase its profitability, it is claimed that Canadian petroleum industry profit margins are extremely low. A plea was made to all levels of governments to consider the highly competitive nature of the industry, the constantly changing market forces, shifts in world politics, regulatory trends, currency values and technology that affect the industry, and the high risks inherent in exploration and development prior to establishing ever-increasing claims on the industry's dwindling profits. 22 tabs., 17 figs

  16. Sunlight-induced Transformations of Graphene-based Nanomaterials in Aquatic Environments

    Science.gov (United States)

    Graphene-based nanomaterials and other related carbon nanomaterials (CNMs) can be released from products during their life cycles. Upon entry into aquatic environments, they are potentially transformed by photochemical reactions, oxidation reactions and biological processes, all ...

  17. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  18. Cooperative nanomaterials systems for cancer diagnosis and therapeutics

    Science.gov (United States)

    Park, Ji Ho

    The unique electromagnetic and biologic properties of nanomaterials are being harnessed to build powerful new medical technologies. Particularly, there have been recently increasing interests in cancer nanotechnology, wherein nanomaterials play an important role in ultrasensitive imaging, targeting, and therapy of cancer. However, these nanomaterials typically function as individual units and are designed to independently perform their tasks. In this dissertation, new cooperative nanosystems consisting of two distinct nanomaterials that work together to target, identify, or treat tumors in vivo were studied. In the first two chapters, the synthesis of worm-shaped dextran-coated iron oxide nanoparticles (nanoworms, NW) exhibiting substantial in vivo circulation times and significant tumor targeting when coated with tumor-homing peptides were studied. NWs are also found to display a greater magnetic resonance (MR) response than the spherical nanoparticles. Next, two types of multifunctional nanoparticles were fabricated for simultaneous detection and treatment of cancer. Micellar hybrid nanoparticles (MHN) that contain magnetic nanoparticles, quantum dots, and an anti-cancer drug doxorubicin (DOX) within a single PEG-modified phospholipid micelle were first prepared. Simultaneous multimodal imaging (MR and fluorescence) and targeted drug delivery in vitro and in vivo was performed using DOX-incorporated targeted MHN. Secondly, luminescent porous silicon nanoparticles (LPSINP) that were drug-loadable, biodegradable and relatively non-toxic were prepared. In contrast to most inorganic nanomaterials, LPSINP were degraded in vivo in a relatively short time with no noticeable toxicity. The clearance and degradation of intravenously injected LPSINP in the bladder, liver, and spleen were established by whole-body fluorescence imaging. Finally, two types of cooperative nanomaterials systems to amplify targeting and deliver drugs efficiently to regions of tumor invasion were

  19. Biomarkers of nanomaterial exposure and effect: current status

    Science.gov (United States)

    Iavicoli, Ivo; Leso, Veruscka; Manno, Maurizio; Schulte, Paul A.

    2014-03-01

    Recent advances in nanotechnology have induced a widespread production and application of nanomaterials. As a consequence, an increasing number of workers are expected to undergo exposure to these xenobiotics, while the possible hazards to their health remain not being completely understood. In this context, biological monitoring may play a key role not only to identify potential hazards from and to evaluate occupational exposure to nanomaterials, but also to detect their early biological effects to better assess and manage risks of exposure in respect of the health of workers. Therefore, the aim of this review is to provide a critical evaluation of potential biomarkers of nanomaterial exposure and effect investigated in human and animal studies. Concerning exposure biomarkers, internal dose of metallic or metal oxide nanoparticle exposure may be assessed measuring the elemental metallic content in blood or urine or other biological materials, whereas specific molecules may be carefully evaluated in target tissues as possible biomarkers of biologically effective dose. Oxidative stress biomarkers, such as 8-hydroxy-deoxy-guanosine, genotoxicity biomarkers, and inflammatory response indicators may also be useful, although not specific, as biomarkers of nanomaterial early adverse health effects. Finally, potential biomarkers from "omic" technologies appear to be quite innovative and greatly relevant, although mechanistic, ethical, and practical issues should all be resolved before their routine application in occupational settings could be implemented. Although all these findings are interesting, they point out the need for further research to identify and possibly validate sensitive and specific biomarkers of exposure and effect, suitable for future use in occupational biomonitoring programs. A valuable contribution may derive from the studies investigating the biological behavior of nanomaterials and the factors influencing their toxicokinetics and reactivity. In

  20. Considerations on the EU definition of a nanomaterial: science to support policy making.

    Science.gov (United States)

    Bleeker, Eric A J; de Jong, Wim H; Geertsma, Robert E; Groenewold, Monique; Heugens, Evelyn H W; Koers-Jacquemijns, Marjorie; van de Meent, Dik; Popma, Jan R; Rietveld, Anton G; Wijnhoven, Susan W P; Cassee, Flemming R; Oomen, Agnes G

    2013-02-01

    In recent years, an increasing number of applications and products containing or using nanomaterials have become available. This has raised concerns that some of these materials may introduce new risks for humans or the environment. A clear definition to discriminate nanomaterials from other materials is prerequisite to include provisions for nanomaterials in legislation. In October 2011 the European Commission published the 'Recommendation on the definition of a nanomaterial', primarily intended to provide unambiguous criteria to identify materials for which special regulatory provisions might apply, but also to promote consistency on the interpretation of the term 'nanomaterial'. In this paper, the current status of various regulatory frameworks of the European Union with regard to nanomaterials is described, and major issues relevant for regulation of nanomaterials are discussed. This will contribute to better understanding the implications of the choices policy makers have to make in further regulation of nanomaterials. Potential issues that need to be addressed and areas of research in which science can contribute are indicated. These issues include awareness on situations in which nano-related risks may occur for materials that fall outside the definition, guidance and further development of measurement techniques, and dealing with changes during the life cycle. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The evolution of corporate governance in the global financial crisis: the case of Russian industrial firms

    Directory of Open Access Journals (Sweden)

    Ichiro Iwasaki

    2016-12-01

    Full Text Available In this paper, using a unique dataset of industrial firms obtained from enterprise surveys conducted across the Russian Federation in 2005 and 2009, we trace back structural changes in the corporate governance system before and after the global financial crisis. We also empirically examine the impacts of the crisis on the organization of boards of directors and audit systems. Our survey results reveal that, in the Russian industrial sector, the quality of corporate governance has been improved through the crisis. Furthermore, we found that, corresponding to the alignment hypothesis, in firms that decisively reformed their management and supervisory bodies in response to the 2008 financial shock, the total number of worker representative directors significantly declined, as did their proportion to all board members. On the other hand, we also found that, in firms that substantially reorganized their audit system to cope with the crisis, the independence of the audit system was undermined remarkably, corresponding to the expropriation hypothesis. Findings that management behaviors predicted by the two conflicting hypotheses are simultaneously detected—and that their targets are significantly different—deserve special mention.

  2. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

    Directory of Open Access Journals (Sweden)

    Buford Mary

    2009-12-01

    Full Text Available Abstract Background Titanium dioxide (TiO2 nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO2 (200 nm sphere is relatively inert when internalized into a biological model system (in vivo or in vitro. For this reason, TiO2 nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension Results TiO2 nanospheres, short ( 15 μm nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO2 nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO2 nanobelts interact with lung macrophages in a manner very similar to asbestos or silica. Conclusions These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.

  3. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  4. FROM ZERO-DIMENSIONAL TO 2-DIMENSIONAL CARBON NANOMATERIALS - part I: TYPES OF CNs

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2012-05-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. In this review paper are presented some of the most important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. The synthesis techniques are used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional CNs (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls.

  5. Development and In Vitro Toxicity Evaluation of Alternative Sustainable Nanomaterials

    Science.gov (United States)

    Novel nanomaterial types are rapidly being developed for the value they may add to consumer products without sufficient evaluation of implications for human health, toxicity, environmental impact and long-term sustainability. Nanomaterials made of metals, semiconductors and vario...

  6. Perspectives on the Emerging Applications of Multifaceted Biomedical Polymeric Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammed Gumel

    2015-01-01

    Full Text Available Biodegradable and biocompatible polymeric nanomaterials, serving as biomedical devices have garnered significant attention as a promising solution to therapeutic management of many chronic diseases. Despite their potentials, majority of the synthetic nanomaterials used in biomedical applications lack crucial properties, for example, ligand binding sites, responsiveness, and switchability to efficiently deliver intended drugs to the target site. Advancements in manipulating nanoscale geometry have incurred the incorporation of triggered release mechanism within the nanomaterials design. This expanded their potential applications beyond nanocarriers to theranostics exhibiting both tandem drug delivery and diagnostic capabilities. Additionally, it highlights possibilities to design nanomaterials that could translate chemical response(s to photometric display, thus making affordable biosensors and actuators readily available for biomedical exploitation. It is anticipated that, in the near future, these implementations could be made to access some of the most difficult therapy locations, for example, blood brain barrier to provide efficient management of Alzheimer, Huntington, and other neurodegenerative diseases. This review aims to serve as a reference platform by providing the readers with the overview of the recent advancements and cutting-edge techniques employed in the production and instrumentation of such nanomaterials.

  7. Biomedical Applications of Zinc Oxide Nanomaterials

    Science.gov (United States)

    Zhang, Yin; Nayak, Tapas R.; Hong, Hao; Cai, Weibo

    2013-01-01

    Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting, optical, and piezoelectric properties hence has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH groups, which can be readily functionalized by various surface decorating molecules. In this review article, we summarized the current status of the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging (which includes fluorescence, magnetic resonance, positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery, and biosensing of a wide array of molecules of interest. Research in biomedical applications of ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical translation. PMID:24206130

  8. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duleep, K. G. [ICF International, Fairfax, VA (United States); Upreti, Girish [Univ. of Tennessee, Knoxville, TN (United States)

    2011-05-15

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany,and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and nonautomotive applications.

  9. Theoretical and experimental study: the size dependence of decomposition thermodynamics of nanomaterials

    International Nuclear Information System (INIS)

    Cui, Zixiang; Duan, Huijuan; Li, Wenjiao; Xue, Yongqiang

    2015-01-01

    In the processes of preparation and application of nanomaterials, the decomposition reactions of nanomaterials are often involved. However, there is a dramatic difference in decomposition thermodynamics between nanomaterials and the bulk counterparts, and the difference depends on the size of the particles that compose the nanomaterials. In this paper, the decomposition model of a nanoparticle was built, the theory of decomposition thermodynamics of nanomaterials was proposed, and the relations of the size dependence of thermodynamic quantities for the decomposition reactions were deduced. In experiment, taking the thermal decomposition of nano-Cu 2 (OH) 2 CO 3 with different particle sizes (the range of radius is at 8.95–27.4 nm) as a system, the reaction thermodynamic quantities were determined, and the regularities of size dependence of the quantities were summarized. These experimental regularities consist with the above thermodynamic relations. The results show that there is a significant effect of the size of particles composing a nanomaterial on the decomposition thermodynamics. When all the decomposition products are gases, the differences in thermodynamic quantities of reaction between the nanomaterials and the bulk counterparts depend on the particle size; while when one of the decomposition products is a solid, the differences depend on both the initial particle size of the nanoparticle and the decomposition ratio. When the decomposition ratio is very small, these differences are only related to the initial particle size; and when the radius of the nanoparticles approaches or exceeds 10 nm, the reaction thermodynamic functions and the logarithm of the equilibrium constant are linearly associated with the reciprocal of radius, respectively. The thermodynamic theory can quantificationally describe the regularities of the size dependence of thermodynamic quantities for decomposition reactions of nanomaterials, and contribute to the researches and the

  10. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping

    Science.gov (United States)

    Landsiedel, Robert; Ma-Hock, Lan; Wiench, Karin; Wohlleben, Wendel; Sauer, Ursula G.

    2017-05-01

    As presented at the 2016 TechConnect World Innovation Conference on 22-25 May 2016 in Washington DC, USA, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) `Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) consisting of three tiers to assign nanomaterials to four main groups with possible further subgrouping to refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways: intrinsic material properties and system-dependent properties (that depend upon the nanomaterial's respective surroundings), biopersistence, uptake and biodistribution, and cellular and apical toxic effects. Use, release, and exposure route may be applied as `qualifiers' to determine if, e.g., nanomaterials cannot be released from products, which may justify waiving of testing. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, and (4) active nanomaterials. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies covering carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes below 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. The DF4nanoGrouping facilitates grouping and targeted testing of nanomaterials. It ensures that sufficient data for the risk assessment of a nanomaterial are available, and it fosters the use of non-animal methods. No studies are performed that do not provide crucial data. Thereby, the DF4nanoGrouping serves to save both animals and resources.

  11. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  12. Globalisation, corporate governance and the construction industry

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2004-11-01

    Full Text Available , corporate governance, ethics, globalisation Introduction One of the characteristics of globalisation is the ease of engaging in business transactions in global financial markets. The exploration of these markets has, however, exposed a high degree.... The search for core values is manifest in the inclusion of social issues like poverty alleviation, job creation, human rights, corporate governance, and ethics and spirituality onto the global agenda. The second struggle – determining a management model...

  13. Oil price, government policies fuel industry's shift from U.S

    International Nuclear Information System (INIS)

    Silas, C.J.

    1991-01-01

    The world exploration outlook starts with the outlook for the price of oil. This paper reports that oil prices and government policies for fuel industries shift from the U.S. If we've learned anything in the past decade it's that we're not very good at predicting oil prices. We can build economic models of supply and demand but we can't build models for political events in the Middle East or the actions of someone like Saddam Hussein. As we look to 2000 our best estimate is that oil will remain at about $20 for the near term and move upward very gradually during the rest of the decade. Of course, rising demand eventually should cause oil prices to break out and show some strength. But not soon. We don't see oil prices overcoming inflation until the latter part of the decade. And we aren't expecting oil prices much above $25 in inflation adjusted terms until the next century

  14. Agricultural Communities: The Interrelationship of Agriculture, Business, Industry, and Government in the Rural Economy. A Symposium (Washington, DC. May 19-20, 1983).

    Science.gov (United States)

    Library of Congress, Washington, DC. Congressional Research Service.

    Experts from government, academia, and interest groups met to discuss and explore the impact of changes in agriculture, industry, and government in shaping events in rural agricultural communities. Texts of 15 of the 18 papers are reproduced in the proceedings, along with the letter of submittal, overview, an agenda, and a list of presenters and…

  15. Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2010-09-01

    Full Text Available The present work provides a comprehensive overview of the recent progress of research work toward developing new one dimensional (1-D ceria (CeO2 nanomaterials. The review has been classified into three parts: the preparation procedures with identification of the existing different dimensional ceria nanomaterials, the formation mechanisms, and an analysis of their applications. From literature survey, it is inaugurated that the fundamental structures of the ceria nanomaterials constructively dominate their properties and applications. In addition, this work will also provide a perspective on the future technical trends for the development of different dimensional CeO2 nanomaterials.

  16. Using Mung Beans as a Simple, Informative Means to Evaluate the Phytotoxicity of Engineered Nanomaterials and Introduce the Concept of Nanophytotoxicity to Undergraduate Students

    Science.gov (United States)

    Ross, Shailise S.; Owen, Matthew J.; Pedersen, Brian P.; Liu, Gang-yu; Miller, William J. W.

    2016-01-01

    This work presents a lecture and lab series that focuses on teaching the concept of nanophytotoxicity to undergraduate students in a relatively simple experiment. In this experiment, students evaluated the phytotoxicity of engineered nanomaterials (ENMs) using mung beans (i.e., "Vigna radiata") and industrially relevant, commercially…

  17. Why the Immune System Should Be Concerned by Nanomaterials?

    Directory of Open Access Journals (Sweden)

    Marc J. Pallardy

    2017-05-01

    Full Text Available Particles possess huge specific surface area and therefore nanomaterials exhibit unique characteristics, such as special physical properties and chemical hyper-reactivity, which make them particularly attractive but also raise numerous questions concerning their safety. Interactions of nanomaterials with the immune system can potentially lead to immunosuppression, hypersensitivity (allergy, immunogenicity and autoimmunity, involving both innate and adaptive immune responses. Inherent physical and chemical NP characteristics may influence their immunotoxicity, i.e., the adverse effects that can result from exposure. This review will focus on the possible interaction of nanomaterials including protein aggregates with the innate immune system with specific emphasis on antigen-presenting cells, i.e., dendritic cells, macrophages and monocytes.

  18. Engineering nanomaterials-based biosensors for food safety detection.

    Science.gov (United States)

    Lv, Man; Liu, Yang; Geng, Jinhui; Kou, Xiaohong; Xin, Zhihong; Yang, Dayong

    2018-05-30

    Food safety always remains a grand global challenge to human health, especially in developing countries. To solve food safety pertained problems, numerous strategies have been developed to detect biological and chemical contaminants in food. Among these approaches, nanomaterials-based biosensors provide opportunity to realize rapid, sensitive, efficient and portable detection, overcoming the restrictions and limitations of traditional methods such as complicated sample pretreatment, long detection time, and relying on expensive instruments and well-trained personnel. In this review article, we provide a cross-disciplinary perspective to review the progress of nanomaterials-based biosensors for the detection of food contaminants. The review article is organized by the category of food contaminants including pathogens/toxins, heavy metals, pesticides, veterinary drugs and illegal additives. In each category of food contaminant, the biosensing strategies are summarized including optical, colorimetric, fluorescent, electrochemical, and immune- biosensors; the relevant analytes, nanomaterials and biosensors are analyzed comprehensively. Future perspectives and challenges are also discussed briefly. We envision that our review could bridge the gap between the fields of food science and nanotechnology, providing implications for the scientists or engineers in both areas to collaborate and promote the development of nanomaterials-based biosensors for food safety detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Nanotechnology in reproductive medicine: emerging applications of nanomaterials.

    Science.gov (United States)

    Barkalina, Natalia; Charalambous, Charis; Jones, Celine; Coward, Kevin

    2014-07-01

    In the last decade, nanotechnology has been extensively introduced for biomedical applications, including bio-detection, drug delivery and diagnostic imaging, particularly in the field of cancer diagnostics and treatment. However, there is a growing trend towards the expansion of nanobiotechnological tools in a number of non-cancer applications. In this review, we discuss the emerging uses of nanotechnology in reproductive medicine and reproductive biology. For the first time, we summarise the available evidence regarding the use of nanomaterials as experimental tools for the detection and treatment of malignant and benign reproductive conditions. We also present an overview of potential applications for nanomaterials in reproductive biology, discuss the benefits and concerns associated with their use in a highly delicate system of reproductive tissues and gametes, and address the feasibility of this innovative and potentially controversial approach in the clinical setting and for investigative research into the mechanisms underlying reproductive diseases. This unique review paper focuses on the emerging use of nanotechnology in reproductive medicine and reproductive biology, highlighting the role of nanomaterials in the detection and treatment of various reproductive conditions, keeping in mind the benefits and potential concerns associated with nanomaterial use in the delicate system of reproductive tissue and gametes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Development of a Control Banding Tool for Nanomaterials

    Directory of Open Access Journals (Sweden)

    M. Riediker

    2012-01-01

    Full Text Available Control banding (CB can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial toxicology: translocation across biological barriers, fibrous nature, solubility, and reactivity. Already existing classifications specific to the nanomaterial can be used “as is.” Otherwise, the toxicity of bulk or analogous substances gives an initial hazard band, which is increased if the substance is not easily soluble or if it has a higher reactivity than the substance. The emission potential bands are defined by the nanomaterials' physical form and process characteristics. Quantities, frequencies, and existing control measures are taken into account during the definition of the action plan. Control strategies range from room ventilation to full containment with expert advice. This CB approach, once validated, can be easily embedded in risk management systems. It allows integrating new toxicity data and needs no exposure data.

  1. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

    Science.gov (United States)

    Navya, P N; Daima, Hemant Kumar

    2016-01-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  2. Graphene-polymer-enzyme hybrid nanomaterials for biosensors

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a general chemical method for the synthesis of biocompatible hybrid nanomaterials which can be used in the development of new- type enzyme based biosensors. A one-step facile method is presented, in which polyethylenimine (PEI) serves as both a reducing agent for the redu......The invention relates to a general chemical method for the synthesis of biocompatible hybrid nanomaterials which can be used in the development of new- type enzyme based biosensors. A one-step facile method is presented, in which polyethylenimine (PEI) serves as both a reducing agent...

  3. Institutional environment and job well-being on the governance of the tourism industry: a European study

    Directory of Open Access Journals (Sweden)

    Deybbi Cuéllar\\u2011Molina

    2015-01-01

    Full Text Available The distribution of wealth generated in the tourism industry among the labor force should be considered one out of the facets of the social tourism sustainability. Literature highlights that tourism firms’ practices have an impact on labor well - being. However, it also warns that national institutions may condition the adoption of these practices by firms, and so institutions might become a challenge for well - being. This study analyzes the effect of institutions on well - being, and particularly it differentiates between employees and entrepreneurs as human resources in the tourism industry. The empirical analysis carried out on a sample of 1,352 employees and 302 entrepreneurs located in 27 European countries, confirms the direct effect of national institutions on well - being at work. Because institutions would have affect human resources’ well - being, the tourism authorities should pay attention to the governance of this industry.

  4. Synergetic Effects of Combined Nanomaterials for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Michael Holzinger

    2017-05-01

    Full Text Available Nanomaterials have become essential components for the development of biosensors since such nanosized compounds were shown to clearly increase the analytical performance. The improvements are mainly related to an increased surface area, thus providing an enhanced accessibility for the analyte, the compound to be detected, to the receptor unit, the sensing element. Nanomaterials can also add value to biosensor devices due to their intrinsic physical or chemical properties and can even act as transducers for the signal capture. Among the vast amount of examples where nanomaterials demonstrate their superiority to bulk materials, the combination of different nano-objects with different characteristics can create phenomena which contribute to new or improved signal capture setups. These phenomena and their utility in biosensor devices are summarized in a non-exhaustive way where the principles behind these synergetic effects are emphasized.

  5. Why the Distilled Spirits Industry Council of Australia is not a credible partner for the Australian government in making alcohol policy.

    Science.gov (United States)

    Munro, Geoffrey

    2012-06-01

    In 2008 the Australian government increased the excise rate on ready-to-drink premixed spirits or 'alcopops' by 70% to reduce their attraction to young people. A campaign against the decision was led by the Distilled Spirits Industry Council of Australia, whose members include representatives of the world's largest spirits producers and which aspires to partner the government in making alcohol policy. Distilled Spirits Industry Council of Australia's central thesis appeared to lack substance and sincerity: first, it promoted industry data that were evidently premature and misleading; second, it claimed ready-to-drinks were a safer alternative to the consumption of full-strength spirits because spirits pose a threat to drinkers due to their higher alcoholic content. For spirits producers to concede that drinking spirits is generically hazardous may be unprecedented and contradicts the spirits industry's long-standing opposition to the introduction of health warnings on product labels. Although that admission did not survive the resolution of the case, the effect may be profound, as it might justify the demand for greater control of the labelling and marketing of spirits, and reduce the credibility of spirits producers, and the broader alcohol industry, on matters of policy. © 2011 Australasian Professional Society on Alcohol and other Drugs.

  6. Regulatory Governance

    DEFF Research Database (Denmark)

    Kjær, Poul F.; Vetterlein, Antje

    2018-01-01

    Regulatory governance frameworks have become essential building blocks of world society. From supply chains to the regimes surrounding international organizations, extensive governance frameworks have emerged which structure and channel a variety of social exchanges, including economic, political...... by the International Transitional Administrations (ITAs) in Kosovo and Iraq as well as global supply chains and their impact on the garment industry in Bangladesh....

  7. THE ROLE OF NANOMATERIALS IN COSMETICS: NATIONAL AND INTERNATIONAL LEGISLATIVE ASPECTS

    Directory of Open Access Journals (Sweden)

    Adriana Melo

    2015-05-01

    Full Text Available Nanotechnology is currently one of the fastest growing scientific fields. The products of this science have become part of our everyday lives. However, to date, regulatory agencies have not yet established a single definition for nanomaterials and nanotechnology. Therefore, each country has its own definitions and legislation to control products containing nanomaterials. Being relatively new materials, there are no long-term studies showing their impact on human health and the environment. Consequently, countries control the amount of nanomaterials present in cosmetics, allowing the end consumer to choose which cosmetic to use, by choosing products with or without nanomaterials. Therefore, the primary objective of this study was to identify the most used nanomaterials in cosmetics and verify whether these formulations are in accordance with the laws in force in the United States, the European Union and Brazil, thereby determining if the cosmetics on the market are in line with the existing laws in these three economic powers. This study is unique and will contribute to furthering the discussion on existing laws pertinent to the use of nanotechnology in cosmetics.

  8. The Impact of Government Subsidies on Private R&D and Firm Performance: Does Ownership Matter in China’s Manufacturing Industry?

    Directory of Open Access Journals (Sweden)

    Zhenji Jin

    2018-06-01

    Full Text Available Government subsidies as a policy instrument are used to alleviate market failure in research and development (R&D activities. We aim to understand the influence of government subsidies on enterprises’ R&D investment and performance. We are also interested in examining how the attributes of enterprise ownership act as a moderating variable for the relationship between government subsidies, R&D investment, and firm performance. We use firm-level data on China’s manufacturing listed companies from 2011 to 2015. The results show that receiving government subsidies improves private R&D investment and firm performance, and state-owned enterprises (SOEs can obtain more subsidies than private-owned enterprises (POEs. However, the impact of government subsidies on private R&D investment is stronger in POEs than in SOEs of China. In additional analyses, we also examine this relationship by industry, region, subsidy intensity, and R&D intensity. This study has important policy implications for regulators to improve the effectiveness of government subsidies.

  9. Applications of Nanomaterials in Dental Science: A Review.

    Science.gov (United States)

    Sharan, Jitendra; Singh, Shivani; Lale, Shantanu V; Mishra, Monu; Koul, Veena; Kharbanda, P

    2017-04-01

    Nanotechnology has revolutionized health care industry in a large scale and its applications are a boon to modern medicine and dental science. It is expected to pervade and further revolutionize the art and science of dentistry and may well have important applications spanning all the aspects of oral diseases, diagnosis, prevention and treatment. Materials science in dentistry has embraced the technology to produce nanomaterials that are being used in caries inhibitors, antimicrobial resins, hard tissue remineralizing agents, targeted drug delivery, scaffolds, bio-membranes, nanocrystalline hydroxyl apatite, restorative cements, adhesion promoters and boosters, bioactive glass, tissue conditioners, reinforced methacrylate resins, root canal disinfectants, friction free orthodontic arch wires and nano composites life. These upcoming technologies have potential to bring about significant benefits in the form of improvement in dental science and to society. The present review presents the latest recent developments in this interdisciplinary field bridging nanotechnology and dental science.

  10. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honghu [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering. Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.

  11. Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials

    Science.gov (United States)

    Abou, Seraphin Chally; Saad, Maarouf

    2013-09-01

    In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.

  12. Development of risk-based nanomaterial groups for occupational exposure control

    International Nuclear Information System (INIS)

    Kuempel, E. D.; Castranova, V.; Geraci, C. L.; Schulte, P. A.

    2012-01-01

    Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose–response data, based on standard testing, to systematically evaluate the nanomaterials’ physical–chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.

  13. Financial assessment of government subsidy policy on photovoltaic systems for industrial users: A case study in Taiwan

    International Nuclear Information System (INIS)

    Chou, Shuo-Yan; Nguyen, Thi Anh Tuyet; Yu, Tiffany Hui-Kuang; Phan, Nguyen Ky Phuc

    2015-01-01

    Due to Taiwan's limited energy resources, the development of solar photovoltaic (PV) in Taiwan has become one of the most important solutions for meeting future energy supply needs and ensuring environmental protection. A huge amount of researches about renewable energy sources has emerged recently in response to these issues. However, the amount of researches considering the effects of various influential parameters on the efficiency and performance of PV systems remains small, and is still limited to some specific parts of PV systems. In particular, researches considering thoughtfully the influence of government subsidies on PV financial assessment are still in development. This paper proposes an approach to analyze the benefit of installing a PV system under the impact of government financial subsidies, focusing especially on feed-in-tariff (FIT) and tax abatement policies for industrial users in Taiwan. In addition, a method for selecting the most appropriate policies is proposed for the government through the analysis of both user demand and the government's PV installation capacity target. - Highlights: • Analyzing the benefit of installing a PV system impacted by the government subsidy. • Analyzing the role of policy in the financial model of PV system. • Estimating the performance of PV system under the real weather condition. • Methods to select the policies which satisfy demands of both government and users. • Methods to select the policies which ensure cost-effectiveness of government's support.

  14. Recent Development of Nanomaterial-Doped Conductive Polymers

    Science.gov (United States)

    Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.

    2017-12-01

    Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

  15. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.

    Science.gov (United States)

    Secor, Ethan B; Hersam, Mark C

    2015-02-19

    Carbon and post-carbon nanomaterials present desirable electrical, optical, chemical, and mechanical attributes for printed electronics, offering low-cost, large-area functionality on flexible substrates. In this Perspective, recent developments in carbon nanomaterial inks are highlighted. Monodisperse semiconducting single-walled carbon nanotubes compatible with inkjet and aerosol jet printing are ideal channels for thin-film transistors, while inkjet, gravure, and screen-printable graphene-based inks are better-suited for electrodes and interconnects. Despite the high performance achieved in prototype devices, additional effort is required to address materials integration issues encountered in more complex systems. In this regard, post-carbon nanomaterial inks (e.g., electrically insulating boron nitride and optically active transition-metal dichalcogenides) present promising opportunities. Finally, emerging work to extend these nanomaterial inks to three-dimensional printing provides a path toward nonplanar devices. Overall, the superlative properties of these materials, coupled with versatile assembly by printing techniques, offer a powerful platform for next-generation printed electronics.

  16. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials.

    Science.gov (United States)

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2018-02-21

    The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.

  17. Nanomaterials for biosensing applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael eHolzinger

    2014-08-01

    Full Text Available A biosensor device is defined by its biological, or bioinspired receptor unit with unique specificities towards corresponding analytes. These analytes are often of biological origin like DNAs or proteins from the immune system (antibodies, antigens of diseases or infections. Such analytes can also be simple molecules like glucose or pollutants when a biological receptor unit with particular specificity is available. One of many other challenges in biosensor development is the efficient signal capture of the biological recognition event (transduction. Such transducers translate the interaction of the analyte with the biological element into electrochemical, electrochemiluminescent, magnetic, gravimetric, or optical signals. In order to increase sensitivities and to lower detection limits down to even individual molecules, nanomaterials are promising candidates due to the possibility to immobilize an enhanced quantity of bioreceptor units at reduced volumes and even to act itself as transduction element. Among such nanomaterials, gold nanoparticles, semi-conductor quantum dots, polymer nanoparticles, carbon nanotubes, nanodiamonds, and graphene are intensively studied. Due to the vast evolution of this research field, this review summarizes in a non-exhaustive way the advantages of nanomaterials by focusing on nano-objects which provide further beneficial properties than just an enhanced surface area.

  18. Strain-controlled electrocatalysis on multimetallic nanomaterials

    Science.gov (United States)

    Luo, Mingchuan; Guo, Shaojun

    2017-11-01

    Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain-adsorption-reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field.

  19. Nanotoxicology and nanomedicine: making development decisions in an evolving governance environment

    Science.gov (United States)

    Rycroft, Taylor; Trump, Benjamin; Poinsatte-Jones, Kelsey; Linkov, Igor

    2018-02-01

    The fields of nanomedicine, risk analysis, and decision science have evolved considerably in the past decade, providing developers of nano-enabled therapies and diagnostic tools with more complete information than ever before and shifting a fundamental requisite of the nanomedical community from the need for more information about nanomaterials to the need for a streamlined method of integrating the abundance of nano-specific information into higher-certainty product design decisions. The crucial question facing nanomedicine developers that must select the optimal nanotechnology in a given situation has shifted from "how do we estimate nanomaterial risk in the absence of good risk data?" to "how can we derive a holistic characterization of the risks and benefits that a given nanomaterial may pose within a specific nanomedical application?" Many decision support frameworks have been proposed to assist with this inquiry; however, those based in multicriteria decision analysis have proven to be most adaptive in the rapidly evolving field of nanomedicine—from the early stages of the field when conditions of significant uncertainty and incomplete information dominated, to today when nanotoxicology and nano-environmental health and safety information is abundant but foundational paradigms such as chemical risk assessment, risk governance, life cycle assessment, safety-by-design, and stakeholder engagement are undergoing substantial reformation in an effort to address the needs of emerging technologies. In this paper, we reflect upon 10 years of developments in nanomedical engineering and demonstrate how the rich knowledgebase of nano-focused toxicological and risk assessment information developed over the last decade enhances the capability of multicriteria decision analysis approaches and underscores the need to continue the transition from traditional risk assessment towards risk-based decision-making and alternatives-based governance for emerging technologies.

  20. Development of a Control Banding Tool for Nanomaterials

    OpenAIRE

    Riediker, M.; Ostiguy, C.; Triolet, J.; Troisfontaine, P.; Vernez, D.; Bourdel, G.; Thieriet, N.; Cadène, A.

    2012-01-01

    Control banding (CB) can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial t...