Stability of charged thin shells
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Simeone, Claudio
2011-01-01
In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.
Cylindrical thin-shell wormholes
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Simeone, Claudio
2004-01-01
A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity
Kwon, Jeong Hyun; Park, Junhong; Lee, Myung Keun; Park, Jeong Woo; Jeon, Yongmin; Shin, Jeong Bin; Nam, Minwoo; Kim, Choong-Ki; Choi, Yang-Kyu; Choi, Kyung Cheol
2018-05-09
The lack of reliable, transparent, and flexible electrodes and insulators for applications in thin-film transistors (TFTs) makes it difficult to commercialize transparent, flexible TFTs (TF-TFTs). More specifically, conventional high process temperatures and the brittleness of these elements have been hurdles in developing flexible substrates vulnerable to heat. Here, we propose electrode and insulator fabrication techniques considering process temperature, transmittance, flexibility, and environmental stability. A transparent and flexible indium tin oxide (ITO)/Ag/ITO (IAI) electrode and an Al 2 O 3 /MgO (AM)-laminated insulator were optimized at the low temperature of 70 °C for the fabrication of TF-TFTs on a polyethylene terephthalate (PET) substrate. The optimized IAI electrode with a sheet resistance of 7 Ω/sq exhibited the luminous transmittance of 85.17% and maintained its electrical conductivity after exposure to damp heat conditions because of an environmentally stable ITO capping layer. In addition, the electrical conductivity of IAI was maintained after 10 000 bending cycles with a tensile strain of 3% because of the ductile Ag film. In the metal/insulator/metal structure, the insulating and mechanical properties of the optimized AM-laminated film deposited at 70 °C were significantly improved because of the highly dense nanolaminate system, compared to those of the Al 2 O 3 film deposited at 70 °C. In addition, the amorphous indium-gallium-zinc oxide (a-IGZO) was used as the active channel for TF-TFTs because of its excellent chemical stability. In the environmental stability test, the ITO, a-IGZO, and AM-laminated films showed the excellent environmental stability. Therefore, our IGZO-based TFT with IAI electrodes and the 70 °C AM-laminated insulator was fabricated to evaluate robustness, transparency, flexibility, and process temperature, resulting in transfer characteristics comparable to those of an IGZO-based TFT with a 150 °C Al 2 O 3
Thin-shell wormholes in dilaton gravity
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Simeone, Claudio
2005-01-01
In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed
Thin shells joining local cosmic string geometries
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)
2016-10-15
In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)
Thin shells joining local cosmic string geometries
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Rubin de Celis, Emilio; Simeone, Claudio
2016-01-01
In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)
Vibration of liquid-filled thin shells
International Nuclear Information System (INIS)
Kalnins, A.
1979-01-01
This paper describes the analysis of free and forced vibration of a thin, axisymmetric shell, which contains some liquid. The axis of symmetry is vertical. Only such vibration is considered which can be produced by a horizontal movement of the base of shell. The objective of this paper is to examine the response of the coupled shell-liquid system for a frequency range lying between zero and the lowest natural sloshing frequency of the liquid. The mass of the liquid is modeled by a stationary and one or more sloshing masses. It is shown how the stationary mass can be incorporated in the vibration analysis of the shell and how to natural frequency of the coupled shell-liquid system can be obtained from a simple formula, if the lowest natural frequency of the shell, plus the stationary mass of the liquid, can be determined. A numerical example is given. (orig.)
Statistical Mechanics of Thin Spherical Shells
Directory of Open Access Journals (Sweden)
Andrej Košmrlj
2017-01-01
Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.
Statistical mechanics of microscopically thin thermalized shells
Kosmrlj, Andrej
Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.
Axisymmetric vibrations of thin shells of revolution
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kikuchi, Norio; Kosawada, Tadashi; Takahashi, Shin
1983-01-01
The problem of free vibration of axisymmetric shells of revolution is important in connection with the design of pressure vessels, chemical equipment, aircrafts, structures and so on. In this study, the axisymmetrical vibration of a thin shell of revolution having a constant curvature in meridian direction was analyzed by thin shell theory. First, the Lagrangian during one period of the vibration of a shell of revolution was determined by the primary approximate theory of Love, and the vibration equations and boundary conditions were derived from its stopping condition. The vibration equations were strictly analyzed by using the series solution. The basic equations for the strain and strain energy of a shell were based on those of Novozhilov. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. The theory and the numerical calculation ore described. Especially in the frequency curves, the waving phenomena were observed frequently, which were not seen in non-axisymmetric vibration, accordingly also the vibration mode changed in complex state on the frequency curves of same order. The numerical calculation was carried out in the large computer center in Tohoku University. (Kako, I.)
Electrical initiation of an energetic nanolaminate film
Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.
2010-03-30
A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.
Low to moderate temperature nanolaminate heater
Eckels, J Del [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Hau-Riege, Stefan [Fremont, CA; Walton, Chris [Oakland, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA
2011-01-11
A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.
Thick or Thin Ice Shell on Europa?
2007-01-01
Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)
On the dynamic buckling of thin shells
International Nuclear Information System (INIS)
Combescure, A.; Hoffmann, A.; Homan, R.
1986-10-01
The shells of a pool type reactor like Super Phenix 1 or the Super Phenix 2 project are relatively thin compared to the diameter. Normal loads and mainly seismic loads due to strong fluid-structure interaction and giving pressure of the same order then static collapse pressure. This is a main difficulty for a good and safe design of LMFBR. The paper describes the experimental results obtained at CEA-DEMT on the seismic buckling of structures filled with fluid. A general tendency is given on all experimental results. The experimental results are analysed by two simple models and the main results are explained. A strategy to design a structure against dynamic buckling is then presented. 7 refs
Mechanical stability of cylindrical thin-shell wormholes
Energy Technology Data Exchange (ETDEWEB)
Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)
2013-04-15
In this paper, we apply the cut and paste procedure to the charged black string for the construction of a thin-shell wormhole. We consider the Darmois-Israel formalism to determine the surface stresses of the shell. We take the Chaplygin gas to deal with the matter distribution on shell. The radial perturbation approach (preserving the symmetry) is used to investigate the stability of static solutions. We conclude that stable static solutions exist both for uncharged and charged black string thin-shell wormholes for particular values of the parameters. (orig.)
Stability of generic thin shells in conformally flat spacetimes
Energy Technology Data Exchange (ETDEWEB)
Amirabi, Z. [Eastern Mediterranean Univ., Gazimagusa (Turkey). Dept. of Physics
2017-07-15
Some important spacetimes are conformally flat; examples are the Robertson-Walker cosmological metric, the Einstein-de Sitter spacetime, and the Levi-Civita-Bertotti-Robinson and Mannheim metrics. In this paper we construct generic thin shells in conformally flat spacetime supported by a perfect fluid with a linear equation of state, i.e., p = ωσ. It is shown that, for the physical domain of ω, i.e., 0 < ω ≤ 1, such thin shells are not dynamically stable. The stability of the timelike thin shells with the Mannheim spacetime as the outer region is also investigated. (orig.)
Vibrations of Thin Piezoelectric Shallow Shells
Indian Academy of Sciences (India)
Abstract. In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.
Thin-shell wormholes in Brans-Dicke gravity
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Richarte, Martin G.; Simeone, Claudio
2008-01-01
Spherically symmetric thin-shell wormholes are constructed within the framework of Brans-Dicke gravity. It is shown that, for appropriate values of the Brans-Dicke constant, these wormholes can be supported by matter satisfying the energy conditions
Thin-shell wormholes in Brans-Dicke gravity
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, C.C. 67, Suc. 28, 1428 Buenos Aires (Argentina)], E-mail: eiroa@iafe.uba.ar; Richarte, Martin G. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)], E-mail: martin@df.uba.ar; Simeone, Claudio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)], E-mail: csimeone@df.uba.ar
2008-12-22
Spherically symmetric thin-shell wormholes are constructed within the framework of Brans-Dicke gravity. It is shown that, for appropriate values of the Brans-Dicke constant, these wormholes can be supported by matter satisfying the energy conditions.
Nanomechanics of biocompatible hollow thin-shell polymer microspheres.
Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis
2009-07-07
The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.
Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions
International Nuclear Information System (INIS)
Tamaki, Takashi; Tsujikawa, Shinji
2008-01-01
We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.
The theory of spherically symmetric thin shells in conformal gravity
Berezin, Victor; Dokuchaev, Vyacheslav; Eroshenko, Yury
The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy-momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl-Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ( = massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl-Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.
Hamiltonian treatment of the gravitational collapse of thin shells
International Nuclear Information System (INIS)
Crisostomo, Juan; Olea, Rodrigo
2004-01-01
A Hamiltonian treatment of the gravitational collapse of thin shells is presented. The direct integration of the canonical constraints reproduces the standard shell dynamics for a number of known cases. The formalism is applied in detail to three-dimensional spacetime and the properties of the (2+1)-dimensional charged black hole collapse are further elucidated. The procedure is also extended to deal with rotating solutions in three dimensions. The general form of the equations providing the shell dynamics implies the stability of black holes, as they cannot be converted into naked singularities by any shell collapse process
Theory of elastic thin shells solid and structural mechanics
Gol'Denveizer, A L; Dryden, H L
1961-01-01
Theory of Elastic Thin Shells discusses the mathematical foundations of shell theory and the approximate methods of solution. The present volume was originally published in Russian in 1953, and remains the only text which formulates as completely as possible the different sets of basic equations and various approximate methods of shell analysis emphasizing asymptotic integration. The book is organized into five parts. Part I presents the general formulation and equations of the theory of shells, which are based on the well-known hypothesis of the preservation of the normal element. Part II is
Scanning the parameter space of collapsing rotating thin shells
Rocha, Jorge V.; Santarelli, Raphael
2018-06-01
We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.
Charged thin-shell gravastars in noncommutative geometry
Energy Technology Data Exchange (ETDEWEB)
Oevguen, Ali [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Eastern Mediterranean University, Physics Department, Famagusta, Northern Cyprus (Turkey); Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of); Institute of Physics, Ss. Cyril and Methodius University, Faculty of Natural Sciences and Mathematics, Skopje (Macedonia, The Former Yugoslav Republic of)
2017-08-15
In this paper we construct a charged thin-shell gravastar model within the context of noncommutative geometry. To do so, we choose the interior of the nonsingular de Sitter spacetime with an exterior charged noncommutative solution by cut-and-paste technique and apply the generalized junction conditions. We then investigate the stability of a charged thin-shell gravastar under linear perturbations around the static equilibrium solutions as well as the thermodynamical stability of the charged gravastar. We find the stability regions, by choosing appropriate parameter values, located sufficiently close to the event horizon. (orig.)
Deformation twinning in a creep-deformed nanolaminate structure
International Nuclear Information System (INIS)
Hsiung, Luke L
2010-01-01
The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti 3 Al-(α 2 ) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α 2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.
Deformation twinning in a creep-deformed nanolaminate structure
Hsiung, Luke L.
2010-10-01
The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti3Al-(α2) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.
Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.
Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka
2016-11-04
The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.
Stability of transparent spherically symmetric thin shells and wormholes
International Nuclear Information System (INIS)
Ishak, Mustapha; Lake, Kayll
2002-01-01
The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations
Stabilization of thin shell modes by a rotating secondary wall
International Nuclear Information System (INIS)
Gimblett, C.G.
1989-01-01
A simple model is developed to investigate if and under what circumstances the thin shell instabilities of a Reverse Field Pinch can be stabilized by a rotating secondary wall. The principles may be applicable to reactor designs that utilize a flowing liquid blanket (author)
Stability analysis of thin-shell wormholes from charged black string
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)
2013-04-01
In this paper, we construct thin-shell wormholes from charged black string through cut and paste procedure and investigate its stability. We assume modified generalized Chaplygin gas as a dark energy fluid (exotic matter) present in the thin layer of matter-shell. The stability of these constructed thin-shell wormholes is investigated in the scenario of linear perturbations. We conclude that static stable as well as unstable configurations are possible for cylindrical thin-shell wormholes.
Stability of the Regular Hayward Thin-Shell Wormholes
Directory of Open Access Journals (Sweden)
M. Sharif
2016-01-01
Full Text Available The aim of this paper is to construct regular Hayward thin-shell wormholes and analyze their stability. We adopt Israel formalism to calculate surface stresses of the shell and check the null and weak energy conditions for the constructed wormholes. It is found that the stress-energy tensor components violate the null and weak energy conditions leading to the presence of exotic matter at the throat. We analyze the attractive and repulsive characteristics of wormholes corresponding to ar>0 and ar<0, respectively. We also explore stability conditions for the existence of traversable thin-shell wormholes with arbitrarily small amount of fluid describing cosmic expansion. We find that the space-time has nonphysical regions which give rise to event horizon for 0
Stability of Brans-Dicke thin-shell wormholes
Energy Technology Data Exchange (ETDEWEB)
Yue, Xiaojun, E-mail: yuexiaojun@mail.bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China); Gao, Sijie, E-mail: sijie@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2011-06-06
Recently, a class of spherically symmetric thin-shell wormholes in Brans-Dicke gravity have been introduced. Such wormholes can be supported by matter satisfying the weak energy condition (WEC). In this Letter, we first obtain all the exact solutions satisfying the WEC. Then we show these solutions can be stable for certain parameters. A general requirement for stability is that β{sup 2}>1, which may imply that the speed of sound exceeds the speed of light. -- Highlights: → Brans-Dicke thin-shell wormholes can be stable and satisfy the energy condition. → Solutions exist for ω<-2. → The speed of sound in the matter exceeds the speed of light.
International Nuclear Information System (INIS)
Adams, D. P.; Bai, M. M.; Rodriguez, M. A.; McDonald, J. P.; Jones, E. Jr.; Brewer, L.; Moore, J. J.
2009-01-01
Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti multilayer foils characterized by average propagation speeds between ∼0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T ig )∼300-400 deg. C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T ig . Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19 ' NiTi (martensite), hexagonal NiTi 2 , and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small.
Thin-shell wormholes from the regular Hayward black hole
Energy Technology Data Exchange (ETDEWEB)
Halilsoy, M.; Ovgun, A.; Mazharimousavi, S.H. [Eastern Mediterranean University, Department of Physics, Mersin 10 (Turkey)
2014-03-15
We revisit the regular black hole found by Hayward in 4-dimensional static, spherically symmetric spacetime. To find a possible source for such a spacetime we resort to the nonlinear electrodynamics in general relativity. It is found that a magnetic field within this context gives rise to the regular Hayward black hole. By employing such a regular black hole we construct a thin-shell wormhole for the case of various equations of state on the shell. We abbreviate a general equation of state by p = ψ(σ) where p is the surface pressure which is a function of the mass density (σ). In particular, linear, logarithmic, Chaplygin, etc. forms of equations of state are considered. In each case we study the stability of the thin shell against linear perturbations.We plot the stability regions by tuning the parameters of the theory. It is observed that the role of the Hayward parameter is to make the TSW more stable. Perturbations of the throat with small velocity condition are also studied. The matter of our TSWs, however, remains exotic. (orig.)
Relativistic Bose-Einstein condensates thin-shell wormholes
Richarte, M. G.; Salako, I. G.; Graça, J. P. Morais; Moradpour, H.; Övgün, Ali
2017-10-01
We construct traversable thin-shell wormholes which are asymptotically Ads/dS applying the cut and paste procedure for the case of an acoustic metric created by a relativistic Bose-Einstein condensate. We examine several definitions of the flare-out condition along with the violation or not of the energy conditions for such relativistic geometries. Under reasonable assumptions about the equation of state of the matter located at the shell, we concentrate on the mechanical stability of wormholes under radial perturbation preserving the original spherical symmetry. To do so, we consider linearized perturbations around static solutions. We obtain that dS acoustic wormholes remain stable under radial perturbations as long as they have small radius; such wormholes with finite radius do not violate the strong/null energy condition. Besides, we show that stable Ads wormhole satisfy some of the energy conditions whereas unstable Ads wormhole with large radii violate them.
Gravitational collapse with rotating thin shells and cosmic censorship
International Nuclear Information System (INIS)
Delsate, Térence; Rocha, Jorge V; Santarelli, Raphael
2015-01-01
The study of gravitational collapse is a subject of great importance, both from an astrophysical and a holographic point of view. In this respect, exact solutions can be very helpful but known solutions are very scarce, especially when considering dynamical processes with rotation. We describe a setup in which gravitational collapse of rotating matter shells can be addressed with analytic tools, at the expense of going to higher dimensions and considering equal angular momenta spacetimes. The framework for an exact treatment of the dynamics, relying on a thin shell approximation, is developed. Our analysis allows the inclusion of a non-vanishing cosmological constant. Finally, we discuss applications of this machinery to the construction of stationary solutions describing matter around rotating black holes and to the cosmic censorship conjecture. (paper)
Spherical thin-shell wormholes and modified Chaplygin gas
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)
2013-05-01
The purpose of this paper is to construct spherical thin-shell wormhole solutions through cut and paste technique and investigate the stability of these solutions in the vicinity of modified Chaplygin gas. The Darmois-Israel formalism is used to formulate the stresses of the surface concentrating the exotic matter. We explore the stability of the wormhole solutions by using the standard potential method. We conclude that there exist more stable as well as unstable solutions than the previous study with generalized Chaplygin gas [19].
Thin-shell wormholes supported by total normal matter
Energy Technology Data Exchange (ETDEWEB)
Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)
2014-09-15
The Zipoy-Voorhees-Weyl (ZVW) spacetime characterized by mass (M) and oblateness (δ) is proposed in the construction of viable thin-shell wormholes (TSWs). A departure from spherical/cylindrical symmetry yields a positive total energy in spite of the fact that the local energy density may take negative values. We show that oblateness of the bumpy sources/black holes can be incorporated as a new degree of freedom that may play a role in the resolution of the exotic matter problem in TSWs. A small velocity perturbation reveals, however, that the resulting TSW is unstable. (orig.)
Hypocycloidal throat for 2 + 1-dimensional thin-shell wormholes
Energy Technology Data Exchange (ETDEWEB)
Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)
2015-11-15
Recently we have shown that for 2 + 1-dimensional thin-shell wormholes a non-circular throat may lead to a physical wormhole in the sense that the energy conditions are satisfied. By the same token, herein we consider an angular dependent throat geometry embedded in a 2 + 1-dimensional flat spacetime in polar coordinates. It is shown that, remarkably, a generic, natural example of the throat geometry is provided by a hypocycloid. That is, two flat 2 + 1 dimensions are glued together along a hypocycloid. The energy required in each hypocycloid increases with the frequency of the roller circle inside the large one. (orig.)
NIF-Scale Hohlraum Asymmetry Studies Using Point-Projection Radiograph of Thin Shells
International Nuclear Information System (INIS)
Pollaine, S.; Bradley, D.; Landen, O.; Wallace, R.; Jones, O.
2000-01-01
Our current OMEGA experimental campaign is developing the thin shell diagnostic for use on NIF with the needed accuracy. The thin shell diagnostic has the advantage of linearity over alternative measurement techniques, so that low-order modes will not corrupt the measurement of high-order modes. Although our random measurement errors are adequate, we need to monitor beam balance and ensure that the thin shells have a uniform thickness
The effect of creep ratchetting on thin shells
International Nuclear Information System (INIS)
Hibbeler, R.C.; Wang, P.Y.
1975-01-01
The behavior of thin shells, in particular, cylindrical and spherical shells, which are subjected to a long-time cyclic thermal gradient is discussed. Like many reactor components (shells) which are subjected to start-up and shut-down conditions, provided the temperature is high enough, the shell will exhibit a progressive growth with each cycle of temperature. This phenomena is often referred to as ratchetting and is caused by inelastic strains developed by creep. Although the thermal stress distribution is biaxial it is possible to represent the material behavior using a simple uniaxial-stress model. Assuming thermal stress interaction occurs, the equations which determine the solution of the strain growth and stress per cycle are presented. The flexibility of the analysis provides a means for including the effects of an arbitrary temperature-cycle time and temperature dependence of material properties. A step temperature variation is considered. During each part of the temperature cycle it is necessary to satisfy the equilibrium and compatibility conditions for the model. At any instant, the total strain will depend upon elastic, thermal, and creep strain components in addition to prior inelastic creep strains accumulated during previous temperature cycles. Accounting for all these conditions, the relations describing the behavior of the material can be determined during an arbitrary jth cycle of temperature. In particular, the cases of material properties are considered which are used for reactor components. Where possible, a closed form solution is given for appropriate values of the creep law exponents n and m. For the general case, an algorithm for the computer-solution to the problem is given. Using the general solution, the analysis appears to offer a suitable compromise between accurate behavior description and analytical complexity
Hida, Rachid; Falub, Claudiu V.; Perraudeau, Sandrine; Morin, Christine; Favier, Sylvie; Mazel, Yann; Saghi, Zineb; Michel, Jean-Philippe
2018-05-01
Thin films based on layers of Fe52Co28B20 (at%), Fe65Co35 (at%), and Ni80Fe20 (at%) were deposited by sputtering on 8″ bare Si and Si/200 nm-thermal-SiO2 wafers by simultaneous use of two or more cathodes. Due to the continuous rotation of the substrate cage, such that the substrates faced different targets alternately, the multilayers consisted of stacks of alternating, nanometer-thick regular layers. The composition of the films was determined by Rutherford Backscattering Spectrometry (RBS) and Nuclear Reactive Analysis (NRA), whereas Plasma Profiling Time of Flight Mass Spectrometry (PP-TOFMS) analysis gave depth profile information about the chemical elements. The structural and magnetic properties of the films were investigated by X-ray Diffraction and by TEM analysis, B-H loop tracer and high frequency single coil technique permeametry, respectively. The linear dependence of the coercivity of these thin films versus the grain size can be explained by the random anisotropy model. These novel, composite soft magnetic multilayers, with tunable in-plane anisotropy, allow operation at tunable frequencies, as shown by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior and, combine the magnetic properties of the individual materials in an advantageous way. This article presents a method to produce nanostructured soft magnetic multilayers, the properties of which can easily be tuned by choosing the ratio of the individual nanolayers. In this way it's possible to combine soft magnetic materials with complementary properties, e.g. high saturation magnetization, low coercivity, high specific resistivity and low magnetostriction
On Perturbation Solutions for Axisymmetric Bending Boundary Values of a Deep Thin Spherical Shell
Directory of Open Access Journals (Sweden)
Rong Xiao
2014-01-01
Full Text Available On the basis of the general theory of elastic thin shells and the Kirchhoff-Love hypothesis, a fundamental equation for a thin shell under the moment theory is established. In this study, the author derives Reissner’s equation with a transverse shear force Q1 and the displacement component w. These basic unknown quantities are derived considering the axisymmetry of the deep, thin spherical shell and manage to constitute a boundary value question of axisymmetric bending of the deep thin spherical shell under boundary conditions. The asymptotic solution is obtained by the composite expansion method. At the end of this paper, to prove the correctness and accuracy of the derivation, an example is given to compare the numerical solution by ANSYS and the perturbation solution. Meanwhile, the effects of material and geometric parameters on the nonlinear response of axisymmetric deep thin spherical shell under uniform external pressure are also analyzed in this paper.
Microscopic thin-shell wormholes in magnetic Melvin universe
Energy Technology Data Exchange (ETDEWEB)
Mazharimousavi, S.H.; Halilsoy, M.; Amirabi, Z. [Eastern Mediterranean University, Department of Physics, North Cyprus, Mersin 10 (Turkey)
2014-05-15
We construct thin-shell wormholes in the magnetic Melvin universe. It is shown that in order to make a TSW in the Melvin spacetime the radius of the throat cannot be larger than (2)/(B{sub 0}), in which B{sub 0} is the magnetic field constant. We also analyze the stability of the constructed wormhole in terms of a linear perturbation around the equilibrium point. In our stability analysis we scan a full set of the Equation of States such as Linear Gas, Chaplygin Gas, Generalized Chaplygin Gas, Modified Generalized Chaplygin Gas, and Logarithmic Gas. Finally we extend our study to the wormhole solution in the unified Melvin and Bertotti-Robinson spacetime. In this extension we show that for some specific cases, the local energy density is partially positive but the total energy which supports the wormhole is positive. (orig.)
Communication: Programmable self-assembly of thin-shell mesostructures
Halverson, Jonathan D.; Tkachenko, Alexei V.
2017-10-01
We study numerically the possibility of programmable self-assembly of various thin-shell architectures. They include clusters isomorphic to fullerenes C20 and C60, finite and infinite sheets, tube-shaped and toroidal mesostructures. Our approach is based on the recently introduced directionally functionalized nanoparticle platform, for which we employ a hybrid technique of Brownian dynamics with stochastic bond formation. By combining a number of strategies, we were able to achieve a near-perfect yield of the desired structures with a reduced "alphabet" of building blocks. Among those strategies are the following: the use of bending rigidity of the interparticle bond as a control parameter, programming the morphology with a seed architecture, use of chirality-preserving symmetries for reduction of the particle alphabet, and the hierarchic approach.
Geometric Nonlinear Computation of Thin Rods and Shells
Grinspun, Eitan
2011-03-01
We develop simple, fast numerical codes for the dynamics of thin elastic rods and shells, by exploiting the connection between physics, geometry, and computation. By building a discrete mechanical picture from the ground up, mimicking the axioms, structures, and symmetries of the smooth setting, we produce numerical codes that not only are consistent in a classical sense, but also reproduce qualitative, characteristic behavior of a physical system----such as exact preservation of conservation laws----even for very coarse discretizations. As two recent examples, we present discrete computational models of elastic rods and shells, with straightforward extensions to the viscous setting. Even at coarse discretizations, the resulting simulations capture characteristic geometric instabilities. The numerical codes we describe are used in experimental mechanics, cinema, and consumer software products. This is joint work with Miklós Bergou, Basile Audoly, Max Wardetzky, and Etienne Vouga. This research is supported in part by the Sloan Foundation, the NSF, Adobe, Autodesk, Intel, the Walt Disney Company, and Weta Digital.
International Nuclear Information System (INIS)
NIKROO, A; CZECHOWICZ, DG; CASTILLO, ER; PONTELANDOLFO, JM
2002-01-01
OAK A271 PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA. Thin walled polymer shells are needed for OMEGA cryogenic laser experiments. These capsules need to be about 900 (micro)m in diameter and as thin as possible (approx 1-2 (micro)m), while having enough strength to be filled with DT as fast as possible to about 1000 atm. The authors have found that by optimizing the coating parameters in the glow discharge polymer (GDP) deposition system, traditionally used for making ICF targets, they can routinely make robust, ∼ 1.5 (micro)m thick, 900 (micro)m diameter GDP shells with buckle strengths of over 0.3 atm. This is twice the strength of shells made prior to the optimization and is comparable to values quoted for polyimide shells. In addition, these shells were found to be approximately three times more permeable and over 20% denser than previously made GDP shells. The combination of higher strength and permeability is ideal for direct drive cryogenic targets at OMEGA. Shells as thin as 0.5 (micro)m have been made. In this paper, the authors discuss the shell fabrication process, effects of modifying various GDP deposition parameters on shell properties and chemical composition
DEFF Research Database (Denmark)
Magnuson, Martin; Mattesini, Maurizio; Van Nong, Ngo
2012-01-01
Nanolaminated materials exhibit characteristic magnetic, mechanical, and thermoelectric properties, with large contemporary scientific and technological interest. Here we report on the anisotropic Seebeck coefficient in nanolaminated Ti3SiC2 single-crystal thin films and trace the origin to aniso......Nanolaminated materials exhibit characteristic magnetic, mechanical, and thermoelectric properties, with large contemporary scientific and technological interest. Here we report on the anisotropic Seebeck coefficient in nanolaminated Ti3SiC2 single-crystal thin films and trace the origin...... value of 4–6 μV/K. Employing a combination of polarized angle-dependent x-ray spectroscopy and density functional theory we directly show electronic structure anisotropy in inherently nanolaminated Ti3SiC2 single-crystal thin films as a model system. The density of Ti 3d and C 2p states at the Fermi...... level in the basal ab plane is about 40% higher than along the c axis. The Seebeck coefficient is related to electron and hole-like bands close to the Fermi level, but in contrast to ground state density functional theory modeling, the electronic structure is also influenced by phonons that need...
Problems with tunneling of thin shells from black holes
Indian Academy of Sciences (India)
Specifically for shells tunneling out of black holes, this quantity is not invariant under canonical transformations. ... Although such cases include alpha decay, they do not include the tunneling of shells from black holes. ... Current Issue : Vol.
Vibrations of thin piezoelectric shallow shells: Two-dimensional ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...
Analysis on Forced Vibration of Thin-Wall Cylindrical Shell with Nonlinear Boundary Condition
Directory of Open Access Journals (Sweden)
Qiansheng Tang
2016-01-01
Full Text Available Forced vibration of thin-wall cylindrical shell under nonlinear boundary condition was discussed in this paper. The nonlinear boundary was modeled as supported clearance in one end of shell and the restraint was assumed as linearly elastic in the radial direction. Based on Sanders’ shell theory, Lagrange equation was utilized to derive the nonlinear governing equations of cylindrical shell. The displacements in three directions were represented by beam functions and trigonometric functions. In the study of nonlinear dynamic responses of thin-wall cylindrical shell with supported clearance under external loads, the Newmark method is used to obtain time history, frequency spectrum plot, phase portraits, Poincare section, bifurcation diagrams, and three-dimensional spectrum plot with different parameters. The effects of external loads, supported clearance, and support stiffness on nonlinear dynamics behaviors of cylindrical shell with nonlinear boundary condition were discussed.
Thin-shell wormhole solutions in Einstein-Hoffmann-Born-Infeld theory
Energy Technology Data Exchange (ETDEWEB)
Mazharimousavi, S. Habib, E-mail: habib.mazhari@emu.edu.tr [Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10 (Turkey); Halilsoy, M., E-mail: mustafa.halilsoy@emu.edu.tr [Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10 (Turkey); Amirabi, Z., E-mail: zahra.amirabi@emu.edu.tr [Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10 (Turkey)
2011-10-03
We adopt the Hoffmann-Born-Infeld's (HBI) double Lagrangian approach in general relativity to find black holes and investigate the possibility of viable thin-shell wormholes. By virtue of the non-linear electromagnetic parameter, the matching hypersurfaces of the two regions with two Lagrangians provide a natural, lower-bound radius for the thin-shell wormholes which provides the main motivation to the present study. In particular, the stability of thin-shell wormholes supported by normal matter in higher-dimensional Einstein-HBI-Gauss-Bonnet (EHBIGB) gravity is highlighted. -- Highlights: → We extend the Hoffmann-Born-Infeld Lagrangian to higher dimensions. → We found higher-dimensional black hole solutions for Einstein-Hoffmann-Born-Infeld-Gauss-Bonnet (EHBIGB) gravity. → We obtained thin-shell wormholes in the EHBIGB gravity which are supported by ordinary matter and stable.
Enceladus's crust as a non-uniform thin shell: I tidal deformations
Beuthe, Mikael
2018-03-01
The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.
Thin charged shells and the violation of the third law of black hole mechanics
International Nuclear Information System (INIS)
Proszynski, M.
1983-01-01
The collapse of an infinitely thin spherical shell of charged matter, which surrounds a spherically symmetric black hole or has a flat interior, is analyzed in connection with the laws of black hole mechanics and the cosmic censorship hypothesis. An effective potential is introduced to describe the motion of the shell. The process, proposed by Farrugia and Hajicek as a counterexample to the third law, is discussed and generalized to the case of nondust shells. (author)
Stability of Thin Shell Wormholes in Born-Infeld Theory Supported by Polytropic Phantom Energy
Energy Technology Data Exchange (ETDEWEB)
Eid, Ali [Cairo University, Giza (Egypt)
2017-02-15
In the framework of the Darmois-Israel formalism, the dynamical equations of motion of spherically-symmetric thin-shell wormholes supported by a polytropic phantom energy in Einstein-Born-Infeld theory are constructed. A stability analysis of the spherically-symmetric thin-shell wormhole by using the standard potential method is carried out. The existence of stable, static solutions depends on the values of some parameters.
Resonant Excitation of a Truncated Metamaterial Cylindrical Shell by a Thin Wire Monopole
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Erentok, Aycan; Breinbjerg, Olav
2009-01-01
A truncated metamaterial cylindrical shell excited by a thin wire monopole is investigated using the integral equation technique as well as the finite element method. Simulations reveal a strong field singularity at the edge of the truncated cylindrical shell, which critically affects the matching...
LUGS, Stress Analysis, Flexibility Factors for Rectangular Attachment on Thin Shell
International Nuclear Information System (INIS)
Dodge, W.G.
1977-01-01
1 - Description of problem or function: LUGS calculates stresses, stress indices, and flexibility factors for a rectangular attachment on a cylindrical shell. 2 - Method of solution: The program implements Bijlaard's series solution to the thin-shell equations. 3 - Restrictions on the complexity of the problem: Caution is recommended in using the code for attachments on very thin shells that have large circumferential dimension and small longitudinal dimension (GAMMA.GE.80, BETA2.LE.0.05, and BETA1.GE.0.3) as series convergence and/or numeric problems seem to exist
On the mechanics of elastic lines in thin shells
Benet, Eduard; Vernerey, Franck
The deformation of soft shells in nature and engineering is often conditioned by the presence of lines whose mechanical properties are different from the shell. For instance, the deformation of tree leaves is conditioned by the presence of harder stems, and cell mitosis is driven by a stiffening line along its membrane. From an experimental standpoint, many groups have taken advantage of this feature to develop self-actuated shells with prescribed deformations. Examples include the polymerization of gels along certain lines, or the inclusion of stiffer lines via 3D printing. However, there is not yet a general continuum theory that accounts for this type of discontinuity within the membrane. Hence, we extend the general shell theory to account for the inclusion of a line that potentially induces jumps in stresses, couple stresses and moments, across its thickness. This is achieved via coupling the rod and the membrane deformations, and ensuring continuity of displacements. The model is then applied to three important problems: a constriction disc inside a shell of revolution, the induced twisting of a shell via the torsion of an embedded line, and the effect of an helicoidal line on the uni-axial deformation of a cylindrical shell. National Science Foundation CAREER award 1350090.
Elasto/visco-plastic deformations of thin shells of revolution
International Nuclear Information System (INIS)
Takezono, S.; Akashi, T.
1979-01-01
This paper is concerned with the numerical analysis of large elasto/visco-plastic deformations of this shells of revolution under axi-symmetrical loading with applications to pressure vessels. (orig.)
Stable Dyonic Thin-Shell Wormholes in Low-Energy String Theory
Directory of Open Access Journals (Sweden)
Ali Övgün
2017-01-01
Full Text Available Considerable attention has been devoted to the wormhole physics in the past 30 years by exploring the possibilities of finding traversable wormholes without the need for exotic matter. In particular, the thin-shell wormhole formalism has been widely investigated by exploiting the cut-and-paste technique to merge two space-time regions and to research the stability of these wormholes developed by Visser. This method helps us to minimize the amount of the exotic matter. In this paper, we construct a four-dimensional, spherically symmetric, dyonic thin-shell wormhole with electric charge Q, magnetic charge P, and dilaton charge Σ, in the context of Einstein-Maxwell-dilaton theory. We have applied Darmois-Israel formalism and the cut-and-paste method by joining together two identical space-time solutions. We carry out the dyonic thin-shell wormhole stability analyses by using a linear barotropic gas, Chaplygin gas, and logarithmic gas for the exotic matter. It is shown that, by choosing suitable parameter values as well as equation of state parameter, under specific conditions, we obtain a stable dyonic thin-shell wormhole solution. Finally, we argue that the stability domain of the dyonic thin-shell wormhole can be increased in terms of electric charge, magnetic charge, and dilaton charge.
A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell.
Joyce, Walter G; Lucas, Spencer G; Scheyer, Torsten M; Heckert, Andrew B; Hunt, Adrian P
2009-02-07
A new, thin-shelled fossil from the Upper Triassic (Revueltian: Norian) Chinle Group of New Mexico, Chinlechelys tenertesta, is one of the most primitive known unambiguous members of the turtle stem lineage. The thin-shelled nature of the new turtle combined with its likely terrestrial habitat preference hint at taphonomic filters that basal turtles had to overcome before entering the fossil record. Chinlechelys tenertesta possesses neck spines formed by multiple osteoderms, indicating that the earliest known turtles were covered with rows of dermal armour. More importantly, the primitive, vertically oriented dorsal ribs of the new turtle are only poorly associated with the overlying costal bones, indicating that these two structures are independent ossifications in basal turtles. These novel observations lend support to the hypothesis that the turtle shell was originally a complex composite in which dermal armour fused with the endoskeletal ribs and vertebrae of an ancestral lineage instead of forming de novo. The critical shell elements (i.e. costals and neurals) are thus not simple outgrowths of the bone of the endoskeletal elements as has been hypothesized from some embryological observations.
Addanki, Satish; Nedumaran, D.
2017-07-01
Core-Shell nanostructures play a vital role in the sensor field owing to their performance improvements in sensing characteristics and well-established synthesis procedures. These nanostructures can be ingeniously tuned to achieve tailored properties for a particular application of interest. In this work, an Ag-Au core-shell thin film nanoislands with APTMS (3-Aminopropyl trimethoxysilane) and PVA (Polyvinyl alcohol) binding agents was modeled, synthesized and characterized. The simulation results were used to fabricate the sensor through chemical route. The results of this study confirmed that the APTMS based Ag-Au core-shell thin film nanoislands offered a better performance over the PVA based Ag-Au core-shell thin film nanoislands. Also, the APTMS based Ag-Au core-shell thin film nanoislands exhibited better sensitivity towards ozone sensing over the other types, viz., APTMS/PVA based Au-Ag core-shell and standalone Au/Ag thin film nanoislands.
Reissner-Nordstroem thin-shell wormholes with generalized cosmic Chaplygin gas
Energy Technology Data Exchange (ETDEWEB)
Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); University of Education, Division of Science and Technology, Lahore (Pakistan)
2013-09-15
Following Visser's approach (Visser in Phys. Rev. D 39:3182, 1989; Nucl. Phys. B 328:203, 1989; Lorentzian wormholes. AIP Press, New York, 1996) of cut and paste, we construct Reissner-Nordstroem thin-shell wormholes by taking the generalized cosmic Chaplygin gas for the exotic matter located at the wormhole throat. The Darmois-Israel conditions are used to determine the dynamical quantities of the system. The viability of the thin-shell wormholes is explored with respect to radial perturbations preserving the spherical symmetry. We find stable as well as unstable Reissner-Nordstroem thin-shell wormhole solutions depending upon the model parameters. Finally, we compare our results with both generalized and modified Chaplygin gases. (orig.)
Counter-rotational effects on stability of 2 + 1-dimensional thin-shell wormholes
Energy Technology Data Exchange (ETDEWEB)
Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)
2014-09-15
The role of angular momentum in a 2 + 1-dimensional rotating thin-shell wormhole (TSW) is considered. Particular emphasis is given to stability when the shells (rings) are counter-rotating. We find that counter-rotating halves make the TSW supported by the equation of state of a linear gas more stable. Under a small velocity dependent perturbation, however, it becomes unstable. (orig.)
Zamani, J.; Soltani, B.; Aghaei, M.
2014-01-01
An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the inter...
International Nuclear Information System (INIS)
Woo, H.K.; Huang, C.L.D.
1979-01-01
The authors investigate the temperature variations in a thin cylindrical shell of graphite materials with finite length, subjected to an instantaneous thermal shock. The solutions for the line source and the area source of thermal shock are obtained. Quasi-linear theory for heat transfer is assumed. Grades ATJ and ZTA graphite are used in the numerical examples. As is expected, the orthotropically thermal properties significantly affect the temperature variations in the shell due to the thermal shocks. (Auth.)
MECHANICAL PROPERTIES OF THIN GDP SHELLS USED AS CRYOGENIC DIRECT DRIVE TARGETS AT OMEGA
International Nuclear Information System (INIS)
NIKROO, A.; CZECHOWICZ, D.; CHEN, K.C.; DICKEN, M.; MORRIS, C.; ANDREWS, R.; GREENWOOD, A.L; CASTILLO, E.
2003-09-01
OAK-B135 Thin glow discharge polymer (GDP) shells are currently used as the targets for cryogenic direct drive laser fusion experiments. These shells need to be filled with nearly 1000 atm of D 2 and cooled to cryogenic temperatures without failing due to buckling and bursting pressures they experience in this process. Therefore, the mechanical and permeation properties of these shells are of utmost importance in successful and rapid filling with D 2 . In this paper, they present an overview of buckle and burst pressures of several different types of GDP shells. These include those made using traditional GDP deposition parameters (standard GDP) using a high deposition pressure and using modified parameters (strong GDP) of low deposition pressure that leads to more robust shells
The problems concerning the integration of very thin mirror shells
Basso, S.; Citterio, O.; Mazzoleni, F.; Pareschi, G.; Tagliaferri, G.; Valtolina, R.; Conconi, P.; Parodi, G.
2009-08-01
The necessity to reduce the mass and to increase the collecting area requires that the thickness of the optics becomes more and more thinner. Simbol-X was a typical example of this trend. Such thickness makes the shells floppy and therefore unable to maintain the correct shape. During the integration of the shells into the mechanical structure, only negligible deformation must be introduced. The low thickness means also that the shells must be glued on both sides to reach a good stiffness of the whole mirror module and this fact introduces a set of mounting problems. In INAF - Osservatorio Astronomico di Brera an integration process has been developed. The use of stiffening rings and of a temporary structure is the key to maintain the right shape of the shell. In this article the results of the integration of the first three prototypes of the Simbol-X optics are presented. The description of the process and the analysis of the degradation of the performances during the integration are shown in detail.
Anomalous fast diffusion in Cu-NiFe nanolaminates.
Energy Technology Data Exchange (ETDEWEB)
Jankowski, Alan F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Energy Nanomaterials Dept.
2017-09-01
For this work, the decomposition of the one-dimensional composition wave in Cu-NiFe nanolaminate structures is examined using x-ray diffraction to assess the kinetics of phase decomposition. The anomalously high diffusivity value found for long-term aging at room temperature is attributed to the inherent nanostructure that features paths for short-circuit diffusion in nanolaminates as attributed to interlayer grain boundaries.
Energy Technology Data Exchange (ETDEWEB)
Rahaman, F [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Kuhfittig, P K F [Department of Mathematics, Milwaukee School of Engineering, Milwaukee, WI 53202-3109 (United States); Kalam, M [Department of Physics, Aliah University, Sector V, Salt Lake, Kolkata 700091 (India); Usmani, A A [Department of Physics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh (India); Ray, S, E-mail: farook-rahaman@yahoo.com, E-mail: kuhfitti@msoe.edu, E-mail: mehedikalam@yahoo.co.in, E-mail: anisul@iucaa.ernet.in, E-mail: saibal@iucaa.ernet.in [Department of Physics, Govt College of Engineering and Ceramic Technology, Kolkata 700010 (India)
2011-08-07
In this paper, we have constructed a new class of thin-shell wormholes from black holes in Horava-Lifshitz gravity. Particular emphasis is placed on those aspects that allow a comparison of Horava-Lifshitz gravity to Einstein gravity. The former enjoys a number of advantages for small values of the throat radius.
Thin Static Charged Dust Majumdar–Papapetrou Shells with High Symmetry in D ≥ 4
Czech Academy of Sciences Publication Activity Database
Čermák, Martin; Zouhar, M.
2012-01-01
Roč. 51, č. 8 (2012), s. 2455-2469 ISSN 0020-7748 Institutional research plan: CEZ:AV0Z20410507 Keywords : Majumdar–Papapetrou * Kastor–Traschen * higher dimensional thin charged shell Subject RIV: BE - Theoretical Physics Impact factor: 1.086, year: 2012
Contribution of apparently non-operating loadings to the buckling of thin shells and plates
International Nuclear Information System (INIS)
Delaigue, Didier.
1980-02-01
This work includes four parts: in the first part, the Kirchhoff-Love theory of thin shells is described, a theory taken up and developed by Koiter and whose modelling seems to meet the problems of engineers. The second part deals with the buckling of a thin plate subjected to a load along a part of its edge, of which a part or all is seemingly inoperative. In the third part the study is extended to shells of any shape subjected to a conservative loading of the ''dead-loading'' type along part of their edges. On the basis of the results of the previous study, a study is then made on the taking into account of any load applied to the edge of a thin shell. In the fourth part the previous results are applied to the study of the buckling of a thin shell with a circular base subjected along a part of its edge to a normal prestress and to twisting moments linear density [fr
Elastic-plastic failure analysis of pressure burst tests of thin toroidal shells
International Nuclear Information System (INIS)
Jones, D.P.; Holliday, J.E.; Larson, L.D.
1998-07-01
This paper provides a comparison between test and analysis results for bursting of thin toroidal shells. Testing was done by pressurizing two toroidal shells until failure by bursting. An analytical criterion for bursting is developed based on good agreement between structural instability predicted by large strain-large displacement elastic-plastic finite element analysis and observed burst pressure obtained from test. The failures were characterized by loss of local stability of the membrane section of the shells consistent with the predictions from the finite element analysis. Good agreement between measured and predicted burst pressure suggests that incipient structural instability as calculated by an elastic-plastic finite element analysis is a reasonable way to calculate the bursting pressure of thin membrane structures
Local effects in thin elastic shell due to thermal and mechanical loadings
International Nuclear Information System (INIS)
Taheri, S.
1987-01-01
For a thick cylinder (1/15)<(h/rm)<(1/3) the local effect is represented by the same field. When the local effect is negligible the Love-Kirchhoff solution is valid for a thick cylinder. A shear effect shell theory may give for a thin cylinder a large error compared to the exact 3D solution on a thermal shock. The Love-Kirchhoff solution is generally not valid in the vicinity of a clamped or simply supported edge. A finite element program of thin shell with shear effect or thick shell ist not really reliable. A combination of 3D local solution and Love-Kirchhoff global solution through a transition zone may replace a complete 3D solution for not very thick structures. (orig./GL)
Fast ignition upon the implosion of a thin shell onto a precompressed deuterium-tritium ball
Gus'kov, S. Yu.; Zmitrenko, N. V.
2012-11-01
Fast ignition of a precompressed inertial confinement fusion (ICF) target by a hydrodynamic material flux is investigated. A model system of hydrodynamic objects consisting of a central deuterium-tritium (DT) ball and a concentric two-layer shell separated by a vacuum gap is analyzed. The outer layer of the shell is an ablator, while the inner layer consists of DT ice. The igniting hydrodynamic flux forms as a result of laser-driven acceleration and compression of the shell toward the system center. A series of one-dimensional numerical simulations of the shell implosion, the collision of the shell with the DT ball, and the generation and propagation of thermonuclear burn waves in both parts of the system are performed. Analytic models are developed that describe the implosion of a thin shell onto a central homogeneous ball of arbitrary radius and density and the initiation and propagation of a thermonuclear burn wave induced by such an implosion. Application of the solution of a model problem to analyzing the implosion of a segment of a spherical shell in a conical channel indicates the possibility of fast ignition of a spherical ICF target from a conical target driven by a laser pulse with an energy of 500-700 kJ.
Multi-layer adaptive thin shells for future space telescopes
International Nuclear Information System (INIS)
Bastaits, R; Preumont, A; Rodrigues, G; Jetteur, Ph; Hagedorn, P
2012-01-01
This paper examines the morphing capability of doubly curved elastic shells with various layers of active materials with strain actuation capability. The equivalent piezoelectric loads of an orthotropic multi-layer shell is established and it is demonstrated that a set of four active layers offer independent control of the in-plane forces and bending moments, which guarantees optimum morphing with arbitrary profile. This is illustrated by a numerical example which compares a unimorph configuration (single layer of active material) with a twin-bimorph (two pairs of symmetrical layers of active material with orthotropic properties). Numerical simulations indicate that the optical (Zernike) modes with shapes where the curvatures in orthogonal directions have opposite signs (e.g. astigmatism, trefoil, tetrafoil) are fairly easy to control with both configurations and that substantial amplitudes may be achieved. However, the optical modes with shapes where the curvatures in orthogonal directions have the same sign (e.g. defocus, coma, spherical aberration) are difficult to control with the unimorph configuration, and they lead to the appearance of slope discontinuities at the interface between the independent electrodes. As expected, a much better morphing is achieved with a twin-bimorph configuration. (paper)
National Academy of Sciences - National Research Council, Washington, DC.
Topics discussed include--(1) requirements for weatherproofing and sealant materials for thin shell concrete roof, (2) effect of physical factors on weatherproofing of thin shell concrete roofs, (3) problems and limitations imposed by thin shell concrete roofs and their effect on weatherproofing and sealant materials, and (4) properties and uses…
Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3
International Nuclear Information System (INIS)
Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.
1975-06-01
The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)
Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4
International Nuclear Information System (INIS)
Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.
1975-06-01
The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)
Zamani, J; Soltani, B; Aghaei, M
2014-10-01
An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the intersection and boundary locations on the circumferential and longitudinal stresses is evaluated and it is shown that how quantitatively they are essential.
Design and development by direct polishing of the WFXT thin polynomial mirror shells
Proserpio, L.; Campana, S.; Citterio, O.; Civitani, M.; Combrinck, H.; Conconi, P.; Cotroneo, V.; Freeman, R.; Mattini, E.; Langstrof, P.; Morton, R.; Motta, G.; Oberle, O.; Pareschi, G.; Parodi, G.; Pels, C.; Schenk, C.; Stock, R.; Tagliaferri, G.
2017-11-01
The Wide Field X-ray Telescope (WFXT) is a medium class mission proposed to address key questions about cosmic origins and physics of the cosmos through an unprecedented survey of the sky in the soft X-ray band (0.2-6 keV) [1], [2]. In order to get the desired angular resolution of 10 arcsec (5 arcsec goal) on the entire 1 degrees Field Of View (FOV), the design of the optical system is based on nested grazing-incidence polynomial profiles mirrors, and assumes a focal plane curvature and plate scale corrections among the shells. This design guarantees an increased angular resolution also at large off-axis positions with respect to the usually adopted Wolter I configuration. In order to meet the requirements in terms of mass and effective area (less than 1200 kg, 6000 cm2 @ 1 keV), the nested shells are thin and made of quartz glass. The telescope assembly is composed by three identical modules of 78 nested shells each, with diameter up to 1.1 m, length in the range of 200-440 mm and thickness of less than 2.2 mm. At this regard, a deterministic direct polishing method is under investigation to manufacture the WFXT thin grazing-incidence mirrors made of quartz. The direct polishing method has already been used for past missions (as Einstein, Rosat, Chandra) but based on much thicker shells (10 mm ore more). The technological challenge for WFXT is to apply the same approach but for 510 times thinner shells. The proposed approach is based on two main steps: first, quartz glass tubes available on the market are ground to conical profiles; second the pre-shaped shells are polished to the required polynomial profiles using a CNC polishing machine. In this paper, preliminary results on the direct grinding and polishing of prototypes shells made by quartz glass with low thickness, representative of the WFXT optical design, are presented.
Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge
de Celis, Emilio Rubín
2015-01-01
The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a $bulk$ field and a $shell$ field. The $bulk$ part corresponds to a field sourced by the test charge placed in a space-time without the shell. The $shell$ field accounts for the discontinuity of the extrinsic curvature ${\\kappa^p}_q$. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential prod...
Performance of an anisotropic Allman/DKT 3-node thin triangular flat shell element
Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.
1992-05-01
A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular flat shell element in global coordinates is presented. An Allman triangle (AT) is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending element. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, the membrane and bending strain-displacement matrices. Using the aforementioned approach, the objective of this study is to develop and test the performance of a practical 3-node flat shell element that could be used in plate problems with unsymmetrically stacked composite laminates. The performance of the latter element is tested on plates of varying aspect ratios. The developed 3-node shell element should simplify the programming task and have the potential of reducing the computational time.
The Integration Process of Very Thin Mirror Shells with a Particular Regard to Simbol-X
Basso, S.; Pareschi, G.; Tagliaferri, G.; Mazzoleni, F.; Valtolina, R.; Citterio, O.; Conconi, P.
2009-05-01
The optics of Simbol-X are very thin compared to previous X-ray missions (like XMM). Therefore their shells floppy and are unable to maintain the correct shape. To avoid the deformations of their very thin X-ray optics during the integration process we adopt two stiffening rings with a good roundness. In this article the procedure used for the first three prototypes of the Simbol-X optics is presented with a description of the problems involved and with an analysis of the degradation of the performances during the integration. This analysis has been performed with the UV vertical bench measurements at INAF-OAB.
Thin-shell wormholes in Born–Infeld electrodynamics with modified Chaplygin gas
Energy Technology Data Exchange (ETDEWEB)
Sharif, M., E-mail: msharif.math@pu.edu.pk [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan); Azam, M., E-mail: azam.math@ue.edu.pk [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan); Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan)
2014-07-25
In this paper, we construct spherically symmetric thin-shell wormholes in the scenario of Born–Infeld electrodynamics theory. We take the modified Chaplygin gas for the description of exotic matter around the wormhole throat. The stability of static wormhole solutions with different values of charge and Born–Infeld parameter is investigated. We compare our results with those obtained for generalized Chaplygin gas [36] and conclude that stable static wormhole solutions also exist even for large value of Born–Infeld parameter. - Highlights: • Constructed thin-shell wormholes in Born–Infeld electrodynamics for modified Chaplygin. • Studied its stability with different values of charge and Born–Infeld parameter. • New stable solutions are found even for large value of Born–Infeld parameter. • Selection of EoS significantly changes the presence and stability of static solutions.
Spherical thin shells in F(R) gravity. Construction and stability
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Figueroa Aguirre, Griselda [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina)
2018-01-15
We present a broad class of spherical thin shells of matter in F(R) gravity. We show that the corresponding junction conditions determine the equation of state between the energy density and the pressure/tension at the surface. We analyze the stability of the static configurations under perturbations preserving the symmetry. We apply the formalism to the construction of charged bubbles and we find that there exist stable static configurations for a suitable set of the parameters of the model. (orig.)
Thin-shell wormholes with charge in F(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Figueroa Aguirre, Griselda [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina)
2016-03-15
In this article, we construct a class of constant curvature and spherically symmetric thin-shell Lorentzian wormholes in F(R) theories of gravity and we analyze their stability under perturbations preserving the symmetry. We find that the junction conditions determine the equation of state of the matter at the throat. As a particular case, we consider configurations with mass and charge. We obtain that stable static solutions are possible for suitable values of the parameters of the model. (orig.)
General formalism for the stability of thin-shell wormholes in 2 + 1 dimensions
Energy Technology Data Exchange (ETDEWEB)
Bejarano, Cecilia [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina); Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Simeone, Claudio [Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); IFIBA-CONICET, Buenos Aires (Argentina)
2014-08-15
In this article we theoretically construct circular thin-shell wormholes in a 2 + 1-dimensional spacetime. The construction is symmetric with respect to the throat. We present a general formalism for the study of the mechanical stability under perturbations preserving the circular symmetry of the configurations, adopting a linearized equation of state for the exotic matter at the throat. We apply the formalism to several examples. (orig.)
General formalism for the stability of thin-shell wormholes in 2 + 1 dimensions
International Nuclear Information System (INIS)
Bejarano, Cecilia; Eiroa, Ernesto F.; Simeone, Claudio
2014-01-01
In this article we theoretically construct circular thin-shell wormholes in a 2 + 1-dimensional spacetime. The construction is symmetric with respect to the throat. We present a general formalism for the study of the mechanical stability under perturbations preserving the circular symmetry of the configurations, adopting a linearized equation of state for the exotic matter at the throat. We apply the formalism to several examples. (orig.)
Thin-shell wormholes with charge in F(R) gravity
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Figueroa Aguirre, Griselda
2016-01-01
In this article, we construct a class of constant curvature and spherically symmetric thin-shell Lorentzian wormholes in F(R) theories of gravity and we analyze their stability under perturbations preserving the symmetry. We find that the junction conditions determine the equation of state of the matter at the throat. As a particular case, we consider configurations with mass and charge. We obtain that stable static solutions are possible for suitable values of the parameters of the model. (orig.)
Spherical thin shells in F(R) gravity. Construction and stability
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Figueroa Aguirre, Griselda
2018-01-01
We present a broad class of spherical thin shells of matter in F(R) gravity. We show that the corresponding junction conditions determine the equation of state between the energy density and the pressure/tension at the surface. We analyze the stability of the static configurations under perturbations preserving the symmetry. We apply the formalism to the construction of charged bubbles and we find that there exist stable static configurations for a suitable set of the parameters of the model. (orig.)
Dilaton thin-shell wormholes supported by a generalized Chaplygin gas
International Nuclear Information System (INIS)
Bejarano, Cecilia; Eiroa, Ernesto F.
2011-01-01
In this article, we construct spherical thin-shell wormholes with charge in dilaton gravity. The exotic matter required for the construction is provided by a generalized Chaplygin gas. We study the stability under perturbations preserving the symmetry. We find that the increase of the coupling between the dilaton and the electromagnetic fields reduces the range of the parameters for which stable configurations are possible.
SOUND FIELD SHIELDING BY FLAT ELASTIC LAYER AND THIN UNCLOSED SPHERICAL SHELL
Directory of Open Access Journals (Sweden)
G. Ch. Shushkevich
2014-01-01
Full Text Available An analytical solution of a boundary problem describing the process of penetration of a sound field of a spherical radiator located inside a thin unclosed spherical shell through a flat elastic layer is constructed. An influence of some parameters of the problem on the value of the attenuation coeffi-cient (screening of the sound field was studied by using a numerical simulation.
International Nuclear Information System (INIS)
Lindgren, Jonathan
2016-01-01
We study collisions of massive pointlike particles in three dimensional anti-de Sitter space, generalizing the work on massless particles in http://dx.doi.org/10.1088/0264-9381/33/14/145009. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massive particles that fall in radially and collide at the origin of AdS. No restrictions on the masses or the angular and radial positions from where the particles are released, are imposed. We also consider the limit of an infinite number of particles, obtaining novel timelike thin shell spacetimes. These thin shells have an arbitrary mass distribution as well as a non-trivial embedding where the radial location of the shell depends on the angular coordinate, and we analyze these shells using the junction formalism of general relativity. We also consider the massless limit and find consistency with earlier results, as well as comment on the stress-energy tensor modes of the dual CFT.
Energy Technology Data Exchange (ETDEWEB)
Lindgren, Jonathan [Theoretische Natuurkunde, Vrije Universiteit Brussel, and the International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium)
2016-12-13
We study collisions of massive pointlike particles in three dimensional anti-de Sitter space, generalizing the work on massless particles in http://dx.doi.org/10.1088/0264-9381/33/14/145009. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massive particles that fall in radially and collide at the origin of AdS. No restrictions on the masses or the angular and radial positions from where the particles are released, are imposed. We also consider the limit of an infinite number of particles, obtaining novel timelike thin shell spacetimes. These thin shells have an arbitrary mass distribution as well as a non-trivial embedding where the radial location of the shell depends on the angular coordinate, and we analyze these shells using the junction formalism of general relativity. We also consider the massless limit and find consistency with earlier results, as well as comment on the stress-energy tensor modes of the dual CFT.
Geometric method for stability of non-linear elastic thin shells
Ivanova, Jordanka
2002-01-01
PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surfac...
Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge
Energy Technology Data Exchange (ETDEWEB)
Rubin de Celis, Emilio [Universidad de Buenos Aires y IFIBA, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2016-02-15
The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a bulk field and a shell field. The bulk part corresponds to a field sourced by the test charge placed in a space-time without the shell. The shell field accounts for the discontinuity of the extrinsic curvature κ{sup p}{sub q}. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential produced by a non-gravitating charge distribution of total image charge Q, to interpret the shell field in both the interior and exterior regions of the space-time. The self-force on a point charge q in a locally flat geometry with a cylindrical thin-shell of matter is calculated. The charge is repelled from the shell if κ{sup p}{sub q} = κ < 0 (ordinarymatter) and attracted toward the shell if κ > 0 (exotic matter). The total image charge is zero for exterior problems, while for interior problems Q/q = κr{sub e}, with re the external radius of the shell. The procedure is general and can be applied to interpret self-forces in other space-times with shells, e.g., for locally flat wormholes we found Q{sub -+}{sup wh}/q = -1/(κ{sub wh}r{sub ±}). (orig.)
The challenge of developing thin mirror shells for future x-ray telescopes
Döhring, Thorsten; Stollenwerk, Manfred; Gong, Qingqing; Proserpio, Laura; Winter, Anita; Friedrich, Peter
2015-09-01
Previously used mirror technologies are not able to fulfil the requirements of future X-ray telescopes due to challenging requests from the scientific community. Consequently new technical approaches for X-ray mirror production are under development. In Europe the technical baseline for the planned X-ray observatory ATHENA is the radical new approach of silicon pore optics. NASÁs recently launched NuSTAR mission uses segmented mirrors shells made from thin bended glasses, successfully demonstrating the feasibility of the glass forming technology for X-ray mirrors. For risk mitigation also in Europe the hot slumping of thin glasses is being developed as an alternative technology for lightweight X-ray telescopes. The high precision mirror manufacturing requires challenging technical developments; several design trades and trend-setting decisions need to be made and are discussed within this paper. Some new technical and economic aspects of the intended glass mirror serial production are also studied within the recently started interdisciplinary project INTRAAST, an acronym for "industry transfer of astronomical mirror technologies". The goal of the project, embedded in a cooperation of the Max-Planck-Institute for extraterrestrial Physics and the University of Applied Sciences Aschaffenburg, is to master the challenge of producing thin mirror shells for future X-ray telescopes. As a first project task the development of low stress coatings for thin glass mirror substrates have been started, the corresponding technical approach and first results are presented.
Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2
International Nuclear Information System (INIS)
Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.
1975-10-01
Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d 0 /D 0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)
Self-force on an arbitrarily coupled scalar charge in cylindrical thin-shell spacetimes
Energy Technology Data Exchange (ETDEWEB)
Tomasini, C.; Rubin de Celis, E.; Simeone, C. [Universidad de Buenos Aires y IFIBA, CONICET, Ciudad Universitaria, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2018-02-15
We consider the arbitrarily coupled field and self-force of a static massless scalar charge in cylindrical spacetimes with one or two asymptotic regions, with the only matter content concentrated in a thin-shell characterized by the trace of the extrinsic curvature jump κ. The self-force is studied numerically and analytically in terms of the curvature coupling ξ. We found the critical values ξ{sub c}{sup (n)} = n/(ρ(r{sub s})κ), with n element of N and ρ(r{sub s}) the metric's profile function at the position of the shell, for which the scalar field is divergent in the background configuration. The pathological behavior is removed by restricting the coupling to a domain of stability. The coupling has a significant influence over the self-force at the vicinities of the shell, and we identified ξ = 1/4 as the value for which the scalar force changes sign at a neighborhood of r{sub s}; if κ(1-4ξ) > 0 the shell acts repulsively as an effective potential barrier, while if κ(1-4ξ) < 0 it attracts the charge as a potential well. The sign of the asymptotic self-force only depends on whether there is an angle deficit or not on the external region where the charge is placed; conical asymptotics produce a leading attractive force, while Minkowski regions produce a repulsive asymptotic self-force. (orig.)
Design and modeling of an additive manufactured thin shell for x-ray astronomy
Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter
2017-09-01
Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.
Vacuum thin shells in Einstein–Gauss–Bonnet brane-world cosmology
Ramirez, Marcos A.
2018-04-01
In this paper we construct new solutions of the Einstein–Gauss–Bonnet field equations in an isotropic Shiromizu–Maeda–Sasaki brane-world setting which represent a couple of Z 2-symmetric vacuum thin shells splitting from the central brane, and explore the main properties of the dynamics of the system. The matching of the separating vacuum shells with the brane-world is as smooth as possible and all matter fields are restricted to the brane. We prove the existence of these solutions, derive the criteria for their existence, analyse some fundamental aspects or their evolution and demonstrate the possibility of constructing cosmological examples that exhibit this feature at early times. We also comment on the possible implications for cosmology and the relation of this system with the thermodynamic instability of highly symmetric vacuum solutions of Lovelock theory.
Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.
2013-01-01
Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.
Ip, Alexander H.
2013-12-23
Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.
Explicit formulation of an anisotropic Allman/DKT 3-node thin triangular flat shell elements
Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.
A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular, flat shell element in global coordinates is presented. An Allman triangle is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending triangle. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, membrane and bending strain-displacement matrices.
X-ray Multilayers and Thin-Shell Substrate Surface-Figure Correction
Windt, David
We propose a comprehensive experimental research program whose two main goals are (a) to improve the performance of hard X-ray multilayer coatings and (b) to develop a high-throughput method to correct mid-frequency surface errors in thin-shell mirror substrates. Achieving these goals will enable the cost-effective construction of light- weight, highly-nested X-ray telescopes having greater observational sensitivity, wider energy coverage, and higher angular resolution than can be achieved at present. The realization of this technology will thus benefit the development of a variety of Explorer- class NASA X-ray astronomy missions now being formulated for both the soft and hard X-ray bands, and will enable the construction of future facility-class X-ray missions that will require both high sensitivity and high resolution. Building on the success of our previous APRA-funded research, we plan to investigate new thin-film growth techniques, new materials, and new aperiodic coating designs in order to develop new hard X-ray multilayers that have higher X-ray reflectance, wider energy response, lower film stress, and good stability, and that can be produced more quickly, at reduced cost. Additionally, we propose to build upon our extensive experience in sub-nm film-thickness control using velocity modulation and masked deposition techniques, and in the recent development of low-roughness, low-stress films grown by reactive sputtering, in order to develop new methods for correcting mid-frequency surface errors in thin-shell mirror substrates using both differential deposition and ion-beam figuring, either alone or in combination. These two surface-correction techniques already being used for sub-nm figuring of precision optics in a variety of disciplines, including diffraction-limited EUV lithography and synchrotron applications requiring sub-micron focusing are ideally suited for controlling mm-scale surface errors in the thin-shell substrates used for astronomical X
3 + 1-dimensional thin shell wormhole with deformed throat can be supported by normal matter
Energy Technology Data Exchange (ETDEWEB)
Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)
2015-06-15
From the physics standpoint the exotic matter problem is a major difficulty in thin shell wormholes (TSWs) with spherical/cylindrical throat topologies.We aim to circumvent this handicap by considering angle dependent throats in 3 + 1 dimensions. By considering the throat of the TSW to be deformed spherical, i.e., a function of θ and φ, we present general conditions which are to be satisfied by the shape of the throat in order to have the wormhole supported by matter with positive density in the static reference frame. We provide particular solutions/examples to the constraint conditions. (orig.)
Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Figueroa Aguirre, Griselda [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)
2012-11-15
We construct spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas in Born-Infeld electrodynamics coupled to Einstein gravity, and we analyze their stability under radial perturbations. For different values of the Born-Infeld parameter and the charge, we compare the results with those obtained in a previous work for Maxwell electrodynamics. The stability region in the parameter space reduces and then disappears as the value of the Born-Infeld parameter is modified in the sense of a larger departure from Maxwell theory. (orig.)
Some general aspects of thin-shell wormholes with cylindrical symmetry
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Simeone, Claudio
2010-01-01
In this article we study a general class of nonrotating thin-shell wormholes with cylindrical symmetry. We consider two physically sound definitions of the flare-out condition and we show that the less restrictive one allows for the construction of wormholes with positive energy density at the throat. We also analyze the mechanical stability of these objects under perturbations preserving the symmetry, proving that previous results are particular cases of a general property. We present examples of wormholes corresponding to Einstein-Maxwell spacetimes.
Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Figueroa Aguirre, Griselda
2012-01-01
We construct spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas in Born-Infeld electrodynamics coupled to Einstein gravity, and we analyze their stability under radial perturbations. For different values of the Born-Infeld parameter and the charge, we compare the results with those obtained in a previous work for Maxwell electrodynamics. The stability region in the parameter space reduces and then disappears as the value of the Born-Infeld parameter is modified in the sense of a larger departure from Maxwell theory. (orig.)
DEFF Research Database (Denmark)
Engelbrekt, Christian; Seselj, Nedjeljko; Poreddy, Raju
2016-01-01
in electrooxidation of sustainable fuels (i.e. formic acid, methanol and ethanol), and selective hydrogenation of benzene derivatives. Especially high activity was achieved for formic acid oxidation, 549 mA (mgPt)−1 (at 0.6 V vs. SCE), which is 3.5 fold higher than a commercial ... properties were thoroughly characterized by ultraviolet-visible light spectrophotometry, transmission electron microscopy, nanoparticle tracking analysis and electrochemistry. The 8 ± 2 nm Au@PtNPs contained 24 ± 1 mol% Pt and 76 ± 1 mol% Au corresponding to an atomically thin Pt shell. Electrochemical data...
Linear dynamic analysis of arbitrary thin shells modal superposition by using finite element method
International Nuclear Information System (INIS)
Goncalves Filho, O.J.A.
1978-11-01
The linear dynamic behaviour of arbitrary thin shells by the Finite Element Method is studied. Plane triangular elements with eighteen degrees of freedom each are used. The general equations of movement are obtained from the Hamilton Principle and solved by the Modal Superposition Method. The presence of a viscous type damping can be considered by means of percentages of the critical damping. An automatic computer program was developed to provide the vibratory properties and the dynamic response to several types of deterministic loadings, including temperature effects. The program was written in FORTRAN IV for the Burroughs B-6700 computer. (author)
The chocolate-egg problem: Fabrication of thin elastic shells through coating
Lee, Anna; Marthelot, Joel; Brun, Pierre-Thomas; Reis, Pedro M.
2015-03-01
We study the fabrication of thin polymeric shells based on the coating of a curved surface by a viscous fluid. Upon polymerization of the resulting thin film, a slender solid structure is delivered after demolding. This technique is extensively used, empirically, in manufacturing, where it is known as rotational molding, as well as in the food industry, e.g. for chocolate-eggs. This problem is analogous to the Landau-Levich-Derjaguin coating of plates and fibers and Bretherton's problem of film deposition in cylindrical channels, albeit now on a double-curved geometry. Here, the balance between gravity, viscosity, surface tension and polymerization rate can yield a constant thickness film. We seek to identify the physical ingredients that govern the final film thickness and its profile. In our experiments using organosilicon, we systematically vary the properties of the fluid, as well as the curvature of the substrate onto which the film is coated, and characterize the final thickness profile of the shells. A reduced model is developed to rationalize the process.
Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells
Kim, Changkyu; Lee, Gyoungja; Rhee, Changkyu; Lee, Minku
2015-04-01
The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation. Isothermal oxidation and reduction treatment at 200 °C for only about 10 min yields an oxide-free copper network structure with an electrical resistivity of 25.1 μΩ cm (14.0 μΩ cm at 250 °C). Finally, conductive copper line patterns are achieved down to a 50 μm width with an excellent printing resolution (standard deviation ~4.0%) onto a polyimide substrate using screen printing of the optimized inks.The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation
Energy Technology Data Exchange (ETDEWEB)
Laitinen, M., E-mail: mikko.i.laitinen@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Sajavaara, T., E-mail: timo.sajavaara@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Rossi, M., E-mail: mikko.rossi@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Julin, J., E-mail: jaakko.julin@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Puurunen, R.L., E-mail: riikka.puurunen@vtt.fi [VTT Technical Research Centre of Finland, Tietotie 3, FI-02150 Espoo (Finland); Suni, T., E-mail: tommi.suni@vtt.fi [VTT Technical Research Centre of Finland, Tietotie 3, FI-02150 Espoo (Finland); Institute of Industrial Science, University of Tokyo, ew304, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); Ishida, T., E-mail: tadashii@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, ew304, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); Fujita, H., E-mail: fujita@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, ew304, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); Arstila, K., E-mail: kai.arstila@imec.be [Imec, Kapeldreef 75, Leuven 3001 (Belgium); Brijs, B., E-mail: bert.brijs@imec.be [Imec, Kapeldreef 75, Leuven 3001 (Belgium); Whitlow, H.J., E-mail: harry.j.whitlow@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland)
2011-12-15
Atomic layer deposition (ALD) is currently a widespread method to grow conformal thin films with a sub-nm thickness control. By using ALD for nanolaminate oxides, it is possible to fine tune the electrical, optical and mechanical properties of thin films. In this study the elemental depth profiles and surface roughnesses were determined for Al{sub 2}O{sub 3} + TiO{sub 2} nanolaminates with nominal single-layer thicknesses of 1, 2, 5, 10 and 20 nm and total thickness between 40 nm and 60 nm. The depth profiles were measured by means of a time-of-flight elastic recoil detection analysis (ToF-ERDA) spectrometer recently installed at the University of Jyvaeskylae. In TOF-E measurements {sup 63}Cu, {sup 35}Cl, {sup 12}C and {sup 4}He ions with energies ranging from 0.5 to 10 MeV, were used and depth profiles of the whole nanolaminate film could be analyzed down to 5 nm individual layer thickness.
Development and applications of a flat triangular element for thin laminated shells
Mohan, P.
Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the
Core-Shell Double Gyroid Structure Formed by Linear ABC Terpolymer Thin Films.
Antoine, Ségolène; Aissou, Karim; Mumtaz, Muhammad; Telitel, Siham; Pécastaings, Gilles; Wirotius, Anne-Laure; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges
2018-05-01
The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol -1 ) building block and a carboxyl-terminated PI (9 kg mol -1 ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced. A solvent vapor annealing (SVA) process is used to promote the self-assembly of frustrated PS-b-P2VP-b-PI chains into a thin-film core-shell double gyroid (Q 230 , space group: Ia3¯d) structure. As terraces are formed within PS-b-P2VP-b-PI thin films during the SVA process under a CHCl 3 vapor, different plane orientations of the Q 230 structure ((211), (110), (111), and (100)) are observed at the polymer-air interface depending on the film thickness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Marinković, D; Köppe, H; Gabbert, U
2008-01-01
Active piezoelectric thin-walled structures, especially those with a notably higher membrane than bending stiffness, are susceptible to large rotations and transverse deflections. Recent investigations conducted by a number of researchers have shown that the predicted behavior of piezoelectric structures can be significantly influenced by the assumption of large displacements and rotations of the structure, thus demanding a geometrically nonlinear formulation in order to investigate it. This paper offers a degenerated shell element and a simplified formulation that relies on small incremental steps for the geometrically nonlinear analysis of piezoelectric composite structures. A set of purely mechanical static cases is followed by a set of piezoelectric coupled static cases, both demonstrating the applicability of the proposed formulation
Nonsymmetric dynamical thin-shell wormhole in Robinson-Trautman class
Svítek, O.; Tahamtan, T.
2018-02-01
The thin-shell wormhole created using the Darmois-Israel formalism applied to Robinson-Trautman family of spacetimes is presented. The stress energy tensor created on the throat is interpreted in terms of two dust streams and it is shown that asymptotically this wormhole settles to the Schwarzschild wormhole with a throat located at the position of the horizon. This behavior shows a nonlinear stability (within the Robinson-Trautman class) of this spherically symmetric wormhole. The gravitational radiation emitted by the Robinson-Trautman wormhole during the transition to spherical symmetry is indistinguishable from that of the corresponding black hole Robinson-Trautman spacetime. Subsequently, we show that the higher-dimensional generalization of Robinson-Trautman geometry offers a possibility of constructing wormholes without the need to violate the energy conditions for matter induced on the throat.
Nonsymmetric dynamical thin-shell wormhole in Robinson-Trautman class
Energy Technology Data Exchange (ETDEWEB)
Svitek, O. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague (Czech Republic); Tahamtan, T. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague (Czech Republic); Czech Academy of Sciences, Astronomical Institute, Prague (Czech Republic)
2018-02-15
The thin-shell wormhole created using the Darmois-Israel formalism applied to Robinson-Trautman family of spacetimes is presented. The stress energy tensor created on the throat is interpreted in terms of two dust streams and it is shown that asymptotically this wormhole settles to the Schwarzschild wormhole with a throat located at the position of the horizon. This behavior shows a nonlinear stability (within the Robinson-Trautman class) of this spherically symmetric wormhole. The gravitational radiation emitted by the Robinson-Trautman wormhole during the transition to spherical symmetry is indistinguishable from that of the corresponding black hole Robinson-Trautman spacetime. Subsequently, we show that the higher-dimensional generalization of Robinson-Trautman geometry offers a possibility of constructing wormholes without the need to violate the energy conditions for matter induced on the throat. (orig.)
Aslam, Umar; Linic, Suljo
2017-12-13
Bimetallic nanoparticles in which a metal is coated with an ultrathin (∼1 nm) layer of a second metal are often desired for their unique chemical and physical properties. Current synthesis methods for producing such core-shell nanostructures often require incremental addition of a shell metal precursor which is rapidly reduced onto metal cores. A major shortcoming of this approach is that it necessitates precise concentrations of chemical reagents, making it difficult to perform at large scales. To address this issue, we considered an approach whereby the reduction of the shell metal precursor was controlled through in situ chemical modification of the precursor. We used this approach to develop a highly scalable synthesis for coating atomic layers of Pt onto Ag nanocubes. We show that Ag-Pt core-shell nanostructures are synthesized in high yields and that these structures effectively combine the optical properties of the plasmonic Ag nanocube core with the surface properties of the thin Pt shell. Additionally, we demonstrate the scalability of the synthesis by performing a 10 times scale-up.
The Influence on Modal Parameters of Thin Cylindrical Shell under Bolt Looseness Boundary
Directory of Open Access Journals (Sweden)
Hui Li
2016-01-01
Full Text Available The influence on modal parameters of thin cylindrical shell (TCS under bolt looseness boundary is investigated. Firstly, bolt looseness boundary of the shell is divided into two types, that is, different bolt looseness numbers and different bolt looseness levels, and natural frequencies and mode shapes are calculated by finite element method to roughly master vibration characteristics of TCS under these conditions. Then, the following measurements and identification techniques are used to get precise frequency, damping, and shape results; for example, noncontact laser Doppler vibrometer and vibration shaker with excitation level being precisely controlled are used in the test system; “preexperiment” is adopted to determine the required tightening torque and verify fixed constraint boundary; the small-segment FFT processing technique is employed to accurately measure nature frequency and laser rotating scanning technique is used to get shape results with high efficiency. Finally, based on the measured results obtained by the above techniques, the influence on modal parameters of TCS under two types of bolt looseness boundaries is analyzed and discussed. It can be found that bolt looseness boundary can significantly affect frequency and damping results which might be caused by changes of nonlinear stiffness and damping and in bolt looseness positions.
Thin-shell bubbles and information loss problem in anti de Sitter background
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Misao [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Tomsk State Pedagogical University,634050 Tomsk (Russian Federation); Yeom, Dong-han [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,Taipei 10617, Taiwan (China)
2014-12-24
We study the motion of thin-shell bubbles and their tunneling in anti de Sitter (AdS) background. We are interested in the case when the outside of a shell is a Schwarzschild-AdS space (false vacuum) and the inside of it is an AdS space with a lower vacuum energy (true vacuum). If a collapsing true vacuum bubble is created, classically it will form a Schwarzschild-AdS black hole. However, this collapsing bubble can tunnel to a bouncing bubble that moves out to spatial infinity. Then, although the classical causal structure of a collapsing true vacuum bubble has the singularity and the event horizon, quantum mechanically the wavefunction has support for a history without any singularity nor event horizon which is mediated by the non-perturbative, quantum tunneling effect. This may be regarded an explicit example that shows the unitarity of an asymptotic observer in AdS, while a classical observer who only follows the most probable history effectively lose information due to the formation of an event horizon.
Thin-shell bubbles and information loss problem in anti de Sitter background
International Nuclear Information System (INIS)
Sasaki, Misao; Yeom, Dong-han
2014-01-01
We study the motion of thin-shell bubbles and their tunneling in anti de Sitter (AdS) background. We are interested in the case when the outside of a shell is a Schwarzschild-AdS space (false vacuum) and the inside of it is an AdS space with a lower vacuum energy (true vacuum). If a collapsing true vacuum bubble is created, classically it will form a Schwarzschild-AdS black hole. However, this collapsing bubble can tunnel to a bouncing bubble that moves out to spatial infinity. Then, although the classical causal structure of a collapsing true vacuum bubble has the singularity and the event horizon, quantum mechanically the wavefunction has support for a history without any singularity nor event horizon which is mediated by the non-perturbative, quantum tunneling effect. This may be regarded an explicit example that shows the unitarity of an asymptotic observer in AdS, while a classical observer who only follows the most probable history effectively lose information due to the formation of an event horizon.
Positioning a thin-wall round wrapper within a heavy wall out-of-round shell of a heat exchanger
International Nuclear Information System (INIS)
Hargrove, H.G.; Thompson, E.G.; Bayless, J.R.
1983-01-01
A thin-wall, generally round wrapper is installed within a heavy wall, rolled heat exchanger shell which has greater out-of-round tolerances than the wrapper and the wrapper is maintained in its round state by utilizing a plurality of jacks disposed adjacent spaced tube support plates within the wrapper. (author)
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-02-01
In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it
Linearized stability analysis of thin-shell wormholes with a cosmological constant
International Nuclear Information System (INIS)
Lobo, Francisco S N; Crawford, Paulo
2004-01-01
Spherically symmetric thin-shell wormholes in the presence of a cosmological constant are constructed applying the cut-and-paste technique implemented by Visser. Using the Darmois-Israel formalism the surface stresses, which are concentrated at the wormhole throat, are determined. This construction allows us to apply a dynamical analysis to the throat, considering linearized radial perturbations around static solutions. For a large positive cosmological constant, i.e., for the Schwarzschild-de Sitter solution, the region of stability is significantly increased, relatively to the null cosmological constant case, analysed by Poisson and Visser. With a negative cosmological constant, i.e., the Schwarzschild-anti de Sitter solution, the region of stability is decreased. In particular, considering static solutions with a generic cosmological constant, the weak and dominant energy conditions are violated, while for a 0 ≤ 3M the null and strong energy conditions are satisfied. The surface pressure of the static solution is strictly positive for the Schwarzschild and Schwarzschild-anti de Sitter spacetimes, but takes negative values, assuming a surface tension in the Schwarzschild-de Sitter solution, for high values of the cosmological constant and the wormhole throat radius
Static black hole and vacuum energy: thin shell and incompressible fluid
Ho, Pei-Ming; Matsuo, Yoshinori
2018-03-01
With the back reaction of the vacuum energy-momentum tensor consistently taken into account, we study static spherically symmetric black-hole-like solutions to the semi-classical Einstein equation. The vacuum energy is assumed to be given by that of 2-dimensional massless scalar fields, as a widely used model in the literature for black holes. The solutions have no horizon. Instead, there is a local minimum in the radius. We consider thin shells as well as incompressible fluid as the matter content of the black-hole-like geometry. The geometry has several interesting features due to the back reaction of vacuum energy. In particular, Buchdahl's inequality can be violated without divergence in pressure, even if the surface is below the Schwarzschild radius. At the same time, the surface of the star can not be far below the Schwarzschild radius for a density not much higher than the Planck scale, and the proper distance from its surface to the origin can be very short even for very large Schwarzschild radius. The results also imply that, contrary to the folklore, in principle the Boulware vacuum can be physical for black holes.
Einstein-Rosen 'bridge' revisited and lightlike thin-shell wormholes
International Nuclear Information System (INIS)
Guendelman, E.; Nissimov, E.; Pacheva, S.; Stoilov, M.
2017-01-01
We study in some detail the properties of the mathematically correct formulation of the classical Einstein-Rosen 'bridge' as proposed in the original 1935 paper, which was shown in a series of previous papers of ours to represent the simplest example of a static spherically symmetric traversable lightlike thin-shell wormhole. Thus, the original Einstein-Rosen 'bridge' is not equivalent to the concept of the dynamical and non-traversable Schwarzschild wormhole, also called 'Einstein-Rosen bridge' in modern textbooks on general relativity. The original Einstein-Rosen 'bridge' requires the presence of a special kind of 'exotic' matter source located on its throat which was shown to be the simplest member of the previously introduced by us class of lightlike membranes. We introduce and exploit the Kruskal-Penrose description of the original Einstein-Rosen 'bridge'. In particular, we explicitly construct closed timelike geodesics on the pertinent Kruskal-Penrose manifold.
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-10-01
Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics and find the entropy of a (2 +1 )-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole. The shell in (2 +1 ) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ spacetime. The extremal BTZ rotating black hole can be obtained in three different ways depending on the way the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The resulting three cases give that the BTZ black hole entropy is either the Bekenstein-Hawking entropy, S =A/+ 4 G , or an arbitrary function of A+, S =S (A+) , where A+=2 π r+ is the area, i.e., the perimeter, of the event horizon in (2 +1 ) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤S (A+)≤A/+ 4 G . We also show that the contributions from the various thermodynamic quantities, namely, the mass, the circular velocity, and the temperature, for the entropy in all three cases are distinct. This study complements the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates the results found for a (3 +1 )-dimensional extremal electrically charged Reissner-Nordström black hole.
International Nuclear Information System (INIS)
Combescure, A.
1986-04-01
During the last ten years, the French Research Institute for Nuclear Energy (Commissariat a l'Energie Atomique) achieved many theoretical as well as experimental studies for designing the first large size pool type fast breeder reactor. Many of the sensitive parts of this reactor are thin shells subjected to high temperatures and loads. Special care has been given to buckling, because it often governs design. Most of the thin shells structures of the french breeder reactor are axisymmetric. However, imperfections have to be accounted for. In order to keep the advantage of an axisymmetric analysis (low computational costs), a special element has been implemented and used with considerable success in the recent years. This element (COMU) is described in the first chapter, its main features are: either non axisymmetric imperfection or non axisymmetric load, large displacement, non linear material behaviour, computational costs about ten times cheaper than the equivalent three dimensional analysis. This paper based on a careful comparison between experimental and computational results, obtained with the COMU, will analyse three problems: First: design procedure against buckling of thin shells structures subjected to primary loads; Second: static post buckling; Third: buckling under seismic loads [fr
Kanoun, Mohammed; Goumri-Said, Souraya
2012-01-01
In this chapter, we employ ab initio approaches to review some important physical properties of nanolaminated ternary carbides MAX phases. We fi rstly use an all electron full-potential linearized augmented plane-wave method within the generalized
International Nuclear Information System (INIS)
Cristescu, R.; Popescu, C.; Socol, G.; Iordache, I.; Mihailescu, I.N.; Mihaiescu, D.E.; Grumezescu, A.M.; Balan, A.; Stamatin, I.; Chifiriuc, C.; Bleotu, C.; Saviuc, C.; Popa, M.; Chrisey, D.B.
2012-01-01
Highlights: ► We deposit magnetic Fe 3 O 4 /oleic acid/cephalosporin nanoparticle thin films by MAPLE. ► Thin films have a chemical structure similar to the starting material. ► Cephalosporins have an additive effect on the grain size and induce changes in grain shape. ► MAPLE can be used to develop novel strategies for fighting medical biofilms associated with chronic infections. - Abstract: We report on thin film deposition of nanostructured Fe 3 O 4 /oleic acid/ceftriaxone and Fe 3 O 4 /oleic acid/cefepime nanoparticles (core/shell/adsorption-shell) were fabricated by matrix assisted pulsed laser evaporation (MAPLE) onto inert substrates. The thin films were characterized by profilometry, Fourier transform infrared spectroscopy, atomic force microscopy, and investigated by in vitro biological assays. The biological properties tested included the investigation of the microbial viability and the microbial adherence to the glass coverslip nanoparticle film, using Gram-negative and Gram-positive bacterial strains with known antibiotic susceptibility behavior, the microbial adherence to the HeLa cells monolayer grown on the nanoparticle pellicle, and the cytotoxicity on eukaryotic cells. The proposed system, based on MAPLE, could be used for the development of novel anti-microbial materials or strategies for fighting pathogenic biofilms frequently implicated in the etiology of biofilm associated chronic infections.
Energy Technology Data Exchange (ETDEWEB)
Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, C.; Socol, G.; Iordache, I.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Mihaiescu, D.E.; Grumezescu, A.M. [Faculty of Applied Chemistry and Materials Science, ' Politehnica' University of Bucharest, 1-7 Polizu Street, 011061 Bucharest (Romania); Balan, A.; Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Chifiriuc, C. [Faculty of Biology, University of Bucharest, Microbiology Immunology Department, Aleea Portocalilor 1-3, Sector 5, 77206 Bucharest (Romania); Bleotu, C. [Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu, 030304 Bucharest (Romania); Saviuc, C.; Popa, M. [Faculty of Biology, University of Bucharest, Microbiology Immunology Department, Aleea Portocalilor 1-3, Sector 5, 77206 Bucharest (Romania); Chrisey, D.B. [Rensselaer Polytechnic Institute, School of Engineering, Departments of Materials Science and Biomedical Engineering, Troy, 12180-3590, NY (United States)
2012-09-15
Highlights: Black-Right-Pointing-Pointer We deposit magnetic Fe{sub 3}O{sub 4}/oleic acid/cephalosporin nanoparticle thin films by MAPLE. Black-Right-Pointing-Pointer Thin films have a chemical structure similar to the starting material. Black-Right-Pointing-Pointer Cephalosporins have an additive effect on the grain size and induce changes in grain shape. Black-Right-Pointing-Pointer MAPLE can be used to develop novel strategies for fighting medical biofilms associated with chronic infections. - Abstract: We report on thin film deposition of nanostructured Fe{sub 3}O{sub 4}/oleic acid/ceftriaxone and Fe{sub 3}O{sub 4}/oleic acid/cefepime nanoparticles (core/shell/adsorption-shell) were fabricated by matrix assisted pulsed laser evaporation (MAPLE) onto inert substrates. The thin films were characterized by profilometry, Fourier transform infrared spectroscopy, atomic force microscopy, and investigated by in vitro biological assays. The biological properties tested included the investigation of the microbial viability and the microbial adherence to the glass coverslip nanoparticle film, using Gram-negative and Gram-positive bacterial strains with known antibiotic susceptibility behavior, the microbial adherence to the HeLa cells monolayer grown on the nanoparticle pellicle, and the cytotoxicity on eukaryotic cells. The proposed system, based on MAPLE, could be used for the development of novel anti-microbial materials or strategies for fighting pathogenic biofilms frequently implicated in the etiology of biofilm associated chronic infections.
Neotectonics of Asia: Thin-shell finite-element models with faults
Kong, Xianghong; Bird, Peter
1994-01-01
As India pushed into and beneath the south margin of Asia in Cenozoic time, it added a great volume of crust, which may have been (1) emplaced locally beneath Tibet, (2) distributed as regional crustal thickening of Asia, (3) converted to mantle eclogite by high-pressure metamorphism, or (4) extruded eastward to increase the area of Asia. The amount of eastward extrusion is especially controversial: plane-stress computer models of finite strain in a continuum lithosphere show minimal escape, while laboratory and theoretical plane-strain models of finite strain in a faulted lithosphere show escape as the dominant mode. We suggest computing the present (or neo)tectonics by use of the known fault network and available data on fault activity, geodesy, and stress to select the best model. We apply a new thin-shell method which can represent a faulted lithosphere of realistic rheology on a sphere, and provided predictions of present velocities, fault slip rates, and stresses for various trial rheologies and boundary conditions. To minimize artificial boundaries, the models include all of Asia east of 40 deg E and span 100 deg on the globe. The primary unknowns are the friction coefficient of faults within Asia and the amounts of shear traction applied to Asia in the Himalayan and oceanic subduction zones at its margins. Data on Quaternary fault activity prove to be most useful in rating the models. Best results are obtained with a very low fault friction of 0.085. This major heterogeneity shows that unfaulted continum models cannot be expected to give accurate simulations of the orogeny. But, even with such weak faults, only a fraction of the internal deformation is expressed as fault slip; this means that rigid microplate models cannot represent the kinematics either. A universal feature of the better models is that eastern China and southeast Asia flow rapidly eastward with respect to Siberia. The rate of escape is very sensitive to the level of shear traction in the
International Nuclear Information System (INIS)
Chien, Wen-Chen; Yu, Yang-Yen; Chen, Po-Kan; Yu, Hui-Huan
2011-01-01
In this study, poly(acrylic)/SiO 2 -TiO 2 core-shell nanoparticle hybrid thin films were successfully synthesized by microwave-assisted polymerization. The coupling agent 3-(trimethoxysilyl) propyl methacrylate (MSMA) was hydrolyzed with colloidal SiO 2 -TiO 2 core-shell nanoparticles, and then polymerized with two acrylic monomers and initiator to form a precursor solution. The results of this study showed that the spin-coated hybrid films had relatively good surface planarity, high thermal stability, a tunable refractive index (1.525 2 -TiO 2 core-shell nanoparticle hybrid thin films, for potential use in optical applications.
Directory of Open Access Journals (Sweden)
Hui Li
2017-01-01
Full Text Available This research has experimentally investigated the influence on vibration characteristics of thin cantilever cylindrical shell (TCS with hard coating under cantilever boundary condition. Firstly, the theoretical model of TCS with hard coating is established to calculate its natural frequencies and modal shapes so as to roughly understand vibration characteristic of TCS when it is coated with hard coating material. Then, by considering its nonlinear stiffness and damping influences, an experiment system is established to accurately measure vibration parameters of the shell, and the corresponding test methods and identification techniques are also proposed. Finally, based on the measured data, the influences on natural frequencies, modal shapes, damping ratios, and vibration responses of TCS with hard coating are analyzed and discussed in detail. It can be found that hard coating can play an important role in vibration reduction of TCS, and for the most modes of TCS, hard coating will result in the decrease of natural frequencies, but the decreased level is not very big, and its damping effects on the higher frequency range of the shell are weak and ineffective. Therefore, in order to make better use of this coating material, we must carefully choose the concerned antivibration frequency range of the shell; otherwise it may lead to some negative effects.
Analysis of thin composite structures using an efficient hex-shell finite element
Energy Technology Data Exchange (ETDEWEB)
Shiri, Seddik [Universite Bordeaux, Pessac (France); Naceur, Hakim [Universite de valenciennes, Valenciennes (France)
2013-12-15
In this paper a general methodology for the modeling of material composite multilayered shell structures is proposed using a Hex-shell finite element modeling. The first part of the paper is devoted to the general FE formulation of the present composite 8-node Hex-shell element called SCH8, based only on displacement degrees of freedom. A particular attention is given to alleviate shear, trapezoidal and thickness locking, without resorting to the classical plane-stress assumption. The anisotropic material behavior of layered shells is modeled using a fully three dimensional elastic orthotropic material law in each layer, including the thickness stress component. Applications to laminate thick shell structures are studied to validate the methodology, and good results have been obtained in comparison with ABAQUS commercial code.
Second-order nonlinear optical metamaterials: ABC-type nanolaminates
International Nuclear Information System (INIS)
Alloatti, L.; Kieninger, C.; Lauermann, M.; Köhnle, K.; Froelich, A.; Wegener, M.; Frenzel, T.; Freude, W.; Leuthold, J.; Koos, C.
2015-01-01
We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al 2 O 3 , B = TiO 2 , and C = HfO 2 . The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths
International Nuclear Information System (INIS)
Muminov, A.T.
2004-01-01
Full text: As it shown in the work [1,2], interaction of electromagnetic wave with rotating cylindrical shell of conductor leads to an interesting phenomenon of energy transmission from rotating body to the wave. We study influence of the gravitational field of the string on the process of interaction of electromagnetic waves with infinitesimally thin conducting cylindrical shell. Since in the outer space and inside the shell electromagnetic field satisfies source free Maxwell equations we start with constructing the most general solutions of this equation. Then we match the fields on the cylinder with account of boundary conditions on it. Matching the fields gives expressions for reflection factors of cylindrical waves for two cases of polarization. The reflection factors for distinct wave polarizations show the ratio of outgoing energy flux to in going one. Curved cylindrical symmetric space-time with weakly gravitating string-like source is described by static metric: δs 2 = f(r)δt 2 - h(r)(δz 2 + δr 2 ) - l(r)δψ 2 ; f(r) = r ε ; h(r) = r -ε ; l(r) = r 2 /f(r). Which corresponds to low line density of mass ε on the string. The metric is particular case of Lewis metric [3,4] with zero angular momentum of the string and its weak gravity. The boundary value problem for electromagnetic waves interaction with thin conducting rotating cylindrical shell in static cylindrical metric with weakly gravitating string has been solved analytically. It is found that character of dependence of the factors on Ω at ω R<<1 and ΩR<<1 approximation remains the same as in flat space-time ε =0. Analysis of expressions for the reflection factors in frames of considered approximation has been done
CSIR Research Space (South Africa)
Shatalov, M
2009-05-01
Full Text Available stream_source_info Shatalov2_2009.pdf.txt stream_content_type text/plain stream_size 22572 Content-Encoding UTF-8 stream_name Shatalov2_2009.pdf.txt Content-Type text/plain; charset=UTF-8 1 DYNAMICS OF ROTATING... AND VIBRATING THIN HEMISPHERICAL SHELL WITH MASS AND DAMPING IMPERFECTIONS AND PARAMETRICALLY DRIVEN BY DISCRETE ELECTRODES Michael Shatalov1,2 and Charlotta Coetzee2 1Sensor Science and Technology (SST) of CSIR Material Science and Manufacturing (MSM...
Malmberg, J.-A.; Brunsell, P. R.
2002-01-01
Observations of resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell (τw=6 ms) reversed field pinch are described. A nonresonant mode (m=1,n=-10) with the same handedness as the internal field grows nearly exponentially with an average growth time of about 2.6 ms (less than 1/2 of the shell time) consistent with linear stability theory. The externally nonresonant unstable modes (m=1,n>0), predicted by linear stability theory, are observed to have only low amplitudes (in the normal low-Θ operation mode of the device). The radial field of the dominant internally resonant tearing modes (m=1,n=-15 to n=-12) remain low due to spontaneous fast mode rotation, corresponding to angular phase velocities up to 280 krad/s. Phase aligned mode structures are observed to rotate toroidally with an average angular velocity of 40 krad/s, in the opposite direction of the plasma current. Toward the end of the discharge, the radial field of the internally resonant modes grows as the modes slow down and become wall-locked, in agreement with nonlinear computations. Fast rotation of the internally resonant modes has been observed only recently and is attributed to a change of the front-end system (vacuum vessel, shell, and TF coil) of the device.
Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application
Energy Technology Data Exchange (ETDEWEB)
Chou Chau, Yuan-Fong, E-mail: a0920146302@gmail.com, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming [Universiti Brunei Darussalam, Centre for Advanced Material and Energy Sciences (Brunei) (Brunei Darussalam); Chiang, Chien-Ying [National Taipei University of Technology, Department of Electro-Optical Engineering (China); Voo, Nyuk Yoong; Muhammad Idris, Nur Syafi’ie; Chai, Siew Ung [Universiti Brunei Darussalam, Centre for Advanced Material and Energy Sciences (Brunei) (Brunei Darussalam)
2016-04-15
The absorbance spectra of thin-film solar cells (TFSCs) can be enhanced by constructing the tunable periodic Ag-shell nano-bead (PASNB) arrays in the active material. In this paper, we investigated a plasmonic thin-film solar cell (TFSC) which composed of the arrays of PASNB deposited onto a crystalline silicon layer. By performing three-dimensional finite element method, we demonstrate that near field coupling among the PASNB arrays results in SPR modes with enhanced absorbance and field intensity. The proposed structure can significantly enhance the plasmonic activity in a wide range of incident light and enlarge working wavelength of absorbance in the range of near-UV, visible and near-infrared. We show that the sensitivity of the PASNB arrays reveals a linear relationship with the thickness of Ag-shell nano-bead (ASNB) for both the anti-bonding and bonding modes in the absorbance spectra. The broadband of absorbance spectra could be expanded as a wide range by varying the thickness of ASNB while the particle size is kept constant. Simulation results suggest this alternative scheme to the design and improvements on plasmonic enhanced TFSCs can be extended to other nanophotonic applications.
Shell thinning and reproductive impairment in black ducks after cessation of DDE dosage
Longcore, J.R.; Stendell, R.C.
1977-01-01
Captive black ducks (anas rubripes) were fed dietary DDE [1,1-dichloro-2,2-bis (p-chlorophenyl)ethylene] at 10 ppm (dry weight; about 2 ppm on a natural diet basis) for 2 breeding seasons, then untreated feed for 2 succeeding years. Residues of DDE in the carcasses of adults declined 90% during the 2-year clean-up period. Following 2 years of dietary DDE, mean residues in eggs reached 64.9 ppm. Even after 2 years on clean feed, DDE residues in the eggs averaged 6.2 ppm or 9.5% of the mean DDE level reached after 2 years on treated feed. Shells of eggs from treated hens were about 20% thinner than shells of eggs from controls. Stoppage of DDE dosage resulted in progressively thicker shells, yet even after 2 years on untreated feed hens laid eggs with shells about 10% thinner than control hens. After DDE was removed from the diet, DDE residues in the eggs decreased, shell thickness increased, and reproductive success improved. Hens previously exposed to DDE, but then fed clean feed for 2 years, still produced significantly fewer surviving ducklings than did control hens.
Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M
2015-12-01
Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.
Atomic layer deposition of W{sub x}N/TiN and WN{sub x}C{sub y}/TiN nanolaminates
Energy Technology Data Exchange (ETDEWEB)
Elers, K.-E.; Saanila, V.; Li, W.-M.; Soininen, P.J.; Kostamo, J.T.; Haukka, S.; Juhanoja, J.; Besling, W.F.A
2003-06-23
Diffusion barrier materials, such as TiN, W{sub x}N, WN{sub x}C{sub y} and their nanolaminates were deposited by atomic layer deposition method. TiN film exhibited excellent properties, but W{sub x}N film exhibited high resistivity despite the low residue concentration. Both TiN and W{sub x}N films suffered from serious incompatibility with the copper metal. WN{sub x}C{sub y} film was deposited by introducing triethylboron as a reducing agent for tungsten. Excellent film properties were obtained, including very good compatibility with the copper metal, evident as strong adhesion and no pitting on the copper surface. Nanolaminate barrier stacks of W{sub x}N/TiN and WN{sub x}C{sub y}/TiN were successfully deposited. TiN deposition did not cause copper pitting when thin WN{sub x}C{sub y} film was deposited underneath.
International Nuclear Information System (INIS)
Eckstein, U.; Harte, R.; Kraetzig, W.B.; Wittek, U.
1983-01-01
In order to describe nonlinear response and instability behaviour the paper starts with the total potential energy considering the basic kinematic equations of a consistent nonlinear shell theory for large displacements and moderate rotations. The material behaviour is assumed to be hyperelastic and isotropic. The incrementation and discretization of the total potential energy leads to the tangent stiffness relation, which is the central equation of computational algorithms based on combined incremental and iterative techniques. Here a symmetrized form of the RIKS/WEMPNER-algorithm for positive and negative load incrementation represents the basis of the nonlinear solution technique. To detect secondary equilibrium branches at points of neutral equilibrium within nonlinear primary paths a quadratic eigenvalue-problem has to be solved. In order to follow those complicated nonlinear response phenomena the RIKS/WEMPNER incrementation/iteration process is combined with a simultaneous solution of the linearized quadratic eigenvalue-problem. Additionally the essentials of a recently derived family of arbitrarily curved shell elements for linear (LACS) and geometrically nonlinear (NACS) shell problems are presented. The main advantage of these elements is the exact description of all geometric properties as well as the energy-equivalent representation of the applied loads in combination with an efficient algorithm to form the stiffness submatrices. Especially the NACS-elements are designed to improve the accuracy of the solution in the deep postbuckling range including moderate rotations. The derived finite elements and solution strategies are applied to a certain number of typical shell problems to prove the precision of the shell elements and to demonstrate the possibilities of tracing linear and nonlinear bifurcation problems as well as snap-through phenomena with and without secondary bifurcation branches. (orig.)
Minn, Khant; Anopchenko, Aleksei; Yang, Jingyi; Lee, Ho Wai Howard
2018-02-05
We report a novel optical waveguide design of a hollow step index fiber modified with a thin layer of indium tin oxide (ITO). We show an excitation of highly confined waveguide mode in the proposed fiber near the wavelength where permittivity of ITO approaches zero. Due to the high field confinement within thin ITO shell inside the fiber, the epsilon-near-zero (ENZ) mode can be characterized by a peak in modal loss of the hybrid waveguide. Our results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided core mode to the thin-film ENZ mode. We also show that the phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents inside the central bore of the fiber. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.
Comparison of beam and shell theories for the vibrations of thin turbomachinery blades
Leissa, A. W.; Ewing, M. S.
1982-01-01
Vibration analysis of turbomachinery blades has traditionally been carried out by means of beam theory. In recent years two-dimensional methods of blade vibration analysis have been developed, most of which utilize finite elements and tend to require considerable computation time. More recently a two-dimensional method of blade analysis has evolved which does not require finite elements and is based upon shell equations. The present investigation has the primary objective to demonstrate the accuracy and limitations of blade vibration analyses which utilize one-dimensional, beam theories. It is found that beam theory is generally inadequate to determine the free vibration frequencies and mode shapes of moderate to low aspect ratio turbomachinery blades. The shallow shell theory, by contrast, is capable of representing all the vibration modes accurately. However, the one-dimensional beam theory has an important advantage over the two-dimensional shell theory for blades and vibration modes. It uses fewer degrees of freedom, thus requiring less computer time.
Koval, L. R.
1978-01-01
In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the effects of internal cavity resonances on sound transmission into a thin cylindrical shell. The 'noise reduction' of the cylinder is defined and computed, with and without including the effects of internal cavity resonances. As would be expected, the noise reduction in the absence of cavity resonances follows the same qualitative pattern as does transmission loss. Numerical results show that cavity resonances lead to wide fluctuations and a general decrease of noise reduction, especially at cavity resonances. Modest internal absorption is shown to greatly reduce the effect of cavity resonances. The effects of external airflow, internal cabin pressurization, and different acoustical properties inside and outside the cylinder are also included and briefly examined.
Asyirah, B. N.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.
2017-09-01
In manufacturing a variety of parts, plastic injection moulding is widely use. The injection moulding process parameters have played important role that affects the product's quality and productivity. There are many approaches in minimising the warpage ans shrinkage such as artificial neural network, genetic algorithm, glowworm swarm optimisation and hybrid approaches are addressed. In this paper, a systematic methodology for determining a warpage and shrinkage in injection moulding process especially in thin shell plastic parts are presented. To identify the effects of the machining parameters on the warpage and shrinkage value, response surface methodology is applied. In thos study, a part of electronic night lamp are chosen as the model. Firstly, experimental design were used to determine the injection parameters on warpage for different thickness value. The software used to analyse the warpage is Autodesk Moldflow Insight (AMI) 2012.
Wang, Wenxin
2015-06-16
An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.
Wang, Wenxin; Zhao, Yunfeng; Ding, Yi
2015-01-01
An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.
Yeom, Bongjun; Char, Kookheon
2016-06-01
Laminated nanostructures in nacre have been adopted as models in the fabrication of strong, tough synthetic nanocomposites. However, the utilization of CaCO3 biominerals in these composites is limited by the complexity of the synthesis method for nanosized biominerals. In this study, we use the enzymatic reaction of urease to generate a nanoscale CaCO3 thin film to prepare CaCO3/polymer hybrid nanolaminates. Additional layers of CaCO3 thin film are consecutively grown over the base CaCO3 layer with the intercalation of organic layers. The morphology and crystallinity of the added CaCO3 layers depend strongly on the thickness of the organic layer coated on the underlying CaCO3 layer. When the organic layer is less than 20 nm thick, the amorphous CaCO3 layer is spontaneously transformed into crystalline calcite layer during the growth process. We also observe crystalline continuity between adjacent CaCO3 layers through interconnecting mineral bridges. The formation of these mineral bridges is crucial to the epitaxial growth of CaCO3 layers, similar to the formation of natural nacre.
Son, Intae; Lee, Byungsun; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Ahn, Byung Wook; Hwang, Jeongho; Lee, Jonghyuk; Lee, Jun Hyup
2018-05-23
The spontaneous separation of a polymer thin film from a substrate is an innovative technology that will enable material recycling and reduce manufacturing cost in the film industry, and this can be applied in a wide range of applications, from optical films to wearable devices. Here, we present an unprecedented spontaneous strategy for separating transparent polymer films from substrates on the basis of microbubble generation using nanocapsules containing an evaporable material. The core-shell nanocapsules are prepared from poly(methyl methacrylate)-polyethyleneimine nanoparticles via the encapsulation of methylcyclohexane (MCH). A spherical nanostructure with a vaporizable core is obtained, with the heat-triggered gas release ability leading to the formation of microbubbles. Our separation method applied to transparent polymer films doped with a small amount of the nanocapsules encapsulating evaporable MCH enables spontaneous detachment of thin films from substrates via vacuum-assisted rapid vaporization of MCH over a short separation time, and clear detachment of the film is achieved with no deterioration of the inherent optical transparency and adhesive property compared to a pristine film.
2009-02-01
Tecnologia de Superficies y Materiales (SMCTSM), XXVII Congreso Nacional, Oaxaca, Oaxaca, Mexico, September 26, 2007. 26. "Atomic Layer Deposition of...Nanolaminates: Fabrication and Properties" (Plenary Lecture), Sociedad Mexicana de Ciencia y Tecnologia de Superficies y Materiales (SMCTSM), XXVII
Properties-Adjustable Alumina-Zirconia Nanolaminate Dielectric Fabricated by Spin-Coating
Directory of Open Access Journals (Sweden)
Junbiao Peng
2017-11-01
Full Text Available In this paper, an alumina-zirconia (Al2O3-ZrO2 nanolaminate dielectric was fabricated by spin-coating and the performance was investigated. It was found that the properties of the dielectric can be adjusted by changing the content of Al2O3/ZrO2 in nanolaminates: when the content of Al2O3 was higher than 50%, the properties of nanolaminates, such as the optical energy gap, dielectric strength (Vds, capacitance density, and relative permittivity were relatively stable, while the change of these properties became larger when the content of Al2O3 was less than 50%. With the content of ZrO2 varying from 50% to 100%, the variation of these properties was up to 0.482 eV, 2.12 MV/cm, 135.35 nF/cm2, and 11.64, respectively. Furthermore, it was demonstrated that the dielectric strength of nanolaminates were influenced significantly by the number (n of bilayers. Every increment of one Al2O3-ZrO2 bilayer will enhance the dielectric strength by around 0.39 MV/cm (Vds ≈ 0.86 + 0.39n. This could be contributed to the amorphous alumina which interrupted the grain boundaries of zirconia.
Geometrically Nonlinear Shell Analysis of Wrinkled Thin-Film Membranes with Stress Concentrations
Tessler, Alexander; Sleight, David W.
2006-01-01
Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns.
International Nuclear Information System (INIS)
Hwang, Kyeong Mo; Woo, Lee; Jin, Tae Eun; Kim, Kyung Hoon
2008-01-01
Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which accelerates as the operation progresses. Several nuclear power plants in Korea have undergone this damage around the impingement baffle - installed downstream of the high-pressure turbine extraction steam line - inside numbers 5A and 5B feedwater heaters. At that point, the extracted steam from the high-pressure turbine consists in the form of two-phase fluid at high temperature, high pressure and high velocity. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of number 5 high-pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the downscaled experimental data in an effort to determine root causes of the shell wall thinning of the high-pressure feedwater heaters. The numerical analysis and experimental data were also confirmed by the actual wall thickness measured by ultrasonic tests. From the comparison of the results for the local velocity profiles and the wall thinning measurements, the local velocity component only in the y-direction flowing vertically to the shell wall, and not in the x- and z-directions, was analogous to the wall thinning data
Thin silica shell coated Ag assembled nanostructures for expanding generality of SERS analytes.
Directory of Open Access Journals (Sweden)
Myeong Geun Cha
Full Text Available Surface-enhanced Raman scattering (SERS provides a unique non-destructive spectroscopic fingerprint for chemical detection. However, intrinsic differences in affinity of analyte molecules to metal surface hinder SERS as a universal quantitative detection tool for various analyte molecules simultaneously. This must be overcome while keeping close proximity of analyte molecules to the metal surface. Moreover, assembled metal nanoparticles (NPs structures might be beneficial for sensitive and reliable detection of chemicals than single NP structures. For this purpose, here we introduce thin silica-coated and assembled Ag NPs (SiO2@Ag@SiO2 NPs for simultaneous and quantitative detection of chemicals that have different intrinsic affinities to silver metal. These SiO2@Ag@SiO2 NPs could detect each SERS peak of aniline or 4-aminothiophenol (4-ATP from the mixture with limits of detection (LOD of 93 ppm and 54 ppb, respectively. E-field distribution based on interparticle distance was simulated using discrete dipole approximation (DDA calculation to gain insight into enhanced scattering of these thin silica coated Ag NP assemblies. These NPs were successfully applied to detect aniline in river water and tap water. Results suggest that SiO2@Ag@SiO2 NP-based SERS detection systems can be used as a simple and universal detection tool for environment pollutants and food safety.
Li, Xue; Niitsoo, Olivia; Couzis, Alexander
2016-03-01
An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Wenxin; Zhao, Yunfeng; Ding, Yi
2015-07-01
An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst. Electronic supplementary information (ESI) available: Sample preparation, physical and electrochemical characterization, Fig. S1 to S11. See DOI: 10.1039/c5nr02748a
Ibragimov, Ranis N.
2018-03-01
The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.
Inner-shell excitation and site specific fragmentation of poly(methylmethacrylate) thin film
Tinone, Marcia C. K.; Tanaka, Kenichiro; Maruyama, Junya; Ueno, Nobuo; Imamura, Motoyasu; Matsubayashi, Nobuyuki
1994-04-01
Soft x-ray excitations in the 250-600 eV photon energy range on poly(methylmethacrylate) (PMMA) result in ionic fragmentation of the original polymer with the most intense ions corresponding to CH+3, H+, CH+2, CH+, CHO+, and COOCH+3. The photon energy dependence of ion desorption from thin films of PMMA was measured to investigate the primary steps in radiation induced decomposition following carbon and oxygen 1s electron excitations using monochromatic pulsed-synchrotron radiation. It was clearly found that the decomposition depends on the nature of the electronic states created in the excited species. The fragmentation pattern changes depending on the transitions of the 1s electron to a Rydberg orbital, an unoccupied molecular orbital or the ionization continuum. Moreover, the fragmentation occurs specifically around the site of the atom where the optical excitation takes place. Excitations from carbon and oxygen 1s to σ* states seem to be specially efficient for ion production as observed in the case of CH+3, CH+2, and CH+ at 288.7 and 535.6 eV, and in the case of CHO+ at 539.3 eV.
Nguyen-Thanh, Nhon; Li, Weidong; Zhou, Kun
2018-03-01
This paper develops a coupling approach which integrates the meshfree method and isogeometric analysis (IGA) for static and free-vibration analyses of cracks in thin-shell structures. In this approach, the domain surrounding the cracks is represented by the meshfree method while the rest domain is meshed by IGA. The present approach is capable of preserving geometry exactness and high continuity of IGA. The local refinement is achieved by adding the nodes along the background cells in the meshfree domain. Moreover, the equivalent domain integral technique for three-dimensional problems is derived from the additional Kirchhoff-Love theory to compute the J-integral for the thin-shell model. The proposed approach is able to address the problems involving through-the-thickness cracks without using additional rotational degrees of freedom, which facilitates the enrichment strategy for crack tips. The crack tip enrichment effects and the stress distribution and displacements around the crack tips are investigated. Free vibrations of cracks in thin shells are also analyzed. Numerical examples are presented to demonstrate the accuracy and computational efficiency of the coupling approach.
Energy Technology Data Exchange (ETDEWEB)
Dillon, Shen J., E-mail: sdillon@illinois.edu [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States); Bufford, Daniel C. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Jawaharram, Gowtham S.; Liu, Xuying; Lear, Calvin [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States); Hattar, Khalid [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Averback, Robert S. [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States)
2017-07-15
This work reports on irradiation-induced creep (IIC) measured on nanolaminate (Cu-W and Ni-Ag) and nanocrystalline alloys (Cu-W) at room temperature using a combination of heavy ion irradiation and nanopillar compression performed concurrently in situ in a transmission electron microscope. Appreciable IIC is observed in multilayers with 50 nm layer thicknesses at high stress, ≈½ the yield strength, but not in multilayers with only 5 nm layer thicknesses.
Energy Technology Data Exchange (ETDEWEB)
Kim, Min-Gyu; Lee, Hye-Jung; Oh, Yong-Jun [Hanbat National Univ., Daejeon (Korea, Republic of)
2016-07-15
Au-Pd bimetallic nanoparticles (NPs) have received a lot of attention in the fields of catalysts and hydrogen sensors. In this study, Au-Pd core-shell NP arrays were successfully fabricated using two steps: formation of the ordered array of Au NPs cores via solid-state dewetting of a Au thin film on a topographic silica substrate, and Pd shell formation via chemical synthesis using two different surfactants (CTAB and CTAC). Using the CTAB surfactant in particular, a 2-D composite structure comprised of an ordered array of Au-Pd NPs, with smaller Pd NPs on the nanoscopic gaps between the Au-Pd NPs, could be formed. This structure is expected to have potential application in resistance-base hydrogen sensors.
Mahadev, Sthanu
Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically
International Nuclear Information System (INIS)
Kim, Jooncheol; Kim, Minsoo; Herrault, Florian; Kim, Jung-Kwun; Allen, Mark G
2015-01-01
This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300–1000 nm thick metallic alloys (i.e. Ni 80 Fe 20 or Co 44 Ni 37 Fe 19 ) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50–100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500–1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc–dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors. (fast track communication)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Tongbo; Zhou, Xiaoqian; Yu, Dedong; Fu, Yanqing; Cui, Weibin [Northeastern University, Key Laboratory of Electromagnetic Processing of Materials (EPM), Ministry of Education, Shenyang (China); Northeastern University, Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Shenyang (China); Li, Guojian; Wang, Qiang [Northeastern University, Key Laboratory of Electromagnetic Processing of Materials (EPM), Ministry of Education, Shenyang (China)
2017-01-15
Ultrahigh ambient coercivities of ∝4 T were achieved in Nd-Fe-B benchmark thin film with coercivity of 1.06 T by diffusion-processing with Dy, Dy{sub 70}Cu{sub 30} and Dy{sub 80}Ag{sub 20} alloy layer. High texture and good squareness were obtained. In triple-junction regions, Dy element was found to be immiscible with Nd element. Microstructure observation indicated the typical gradient elementary distribution. Unambiguous core/shell microstructure was characterized by transition electron microscopy. Due to the enhanced ambient coercivity, the coercivity temperature stability was also substantially increased. (orig.)
Directory of Open Access Journals (Sweden)
Ana Tomé
2018-02-01
Full Text Available A research and development project has been conducted aiming to design and produce ultra-thin concrete shells. In this paper, the first part of the project is described, consisting of an innovative method for shape generation and the consequent production of reduced-scale models of the selected geometries. First, the shape generation is explained, consisting of a geometrically nonlinear analysis based on the Finite Element Method (FEM to define the antifunicular of the shell’s deadweight. Next, the scale model production is described, consisting of 3D printing, specifically developed to evaluate the aesthetics and visual impact, as well as to study the aerodynamic behaviour of the concrete shells in a wind tunnel. The goals and constraints of the method are identified and a step-by-step guidelines presented, aiming to be used as a reference in future studies. The printed geometry is validated by high-resolution assessment achieved by photogrammetry. The results are compared with the geometry computed through geometric nonlinear finite-element-based analysis, and no significant differences are recorded. The method is revealed to be an important tool for automatic shape generation and building scale models of shells. The latter enables the performing of wind tunnel tests to obtain pressure coefficients, essential for structural analysis of this type of structures.
International Nuclear Information System (INIS)
Rattanapan, Anuchit; Limtong, Savitree; Phisalaphong, Muenduen
2011-01-01
Highlights: → Thin-shell silk cocoons for immobilization of Saccharomycescerevisiae. → Advantages: high mechanical strength, light weight, biocompatibility and high surface area. → Enhanced cell stability and ethanol productivity by the immobilization system. -- Abstract: A thin-shell silk cocoon (TSC), a residual from the silk industry, is used as a support material for the immobilization of Saccharomyces cerevisiae M30 in ethanol fermentation because of its properties such as high mechanical strength, light weight, biocompatibility and high surface area. In batch fermentation with blackstrap molasses as the main fermentation substrate, an optimal ethanol concentration of 98.6 g/L was obtained using a TSC-immobilized cell system at an initial reducing sugar concentration of 240 g/L. The ethanol concentration produced by the immobilized cells was 11.5% higher than that produced by the free cells. Ethanol production in five-cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in a packed-bed reactor, a maximum ethanol productivity of 19.0 g/(L h) with an ethanol concentration of 52.8 g/L was observed at a 0.36 h -1 dilution rate.
Microstructural and magnetic characterization of Co/CN films fabricated by nanolamination
International Nuclear Information System (INIS)
Du, J.; Wang, S.; Zhou, J.N.; Harrell, J.W.; Barnard, J.A.
2000-01-01
Nanolamination combined with appropriate annealing treatment has been used to produce high coercivity, heterogeneous Co-CN films with nanostructures ranging from classical granular to an interconnected network. Transmission electron microscopy and electron diffraction have been used to quantify the nanostructural evolution and resulting grain size distributions. As-deposited nanolaminates with initial layer thicknesses of 1.3 and 2.7 nm are essentially superparamagnetic. Annealing leads to coercivities of >1100 Oe. Viscosity and irreversible susceptibility measurements have been used to calculate activation volumes of ∼(18 nm) 3 , in good agreement with grain size analysis. Measurements of the time dependence of coercivity have been used to calculate the thermal stability factor, KV/kT∼480, which is independent of initial geometry. Effective first-order uniaxial anisotropy constants determined using calculated activation volumes are at maximum ∼75% of the value expected for bulk α-Co. This result is consistent with Co present in both α and β phases, as confirmed by electron diffraction
TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition
Energy Technology Data Exchange (ETDEWEB)
Mitchell, D.R.G. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia)]. E-mail: drm@ansto.gov.au; Attard, D.J. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Finnie, K.S. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Triani, G. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Barbe, C.J. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Depagne, C. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Bartlett, J.R. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia)
2005-04-30
Nanolaminate oxide layers consisting of TiO{sub 2} and Al{sub 2}O{sub 3} have been deposited on silicon using atomic layer deposition (ALD). Characterisation of these films has been achieved by use of a range of modern transmission electron microscopy (TEM)-based techniques, including plasmon loss imaging, energy filtered imaging and scanning TEM (STEM) X-ray line profiling. These have shown that the target thickness of the individual layers in the nanolaminate structures (20 nm) has been met with a high degree of accuracy, that the layers are extremely flat and parallel and that the interfaces between the layers are compositionally abrupt. Localised crystallisation within the stacks, and responses to electron beam irradiation point to the presence of a stress gradient within the layers. The performance of ellipsometry in characterising multilayer stacks has been benchmarked against the TEM measurements. Errors in determination of individual layer thicknesses were found to increase with growing stack size, as expected given the increasing number of interfaces incorporated in each model. The most sophisticated model gave maximum deviations of {+-}4 nm from the TEM determined values for the 5- and 10-layer stacks.
pH Dependent Studies of Chemical Bath Deposition Grown ZnO-SiO{sub 2} Core-Shell Thin Films
Energy Technology Data Exchange (ETDEWEB)
Seth, Rajni; Panwar, Sanjay [Maharishi Markandeshwar University, Ambala (India); Kumar, Sunil; Kang, T. W.; Jeon, H. C. [Dongguk University, Seoul (Korea, Republic of)
2017-01-15
ZnO-SiO{sub 2} core-shell thin films were synthesized using chemical-bath deposition at different pH. Optical studies were done to optimize the thin films to find suitable parameters for solar cell buffer layers. These studies were done by measuring the transmission at 500 nm, which is the peak of the solar spectrum. All the parameters were seen to be highly pH dependent. The transmittance for a sample synthesized with a pH of 10.8 reached 85%. The transmittance was found not to depend on the bandgap values, but it was found possibly to depend on the fewer defect states created at a particular pH, as shown by Urbach energy and scanning electron microscopy (SEM) surface structure. An appreciable transmittance was observed in the blue region of the spectrum which had been missing until now in commercial CdS-based buffer layers. The Fourier-transform infrared and the energy dispersive X-ray spectra confirmed that the films were composed of only ZnO and silica only : no impurities were found. The urbach energy values and the SEM image of sample S3 clearly indicate the creation of fewer of defects, leading to higher crystallintiy and higher transmittance. Therefore, this shortcoming can be resolved by the substituted buffer layer of ZnO:SiO{sub 2} nano-composite thin film, which can enhance the blue response of the photovoltaic cells.
Nanolaminated TiN/Mo2N hard multilayer coatings
International Nuclear Information System (INIS)
Martev, I N; Dechev, D A; Ivanov, N P; Uzunov, T S D; Kashchieva, E P
2010-01-01
The paper presents results on the synthesis of hard multilayer coatings consisting of titanium nitride and molybdenum nitride thin films with thickness of several nm. The TiN and Mo 2 N films were successively deposited by reactive DC magnetron sputtering. These multilayer structures were investigated by Auger electron spectroscopy (AES), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), cross-section scanning electron microscopy (CSSEM) and cross-section electron probe microanalysis (CSEPMA). The mechanical properties of the multilayer coatings, namely, hardness, Young's modulus and the coefficient of plastic deformation were measured. The adhesion was evaluated by the Rockwell-C-impact test. Coatings with different total thickness were examined with respect to adhesion to substrates of tool materials.
International Nuclear Information System (INIS)
Walter, H.; Mang, H.A.
1991-01-01
A procedure for combining nonlinear short-time behavior of concrete with nonlinear creep compliance functions is presented. It is an important ingredient of a computer code for nonlinear finite element (FE) analysis of prestressed concrete shells, considering creep, shrinkage and ageing of concrete, and relaxation of the prestressing steel. The program was developed at the Institute for Strength of Materials of Technical University of Vienna, Austria. The procedure has resulted from efforts to extend the range of application of a Finite Element program, abbreviated as FESIA, which originally was capable of modeling reinforeced concrete in the context of thin-shell analysis, using nonlinear constitutive relations for both, conrete and steel. The extension encompasses the time-dependent behavior of concrete: Creep, shrinkage and ageing. Creep is modeled with the help of creep compliance functions which may be nonlinear to conform with the short-time constitutive relations. Ageing causes an interdependence between long-time and short-time deformations. The paper contains a description of the physical background of the procedure and hints on the implementation of the algorithm. The focus is on general aspects. Details of the aforementioned computer program are considered only where this is inevitable. (orig.)
Altenbach, Holm
2011-01-01
In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar
International Nuclear Information System (INIS)
Cabrillat, M.T.; Gatt, J.M.; Schoulguine, P.; Skiara, A.
1993-01-01
Startup operations and load variations for a FBR reactor (Fast Breeder Reactor) cause sodium level variations in the vessels which exert stresses on the emergent shells in the free level area. The loading of these shells is mainly linked to the axial thermal gradient, primary stresses being generally low or negligible as are the radial thermal gradients. Under the effect of these variable axial thermal gradients, there is a risk of progressive deformation even in the absence of primary type stresses. The simplified methods of analysis (Bree diagram, efficiency diagram) proposed in the design codes (Code Case and RCCMR) are not applicable in this specific case where primary type stresses are negligible. In recent years, many studies and experimental programmes have been undertaken in order to propose more reliable methods of analysis for these structures. This paper describes the experimental program, called VINIL, developed at the CEA at Cadarache. After a brief description of the experimental facility and of the experimental results, this paper proposes an evaluation of the risk of progressive deformation on an elastic basis: various simplified methods of analysis were used and are compared with experimental results
International Nuclear Information System (INIS)
De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.
1995-03-01
In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles
SPH modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells
Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S.
2013-05-01
This work concerns the prediction of failure of a fluid-filled tank under impact loading, including the resulting fluid leakage. A water-filled steel cylinder associated with a piston is impacted by a mass falling at a prescribed velocity. The cylinder is closed at its base by an aluminum plate whose characteristics are allowed to vary. The impact on the piston creates a pressure wave in the fluid which is responsible for the deformation of the plate and, possibly, the propagation of cracks. The structural part of the problem is modeled using Mindlin-Reissner finite elements (FE) and Smoothed Particle Hydrodynamics (SPH) shells. The modeling of the fluid is also based on an SPH formulation. The problem involves significant fluid-structure interactions (FSI) which are handled through a master-slave-based method and the pinballs method. Numerical results are compared to experimental data.
Korala, Lasantha; Wang, Zhijie; Liu, Yi; Maldonado, Stephen; Brock, Stephanie L.
2013-01-01
Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) non-radiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with chemical analysis confirms that the surface of the QDs in the sol-gel thin films are chalcogen-rich, consistent with an oxidative-induced gelation mechanism in which connectivity is achieved by formation of dichalcogenide covalent linkages between particles. The ligand removal and assembly process is probed by thermogravimetric, spectroscopic and microscopic studies. Further enhancement of inter-particle coupling via mild thermal annealing, which removes residual ligands and reinforces QD connectivity, results in QD sol-gel thin films with superior charge transport properties, as shown by a dramatic enhancement of electrochemical photocurrent under white light illumination relative to thin films composed of ligand-capped QDs. A more than 2-fold enhancement in photocurrent, and a further increase in photovoltage can be achieved by passivation of surface defects via overcoating with a thin ZnS shell. The ability to tune interfacial and surface characteristics for the optimization of photophysical properties suggests that the sol-gel approach may enable formation of QD thin films suitable for a range of optoelectronic applications. PMID:23350924
Indentation of Ellipsoidal and Cylindrical Elastic Shells
Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki
2012-01-01
Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal
Faraday Wave Turbulence on a Spherical Liquid Shell
Holt, R. Glynn; Trinh, Eugene H.
1996-01-01
Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.
Kanoun, Mohammed
2012-01-01
In this chapter, we employ ab initio approaches to review some important physical properties of nanolaminated ternary carbides MAX phases. We fi rstly use an all electron full-potential linearized augmented plane-wave method within the generalized gradient approximation and the density functional theory approaches, to explore the existence of a steric effect on the M site in these compounds. The elastic properties are also reported in order to assess the mechanical stability. The substitution of oxygen for carbon in Ti 2 SnC M n +1 AX n, forming Ti 2 SnC 1- x O x, is examined next, where we simulated the effect of oxygen incorporation on mechanical and electronic properties using projector augmented wave method. We show that oxygen has interesting effects on both of elastic and electronic properties, that the bulk modulus decreases when oxygen concentration increases. The bonding in Ti 2 SnC 1- x O x has a tendency to a covalent-ionic nature with the presence of metallic character. © 2012 Woodhead Publishing Limited.
Oxidation behaviour of Ti2AIN films composed mainly of nanolaminated MAX phase.
Wang, Q M; Garkas, W; Renteria, A Flores; Leyens, C; Kim, K H
2011-10-01
In this paper, we reported the oxidation behaviour of Ti2AIN films on polycrystalline Al2O3 substrates. The Ti2AIN films composed mainly of nanolaminated MAX phase was obtained by first depositing Ti-Al-N films using reactive sputtering of two elemental Ti and Al targets in Ar/N2 atmosphere and subsequent vacuum annealing at 800 degrees C for 1 h. The Ti2AIN films exhibited excellent oxidation resistance and thermal stability at 600-900 degrees C in air. Very low mass gain was observed. At low temperature (600 degrees C), no oxide crystals were observed on film surface. Blade-like Theta-Al2O3 fine crystals formed on film surfaces at 700-800 degrees C. At high temperature (900 degrees C), firstly Theta-Al2O3 formed on film surface and then transformed into alpha-Al2O3. At 700-900 degrees C, a continuous Al2O3 layer formed on Ti2AIN films surface, acting as diffusion barrier preventing further oxidation attack. The mechanism of the excellent oxidation resistance of Ti2AIN films was discussed based on the experimental results.
A finite element for plates and shells
International Nuclear Information System (INIS)
Muller, A.; Feijoo, R.A.; Bevilacqua, L.
1981-08-01
A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Ahmed, H. S. Tanvir; Jankowski, Alan F. [Department of Mechanical Engineering, Texas Tech University, Box 41021, Lubbock, Texas 79409 (United States)
2015-03-28
The features of grain size and interface separation strengthen the mechanical behavior of metallic nanolaminates. In addition, the presence of interlayer lattice strains can lead to a superlattice structure within the nanolaminate. The superlattice affects intrinsic properties of technological interest including electronic, magnetic, and elastic. The complex elastic and plastic behaviors of gold–nickel nanolaminate superlattice coatings as studied using nanoindentation are revisited with the tapping mode of a force microscope. Young's modulus is determined with nanoindentation during the initial elastic unloading after plastic deformation at depths up to one-fifth the coating thickness. The tapping mode provides a measurement during the initial elastic deformation at depths of only a few nanometers. The tapping mode utilizes the shift in the resonant frequency of the probe-cantilever system as contact is made with the sample surface. Both of these nanoprobe test methods produce results for measurements conducted with loading normal to the surface plane. A softening in the Young's modulus of gold–nickel nanolaminate coatings occurs for samples with layer pair spacing between 1 and 9 nm. The magnitude of softening corresponds with a progressive increase in the tensile state as measured with the change of interplanar spacing along the growth direction.
Boride-based nano-laminates with MAX-phase-like behaviour
International Nuclear Information System (INIS)
Telle, Rainer; Momozawa, Ai; Music, Denis; Schneider, Jochen M.
2006-01-01
MAX-phases being usually composed of transition metals, group A elements and carbon/nitrogen are considered interesting materials for many applications because of their tremendous bulk modulus, 'reversible' plasticity, and machinability. This is mainly due to their unique kind of bonding comprising covalent, ionic as well as metallic bonds providing 'easy' planes of rupture and deformability due to the layered crystal structures. In transition metal boride systems, similar types of bonding are available. In particular the W 2 B 5 -structure type and its stacking variations allow the synthesis of strongly layered crystal structures exhibiting unique delamination phenomena. The paper presents ab initio calculations showing the similarities of bonding between the ternary carbides and the corresponding ternary or quaternary borides. Formation of boride-based nano-laminates from auxiliary liquid phases, from the melt as well as during sintering and precipitation from supersaturated solid solutions will be discussed by means of SEM and TEM studies. The role of impurities weakening the interlayer bonding will be addressed in particular. The pronounced cleavage parallel to the basal plane gives rise for crack deflection and pull-out mechanisms if the laminates are dispersed in brittle matrices such as boron carbide, silicon carbide or other transition metal borides. - Graphical abstract: Some transition metal borides crystallise in a layered structure of alternating stacks of metal and boron atoms giving rise for strongly anisotropic properties. Their preferred cleavage parallel and the deformability perpendicular to the basal plan are similar to the peculiar mechanical behaviour recently described for MAX-phases. Ab initio calculations of the crystal structure prove the weak bonds between the layers for a variety of borides which can be used to reinforce ceramic materials on a nano-scale level
Energy Technology Data Exchange (ETDEWEB)
Boyadjiev, Stefan I., E-mail: boiajiev@gmail.com [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Santos, Gustavo dos Lopes; Szűcs, Júlia [Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Szilágyi, Imre M., E-mail: imre.szilagyi@mail.bme.hu [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary)
2016-03-25
In this study, monoclinic WO{sub 3} nanoparticles were obtained by thermal decomposition of (NH{sub 4}){sub x}WO{sub 3} in air at 600 °C. On them by atomic layer deposition (ALD) TiO{sub 2} films were deposited, and thus core/shell WO{sub 3}/TiO{sub 2} nanocomposites were prepared. We prepared composites of WO{sub 3} nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO{sub 3} and core/shell WO{sub 3}/TiO{sub 2} nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO{sub 3} thin films, and the coloring and bleaching states were studied.
International Nuclear Information System (INIS)
Bagcivan, N.; Bobzin, K.; Ludwig, A.; Grochla, D.; Brugnara, R.H.
2014-01-01
Nanolaminate coatings based on transition metal nitrides such as CrN, AlN and TiN deposited via physical vapor deposition (PVD) have shown great advantage as protective coatings on tools and components subject to high loads in tribological applications. By varying the individual layer materials and their thicknesses it is possible to optimize the coating properties, e.g. hardness, Young's modulus and thermal stability. One way for further improvement of coating properties is the use of advanced PVD technologies. High power pulsed magnetron sputtering (HPPMS) is an advancement of pulsed magnetron sputtering (MS). The use of HPPMS allows a better control of the energetic bombardment of the substrate due to the higher ionization degree of metallic species. It provides an opportunity to influence chemical and mechanical properties by varying the process parameters. The present work deals with the development of CrN/AlN nanolaminate coatings in an industrial scale unit by using two different PVD technologies. Therefore, HPPMS and mfMS (middle frequency magnetron sputtering) technologies were used. The bilayer period Λ, i.e. the thickness of a CrN/AlN double layer, was varied between 6.2 nm and 47.8 nm by varying the rotational speed of the substrate holders. In a second step the highest rotational speed was chosen and further HPPMS CrN/AlN coatings were deposited applying different HPPMS pulse lengths (40, 80, 200 μs) at the same mean cathode power and frequency. Thickness, morphology, roughness and phase composition of the coatings were analyzed by means of scanning electron microscopy (SEM), confocal laser microscopy, and X-ray diffraction (XRD), respectively. The chemical composition was determined using glow discharge optical emission spectroscopy (GDOES). Detailed characterization of the nanolaminate was conducted by transmission electron microscopy (TEM). The hardness and the Young's modulus were analyzed by nanoindentation measurements. The residual
Energy Technology Data Exchange (ETDEWEB)
Feijoo, P.C., E-mail: pedronska@fis.ucm.es [Dpto. Física Aplicada III (Electricidad y Electrónica), Universidad Complutense de Madrid, Fac. de CC. Físicas. Av/Complutense S/N, E-28040 Madrid (Spain); Pampillón, M.A.; San Andrés, E. [Dpto. Física Aplicada III (Electricidad y Electrónica), Universidad Complutense de Madrid, Fac. de CC. Físicas. Av/Complutense S/N, E-28040 Madrid (Spain); Fierro, J.L.G. [Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, C/Marie Curie 2, E-28049 Cantoblanco (Spain)
2015-10-30
In this work we use the high pressure sputtering technique to deposit the high permittivity dielectric gadolinium scandate on silicon substrates. This nonconventional deposition technique prevents substrate damage and allows for growth of ternary compounds with controlled composition. Two different approaches were assessed: the first one consists of depositing the material directly from a stoichiometric GdScO{sub 3} target; in the second one, we anneal a nano-laminate of < 0.5 nm thick Gd{sub 2}O{sub 3} and Sc{sub 2}O{sub 3} films in order to control the composition of the scandate. Metal–insulator–semiconductor capacitors were fabricated with platinum gates for electrical characterization. Accordingly, we grew a Gd-rich Gd{sub 2−x}Sc{sub x}O{sub 3} film that, in spite of higher leakage currents, presents a better effective relative permittivity of 21 and lower density of defects. - Highlights: • GdScO is deposited on Si as a high permittivity dielectric by two procedures. • Films sputtered from GdScO{sub 3} target are Sc-rich and present thick interface SiO{sub x}. • Gd-rich GdScO is obtained from a nano-laminate sputtered from Sc{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. • Gd{sub 1.8}Sc{sub 0.2}O{sub 3} shows good effective permittivity and electrical properties.
Vibrational analysis of submerged cylindrical shells based on elastic foundations
International Nuclear Information System (INIS)
Shah, A.G.; Naeem, M.N.
2014-01-01
In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)
Energy Technology Data Exchange (ETDEWEB)
Kim, J.S., E-mail: judy.kim@materials.ox.ac.uk [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Knepper, R.; Weihs, T.P. [Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Browning, N.D. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Campbell, G.H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)
2011-05-15
Highlights: > Fast phase transformations are examined in Al/Ni reactive nanolaminates. > Results visible only by dynamic transmission electron microscopy at ns resolution. > NiAl forms under 15 ns after reaction front in all three stoichiometries studied. > DTEM imaging reveals a transient cellular morphology in nonequiatomic films. - Abstract: Phase transformations and transient morphologies are examined as exothermic formation reactions self-propagate across Al/Ni nanolaminate films. The rapid evolution of these phases and sub-micrometer morphological features requires nanoscale temporal and spatial resolution that is not available with traditional in situ electron microscopy. This work uses dynamic transmission electron microscopy to identify intermetallic products and phase morphologies, as exothermic formation reactions self-propagate in nanolaminate films grown with 3:2, 2:3 and 1:1 Al/Ni atomic ratios. Single-shot diffraction patterns with 15 ns temporal resolution reveal that the NiAl intermetallic forms within {approx}15 ns of the reaction front's arrival in all three types of films and is the only intermetallic phase to form, as the reactions self-propagate and quench very rapidly. Time-resolved imaging reveals a transient cellular morphology in the Al-rich and Ni-rich foils, but not in the equiatomic films. The cellular features in the Al-rich and Ni-rich films are attributed to a cooling trajectory through a two-phase field of liquid + NiAl.
Energy Technology Data Exchange (ETDEWEB)
Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Séguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others
2014-10-01
A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.
Shikov, Alexander N; Ossipov, Vladimir I; Martiskainen, Olli; Pozharitskaya, Olga N; Ivanova, Svetlana A; Makarov, Valery G
2011-12-16
Thin-layer chromatography (TLC) with off-line high-performance liquid chromatography coupled to diode array detection and micrOTOF-Q mass spectrometry (HPLC-DAD-MS) resulted in the successful fractionation, separation and identification of spinochrome pigments from sea urchin (Strongylocentrotus droebachiensis) shells. Two fractions of pigments were separated by TLC and eluted with methanol using a TLC-MS interface. HPLC-DAD-MS analysis of the fractions indicated the presence of six sea urchin pigments: spinochrome monomers B and D, three spinochrome dimers (anhydroethylidene-6,6'-bis(2,3,7-trihydroxynaphthazarin) and its isomer and ethylidene-6,6'-bis(2,3,7-trihydroxynaphthazarin)), and one pigment that was preliminary identified as a spinochrome dimer with the structural formula C(22)H(16)O(16). Copyright © 2011 Elsevier B.V. All rights reserved.
Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A
2014-10-01
A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±DD-neutron yield diagnostics at the NIF.
Isogeometric shell formulation based on a classical shell model
Niemi, Antti; Collier, Nathan; Dalcí n, Lisandro D.; Ghommem, Mehdi; Calo, Victor M.
2012-01-01
The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.
DEFF Research Database (Denmark)
Almegaard, Henrik
2004-01-01
A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....
Indentation of Ellipsoidal and Cylindrical Elastic Shells
Vella, Dominic
2012-10-01
Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.
Energy Technology Data Exchange (ETDEWEB)
Mayer, C. [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States); Li, N.; Mara, N. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Albuquerque, NM (United States); Chawla, N., E-mail: nchawla@asu.edu [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States)
2015-01-05
Nanolaminate composites show promise as high strength and toughness materials. However, due to the limited volume of these materials, micron scale mechanical testing methods must be used to determine the properties of these films. To this end, a novel approach combining a double notch shear testing geometry and compression with a flat punch in a nanoindenter was developed to determine the mechanical properties of these films under shear loading. To further elucidate the failure mechanisms under shear loading, in situ TEM experiments were performed using a double notch geometry cut into the TEM foil. Aluminum layer thicknesses of 50 nm and 100 nm were used to show the effect of constraint on the deformation. Higher shear strength was observed in the 50 nm sample (690±54 MPa) compared to the 100 nm sample (423±28.7 MPa). Additionally, failure occurred close to the Al–SiC interface in the 50 nm sample as opposed to failure within the Al layer in the 100 nm sample.
Teh, Chee Keng; Muaz, Siti Dalila; Tangaya, Praveena; Fong, Po-Yee; Ong, Ai Ling; Mayes, Sean; Chew, Fook Tim; Kulaveerasingam, Harikrishna; Appleton, David Ross
2017-01-01
The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura???shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene ? a type II MADS-box transcription factor mainly present in ...
Multilayer active shell mirrors for space telescopes
Steeves, John; Jackson, Kathryn; Pellegrino, Sergio; Redding, David; Wallace, J. Kent; Bradford, Samuel Case; Barbee, Troy
2016-07-01
A novel active mirror technology based on carbon fiber reinforced polymer (CFRP) substrates and replication techniques has been developed. Multiple additional layers are implemented into the design serving various functions. Nanolaminate metal films are used to provide a high quality reflective front surface. A backing layer of thin active material is implemented to provide the surface-parallel actuation scheme. Printed electronics are used to create a custom electrode pattern and flexible routing layer. Mirrors of this design are thin (traditional optics. Such mirrors could be used as lightweight primaries for small CubeSat-based telescopes or as meter-class segments for future large aperture observatories. Multiple mirrors can be produced under identical conditions enabling a substantial reduction in manufacturing cost and complexity. An overview of the mirror design and manufacturing processes is presented. Predictions on the actuation performance have been made through finite element simulations demonstrating correctabilities on the order of 250-300× for astigmatic modes with only 41 independent actuators. A description of the custom metrology system used to characterize the active mirrors is also presented. The system is based on a Reverse Hartmann test and can accommodate extremely large deviations in mirror figure (> 100 μm PV) down to sub-micron precision. The system has been validated against several traditional techniques including photogrammetry and interferometry. The mirror performance has been characterized using this system, as well as closed-loop figure correction experiments on 150 mm dia. prototypes. The mirrors have demonstrated post-correction figure accuracies of 200 nm RMS (two dead actuators limiting performance).
Pressure Shell Approach to Integrated Environmental Protection
Kennedy, Kriss J.
2011-01-01
The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.
Energy Technology Data Exchange (ETDEWEB)
Mayer, Carl R. [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States); Molina-Aladareguia, Jon [IMDEA Materials Institute, c/Eric Kandel 2, Getafe, Madrid 28906 (Spain); Chawla, Nikhilesh, E-mail: nchawla@asu.edu [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States)
2016-10-15
Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results. The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.
Ooi, Leslie C.-L.; Low, Eng-Ti L.; Abdullah, Meilina O.; Nookiah, Rajanaidu; Ting, Ngoot C.; Nagappan, Jayanthi; Manaf, Mohamad A. A.; Chan, Kuang-Lim; Halim, Mohd A.; Azizi, Norazah; Omar, Wahid; Murad, Abdul J.; Lakey, Nathan; Ordway, Jared M.; Favello, Anthony
2016-01-01
Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura p...
The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements
Nemeth, Michael P.; Starnes, James H., Jr.
1998-01-01
A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.
Energy Technology Data Exchange (ETDEWEB)
Balakrishna, C; Sarma, B S [Defence Research and Development Laboratory, Hyderabad (India)
1989-02-01
A formulation for axisymmetric shell analysis under asymmetric load based on Fourier series representation and using field consistent 3 noded curved axisymmetric shell element is presented. Different field inconsistent/consistent interpolations for an element based on shear flexible theory have been studied for thick and thin shells under asymmetric loads. Various examples covering axisymmetric as well as asymmetric loading cases have been analyzed and numerical results show a good agreement with the available results in the case of thin shells. 12 refs.
Isogeometric shell formulation based on a classical shell model
Niemi, Antti
2012-09-04
This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.
Structural shell analysis understanding and application
Blaauwendraad, Johan
2014-01-01
The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...
Analysis of anisotropic shells containing flowing fluid
International Nuclear Information System (INIS)
Lakis, A.A.
1983-01-01
A general theory for the dynamic analysis of anisotropic thin cylindrical shells containing flowing fluid is presented. The shell may be uniform or non-uniform, provided it is geometrically axially symmetric. This is a finite- element theory, using cylindrical finite elements, but the displacement functions are determined by using classical shell theory. A new solution of the wave equation of the liquid finite element leads to an expression of the fluid pressure, p, as a function of the nodal displacements of the element and three operative forces (inertia, centrifugal and Coriolis) of the moving fluid. (Author) [pt
Galileon radiation from a spherical collapsing shell
Energy Technology Data Exchange (ETDEWEB)
Martín-García, Javier [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera 15, E-28049 Madrid (Spain); Vázquez-Mozo, Miguel Á. [Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM),Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain)
2017-01-17
Galileon radiation in the collapse of a thin spherical shell of matter is analyzed. In the framework of a cubic Galileon theory, we compute the field profile produced at large distances by a short collapse, finding that the radiated field has two peaks traveling ahead of light fronts. The total energy radiated during the collapse follows a power law scaling with the shell’s physical width and results from two competing effects: a Vainshtein suppression of the emission and an enhancement due to the thinness of the shell.
Stable organic thin-film transistors
Jia, Xiaojia; Fuentes-Hernandez, Canek; Wang, Cheng-Yin; Park, Youngrak; Kippelen, Bernard
2018-01-01
Organic thin-film transistors (OTFTs) can be fabricated at moderate temperatures and through cost-effective solution-based processes on a wide range of low-cost flexible and deformable substrates. Although the charge mobility of state-of-the-art OTFTs is superior to that of amorphous silicon and approaches that of amorphous oxide thin-film transistors (TFTs), their operational stability generally remains inferior and a point of concern for their commercial deployment. We report on an exhaustive characterization of OTFTs with an ultrathin bilayer gate dielectric comprising the amorphous fluoropolymer CYTOP and an Al2O3:HfO2 nanolaminate. Threshold voltage shifts measured at room temperature over time periods up to 5.9 × 105 s do not vary monotonically and remain below 0.2 V in microcrystalline OTFTs (μc-OTFTs) with field-effect carrier mobility values up to 1.6 cm2 V−1 s−1. Modeling of these shifts as a function of time with a double stretched-exponential (DSE) function suggests that two compensating aging mechanisms are at play and responsible for this high stability. The measured threshold voltage shifts at temperatures up to 75°C represent at least a one-order-of-magnitude improvement in the operational stability over previous reports, bringing OTFT technologies to a performance level comparable to that reported in the scientific literature for other commercial TFTs technologies. PMID:29340301
International Nuclear Information System (INIS)
Choi, Bum Ho; Lee, Jong Ho
2014-01-01
We investigated the water vapor permeation barrier properties of 30-nm-thick SiN/SiCN/SiN nanolaminated multilayer structures grown by plasma enhanced chemical vapor deposition at 7 mTorr. The derived water vapor transmission rate was 1.12 × 10 −6 g/(m 2 day) at 85 °C and 85% relative humidity, and this value was maintained up to 15 000 h of aging time. The X-ray diffraction patterns revealed that the nanolaminated film was composed of an amorphous phase. A mixed phase was observed upon performing high resolution transmission electron microscope analysis, which indicated that a thermodynamically stable structure was formed. It was revealed amorphous SiN/SiCN/SiN multilayer structures that are free from intermixed interface defects effectively block water vapor permeation into active layer
Micromagnetic studies of three-dimensional pyramidal shell structures
International Nuclear Information System (INIS)
Knittel, A; Franchin, M; Fischbacher, T; Fangohr, H; Nasirpouri, F; Bending, S J
2010-01-01
We present a systematic numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three-dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of the shell. We vary the thickness of the shell between the limiting cases of an ultra-thin shell and a conventional pyramid and delineate different stable magnetic configurations. We find different kinds of single-domain states, which predominantly occur at smaller system sizes. In analogy to equivalent states in thin square films we term these onion, flower, C and S states. At larger system sizes, we also observe two types of vortex states, which we refer to as symmetric and asymmetric vortex states. For a classification of the observed states, we derive a phase diagram that specifies the magnetic ground state as a function of structure size and shell thickness. The transitions between different ground states can be understood qualitatively. We address the issue of metastability by investigating the stability of all occurring configurations for different shell thicknesses. For selected geometries and directions hysteresis measurements are analysed and discussed. We observe that the magnetic behaviour changes distinctively in the limit of ultra-thin shells. The study has been motivated by the recent progress made in the growth of faceted core-shell structures.
Structural experiments with ice (composite) shells
Belis, J.; Martens, K.; Van Lancker, B.; Pronk, A.; Zingoni, Alphose
2016-01-01
ABSTRACT: Ice can be a very suitable building material for temporary structures in a freezing environment. When water, mixed with small fibre reinforcements, is sprayed onto an inflatable membrane structure in suitable cold outdoor conditions, a thin shell is formed which increases thickness layer
Wellposedness of a cylindrical shell model
International Nuclear Information System (INIS)
McMillan, C.
1994-01-01
We consider a well-known model of a thin cylindrical shell with dissipative feedback controls on the boundary in the form of forces, shears, and moments. We show that the resulting closed loop feedback problem generates a s.c. semigroup of contractions in the energy space
Effect of supercritical water shell on cavitation bubble dynamics
International Nuclear Information System (INIS)
Shao Wei-Hang; Chen Wei-Zhong
2015-01-01
Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)
Semiclassical shell structure and nuclear double-humped fission barriers
Directory of Open Access Journals (Sweden)
A. G. Magner
2010-09-01
Full Text Available We derived the semiclassical trace formulas for the level density as sums over periodic-orbit families and isolated orbits within the improved stationary phase method. Averaged level-density shell corrections and shell-structure energies are continuous through all symmetry-breaking (bifurcation points with the correct asymptotics of the standard stationary phase approach accounting for continuous symmetries. We found enhancement of the nuclear shell structure near bifurcations in the superdeformed region. Our semiclassical results for the averaged level densities with the gross-shell and more thin-shell structures and the energy shell corrections for critical deformations are in good agreement with the quantum calculations for several single-particle Hamiltonians, in particular for the potentials with a sharp spheroidal shape. Enhancement of the shell structure owing to bifurcations of the shortest 3-dimensional orbits from equatorial orbits is responsible for the second well of fission barrier in a superdeformation region.
Directory of Open Access Journals (Sweden)
Woo-Young Jung
2015-04-01
Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.
Axisymmetric vibrations of thick shells of revolution
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin
1983-01-01
Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)
Gravitational collapse of a cylindrical null shell in vacuum
Directory of Open Access Journals (Sweden)
S. Khakshournia
2008-03-01
Full Text Available Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .
Energy Technology Data Exchange (ETDEWEB)
Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); Cai, Mei [General Motors Research and Development Center, Warren, MI 48090-9055 (United States); Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)
2015-03-30
Graphical abstract: - Highlights: • Sn nanowires encapsulated in CNTs directly grew on current collectors. • The thickness of CNTs were controlled via growth time, gas flow rate and synthesis temperature. • Thick CNTs contributed to a better capacity retention while thin CNTs led to a higher capacity. • The core–shell structures formed in one-step CVD process. - Abstract: Core–shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C{sub 2}H{sub 4}) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g{sup −1}.
International Nuclear Information System (INIS)
Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying; Cai, Mei; Sun, Xueliang
2015-01-01
Graphical abstract: - Highlights: • Sn nanowires encapsulated in CNTs directly grew on current collectors. • The thickness of CNTs were controlled via growth time, gas flow rate and synthesis temperature. • Thick CNTs contributed to a better capacity retention while thin CNTs led to a higher capacity. • The core–shell structures formed in one-step CVD process. - Abstract: Core–shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C 2 H 4 ) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g −1
TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.
International Nuclear Information System (INIS)
Choi, Jin-Hwan; Kim, Young-Min; Park, Young-Wook; Park, Tae-Hyun; Jeong, Jin-Wook; Choi, Hyun-Ju; Song, Eun-Ho; Ju, Byeong-Kwon; Lee, Jin-Woo; Kim, Cheol-Ho
2010-01-01
The present study demonstrates a flexible gas-diffusion barrier film, containing an SiO 2 /Al 2 O 3 nanolaminate on a plastic substrate. Highly uniform and conformal coatings can be made by alternating the exposure of a flexible polyethersulfone surface to vapors of SiO 2 and Al 2 O 3 , at nanoscale thickness cycles via RF-magnetron sputtering deposition. The calcium degradation test indicates that 24 cycles of a 10/10 nm inorganic bilayer, top-coated by UV-cured resin, greatly enhance the barrier performance, with a permeation rate of 3.79 x 10 -5 g m -2 day -1 based on the change in the ohmic behavior of the calcium sensor at 20 deg. C and 50% relative humidity. Also, the permeation rate for 30 cycles of an 8/8 nm inorganic bilayer coated with UV resin was beyond the limited measurable range of the Ca test at 60 deg. C and 95% relative humidity. It has been found that such laminate films can effectively suppress the void defects of a single inorganic layer, and are significantly less sensitive against moisture permeation. This nanostructure, fabricated by an RF-sputtering process at room temperature, is verified as being useful for highly water-sensitive organic electronics fabricated on plastic substrates.
Singular problems in shell theory. Computing and asymptotics
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Palencia, Evariste [Institut Jean Le Rond d' Alembert, Paris (France); Millet, Olivier [La Rochelle Univ. (France). LEPTIAB; Bechet, Fabien [Metz Univ. (France). LPMM
2010-07-01
It is known that deformations of thin shells exhibit peculiarities such as propagation of singularities, edge and internal layers, piecewise quasi inextensional deformations, sensitive problems and others, leading in most cases to numerical locking phenomena under several forms, and very poor quality of computations for small relative thickness. Most of these phenomena have a local and often anisotropic character (elongated in some directions), so that efficient numerical schemes should take them in consideration. This book deals with various topics in this context: general geometric formalism, analysis of singularities, numerical computing of thin shell problems, estimates for finite element approximation (including non-uniform and anisotropic meshes), mathematical considerations on boundary value problems in connection with sensitive problems encountered for very thin shells; and others. Most of numerical computations presented here use an adaptive anisotropic mesh procedure which allows a good computation of the physical peculiarities on one hand, and the possibility to perform automatic computations (without a previous mathematical description of the singularities) on the other. The book is recommended for PhD students, postgraduates and researchers who want to improve their knowledge in shell theory and in particular in the areas addressed (analysis of singularities, numerical computing of thin and very thin shell problems, sensitive problems). The lecture of the book may not be continuous and the reader may refer directly to the chapters concerned. (orig.)
Delamination of Compressed Thin Layers at Corners
DEFF Research Database (Denmark)
Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan
2008-01-01
An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...
Modeling of microencapsulated polymer shell solidification
International Nuclear Information System (INIS)
Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.
1995-01-01
A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur
Inner-shell electron spectroscopy for microanalysis
International Nuclear Information System (INIS)
Joy, D.C.; Maher, D.M.
1979-01-01
The transmission electron energy-loss spectrum shows characteristic edges corresponding to the excitation of inner-shell electrons of atoms in a thin sample. Analysis of these edges provides detailed chemical, structural, and electronic data from the radiated volume. By combining electron spectroscopy and electron microscopy, this microanalytical technique can be performed in conjunction with high-resolution imaging of the sample. It is shown that this approach has advantages of sensitivity, spatial resolution, and convenience over other comparable techniques. 7 figures
International Nuclear Information System (INIS)
Stone, C.M.; Nickell, R.E.
1977-01-01
Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading
Energy Technology Data Exchange (ETDEWEB)
1978-01-01
This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.
Folding of non-Euclidean curved shells
Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan
2015-03-01
Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.
Inner-shell couplings in transiently formed superheavy quasimolecules
Energy Technology Data Exchange (ETDEWEB)
Verma, P [Kalindi College, University of Delhi, New Delhi 110008 (India); Mokler, P H [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Braeuning-Demian, A; Kozhuharov, C; Braeuning, H; Bosch, F; Hagmann, S; Liesen, D [GSI Helmholzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Anton, J; Fricke, B [Universitaet Kassel, 34109 Kassel (Germany); Stachura, Z [Institute for Nuclear Physics, Cracow PL 31342 (Poland); Wahab, M A, E-mail: p.verma.du@gmail.com [Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India)
2011-06-15
The inner-shell couplings for U{sup q+}-ions (73{<=}q{<=}91) moving moderately slow at {approx}69 MeV u{sup -1} and bombarding thin Au targets have been investigated. Having established the definite survival probability of incoming projectile K vacancies in these targets in an earlier publication, the transfer of these vacancies to the target K-shell due to inner-shell couplings has been studied. As the system is in the quasiadiabatic collision regime for the K-shell of collision partners, advanced SCF-DFS (self-consistent field-Dirac-Fock-Slater) multielectron level diagrams have been used for interpretation. Using a simple model, the L-K shell coupling interaction distance has been estimated and compared with level diagram calculations.
Creep deformations of shells of revolution under asymmetrical loading
International Nuclear Information System (INIS)
Takezono, S.
1975-01-01
The numerical analysis of creep deformations of shells of revolution under unsymmetrical loads is described with application to a cylindrical shell. The analytical formulation of the creep of axisymmetric undergoing unsymmetrical deformations is developed for two hardening laws: the time hardening law and the strain hardening law. The method is based on the creep power law, and on the assumption of plane stress condition and the Euler-Bernoulli hypothesis used in the ordinary thin shell theory. The basic differential equations derived for incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by integration of the incremental values. In conclusion the computer programs are developed which can be used to predict the creep deformations of arbitrary axisymmetrical shells. As a numerical example the creep deformation of cylindrical shell of importance in practical use is treated, and the variations of displacements and internal forces with the lapse of time are discussed
Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio
Chang, T. Y.; Sawamiphakdi, K.
1984-01-01
A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.
Directory of Open Access Journals (Sweden)
Jeong-Hoon Song
2013-01-01
Full Text Available A simplified implementation of the conventional extended finite element method (XFEM for dynamic fracture in thin shells is presented. Though this implementation uses the same linear combination of the conventional XFEM, it allows for considerable simplifications of the discontinuous displacement and velocity fields in shell finite elements. The proposed method is implemented for the discrete Kirchhoff triangular (DKT shell element, which is one of the most popular shell elements in engineering analysis. Numerical examples for dynamic failure of shells under impulsive loads including implosion and explosion are presented to demonstrate the effectiveness and robustness of the method.
Asymmetric vibrations of thick shells of revolution having meridionally varying curvature
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Yachita, Takumi.
1988-01-01
An exact method using power series expansions is presented for solving asymmetric free vibration problems for thick shells of revolution having meridionally varying curvature. Based on the improved thick shell theory, the Lagrangian of the shells of revolution are obtained, and the equations of motion and the boundary conditions are derived from the stationary condition of the Lagrangian. The method is demonstrated for thick shells of revolution having elliptical, cycloidal, parabolical, catenary and hyperbolical meridional curvature. The results by the present method are compared with those by the thin shell theory and the effects of the rotatory inertia and the shear deformation upon the natural frequencies are clarified. (author)
Axisymmetric vibrations of thick shells of revolution having meridionally varying curvature
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin; Takahashi, Fumiaki.
1987-01-01
An exact method using power series expansions is presented for solving axisymmetric free vibration problems for thick shells of revolution having meridionally varying curvature. Based on the improved thick shell theory, the Lagrangian of the shells of revolution are obtained, and the equations of motion and the boundary conditions are derived from the stationary condition of the Lagrangian. The method is applied to thick shells of revolution having their generating curves of ellipse, cycloid, parabola, catenary and hyperbola. The results by the present method are compared with those by the thin shell theory and the effects of rotatory inertia and shear deformation upon the natural frequencies and the mode shapes are clarified. (author)
Shell coal gasification process
Energy Technology Data Exchange (ETDEWEB)
Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing
2002-07-01
The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.
Wrinkling of Pressurized Elastic Shells
Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki
2011-01-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells
Delamination of Compressed Thin Layers at Corners
DEFF Research Database (Denmark)
Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan
2008-01-01
An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat s...... layers, Fracture mechanics, Crack closure, Steady state crack propagation.......An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place. Keywords: Delamination, Thin...
Precision Membrane Optical Shell (PMOS) Technology for Lightweight LIDAR Apertures, Phase I
National Aeronautics and Space Administration — Precision membrane optical shell (PMOS) technology is an innovative combination of 1) ultra lightweight optically smooth membrane thin films, 2) advanced mold based...
Williams, Suzanne T
2017-05-01
The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.
Stress analysis for shells with double curvature by finite element method
International Nuclear Information System (INIS)
Mueller, A.
1981-08-01
A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, simple shape functions of second and third degree were used. An implicit penalty method allows one to solve thin shell problems since the Kirchoff-Love hypothesis are automatically satisfied. (Author) [pt
Morphology and film formation of poly(butyl methacrylate)-polypyrrole core-shell latex particles
Huijs, F; Lang, J
Core-shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were
Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight
Nguyen, Phuc H.; Matzner, Richard A.
2012-01-01
We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…
Validation of annual growth rings in freshwater mussel shells using cross dating .Can
Andrew L. Rypel; Wendell R. Haag; Robert H. Findlay
2009-01-01
We examined the usefulness of dendrochronological cross-dating methods for studying long-term, interannual growth patterns in freshwater mussels, including validation of annual shell ring formation. Using 13 species from three rivers, we measured increment widths between putative annual rings on shell thin sections and then removed age-related variation by...
Snap-Through Buckling Problem of Spherical Shell Structure
Directory of Open Access Journals (Sweden)
Sumirin Sumirin
2014-12-01
Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.
International Nuclear Information System (INIS)
Guo, S.C.; Chu, M.S.
2002-01-01
The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω -2 <<1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX
de-Shalit, Amos; Massey, H S W
1963-01-01
Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.
Shell Buckling Knockdown Factors
National Aeronautics and Space Administration — The Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment #: 07-010-E, was established in March of 2007 by the NESC in...
Photonic crystals of core-shell colloidal particles
Velikov, K.P.; Moroz, A.; Blaaderen, A. van
2001-01-01
We report on the fabrication and optical transmission studies of thin three-dimensional (3D) photonic crystals of high-dielectric ZnS-core and low-dielectric SiO2-shell colloidal particles. These samples were fabricated using a vertical controlled drying method. The spectral position and width of a
DNA nanoparticles with core-shell morphology.
Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc
2014-10-14
Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.
Sutley, Jane
2009-01-01
"Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…
Curvature-driven morphing of non-Euclidean shells
Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D. P.
2017-05-01
We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.
Energy Technology Data Exchange (ETDEWEB)
Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)
2016-06-15
The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.
Pfister, Catherine A.; Roy, Kaustuv; Wootton, Timothy J.; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Tom; Sanford, Eric
2016-01-01
Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds..
A finite element model for nonlinear shells of revolution
International Nuclear Information System (INIS)
Cook, W.A.
1979-01-01
A shell-of-revolution model was developed to analyze impact problems associated with the safety analysis of nuclear material shipping containers. The nonlinear shell theory presented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes transverse shear deformation and moments turning about the middle surface normal. With these features, this approach is valid for both thin and thick shells. His theory is formulated in terms of strain and stress resultants that refer to the undeformed geometry. This nonlinear shell model is developed using the virtual work principle associated with Reissner's equilibrium equations. First, the virtual work principle is modified for incremental loading; then it is linearized by assuming that the nonlinear portions of the strains are known. By iteration, equilibrium is then approximated for each increment. A benefit of this approach is that this iteration process makes it possible to use nonlinear material properties. (orig.)
Post buckling of three dimensional shells
International Nuclear Information System (INIS)
Hoffman, A.; Combescure, A.; Verpeaux, A.
1984-01-01
The paper presented here gives a general description of the methods currently used in the CEASEMT System Computer Codes for the non linear analysis of thin shells. For post buckling two methods are presented: the first one is a controlled step by step calculation in order to obtain the load-displacement curve. The second consist of the calculation of a global parameter based on energetic consideration, which can be easily interpreted as a time of collapse of the structure. Some examples are given and compared with experimental values. (Author) [pt
Post buckling of three dimensional shells
International Nuclear Information System (INIS)
Hoffmann, A.; Combescure, A.; Verpeaux, A.
1984-10-01
The paper presented here gives a general description of the methods currently used in the CEASEMT System Computer Codes for the non linear analysis of thin shells. For post buckling two methods are presented: the first one is a controlled step by step calculation in order to obtain the load-displacement curve. The second consist of the calculation of a global parameter based on energetic consideration, which can be easily interpreted as a time of collapse of the structure. When dynamic loads are concerned like seismic loads this parameter can be very useful. Some examples are given and compared with experimental values
Bradbury, Robert J.
2001-08-01
More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.
Frequency response analysis of cylindrical shells conveying fluid using finite element method
International Nuclear Information System (INIS)
Seo, Young Soo; Jeong, Weui Bong; Yoo, Wan Suk; Jeong, Ho Kyeong
2005-01-01
A finite element vibration analysis of thin-walled cylindrical shells conveying fluid with uniform velocity is presented. The dynamic behavior of thin-walled shell is based on the Sanders' theory and the fluid in cylindrical shell is considered as inviscid and incompressible so that it satisfies the Laplace's equation. A beam-like shell element is used to reduce the number of degree-of-freedom by restricting to the circumferential modes of cylindrical shell. An estimation of frequency response function of the pipe considering of the coupled effects of the internal fluid is presented. A dynamic coupling condition of the interface between the fluid and the structure is used. The effective thickness of fluid according to circumferential modes is also discussed. The influence of fluid velocity on the frequency response function is illustrated and discussed. The results by this method are compared with published results and those by commercial tools
LOW-FREQUENCY MAGNETIC FIELD SHIELDING BY A CIRCULAR PASSIVE LOOP AND CLOSED SHELLS
Directory of Open Access Journals (Sweden)
V.S. Grinchenko
2016-05-01
Full Text Available Purpose. To analyze the shielding factors for a circular passive loop and conductive closed shells placed in a homogeneous low-frequency magnetic field. Methodology. We have obtained simplified expressions for the shielding factors for a circular passive loop and a thin spherical shell. In addition, we have developed the numerical model of a thin cubical shell in a magnetic field, which allows exploring its shielding characteristics. Results. We have obtained dependences of the shielding factors for passive loops and shells on the frequency of the external field. Analytically determined frequency of the external magnetic field, below which field shielding of a passive loop is expedient to use, above which it is advisable to use a shielding shell.
Three-dimensional flat shell-to-shell coupling: numerical challenges
Guo, Kuo; Haikal, Ghadir
2017-11-01
The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.
Three-dimensional flat shell-to-shell coupling: numerical challenges
Directory of Open Access Journals (Sweden)
Guo Kuo
2017-11-01
Full Text Available The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love plate and thick (Reissner-Mindlin plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.
NIF Double Shell outer/inner shell collision experiments
Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.
2017-10-01
Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.
Energy Technology Data Exchange (ETDEWEB)
Edelman, Ya A; Konstantinov, L P; Martyshin, A N
1966-12-12
A sidewall coring shell consists of a housing and a detachable core catcher. The core lifter is provided with projections, the ends of which are situated in another plane, along the longitudinal axis of the lifter. The chamber has corresponding projections.
On the dynamics of relativistic multi-layer spherical shell systems
Energy Technology Data Exchange (ETDEWEB)
Gaspar, Merse E; Racz, Istvan, E-mail: merse@rmki.kfki.hu, E-mail: iracz@rmki.kfki.hu [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33, Budapest (Hungary)
2011-04-21
The relativistic time evolution of multi-layer spherically symmetric shell systems-consisting of infinitely thin shells separated by vacuum regions-is examined. Whenever two shells collide the evolution is continued with the assumption that the collision is totally transparent. The time evolution of various multi-layer shell systems-comprising large number of shells thereby mimicking the behavior of a thick shell making it possible to study the formation of acoustic singularities-is analyzed numerically and compared in certain cases to the corresponding Newtonian time evolution. The analytic setup is chosen such that the developed code is capable of following the evolution even inside the black hole region. This, in particular, allowed us to investigate the mass inflation phenomenon in the chosen framework.
Curvature-Induced Instabilities of Shells
Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.
2018-01-01
Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.
Temporal structures in shell models
DEFF Research Database (Denmark)
Okkels, F.
2001-01-01
The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...
Fixed-bed adsorption separation of xylene isomers over sio2/silicallite-1 core-shell adsorbents
Khan, Easir A.; Rajendran, Arvind; Lai, Zhiping
2013-01-01
SiO2/Silicalite-1 core-shell material has been demonstrated as potential shape selective adsorbent in gas phase separation of p-xylene from a mixture of p/o-xylene isomers. The core-shell composite comprised of large silica core and thin
Indian Academy of Sciences (India)
microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...
Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2013-02-21
It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.
Dynamic nonlinear analysis of shells of revolution
International Nuclear Information System (INIS)
Von Riesemann, W.A.; Stricklin, J.A.; Haisler, W.E.
1975-01-01
DYNAPLAS is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. The present version, DYNAPLAS II, began with the programs SAMMSOR and DYNASOR. As is the case for the earlier programs, a driver program, SAMMSOR III, generates the stiffness and mass matrices for the harmonics under consideration. A highly refined meridionally curved axisymmetric thin shell of revolution element is used in conjunction with beam type ring stiffeners in the circumferential direction. The shell element uses a cubic displacement function and through static condensation a basic eight degree of freedom element is generated. The shell material may be isotropic or orthotropic. DYNAPLAS II uses the 'displacement' method of analysis in which the nonlinearities are treated as pseudo loads on the right-hand side of the equations of motion. The equations are written for each Fourier harmonic used in representing the asymmetric loading components, and although the left-hand side of the equations is uncoupled, the right-hand side is coupled by the nonlinear pseudo loads. The strain displacement equations of Novozhilov are used and the incremental theory of plasticity is used with the von Mises yield condition and associated flow rule. Either isotropic work hardening or the mechanical sublayer model may be used. Strain rate effects may be included. Either the explicit central difference method or the implcit Houbolt method are available. The program has found use in the analysis of containment vessels for light water reactors
Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.
2000-01-01
Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.
International Nuclear Information System (INIS)
Das, Y.C.; Kedia, K.K.
1977-01-01
No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)
The homogeneous boundary value problem of the thick spherical shell
International Nuclear Information System (INIS)
Linder, F.
1975-01-01
With the aim to solve boundary value problems in the same manner as it is attained at thin shell theory (Superposition of Membrane solution to solution of boundary values), one has to search solutions of the equations of equilibrium of the three dimensional thick shell which produce tensions at the cut edge and are zero on the whole shell surface inside and outside. This problem was solved with the premissions of the linear theory of Elasticity. The gained solution is exact and contains the symmetric and non-symmetric behaviour and is described in relatively short analytical expressions for the deformations and tensions, after the problem of the coupled system had been solved. The static condition of the two surfaces (zero tension) leads to a homogeneous system of complex equations with the index of the Legendre spherical function as Eigenvalue. One symmetrical case is calculated numerically and is compared with the method of finite elements. This comparison results in good accordance. (Auth.)
Charged shells in Lovelock gravity: Hamiltonian treatment and physical implications
International Nuclear Information System (INIS)
Dias, Goncalo A. S.; Gao, Sijie; Lemos, Jose P. S.
2007-01-01
Using a Hamiltonian treatment, charged thin shells, static and dynamic, in spherically symmetric spacetimes, containing black holes or other specific types of solutions, in d dimensional Lovelock-Maxwell theory are studied. The free coefficients that appear in the Lovelock theory are chosen to obtain a sensible theory, with a negative cosmological constant appearing naturally. Using an Arnowitt-Deser-Misner (ADM) description, one then finds the Hamiltonian for the charged shell system. Variation of the Hamiltonian with respect to the canonical coordinates and conjugate momenta, and the relevant Lagrange multipliers, yields the dynamic and constraint equations. The vacuum solutions of these equations yield a division of the theory into two branches, namely d-2k-1>0 (which includes general relativity, Born-Infeld type theories, and other generic gravities) and d-2k-1=0 (which includes Chern-Simons type theories), where k is the parameter giving the highest power of the curvature in the Lagrangian. There appears an additional parameter χ=(-1) k+1 , which gives the character of the vacuum solutions. For χ=1 the solutions, being of the type found in general relativity, have a black hole character. For χ=-1 the solutions, being of a new type not found in general relativity, have a totally naked singularity character. Since there is a negative cosmological constant, the spacetimes are asymptotically anti-de Sitter (AdS), and AdS when empty (for zero cosmological constant the spacetimes are asymptotically flat). The integration from the interior to the exterior vacuum regions through the thin shell takes care of a smooth junction, showing the power of the method. The subsequent analysis is divided into two cases: static charged thin shell configurations, and gravitationally collapsing charged dust shells (expanding shells are the time reversal of the collapsing shells). In the collapsing case, into an initially nonsingular spacetime with generic character or an empty
The lifetime of a long cylindrical shell under external pressure at elevated temperature
Bargmann, H W
1972-01-01
This paper is concerned with creep collapse of a long, thin walled, circular, cylindrical shell subjected to external pressure. The problem has been studied by Hoff et al. (1959), where elasticity has been neglected in the material equations. In the present paper it is pointed out that elasticity must not be neglected in stability problems as it may reduce the lifetime considerably. The improved equation for the lifetime of the shell is presented. Moreover, a procedure is indicated to derive the necessary creep parameters easily from usually available creep data. Numerical values of the lifetime of thin-walled, circular, cylindrical shells under external atmospheric pressure are presented for a wide range of shells of different geometrical characteristics for a number of high-temperature alloys and the temperature range up to 1000 degrees C. Experimental results are reported which are in good agreement with the theoretical prediction. (11 refs).
Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 4
International Nuclear Information System (INIS)
Matsushita, Hitoshi; Nakayama, Wataru; Yanagida, Takehiko; Kudo, Akio.
1987-01-01
Refering to the results of our previous works, a procedure for estimating the distribution of heat flux in shell-and-tube heat exchangers is proposed. The steam generator used in a high temperature reactor plant is taken up as the subject of analysis. Particular attention is paid to critical conditions for burnout and the strength of material in high temperature conditions. It is found that the distribution of heat transfer coefficient on the shell-side is crucial to the occurrence of burnout in the tubes. The use of a relatively large inlet nozzle (the ratio of its diameter to the shell is roughly half) is recommended. A low level of thermal stress on heat transfer tubes can be realized by the adoption of a relatively thin 2.25 Cr-1 Mo Steel tube wall of 1.24 mm thickness. (author)
Thermoviscoelastoplastic Deformation of Compound Shells of Revolution Made of a Damageable Material
Shevchenko, Yu. N.; Galishin, A. Z.; Babeshko, M. E.
2015-11-01
A technique for numerical analysis of the thermoviscoelastoplastic deformation of thin compound shells made of a damageable material in which a fracture front propagates is described. A procedure for automatic variation in the step of integration of the kinetic damage equation is developed. A two-layer cylindrical shell cooling by convection and subjected to internal pressure and tensile force is analyzed as an example. The numerical data are presented and analyzed
Synthesis and characterization of ZnO/TiO 2 composite core/shell ...
Indian Academy of Sciences (India)
Organic solar cells; ZnO/TiO2 core/shell; nanorod arrays; sol–gel. ... on indium tin oxide (ITO) substrate via a facile sol–gel dip-coating process. Effects of solution pH for ZnO, annealing temperature, growth time and temperature on the ... The optical and electrical properties of the bare TiO2 thin film and core/shell composite ...
Wrinkling of Pressurized Elastic Shells
Vella, Dominic
2011-10-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.
Seismic analysis of axisymmetric shells
International Nuclear Information System (INIS)
Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.
1984-01-01
Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt
Creep analysis of orthotropic shells
International Nuclear Information System (INIS)
Mehra, V.K.; Ghosh, A.
1975-01-01
A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)
International Nuclear Information System (INIS)
Allen, M.E.; Christiansen, M.
1992-01-01
Accelerator controls systems provide parameter display pages which allow the operator to monitor and manipulate selected control points in the system. Display pages are generally implemented as either hand-crafted, purpose-built programs; or by using a specialized display page layout tool. These two methods of display page development exhibit the classic trade-off between functionality vs. ease of implementation. In the Direct Manipulation Shell we approach the process of developing a display page in a manifestly object-oriented manner. This is done by providing a general framework for interactively instantiating and manipulating display objects. (author)
Plate shell structures of glass
DEFF Research Database (Denmark)
Bagger, Anne
to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....
Results from HBTX1C with close and distant resistive shells
International Nuclear Information System (INIS)
Alper, B.; Bevir, M.K.; Bodin, H.A.
1989-01-01
HBTX1C has operated with resistive shells to study, in particular, reversed field pinch (RFP) confinement where pulse lengths (τ p ) exceed the time constant for vertical field penetration of the wall (τ w ). Initial operation with τ w =0.5ms for a shell located at 1.15 times the minor radius, lead to the growth of low frequency (thin shell) modes which grew to termination in less than 5 ms. Mode numbers and growth rates were in agreement with linear MHD theory. The installation of a secondary shell distant from the plasma at 1.6 times the minor radius has significantly altered plasma properties and improved confinement. Thin shell operation permits dynamic control of plasma equilibrium. Using high current switching circuitry, feedback control of the horizontal position of the plasma has been successfully implemented. This has been followed by control of one phase of the external kink mode, (m,n)=(1,2), as a first step towards suppression of the growth of thin shell modes. Operation in the ultra-low-q (ULQ) regime of unreversed discharges with 0< q≤1 has been studied for currents ranging from 80 to 260 kA. (author) 6 refs., 3 figs
Teh, Chee-Keng; Muaz, Siti Dalila; Tangaya, Praveena; Fong, Po-Yee; Ong, Ai-Ling; Mayes, Sean; Chew, Fook-Tim; Kulaveerasingam, Harikrishna; Appleton, David
2017-06-08
The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.
Geometrically controlled snapping transitions in shells with curved creases.
Bende, Nakul Prabhakar; Evans, Arthur A; Innes-Gold, Sarah; Marin, Luis A; Cohen, Itai; Hayward, Ryan C; Santangelo, Christian D
2015-09-08
Curvature and mechanics are intimately connected for thin materials, and this coupling between geometry and physical properties is readily seen in folded structures from intestinal villi and pollen grains to wrinkled membranes and programmable metamaterials. While the well-known rules and mechanisms behind folding a flat surface have been used to create deployable structures and shape transformable materials, folding of curved shells is still not fundamentally understood. Shells naturally deform by simultaneously bending and stretching, and while this coupling gives them great stability for engineering applications, it makes folding a surface of arbitrary curvature a nontrivial task. Here we discuss the geometry of folding a creased shell, and demonstrate theoretically the conditions under which it may fold smoothly. When these conditions are violated we show, using experiments and simulations, that shells undergo rapid snapping motion to fold from one stable configuration to another. Although material asymmetry is a proven mechanism for creating this bifurcation of stability, for the case of a creased shell, the inherent geometry itself serves as a barrier to folding. We discuss here how two fundamental geometric concepts, creases and curvature, combine to allow rapid transitions from one stable state to another. Independent of material system and length scale, the design rule that we introduce here explains how to generate snapping transitions in arbitrary surfaces, thus facilitating the creation of programmable multistable materials with fast actuation capabilities.
Stresses at the intersection of two cylindrical shells
International Nuclear Information System (INIS)
Xue, M.D.; Chen, W.; Hwang, K.C.
1995-01-01
The stress analysis based on the theory of a thin shell is carried out for two normally intersecting cylindrical shells with a large diameter ratio. Instead of the Donnell shallow shell equation, the modified Morley equation, which is applicable to ρ 0 (R/T) 1/2 XXXX1, is used for the analysis of the shell with cut-out. The solution in terms of displacement function for the nozzle with a non-planar end is based on the Love equation. The boundary forces and displacements at the intersection are all transformed from Gaussian coordinates (α,β) on the shell, or Gaussian coordinates (ζ,θ) on the nozzle into three-dimensional cylindrical coordinates (ρ,θ,z). Their expressions on the intersecting curve are periodic functions of θ and expanded in Fourier series. Every harmonics of Fourier coefficients of boundary forces and displacements are obtained by numerical quadrature.The results obtained are in agreement with those from the finite element method and experiments for d/D≤0.8. ((orig.))
Prediction of Vibrational Behavior of Grid-Stiffened Cylindrical Shells
Directory of Open Access Journals (Sweden)
G. H. Rahimi
2014-01-01
Full Text Available A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.
Mandal, Samir; Chaudhuri, Keya
2016-02-26
Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.
Zhou, Jie; Bhaskar, Atul; Zhang, Xin
2015-11-01
This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.
Enhanced linear photonic nanojet generated by core-shell optical microfibers
Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen
2017-05-01
The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.
Elastic shells of revolution under nonstationary thermal loading using ring finite elements
International Nuclear Information System (INIS)
Yao Zhenhan
1986-01-01
The report deals with the analysis of elastic shells of revolution under nonstationary thermal loading using ring finite elements. First, a ring element for moderately thick shells is derived which should also be employed for thin shells when either higher Fourier components of the displacements, or deflection patterns with very steep gradients occur. Then, a ring element for the analysis of heat conduction in shells of revolution is derived, and algorithms for the numerical solution of linear stationary, nonlinear stationary, as well as linear nonstationary problems are presented. Finally, a ring element for the coupled thermoelastic analysis of shells of revolution is developed, and an algorithm for the solution of weakly coupled problems is given. (orig.) [de
Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon
Energy Technology Data Exchange (ETDEWEB)
Matla, P.
2012-05-15
Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.
Effects of Boundary Conditions on the Parametric Resonance of Cylindrical Shells under Axial Loading
Directory of Open Access Journals (Sweden)
T.Y. Ng
1998-01-01
Full Text Available In this paper, a formulation for the dynamic stability analysis of circular cylindrical shells under axial compression with various boundary conditions is presented. The present study uses Love’s first approximation theory for thin shells and the characteristic beam functions as approximate axial modal functions. Applying the Ritz procedure to the Lagrangian energy expression yields a system of Mathieu–Hill equations the stability of which is analyzed using Bolotin’s method. The present study examines the effects of different boundary conditions on the parametric response of homogeneous isotropic cylindrical shells for various transverse modes and length parameters.
Fabrication of magnetite-based core–shell coated nanoparticles with antibacterial properties
International Nuclear Information System (INIS)
Grumezescu, A M; Ficai, A; Vasile, O R; Cristescu, R; Dorcioman, G; Socol, G; Mihailescu, I N; Chifiriuc, M C; Mihaiescu, D E; Enculescu, M; Chrisey, D B
2015-01-01
We report the fabrication of biofunctionalized magnetite core/sodium lauryl sulfate shell/antibiotic adsorption-shell nanoparticles assembled thin coatings by matrix assisted pulsed laser evaporation for antibacterial drug-targeted delivery. Magnetite nanoparticles have been synthesized and subsequently characterized by transmission electron microscopy and x-ray diffraction. The obtained thin coatings have been investigated by FTIR and scanning electron microscope, and tested by in vitro biological assays, for their influence on in vitro bacterial biofilm development and cytotoxicity on human epidermoid carcinoma (HEp2) cells. (paper)
Hi shells, supershells, shell-like objects, and ''worms''
International Nuclear Information System (INIS)
Heiles, C.
1984-01-01
We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo
Problems with tunneling of thin shells from black holes
Indian Academy of Sciences (India)
is proposed. However, it is shown that this gives half the correct temperature for black ... Hawking radiation was calculated for the emission of test particles. (not affecting ... needed to get an expression for tunneling in black hole backgrounds.
Felbrich, Benjamin; Wulle, Frederik; Allgaier, Christoph; Menges, Achim; Verl, Alexander; Wurst, Karl-Heinz; Nebelsick, James
2018-01-04
State of the art rapid additive manufacturing (RAM), specifically Fused Filament Fabrication (FFF) has gained popularity among architects, engineers and designers for quick prototyping of technical devices, rapid production of small series and even construction scale fabrication of architectural elements. The spectrum of producible shapes and the resolution of detail, however, are determined and constrained by the layer-based nature of the fabrication process. These aspects significantly limit FFF-based approaches for the prefabrication and in-situ fabrication of freeform shells at the architectural scale. Snails exhibit a shell building process that suggests ways to overcome these limits. They produce a soft, pliable proteinaceous film - the periostracum - which later hardens and serves, among other functions, as a form-giving surface for an inner calcium carbonate layer. Snail shell formation behavior is interpreted from a technical point of view to extract potentially useful aspects for a biomimetic transfer. A RAM concept for continuous extrusion of thin free form composite shells inspired by the snail shell formation is presented. © 2018 IOP Publishing Ltd.
Investigation of dynamic characteristics of shells with holes and added mass
Directory of Open Access Journals (Sweden)
Seregin Sergey Valer’evich
2014-04-01
Full Text Available Thin cylindrical shells are widely used in construction, engineering and other industries. In case of designing a reservoir for the isothermal storage of liquefied gases such cases are inevitable, when housing requires various technical holes. A point wise added mass can appear into practice in the form of suspended spotlights, radar, architectural inclusions in buildings and structures of various purposes. It is known, that the dynamic asymmetry as an initial irregular geometric shape, including holes, and the added mass leads to specific effects in shells. In the paper the impact of a cut on the frequency and form of its own vibrations of thin circular cylindrical shells is theoretically examined with the help of the equations of linear shallow shell theory. For modal equations with Nav’e boundary conditions, we used the Bubnov - Galerkin method. The authors have expressed a formula for finding the lowest of the split-frequency vibrations of a shell with a cutout. It is stated, that in case of an appropriate choice of added mass value the lower frequencies are comparable with the case of vibrations of a shell with a hole. By numerical and experimental modeling and finite element method in the environment of MSC "Nastran" oscillation frequencies a shell supporting a concentrated mass and a shell with a cutout were compared. It is shown, that the results of the dynamic analysis of shells with holes with a suitable choice of the attached mass values are comparable with the results of the analysis of shells carrying a point mass. It was concluded that the edges in the holes, significantly affect the reduction in the lowest frequency, and need to be strengthened.
Directory of Open Access Journals (Sweden)
Maryvonne Charrier
Full Text Available Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region. The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell and OS (organic shell. The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS-ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial
Lockwood, Sandra Elizabeth
2013-01-01
This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...
Shell Trumpets from Western Mexico
Directory of Open Access Journals (Sweden)
Robert Novella
1991-11-01
Full Text Available Marine shells have been used as musical instruments in almost all parts of the world (Izikowitz 1935, including Mesoamerica, where large univalves, also called conch shells in the literature, had a utilitarian function as trumpets. Their use is well documented in most cultural areas of Mesoamerica, as in Western Mexico, through their various occurrences in archaeological contexts and museums collections.
Shell model and spectroscopic factors
International Nuclear Information System (INIS)
Poves, P.
2007-01-01
In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)
Conventional shell model: some issues
International Nuclear Information System (INIS)
Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.
1997-01-01
We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)
Expert system development (ESD) shell
International Nuclear Information System (INIS)
Padmini, S.; Diwakar, M.P.; Rathode, N.C.; Bairi, B.R.
1991-01-01
An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs
Dynamic centering of liquid shells
International Nuclear Information System (INIS)
Tsamopoulos, J.A.; Brown, R.A.
1987-01-01
The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the ''bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a ''sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments
DEFF Research Database (Denmark)
En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...
Growth of InAs/InP core-shell nanowires with various pure crystal structures.
Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A
2012-07-20
We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.
Growth of InAs/InP core–shell nanowires with various pure crystal structures
International Nuclear Information System (INIS)
Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Lehmann, Sebastian; Dick, Kimberly A; Wernersson, Lars-Erik
2012-01-01
We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal–organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420–460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures. (paper)
Molluscan shell evolution with review of shell calcification hypothesis
Czech Academy of Sciences Publication Activity Database
Furuhashi, T.; Schwarzinger, C.; Mikšík, Ivan; Smrž, Miloslav; Beran, A.
2009-01-01
Roč. 154, č. 3 (2009), s. 351-371 ISSN 1096-4959 Institutional research plan: CEZ:AV0Z50110509 Keywords : mollusca * shell * biomineralization Subject RIV: CE - Biochemistry Impact factor: 1.607, year: 2009
MicroShell Minimalist Shell for Xilinx Microprocessors
Werne, Thomas A.
2011-01-01
MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is
Sun, Yao; Yang, Tiejun; Chen, Yuehua
2018-06-01
In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.
Nemeth, Michael P.
2013-01-01
A detailed exposition on a refined nonlinear shell theory suitable for nonlinear buckling analyses of laminated-composite shell structures is presented. This shell theory includes the classical nonlinear shell theory attributed to Leonard, Sanders, Koiter, and Budiansky as an explicit proper subset. This approach is used in order to leverage the exisiting experience base and to make the theory attractive to industry. In addition, the formalism of general tensors is avoided in order to expose the details needed to fully understand and use the theory. The shell theory is based on "small" strains and "moderate" rotations, and no shell-thinness approximations are used. As a result, the strain-displacement relations are exact within the presumptions of "small" strains and "moderate" rotations. The effects of transverse-shearing deformations are included in the theory by using analyst-defined functions to describe the through-the-thickness distributions of transverse-shearing strains. Constitutive equations for laminated-composite shells are derived without using any shell-thinness approximations, and simplified forms and special cases are presented.
Karam, Gebran Nizar
1994-01-01
Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.
Menon, Vinith
2013-01-01
Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.
Patterning of the turtle shell.
Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F
2017-08-01
Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xia, Chuan; Chen, Wei; Wang, Xianbin; Hedhili, Mohamed N.; Wei, Nini; Alshareef, Husam N.
2015-01-01
commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD
A direct approach to nonlinear shells with application to surface-substrate interactions
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav
2013-01-01
Roč. 1, č. 2 (2013), s. 211-232 ISSN 2326-7186 Institutional support: RVO:67985840 Keywords : thin films * nonlinear shells * surface geometry Subject RIV: BA - General Mathematics http://msp.org/memocs/2013/1-2/p04.xhtml
Elasto/visco-plastic dynamic response of shells of revolution
International Nuclear Information System (INIS)
Takezono, S.; Tao, K.
1977-01-01
The authors study the large deflection elasto/visco-plastic dynamic response of shells of revolution to strong blast loads, where the viscosity of the material is considered in the plastic range. The equations of motion and the relations between the strain and the displacement are derived from the Sanders nonlinear theory for thin shells. The constitutive relation for shell response is linear elastic, visco-plastic. In the linear elastic range Hooke's law is used. In the plastic range the elasto/visco-plastic equations by Fyfe based on the model developed by Perzyna are employed. The criterion for yielding used in this analysis is the von Mises yield theory. The numerical method selected for integration of the equations of motion is a method using finite difference in both space and time. The differential equations are written in finite difference form on the basis of the parabola method. For the time integration of the equations of motion the second-order finite difference in time is used. The equations of motion are thus expressed in finite difference form if we divide the shell into segments along meridional length and around the circumference. Resultant forces and resultant moments are given from numerical integration by Simpson's 1/3 rule. The loadings which are considered in this paper may be either impulsive or of finite time duration. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-02-15
Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.
Energy Technology Data Exchange (ETDEWEB)
Toyoda, K; Yasuzawa, Y; Kagawa, K; Sugimoto, S [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1997-10-01
Vibration characteristics of the semi-spherical shell fixed in water with bidirectional curvatures were studied experimentally. Various marine structures have been devised as relay station for life spaces or submarine resource excavation. As compared with land structures, marine structures are constantly under a severe condition subjected to hydrostatic pressure, and requires advanced technologies. The experimental result, numerical computation result by analytical code DASOR (Dynamic Analysis of Shell of Revolution) and theoretical analysis result were compared with each other. FEM and BEM were used in DASOR computation for the axisymmetric thin semi-spherical shell and circumferential liquid, respectively. Due to an added mass effect, the natural frequency decreased with an increase in water level regardless of mode orders. However, the water level over the top of the semi-spherical shell caused the nearly constant natural frequencies of 30-40% of that in the air. The computation result by DASOR well agreed with the experimental result demonstrating its validity. 4 refs., 13 figs., 1 tab.
Absolute cross-section measurements of inner-shell ionization
Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer
1994-12-01
Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.
Ooi, Leslie C-L; Low, Eng-Ti L; Abdullah, Meilina O; Nookiah, Rajanaidu; Ting, Ngoot C; Nagappan, Jayanthi; Manaf, Mohamad A A; Chan, Kuang-Lim; Halim, Mohd A; Azizi, Norazah; Omar, Wahid; Murad, Abdul J; Lakey, Nathan; Ordway, Jared M; Favello, Anthony; Budiman, Muhammad A; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T; Jiang, Nan; Smith, Steven W; Brown, Clyde R; Kuek, Alex C S; Bahrain, Shabani; Hoynes-O'Connor, Allison; Nguyen, Amelia Y; Chaudhari, Hemangi G; Shah, Shivam A; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder
2016-01-01
Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian
Effect of Ice-Shell Thickness Variations on the Tidal Deformation of Enceladus
Choblet, G.; Cadek, O.; Behounkova, M.; Tobie, G.; Kozubek, T.
2015-12-01
Recent analysis of Enceladus's gravity and topography has suggested that the thickness of the ice shell significantly varies laterally - from 30-40 km in the south polar region to 60 km elsewhere. These variations may influence the activity of the geysers and increase the tidal heat production in regions where the ice shell is thinned. Using a model including a regional or global subsurface ocean and Maxwell viscoelasticity, we investigate the impact of these variations on the tidal deformation of the moon and its heat production. For that purpose, we use different numerical approaches - finite elements, local application of 1d spectral method, and a generalized spectral method. Results obtained with these three approaches for various models of ice-shell thickness variations are presented and compared. Implications of a reduced ice shell thickness for the south polar terrain activity are discussed.
Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures
Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin
2018-01-01
Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.
Design and analysis of reactor containment of steel-concrete composite laminated shell
International Nuclear Information System (INIS)
Ichikawa, K.; Isobata, O.; Kawamata, S.
1977-01-01
A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented
Dynamic reponse of a cylindrical shell immersed in a potential fluid
International Nuclear Information System (INIS)
Cummings, G.E.
1978-01-01
A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, immersed in a potential fluid. The shell may be excited by an arbitrary radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. A numerical instability prevented direct solutions where the ratio of the hydrodynamic forces to shell inertial forces is greater than two. This instability is believed to be the result of the weak coupling between the equations describing the fluid to those describing the shell. To circumvent this instability, an effective mass was calculated and added to the shell. Comparison of numerical to experimental results are made using a 1 / 12 scale model of a nuclear reactor core support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies compare to experimental results to within 15%. The use of this numerical technique is illustrated by comparing it to an analytical solution for shell beam modes and an uncertainty in the analytical technique concerning the proper effective mass to use, is resolved
The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK
Singh, Rajinder; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Chin, Ting Ngoot; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Abdul Manaf, Mohamad Arif; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A
2014-01-01
A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the mapping and identification of the Shell gene responsible for the different fruit forms. Using homozygosity mapping by sequencing we found two independent mutations in the DNA binding domain of a homologue of the MADS-box gene SEEDSTICK (STK) which controls ovule identity and seed development in Arabidopsis. The Shell gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene heterosis attributed to Shell, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation6. PMID:23883930
Large-area super-resolution optical imaging by using core-shell microfibers
Liu, Cheng-Yang; Lo, Wei-Chieh
2017-09-01
We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.
Effect of perforation on the sound transmission through a double-walled cylindrical shell
Zhang, Qunlin; Mao, Yijun; Qi, Datong
2017-12-01
An analytical model is developed to study the sound transmission loss through a general double-walled cylindrical shell system with one or two walls perforated, which is excited by a plane wave in the presence of external mean flow. The shell motion is governed by the classical Donnell's thin shell theory, and the mean particle velocity model is employed to describe boundary conditions at interfaces between the shells and fluid media. In contrast to the conventional solid double-walled shell system, numerical results show that perforating the inner shell in the transmission side improves sound insulation performance over a wide frequency band, and removes fluctuation of sound transmission loss with frequency at mid-frequencies in the absence of external flow. Both the incidence and azimuthal angles have nearly negligible effect on the sound transmission loss over the low and middle frequency range when perforating the inner shell. Width of the frequency band with continuous sound transmission loss can be tuned by the perforation ratio.
Dynamic reponse of a cylindrical shell immersed in a potential fluid
Energy Technology Data Exchange (ETDEWEB)
Cummings, G.E.
1978-04-18
A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, immersed in a potential fluid. The shell may be excited by an arbitrary radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. A numerical instability prevented direct solutions where the ratio of the hydrodynamic forces to shell inertial forces is greater than two. This instability is believed to be the result of the weak coupling between the equations describing the fluid to those describing the shell. To circumvent this instability, an effective mass was calculated and added to the shell. Comparison of numerical to experimental results are made using a /sup 1///sub 12/ scale model of a nuclear reactor core support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies compare to experimental results to within 15%. The use of this numerical technique is illustrated by comparing it to an analytical solution for shell beam modes and an uncertainty in the analytical technique concerning the proper effective mass to use, is resolved.
A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.
Method for studying the plastic buckling of shells. Testing
International Nuclear Information System (INIS)
Alix, M.; Combescure, A.; Hoffmann, A.; Roche, R.
1980-05-01
In this article a description is given of the method selected for studying the elasto-plastic buckling of shells of any shape. The emphasis is mainly on three points: the difficulty in making a strict formulation with respect to plasticity, the model selected (MOTAN model) is presented; the effect of so called 'non conservative' forces; and the effect of great deformations that might precede the buckling. The method is compared to tests: basket handle buckling of bottoms, buckling of elliptical bottoms under internal pressure, of compresses thin tubes, of metal drums, spherical diaphragm, shearing rings [fr
Foam shell project: Progress report
International Nuclear Information System (INIS)
Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.
1994-01-01
The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE
The evolution of mollusc shells.
McDougall, Carmel; Degnan, Bernard M
2018-05-01
Molluscan shells are externally fabricated by specialized epithelial cells on the dorsal mantle. Although a conserved set of regulatory genes appears to underlie specification of mantle progenitor cells, the genes that contribute to the formation of the mature shell are incredibly diverse. Recent comparative analyses of mantle transcriptomes and shell proteomes of gastropods and bivalves are consistent with shell diversity being underpinned by a rapidly evolving mantle secretome (suite of genes expressed in the mantle that encode secreted proteins) that is the product of (a) high rates of gene co-option into and loss from the mantle gene regulatory network, and (b) the rapid evolution of coding sequences, particular those encoding repetitive low complexity domains. Outside a few conserved genes, such as carbonic anhydrase, a so-called "biomineralization toolkit" has yet to be discovered. Despite this, a common suite of protein domains, which are often associated with the extracellular matrix and immunity, appear to have been independently and often uniquely co-opted into the mantle secretomes of different species. The evolvability of the mantle secretome provides a molecular explanation for the evolution and diversity of molluscan shells. These genomic processes are likely to underlie the evolution of other animal biominerals, including coral and echinoderm skeletons. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties. © 2018 Wiley Periodicals, Inc.
Creep buckling of shell structures
International Nuclear Information System (INIS)
Miyazaki, Noriyuki; Hagihara, Seiya
2015-01-01
The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)
Core-Shell-Corona Micelles with a Responsive Shell.
Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert
2001-09-03
A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
CALCULATION OF ROCKET NOSE FAIRING SHELLS AERODYNAMIC CHARACTERISTICS
Directory of Open Access Journals (Sweden)
Vladimir T. Kalugin
2018-01-01
Full Text Available The aerodynamic characteristics of the detachable elements of transport systems are introduced, they allow to calculate the trajectories of these elements after their separation and determine the size of elements impact areas. Special consideration is given to head fairing shells, containing cylindrical, conical and spherical sections. Head fairing shells have high lift-to-drag ratio and the widest impact areas. Aerodynamics of bodies of such configurations has been insufficiently studied. The paper presents the numerical results of modeling the flow around a typical head fairing shell in free flight. Open source OpenFOAM package is used for numerical simulation. The aerodynamic characteristics at trans- and supersonic velocities are obtained, flow pattern transformation with the change of the angle of attack and Mach number is analyzed. The possibility of OpenFOAM package for aerodynamic calculations of thin shells is shown. The analysis of the obtained results demonstrate that there are many complex shock waves interacting with each other at flow supersonic speeds, at subsonic speeds vast regions of flow separations are observed. The authors identify intervals of angles of attack, where different types of flow structures are realized, both for trans- and supersonic flow speeds. The flow pattern change affects the aerodynamic characteristics, the aerodynamic coefficients significantly change with increase of the angle of attack. There are two trim angles of attack at all examined flow velocities. The results obtained can be used to develop a passive stabilization system for fairing shell that will balance the body at the angle of attack with minimum lift-to-drag ratio and will reduce random deviations.
Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.
Gangil, Sandip
2014-03-01
Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.; Dean, D.J.; Langanke, K.
1997-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)
Cask for concrete shells transportation
International Nuclear Information System (INIS)
Labergri, F.
2001-01-01
Nowadays, nuclear plant radioactive waste are conditioned in situ into concrete shells. Most of them enter in the industrial waste category defined by the regulations of radioactive material transportation. However, the content of a few ones exceeds the limits set for low specific activity substances. Thus, these shells must be transported into type B packagings. To this end, Robatel has undertaken, for EDF (Electricite de France), the development of a container, named ROBATEL TM R68, for further licensing. The particularity of this packaging is that the lid must have a wide opening to allow the usual handling operations of the concrete shells. This leads to a non-conventional conception, and makes the package more vulnerable to drop test solicitations. In order to define a minimal drop test program on a reduced scale model, we use a simple method to find the most damageable drop angle. (author)
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.
1996-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs
Lee, Thomas; Schill, Mark E; Tanasovski, Tome
2011-01-01
Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b
Cylindrical Shells Made of Stainless Steel - Investigation of Postbuckling
Stehr, Sebastian; Stranghöner, Natalie
2017-06-01
The relevant load case of open thin-walled shells is often wind loading during construction. Because of the missing stabilization effect of the roof they show a very high sensitivity to buckling which results into higher wall thicknesses. As part of the European RFCS research project BiogaSS the Institute for Metal and Lightweight Structures of the University of Duisburg-Essen carried out investigations on open thin-walled tanks made of austenitic and duplex stainless steels under wind load to study a possible economic advantage which might be gained from the consideration of the elastic postbuckling behaviour. This contribution presents not only experimental and numerical results but also first recommendations regarding the range of possible buckling reduction factors which might be incorporated in future revisions of EN 1993-1-6 and EN 1993-4-2.
Learning Shell scripting with Zsh
Festari, Gaston
2014-01-01
A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.
Directory of Open Access Journals (Sweden)
Lewicka Katarzyna
2017-06-01
Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.
Adaptative mixed methods to axisymmetric shells
International Nuclear Information System (INIS)
Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.
1989-09-01
The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt
The Dynamic Similitude Design Method of Thin Walled Structures and Experimental Validation
Directory of Open Access Journals (Sweden)
Zhong Luo
2016-01-01
Full Text Available For the applicability of dynamic similitude models of thin walled structures, such as engine blades, turbine discs, and cylindrical shells, the dynamic similitude design of typical thin walled structures is investigated. The governing equation of typical thin walled structures is firstly unified, which guides to establishing dynamic scaling laws of typical thin walled structures. Based on the governing equation, geometrically complete scaling law of the typical thin walled structure is derived. In order to determine accurate distorted scaling laws of typical thin walled structures, three principles are proposed and theoretically proved by combining the sensitivity analysis and governing equation. Taking the thin walled annular plate as an example, geometrically complete and distorted scaling laws can be obtained based on the principles of determining dynamic scaling laws. Furthermore, the previous five orders’ accurate distorted scaling laws of thin walled annular plates are presented and numerically validated. Finally, the effectiveness of the similitude design method is validated by experimental annular plates.
Featured Image: Identifying a Glowing Shell
Kohler, Susanna
2018-05-01
New nebulae are being discovered and classified every day and this false-color image reveals one of the more recent objects of interest. This nebula, IPHASX J210204.7+471015, was recently imaged by the Andalucia Faint Object Spectrograph and Camera mounted on the 2.5-m Nordic Optical Telescope in La Palma, Spain. J210204 was initially identified as a possible planetary nebula a remnant left behind at the end of a red giants lifetime. Based on the above imaging, however, a team of authors led by Martn Guerrero (Institute of Astrophysics of Andalusia, Spain) is arguing that this shell of glowing gas was instead expelled around a classical nova. In a classical nova eruption, a white dwarf and its binary companion come very close together, and mass transfers to form a thin atmosphere of hydrogen around the white dwarf. When this hydrogen suddenly ignites in runaway fusion, this outer atmosphere can be expelled, forming a short-lived nova remnant which is what Guerrero and collaborators think were seeing with J210204. If so, this nebula can reveal information about the novathat caused it. To find out more about what the authors learned from this nebula, check out the paper below.CitationMartn A. Guerrero et al 2018 ApJ 857 80. doi:10.3847/1538-4357/aab669
International Nuclear Information System (INIS)
Hayden, O.; Willby, C.R.; Sheward, G.E.; Ormrod, D.T.; Firth, G.F.
1980-01-01
An improved tube-in-shell heat exchanger to be used between liquid metal and water is described for use in the liquid metal coolant system of fast breeder reactors. It is stated that this design is less prone to failures which could result in sodium water reactions than previous exchangers. (UK)
Shell theorem for spontaneous emission
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter
2013-01-01
and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....
Nonlinear theory of elastic shells
International Nuclear Information System (INIS)
Costa Junior, J.A.
1979-08-01
Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt
Shell energy scenarios to 2050
International Nuclear Information System (INIS)
2008-01-01
Shell developed two scenarios that describe alternative ways the energy future may develop. In the first scenario (Scramble) policymakers pay little attention to more efficient energy use until supplies are tight. Likewise, greenhouse gas emissions are not seriously addressed until there are major climate shocks. In the second scenario (Blueprints) growing local actions begin to address the challenges of economic development, energy security and environmental pollution. A price is applied to a critical mass of emissions giving a huge stimulus to the development of clean energy technologies, such as carbon dioxide capture and storage, and energy efficiency measures. The result is far lower carbon dioxide emissions. Both these scenarios can help Shell to test their strategy against a range of possible developments over the long-term. However, according to Shell, the Blueprints' outcomes offer the best hope for a sustainable future, whether or not they arise exactly in the way described. However, with the right combination of policy, technology and commitment from governments, industry and society globally, Shell believes it can be realized. But achieving the targets will not be easy, and time is short. Clear thinking, huge investment, and effective leadership are required
Collapse analysis of toroidal shell
International Nuclear Information System (INIS)
Pomares, R.J.
1990-01-01
This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation
Studies of dust shells around stars
International Nuclear Information System (INIS)
Bedijn, P.J.
1977-01-01
This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars
Analysis of a cylindrical shell vibrating in a cylindrical fluid region
International Nuclear Information System (INIS)
Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.
1976-08-01
Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed
Mounting and Alignment of Full-Shell Replicated X-Ray Optics
Gubarev, Mikhail; Arnold, William; Kester, Thomas; Ramsey, Brian; Smithers, Martin
2007-01-01
We are developing grazing-incidence x-ray optics for astronomy. The optics are full-cylinder mirror shells fabricated using electroformed-nickel replication off super-polished mandrels. For space-based applications where weight is at a premium, very-thin-walled, light-weight mirrors are required. Such shells have been fabricated at MSFC with greater than 15 arcsec resolution. The challenge, however, is to preserve this resolution during mounting and assembly. We present here a status report on a mounting and alignment system currently under development at Marshall Space Flight Center to meet this challenge.
Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight
International Nuclear Information System (INIS)
Nguyen, Phuc H; Matzner, Richard A
2012-01-01
We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.
Nonlinear viscoelastic behavior of shells of revolution under arbitrary loading
International Nuclear Information System (INIS)
Leonard, J.W.; Arbaki-Kanjoori, F.
1975-01-01
The requirement of some structural components such as propulsion systems and gas turbines to operate at high temperatures and pressures make the accurate evaluation of the creep phenomenon exigent (in fast breeder reactor for example). For the expected increases in operating temperatures and pressures, it becomes necessary to perform a thorough analysis of integral structural components of nuclear power plants throughout their life span. Since a large class of structures operating at elevated temperatures are composed of rotationally symmetric shells, a solution technique can be developed which involves the numerical integration of the governing shell equations. This method has been successfully applied to the static and dynamic analysis of thin elastic shells of revolution and for some cases of inelastic material behavior. It has been shown to render solutions efficiently and accurately, usually with only a fraction of computer time and storage requirements and data manipulation that is required for other numerical schemes such as the finite element method. Furthermore, the numerical integration method allows more flexibility for varying the integration step lengths than does the finite difference method and can provide uniform accuracy throughout the analysis. For nonlinear viscoelastic behavior the numerical integration technique is expected to provide similar efficiency to that obtained for the elastic problems. The computer program developed can accept time variation of material properties. Since a single form for the material constitutive law cannot encompass all materials, provisions are made so that the analysis of a very large class of material behavior can be accomplished
7 CFR 983.29 - Shelled pistachios.
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means pistachio...
Shell film- and video catalogue 1996
International Nuclear Information System (INIS)
1996-01-01
An overview is given of films and videos that are available through 'Shell Nederland Filmcentrale' (Shell Netherlands Film Center), subdivided into the subjects (1) About Shell; (2) Health, Safety and Environment; (3) Science and Technology; (4) The History of Car(racing); and (5) Historical Overview. 5 ills
7 CFR 981.6 - Shelled almonds.
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds after...
The creep analysis of shell structures using generalised models
International Nuclear Information System (INIS)
Boyle, J.T.; Spence, J.
1981-01-01
In this paper a new, more complete estimate of the accuracy of the stationary creep model is given for the general case through the evaluation of exact and approximate energy surfaces. In addition, the stationary model is extended to include more general non-stationary (combined elastic-creep) behaviour and to include the possibility of material deterioration through damage. The resulting models are then compared to existing exact solutions for several shell structures - e.g. a thin pressurised cylinder, a curved pipe in bending and an S-bellows under axial extension with large deflections. In each case very good agreement is obtained. Although requiring similar computing effort, so that the same solution techniques can be utilised, the calculation times are shown to be significantly reduced using the generalised approach. In conclusion, it has been demonstrated that a new simple mechanical model of a thin shell in creep, with or without material deterioration can be constructed; the model is assessed in detail and successfully compared to existing solutions. (orig./HP)
Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory
International Nuclear Information System (INIS)
Cook, W.A.
1981-01-01
Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress
Aeroelastic Dynamics Simulation of Two BaffleBased Connected Shells
Directory of Open Access Journals (Sweden)
G. A. Shcheglov
2015-01-01
Full Text Available The present work is an extention study of aeroelastic vibrations of thin-walled structures with a spatial subsonic flow. An original algorithm for solving complex conjugated aeroelasticity problem, allowing to carry out direct numerical simulation of structural oscillations in the spatial flow of an incompressible medium are developed and tested. On the basis of this simulation study of the spectrum comes the driving forces acting on the flow in a spatial component elastic structure mounted on an impenetrable screen.Currently, updating the mathematical models of unsteady loads that act on the spacepurpose elastic designs such as launch vehicles, service tower installed on the launch pad is a challenge. We consider two thin-walled cantilevered rotating shells connected by a system of elastic couplings, installed next to the impenetrable baffle so that the axes of rotation are perpendicular to the baffle. Dynamics of elastic system is investigated numerically, using the vortex element method with the spatial separated flow of an incompressible medium. A feature of the algorithm is the common commercial complex MSC Patran / Nastran which is used in preparing data to calculate the shell dynamics thereby allowing to consider very complex dynamic schemes.The work performs the first calculations of the model problem concerning the forced oscillations of two coupled cylindrical shells in the flow of an incompressible medium. Comparing the load spectra for the elastic and absolutely rigid structure has shown that the frequency spectra vary slightly. Further calculations are required in which it will be necessary to increase the duration of the calculations, sampling in construction of design scheme, and given the large number of vibration modes that require increasing computing power.Experience in calculating aeroelastic dynamics of complex elastic structures taking into account the screen proved to be successful as a whole, thereby allowing to turn to
Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R
Brunsell, P. R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J. R.; Rachlew, E.
2006-11-01
Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.
Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R
International Nuclear Information System (INIS)
Brunsell, P.R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J.R.; Rachlew, E.
2006-01-01
Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size
Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej
2017-09-01
We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.
Directory of Open Access Journals (Sweden)
Françoise Immel
Full Text Available The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries.
Nanoscale strengthening mechanisms in metallic thin film systems
Schoeppner, Rachel Lynn
Nano-scale strengthening mechanisms for thin films were investigated for systems governed by two different strengthening techniques: nano-laminate strengthening and oxide dispersion strengthening. Films were tested under elevated temperature conditions to investigate changes in deformation mechanisms at different operating temperatures, and the structural stability. Both systems exhibit remarkable stability after annealing and thus long-term reliability. Nano-scale metallic multilayers with smaller layer thicknesses show a greater relative resistance to decreasing strength at higher temperature testing conditions than those with larger layer thicknesses. This is seen in both Cu/Ni/Nb multilayers as well as a similar tri-component bi-layer system (Cu-Ni/Nb), which removed the coherent interface from the film. Both nanoindentation and micro-pillar compression tests investigated the strain-hardening ability of these two systems to determine what role the coherent interface plays in this mechanism. Tri-layer films showed a higher strain-hardening ability as the layer thickness decreased and a higher strain-hardening exponent than the bi-layer system: verifying the presence of a coherent interface increases the strain-hardening ability of these multilayer systems. Both systems exhibited hardening of the room temperature strength after annealing, suggesting a change in microstructure has occurred, unlike that seen in other multilayer systems. Oxide dispersion strengthened Au films showed a marked increase in hardness and wear resistance with the addition of ZnO particles. The threshold for stress-induced grain-refinement as opposed to grain growth is seen at concentrations of at least 0.5 vol%. These systems exhibited stable microstructures during thermal cycling in films containing at least 1.0%ZnO. Nanoindentation experiments show the drop in hardness following annealing is almost completely attributed to the resulting grain growth. Four-point probe resistivity
Design aids for stiffened composite shells with cutouts
Sahoo, Sarmila
2017-01-01
This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...
Double containment shell for nuclear power plants
International Nuclear Information System (INIS)
Sykora, D.
1977-01-01
A double containment shell is proposed for nuclear power plants, especially those equipped with pressurized water reactors. The shell offers increased environmental protection from primary circuit accidents. The inner shell is built of steel or concrete while the outer shell is always built of concrete. The space between the two shells is filled with water and is provided with several manholes and with stiffeners designed for compensation for load due to the water hydrostatic pressure. Water serves the airtight separation of the containment shell inside from the environment and the absorption of heat released in a primary circuit accident. In case the inner shell is made of concrete, it is provided with heat-removal tubes in-built in its walls ensuring rapid heat transfer from the inside of the containment to the water in the interwall space. (Z.M.)
Recent developments in anisotropic heterogeneous shell theory
Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G
2016-01-01
This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.
International Nuclear Information System (INIS)
Crasemann, B.
1985-01-01
This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions
Slow pyrolysis of pistachio shell
Energy Technology Data Exchange (ETDEWEB)
Apaydin-Varol, Esin; Putun, Ersan; Putun, Ayse E [Anadolu University, Eskisehir (Turkey). Department of Chemical Engineering
2007-08-15
In this study, pistachio shell is taken as the biomass sample to investigate the effects of pyrolysis temperature on the product yields and composition when slow pyrolysis is applied in a fixed-bed reactor at atmospheric pressure to the temperatures of 300, 400, 500, 550, 700{sup o}C. The maximum liquid yield was attained at about 500-550{sup o}C with a yield of 20.5%. The liquid product obtained under this optimum temperature and solid products obtained at all temperatures were characterized. As well as proximate and elemental analysis for the products were the basic steps for characterization, column chromatography, FT-IR, GC/MS and SEM were used for further characterization. The results showed that liquid and solid products from pistachio shells show similarities with high value conventional fuels. 31 refs., 9 figs., 1 tab.
International Nuclear Information System (INIS)
Jemain, A.
2004-01-01
Some mistakes in the evaluation of the proven reserves of Royal Dutch Shell group, the second world petroleum leader, will oblige the other oil and gas companies to be more transparent and vigilant in the future. The proven reserves ('P90' in petroleum professionals' language) are the most important indicators of the mining patrimony of companies. These strategic data are reported each year in the annual reports of the companies and are examined by the security exchange commission. The evaluation of reserves is perfectly codified by the US energy policy and conservation act and its accountable translation using the FAS 69 standard allows to establish long-term cash-flow forecasts. The revision announced by Shell on January 9 leads to a 20% reduction of its proven reserves. Short paper. (J.S.)
DEFF Research Database (Denmark)
Ørding Olsen, Anders
2017-01-01
Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst......Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst...
The shell coal gasification process
Energy Technology Data Exchange (ETDEWEB)
Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)
1995-12-01
Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.
Nested shell superconducting magnet designs
International Nuclear Information System (INIS)
Bromberg, L.; Williams, J.E.C.; Titus, P.
1992-01-01
A new concept for manufacturing the toroidal field coil is described in this paper. Instead of structural plates, the magnet is wound in interlocking shells. The magnet configuration is described and the advantages explored. Structural analysis of the concept is performed using the ARIES tokamak reactor parameters. The effectiveness of a structural cap, placed above and below the toroidal field coils and used only to balance opposing torques generated in different places of the coil, is quantified
Shell Models of Superfluid Turbulence
International Nuclear Information System (INIS)
Wacks, Daniel H; Barenghi, Carlo F
2011-01-01
Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.
Equivalent Young's Modulus of Perforated Shell with Square Penetration Pattern
Energy Technology Data Exchange (ETDEWEB)
Jhung, Myung Jo; Ryu, Yong Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2011-05-15
The analysis of a plate or shell perforated with a large number of holes, by finite element method for instance, was a very costly and time-consuming technique which solves only one particular problem. But it is possible to model the perforated plate or shell and to analyze it and it is no more time-consuming theses days due to the rapid development of the computer and software. However, if a perforated plate or shell is submerged in fluid it is almost impossible to model and analyze it as is and the fluid at the same time, which is needed to investigate the effect of the fluid structure interaction. The simplest way to avoid time consuming and costly analysis of perforated plate or shell submerged in fluid is to replace the perforated plate or shell by an equivalent solid one considering weakening effect of holes. Many authors have proposed experimental or theoretical method to solve this problem for the plate. Slot and O'Donnell determined the effective elastic constants for the thick perforated plates by equating strains in the equivalent solid material to the average strains in the perforated material. O'Donnell also presented those of thin perforated plates. These results are implemented in Article A-8000 of Appendix A to the ASME code Section III, which contains a method of analysis for flat perforated plates when subjected to directly applied loads or loadings resulting from structural interaction with adjacent members. Unfortunately the effective elastic constants for the perforated shell are not found in any references. Therefore in this study the modal characteristics of the perforated shell are investigated and the equivalent material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies
Plastic buckling of cylindrical shells
International Nuclear Information System (INIS)
Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.
1994-01-01
Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads
Buckling shells are also swimmers
Quilliet, Catherine; Dyfcom Bubbleboost Team
We present an experimental and numerical study on the displacement of shells undergoing deformations in a fluid. When submitted to cycles of pressure difference between outside and inside, a shell buckles and debuckles, showing a succession of shapes and a dynamics that are different during the two phases. Hence such objects are likely to swim, including at low Reynolds (microscopic scale). We studied the swimming of buckling/debuckling shells at macroscopic scale using different approaches (force quantization, shape recording, displacement along a frictionless rail, study of external flow using PIV), and showed that inertia plays a role in propulsion, even in situations where dimensionless numbers correspond also to microswimmers in water. Different fluid viscosities were explored, showing an optimum for the displacement. Interestingly, the most favorable cases lead to displacements in the same direction and sense during both motor stroke (buckling phase) and recovery stroke (de-buckling phase). This work opens the route for the synthesis with high throughput of abusively simple synthetic swimmers, possibly gathered into nanorobots, actuated by a scalar field such as the pressure in echographic devices. Universite Grenoble Alpes, CNRS, European Research Council.
Structure of natural draft cooling towers, 1. Study on cooling tower shells
Energy Technology Data Exchange (ETDEWEB)
Ishioka, H; Sakamoto, Y; Tsurusaki, M; Koshizawa, K; Chiba, T [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)
1976-09-01
Recently in Japan, demands for cooling tower systems have been increasing remarkably with the construction of large power plants and the legislation of environmental regulations. In view of the severe natural conditions in Japan such as strong wind and seismic loadings, etc., the establishment of the optimum design and construction method is essential for the building of safe and economical towers. In order to establish a comprehensive plan of a power plant cooling system of the appropriate structural type, the authors have made researches and experiments on design conditions, static and dynamic analyses, and comparative studies of various structural types such as reinforced concrete thin-shell structures, steel framed structures and composite shell segment structures, based on the investigation results of towers in Europe and America. These results are presented in three reports, the 1st of which concerns cooling tower shells as are herein described.
Shell and membrane theories in mechanics and biology from macro- to nanoscale structures
Mikhasev, Gennadi
2015-01-01
This book presents the latest results related to shells characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.
Vibrations of laminated composite thick shells of revolution having meridionally varying curvature
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Shikanai, Genji; Baba, Iwato
1998-01-01
An exact solution is presented for solving free vibrations of laminated composite thick shells of revolution having meridionally varying curvature. Based on the thick lamination theory considering the shear deformation and rotary inertia, equations of motion and boundary conditions are obtained from the stationary conditions of the Lagrangian. The equations of motion are solved exactly by using a power series expansion for symmetrically laminated cross-ply shells. Frequencies and mode shapes of shells of revolution having elliptical and parabolical meridians are presented for both ends clamped, and the effects of shear deformation and rotary inertia are discussed by comparing the results from the present theory with those from the thin lamination theory. (author)
Single-quantum annihilation of positrons with shell-bound atomic electrons
International Nuclear Information System (INIS)
Palathingal, J.C.; Asoka-Kumar, P.; Lynn, K.G.; Posada, Y.; Wu, X.Y.
1991-01-01
The single-quantum annihilation of positrons has been studied experimentally with a positron beam and a thin lead target, at energies 1 MeV and higher. Spectral peaks corresponding to the K, L, and M shells have been resolved and observed distinctly for the first time. The shell ratios L/K and M/K have been determined. An analysis of the L peak has yielded the (LII+LIII)/L ratio. The first measurements of the directional distributions of the annihilation quanta of the three individual electron shells are also reported. The results are in agreement with theory. They also point out the potential for applying the phenomena to the development of a tunable, highly directional gamma-ray source
HTGR Metallic Reactor Internals Core Shell Cutting & Machining Antideformation Technique Study
International Nuclear Information System (INIS)
Xing Huiping; Xue Song
2014-01-01
The reactor shell assembly of HTGR nuclear power station demonstration project metallic reactor internals is key components of reactor, remains with high-precision large component with large-sized thin-walled straight cylinder-shaped structure, and is the first manufacture in China. As compared with other reactor shell, it has a larger ID (Φ5360mm), a longer length (19000mm), a smaller wall thickness (40mm) and a higher precision requirement. During the process of manufacture, the deformation due to cutting & machining will directly affect the final result of manufacture, the control of structural deformation and cutting deformation shall be throughout total manufacture process of such assembly. To realize the control of entire core shell assembly geometry, the key is to innovate and make breakthroughs on anti-deformation technique and then provide reliable technological foundations for the manufacture of HTGR metallic reactor internals. (author)
Core–shell-typed Ag-SiO2 nanoparticles as solar selective coating materials
International Nuclear Information System (INIS)
Gao, Tao; Jelle, Bjørn Petter; Gustavsen, Arild
2013-01-01
Silver (Ag) nanoparticles with typical diameter of about 50 nm have been prepared via a polyol process. The as-prepared Ag nanoparticles are well crystallized and exhibit a characteristic surface plasmon resonance (SPR) band centered at ∼423 nm. The SPR band shows a strong dependence on the sizes of Ag nanoparticles and the types of the dielectric medium. Core–shell-typed Ag-SiO 2 nanoparticles have also been prepared by depositing a thin layer (∼25 nm) of silica on Ag nanoparticles. The core–shell-typed Ag-SiO 2 nanoparticles show similar optical behaviors (absorption, transmission, and reflection) but enhanced stability compared to those of the Ag nanoparticles, indicating that the core–shell-typed Ag-SiO 2 nanoparticles may be used as solar selective coating materials for architectural window applications.
International Nuclear Information System (INIS)
Malmberg, T.
1986-08-01
Within the context of the stability analysis of the cryostat of a fusion reactor the question was raised whether or not the rather lengthy conventional stability analysis can be circumvented by applying a simplified strategy based on common linear Finite Element computer programs. This strategy involves the static linear deformation analysis of the structure with and without imperfections. For some simple stability problems this approach has been shown to be successful. The purpose of this study is to derive a general proof of the validity of this approach for thin shells with arbitrary geometry under hydrostatic pressure or dead loading along the boundary. This general assessment involves two types of analyses: 1) A general stability analysis for thin shells; this is based on a simple nonlinear shell theory and a stability criterion in form of the neutral (indifferent) equilibrium condition. This result is taken as reference solution. 2) A general linear deformation analysis for thin imperfect shells and the definition of a suitable scalar parameter (β-parameter) which should represent the reciprocal of the critical load factor. It is shown that the simplified strategy (=β-parameter approach'') generally is not capable to predict the actual critical load factor irrespective whether there is a hydrostatic pressure loading or dead loading along the edge of the shell. This general result is in contrast to the observations made for some simple stability problems. Nevertheless, the results of this study do not exclude the possibility that the simplified strategy will give reasonable approximate solutions at least for a restricted class of stability problems. (orig./HP) [de
Fluid free surface effect on the vibration analysis of cylindrical shells
International Nuclear Information System (INIS)
Lakis, A.A.; Brusuc, G.; Toorani, M.
2007-01-01
The present study is to investigate the effect of free surface motion of the fluid on the dynamic behavior of the thin-walled cylindrical shells. This paper outlines a semi-analytical approach to dynamic analysis of the fluid-filled horizontal cylindrical shell taking into account the free surface motion effect. The aim of the method is to provide a general approach that can be used for both analysis and synthesis of fluid structure interaction problems in the horizontal cylindrical shells where the dynamic interaction of a flexible structure and incompressible and inviscid flow is in focus. The approach is very general and allows for dynamic analysis of both uniform and non-uniform cylindrical shell considering the fluid forces including the sloshing effect exerted on the structure. The hybrid method developed in this work is on the basis of a combination of the classical finite element approach and the thin shell theory to determine the specific displacement functions. Mass and stiffness matrices of the shell are determined by precise analytical integration. A potential function is considered to develop the dynamic pressure due to the fluid. The kinetic and potential energies are evaluated for a range of fluid height to find the influence of the fluid on the dynamic responses of the structure. The influence of the physical and geometrical parameters on the fluid-structure system has been considered in the numerical solutions. When these results are compared with corresponding results available in the literature, both theory and experiment, very good agreement is obtained. (authors)
Final results of double-shell tank 241-AZ-101 ultrasonic inspection
International Nuclear Information System (INIS)
JENSEN, C.E.
1999-01-01
This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking
Global Existence and Uniqueness of Weak and Regular Solutions of Shallow Shells with Thermal Effects
Energy Technology Data Exchange (ETDEWEB)
Menzala, G. Perla, E-mail: perla@lncc.br [National Laboratory of Scientific Computation, (LNCC/MCTI) (Brazil); Cezaro, F. Travessini De, E-mail: fabianacezaro@furg.br [Federal University of Rio Grande (FURG/IMEF), Institute of Mathematics, Statistics and Physics (Brazil)
2016-10-15
We study a dynamical thin shallow shell whose elastic deformations are described by a nonlinear system of Marguerre–Vlasov’s type under the presence of thermal effects. Our main result is the proof of a global existence and uniqueness of a weak solution in the case of clamped boundary conditions. Standard techniques for uniqueness do not work directly in this case. We overcame this difficulty using recent work due to Lasiecka (Appl Anal 4:1376–1422, 1998).
Final results of double-shell tank 241-AY-102 ultrasonic inspection
International Nuclear Information System (INIS)
JENSEN, C.E.
1999-01-01
This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AY-102. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AY-102 primary tank wall and welds. The inspection found some indication of insignificant general and local wall thinning with no cracks detected
Final results of double-shell tank 241-AN-105 ultrasonic inspection
International Nuclear Information System (INIS)
JENSEN, C.E.
1999-01-01
This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AN-105. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AN-105 primary tank wall primary knuckle, and secondary tank bottom. The inspection found some indication of general and local wall thinning with no cracks detected
Directory of Open Access Journals (Sweden)
A. I. Uvarov
2014-01-01
Full Text Available An analytical model of plastic deformation of a conical shell with the transformation of internal surface into outer one was developed with a use of the kinematic method. The shell material was assumed to be perfectly plastic. The theory of thin shells and the kinematic theorem of limit equilibrium were utilized in this work. Both geometric and physical nonlinearities were taken into account. Dependences for calculating radius of curvature of the intensive deformation zones, value of chain ring deformation and values of the deforming force as a function of axial displacement were determined. Analysis showed the possibility of using a conical shell to absorb energy with high efficiency. Obtained results could be used for calculation and selection of optimal parameters of the energy-absorbing elements in shock absorbers.
Khan, Easir A.
2010-12-15
Core-shell micromembrane reactors are a novel class of materials where a catalyst and a shape-selective membrane are synergistically housed in a single particle. In this work, we report the synthesis of micrometer -sized core-shell particles containing a catalyst core and a thin permselective zeolite shell and their application as a micromembrane reactor for the selective hydrogenation of the 1-hexene and 3,3-dimethyl-1-butene isomers. The bare catalyst, which is made from porous silica loaded with catalytically active nickel, showed no reactant selectivity between hexene isomers, but the core-shell particles showed high selectivities up to 300 for a 1-hexene conversion of 90%. © 2010 American Chemical Society.
Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
Wang, Chongmin; Baer, Donald R; Amonette, James E; Engelhard, Mark H; Antony, Jiji; Qiang, You
2009-07-01
An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in
Mussel Shell Impaction in the Esophagus
Directory of Open Access Journals (Sweden)
Sunmin Kim
2013-03-01
Full Text Available Mussels are commonly used in cooking around the world. The mussel shell breaks more easily than other shells, and the edge of the broken mussel shell is sharp. Impaction can ultimately cause erosion, perforation and fistula. Aside from these complications, the pain can be very intense. Therefore, it is essential to verify and remove the shell as soon as possible. In this report we describe the process of diagnosing and treating mussel shell impaction in the esophagus. Physicians can overlook this unusual foreign body impaction due to lack of experience. When physicians encounter a patient with severe chest pain after a meal with mussels, mussel shell impaction should be considered when diagnosing and treating the patient.
Ancient shell industry at Bet Dwarka island
Digital Repository Service at National Institute of Oceanography (India)
Gaur, A.S.; Sundaresh; Patankar, V.
for the manufacture of beads, bangles, etc. 12 . Shell species found at the sites include T. pyrum (cha nk), Chicoreus ramosus , Fasciolaria trapezium , Cypraea (cowries), Arabica arabica (cowries), Babylonia spirata , dentalium, mussel and Arca... muscles are attached. Average length of a shell can be up to 15 to 20 cm and width 10 ? 15 cm 8 . It provides a unique structure for the manufacture of several bangles from a single shell. The organ ism living inside is also edible...
Integrable structure in discrete shell membrane theory.
Schief, W K
2014-05-08
We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.
Local shell-to-shell energy transfer via nonlocal interactions in fluid ...
Indian Academy of Sciences (India)
However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.
Statistics and the shell model
International Nuclear Information System (INIS)
Weidenmueller, H.A.
1985-01-01
Starting with N. Bohr's paper on compound-nucleus reactions, we confront regular dynamical features and chaotic motion in nuclei. The shell-model and, more generally, mean-field theories describe average nuclear properties which are thus identified as regular features. The fluctuations about the average show chaotic behaviour of the same type as found in classical chaotic systems upon quantisation. These features are therefore generic and quite independent of the specific dynamics of the nucleus. A novel method to calculate fluctuations is discussed, and the results of this method are described. (orig.)
International Nuclear Information System (INIS)
Karpeshin, F. F.
2002-01-01
Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.
Carbon isotopes in mollusk shell carbonates
McConnaughey, Ted A.; Gillikin, David Paul
2008-10-01
Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.
International Nuclear Information System (INIS)
Pan, G.X.; Xia, X.H.; Cao, F.; Chen, J.; Tang, P.S.; Zhang, Y.J.; Chen, H.F.
2014-01-01
Graphical abstract: - Highlights: • We prepared a self-supported porous Co 3 O 4 /C core/shell nanowire array. • Core/shell nanowire array showed high pseudo-capacitive properties. • Core/shell array structure was favorable for fast ion and electron transfer. - Abstract: High-reactivity electrode materials are indispensible for developing high-performance electrochemical energy storage devices. Herein, we report self-supported core/shell Co 3 O 4 /C nanowire arrays by using hydrothermal synthesis and chemical vapor deposition methods. A uniform and thin carbon shell is coated on the surface of Co 3 O 4 nanowire forming core/shell nanowires with diameters of ∼100 nm. Asymmetric supercapacitors have been assembled with the core/shell Co 3 O 4 /C nanowire arrays as the positive electrode and activated carbon (AC) as the negative electrode. The core/shell Co 3 O 4 /C nanowire arrays exhibit a specific capacity of 116 mAh g −1 at the working current of 100 mA (4 A g −1 ), and a long cycle life along with ∼ 92% retention after 8000 cycles at 4 A g −1 , higher than the unmodified Co 3 O 4 nanowire arrays (81 mAh g −1 at 4 A g −1 ). The introduction of uniform carbon layer into the core/shell structure is favorable for the enhancement of supercapacitor due to the improved electrical conductivity and reaction kinetics
International Nuclear Information System (INIS)
Lu Yan; Yan Changling; Gao Shuyan
2009-01-01
In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).
Grote, Fabian; Wen, Liaoyong; Lei, Yong
2014-06-01
Large-scale arrays of core/shell nanostructures are highly desirable to enhance the performance of supercapacitors. Here we demonstrate an innovative template-based fabrication technique with high structural controllability, which is capable of synthesizing well-ordered three-dimensional arrays of SnO2/MnO2 core/shell nanotubes for electrochemical energy storage in supercapacitor applications. The SnO2 core is fabricated by atomic layer deposition and provides a highly electrical conductive matrix. Subsequently a thin MnO2 shell is coated by electrochemical deposition onto the SnO2 core, which guarantees a short ion diffusion length within the shell. The core/shell structure shows an excellent electrochemical performance with a high specific capacitance of 910 F g-1 at 1 A g-1 and a good rate capability of remaining 217 F g-1 at 50 A g-1. These results shall pave the way to realize aqueous based asymmetric supercapacitors with high specific power and high specific energy.
Ocean-driven heating of Europa's icy shell at low latitudes
Soderlund, K. M.; Schmidt, B. E.; Wicht, J.; Blankenship, D. D.
2014-01-01
The ice shell of Jupiter's moon Europa is marked by regions of disrupted ice known as chaos terrains that cover up to 40% of the satellite's surface, most commonly occurring within 40° of the equator. Concurrence with salt deposits implies a coupling between the geologically active ice shell and the underlying liquid water ocean at lower latitudes. Europa's ocean dynamics have been assumed to adopt a two-dimensional pattern, which channels the moon's internal heat to higher latitudes. Here we present a numerical model of thermal convection in a thin, rotating spherical shell where small-scale convection instead adopts a three-dimensional structure and is more vigorous at lower latitudes. Global-scale currents are organized into three zonal jets and two equatorial Hadley-like circulation cells. We find that these convective motions transmit Europa's internal heat towards the surface most effectively in equatorial regions, where they can directly influence the thermo-compositional state and structure of the ice shell. We suggest that such heterogeneous heating promotes the formation of chaos features through increased melting of the ice shell and subsequent deposition of marine ice at low latitudes. We conclude that Europa's ocean dynamics can modulate the exchange of heat and materials between the surface and interior and explain the observed distribution of chaos terrains.
Parametric instability analysis of truncated conical shells using the Haar wavelet method
Dai, Qiyi; Cao, Qingjie
2018-05-01
In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.
Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor.
Hamouche, W; Maurini, C; Vidoli, S; Vincenti, A
2017-08-01
We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a 'gear-less motor', which is, in reality, a precession of the axis of principal curvature.
Energy Technology Data Exchange (ETDEWEB)
Lu Yan, E-mail: yanlu2001@sohu.com [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China); Yan Changling; Gao Shuyan [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China)
2009-04-01
In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).
Elasto/visco-plastic dynamic response of multi-layered shells of revolution
International Nuclear Information System (INIS)
Takezono, S.; Tao, K.; Taguchi, T.
1989-01-01
Many investigations of the elasto/visco-plastic dynamic response of shells have been conducted. These investigations, however, have been mostly concerned with the case of single-layered shells, and few studies on multi-layered shells have been reported in spite of their importance in engineering. In this paper, the authors study the elasto/visco-plastic dynamic response of the multi-layered shells of revolution subjected to impulsive loads. The equations of motion and the relations between the strains and displacements are derived by extending Sanders' theory for elastic thin shells. As the constitutive relation, Hooke's law is used in the linear elastic range, and the elasto/visco-plastic equations are employed in the plastic range. The criterion for yielding used in the analysis is the von Mises yield theory. In the numerical analysis of the fundamental equations for incremental values an usual finite difference form is employed for the spatial derivatives and the inertia terms are treated with the backward difference formula. The solutions are obtained by summation of the incremental values
A design chart for long vacuum pipes and shells
International Nuclear Information System (INIS)
Krempetz, K.; Grimson, J.; Kelly, P.
1986-01-01
This paper presents a design chart to aid designers in the selection of a wall thickness for long cylindrical shells having atmospheric pressure outside the shell and a pressure less than atmospheric inside the shell. The chart indicates a conservative value for the minimum wall thickness for a given shell diameter and material when the shell is completely evacuated
Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.
Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae
2010-01-01
Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.
Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej
2017-09-01
We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10 13 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus-Tidal deformation-Faults-Variable ice shell thickness-Tidal heating-Plume activity and timing. Astrobiology 17, 941-954.
Kern, Werner
1991-01-01
This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever
Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)
2010-01-01
A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.
Transitional nuclei near shell closures
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)
2014-08-14
High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.
Directory of Open Access Journals (Sweden)
Nam-Hee Park
2015-07-01
Full Text Available To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface.
Stiffeners in variational-difference method for calculating shells with complex geometry
Directory of Open Access Journals (Sweden)
Ivanov Vyacheslav Nikolaevich
2014-05-01
Full Text Available We have already considered an introduction of reinforcements in the variational-difference method (VDM of shells analysis with complex shape. At the moment only ribbed shells of revolution and shallow shells can be calculated with the help of developed analytical and finite-difference methods. Ribbed shells of arbitrary shape can be calculated only using the finite element method (FEM. However there are problems, when using FEM, which are absent in finite- and variational-difference methods: rigid body motion; conforming trial functions; parameterization of a surface; independent stress strain state. In this regard stiffeners are entered in VDM. VDM is based on the Lagrange principle - the principle of minimum total potential energy. Stress-strain state of ribs is described by the Kirchhoff-Clebsch theory of curvilinear bars: tension, bending and torsion of ribs are taken into account. Stress-strain state of shells is described by the Kirchhoff-Love theory of thin elastic shells. A position of points of the middle surface is defined by curvilinear orthogonal coordinates α, β. Curved ribs are situated along coordinate lines. Strain energy of ribs is added into the strain energy to account for ribs. A matrix form of strain energy of ribs is formed similar to a matrix form of the strain energy of the shell. A matrix of geometrical characteristics of a rib is formed from components of matrices of geometric characteristics of a shell. A matrix of mechanical characteristics of a rib contains rib’s eccentricity and geometrical characteristics of a rib’s section. Derivatives of displacements in the strain vector are replaced with finite-difference relations after the middle surface of a shell gets covered with a grid (grid lines coincide with the coordinate lines of principal curvatures. By this case the total potential energy functional becomes a function of strain nodal displacements. Partial derivatives of unknown nodal displacements are
A new periodic imperfect quasi axisymmetric shell element
International Nuclear Information System (INIS)
Combescure, A.; Garuti, G.
1983-08-01
The object of this paper is to give the formulation and the validation of a ''quasi axisymmetric'' shell element: the main idea is to develop the theory of an imperfect quasi axisymmetric shell element. The imperfection is a variation of the circumferential radius of curvature rsub(theta). The equations are obtained by transporting the equilibrium equations from the actual geometry onto the theoretical axisymmetric (rsub(theta)=r 0 geometry. It is shown that the main hypothesis convenient to perform simply this transformation is that the membrane strains associated with that variation of geometry are less than 1% (that is always the case if you suppose that the imperfect structure is obtained from the perfect one by an inextensional displacement field). The formulation of the element is given in the general case. The rigidity matrices, are given in the particular case in which the imperfection has a component on a single Fourier harmonic. The comparison of theoretical and computed, 3D and quasi axisymmetric, solution or a very simple case shows the influence of the number of the Fourier harmonics chosen on the response of the structure. The influence of the initial imperfections on the natural frequency are studied with element and compared with 3D calculations. Comparison of 3D, quasi axisymmetric, and analytical buckling loads are given and explained. This element gives a very efficient tool for the calculation of thin shells of revolution (which are always imperfect) and especially unables easy parametric study of the variation of the buckling load and eigen frequencies with the amplitude and shapes of non axisymmetric imperfections
Evolution of shell gaps with neutron richness
International Nuclear Information System (INIS)
Basu, Moumita Ray; Ray, I.; Kshetri, Ritesh; Saha Sarkar, M.; Sarkar, S.
2006-01-01
In the present work, an attempt has been made to coordinate the recent data available over the periodic table, specially near the shell gaps and studied the evolution of the shell gaps as function of neutron numbers and/or other related quantities
Microsoft Exchange Server PowerShell cookbook
Andersson, Jonas
2015-01-01
This book is for messaging professionals who want to build real-world scripts with Windows PowerShell 5 and the Exchange Management Shell. If you are a network or systems administrator responsible for managing and maintaining Exchange Server 2013, you will find this highly useful.
Shell effects in the nuclear deformation energy
International Nuclear Information System (INIS)
Ross, C.K.
1973-01-01
A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)
Intershell correlations in photoionization of outer shells
Energy Technology Data Exchange (ETDEWEB)
Amusia, M.Ya. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Chernysheva, L.V. [A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Drukarev, E.G. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg 188300 (Russian Federation)
2016-02-15
We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.
Strength Calculation of Locally Loaded Orthotropic Shells
Directory of Open Access Journals (Sweden)
Yu. I. Vinogradov
2015-01-01
Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.
Radiometric measuring method for egg shells
Energy Technology Data Exchange (ETDEWEB)
Forberg, S; Svaerdstroem, K
1973-02-01
A description is given of a fast nondestructive radiometric method for registration of the thickness of egg shells of the tawny owl, hen, osprey, and Canada goose. Certain errors are discussed. Measurement of the thickness of egg shells (mineral content per cm/sup 2/) with an accuracy better than 1% is possible in less than one minute under field conditions. (auth)
Thick-shell nanocrystal quantum dots
Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM
2011-05-03
Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.
Fabrication of Foam Shells for ICF Experiments
Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.
2004-11-01
The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.
Intershell correlations in photoionization of outer shells
International Nuclear Information System (INIS)
Amusia, M.Ya.; Chernysheva, L.V.; Drukarev, E.G.
2016-01-01
We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.
Biomineral repair of abalone shell apertures.
Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A
2013-08-01
The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2015-01-01
Full Text Available Liquid hydrogen and oxygen are used as the oxidizer and fuel for liquid rocket engines. Liquefied natural gas, which is based on methane, is seen as a promising motor fuel for internal combustion engines. One of the technical problems arising from the use of said cryogenic liquid is to provide containers for storage, transport and use in the propulsion system. In the design and operation of such vessels it is necessary to have reliable information about their temperature condition, on which depend the loss of cryogenic fluids due to evaporation and the stress-strain state of the structural elements of the containers.Uneven temperature distribution along the generatrix of the cylindrical thin-walled shell of rocket cryogenic tanks, in a localized zone of cryogenic liquid level leads to a curvature of the shell and reduce the permissible axle load in a hazard shell buckling in the preparation for the start of the missile in flight with an increasing acceleration. Moving the level of the cryogenic liquid during filling or emptying the tank at a certain combination of parameters results in an increase of the local temperature distribution nonuniformity.Along with experimental study of the shell temperature state of the cryogenic container, methods of mathematical modeling allow to have information needed for designing and testing the construction of cryogenic tanks. In this study a mathematical model is built taking into account features of heat transfer in a cryogenic container, including the boiling cryogenic liquid in the inner surface of the container. This mathematical model describes the temperature state of the thin-walled shell of cylindrical cryogenic tank during filling and emptying. The work also presents a quantitative analysis of this model in case of fixed liquid level, its movement at a constant speed, and harmonic oscillations relative to a middle position. The quantitative analysis of this model has allowed to find the limit options
Obtainment of calcium carbonate from mussels shell
International Nuclear Information System (INIS)
Hamester, M.R.R.; Becker, D.
2010-01-01
The mussels and oyster shell are discarded at environment, and this accumulation is causing negative consequences to ecosystem. Calcium carbonate is main constituent of the shell chemical composition. Aiming to reduce environmental aggression and generate income to shellfish producer, there was the possibility of using these shells as an alternative to commercial calcium carbonate. For this physics, chemicals and thermal properties were evaluated, using X-ray fluorescence, thermogravimetric analysis, size distribution, abrasiveness and scanning electronic microscopy. The results indicate that mussels shells have an initial degradation temperature higher than commercial calcium carbonate e same lost weight behavior and 95% of shell chemical composition is calcium carbonate. The sample size distribution was influenced by grinding condition and time as well as its abrasiveness. (author)
Semiclassical shell structure in rotating Fermi systems
International Nuclear Information System (INIS)
Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.
2010-01-01
The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.
Optical properties of core-shell and multi-shell nanorods
Mokkath, Junais Habeeb; Shehata, Nader
2018-05-01
We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.
On the core-mass-shell-luminosity relation for shell-burning stars
International Nuclear Information System (INIS)
Jeffery, C.S.; Saint Andrews Univ.
1988-01-01
Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)
Energy Technology Data Exchange (ETDEWEB)
Herrmann, Enrico [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)
2016-11-22
We study on-shell diagrams for gravity theories with any number of supersymmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only dlog-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in http://dx.doi.org/10.1007/JHEP06(2015)202.
Stability of accelerated metal shells
International Nuclear Information System (INIS)
Tahsiri, H.
1976-01-01
A systematic treatment has been developed for the Rayleigh-Taylor instability of an accelerated liner. It is applicable to one-dimensional models either compressible or incompressible. With this model several points have been clarified. For an incompressible liner model, the Rayleigh-Taylor instability will have about five e-folding periods and the usual growth rate is independent of the current distribution or current rise time. Adequate stability will therefore depend on the magnitude of the initial perturbations or the precision of the initial liner and the thickness over which the shell is accelerated. However, for a compressible model, theory predicts that the current rise time is important and the Rayleigh-Taylor instability is suppressed if the current rise time is less than the shock transit time
Co-Au core-shell nanocrystals formed by sequential ion implantation into SiO2
International Nuclear Information System (INIS)
Kluth, P.; Hoy, B.; Johannessen, B.; Dunn, S. G.; Foran, G. J.; Ridgway, M. C.
2006-01-01
Co-Au core-shell nanocrystals (NCs) were formed by sequential ion implantation of Au and Co into thin SiO 2 . The NCs were investigated by means of transmission electron microscopy and extended x-ray absorption fine structure spectroscopy. The latter reveals a bond length expansion in the Co core compared to monatomic Co NCs. Concomitantly, a significant contraction of the bond length and a significant reduction of the effective Au-Au coordination number were observed in the Au shells. Increased Debye-Waller factors indicate significant strain in the NCs. These experimental results verify recent theoretical predictions
Sarkar, Jit; Das, D. K.
2018-01-01
Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.
Importance-truncated shell model for multi-shell valence spaces
Energy Technology Data Exchange (ETDEWEB)
Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)
2016-07-01
The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.
Free vibration analysis of delaminated composite shells using different shell theories
International Nuclear Information System (INIS)
Nanda, Namita; Sahu, S.K.
2012-01-01
Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.
International Nuclear Information System (INIS)
Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.
2015-01-01
Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)
Bending stresses in Facetted Glass Shells
DEFF Research Database (Denmark)
Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik
2008-01-01
A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...
Strontium and fluorine in tuatua shells
International Nuclear Information System (INIS)
Trompetter, W.J.; Coote, G.E.
1993-01-01
This report describes the research to date on the elemental distributions of strontium, calcium, and fluorine in a collection of 24 tuatua shells (courtesy of National Museum). Variations in elemental concentrations were measured in the shell cross-sections using a scanning proton microprobe (PIXE and PIGME). In this paper we report the findings to date, and present 2-D measurement scans as illustrative grey-scale pictures. Our results support the hypothesis that increased strontium concentrations are deposited in the shells during spawning, and that fluorine concentration is proportional to growth rate. (author). 15 refs.; 13 figs.; 1 appendix
Gross shell structure of moments of inertia
International Nuclear Information System (INIS)
Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.
2002-01-01
Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits
Strontium clusters: electronic and geometry shell effects
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.
2008-01-01
charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...... is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry...
Amplitude structure of off-shell processes
International Nuclear Information System (INIS)
Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.
1984-01-01
The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process
Atomic mass formula with linear shell terms
International Nuclear Information System (INIS)
Uno, Masahiro; Yamada, Masami; Ando, Yoshihira; Tachibana, Takahiro.
1981-01-01
An atomic mass formula is constructed in the form of a sum of gross terms and empirical linear shell terms. Values of the shell parameters are determined after the statistical method of Uno and Yamada, Which is characterized by inclusion of the error inherent in the mass formula. The resulting formula reproduces the input masses with the standard deviation of 393 keV. A prescription is given for estimating errors of calculated masses. The mass formula is compared with recent experimental data of Rb, Cs and Fr isotopes, which are not included in the input data, and also with the constant-shell-term formula of Uno and Yamada. (author)
Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Rinaldi-Montes, Natalia, E-mail: nataliarin@gmail.com [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain); Gorria, Pedro [Departamento de Física & IUTA, EPI, Universidad de Oviedo, E-33203 Gijón (Spain); Martínez-Blanco, David [Servicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo (Spain); Fuertes, Antonio B. [Instituto Nacional del Carbón, CSIC, E-33080 Oviedo (Spain); Fernández Barquín, Luis [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, E-39005 Santander (Spain); Puente-Orench, Inés [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)
2016-02-15
Among all bi-magnetic core(transition metal)@shell(transition metal oxide) nanoparticles (NPs), Ni@NiO ones show an onset temperature for the exchange bias (EB) effect far below the Néel temperature of bulk antiferromagnetic NiO. In this framework, the role played by the magnetism of NiO at the nanoscale is investigated by comparing the microstructure and magnetic properties of NiO and Ni@NiO NPs. With the aim of bridging the two systems, the diameter of the NiO NPs (~4 nm) is chosen to be comparable to the shell thickness of Ni@NiO ones (~2 nm). The EB effect in Ni@NiO NPs is attributed to the exchange coupling between the core and the shell, with an interfacial exchange energy of ΔE~0.06 erg cm{sup −2}, thus comparable to previous reports on Ni/NiO interfaces both in thin film and NP morphologies. In contrast, the EB detected in NiO NPs is explained in a picture where uncompensated spins located on a magnetically disordered surface shell are exchange coupled to the antiferromagnetic core. In all the studied NPs, the variation of the EB field as a function of temperature is described according to a negative exponential law with a similar decay constant, yielding a vanishing EB effect around T~40–50 K. In addition, the onset temperature for the EB effect in both NiO and Ni@NiO NPs seems to follow a universal dependence with the NiO crystallite size. - Highlights: • Comparison of the exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. • Universal temperature dependence of the exchange bias effect. • Suggested similar physical origin of the effect in both systems. • Size and crystallinity of the NiO shell hold the key for exchange bias properties.
Rabinskiy, L. N.; Zhavoronok, S. I.
2018-04-01
The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is
Energy Technology Data Exchange (ETDEWEB)
1978-06-01
Under a program initiated by the US Coast Guard (USCG), Shell Development Co. has developed the Zero-Relative Velocity Skimmer (ZRVS) (Abstract No. 24-30285) which can recover spilled oil in currents up to eight knots. Tests of a full-scale mockup of the system gave excellent results up to the test limit of eight knots and in waves up to 2 ft high. Conventional oil skimmers slow down the floating oil relative to the water so that it can be contained and collected. But when the relative velocity of water and skimmer exceeds 1 to 2 knots, turbulence caused by the skimmer's surface piercing equipment leads to oil escaping. The ZRVS combats this by laying twin floating, adsorbent belts on the surface so they move at the same speed as the water and oil relative to the skimmer. With no relative velocity between them, turbulence is removed, allowing the skimmer to operate effectively in fast currents. The skimmer is a 41 ft catamaran, built in three sections so it can be transported in two aircraft and assembled at the port nearest the spill. The first prototype is due to be completed at the USCG shipyard in the summer of 1978.
Casimir effect in spherical shells
International Nuclear Information System (INIS)
Ruggiero, J.R.
1985-01-01
The analytic regularization method is applied to study the Casimir effect for spherical cavities. Although many works have been presented in the past few years, problems related to the elimination of the regulator parameter still remain. A way to calculate the zero point energy of a perfectly conducting spherical shell which is a miscellaneous of those presented early is here proposed, How a cancelation of divergent terms occurs and how a finite parte is obtained after the elimination of the regulator parameter is shown. As a by-product the zero point energy of the interior vibration modes is obtained and this has some relevance to the quarks bag model. This relev ance is also discussed. The calculation of the energy fom the density view is also discussed. Some works in this field are criticized. The logarithmic divergent terms in the zero point energy are studied when the interior and exterior of the sphere are considered as a medium not dispersive and characterized by a dielectric constants ε 1 and ε 2 and peermeability constants μ 1 and μ 2 respectivelly. The logarithmic divergent terms are not present in the case of ε i μ i =K, with K some constant and i=1,2. (author) [pt
Extensions to a nonlinear finite element axisymmetric shell model based on Reissner's shell theory
International Nuclear Information System (INIS)
Cook, W.A.
1981-01-01
A finite element shell-of-revolution model has been developed to analyze shipping containers under severe impact conditions. To establish the limits for this shell model, I studied the basic assumptions used in its development; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress. (orig./HP)
Anticavitation and Differential Growth in Elastic Shells
Moulton, Derek E.; Goriely, Alain
2010-01-01
infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise
Wireless energy transfer between anisotropic metamaterials shells
Energy Technology Data Exchange (ETDEWEB)
Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es
2014-06-15
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.
Single Shell Tank (SST) Program Plan
International Nuclear Information System (INIS)
HAASS, C.C.
2000-01-01
This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000
Wireless energy transfer between anisotropic metamaterials shells
International Nuclear Information System (INIS)
Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José
2014-01-01
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted
Computational mechanics of nonlinear response of shells
Energy Technology Data Exchange (ETDEWEB)
Kraetzig, W.B. (Bochum Univ. (Germany, F.R.). Inst. fuer Statik und Dynamik); Onate, E. (Universidad Politecnica de Cataluna, Barcelona (Spain). Escuela Tecnica Superior de Ingenieros de Caminos) (eds.)
1990-01-01
Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs.
Single Shell Tank (SST) Program Plan
Energy Technology Data Exchange (ETDEWEB)
HAASS, C.C.
2000-03-21
This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000.
Hydration shells exchange charge with their protein
DEFF Research Database (Denmark)
Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert
2010-01-01
. In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....
Quark shell model using projection operators
International Nuclear Information System (INIS)
Ullah, N.
1988-01-01
Using the projection operators in the quark shell model, the wave functions for proton are calculated and expressions for calculating the wave function of neutron and also magnetic moment of proton and neutron are derived. (M.G.B.)
Computational mechanics of nonlinear response of shells
International Nuclear Information System (INIS)
Kraetzig, W.B.; Onate, E.
1990-01-01
Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs
Angelescu, Daniel G; Caragheorgheopol, Dan
2015-10-14
The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.
Photo-physical properties enhancement of bare and core-shell quantum dots
Energy Technology Data Exchange (ETDEWEB)
Mumin, Md Abdul, E-mail: pcharpentier@eng.uwo.ca; Akhter, Kazi Farida, E-mail: pcharpentier@eng.uwo.ca; Charpentier, Paul A., E-mail: pcharpentier@eng.uwo.ca [Chemical and Biochemical Engineering, Western University, London Ontario (Canada)
2014-03-31
Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)
Simulations of the Light Scattering Properties of Metal/Oxide Core/Shell Nanospheres
International Nuclear Information System (INIS)
Ruffino, F.; Piccitto, G.; Grimaldi, M.G.; Ruffino, F.; Grimaldi, M.G.
2014-01-01
Given the importance of the optical properties of metal/dielectric core/shell nanoparticles, in this work we focus our attention on the light scattering properties, within the Mie framework, of some specific categories of these noteworthy nano structures. In particular, we report theoretical results of angle-dependent light scattering intensity and scattering efficiency for Ag/Ag 2 O, Al/Al 2 O 2 , Cu/Cu 2 O, Pd/PdO, and Ti/TiO 2 core/shell nanoparticles as a function of the core radius/shell thickness ratio and on a relative comparison. The results highlight the light scattering characteristics of these systems as a function of the radius/shell thickness ratio, helping in the choice of the more suitable materials and sizes for specific applications (i.e., dynamic light scattering for biological and molecular recognition, increasing light trapping in thin-film silicon, organic solar cells for achieving a higher photocurrent).
Acoustic coupling of two parallel shells in compressible fluid
International Nuclear Information System (INIS)
Gerges, S.N.Y.
1982-01-01
Modifications are done in the acoustic impedance for a vibrating shell, due to the pressure of another similar shell. The multi-analysis method of scattering is used. The results of the impedance in function of the shell radius, the wave length, the distance between the shell axis and its vibration models are presented. (E.G.) [pt
Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity
Directory of Open Access Journals (Sweden)
Schilthuizen Menno
2003-06-01
Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.
Study of thiophene inner shell photofragmentation
International Nuclear Information System (INIS)
Mundim, M.S.P.; Mocellin, A.; Makiuchi, N.; Naves de Brito, A.; Attie, M.; Correia, N.
2007-01-01
We investigated the inner shell photofragmentation of thiophene by time of flight (TOF) mass spectroscopy using multi-coincidence electron-ion techniques. Our main purpose was to understand aspects of molecular relaxation process after inner shell excitation and to search for bond break selectivity. Analyses of mass and branching ratios are presented and the results suggest different mechanisms and channel of fragmentation when compared with S 2p and C 1s excitations
Study of thiophene inner shell photofragmentation
Energy Technology Data Exchange (ETDEWEB)
Mundim, M.S.P. [Instituto de Fisica, Universidade de Brasilia-UnB, P.O. Box 04455, CEP 70919-970 Brasilia, DF (Brazil)], E-mail: spedrosa@fis.unb.br; Mocellin, A.; Makiuchi, N. [Instituto de Fisica, Universidade de Brasilia-UnB, P.O. Box 04455, CEP 70919-970 Brasilia, DF (Brazil); Naves de Brito, A. [Instituto de Fisica, Universidade de Brasilia-UnB, P.O. Box 04455, CEP 70919-970 Brasilia, DF (Brazil); Laboratorio Nacional de Luz Sincrotron-LNLS, P.O. Box 6192, CEP 13084-971 Campinas, SP (Brazil); Attie, M. [Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, UESC Rodovia Ilheus-Itabuna, km 16, CEP 45 650 000 Ilheus, BA (Brazil); Correia, N. [Departamento de Ciencias Exatas e Tecnologicas, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilheus-Itabuna, km 16, CEP 45 650 000 Ilheus, BA (Brazil); Departament of Quantum Chemistry, University of Uppsala, P.O. Box 518, 751 21 Uppsala (Sweden)
2007-03-15
We investigated the inner shell photofragmentation of thiophene by time of flight (TOF) mass spectroscopy using multi-coincidence electron-ion techniques. Our main purpose was to understand aspects of molecular relaxation process after inner shell excitation and to search for bond break selectivity. Analyses of mass and branching ratios are presented and the results suggest different mechanisms and channel of fragmentation when compared with S 2p and C 1s excitations.
Walnut shells: replacement for natural gas
Energy Technology Data Exchange (ETDEWEB)
Goss, J R; Williams, R O
1977-11-01
A method of extracting useful energy from cracked walnut shells has been developed by the University of California in co-operation with Diamond/Sunsweet, Inc., and the California Energy Resources Conservation and Development Commission. The technique involves converting the shells to producer gas, a low-Btu gas in which the major combustible components are carbon monoxide (20 to 30%) and hydrogen (10 to 15%).
Double shell tank waste analysis plan
International Nuclear Information System (INIS)
Mulkey, C.H.; Jones, J.M.
1994-01-01
Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations
Dehydration of core/shell fruits
Liu, Y.; Yang, Xiaosong; Cao, Y.; Wang, Z.; Chen, B.; Zhang, Jian J.; Zhang, H.
2015-01-01
Dehydrated core/shell fruits, such as jujubes, raisins and plums, show very complex buckles and wrinkles on their exocarp. It is a challenging task to model such complicated patterns and their evolution in a virtual environment even for professional animators. This paper presents a unified physically-based approach to simulate the morphological transformation for the core/shell fruits in the dehydration process. A finite element method (FEM), which is based on the multiplicative decomposition...
Engineered inorganic core/shell nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)
2014-10-20
It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.
P-shell hyperon binding energies
International Nuclear Information System (INIS)
Koetsier, D.; Amos, K.
1991-01-01
A shell model for lambda hypernuclei has been used to determine the binding energy of the hyperon in nuclei throughout the p shell. Conventional (Cohen and Kurath) potential energies for nucleon-nucleon interactions were used with hyperon-nucleon interactions taken from Nijmegen one boson exchange potentials. The hyperon binding energies calculated from these potentials compare well with measured values. 7 refs., 2 figs
Dynamic nonlinear analysis of shells of revolution
International Nuclear Information System (INIS)
Riesemann, W.A. von; Stricklin, J.A.; Haisler, W.E.
1975-01-01
Over the past few years a series of finite element computer programs have been developed at Texas A and M University for the static and dynamic nonlinear analysis of shells of revolution. This paper discusses one of these, DYNAPLAS, which is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. (Auth.)
Shell effects in the superasymmetric fission
Mirea, M
2002-01-01
A new formalism based on the Landau-Zener promotion mechanism intends to explain the fine structure of alpha and cluster decay. The analysis of this phenomenon is accomplished by following the modality in which the shells are reorganized during the decay process beginning with the initial ground state of the parent towards the final configuration of two separated nuclei. A realistic level scheme is obtained in the framework of the superasymmetric two-center shell model. (author)
An equations of motion approach for open shell systems
International Nuclear Information System (INIS)
Yeager, D.L.; McKoy, V.
1975-01-01
A straightforward scheme is developed for extending the equations of motion formalism to systems with simple open shell ground states. Equations for open shell random phase approximation (RPA) are given for the cases of one electron outside of a closed shell in a nondegenerate molecular orbital and for the triplet ground state with two electrons outside of a closed shell in degenerate molecular orbitals. Applications to other open shells and extension of the open shell EOM to higher orders are both straightforward. Results for the open shell RPA for lithium atom and oxygen molecule are given
International Nuclear Information System (INIS)
Nikolakakis, Kiel; Ohtaki, Akashi; Newton, Keith; Chworos, Arkadiusz; Sagermann, Martin
2009-01-01
Preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. The ethanolamine ammonia-lyase microcompartment is composed of five different shell proteins that have been proposed to assemble into symmetrically shaped polyhedral particles of varying sizes. Here, preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. Cloning, overexpression and purification resulted in highly pure protein that crystallized readily under many different conditions. In all cases the protein forms thin hexagonal plate-shaped crystals belonging to space group P3 that are of unusually high stability against different solvent conditions. The crystals diffracted to a resolution of 2.0 Å using synchrotron radiation but proved to be radiation-sensitive. Preparations of heavy-atom-derivatized crystals for use in determining the three-dimensional structure are under way
Modification of the Xe 4d giant resonance by the C60 shell in molecular Xe at C60
International Nuclear Information System (INIS)
Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.; Felfli, Z.; Msezane, A. Z.
2006-01-01
It is demonstrated that in photoabsorption of the 4d 10 subshell of a Xe atom in molecular Xe at C 60 , the 4d giant resonance that characterizes the isolated Xe atom is distorted significantly. The reflection of photoelectron waves by the C 60 shell leads to profound oscillations in the photoionization cross section such that the Xe giant resonance is transformed into four strong peaks. Similarly, the angular anisotropy parameters, both dipole and nondipole, are also modified. The method of calculation is based on the approximation of the C 60 shell by an infinitely thin bubble potential that leaves the sum rule for the 4d-electrons almost unaffected, but noticeably modifies the dipole polarizability of the 4d-shell
Determination of shell energies. Nuclear deformations and fission barriers
International Nuclear Information System (INIS)
Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.
1996-01-01
We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)
Thin film solar cell technology in Germany
International Nuclear Information System (INIS)
Diehl, W.; Sittinger, V.; Szyszka, B.
2005-01-01
Within the scope of limited nonrenewable energy resources and the limited capacity of the ecosystem for greenhouse gases and nuclear waste, sustainability is one important target in the future. Different energy scenarios showed the huge potential for photovoltaics (PV) to solve this energy problem. Nevertheless, in the last decade, PV had an average growth rate of over 20% per year. In 2002, the solar industry delivered more than 500 MWp/year of photovoltaic generators [A. Jaeger-Waldau, A European Roadmap for PV R and D, E-MRS Spring Meeting, (2003)]. More than 85% of the current production involves crystalline silicon technologies. These technologies still have a high cost reduction potential, but this will be limited by the silicon feedstock. On the other hand the so-called second generation thin film solar cells based on a-Si, Cu(In,Ga)(Se,S 2 (CIGS) or CdTe have material thicknesses of a few microns as a result of their direct band gap. Also, the possibility of circuit integration offers an additional cost reduction potential. Especially in Germany, there are a few companies who focus on thin film solar cells. Today, there are two manufacturers with production lines: the Phototronics (PST) division of RWE-Schott Solar with a-Si thin film technology and the former Antec Solar GmbH (now Antec Solar Energy GmbH) featuring the CdTe technology. A pilot line based on CIGS technology is run by Wuerth Solar GmbH. There is also a variety of research activity at other companies, namely, at Shell Solar, Sulfurcell Solartechnik GmbH, Solarion GmbH and the CIS-Solartechnik GmbH. We will give an overview on research activity on various thin film technologies, as well as different manufacturing and production processes in the companies mentioned above. (Author)
Thin Film & Deposition Systems (Windows)
Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...
Intrinsic Ge nanowire nonvolatile memory based on a simple core–shell structure
International Nuclear Information System (INIS)
Chen, Wen-Hua; Liu, Chang-Hai; Li, Qin-Liang; Sun, Qi-Jun; Liu, Jie; Gao, Xu; Sun, Xuhui; Wang, Sui-Dong
2014-01-01
Intrinsic Ge nanowires (NWs) with a Ge core covered by a thick Ge oxide shell are utilized to achieve nanoscale field-effect transistor nonvolatile memories, which show a large memory window and a high ON/OFF ratio with good retention. The retainable surface charge trapping is considered to be responsible for the memory effect, and the Ge oxide shell plays a key role as the insulating tunneling dielectric which must be thick enough to prevent stored surface charges from leaking out. Annealing the device in air is demonstrated to be a simple and effective way to attain thick Ge oxide on the Ge NW surface, and the Ge-NW-based memory corresponding to thick Ge oxide exhibits a much better retention capability compared with the case of thin Ge oxide. (paper)
International Nuclear Information System (INIS)
Garcia-Lechuga, M.; Siegel, J.; Hernandez-Rueda, J.; Solis, J.
2014-01-01
Phase transition pathways of matter upon ablation with ultrashort laser pulses have been considered to be understood long-since for metals and semiconductors. We provide evidence that also certain dielectrics follow the same pathway, even at high pulse energies triggering optical breakdown. Employing femtosecond microscopy, we observe a characteristic ring pattern within the ablating region that dynamically changes for increasing time delays between pump and probe pulse. These transient Newton rings are related to optical interference of the probe beam reflected at the front surface of the ablating layer with the reflection at the interface of the non-ablating substrate. Analysis of the ring structure shows that the ablation mechanism is initiated by a rarefaction wave leading within a few tens of picoseconds to the formation of a transparent thin shell of reduced density and refractive index, featuring optically sharp interfaces. The shell expands and eventually detaches from the solid material at delays of the order of 100 ps.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Lechuga, M.; Siegel, J., E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, J.; Solis, J. [Laser Processing Group, Instituto de Optica, Serrano 121, 28006 Madrid (Spain)
2014-09-15
Phase transition pathways of matter upon ablation with ultrashort laser pulses have been considered to be understood long-since for metals and semiconductors. We provide evidence that also certain dielectrics follow the same pathway, even at high pulse energies triggering optical breakdown. Employing femtosecond microscopy, we observe a characteristic ring pattern within the ablating region that dynamically changes for increasing time delays between pump and probe pulse. These transient Newton rings are related to optical interference of the probe beam reflected at the front surface of the ablating layer with the reflection at the interface of the non-ablating substrate. Analysis of the ring structure shows that the ablation mechanism is initiated by a rarefaction wave leading within a few tens of picoseconds to the formation of a transparent thin shell of reduced density and refractive index, featuring optically sharp interfaces. The shell expands and eventually detaches from the solid material at delays of the order of 100 ps.
Postimpact examinations of three DOP 4 iridium shells from simulant fuel sphere assemblies
International Nuclear Information System (INIS)
Cramer, E.M.; Hecker, S.S.
1975-12-01
Three fuel sphere assemblies, with thoria in doped iridium containment shells, were examined after a simulated earth impact from an aborted orbital mission of a multihundred-watt thermoelectric heat source. The extent of deformation of each unit was measured. Damage to the containment shells was minimal in comparison to that in undoped iridium. Metallographic sections from critical areas indicated that superficial grain boundary cracking in weld zones and microscopic cracking in regions of maximum diameter had occurred in addition to local thinning and coining. The improved properties of the doped iridium are attributed to the retention of a small grain size and to an additional fracture resistance over iridium of a comparable grain size, imparted by either a change in grain boundary chemistry or the flow characteristics of the doped material
A robust approach for analysing dispersion of elastic waves in an orthotropic cylindrical shell
Kaplunov, J.; Nobili, A.
2017-08-01
Dispersion of elastic waves in a thin orthotropic cylindrical shell is considered, within the framework of classical 2D Kirchhoff-Love theory. In contrast to direct multi-parametric analysis of the lowest propagating modes, an alternative robust approach is proposed that simply requires evaluation of the evanescent modes (quasi-static edge effect), which, at leading order, do not depend on vibration frequency. A shortened dispersion relation for the propagating modes is then derived by polynomial division and its accuracy is numerically tested against the full Kirchhoff-Love dispersion relation. It is shown that the same shortened relation may be also obtained from a refined dynamic version of the semi-membrane theory for cylindrical shells. The presented results may be relevant for modelling various types of nanotubes which, according to the latest experimental findings, possess strong material anisotropy.
Lessons Not Learned. The Other Shell Report 2004
International Nuclear Information System (INIS)
Harden, M.; Walker, N.; Griffiths, H.; Verweij, M.
2005-06-01
The third alternative Shell Corporate Social Responsibility (CSR) report is presented on behalf of several of the many communities that live on Shell's 'fencelines', next to Shell's refineries, depots and pipelines. This 2004 report builds on reports of the past two years 'Failing the Challenge', (2002) and 'Behind the Shine' (2003) which chronicled Shell's impacts around the world. It gives critical updates of Shell's performance over the past year
Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J
2003-11-01
The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.
Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.
Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia
2017-11-01
Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Durability of thin-walled concrete structures
International Nuclear Information System (INIS)
Salomon, M.; Gallias, J.L.
1991-01-01
The aim of the present document is to draw up a survey of knowledge of the problems of ageing of reinforced concrete shell structure atmospheric coolers. The exposure conditions are particularly favourable to the induction and development of degradation which, because of the thinness of the reinforced concrete can compromise the stability and the durability of coolers. The study will be axed on the link between the specific characteristics of coolers from the point of view of operation, design and environment, also the durability of reinforced concrete. The set of factors exerting their influence on the reinforced concrete of the shell structure (condensates, rain water, temperature and humidity gradients, dynamic loads, weathering, etc.) is particularly complex. The principal degradation reactions involved are classified according to the chemical and physical action on concrete and on the reinforcement. Particular emphasis is placed on the analysis of degradation processes and the influence of the characteristics of the materials and of the medium. The aim is to determine the mechanisms which present the greatest risk for coolers. The interaction between the degradation to concrete and the change in mechanical characteristics is also studied [fr