WorldWideScience

Sample records for nanocrystalline silver particles

  1. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    Energy Technology Data Exchange (ETDEWEB)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Tomašević-Ilić, Tijana D., E-mail: tommashev@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Zarubica, Aleksandra R., E-mail: zarubica2000@yahoo.com [Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš (Serbia); Dimitrijević, Suzana, E-mail: suzana@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Budimir, Milica D., E-mail: mickbudimir@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Vranješ, Mila R., E-mail: mila@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Šaponjić, Zoran V., E-mail: saponjic@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2014-12-15

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical and morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.

  2. Size dependence of the optical spectrum in nanocrystalline silver

    International Nuclear Information System (INIS)

    Taneja, Praveen; Ayyub, Pushan; Chandra, Ramesh

    2002-01-01

    We report a detailed study of the optical reflectance in sputter-deposited, nanocrystalline silver thin films in order to understand the marked changes in color that occur with decreasing particle size. In particular, samples with an average particle size in the 20 to 35 nm range are golden yellow, while those with a size smaller than 15 nm are black. We simulate the size dependence of the observed reflection spectra by incorporating Mie's theory of scattering and absorption of light in small particles, into the bulk dielectric constant formalism given by Ehrenreich and Philipp [Phys. Rev. 128, 1622 (1962)]. This provides a general method for understanding the reflected color of a dense collection of nanoparticles, such as in a nanocrystalline thin film. A deviation from Mie's theory is observed due to strong interparticle interactions

  3. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, P; Mukherjee, P K; Kale, S P [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Roy, M; Mandal, B P; Tyagi, A K [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dey, G K [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ghatak, J [Institute of Physics, Bhubaneswar 751005 (India)], E-mail: sharadkale@gmail.com

    2008-02-20

    A controlled and up-scalable biosynthetic route to nanocrystalline silver particles with well-defined morphology using cell-free aqueous filtrate of a non-pathogenic and commercially viable biocontrol agent Trichoderma asperellum is being reported for the first time. A transparent solution of the cell-free filtrate of Trichoderma asperellum containing 1 mM AgNO{sub 3} turns progressively dark brown within 5 d of incubation at 25 deg. C. The kinetics of the reaction was studied using UV-vis spectroscopy. An intense surface plasmon resonance band at {approx}410 nm in the UV-vis spectrum clearly reveals the formation of silver nanoparticles. The size of the silver particles using TEM and XRD studies is found to be in the range 13-18 nm. These nanoparticles are found to be highly stable and even after prolonged storage for over 6 months they do not show significant aggregation. A plausible mechanism behind the formation of silver nanoparticles and their stabilization via capping has been investigated using FTIR and surface-enhanced resonance Raman spectroscopy.

  4. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum

    International Nuclear Information System (INIS)

    Mukherjee, P; Mukherjee, P K; Kale, S P; Roy, M; Mandal, B P; Tyagi, A K; Dey, G K; Ghatak, J

    2008-01-01

    A controlled and up-scalable biosynthetic route to nanocrystalline silver particles with well-defined morphology using cell-free aqueous filtrate of a non-pathogenic and commercially viable biocontrol agent Trichoderma asperellum is being reported for the first time. A transparent solution of the cell-free filtrate of Trichoderma asperellum containing 1 mM AgNO 3 turns progressively dark brown within 5 d of incubation at 25 deg. C. The kinetics of the reaction was studied using UV-vis spectroscopy. An intense surface plasmon resonance band at ∼410 nm in the UV-vis spectrum clearly reveals the formation of silver nanoparticles. The size of the silver particles using TEM and XRD studies is found to be in the range 13-18 nm. These nanoparticles are found to be highly stable and even after prolonged storage for over 6 months they do not show significant aggregation. A plausible mechanism behind the formation of silver nanoparticles and their stabilization via capping has been investigated using FTIR and surface-enhanced resonance Raman spectroscopy

  5. Theoretical study on recoilless fractions of simple cubic monatomic nanocrystalline particles

    International Nuclear Information System (INIS)

    Huang Jianping; Wang Luya

    2002-01-01

    Recoilless fractions of simple cubic monatomic nanocrystalline particles are calculated by using displacement-displacement Green's function. The numerical results show that the recoilless fractions on the surface of monatomic nanocrystalline particles are smaller than those in the inner, and they decrease when the particle size increase, the recoilless fractions of whole monatomic nanocrystalline particles increase when the particle size increase. These effects are more evident when the temperature is higher

  6. In vitro behaviour of nanocrystalline silver-sputtered thin films

    International Nuclear Information System (INIS)

    Piedade, A P; Vieira, M T; Martins, A; Silva, F

    2007-01-01

    Silver thin films were deposited with different preferential orientations and special attention was paid to the bioreactivity of the surfaces. The study was essentially focused on the evaluation of the films by x-ray diffraction (XRD), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron probe microanalysis (EPMA) and contact angle measurements. The deposited thin films were characterized before and after immersion in S-enriched simulated human plasma in order to estimate the influence of the preferential crystallographic orientation on the in vitro behaviour. Silver thin films with and without (111) preferential crystallographic orientation were deposited by r.f. magnetron sputtering to yield nanocrystalline coatings, high compact structures, very hydrophobic surfaces and low roughness. These properties reduce the chemisorption of reactive species onto the film surface. The in vitro tests indicate that silver thin films can be used as coatings for biomaterials applications

  7. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  8. High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2015-01-01

    Roč. 627, March (2015), s. 326-332 ISSN 0921-5093 Institutional support: RVO:61389021 Keywords : Nano-crystalline material * Selective leaching * Silver * Spark plasma sintering * Strength Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.647, year: 2015 http://dx.doi.org/10.1016/j.msea.2015.01.014

  9. Optical properties and quantum confinement of nanocrystalline II-IV semiconductor particles

    NARCIS (Netherlands)

    Dijken, Albert van

    1999-01-01

    In this thesis, experiments are described that were performed on suspensions of nanocrystalline II-IV semiconductor particles.The object of this research is to study quantum size effects in relation to the luminescence properties of these particles. A pre-requisite for performing studies of

  10. Electroless silver coating of rod-like glass particles.

    Science.gov (United States)

    Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon

    2008-09-01

    An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.

  11. Phase-transfer and film formation of silver nanoparticles.

    Science.gov (United States)

    Sarkar, Anjana; Chadha, Ridhima; Biswas, Nandita; Mukherjee, Tulsi; Kapoor, Sudhir

    2009-04-01

    In this article, a simple method for either transfer of silver nanoparticles from formamide to chloroform or to form a film at their interface is demonstrated. The transfer of the particles is a two-step size-dependent process. The size distribution of the colloidal hydrophobic silver particles in chloroform was almost the same as that before its transfer. Particles can be isolated by evaporation of chloroform. During evaporation, the hydrophobic particles become hydrophilic (charged) due to the formation of bilayer of CTAB over their surface. The isolated particles can be re-dispersed easily in polar solvents such as water and methanol. Nanocrystalline film of Ag is also prepared at the formamide-chloroform interface using suitable stabilizers in two immiscible layers. The nanocrystals have been characterized by various microscopic and spectroscopic techniques. The free standing film could be easily transferred on solid support.

  12. Studying Of Preparation Silver Nano-Particles Using Spinning Disc Reactor

    International Nuclear Information System (INIS)

    Hoang Van Duc; Nguyen Thanh Chung; Tran Ngoc Ha; Ho Minh Quang; Nguyen Thi Thuc Phuong

    2014-01-01

    Preparation of silver nano-particles using spinning disc reactor has been investigated. The effects of technological factors and experimental conditions such as: concentrations of AgNO 3 , glucose, PVP, spinning speed, ect. on quality of nano-silver particles have been studied. With experimental conditions: rotation speed of 2000 rpm, weight rate of m PVP :m AgNO 3 = 1, AgNO 3 concentration of 0.01 M, glucose concentration of 0.02 M, silver particles of about 12 nm were obtained and the nano-silver solution were stable for more than 40 days. (author)

  13. Improving the Vase life of Cut Carnation ‘Tempo’ (Dianthus carryophyllusL. Flower by Silver Thiosulphate and Silver Nano-Particles

    Directory of Open Access Journals (Sweden)

    D. Hashemabadi

    2014-08-01

    Full Text Available Nanometer-sized silver particle can be act as an anti-microbial compound. Thus, in this research, the efficacy of silver thiosulphate and silver nano-particles as antimicrobial agents in extending the vase-life of cut carnation flowers was evaluated. A factorial experiment carried out based on randomized completely blocks design with two factors: silver thiosulphate (0, 0.1, 0.2 and 0.3 mM and silver nano-particles (0, 5, 10 and 15 mg/L. Mean comparison of the data showed that the combined treatments of 0.3 mM silver thiosulphate + 15 mg/L silver nano-particles had the highest vase life, water uptake and super oxide dismutase enzyme. Thus, the mentioned above treatment was proposed to increase prolong vase life and improvement of water relations and control of stem end blockage. Based to results of this study, silver thiosulphate and silver nano-particles can be used for increasing postharvest longevity of cut carnation "Tempo".

  14. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    Science.gov (United States)

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Silver release from coated particle fuel

    International Nuclear Information System (INIS)

    Brown, P.E.; Nabielek, H.

    1977-03-01

    The fission product Ag-110 m released from coated particles can be the dominant source of radioactivity from the core of a high temperature reactor in the early stages of the reactor life and possibly limits the accessability of primary circuit components. It can be shown that silver is retained in oxide fuel by a diffusion process (but not in carbide or carbon-diluted fuel) and that silver is released through all types of pyrocarbon layers. The retention in TRISO particles is variable and seems to be mainly connected with operating temperature and silicon carbide quality. (orig.) [de

  16. Preparation of spherical silver particles for solar cell electronic paste with gelatin protection

    International Nuclear Information System (INIS)

    Ao Yiwei; Yang Yunxia; Yuan Shuanglong; Ding Lihua; Chen Guorong

    2007-01-01

    Spherical silver particles used in electronic paste for solar cell were prepared using the chemical reduction method with ammonia as a complex agent, hydrazine hydrate as a reducing agent, and gelatin as a protective agent. The gelatin protective mechanism in the preparing process of spherical silver particles was studied. Observations of SEM and results of laser particle size analysis and ultraviolet absorption spectra demonstrate the formation of the coordinative complex of silver ions with gelatin in aqueous solution which accelerated the reduction of silver ions. Moreover, gelatin can promote the nucleation of the metallic silver particles, thus beneficiating availability of the monodisperse spherical silver particles

  17. Fermi level equilibration between colloidal lead and silver particles in aqueous solution

    International Nuclear Information System (INIS)

    Henglein, A.; Holzwarth, A.; Mulvaney, P.

    1992-01-01

    Colloidal solutions of lead and silver were mixed under the exclusion of air. The equilibration of the Fermi levels in the two different types of metal particles took place over a few days at room temperature. The equilibration took place by the transfer of lead atoms from lead to silver particles until the latter carried a lead mantle of one to two monolayers. This could be concluded from the observed changes in the optical spectrum of the silver particles. The results are discussed in terms of two mechanisms: (1) Pb atom transfer following heterocoagulation of the lead and silver particles and (2) electron transfer during Brownian encounters, followed by Pb 2+ desorption from the lead particles and subsequent Pb 2+ reductor on the silver particles carrying the transferred electrons. Traces of methylviologen, MV 2+ , in the solution drastically increase the rate of equilibration; this is explained by a relay mechanism in which electrons in the lead particles are first picked up by MV 2+ and are then transferred from MV + to the silver particles. 2 refs., 4 figs

  18. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    Energy Technology Data Exchange (ETDEWEB)

    Toparli, Cigdem [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf (Germany); Ebin, Burçak [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Nuclear Chemistry and Industrial Material Recycling, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, S-412 96 Gothenburg (Sweden); Gürmen, Sebahattin, E-mail: gurmen@itu.edu.tr [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey)

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size. - Highlights: • Ternary FeNiCo alloy nanocrystalline particles were synthesized in a single step. • Cubic crystalline structure and spherical morphology was observed by XRD, SEM and TEM investigations. • The analysis of magnetic properties indicates the soft magnetic features of particles.

  19. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon [Department of Materials Science and Engineering, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of); Song, Min-Jung, E-mail: dslim@korea.ac.kr [Center for Advanced Device Materials, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of)

    2010-12-17

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a {zeta}-potential and average particle size of - 60.5 mV and {approx} 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 {+-} 0.4 x 10{sup 11} cm{sup -2}) and smooth surface were consequently fabricated.

  20. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    International Nuclear Information System (INIS)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon; Song, Min-Jung

    2010-01-01

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a ζ-potential and average particle size of - 60.5 mV and ∼ 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 ± 0.4 x 10 11 cm -2 ) and smooth surface were consequently fabricated.

  1. Dispersion of silver particles in aqueous solutions visualized by polarography/voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, Andrey [Department of General and Inorganic Chemistry, Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Heyrovsky, Michael [J.Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, 182 23 Prague (Czech Republic)], E-mail: heyrovsk@jh-inst.cas.cz

    2009-11-01

    The State of silver particles in aqueous dispersions and the course of their coagulation can be followed on voltammetric curves recorded with hanging mercury drop electrode. Sharp irregular cathodic current peaks produced by partial electroreduction of the species adsorbed on the surface of silver particles during their fortuitous impingements upon the electrode surface appear in time sequence on the curves. A change in the electrochemical behavior of silver sols in the time course of particles aggregation and growth was interpreted in agreement with the data of UV-vis spectroscopy and electron microscopy observations.

  2. Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane

    Directory of Open Access Journals (Sweden)

    Deepen Paul

    2013-12-01

    Full Text Available Silver-particle-incorporated polyurethane films were evaluated for antimicrobial activity towards two different bacteria: Escherichia coli (E. coli and Staphylococcus aureus (S. aureus. Distributed silver particles sourced from silver nitrate, silver lactate and preformed silver nanoparticles were mixed with polyurethane (PU and variously characterized by field emission scanning electron microscopy (FESEM, fourier transform infra-red (FTIR spectroscopy, X-ray diffraction (XRD and contact angle measurement. Antibacterial activity against E.coli was confirmed for films loaded with 10% (w/w AgNO3, 1% and 10% (w/w Ag lactate and preformed Ag nanoparticles. All were active against S. aureus, but Ag nanoparticles loaded with PU had a minor effect. The apparent antibacterial performance of Ag lactate-loaded PU is better than other Ag ion-loaded films, revealed from the zone of inhibition study. The better performance of silver lactate-loaded PU was the likely result of a porous PU structure. FESEM and FTIR indicated direct interaction of silver with the PU backbone, and XRD patterns confirmed that face-centred cubic-type silver, representative of Ag metal, was present. Young’s modulus, tensile strength and the hardness of silver containing PU films were not adversely affected and possibly marginally increased with silver incorporation. Dynamic mechanical analysis (DMA indicated greater thermal stability.

  3. Effect of silver addition on the properties of combustion synthesized nanocrystalline LiCoO2

    International Nuclear Information System (INIS)

    Ghosh, Paromita; Mahanty, S.; Basu, R.N.

    2008-01-01

    Nanocrystalline (∼50 nm) LiCoO 2 powders containing 0-10 mol% of Ag have been prepared by combustion synthesis using citrate-nitrate combustion route. Thermal analyses show a sharp decomposition of the gel at ∼177 deg. C for pristine LiCoO 2 . With addition of silver, the decomposition becomes sluggish and it completes only above 430 deg. C. X-ray powder diffraction analyses show an increase in lattice parameter, c, with increasing Ag content suggesting the occupation of Ag within LiCoO 2 interlayer spacings. Transmission electron microscopy indicates diffusion of Ag into LiCoO 2 grains. It has been observed that adding 1.0 mol% silver increases the room temperature electrical conductivity by more than two orders of magnitude (1.5 x 10 -3 S cm -1 ). Galvanostatic charge-discharge profiles of coin cells fabricated with the synthesized powders show a two-fold enhancement in the discharge capacity for 1.0 mol% Ag-added LiCoO 2 cathode (140 mAh g -1 ) compared to that for pristine LiCoO 2 (70 mAh g -1 )

  4. Synthesis and Oxidation of Silver Nano-particles

    Science.gov (United States)

    2011-01-01

    solution (20%wt propyl alcohol, 5%wt hydrochloric acid and 5%wt stannous chloride in water). Scheme 1b and c illustrate the sensitization and silver... Synthesis and Oxidation of Silver Nano-particles Hua Qi*, D. A. Alexson, O.J. Glembocki and S. M. Prokes* Electronics Science and Technology...energy dispersive x-ray (EDX) techniques. The results Quantum Dots and Nanostructures: Synthesis , Characterization, and Modeling VIII, edited by Kurt

  5. Radiative decay of surface plasmons on nonspherical silver particles

    International Nuclear Information System (INIS)

    Little, J.W.; Ferrell, T.L.; Callcott, T.A.; Arakawa, E.T.

    1982-01-01

    We have studied the radiation emitted by electron-bombarded silver particles. Electron micrographs have shown that the particles, obtained by heating thin (5 nm) silver films, were oblate (flattened) with minor axes aligned along the substrate normal. The characteristic wavelength obtained by bombarding these particles with 15-keV electrons was found to vary with angle of photon emission. We have modeled this wavelength shift as a result of the mixture of radiation from dipole and quadrupole surface-plasmon oscillations on oblate spheroids. Experimental observations of the energy, polarization, and angular distribution of the emitted radiation are in good agreement with theoretical calculations

  6. Structural properties of silver doped hydroxyapatite and their biocompatibility

    International Nuclear Information System (INIS)

    Ciobanu, C.S.; Iconaru, S.L.; Pasuk, I.; Vasile, B.S.; Lupu, A.R.; Hermenean, A.; Dinischiotu, A.; Predoi, D.

    2013-01-01

    The aim of this study was to obtain a novel hydroxyapatite-based material with high biocompatibility. The structural properties of the samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The X-ray diffraction studies revealed the characteristic peaks of hydroxyapatite in each sample. Other phases or impurities were not observed. The scanning electron microscopy observations suggest that the doping components have no influence on the surface morphology of the samples, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O) and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) and X-ray Photoelectron Spectroscopy analyses. Nanocrystalline silver doped HAp stimulated viability and potentiated the activation of murine macrophages. - Highlights: ► A simple and low cost methodology to obtain Ag:HAp powders was described in this paper. ► Nanocrystalline Ag:HAp with different x Ag from can be obtained at 100 °C by co-precipitation. ► The study aims to understand the effects of Ag:HAp NPs with different x Ag on macrophage cells

  7. Metallic conductivity transition of carbon nanotube yarns coated with silver particles

    International Nuclear Information System (INIS)

    Zhang, Daohong; Zhang, Yunhe; Miao, Menghe

    2014-01-01

    Dry spun carbon nanotube yarns made from vertically aligned multiwalled carbon nanotube forests possess high mechanical strength and behave like semiconductors with electrical conductivity of the order of 4 × 10 4 S m −1 . Coating a submicron-thick film of silver particle-filled polymer on the surface increased the electrical conductivity of the carbon nanotube yarn by 60-fold without significantly sacrificing its mechanical strength. The transitional characteristics of the silver-coated carbon nanotube yarn were investigated by varying the take-up ratio of the silver coating. A step change in conductivity was observed when the silver content in the coated yarn was between 7 and 10 wt% as a result of the formation of connected silver particle networks on the carbon nanotube yarn surface. (papers)

  8. Synthesis of Silver Particle onto Bamboo Charcoal by Tripropylene Glycol and the Composites Characterization

    Directory of Open Access Journals (Sweden)

    Tzu Hsuan Chiang

    2014-01-01

    Full Text Available In this study, tripropylene glycol was used as a reducting agent in the polyol process to reduce silver nitrate to the form of silver particles deposited onto the surface of bamboo charcoal (BC. The reduction temperature and time were critical parameters as they control the size of the silver particles formed as well as their distribution onto the surface of the BC. The reduction of silver nitrate by the tripropylene glycol occurred at a temperature of 120 °C for 3 h, and the silver particles, which had a face-centered cubic lattice structure, were distributed onto the surface of the BC. These synthesis conditions should work well with tripropylene glycol as reducing agent that can be helpful in the convenient preparation of Ag/BC particles. When Ag/BC powders were manufactured using 3 g of silver nitrate content, the prepared composites had the largest thermal conductivity at 0.2490 W/(m·K.

  9. Rod-shaped silica particles derivatized with elongated silver nanoparticles immobilized within mesopores

    Energy Technology Data Exchange (ETDEWEB)

    Mnasri, Najib [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Science, University of Gafsa, 2112 Gafsa (Tunisia); Charnay, Clarence; Ménorval, Louis-Charles de [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Elaloui, Elimame [Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Science, University of Gafsa, 2112 Gafsa (Tunisia); Zajac, Jerzy, E-mail: jerzy.zajac@umontpellier.fr [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France)

    2016-11-15

    Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO{sub 3} reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM and TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV–visible spectroscopy. {sup 129}Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores. - Highlights: • Mesoporous monodisperse submicron-sized silica rods were achieved. • Silver nanoparticles were located lengthwise within the intra-particle mesopores. • Textural and plasmonic properties of particles studied by {sup 129}Xe NMR and UV–Vis.

  10. Preparation and mechanical properties of ultra-high-strength nanocrystalline metals

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2015-01-01

    Roč. 15, č. 4 (2015), s. 596-600 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Mechanical properties * Nanocrystalline materials * Selective leaching * Silver * Spark plasma sintering Subject RIV: JG - Metallurgy

  11. Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles.

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca(10-x)Ag(x)(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  12. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  13. Influence of nano-fiber membranes on the silver ions released from hollow fibers containing silver particles

    Directory of Open Access Journals (Sweden)

    Li Huigai

    2016-01-01

    Full Text Available Polyether sulfone was dissolved into dimethylacetamide with the concentration of 20% to prepare a uniform solution for fabrication of nanofiber membranes by bubble electrospinning technique. Morphologies of the nanofiber film were carried out with a scanning electron microscope. The influence on the silver ions escaped from hollow fiber loaded with silver particles was exerted by using different release liquid. The water molecular clusters obtained from the nanofiber membranes filter can slow down the release of silver ions. However, the effect of slowing was weakened with the time increasing. In the end, the trend of change is gradually consistent with the trend of release of silver ions in the deionized water.

  14. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dexin; Zhang, Yan [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China); Bessho, Takeshi [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio [Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kang, Zhixin, E-mail: zxkang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China)

    2015-09-15

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method.

  15. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    International Nuclear Information System (INIS)

    Chen, Dexin; Zhang, Yan; Bessho, Takeshi; Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio; Kang, Zhixin

    2015-01-01

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method

  16. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO46(OH2 nanoparticles (Ag:HAp-NPs for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  17. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

  18. Dispersion of silver particles in aqueous solutions visualized by polarography/voltammetry

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2009-01-01

    Roč. 54, č. 26 (2009), s. 6264-6268 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : silver ions * silver particles * drop ping mercury electrode * hanging mercury drop electrode Subject RIV: CG - Electrochemistry Impact factor: 3.325, year: 2009

  19. Reticulated vitreous carbon doped with nano silver metallic particles for antimicrobial inhibitory application

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Paula Silva; Oishi, Silvia; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro, E-mail: silvadeoliveira.ana@gmail.com [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Ito, Cristiane Yoga; Goncalves, Emerson Sarmento [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: The development of composites for biocides application has attracted considerable attention in several research fields. Silver nanoparticles is a very know antimicrobial material.Manufacturing composite materials with high surface area and biocides characteristics is challenge. In this work was studied the morphological and structural characterization of silver nanoparticles dispersed in a structure of carbon Reticulated Vitreous (CVR), treated at different temperatures, resulting in a nanocomposite.The silver impregnation technique in carbon materials is not a simple work due to its chemical stability. The objective in this study was to evaluate the deposition of silver nanoparticles on the CVR as a composite material for microorganisms inhibition or eliminate. The characterization of the material will be carried out using the Raman spectroscopy, spectroscopy Photoelectron Excited by X-rays, diffraction X-ray-EDS.Through the results it was concluded that the CRV treated at 1300 ° C showed the highest concentration of silver on its structure. These results potentiate the deposition of silver nanoparticles on CRV structures and disorganized with large concentration of active sites to anchor silver particles. In addition, the average size of the deposited particles decreases due to heat treatment. (author)

  20. Reticulated vitreous carbon doped with nano silver metallic particles for antimicrobial inhibitory application

    International Nuclear Information System (INIS)

    Oliveira, Ana Paula Silva; Oishi, Silvia; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Ito, Cristiane Yoga; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: The development of composites for biocides application has attracted considerable attention in several research fields. Silver nanoparticles is a very know antimicrobial material.Manufacturing composite materials with high surface area and biocides characteristics is challenge. In this work was studied the morphological and structural characterization of silver nanoparticles dispersed in a structure of carbon Reticulated Vitreous (CVR), treated at different temperatures, resulting in a nanocomposite.The silver impregnation technique in carbon materials is not a simple work due to its chemical stability. The objective in this study was to evaluate the deposition of silver nanoparticles on the CVR as a composite material for microorganisms inhibition or eliminate. The characterization of the material will be carried out using the Raman spectroscopy, spectroscopy Photoelectron Excited by X-rays, diffraction X-ray-EDS.Through the results it was concluded that the CRV treated at 1300 ° C showed the highest concentration of silver on its structure. These results potentiate the deposition of silver nanoparticles on CRV structures and disorganized with large concentration of active sites to anchor silver particles. In addition, the average size of the deposited particles decreases due to heat treatment. (author)

  1. Entrapment of dye molecules within submicron silver particles

    Energy Technology Data Exchange (ETDEWEB)

    Yosef, Itzik; Avnir, David, E-mail: david@chem.ch.huji.ac.il [Hebrew University of Jerusalem, Institute of Chemistry (Israel)

    2011-09-15

    We describe a method for the preparation of metal-organic composites submicron particles. Specifically, the preparation of silver particle-clusters 150-200 nm in size, doped with an organic dye Congo-red, is reported. The use of sodium citrate coupled with sodium hypophosphite facilitated the formation of these particle-clusters, which were fully characterized by TEM analysis, Zeta potential and size measurements, scanning electron microscopy, UV-Vis measurements, and thermogravimetric analysis. The latter reveals a catalytic action of the metal on the thermal oxidative decomposition of the entrapped dye. The use of these particles to obtain dense thin metallic films was demonstrated by the coating of ITO glass.

  2. Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode

    OpenAIRE

    Abdelfettah Farahi; Mounia Achak; Laila El Gaini; Moulay Abderrahim El Mhammedi; Mina Bakasse

    2015-01-01

    Carbon paste electrodes (CPEs) modified with silver particles present an interesting tool in the determination of paraquat (PQ) using square wave voltammetry. Metallic silver particle deposits have been obtained via electrochemical deposition in acidic media using cyclic voltammetry. Scanning electron microscopy and X-ray diffraction measurements show that the silver particles are deposited onto carbon surfaces in aggregate form. The response of PQ with modified electrode (Ag-CPE) related to ...

  3. Synthesis and characterization of nanophased silver tungstate

    Indian Academy of Sciences (India)

    nanoparticles were examined with scanning electron microscope (A Lieca Stereoscan. 440 model SEM) at an ... SEM image of rod-like nanocrystalline silver tungstate. Figure 3. ... Thermal analysis shows that the compound is thermally stable ...

  4. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation

    International Nuclear Information System (INIS)

    Naghavi, Kazem; Saion, Elias; Rezaee, Khadijeh; Yunus, Wan Mahmood Mat

    2010-01-01

    Colloidal silver nanoparticles were synthesized by γ-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40x10 -4 and 1.84x10 -3 M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a 60 Co γ source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV-vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak λ max blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.

  5. Thickness- and Particle-Size-Dependent Electrochemical Reduction of Carbon Dioxide on Thin-Layer Porous Silver Electrodes.

    Science.gov (United States)

    Zhang, Lin; Wang, Zhiyong; Mehio, Nada; Jin, Xianbo; Dai, Sheng

    2016-03-08

    The electrochemical reduction of CO2 can not only convert it back into fuels, but is also an efficient manner to store forms of renewable energy. Catalysis with silver is a possible technology for CO2 reduction. We report that in the case of monolithic porous silver, the film thickness and primary particle size of the silver particles, which can be controlled by electrochemical growth/reduction of AgCl film on silver substrate, have a strong influence on the electrocatalytic activity towards CO2 reduction. A 6 μm thick silver film with particle sizes of 30-50 nm delivers a CO formation current of 10.5 mA cm(-2) and a mass activity of 4.38 A gAg (-1) at an overpotential of 0.39 V, comparable to levels achieved with state-of-the-art gold catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)

  7. Effects of gamma irradiation and silver nano particles on microbiological characteristics of saffron, using hurdle technology.

    Science.gov (United States)

    Hamid Sales, E; Motamedi Sedeh, F; Rajabifar, S

    2012-03-01

    Saffron, a plant from the Iridaceae family, is the world's most expensive spice. Gamma irradiation and silver nano particles whose uses are gradually increasing worldwide, have positive effects on preventing decay by sterilizing the microorganisms and by improving the safety without compromising the nutritional properties and sensory quality of the foods. In the present study combination effects of gamma irradiation and silver nano particles packaging on the microbial contamination of saffron were considered during storage. A combination of hurdles can ensure stability and microbial safety of foods. For this purpose, saffron samples were packaged by Poly Ethylene films that posses up to 300 ppm nano silver particles as antimicrobial agents and then irradiated in cobalt-60 irradiator (gamma cell PX30, dose rate 0.55 Gry/Sec) to 0, 1, 2,3 and 4 kGy at room temperature. The antimicrobial activities against Total Aerobic Mesophilic Bacteria, Entrobacteriace, Escherichia Coli and Clostridium Perfringines were higher in the irradiated samples, demonstrating the inhibition zone for their growth. Irradiation of the saffron samples packaged by Poly Ethylene films with nano silver particles showed the best results for decreasing microbial contamination at 2 kGy and for Poly Ethylene films without silver nano particles; it was 4 kGy.

  8. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    Science.gov (United States)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  9. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Naghavi, Kazem, E-mail: Kazem.naghavi@gmail.co [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia); Saion, Elias [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia); Rezaee, Khadijeh [Department of Nuclear Engineering, Faculty of Modern Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Yunus, Wan Mahmood Mat [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia)

    2010-12-15

    Colloidal silver nanoparticles were synthesized by {gamma}-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40x10{sup -4} and 1.84x10{sup -3} M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a {sup 60}Co {gamma} source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV-vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak {lambda}{sub max} blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.

  10. Nanostructural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nanosized Particles of Both Starch and Silver

    Directory of Open Access Journals (Sweden)

    A. Hebeish

    2013-01-01

    Full Text Available Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nanosized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM, particle size analyzer (PS, Polydispersity index (PdI, Zeta potential (ZP, XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm. The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs.

  11. [ALEA study. Treatment of chronic wounds infected by the application of silver dressings nanocrystalline combined with dressings hydrocellular].

    Science.gov (United States)

    Verdú Soriano, José; Nolasco Bonmati, Andreu

    2010-10-01

    This study was conducted with the objective to assess, in real clinical conditions in primary care and geriatric centers, application and utility of nanocrystalline silver dressings dressings combined with hydrocellular in relation to the development during 20 shifts dressing or complete healing of the characteristics of the lesions included in the study Prospective observational multicenter open, repeated measures. It could include injuries of different etiologies (pressure ulcers stage 11-111, lower limb and traumatic wounds or surgical origin), with clinical signs of local infection (at least three of the following: redness, purulent discharge, heat, edema and pain). Only one wound was included per patient. An analysis of effectiveness by intention to treat all lesions included. We recruited 103 patients who met the inclusion criteria but were collected in which 77 patients were used for nanocrystalline silver dressings in some phase of the study, They had a median of 80 years of age and 58.4% were women. By type of injury: 53.2% pressure ulcers, 31.2% lower extremity ulcers and 14.3% traumatic or surgical wounds. Over 50% of the lesions was older than eight months and a larger area of 22.75 cm2. At first, 70.1% had redness, purulent discharge 64.9%, 37.7% heat edema 42.9% and 65.8% pain. Remained in the study a median of 42.5 days at a rate of change of dressing every 2.5. During this time in 96.1% of the lesions were removed for clinical signs of local infection in a statistically significant (p < or = 0.001). 27.3% healed from injuries and those not healed, 92.9% experienced improvement, and its healing curves were statistically significant (p < 0.05). 92.2% of clinicians assessed treatment with these products as good or excellent. The use of the products used in this study consistent with the concept and PLH TIME, has proved useful in this type of injury reducing the clinical signs of infection, promoting granulation tissue and necrotic removing the burden

  12. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds.

    Science.gov (United States)

    Luna, Carlos; Chávez, V H G; Barriga-Castro, Enrique Díaz; Núñez, Nuria O; Mendoza-Reséndez, Raquel

    2015-04-15

    Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Nano structural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nano sized Particles of Both Starch and Silver

    International Nuclear Information System (INIS)

    Hebeish, A.; El-Rafie, M.H.; El-Sheikh, M.A.; El-Naggar, M.E.

    2013-01-01

    Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs) in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nano sized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM), particle size analyzer (PS), Polydispersity index (PdI), Zeta potential (ZP), XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm). The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs).

  14. Microstructure stability of silver electrodeposits at room temperature

    International Nuclear Information System (INIS)

    Hansen, Karsten; Pantleon, Karen

    2008-01-01

    In situ quantitative X-ray diffraction analysis was used to investigate the kinetics of microstructure evolution at room temperature (self-annealing) in an electrodeposited silver layer. As a function of time at room temperature the as-deposited nanocrystalline microstructure evolved considerably: orientation-dependent grain growth and changes of the preferred grain orientation occurred. It is demonstrated for the first time that self-annealing occurs for electrodeposited silver layers and, hence, is not a unique feature of copper as often suggested

  15. Changes in silver nanoparticles exposed to human synthetic stomach fluid: Effects of particle size and surface chemistry

    International Nuclear Information System (INIS)

    Mwilu, Samuel K.; El Badawy, Amro M.; Bradham, Karen; Nelson, Clay; Thomas, David; Scheckel, Kirk G.; Tolaymat, Thabet; Ma, Longzhou; Rogers, Kim R.

    2013-01-01

    The significant rise in consumer products and applications utilizing the antibacterial properties of silver nanoparticles (AgNPs) has increased the possibility of human exposure. The mobility and bioavailability of AgNPs through the ingestion pathway will depend, in part, on properties such as particle size and the surface chemistries that will influence their physical and chemical reactivities during transit through the gastrointestinal tract. This study investigates the interactions between synthetic stomach fluid and AgNPs of different sizes and with different capping agents. Changes in morphology, size and chemical composition were determined during a 30 min exposure to synthetic human stomach fluid (SSF) using Absorbance Spectroscopy, High Resolution Transmission Electron and Scanning Electron Microscopy (TEM/SEM), Dynamic Light Scattering (DLS), and Nanoparticle Tracking Analysis (NTA). AgNPs exposed to SSF were found to aggregate significantly and also released ionic silver which physically associated with the particle aggregates as silver chloride. Generally, the smaller sized AgNPs (< 10 nm) showed higher rates of aggregation and physical transformation than larger particles (75 nm). Polyvinylpyrrolidone (pvp)-stabilized AgNPs prepared in house behaved differently in SSF than particles obtained from a commercial source despite having similar surface coating and size distribution characteristics. - Highlights: ► Interactions between synthetic stomach fluid (SSF) and silver nanoparticles (AgNPs) are described. ► AgNPs exposed to SSF aggregate and silver chloride are associated with the particle aggregates. ► Smaller AgNPs (< 10 nm) showed higher rates of aggregation and transformation than larger particles (75 nm). ► Polyvinylpyrrolidone-stabilized AgNPs obtained from different sources aggregated at different rates when exposed to SSF

  16. Silver micro- and nano-particles obtained using different glycols as reducing agents and measurement of their conductivity

    Directory of Open Access Journals (Sweden)

    Moudir Naïma

    2016-01-01

    Full Text Available Synthesis of silver micro- and nano-particles for the preparation of conductive pastes for the metallization of solar cells was realized by chemical reduction in the presence and absence of poly(vinyl-pyrrolidone (PVP. Silver nitrate was used as a precursor in the presence of three polyols (ethylene glycol, di-ethylene glycol and propylene glycol tested at experimental temperatures near their boiling points. Six samples were obtained by this protocol. Three silver powders obtained without the use of PVP have a metallic luster appearance; however, the samples produced using an excess of PVP are in the form of stable colloidal dispersions of silver nano-particles. Structural characterizations of samples using a scanning electron microscope and X-ray diffractometer show a good crystallinity and spherical morphology. From DSC and TGA analyses, it was noticed that all the nano-silvers present in the colloidal suspension have the same thermal behavior.

  17. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  18. Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS.

    Science.gov (United States)

    Ramos, K; Gómez-Gómez, M M; Cámara, C; Ramos, L

    2016-05-01

    Silver migration from a commercial baby feeding bottle and a food box containing AgNPs, as confirmed by SEM-EDX analysis, was evaluated using food simulant solutions [i.e., water, 3% (v/v) acetic acid, and 10% and 90% (v/v) ethanol]. Silver release was investigated at temperatures in the 20-70°C range using contact times of up to 10 days. Migration of silver from the food box was in all cases 2 to 3 orders of magnitude higher than that observed for the baby bottle, although the total silver content in the original box material was half of that found in the baby bottle. As expected, for both food containers, silver migration depended on both the nature of the tested solution and the applied conditions. The highest release was observed for 3% acetic acid at 70°C for 2h, corresponding to 62ngdm(2) and 1887ngdm(-2) of silver for the baby bottle and the food box, respectively. Single particle-inductively coupled plasma mass spectrometry (SP-ICPMS) was used to characterise and quantify AgNPs in the food simulants extracts. Sample preparation was optimized to preserve AgNPs integrity. The experimental parameters affecting AgNPs detection, sizing and quantification by SP-ICPMS were also optimised. Analyses of water and acidic extracts revealed the presence of both dissolved silver and AgNPs. Small AgNPs (in the 18-30nm range) and particle number concentrations within the 4-1510 10(6)L(-1) range were detected, corresponding to only 0.1-8.6% of the total silver released from these materials. The only exception was AgNPs migrated into water at 40°C and 70°C from the food box, which accounted for as much as 34% and 69% of the total silver content, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J. [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641 Cluj (Romania); Méndez, Alia [Centro de Química-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, 72530 Puebla (Mexico); Trejo, G., E-mail: gtrejo@cideteq.mx [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico)

    2015-07-01

    Highlights: • Zn/AgPs composites coatings were formed for electrodeposition. • CTAB promotes occlusion of silver particles in the coating. • Zn/AgPs coatings present very good antibacterial activity. - Abstract: Composite coatings consisting of zinc and silver particles (Zn/AgPs) with antibacterial activity were prepared using an electrodeposition technique. The morphology, composition, and structure of the Zn/AgPs composite coatings were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), inductively coupled plasma (ICP) spectrometry, and X-ray diffraction (XRD). The antibacterial properties of the coatings against the microorganisms Escherichia coli as a model Gram-negative bacterium and Staphylococcus aureus as a model Gram-positive bacterium were studied quantitatively and qualitatively. The results revealed that the dispersant cetyltrimethylammonium bromide (CTAB) assisted in the formation of a stable suspension of Ag particles in the electrolytic bath for 24 h. Likewise, a high concentration of CTAB in the electrolytic bath promoted an increase in the number of Ag particles occluded in the Zn/AgPs coatings. The Zn/AgPs coatings that were obtained were compact, smooth, and shiny materials. Antimicrobial tests performed on the Zn/AgPs coatings revealed that the inhibition of bacterial growth after 30 min of contact time was between 91% and 98% when the AgPs content ranged from 4.3 to 14.0 mg cm{sup −3}.

  20. The electrochemical reduction rate of colloidal particles of silver halides as a function of the electrolyte composition

    International Nuclear Information System (INIS)

    Selivanov, V.N.

    1997-01-01

    Influence of silver halide colloid particles concentration (AgI), electrolyte composition and signs of the electrode and colloids charges on their reduction threshold current densities has been studied. It has been discovered that reduction threshold current densities of positively charged colloid particles exceed by a factor of 3-4 the threshold densities of silver ions diffusion current. It is shown that the threshold density of colloids reduction current is limited by the rates of their electrophoretic transfer and diffusion

  1. Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Ghosh, B.; Pradhan, S.K.

    2010-01-01

    Nanocrystalline TiC is produced by mechanical milling the stoichiometric mixture of α-Ti and graphite powders at room temperature under argon atmosphere within 35 min of milling through a self-propagating combustion reaction. Microstructure characterization of the unmilled and ball-milled samples was done by both X-ray diffraction and electron microscopy. It reveals the fact that initially graphite layers were oriented along and in the course of milling, thin graphite layers were distributed evenly among the grain boundaries of α-Ti particles. Both α-Ti and TiC lattices contain stacking faults of different kinds. The grain size distribution obtained from the Rietveld's method and electron microscopy studies ensure that nanocrystalline TiC particles with almost uniform size (∼13 nm) can be prepared by mechanical alloying technique. The result obtained from X-ray analysis corroborates well with the microstructure characterization of nanocrystalline TiC by electron microscopy.

  2. Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite

    Science.gov (United States)

    Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun

    2016-02-01

    Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.

  3. Compaction simulation of nano-crystalline metals with molecular dynamics analysis

    Directory of Open Access Journals (Sweden)

    Khoei A.R.

    2016-01-01

    Full Text Available The molecular-dynamics analysis is presented for 3D compaction simulation of nano-crystalline metals under uniaxial compaction process. The nano-crystalline metals consist of nickel and aluminum nano-particles, which are mixed with specified proportions. The EAM pair-potential is employed to model the formation of nano-particles at different temperatures, number of nano-particles, and mixing ratio of Ni and Al nano-particles to form the component into the shape of a die. The die-walls are modeled using the Lennard-Jones inter-atomic potential between the atoms of nano-particles and die-walls. The forming process is model in uniaxial compression, which is simulated until the full-dense condition is attained at constant temperature. Numerical simulations are performed by presenting the densification of nano-particles at different deformations and distribution of dislocations. Finally, the evolutions of relative density with the pressure as well as the stress-strain curves are depicted during the compaction process.

  4. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles

    International Nuclear Information System (INIS)

    Schwarz, Florian P.

    2010-01-01

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  5. Effects of precursors on the crystal structure and photoluminescence of CdS nanocrystalline

    International Nuclear Information System (INIS)

    Fu Zuoling; Zhou Shihong; Shi Jinsheng; Zhang Siyuan

    2005-01-01

    A series of cadmium sulfide (CdS) nanocrystalline were synthesized by precipitation from a mixture of aqueous solutions of cadmium salts and sulfur salts without adding any surface-termination agent. Their crystal structures and particle sizes were determined by X-ray diffraction (XRD). The CdS nanocrystalline precipitated from different precursors exhibited three cases: cubic phase, hexagonal phase and a hybrid of cubic and hexagonal phases. The photoluminescence (PL) of cadmium salt precursors and CdS nanocrystalline is also analyzed. Similar spectral band structure of cadmium salt precursors and CdS nanocrystalline is found. The PL of 3.4, 2.4 and 2.0 nm sized CdS nanocrystalline with the same crystal structure indicated quantum confinement effect

  6. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  7. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    International Nuclear Information System (INIS)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok; Yoo, Suk Jae; Lee, Bonju; Hong, MunPyo

    2011-01-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  8. Facile synthesis of silver immobilized-poly(methyl methacrylate)/polyethyleneimine core-shell particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Jenjob, Somkieath [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400 (Thailand); Tharawut, Teeralak [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Sunintaboon, Panya, E-mail: panya.sun@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400 (Thailand); Center for Alternative Energy, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand)

    2012-10-01

    A facile route to synthesize silver-embedded-poly(methyl methacrylate)/polyethyleneimine (PMMA/PEI-Ag) core-shell particle composites was illustrated in this present work. PMMA/PEI core-shell particle templates were first prepared by a surfactant-free emulsion polymerization. PEI on the templates' surface was further used to complex and reduce Ag{sup +} ions (from silver nitrate solution) to silver nanoparticles (AgNPs) at ambient temperature, resulting in the PMMA/PEI-Ag particle composites. The formation of AgNPs was affected by the pHs of the reaction medium. The pH of reaction medium at 6.5 was optimal for the formation of PMMA/PEI-Ag with good colloidal stability, which was confirmed by size and size distribution, FTIR spectroscopy, UV-vis spectroscopy and X-ray diffraction. Moreover, the amount of AgNO{sub 3} solution (4.17-12.50 g) was found to affect the formation of AgNPs. Transmission electron microscopy (TEM) indicated that the AgNPs were incorporated in the PMMA/PEI core-shell matrix, and had 6-10 nm in diameter. AgNPs immobilized on PMMA/PEI core-shell particles were also investigated by energy dispersive X-ray spectroscopy analysis mode extended from scanning electron microscopy (SEM/EDS). Furthermore, the presence of AgNPs was found to influence the thermal degradation behavior of PMMA/PEI particle composites as observed through thermogravimetric analysis (TGA). Highlights: Black-Right-Pointing-Pointer A 2-step synthesis of Ag immobilized-PMMA/PEI particle composites was shown. Black-Right-Pointing-Pointer PMMA/PEI core-shell templates were first formed and PEI assisted AgNP formation. Black-Right-Pointing-Pointer Formation of PMMA/PEI-Ag was affected by pH of medium and amount of AgNO{sub 3}. Black-Right-Pointing-Pointer PMMA/PEI-Ag can be confirmed by color change, UV-vis, TEM, SEM with EDS, and X-ray. Black-Right-Pointing-Pointer Effect of AgNPs on thermal degradation of PMMA/PEI-Ag can be observed through TGA.

  9. High-pressure structural behaviour of nanocrystalline Ge

    International Nuclear Information System (INIS)

    Wang, H; Liu, J F; He, Y; Wang, Y; Chen, W; Jiang, J Z; Olsen, J Staun; Gerward, L

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition pressure and the bulk modulus

  10. Facile Deposition of Ultrafine Silver Particles on Silicon Surface Not Submerged in Precursor Solutions for Applications in Antireflective Layer

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2014-01-01

    Full Text Available Using a facile deposition method, the ultrafine silver particles are successfully deposited on the Si surface that is not submerged in precursor solutions. The ultrafine silver particles have many advantages, such as quasiround shape, uniformity in size, monodisperse distribution, and reduction of agglomeration. The internal physical procedure in the deposition is also investigated. The results show that there are more particles on the rough Si surface due to the wetting effect of solid-liquid interface. The higher concentration of ethanol solvent can induce the increase of quantity and size of particles on Si surface not in solutions. The ultrafine particles can be used to prepare porous Si antireflective layer in solar cell applications.

  11. Characterization and Antimicrobial Property of Poly(Acrylic Acid Nanogel Containing Silver Particle Prepared by Electron Beam

    Directory of Open Access Journals (Sweden)

    Jong-Bae Choi

    2013-05-01

    Full Text Available In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid (PAAc and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels. The nanoparticles were characterized by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA. The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect.

  12. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    Science.gov (United States)

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  13. Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms

    Directory of Open Access Journals (Sweden)

    D. Tomacheski

    2017-12-01

    Full Text Available There is a growing consumer market for products that proclaim to decrease microorganism counts to prevent infections. Most of these products are loaded with silver in its ionic or nanoparticle form. Through use or during production, these particles can find their way into the soil and cause an impact in microbial and plant communities. This study aims to evaluate the impact of silver based particles in Avena byzantina (oat, Lactuca sativa (lettuce and Raphanus sativus (radish development and in the soil microorganism abundance. Oat, lettuce and radish plants were cultivated in soil contaminated with particles of bentonite organomodified with silver (Ag+_bentonite, silver phosphate glass (Ag+_phosphate and silver nanoparticles adsorbed on fumed silica (AgNp_silica. Plant development and microorganisms’ abundance were evaluated. To some degree, Ag+_bentonite impacted plants development and AgNp_silica causes an adverse effect on microbial abundance. The impact on plants and microorganisms was contradictory and varied according to soil and particles physicochemical characteristics.

  14. Fission products silver, palladium, and cadmium identification in neutron-irradiated SiC TRISO particles using a Cs-Corrected HRTEM

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: isabella.vanrooyen@inl.gov [Fuel Design and Development Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Olivier, E.J.; Neethling, J.H. [Centre for High Resolution Electron Microscopy, Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2016-08-01

    Electron microscopy investigations of selected coated particles from the first advanced gas reactor experiment at Idaho National Laboratory provided important information on fission product distribution and chemical composition in the silicon-carbide (SiC) layer. Silver precipitates were nano-sized, and therefore high-resolution transmission electron microscopy (HRTEM) was used to provide more information at the atomic level. Based on gamma-ray analysis, this particle which was irradiated to an average burnup of 19.38% fissions per initial metal atom, may have released as much as 10% of its available Ag-110 m inventory during irradiation. The HRTEM investigation focused on silver, palladium, and cadmium due to interest in silver transport mechanisms and possible correlation with palladium and silver previously found. Palladium, silver, and cadmium were found to co-exist in some of the SiC grain boundaries and triple junctions. This study confirmed palladium both at inter and intragranular sites. Phosphor was identified in SiC grain boundaries and triple points. - Highlights: • First high resolution electron microscopy fission product nano-structural locations of irradiated TRISO coated particles. • Pd observed inside SiC grains in proximity to planar defects e.g. stacking faults. • Ag co-exists with Pd and Cd only may suggest a Pd-assisted transport mechanism. • First finding of neutron transmutation product P, in SiC layer of TRISO coated particles. No direct link to Ag transport. • No significant Pd corrosion of SiC observed even at this high resolution images.

  15. Estudio comparativo de efectividad de un apósito de plata nanocristalina frente a sulfadiazina argéntica en el tratamiento de pacientes quemados Comparative study on the effectiveness of a dressing of nanocrystalline silver opposite to the use of silver sulfadiazine in burned patients treatment

    Directory of Open Access Journals (Sweden)

    J.F. Salvador Sanz

    2011-09-01

    Full Text Available La plata es un producto utilizado como agente antimicrobiano desde la antigüedad y ya a finales del siglo XIX se empezaron a utilizar compuestos de plata con finalidades médicas. La utilización tópica de la crema de sulfadiazina argéntica al 1 % se considera mayoritariamente como tratamiento de elección para las quemaduras a fin de tratar o prevenir la infección local. El objetivo de este artículo es comparar el tratamiento con Acticoat® (plata nanocristalina 15 nanómetros frente al tratamiento con sulfadiazina argéntica, ambos regímenes en igualdad de condiciones y un mismo centro de quemados. También se realiza una revisión de la literatura reciente sobre los factores de riesgo para la infección en quemaduras, las medidas que se utilizan para prevenirla y su importancia en la disminución de la morbi-mortalidad.Silver is a product that has been used as antimicrobial agent from ancient times; at the end of the XIXth century silver compounds were used with medical purposes. The use of silver sulfadiazine to 1 % cream is considered as gold standard for local treatment of burns in order to prevent or to treat local infection We compare treatment with Acticoat® (nanocrystalline silver 15 nanometers and silver sulfadiazine, both sistems on equal terms and in the same medical burned center. We review recent literature of risk factors for burn infection, methods to prevent it and to dininish morbimortality in burned patients.

  16. Green synthesis of silver nanoparticles and silver colloidal solutions

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  17. The Formation of Lithiated Ti-Doped α-Fe2O3 Nanocrystalline Particles by Mechanical Milling of Ti-Doped Lithium Spinel Ferrite

    International Nuclear Information System (INIS)

    Widatallah, H. M.; Gismelseed, A. M.; Bouziane, K.; Berry, F. J.; Al Rawas, A. D.; Al-Omari, I. A.; Yousif, A. A.; Elzain, M. E.

    2004-01-01

    The milling of spinel-related Ti-doped Li 0.5 Fe 2.5 O 4 for different times is studied with XRD, Moessbauer spectroscopy and magnetic measurements. Milling converts the material to Li-Ti-doped α-Fe 2 O 3 nanocrystalline particles via an intermediate γ-LiFeO 2 -related phase. The role played by the dopant Ti-ion in the process is emphasized.

  18. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  19. Preparation of Silver Nano-Particles and Use as a Material for Water Sterilization

    Directory of Open Access Journals (Sweden)

    Tran Hong Con

    2011-01-01

    Full Text Available High dispersed nanodimensional silver metal (nanosilver solution of concentration ranging from 40 to 400 mg/L was prepared from silver nitrate in water media with and without dispersing reagent. The reduction process was initiated by ammonium hydroxide and glucose was used as a reductive reagent. The nanosilver solution was characterized by color changing from light-yellow to yellow, brown, red-brown, brown-green, dark-green, blue, dark-blue and those were depending on silver concentration and dimension of silver metal particles. The nanosilver solution was possibly used as a direct sterilizing reagent or coating on calcinated laterite grains to create sterilizing material in bacterial removing filter. Direct sterilization ability of nanosilver solution and nanosilver coated material was investigated. The results showed that with 10 ppb nanosilver in supplied water, all bacteria will be removed within 25–30 min. 10 mm thick layer of silica gel or 20 mm of calcinated laterite coated nanosilver could remove all bacteria in water flowed though with maximum flow rate of 100 L.m2/min. Moreover, sterilizing material was nontoxic and applicable for drinking water production.

  20. High-pressure structural behavior of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, H.; Liu, J. F.; Yan, H.

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transi...

  1. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  2. Magnetic behavior of nanocrystalline nickel ferrite

    International Nuclear Information System (INIS)

    Nathani, H.; Gubbala, S.; Misra, R.D.K.

    2005-01-01

    In the previous papers [R.D.K. Misra, A. Kale, R.S. Srivatsava, O. Senkov, Mater. Sci. Technol. 19 (2003) 826; R.D.K. Misra, A. Kale, B. Hooi, J.Th. DeHosson, Mater. Sci. Technol. 19 (2003) 1617; A. Kale, S. Gubbala, R.D.K. Misra, J. Magn. Magn. Mater. 277 (2004) 350; S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Phys. B 348 (2004) 317; R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff, Mater. Sci. Eng. B. 111 (2004) 164], we reported the synthesis, structural characterization and magnetic behavior of nanocrystalline ferrites of inverse and mixed spinel structure made by reverse micelle technique that enabled a narrow particle size distribution to be obtained. In the present paper, the reverse micelle approach has been extended to synthesize nanocrystalline ferrites with varying surface roughness of 8-18 A (the surface roughness was measured by atomic force microscopy) and the magnetic behavior studied by SQUID magnetometer. Two different kinds of measurement were performed: (a) zero-field cooling (ZFC) and field cooling (FC) magnetization versus temperature measurements and (b) magnetization as a function of applied field. The analysis of magnetic measurement suggests significant influence of surface roughness of particles on the magnetic behavior. While the superparamagnetic behavior is retained by the nanocrystalline ferrites of different surface roughness at 300 K, the hysteresis loop at 2 K becomes non-squared and the coercivity increases with increase in surface roughness. This behavior is discussed in terms of broken bonds and degree of surface spin disorder

  3. Effets of Silver Salt Concentrations on Green Synthesis of Silver Nanoparticles Using the Plant Nigella Saliva

    Directory of Open Access Journals (Sweden)

    M.R. Saeri

    2016-03-01

    Full Text Available Bio-inspired silver nanoparticles were synthesized with the aid of a novel method, using leaves of the plant Nigella sativa. After drying the leaves in air, they were first sweltered in boiling distilled water and the liquid was filtered subsequently. The result was the brothused to reduce solutions including various concentrations of silver nitrate in a proper amount of pH. The displayed UV–visible spectra identified formation of silver nanoparticles whenever the colorless initial acclimated mixture turned brown. The centrifuged powder samples were examined using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (FESEM and energy dispersive X-ray diffraction analysis (EDX methods. The results clearly revealed that the final particles of precipitated powder are high purity agglomerates of silver nanoparticles. Besides, the effects of various amounts of the silver salt on particle size of nano silver were studied, using a particle size analyzer. FTIR results also indicated the role of different functional groups in the synthetic process.

  4. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  5. Voltage-Induced Nonlinear Conduction Properties of Epoxy Resin/Micron-Silver Particles Composites

    Science.gov (United States)

    Qu, Zhaoming; Lu, Pin; Yuan, Yang; Wang, Qingguo

    2018-01-01

    The nonlinear conduction properties of epoxy resin (ER)/micron-silver particles (MP) composites were investigated. Under sufficient high intensity applied constant voltage, the obvious nonlinear conduction properties of the samples with volume fraction 25% were found. With increments in the voltage, the conductive switching effect was observed. The nonlinear conduction mechanism of the ER/MP composites under high applied voltages could be attributed to the electrical current conducted via discrete paths of conductive particles induced by the electric field. The test results show that the ER/MP composites with nonlinear conduction properties are of great potential application in electromagnetic protection of electron devices and systems.

  6. Fabrication, Characterization, and Antimicrobial Activity, Evaluation of Low Silver Concentrations in Silver-Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Costescu

    2013-01-01

    Full Text Available The aim of this study was the evaluation of (Ca10-xAgx(PO46(OH2 nanoparticles (Ag:HAp-NPs for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years as a major public health problem worldwide. In this paper, we report a comparison of the antimicrobial activity of low concentrations silver-doped hydroxyapatite nanoparticles. The silver-doped nanocrystalline hydroxyapatite powder was synthesized at 100°C in deionised water. The as-prepared Ag:Hap nanoparticles were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, FT-IR, and FT-Raman spectroscopy. X-ray diffraction (XRD studies demonstrate that powders obtained by coprecipitation at 100°C exhibit the apatite characteristics with good crystal structure, without any new phase or impurities found. FT-IR and FT-Raman spectroscopy revealed the presence of the various vibrational modes corresponding to phosphates and hydroxyl groups and the absence of any band characteristic to silver. The specific microbiological assays demonstrated that Ag:HAp-NPs exhibited antimicrobial features, but interacted differently with the Gram-positive, Gram-negative bacterial and fungal tested strains.

  7. Characterization of nano-crystalline ZrO{sub 2} synthesized via reactive plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Ananthapadmanabhan, P.V. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020 India (India); Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Su, L.T.; Tok, A.I.Y.; Guo, J. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2011-07-25

    Highlights: > Direct conversion of micron-sized zirconium hydride powder to nanocrystalline ZrO{sub 2} powder. > The experimental approach uses reactive plasma processing technique. > The product has been characterized by various analytical tools to support the findings. - Abstract: Nano-crystalline ZrO{sub 2} powder has been synthesized via reactive plasma processing. The synthesized ZrO{sub 2} powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and FTIR spectroscopy. The synthesized powder consists of a mixture of tetragonal and monoclinic phases of zirconia. Average crystallite size calculated from the XRD pattern shows that particles with crystallite size 20 nm or less than 20 nm are in tetragonal phase, whereas particles greater than 20 nm are in the monoclinic phase. TEM results show that particles have spherical morphology with maximum percentage of particles distributed in a narrow size from about 15 nm to 30 nm.

  8. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review

    DEFF Research Database (Denmark)

    Hadrup, Niels; Lam, Henrik Rye

    2014-01-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin......, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts...... and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least...

  9. Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: relationship to particle mobility analysis

    International Nuclear Information System (INIS)

    Shin, Weon Gyu; Wang Jing; Mertler, Michael; Sachweh, Bernd; Fissan, Heinz; Pui, David Y. H.

    2009-01-01

    In this work, the structural properties of silver nanoparticle agglomerates generated using condensation and evaporation method in an electric tube furnace followed by a coagulation process are analyzed using Transmission Electron Microscopy (TEM). Agglomerates with mobility diameters of 80, 120, and 150 nm are sampled using the electrostatic method and then imaged by TEM. The primary particle diameter of silver agglomerates was 13.8 nm with a standard deviation of 2.5 nm. We obtained the relationship between the projected area equivalent diameter (d pa ) and the mobility diameter (d m ), i.e., d pa = 0.92 ± 0.03 d m for particles from 80 to 150 nm. We obtained fractal dimensions of silver agglomerates using three different methods: (1) D f = 1.84 ± 0.03, 1.75 ± 0.06, and 1.74 ± 0.03 for d m = 80, 120, and 150 nm, respectively from projected TEM images using a box counting algorithm; (2) fractal dimension (D fL ) = 1.47 based on maximum projected length from projected TEM images using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633; and (3) mass fractal-like dimension (D fm ) = 1.71 theoretically derived from the mobility analysis proposed by Lall and Friedlander (2006) J Aerosol Sci 37:260-271. We also compared the number of primary particles in agglomerate and found that the number of primary particles obtained from the projected surface area using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633 is larger than that from using the relationship, d pa = 0.92 ± 0.03 d m or from using the mobility analysis.

  10. Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Tan Weiwei; Yin Xiong; Zhou Xiaowen; Zhang Jingbo; Xiao Xurui; Lin Yuan

    2009-01-01

    Nanocrystalline TiO 2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 deg. C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO 2 , which plays an important role in improving the interconnection between TiO 2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO 2 films. The cell performance was further optimized by designing nanocrystalline TiO 2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm -2 (AM 1.5) simulated sunlight.

  11. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    Science.gov (United States)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  12. Silver carbonate and stability in colloidal silver: A by-product of the electric spark discharge method

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tien, Der-Chi

    2010-01-01

    Many methods of producing colloidal silver (CS) include the introduction of surfactants to improve the suspensivity of the silver particles. The electric spark discharge method (ESDM) which involves pulses of direct current being passed through a silver electrode submerged in deionized water has been shown to successfully produce colloidal silver in a stable suspension without the use of chemical additives. A by-product of the electric spark discharge method, a silver ion compound (AgX), is shown to be the cause of the high suspensivity of the silver nanoparticles (AgNPs). The silver ion compound has been identified as Ag 2 CO 3 using X-ray diffraction, and it has been determined that the Ag 2 CO 3 is formed during the electric spark discharge process through a reaction with atmospheric CO 2 . It has been shown that an Ag 2 CO 3 concentration of 10 ppm or more is sufficient to generate a stable suspension of silver particles. Because of the occurrence of Ag 2 CO 3 , the electric spark discharge method can produce stable colloidal silver.

  13. Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode.

    Science.gov (United States)

    Farahi, Abdelfettah; Achak, Mounia; El Gaini, Laila; El Mhammedi, Moulay Abderrahim; Bakasse, Mina

    2015-09-01

    Carbon paste electrodes (CPEs) modified with silver particles present an interesting tool in the determination of paraquat (PQ) using square wave voltammetry. Metallic silver particle deposits have been obtained via electrochemical deposition in acidic media using cyclic voltammetry. Scanning electron microscopy and X-ray diffraction measurements show that the silver particles are deposited onto carbon surfaces in aggregate form. The response of PQ with modified electrode (Ag-CPE) related to Ag/CP loading, preconcentration time, and measuring solution pH was investigated. The result shows that the increase in the two cathodic peak currents (Peak 1 and Peak 2), under optimized conditions, was linear with the increase in PQ concentration in the range 1.0 × 10 -7  mol/L to 1.0 × 10 -3  mol/L. The detection limit and quantification limit were 2.01 × 10 -8  mol/L and 6.073 × 10 -8  mol/L, respectively for Peak 1. The precision expressed as relative standard deviation for the concentration level 1.0 × 10 -5  mol/L (n = 8) was found to be 1.45%. The methodology was satisfactorily applied for the determination of PQ in citric fruit cultures. Copyright © 2015. Published by Elsevier B.V.

  14. Mechanism of Particle Formation in Silver/Epoxy Nanocomposites Obtained through a Visible-Light-Assisted in Situ Synthesis.

    Science.gov (United States)

    dell'Erba, Ignacio E; Martínez, Francisco D; Hoppe, Cristina E; Eliçabe, Guillermo E; Ceolín, Marcelo; Zucchi, Ileana A; Schroeder, Walter F

    2017-10-03

    A detailed understanding of the processes taking place during the in situ synthesis of metal/polymer nanocomposites is crucial to manipulate the shape and size of nanoparticles (NPs) with a high level of control. In this paper, we report an in-depth time-resolved analysis of the particle formation process in silver/epoxy nanocomposites obtained through a visible-light-assisted in situ synthesis. The selected epoxy monomer was based on diglycidyl ether of bisphenol A, which undergoes relatively slow cationic ring-opening polymerization. This feature allowed us to access a full description of the formation process of silver NPs before this was arrested by the curing of the epoxy matrix. In situ time-resolved small-angle X-ray scattering investigation was carried out to follow the evolution of the number and size of the silver NPs as a function of irradiation time, whereas rheological experiments combined with near-infrared and ultraviolet-visible spectroscopies were performed to interpret how changes in the rheological properties of the matrix affect the nucleation and growth of particles. The analysis of the obtained results allowed us to propose consistent mechanisms for the formation of metal/polymer nanocomposites obtained by light-assisted one-pot synthesis. Finally, the effect of a thermal postcuring treatment of the epoxy matrix on the particle size in the nanocomposite was investigated.

  15. Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode

    Directory of Open Access Journals (Sweden)

    Abdelfettah Farahi

    2015-09-01

    Full Text Available Carbon paste electrodes (CPEs modified with silver particles present an interesting tool in the determination of paraquat (PQ using square wave voltammetry. Metallic silver particle deposits have been obtained via electrochemical deposition in acidic media using cyclic voltammetry. Scanning electron microscopy and X-ray diffraction measurements show that the silver particles are deposited onto carbon surfaces in aggregate form. The response of PQ with modified electrode (Ag-CPE related to Ag/CP loading, preconcentration time, and measuring solution pH was investigated. The result shows that the increase in the two cathodic peak currents (Peak 1 and Peak 2, under optimized conditions, was linear with the increase in PQ concentration in the range 1.0 × 10−7 mol/L to 1.0 × 10−3 mol/L. The detection limit and quantification limit were 2.01 × 10−8 mol/L and 6.073 × 10−8 mol/L, respectively for Peak 1. The precision expressed as relative standard deviation for the concentration level 1.0 × 10−5 mol/L (n = 8 was found to be 1.45%. The methodology was satisfactorily applied for the determination of PQ in citric fruit cultures.

  16. Oral toxicity of silver ions, silver nanoparticles and colloidal silver--a review.

    Science.gov (United States)

    Hadrup, Niels; Lam, Henrik R

    2014-02-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least a factor of five before a level of concern to the general population is reached. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Synthesis and luminescence properties of nanocrystalline LiF:Mg,Cu,P phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sahare, P.D., E-mail: pdsahare@physics.du.ac.i [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Bakare, J.S. [SSGM College of Engineering, Amravati University, Shegaon 444 203, Maharashtra (India); Dhole, S.D. [Department of Physics, University of Pune, Ganeshkhind, Pune 411 007 (India); Ingale, N.B. [Department of Physics, Professor Ram Meghe Institute of Technology and Research, Badnera-Amravati 444 605, Maharashtra (India); Rupasov, A.A. [P. N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr-t 53, Moscow (Russian Federation)

    2010-02-15

    Nanocrystalline LiF:Mg,Cu,P phosphor material of different shapes and sizes (microcrystalline cubic shape, nanorod shape and nanocrystalline cubical shaped) have been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and other dosimetric characteristics of the phosphor are studied and presented here. The formation of the materials was confirmed by the X-ray diffraction (XRD). Its shapes and sizes were also observed using scanning electron microscope (SEM). The TL glow curve of the microcrystalline powder shows a prominent single peak at 408 K along with another peak of lesser intensity at around 638 K. On the contrary, the nanocrystalline rod shaped particles show a peak of low intensity at 401 K and a prominent peak around 700 K while the nanocrystalline particles in cubical shapes again show two peaks, one at around 407 K and the other at around 617 K, of which the lower temperature (407 K) peak is more prominent. The glow curve structure changes at very high doses (100 kRad) and some new peaks appear at around 525 and 637 K also the first peak appearing at around 401 K becomes prominent. The observed changes in TL due to the change in the shape and sizes of the nanophosphor have been reported. The PL has also been studied and various excitation and emission peaks observed due to the presence of various impurities are explained. The observed results have been explained in the light of asymmetrical crystal field effects due to asymmetrical shapes of the nanocrystalline phosphor. The comparison of these properties with the microcrystalline material prepared by the same co-precipitation method is also done.

  18. Simultaneous characterisation of silver nanoparticles and determination of dissolved silver in chicken meat subjected to in vitro human gastrointestinal digestion using single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Ramos, K; Ramos, L; Gómez-Gómez, M M

    2017-04-15

    In this study, a chicken meat containing AgNPs (candidate reference material Nanolyse 14) has been used as a model matrix to study the fate and behaviour of AgNPs upon oral ingestion following an in vitro model that included saliva, gastric and intestinal digestions. The behaviour of a 40nm AgNPs standard solution during the three digestion steps was also evaluated. Sample preparation conditions were optimised to prevent AgNPs oxidation and/or aggregation and to ensure the representativeness of the reported results. Total silver released from the test sample and the evaluated AgNP standard was determined by inductively coupled plasma mass spectrometry (ICPMS). The presence of both AgNPs and dissolved silver in the extracts was confirmed by single particle (SP)-ICPMS analysis. AgNPs were sized and the particle number concentration determined in the three digestion juices. Experimental results demonstrated differentiated behaviours for AgNP from the standard solution and the meat sample highlighting the relevance of using physiological conditions for accurate risk assessment. In the most realistic scenario assayed (i.e., spiked chicken meat analysis), only 13% of the AgNPs present in the reference material would reach the intestine wall. Meanwhile, other bioaccessible dissolved forms of silver would account for as much as 44% of the silver initially spiked to the meat paste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. In vitro cytotoxity of silver: implication for clinical wound care.

    Science.gov (United States)

    Poon, Vincent K M; Burd, Andrew

    2004-03-01

    In this study, we look at the cytotoxic effects of silver on keratinocytes and fibroblasts. We have assessed the viability of monolayer cultures using the MTT and BrdU assays. The composition of the culture medium and also the culture technique were modified to assess the effects of culture 'environment' on the susceptibility of the cells to the toxic action of silver. Further in vitro, experiments were performed using tissue culture models to allow cellular behavior in three dimensional planes which more closely simulated in vivo behavior. The silver source was both silver released from silver nitrate solution but also nanocrystalline silver released from a commercially available dressing. The results show that silver is highly toxic to both keratinocytes and fibroblasts in monolayer culture. When using optimized and individualized culture the fibroblasts appear to be more sensitive to silver than keratinocytes. However, when both cell types were grown in the same medium their viability was the same. Using tissue culture models again indicated an 'environmental effect' with decreased sensitivity of the cells to the cytotoxic effects of the silver. Nevertheless in these studies the toxic dose of skin cells ranging from 7 x 10(-4) to 55 x 10(-4)% was similar to that of bacteria. These results suggest that consideration of the cytotoxic effects of silver and silver-based products should be taken when deciding on dressings for specific wound care strategies. This is important when using keratinocyte culture, in situ, which is playing an increasing role in contemporary wound and burn care.

  20. The Formation of Lithiated Ti-Doped {alpha}-Fe{sub 2}O{sub 3} Nanocrystalline Particles by Mechanical Milling of Ti-Doped Lithium Spinel Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hisham@ictp.trieste.it [Khartoum University, Department of Physics (Sudan); Gismelseed, A. M.; Bouziane, K. [Sultan Qaboos University, Department of Physics (Oman); Berry, F. J. [Open University, Department of Chemistry (United Kingdom); Al Rawas, A. D.; Al-Omari, I. A.; Yousif, A. A.; Elzain, M. E. [Sultan Qaboos University, Department of Physics (Oman)

    2004-12-15

    The milling of spinel-related Ti-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} for different times is studied with XRD, Moessbauer spectroscopy and magnetic measurements. Milling converts the material to Li-Ti-doped {alpha}-Fe{sub 2}O{sub 3} nanocrystalline particles via an intermediate {gamma}-LiFeO{sub 2}-related phase. The role played by the dopant Ti-ion in the process is emphasized.

  1. Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems

    International Nuclear Information System (INIS)

    Selmani, Atiða; Kallay, Nikola; Preočanin, Tajana; Lützenkirchen, Johannes

    2014-01-01

    We have carried out surface and zeta-potential measurements on AgCl and AgBr single crystals. As for particle systems we find that, surprisingly and previously unnoted, the zeta-potential exhibits pH-dependence, while the surface potential does not. A possible interpretation of these observations is the involvement of water ions in the interfacial equilibria and in particular, stronger affinity of the hydroxide ion compared to the proton. The pH-dependence of the zeta-potential can be suppressed at sufficiently high silver concentrations, which agrees with previous measurements in particle systems where no pH-dependence was found at high halide ion concentrations. The results suggest a subtle interplay between the surface potential determining the halide and silver ion concentrations, and the water ions. Whenever the charge due to the halide and silver ions is sufficiently high, the influence of the proton/hydroxide ion on the zeta-potential vanishes. This might be related to the water structuring at the relevant interfaces which should be strongly affected by the surface potential. Another interesting observation is accentuation of the assumed water ion effect on the zeta-potential at the flat single crystal surfaces compared to the corresponding silver halide colloids. Previous generic MD simulations have indeed predicted that hydroxide ion adsorption is accentuated on flat/rigid surfaces. A thermodynamic model for AgI single crystals was developed to describe the combined effects of iodide, silver and water ions, based on two independently previously published models for AgI (that only consider constituent and background electrolyte ions) and inert surfaces (that only consider water and background electrolyte ions). The combined model correctly predicts all the experimentally observed trends. (paper)

  2. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  3. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits—A comparative study

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    and nickel electrodeposits was achieved by time-resolved X-ray diffraction line profile analysis and crystallographic texture analysis during room temperature storage and during isothermal annealing at elevated temperatures. These in-situ studies with unique time resolution allowed quantification of the self-annealing......Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver...... kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted...

  4. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  5. Preparation of silver nanoparticles at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Mini, E-mail: mishramini5@gmail.com [Centre of Environmental Science, Department of Botany, University of Allahabad, Allahabad, U.P. (India); Chauhan, Pratima, E-mail: mangu167@yahoo.co.in [Department of Physics, University of Allahabad, Allahabad U.P. (India)

    2016-04-13

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  6. Preparation of silver nanoparticles at low temperature

    International Nuclear Information System (INIS)

    Mishra, Mini; Chauhan, Pratima

    2016-01-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  7. Size-tunable silver nanoparticles synthesized by using aminopolycarboxylic acids at ambient-temperature

    International Nuclear Information System (INIS)

    Malkar, Vishwabharati V.; Chadha, R.; Biswas, N.; Mukherjee, T.; Kapoor, S.

    2009-01-01

    Full text: Stable aqueous sols of silver nanoparticles are prepared by using various aminopolycarboxylic acids as stabilizing agents at ambient temperature. The precursor silver perchlorate is reduced using γ radiations. Interestingly, it was observed that size of silver nanoparticles obtained could be tuned using various aminopolycarboxylic acids of varying carboxylic acid groups The silver sols synthesized by this method were stable for months and particles obtained were monodisperse in almost all cases. Particle formation was observed at equimolar concentration of silver and aminopolycarboxylic acids. The stabilization of particles even in the absence of any polymer indicates that the adsorption of aminopolycarboxylic acids on silver particle is a spontaneous process. The adsorbed aminopolycarboxylic acids can saturate the residual valence force of the silver atom on the particle surface by coordinating with unoccupied orbital. Adsorption of aminopolycarboxylic acids does not lead to any change in surface plasmon band of silver nanoparticles; this indicates that anions in the double layer on the colloidal particle have different chemical properties from the free anions. Synthesized silver nanoparticles were characterized by UV-visible spectrophotometer, X-ray Diffraction, Dynamic Light Scattering and Transmission Electron Microscope

  8. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics

    KAUST Repository

    Vaseem, Mohammad

    2015-12-29

    Currently, silver-nanoparticle-based inkjet ink is commercially available. This type of ink has several serious problems such as a complex synthesis protocol, high cost, high sintering temperatures (∼200 °C), particle aggregation, nozzle clogging, poor shelf life, and jetting instability. For the emerging field of printed electronics, these shortcomings in conductive inks are barriers for their widespread use in practical applications. Formulating particle-free silver inks has potential to solve these issues and requires careful design of the silver complexation. The ink complex must meet various requirements, such as in situ reduction, optimum viscosity, storage and jetting stability, smooth uniform sintered films, excellent adhesion, and high conductivity. This study presents a robust formulation of silver–organo-complex (SOC) ink, where complexing molecules act as reducing agents. The 17 wt % silver loaded ink was printed and sintered on a wide range of substrates with uniform surface morphology and excellent adhesion. The jetting stability was monitored for 5 months to confirm that the ink was robust and highly stable with consistent jetting performance. Radio frequency inductors, which are highly sensitive to metal quality, were demonstrated as a proof of concept on flexible PEN substrate. This is a major step toward producing high-quality electronic components with a robust inkjet printing process.

  9. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics

    KAUST Repository

    Vaseem, Mohammad; McKerricher, Garret; Shamim, Atif

    2015-01-01

    Currently, silver-nanoparticle-based inkjet ink is commercially available. This type of ink has several serious problems such as a complex synthesis protocol, high cost, high sintering temperatures (∼200 °C), particle aggregation, nozzle clogging, poor shelf life, and jetting instability. For the emerging field of printed electronics, these shortcomings in conductive inks are barriers for their widespread use in practical applications. Formulating particle-free silver inks has potential to solve these issues and requires careful design of the silver complexation. The ink complex must meet various requirements, such as in situ reduction, optimum viscosity, storage and jetting stability, smooth uniform sintered films, excellent adhesion, and high conductivity. This study presents a robust formulation of silver–organo-complex (SOC) ink, where complexing molecules act as reducing agents. The 17 wt % silver loaded ink was printed and sintered on a wide range of substrates with uniform surface morphology and excellent adhesion. The jetting stability was monitored for 5 months to confirm that the ink was robust and highly stable with consistent jetting performance. Radio frequency inductors, which are highly sensitive to metal quality, were demonstrated as a proof of concept on flexible PEN substrate. This is a major step toward producing high-quality electronic components with a robust inkjet printing process.

  10. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    Science.gov (United States)

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Toxicological Assessment of a Lignin Core Nanoparticle Doped with Silver as an Alternative to Conventional Silver Core Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cassandra E. Nix

    2018-05-01

    Full Text Available Elevated levels of silver in the environment are anticipated with an increase in silver nanoparticle (AgNP production and use in consumer products. To potentially reduce the burden of silver ion release from conventional solid core AgNPs, a lignin-core particle doped with silver ions and surface-stabilized with a polycationic electrolyte layer was engineered. Our objective was to determine whether any of the formulation components elicit toxicological responses using embryonic zebrafish. Ionic silver and free surface stabilizer were the most toxic constituents, although when associated separately or together with the lignin core particles, the toxicity of the formulations decreased significantly. The overall toxicity of lignin formulations containing silver was similar to other studies on a silver mass basis, and led to a significantly higher prevalence of uninflated swim bladder and yolk sac edema. Comparative analysis of dialyzed samples which had leached their loosely bound Ag+, showed a significant increase in mortality immediately after dialysis, in addition to eliciting significant increases in types of sublethal responses relative to the freshly prepared non-dialyzed samples. ICP-OES/MS analysis indicated that silver ion release from the particle into solution was continuous, and the rate of release differed when the surface stabilizer was not present. Overall, our study indicates that the lignin core is an effective alternative to conventional solid core AgNPs for potentially reducing the burden of silver released into the environment from a variety of consumer products.

  12. Synthesis and characterization of silver-polypyrrole film composite

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, Mohamad M., E-mail: mayad12000@yahoo.com [Department of Chemistry, Faculty of Science, University of Tanta, Tanta (Egypt); Zaki, Eman [Department of Chemistry, Faculty of Science, University of Tanta, Tanta (Egypt)

    2009-11-15

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO{sub 3}. Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO{sub 3} solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  13. Synthesis and characterization of silver-polypyrrole film composite

    International Nuclear Information System (INIS)

    Ayad, Mohamad M.; Zaki, Eman

    2009-01-01

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO 3 . Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO 3 solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  14. Synthesis and characterization of silver-polypyrrole film composite

    Science.gov (United States)

    Ayad, Mohamad. M.; Zaki, Eman

    2009-11-01

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO 3. Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO 3 solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  15. Use of a silver ion selective electrode to assess mechanisms responsible for biological effects of silver nanoparticles

    International Nuclear Information System (INIS)

    Koch, Marcus; Kiefer, Silke; Cavelius, Christian; Kraegeloh, Annette

    2012-01-01

    For a detailed analysis of the biological effects of silver nanoparticles, discrimination between effects related to the nano-scale size of the particles and effects of released silver ions is required. Silver ions are either present in the initial particle dispersion or released by the nanoparticles over time. The aim of this study is to monitor the free silver ion activity {Ag + } in the presence of silver nanoparticles using a silver ion selective electrode. Therefore, silver in the form of silver nanoparticles, 4.2 ± 1.4 nm and 2–30 nm in size, or silver nitrate was added to cell culture media in the absence or presence of A549 cells as a model for human type II alveolar epithelial cells. The free silver ion activity measured after the addition of silver nanoparticles was determined by the initial ionic silver content. The p {Ag + } values indicated that the cell culture media decrease the free silver ion activity due to binding of silver ions by constituents of the media. In the presence of A549 cells, the free silver ion activity was further reduced. The morphology of A549 cells, cultivated in DME medium containing 9.1% (v/v) FBS, was affected by adding AgNO 3 at concentrations of ≥30 μM after 24 h. In comparison, silver nanoparticles up to a concentration of 200 μM Ag did not affect cellular morphology. Our experiments indicate that the effect of silver nanoparticles is mainly mediated by silver ions. An effect of silver on cellular morphology was observed at p {Ag + } ≤ 9.2.

  16. Synthesis and characterization of silver nanoparticles in AOT microemulsion system

    International Nuclear Information System (INIS)

    Zhang Wanzhong; Qiao Xueliang; Chen Jianguo

    2006-01-01

    Colloidal silver nanoparticles have been synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of one microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another microemulsion as reducing agent, dodecane as the oil phase, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The UV-vis absorption spectra and transmission electron microscopy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-vis spectra show that the Ag 4 + intermediates formed at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6nm. IR results show that the surfactant molecules are strongly adsorbed on the surface of silver particles through a coordination bond between the silver atom and the sulfonic group of AOT molecules, which endows the particles with a good stability in oil solvents. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solution and the silver sol may be directly used in antibacterial fields

  17. Nanocrystalline functional materials and nanocomposites synthesis through aerosol routes

    Directory of Open Access Journals (Sweden)

    Milošević Olivera B.

    2003-01-01

    Full Text Available This paper represents the results of the design of functional nanocrystalline powders and nanocomposites using chemical reactions in aerosols. The process involves ultrasonic aerosol formation (mist generators with the resonant frequencies of 800 kHz, 1.7 and 2.5 MHz from precursor salt solutions and control over the aerosol decomposition in a high-temperature tubular flow reactor. During decomposition, the aerosol droplets undergo evaporation/drying, precipitation and thermolysis in a single-step process. Consequently, spherical, solid, agglomerate-free submicronic particles are obtained. The particle morphology, revealed as a composite structure consisting of primary crystallites smaller than 20 nm was analysed by several methods (XRD, DSC/DTA, SEM, TEM and discussed in terms of precursor chemistry and process parameters. Following the initial attempts, a more detailed aspect of nanocrystalline particle synthesis was demonstrated for the case of nanocomposites based on ZnO-MeO (MeO=Bi Cr+, suitable for electronic applications, as well as an yttrium-aluminum base complex system, suitable for phosphorus applications. The results imply that parts of the material structure responsible for different functional behaviour appear through in situ aerosol synthesis by processes of intraparticle agglomeration, reaction and sintering in the last synthesis stage.

  18. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  19. The role of silver nano-particles and silver thiosulfate on the longevity of cut carnation (Dianthus caryophyllus) flowers.

    Science.gov (United States)

    Hashemabadi, Davood

    2014-07-01

    The purpose of this study was to evaluate the efficacy of silver nano-particles (SNP) and silver thiosulfate (STS) in extending the vase life of cut carnation (Dianthus caryophyllus L. cv. 'Tempo') flowers. Pulse treatments of SNP @ 0, 5, 10 and 15 mg l(-1) and STS @ 0, 0.1, 0.2 and 0.3 mM were administered to carnation flowers for 24 hr. The longest vase life (16.1 days) was observed in flowers treated with 15 mg l(-1) of SNP + 0.2 mM STS. The least chlorophyll was destroyed in flowers treated with 15 mg I(-1) of SNP + 0.3 mM STS. Our findings showed that the 15 mg l(-1) SNP treatment inhibited bacterial growth in the preservative solution. The control flowers bloomed faster than the treated flowers. The maximum peroxidase activity and the minimum lipid peroxidation were obtained in cut flowers that were treated with 15 mg l(-1) of SNP and 0.3 mM STS. Overall, results of the study revealed that SNP and STS treatment extended the longevity of cut carnation 'Tempo' flowers by reducing oxidative stress, improving anti-oxidant system, reducing bacterial populations and delaying flowering.

  20. Biosynthesis of Silver and Gold Crystals Using Grapefruit Extract

    OpenAIRE

    Chen Long; Wang Jianli; Wang Hongfeng; Qi Zhaopeng; Zheng Yuchuan; Wang Junbo; Pan Le; Chang Guanru; Yang Yongmei

    2016-01-01

    In this paper, biological synthesis of silver and gold crystals using grapefruit extract is reported. On treatment of aqueous solutions of silver nitrate and chloroauric acid with grapefruit extract, the formation of stable silver and gold particles at high concentrations is observed to occur. The silver particles formed are quasi-spherical or irregular with sizes ranging from several hundred nanometers to several microns. The gold quasi-spheres with holes on surfaces and with diameters rangi...

  1. Comparative Observation of Silver Nano and Microstructures Deposited from Aerosol and Fog

    Directory of Open Access Journals (Sweden)

    Zheltova Anna

    2017-01-01

    Full Text Available A comparative study of the structure and fractal properties of arrays of the silver nano-/micro-particles deposited on the silicon substrate both from the aerosol and fog showed that the form of the silver individual particles and nano-/microstructures greatly depends on the deposition conditions. By passing an aerosol through isopropyl alcohol, the formation of fractal aggregates of the silver nano-/micro-particles both in the air and in alcohol was observed. Deposition of the silver nano-/micro-particles in the atmosphere of the saturated isopropyl alcohol vapours led to formation of fog. Micro-droplets of the silver colloidal solution were deposited on the substrate. The further evaporation of alcohol created the silver nano/microstructures in the form of annular layers. It was found that the concerned annular layers contained silver particles of the same shape in the form of a Crescent (or Janus-nano-/microparticles. The nature of discovered effects is discussed.

  2. On preparation of nanocrystalline chromites by co-precipitation andautocombustion methods

    Czech Academy of Sciences Publication Activity Database

    Matulková, Irena; Holec, Petr; Pacáková, Barbara; Kubíčková, Simona; Mantlíková, Alice; Plocek, Jiří; Němec, I.; Nižňanský, D.; Vejpravová, Jana

    2015-01-01

    Roč. 195, May (2015), s. 66-73 ISSN 0921-5107 R&D Projects: GA ČR GAP108/10/1250 Institutional support: RVO:68378271 ; RVO:61388980 Keywords : transition metal chromites * nanocrystalline particles * microstructural analysis * vibrational spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.331, year: 2015

  3. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    Science.gov (United States)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  4. Towards localization of engineered silver nanoparticles in Pseudokirchneriella subcapitata

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Sørensen, Sara Nørgaard; Hartmann, Nanna Isabella Bloch

    Silver nanoparticles have increased cytotoxic properties compared to larger particles. Reflecting these properties, engineered silver nanoparticles are now added to an increasing number of consumer products often labelled as anti-bacterial. These particles are presently considered the fastest...... growing nanotechnology application. Accordingly, silver nanoparticles are now postulated to be released into the sewerage systems and wider environment in increasing quantities. Here they could potentially interfere with aquatic life and this ongoing project aims to localize possible particles taken up...

  5. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits-A comparative study

    International Nuclear Information System (INIS)

    Pantleon, Karen; Somers, Marcel A.J.

    2010-01-01

    Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver and nickel electrodeposits was achieved by time-resolved X-ray diffraction line profile analysis and crystallographic texture analysis during room temperature storage and during isothermal annealing at elevated temperatures. These in-situ studies with unique time resolution allowed quantification of the self-annealing kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted to be interpreted in terms of recovery, recrystallization and grain growth.

  6. Contaminant degradation by irradiated semiconducting silver chloride particles: kinetics and modelling.

    Science.gov (United States)

    Ma, Tian; Garg, Shikha; Miller, Christopher J; Waite, T David

    2015-05-15

    The kinetics and mechanism of light-mediated formic acid (HCOO(-)) degradation in the presence of semiconducting silver chloride particles are investigated in this study. Our experimental results show that visible-light irradiation of AgCl(s) results in generation of holes and electrons with the photo-generated holes and its initial oxidation product carbonate radical, oxidizing HCOO(-) to form CO2. The HCOO(-) degradation rate increases with increase in silver concentration due to increase in rate of photo-generation of holes while the increase in chloride concentration decreases the degradation rate of HCOO(-) as a result of the scavenging of holes by Cl(-), thereby resulting in decreased holes and carbonate radical concentration. The results obtained indicate that a variety of other solution conditions including dioxygen concentration, bicarbonate concentration and pH influence the availability of holes and hence the HCOO(-) degradation rate in a manner consistent with our understanding of key processes. Based on our experimental results, we have developed a kinetic model capable of predicting AgCl(s)-mediated HCOO(-) photo-degradation over a wide range of conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    International Nuclear Information System (INIS)

    Zhang Lijie; Webster, Thomas J; Rodriguez, Jose; Raez, Jose; Myles, Andrew J; Fenniri, Hicham

    2009-01-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml -1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  8. Evaluation of biological activities of nanocrystalline zirconia synthesis via combustion method

    International Nuclear Information System (INIS)

    Thakare, V.G.; Omanwar, S.K.; Bhatkar, V.B.; Wadegaokar, P.A.

    2016-01-01

    The objective of the following study was synthesis of nanocrystalline zirconia by modified solution combustion synthesis method and evaluation of its structural and biological properties. The sample was characterized by powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and evaluated for cytotoxicity study using 3T3 mouse fibroblast cells, the antibacterial property are investigated by spread plate method against E. coli bacterial pathogen and studied for degradation using phosphate buffered saline (PBS) solution. The XRD pattern shows that the monoclinic phase of nanocrystalline zirconia was obtained. The FESEM images showed that the prepared sample consists of particles in the range of 45 nm and homogenous particle size distribution. The sample of zirconia has excellent tissue biocompatibility and does not show any toxicity towards normal 3T3 mouse fibroblast cells. It also inhibited the bacterial growth. The sample shows stability at physiological condition and does not show degradation. (author)

  9. Critical currents and fields of disordered nanocrystalline superconductors

    International Nuclear Information System (INIS)

    Yavary, H.; Shahzamanian, M.A.; Rabbani, H.

    2007-01-01

    Full text: There is an enormous effort directed at increasing the upper critical field of the superconducting materials because this upper critical field provides a fundamental limit to the maximum field a magnet system can produce. High-energy particle accelerators and medical resonance imaging body scanners are limited by the for NbTi (10 T). Gigahertz class nuclear-magnetic-resonance and high field laboratory magnets are limited by for Nb 3 Sn (23 T) [1]. However, the values of critical current density are too low for industrial use, possibly because of degraded or nonsuperconducting phases, such as MoS 2 or Mo 2 S 3 , at the grain boundaries or because the pinning site density is not high enough. It has long been known that decreasing the grain size of low-temperature superconducting (LTS) materials, such as Nb 3 Sn, increases the density of flux pinning sites and hence. Nanocrystalline materials are characterized by ultrafine grains and a high density of grain boundaries [2]. Hence nanocrystalline materials can exhibit unusual physical, chemical, and mechanical properties with respect to conventional polycrystalline materials. The purpose of this paper is to investigate the structure of currents and fields in disordered nanocrystalline superconducting materials by the use of quasiclassical many body techniques. The Keldish Greens functions are used to calculate the current density of the system. Since the disorder and microstructure of these nanocrystalline materials are on a sufficiently short length scale as to increase both the density of pinning site and the upper critical field. (authors)

  10. Mechanical characterization of solution-derived nanoparticle silver ink thin films

    International Nuclear Information System (INIS)

    Greer, Julia R.; Street, Robert A.

    2007-01-01

    Mechanical properties of sintered silver nanoparticles are investigated via substrate curvature and nanoindentation methods. Substrate curvature measurements reveal that permanent microstructural changes occur during initial heating while subsequent annealing results in nearly elastic behavior of the thinner films. Thicker films were found to crack upon thermal treatment. The coefficient of thermal expansion was determined from linear slopes of curvature curves to be 1.9±0.097 ppm/ degree sign C, with elastic modulus and hardness determined via nanoindentation. Accounting for substrate effects, nanoindentation hardness and modulus remained constant for different film thicknesses and did not appear to be a function of annealing conditions. Hardness of 0.91 GPa and modulus of 110 GPa are somewhat lower than expected for a continuous nanocrystalline silver film, most likely due to porosity

  11. Formation of ZnO Nanocrystalline via Facile Non-Hydrolytic Route

    International Nuclear Information System (INIS)

    Ooi, M. D. Johan; Aziz, A. Abdul; Abdullah, M. J.

    2011-01-01

    Zinc oxide (ZnO) nanocrystalline were synthesized via oxidizing Zn powder in non-aqueous solvent with addition of Diethanolamine (DEA) as a stabilizing agent. The influence of DEA on the structural, optical properties and the formation of ZnO nanocrystalline were studied. The synthesized ZnO were polycrystalline in structures where sample without the addition of DEA shows high intensity peak of (002) phase compared with sample in the presence of DEA which preferred to grow in (101) direction. SEM micrograph displays the morphology of ZnO nanocrystalline for both of the samples which shows micron size and non-uniform particles for sample without DEA whereas for sample with DEA exhibit smaller size (∼110 nm) and nearly spherical in shape despite of some agglomeration occurs at the interparticle separation. The photoluminescence (PL) spectra shows UV emission peak for both of the samples where sample with the absence of DEA possess lower intensity of UV emission peak compared to samples with DEA which demonstrate stronger intensity despite of having very weak visible secondary emission peak at 530 nm.

  12. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    Directory of Open Access Journals (Sweden)

    Hernane S. Barud

    2011-01-01

    Full Text Available Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and absorption in the UV-Visible (350 nm to 600 nm. Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.

  13. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  14. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  15. Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide

    KAUST Repository

    Qamar, Mohd; Merzougui, Belabbes A.; Anjum, Dalaver H.; Hakeem, Abbas Saeed; Yamani, Zain Hassan; Bahnemann, Detlef W.

    2014-01-01

    Synthesis of mesoporous nanocrystalline iron-doped titania following the sol-gel method is presented in this work. Samples with various molar ratios (0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10 and 20%) of Fe to Ti were prepared. The particle size was found

  16. Silver powder effectiveness and mechanism of silver paste on silicon solar cells

    International Nuclear Information System (INIS)

    Tsai, Jung-Ting; Lin, Shun-Tian

    2013-01-01

    Highlights: ► Optimizing the silver paste in 80–85 wt.%. ► Optimizing its particle size in 1–1.5 μm spherical powder. ► The sheet resistance is 4 mΩ/sq during the 860 °C sintering process. ► Redox reaction cause Ag crystallites to grow on the interface. ► A thin layer of silicon oxide (75–150 nm) was formed. - Abstract: Since the silver paste plays a major role in the mass production of silicon solar cells, this work has succeeded in optimizing the silver paste in 80–85 wt.% and optimizing its particle size in 1–1.5 μm spherical powder. As the firing temperature is increased, the growth trend of silver grain is improved. The result of this work has showed that the lowest sheet resistance is 4 mΩ/sq during the 860 °C sintering process. The scanning electron microscope (SEM) observation has showed that the formation of silver oxide is formed during the melting process of glass and triggered redox reaction of Ag crystallites to grow on the interface. It has proven by transmission electron microscope (TEM) that a thin layer of silicon oxide (75–150 nm) was formed, respectively.

  17. Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor

    Science.gov (United States)

    Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali

    2015-07-01

    The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.

  18. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Sun, S. J.; Varga, M.; Chou, H.; Hsu, H.S.; Kromka, A.; Horák, Pavel

    2015-01-01

    Roč. 394, Nov (2015), s. 477-480 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LD14011 EU Projects: European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:68378271 ; RVO:61389005 Keywords : diamond * nonmetallic ferromagnetic materials * fine-particle systems * nanocrystalline materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  19. Tailoring particle size and morphology of colloidal Ag particles via chemical precipitation for Ag-BSCCO composites

    International Nuclear Information System (INIS)

    Medendorp, N.W. Jr.; Bowman, K.J.; Trumble, K.P.

    1996-01-01

    The chemical precipitation of silver particles is an effective method for tailoring the particle size and morphology. This article investigates a chemical precipitation method for producing silver colloids, and how processing parameters affected particle size, morphology and adherence. Decreasing the silver nitrate concentration during precipitation with sodium borohydride decreased the colloidal silver particle size. Decreasing the addition rate of the reducing agent produced faceted particles. Reversing the reactant addition order also changed the particle size and the morphology. Precipitated colloids demonstrated a difference between the growth-dominated and the equilibrium structures. Co-dispersing Bi-based superconducting platelets during precipitation allowed Ag colloids to preferentially nucleate on the platelets and to remain adhered even after the additional processing. (orig.)

  20. Liquid radiation detectors based on nano-silver surface plasmon resonance phenomena

    International Nuclear Information System (INIS)

    Puiso, J.; Laurikaitiene, J.; Adliene, D.; Prosycevas, I.

    2010-01-01

    The rapid development of micro- and nano-structures containing silver nano-particles is based on their unique physical properties. Despite the new applications of silver nano-particles in nano-medicine are under heavy discussions, silver nano-particles could be used in liquid radiation detectors thanks to the irradiation-induced surface plasmon resonance (SPR) phenomena observed in the colloidal solutions. Silver nitrate (1 mM AgNO 3 ) and sodium citrate (1 wt% and 5 wt% C 6 H 5 O 7 Na 3 ) were used as precursors for the fabrication of colloidal solutions. Prepared solutions were exposed to gamma-rays from a 60 Co gamma therapy unit 'Rokus-M' to varying absorbed doses, from 2 to 250 Gy. A UV/VIS/NIR spectrometer (Avantes-2048) was used for the measurement of the optical properties (absorbance) of the silver solutions. It was found that an initial absorbed dose of 2 Gy induced the formation of spherical silver nano-particles as it was indicated in the absorbance spectrum of the solution, which had a well-pronounced absorption maximum at the wavelength of 410 nm. There is a potential to measure absorbed doses down to around 20 mGy. The SPR peaks at the wavelengths of 500-700 nm were found at the highest investigated doses > 100 Gy, indicating the presence of silver nano-rods. The colour of colloidal solutions ranged from pale yellow to green and was dependent on the absorbed dose. The investigation has shown that density, size and shape of synthesised silver nano-particles are dependent on the absorbed dose and that shape transformations of the particles due to irradiation are possible. Application of colloidal solutions containing silver nano-particles for dosimetric purposes is discussed on the basis of the obtained results. (authors)

  1. Electrostatic assembly of CTAB-capped silver nanoparticles along predefined λ-DNA template

    International Nuclear Information System (INIS)

    Wei Gang; Wang Li; Zhou Hualan; Liu Zhiguo; Song Yonghai; Li Zhuang

    2005-01-01

    Cetyltrimethylammonium bromide (CTAB)-capped positively-charged silver nanoparticles synthesized in water-ethanol system was electrostatic assembled on predefined aligned λ-DNA template. Silver nanowire can be obtained by changing the reaction time and the particles concentration. In our work, the length of the silver nanowire obtained is about 10 μm, and the dimension of the wires is about 20 nm. AFM data reveal that the assembly of CTAB-capped silver nanoparticles on DNA is ordered, but there is space between two particles absorbed on the DNA template. X-ray photoelectron spectroscopy (XPS) was applied to characterize the linear silver clusters, which provides an additional proof that the silver particles were assembled onto DNA template with fine order

  2. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  3. One-Pot Silver Nanoring Synthesis

    Science.gov (United States)

    Drogat, Nicolas; Granet, Robert; Sol, Vincent; Krausz, Pierre

    2010-03-01

    Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV-vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  4. High-performance electrically conductive silver paste prepared by silver-containing precursor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianguo; Cao, Yu; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan [Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Wuhan (China)

    2010-09-15

    A high-performance electrically conductive silver paste with no solid particles before drying and/or sintering is developed, in which silver-containing precursor is employed as conductive functional phase. Thermogravimetry analysis, volume electrical resistivity tests and sintering experiments show that the paste with about 14 wt.% silver pristine content is able to achieve the volume electrical resistivity of (2-3) x 10{sup -5} {omega} cm after it is sintered at 220 C. A micro-pen direct-writing process indicates that it is very suitable for the fabrication of high-resolution (25 {mu}m) and high-integration devices and apparatus. (orig.)

  5. Antibacterial effect of PEO coating with silver on AA7075

    Energy Technology Data Exchange (ETDEWEB)

    Cerchier, P., E-mail: pietrogiovanni.cerchier@studenti.unipd.it [Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova (Italy); Pezzato, L.; Brunelli, K. [Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova (Italy); Dolcet, P. [Department of Chemical Science, University of Padua, INSTM, UdR Padova and ICMATE-CNR, Padova (Italy); Bartolozzi, A.; Bertani, R.; Dabalà, M. [Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova (Italy)

    2017-06-01

    In this work, plasma electrolytic oxidation (PEO) coatings were produced on AA7075 using alkaline solution containing silicates compounds and silver micrometric particles in order to give to the coating an antimicrobial effect. In the optic of circular economy, silver chloride derived from the acid pre-treatment of electronic scraps was used as raw material and successively silver powders were synthesized from silver chloride solution using glucose syrup as reducing agent. The coatings were characterized by scanning electron microscope (SEM), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and antimicrobial tests. The results evidenced that the obtained coatings were homogenous and give to the samples higher corrosion resistance than untreated alloy. The silver particles, found both inside and outside of the pores that characterize the PEO layer, produced an efficacious antimicrobial effect both against E. coli and S. aureus. - Highlights: • Silver particles were incorporated into PEO coatings produced on aluminum alloys. • The incorporation was performed with direct addition of the particles in the electrolyte. • The particles resulted equally distributed on the samples surfaces. • The obtained coatings show antimicrobial activity with both E. coli and S. aureus. • The obtained coatings were characterized by acceptable corrosion resistance.

  6. Antibacterial effect of PEO coating with silver on AA7075

    International Nuclear Information System (INIS)

    Cerchier, P.; Pezzato, L.; Brunelli, K.; Dolcet, P.; Bartolozzi, A.; Bertani, R.; Dabalà, M.

    2017-01-01

    In this work, plasma electrolytic oxidation (PEO) coatings were produced on AA7075 using alkaline solution containing silicates compounds and silver micrometric particles in order to give to the coating an antimicrobial effect. In the optic of circular economy, silver chloride derived from the acid pre-treatment of electronic scraps was used as raw material and successively silver powders were synthesized from silver chloride solution using glucose syrup as reducing agent. The coatings were characterized by scanning electron microscope (SEM), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and antimicrobial tests. The results evidenced that the obtained coatings were homogenous and give to the samples higher corrosion resistance than untreated alloy. The silver particles, found both inside and outside of the pores that characterize the PEO layer, produced an efficacious antimicrobial effect both against E. coli and S. aureus. - Highlights: • Silver particles were incorporated into PEO coatings produced on aluminum alloys. • The incorporation was performed with direct addition of the particles in the electrolyte. • The particles resulted equally distributed on the samples surfaces. • The obtained coatings show antimicrobial activity with both E. coli and S. aureus. • The obtained coatings were characterized by acceptable corrosion resistance.

  7. Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, Hua; Liu, J.F.; He, Yongqi

    2007-01-01

    In situ energy dispersive X-ray diffraction measurements with synchrotron radiation source have been performed on nanocrystalline Ge with particle sizes 13, 49 and 100 nm by using diamond anvil cell. Whereas the percentage volume collapse at the transition is almost constant, the values of the bu...

  8. Thermally Stable Nanocrystalline Steel

    Science.gov (United States)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  9. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    Science.gov (United States)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  10. One-Pot Silver Nanoring Synthesis

    Directory of Open Access Journals (Sweden)

    Drogat Nicolas

    2009-01-01

    Full Text Available Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  11. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon Saengmee-anupharb; Toemsak Srikhirin; Boonyanit Thaweboon; Sroisiri Thaweboon; Taweechai Amornsakchai; Surachai Dechkunakorn; Theeralaksna Suddhasthira

    2013-01-01

    Objective: To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods: The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candidaalbicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results: All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5-3.0 µm) and more uniformly shaped than AgZ. Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  12. Antimicrobial effects of silver zeolite,silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon; Saengmee-anupharb; Toemsak; Srikhirin; Boonyanit; Thaweboon; Sroisiri; Thaweboon; Taweechai; Amornsakchai; Surachai; Dechkunakorn; Theeralaksna; Suddhasthira

    2013-01-01

    Objective:To evaluate the antimicrobial activities of silver inorganic materials,including silver zeolite(AgZ),silver zirconium phosphate silicate(AgZrPSi)and silver zirconium phosphate(AgZrp),against oral microorganisms.In line with this objective,the morphology and structure of each type of silver based powders were also investigated.Methods:The antimicrobial activities of AgZ,AgZrPSi and AgZrP were tested against Streptococcus mutans,Lactobacillus casei,Candida albicans and Staphylococcus aureus using disk diffusion assay as a screening test.The minimum inhibitory concentration(MIC)and minimum lethal concentration(MLC)were determined using the modified membrane method.Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials.Results:All forms of silver inorganic materials could inhibit the growth of all test microorganisms.The MIC of AgZ,AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L.In terms of morphology and structure.AgZrPSi and AgZrP had smaller sized particles(1.5-3.0μm)and more uniformly shaped than AgZ.Conclusions:Silver inorganic materials in the form of AgZ,AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers.These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  13. Effect of silver nano particles on flexural strength of acrylic resins.

    Science.gov (United States)

    Sodagar, Ahmad; Kassaee, Mohammad Zaman; Akhavan, Azam; Javadi, Negar; Arab, Sepideh; Kharazifard, Mohammad Javad

    2012-04-01

    Poly(methyl methacrylate), PMMA, is widely used for fabrication of removable orthodontic appliances. Silver nano particles (AgNps) have been added to PMMA because of their antimicrobial properties. The aim of this study is to investigate the effect of AgNps on the flexural strength of PMMA. Acrylic liquid containing 0.05% and 0.2% AgNps was prepared for two kinds of acrylic resins: Rapid Repair &Selecta Plus. Two groups without AgNps were used as control groups. For each one, flexural strength was investigated via Three Point Bending method for the 15 acrylic blocks. Two-way ANOVA, one way ANOVA and Tukey tests were used for statistical analysis. Rapid Repair without AgNps showed the highest flexural strength. Addition of 0.05% AgNps to Rapid Repair, significantly decreased its flexural strength while, continuing the addition up to 0.2% increased it nearly up to its primary level. In contrast, addition of AgNps to Selecta Plus increased its flexural strength but addition of 0.05% nano particles was more effective than 0.2%. The effect of AgNps on flexural strength of PMMA depends on several factors including the type of acrylics and the concentrations of nano particles. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Amanda S.; Sternberg, Michael G.

    2006-10-05

    Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples.

  15. 3-dimensional free standing micro-structures by proton beam writing of Su 8-silver nanoParticle polymeric composite

    Science.gov (United States)

    Igbenehi, H.; Jiguet, S.

    2012-09-01

    Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.

  16. Preparation of high-quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder.

    Science.gov (United States)

    Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd

    2012-06-01

    This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.

  17. Plant-mediated synthesis of silver nanoparticles using parsley ( Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-12-01

    Synthesis of nanomaterials may involve various routes including physical, chemical and biological approaches. Here, the biological green route was chosen to prepare silver nanoparticles from silver salts to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. To make the process clean and green, leaf extract of parsley ( Petroselinum crispum) was used to synthesize Ag nanoparticles at room temperature. The formation of Ag-nanoparticles was monitored by UV-Vis spectroscopy. The presence of silver in the sample and its crystalline nature were verified by X-ray diffraction (XRD) analysis. The size distribution profile and particle size in the suspension were manipulated from dynamic light scattering (DLS) pattern. The shape, size and morphology of the biogenic nanoparticles were studied using high resolution transmission electron microscope (TEM). Fourier transform infra-red spectroscopy was used to detect the biomolecules responsible for reduction of silver ions. These biogenic Ag-nanoparticles showed appreciable antibacterial efficacy against three bacteria— Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus.

  18. Properties of silver chloride track detectors

    International Nuclear Information System (INIS)

    Dmitriev, V.D.; Kocherov, N.P.; Novikova, N.R.; Perfilov, N.A.

    1976-01-01

    The experiments on preparation of silver chloride track detectors and their properties are described. The results of X-ray structural analysis and data on sensitivity to charged particles and actinic light of silver chloride crystals, doped with several elements, are presented. (orig.) [de

  19. Simple and environmentally friendly preparation and size control of silver nanoparticles using an inhomogeneous system with silver-containing glass powder

    International Nuclear Information System (INIS)

    Mori, Yasutaka; Tagawa, Toshio; Fujita, Masanori; Kuno, Toyohiko; Suzuki, Satoshi; Matsui, Takemi; Ishihara, Masayuki

    2011-01-01

    A simple, environmentally friendly method for preparing highly size-controlled spherical silver nanoparticles was developed that involved heating a mixture of silver-containing glass powder and an aqueous solution of glucose. The stabilizing agent for silver nanoparticles was found to be caramel, which was generated from glucose when preparing the nanoparticles. The particle size was independent of the reaction time, but it increased proportionally with the square root of the glucose concentration in the range 0.25–8.0 wt% (corresponding to particle sizes of 3.48 ± 1.83 to 20.0 ± 2.76 nm). Difference of the generation mechanism of silver nanoparticles between this inhomogeneous system and a system in which Ag + was homogeneously dispersed was discussed.

  20. Optical and structural studies of silver nanoparticles

    International Nuclear Information System (INIS)

    Temgire, M.K.; Joshi, S.S.

    2004-01-01

    Gamma radiolysis method was used to prepare polyvinyl alcohol (PVA) capped silver nanoparticles by optimizing various conditions like metal ion concentration and polymer (PVA) of different molecular weights. The role of different scavengers was also studied. The decrease in particle size was observed with increase in the molecular weight of capping agent. γ-radiolytic method provides silver nanoparticles in fully reduced and highly pure state. XRD (X-ray diffraction) technique confirmed the zero valent state of silver. Optical studies were done using UV-visible spectrophotometer to see the variation of electronic structure of the metal sol. Transmission Electron Microscopic (TEM) studies reveal the fcc geometry. The TEM show clearly split Debye-Scherrer rings. The d values calculated from the diffraction ring pattern are in perfect agreement with the ASTM data. Ag particles less than 10 nm are spherical in shape, whereas the particles above 30 nm have structure of pentagonal biprisms or decahedra, referred to as multiply twinned particles

  1. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen)

    International Nuclear Information System (INIS)

    Shams, Gholamabbas; Ranjbar, Morteza; Amiri, Aliasghar

    2013-01-01

    The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant’s productions for human consumptions.

  2. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen)

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Gholamabbas, E-mail: ghs@iaushiraz.net; Ranjbar, Morteza [Shiraz Branch, Islamic Azad University, Department of Physics (Iran, Islamic Republic of); Amiri, Aliasghar [Shiraz Branch, Islamic Azad University, Department of Chemistry (Iran, Islamic Republic of)

    2013-05-15

    The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant's productions for human consumptions.

  3. Effect of power on the growth of nanocrystalline silicon films

    International Nuclear Information System (INIS)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma

    2008-01-01

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm -1 and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity

  4. Effect of power on the growth of nanocrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma [Plasma Processed Materials Group, National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110 012 (India)], E-mail: skumar@mail.nplindia.ernet.in

    2008-08-20

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm{sup -1} and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity.

  5. Phytotoxicity, uptake, and accumulation of silver with different particle sizes and chemical forms

    Energy Technology Data Exchange (ETDEWEB)

    Quah, Bryan [Southern Illinois University Carbondale, Department of Civil and Environmental Engineering (United States); Musante, Craig; White, Jason C. [The Connecticut Agricultural Experiment Station, Department of Analytical Chemistry (United States); Ma, Xingmao, E-mail: xma@civil.tamu.edu [Texas A& M University, Zachry Department of Civil Engineering (United States)

    2015-06-15

    The antimicrobial property of silver nanoparticles (AgNPs) makes it one of the most commonly encountered nanomaterials in commercial products. Consequently, its detection in the environment is highly likely and its potential toxicity has been heavily investigated. While it is now generally agreed that AgNP itself exerts unique toxicity to plants in addition to that of dissolved silver ion, the accumulation and fate of different forms of silver in plant tissues are unknown. This study investigates the phytotoxicity, accumulation, and transport of Ag with different physical and chemical characteristics (e.g., ionic, nanoparticles, and bulk) in two agricultural crop species: Glycine max (soybean) and Triticum aestivum (wheat). The results showed that different forms of Ag demonstrated differential toxicity in these two species, with the Ag{sup +} at the same nominal concentration displaying the strongest effect on plant growth. Exposure to 5 mg/L of elemental Ag in different forms all resulted in significant deposition on the root surface but its morphology and distribution patterns varied considerably. The Ag transport efficiency from roots to shoots differed with both Ag type and plant species. Notably, the upward transport of AgNPs (20–50 nm) was considerably more substantial than that of bulk Ag (1–3 µm). Cell fractionation studies confirmed that all types of Ag were internalized, with the plant cell wall as the predominant place for element accumulation. The findings demonstrate that Ag toxicity and in planta fate vary with particle type and that such considerations are likely necessary to adequately assess food safety concerns upon NP exposure.

  6. ANTISEPTIC SPRAY BASED ON STABILIZED SILVER PARTICLES: AN ANALYSIS OF ANTISEPTIC PROPERTIES AND COMPREHENSIVE COMPARISON

    Directory of Open Access Journals (Sweden)

    Manuilov, A.M.

    2018-04-01

    Full Text Available Introduction. It's known that some antiseptic sprays based on alcohols can provoke the formation of multi-resistant strains of pathogenic microorganisms. In addition, alcoholic antiseptics has a number of restrictions to use, for example, they can't to be used in even the presence of micro-trauma on the skin, their ingression into the body and mucous membranes is unacceptable. Alternative can be natural antiseptics based on colloidal silver or silver nanoparticles, as well as silver in ionic form. However, such antiseptics has low efficacy against the most dangerous strains. Company Modern Biochem Technologies Ltd. announced the development of a portable device that generates a natural and safe antiseptic Dew, based on stabilized silver particles. Antiseptic Dew surpasses the vast majority of antiseptics based on silver, and is not inferior in effectiveness to antiseptics based on alcohols. This work is devoted to testing the declared characteristics of Dew and its comparison with antiseptics based on colloidal silver, silver nanoparticles and isopropyl alcohol. Materials and methods. To test the antiseptic effect of these agents, we used four test strains from the American Type Culture Collection: E. Coli ATCC 25922, Staphylococcus Aureus ATCC 25923, Candida Albicans ATCC 885-653 and Proteus Vulgaris ATCC 4636 with billion concentration of colony forming units in 1 ml (108 – 109 CFU/mL, ln CFU/mL = 19.57 ... 20.72. Sowing and screening of cultures were performed on sterile Petri dishes according to the standard procedure. Antiseptic Dew was prepared by prototype provided by Modern Biochem Technologies. The antiseptics of comparison were purchased in Kharkiv, Ukraine. The treatment of contaminated surfaces was performed using mechanical pump sprayers. In accordance with the internal protocol, 1 ml of antiseptic was sprayed from the distance of 10 cm onto the infected surface. To determine the silver content in the Dew, we were used atomic

  7. Rapid Fabrication of Silver Nanowires through Photoreduction of Silver Nitrate from an Anodic-Aluminum-Oxide Template

    Science.gov (United States)

    Lin, Yu-Hsuan; Chen, Kun-Tso; Ho, Jeng-Rong

    2011-06-01

    A method for rapidly fabricating dense and high-aspect-ratio silver nanowires, with wire diameter of 200 nm and wire length more than 30 µm, is reported. The fabrication process simply involves filling the silver nitrate solution into the pores of an anodic-aluminum-oxide (AAO) membrane through capillary attraction and irradiating the dried template AAO membrane using a pulsed ArF excimer laser. Through varying the thickness and pore diameter of the employed AAO membrane, the primary dimensions of the targeted silver nanowires can be plainly specified; and, by amending the initial concentration of the silver nitrate solution and adjusting the laser operation parameters, laser fluence and number of laser pulses, the surface morphology and size of the resulting nanowires can be finely regulated. The wire formation mechanism is considered through two stages: the period of precipitation of silver particles from the dried silver nitrate film through the laser-induced photoreduction; and, the phase of clustering, merging and fusing of the reduced particles to form nanowires in the template pores by the thermal energy owing to photothermal effect. This approach is straightforward and takes the advantage that all the fabrication processes can be executed in an ambient environment and at room temperature. In addition, by the excellence in local processing that the laser possesses, this method is suitable for precisely growing nanowires.

  8. Silver Nanoparticles and Studies on Using in Poultry Nutrition

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Özcan

    2015-02-01

    Full Text Available The use of colloidal silver as an antibiotic was becoming widespread until the 1940s. However, with the discovery of antibiotics, usage of colloidal silver had been reduced because of being expensive. The fact that bacteria develop resistance to antibiotics lead to prohibiton the usage of antibiotics in poultry diets as growth promoters. Based on these developments reuse of colloidal silver has been raised as an alternative to antibiotics. Without prejudice to the beneficial enzymes, colloidal silver disables certain enzymes needed by bacteria, viruses, yeasts, and fungus resulting in the destruction of these enzymes. It is reported that increase in surface area of nano-particles of silver increase antibacterial activity. The most important limitation on the widespread use of silver nanoparticles as feed additives is uncertainty about the possible toxic effects. In this review, studies for the use of colloidal silver particles in poultry feed were evaluated and tried to seek answer the question “may be a new resource that can be used as an alternative to antibiotics?

  9. Synthesis of silver nanoparticles in hydrogels crosslinked by ionizing radiation

    International Nuclear Information System (INIS)

    Alcantara, Maria Tania S.; Oliani, Washington L.; Brant, Antonio J.C.; Oliveira, Maria Jose A. de; Riella, Humberto Gracher; Lugao, Ademar B.

    2013-01-01

    Hydrogel is defined as a polymeric material which exhibits the ability to swell and retain a significant fraction of water within its structure without dissolving the polymeric network. Silver nanoparticles (AgNPs) are used in a range of medicinal products based on hydrogels and diverse other products due to their antibacterial properties at low concentrations. The use of ionizing radiation in the production process of hydrogels of poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) in aqueous solutions enables the crosslinking of their polymer chains. If polymer solutions contain Ag + ions, these can be reduced radiolytically to nanocrystalline silver. The objective of this study was to investigate the reduction of Ag + ions by gamma-irradiation for the synthesis of AgNPs in hydrogels of PVA and PVP as main polymers and to make a comparison of the performance of the two polymeric matrices, chiefly focusing on the effect of the AgNPs' synthesis on the crosslinking of both polymers. The properties of the hydrogel matrices obtained were evaluated from tests of gel fraction, swelling in water, and stress-strain. The results of mechanical properties of PVA matrix were higher than those of PVP one whereas the latter exhibited a higher swelling degree. The reduction of silver ions was confirmed by UV-visible absorption spectrum, whose characteristics also indicated the formation of silver nanoparticles in both arrays. (author)

  10. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  11. Strength and structure of nanocrystalline titanium

    International Nuclear Information System (INIS)

    Noskova, N.I.; Pereturina, I.A.; Elkina, O.A.; Stolyarov, V.V.

    2004-01-01

    Investigation results on strength and plasticity of nanocrystalline titanium VT-1 are presented. Specific features of plastic deformation on tension of this material specimens in an electron microscope column are studied in situ. It is shown that nanocrystalline titanium strength and plasticity at room temperature are dependent on the structure and nanograin size. It is revealed that deformation processes in nanocrystalline titanium are characterized by activation of deformation rotational modes and microtwinning [ru

  12. Corrosion processes of triangular silver nanoparticles compared to bulk silver

    Energy Technology Data Exchange (ETDEWEB)

    Keast, V. J., E-mail: vicki.keast@newcastle.edu.au; Myles, T. A. [University of Newcastle, School of Mathematical and Physical Sciences (Australia); Shahcheraghi, N.; Cortie, M. B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)

    2016-02-15

    Excessive corrosion of silver nanoparticles is a significant impediment to their use in a variety of potential applications in the biosensing, plasmonic and antimicrobial fields. Here we examine the environmental degradation of triangular silver nanoparticles (AgNP) in laboratory air. In the early stages of corrosion, transmission electron microscopy shows that dissolution of the single-crystal, triangular, AgNP (side lengths 50–120 nm) is observed with the accompanying formation of smaller, polycrystalline Ag particles nearby. The new particles are then observed to corrode to Ag{sub 2}S and after 21 days nearly full corrosion has occurred, but some with minor Ag inclusions remaining. In contrast, a bulk Ag sheet, studied in cross section, showed an adherent corrosion layer of only around 20–50 nm in thickness after over a decade of being exposed to ambient air. The results have implications for antibacterial properties and ecotoxicology of AgNP during corrosion as the dissolution and reformation of Ag particles during corrosion will likely be accompanied by the release of Ag{sup +} ions.

  13. The Synthesis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution

    International Nuclear Information System (INIS)

    Sri Budi Harmani; Dewi Sondari; Agus Haryono

    2008-01-01

    Described in this research are the synthesis of silver nanoparticle produced by chemical reduction of silver salt (silver nitrate AgNO 3 ) solution. As a reducer, sodium citrate (C 6 H 5 O 7 Na 3 ) was used. Preparation of silver colloid is done by using chemical reduction method. In typical experiment 150 ml of 1.10 -3 M AgNO 3 solution was heated with temperature variation such as 90, 100, 110 degree of Celsius. To this solution 15 ml of 1 % trisodium citrate was added into solution drop by drop during heating. During the process, solution was mixed vigorously. Solution was heated until colour's change is evident (pale yellow solution is formed). Then it was removed from the heating element and stirred until cooled to room temperature. Experimental result showed that diameter of silver nanoparticles in colloid solution is about 28.3 nm (Ag colloid, 90 o C); 19.9 nm (Ag colloid, 100 o C)and 26.4 nm (Ag colloid, 110 o C). Characterization of the silver nanoparticle colloid conducted by using UV-Vis Spectroscopy, Particles Size Analyzer (PSA) and Scanning Electron Microscope (SEM) indicate the produced structures of silver nanoparticles. (author)

  14. Highly efficient silver patterning without photo-resist using simple silver precursors

    International Nuclear Information System (INIS)

    Byun, Younghun; Hwang, Eoc-Chae; Lee, Sang-Yun; Lyu, Yi-Yeol; Yim, Jin-Heong; Kim, Jin-Young; Chang, Seok; Pu, Lyong Sun; Kim, Ji Man

    2005-01-01

    Highly efficient method for silver patterning without photo-resist was developed by using high photosensitive organo-silver precursors, which were prepared by a simple reaction of silver salts and excess of amines. The FT-IR and GC-MS spectra were recorded depending on UV exposure time, for (n-PrNH 2 )Ag(NO 3 ).0.5MeCN and (n-PrNH 2 )Ag(NO 2 ).0.5MeCN, to understand the photolysis mechanism. The results indicate not only dissociation of coordinated amine and acetonitrile, but also decomposition of corresponding anion upon UV irradiation. When a precursor thin film was exposed to broadband UV irradiation, a partially reduced and insoluble silver species were formed within several minutes. After development, the irradiated areas were treated with a reducing agent to obtain pure metallic patterns. Subsequently, annealing step was followed at 100-350 deg. C to increase the adhesion of interface and cohesion of silver particles. The line resolution of 5 μm was obtained by the present silver precursors. Film thickness was also controllable from 50 to 250 nm by repetition of the above procedure. The average electrical conductivity was in the range of 3-43 Ω cm, measured by four-point probe technique. AES depth profile of the silver pattern thus obtained showed carbon and oxygen contents are less than 1% through the whole range. Even though sulfur contaminant exists on the surface, it was believed that nearly pure silver pattern was generated

  15. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO{sub 2} based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaohua, E-mail: mksxh@163.com; Zhou, Xin; Xu, Yalong; Sun, Panpan; Huang, Niu; Sun, Yihua

    2015-05-15

    Graphical abstract: - Highlights: • Mixed P25 nanoparticles and large rutile particles were employed to form a top scattering layer. • The top scattering layer exhibits superior light scattering effect. • The bottom nanocrystalline TiO{sub 2} layer can make good use of the back-scattered light. • Bilayer TiO{sub 2} photoanode shows faster interfacial electron transfer and slower charge recombination process. • Bilayer photoanode enhances the DSSC efficiency by a factor of 25%. - Abstract: Herein, we report a bilayer TiO{sub 2} photoanode composed of nanocrystalline TiO{sub 2} (NCT) bottom layer and mixed P25 nanoparticles and large rutile particles (PR) top scattering layer. The present structure performs well in solar light harvesting which is mainly attributed to the fact that the top scattering layer exhibits superior light scattering effect and meanwhile the NCT bottom layer with large dye-loading capacity can make better use of the back-scattered light. Moreover, electrochemical impedance spectroscopy and open circuit voltage decay measurements demonstrate that DSSC based on bilayer photoanode shows faster interfacial electron transfer and slower charge recombination process than that based on NCT monolayer photoanode. These advantages render the DSSCs based on NCT-PR bilayer photoanode exhibiting superior performance under AM1.5G simulated solar irradiation. As an example, by tuning mass ratio between P25 nanoparticles and large rutile particles in the top scattering layer, the DSSC based on NCT-PR bilayer photoanode exhibits an optimum solar energy conversion efficiency of 9.0%, which is about 1.25 times higher than that of monolayer NCT device (7.2%) with the same film thickness.

  16. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids

    International Nuclear Information System (INIS)

    Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V

    2004-01-01

    The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)

  17. Towards conducting inks: Polypyrrole–silver colloids

    International Nuclear Information System (INIS)

    Omastová, Mária; Bober, Patrycja; Morávková, Zuzana; Peřinka, Nikola; Kaplanová, Marie; Syrový, Tomáš; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  18. Antibacterial activity of Nano-Silver capped by β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    R. Sathiya Priya

    2013-03-01

    Full Text Available Silver nanoparticles were prepared by chemical reduction method using sodium citrate as reducing agent, followed by capping with various concentrations of β-Cyclodextrin (β-CD and characterized by various physicchemical characterization techniques. Antibacterial activity of Pseudomonas aeruginosa (Gram-negative and Staphylococcus aureus (Gram-positive was determined by Well-Diffusion method. The nano-silver were spherical under Scanning electron microscopy (SEM and the XRD result shows average diameters of capped particles are smaller than their equivalent uncapped particles. Capped nano silver particles of four different concentrations were demonstrated as superior for photo stability, when exposed to intense ultraviolet (UV-Vis radiation for 4 hours, as well as significantly higher antibacterial activity. The influence of β-CD concentration (5 mM, 10 mM and 15 mM was seems to be delay in bacterial growth, showing that a Trojan horse mechanism may be owing to occur bacterial affinity, thereby improving silver ion absorption.

  19. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  20. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    Directory of Open Access Journals (Sweden)

    Yuxin Wang

    2017-08-01

    Full Text Available In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM. The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at% Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  1. Size-dependent structure of silver nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Koski, Kristie Jo [Univ. of California, Berkeley, CA (United States)

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  2. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  3. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    Science.gov (United States)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  4. Optical spectroscopy of arsenic- and silver-containing sol-gel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.A.; Paje, S.E.; Llopis, J. [Departamento de Fisica de Materiales, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid (Spain); Villegas, M.A.; Fernandez Navarro, J.M. [Departamento de Vidrios, Instituto de Ceramica y Vidrio, Madrid (Spain)

    1999-05-07

    Sol-gel silica coatings doped with 1 mol% silver and/or 1 mol% arsenic oxide have been investigated by photoluminescence (PL) and optical absorption (OA) spectroscopy. The presence of Ag{sup +} ions in the silica host has been monitored by recording a luminescence peak located between 320 and 330 nm upon excitation with 228 nm light, whereas the formation of small particles of metallic silver has been assessed by recording the absorption band centred at about 405 nm. The luminescence peak has been related to the d{sup 10} 10 {r_reversible} d{sup 9} s parity-forbidden transitions in Ag{sup +}, which are partially allowed by odd-phonon assistance. On the other hand, the absorption peak at about 405 nm arises from the well known surface-plasmon resonance of silver particles. Coating densification under various atmospheres gives rise to significant effects on the PL and OA spectra. Results indicate that, after coating densification in air, most of the silver appears as Ag{sup +} ions, in contrast to coating densification under a 90% N{sub 2}-10% H{sub 2} atmosphere, which favours the formation of small particles of metallic silver. The presence of arsenic oxide in the silver coatings densified in air has been found to improve the stabilization of Ag{sup +} ions, so that partially prevents the formation of colloidal silver under reducing atmospheres. (author)

  5. Preparation of porous ceramics from nanocrystalline zirconia and its microstructure

    International Nuclear Information System (INIS)

    Nikitin, D.S.; Zhukov, V.A.; Kul'kov, S.N.; Perkov, V.V.; Buyakova, S.P.

    2004-01-01

    The behaviour of ZrO 2 (Y) nanocrystalline powder under pressing, the effect of forming pressure, the temperature and the time of sintering on the structure of the sintered porous ceramics are under study. It is shown that on pressing the fracturing of powder particles and their agglomerates takes place even at low pressures (≅50 MPa). The change of densification mechanisms is revealed - from quasi-liquid displacement of powder particles at the beginning of mechanical action to fracture of coarse structural elements. It is established that a strong skeleton responsible for needed porosity is formed even at the initial stage of sintering [ru

  6. Synthesis and optical properties of silver nanoparticles

    Science.gov (United States)

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-01

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  7. Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles.

    Science.gov (United States)

    Vivekanandhan, Singaravelu; Schreiber, Makoto; Mason, Cynthia; Mohanty, Amar Kumar; Misra, Manjusri

    2014-01-01

    The functionalization of ZnO powders with silver nanoparticles (AgNPs) through a novel maple leaf extract mediated biological process was demonstrated. Maple leaf extract was found to be a very effective bioreduction agent for the reduction of silver ions. The reduction rate of Ag(+) into Ag(0) was found to be much faster than other previously reported bioreduction rates and was comparable to the reduction rates obtained through chemical means. The functionalization of ZnO particles with silver nanoparticles through maple leaf extract mediated bioreduction of silver was investigated through UV-visible spectrophotometry, transmission electron microscopy (TEM), and X-ray diffraction analysis. It was found that the ZnO particles were coated with silver nanoparticles 5-20 nm in diameter. The photocatalytic ability of the ZnO particles functionalized with silver nanoparticles was found to be significantly improved compared to the photocatalytic ability of the neat ZnO particles. The silver functionalized ZnO particles reached 90% degradation of the dye an hour before the neat ZnO particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Detection of colloidal silver chloride near solubility limit

    Science.gov (United States)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  9. Synthesis and characterization of silver nanoparticles in natural rubber

    International Nuclear Information System (INIS)

    Abu Bakar, N.H.H.; Ismail, J.; Abu Bakar, M.

    2007-01-01

    Silver nanoparticles are formed in natural rubber matrix via photo reduction of film cast from natural rubber latex (NRL) containing silver salt. The resulting NR-Ag nanocomposite is characterized using TEM, XRD and UV spectroscopic techniques. The nanoparticles, diameter ranging between 4 and 10 nm, are dispersed within distinct interfaces which correspond to the inter-particle boundaries of the NRL particles that form the matrix. The average width of the interfaces is 8 nm. X-ray diffraction (XRD) analysis confirms the nanoparticles as metallic silver of the face-centered cubic type. UV-vis absorption spectra show peaks characteristic of the surface plasmon resonance of nano-sized silver. A comparison with the results of formation of silver, obtained under similar reduction condition, in a series of matrices namely de-proteinized natural rubber latex (DNRL), NRL containing sodium dodecyl sulfate (SDS), aqueous solutions of bovain serum albumin and SDS, suggests that the protein in natural rubber is responsible for the formation of stable silver nanoparticles in the natural rubber (NR) matrix

  10. The electrochemical characteristics of Mg2Ni nanocrystalline hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Ling; Zhou Xiaosong; Peng Shuming

    2008-06-01

    The nanocrystalline Mg 2 Ni materials were prepared by mechanical alloying. The cyclic voltametry results indicated that the potential of oxidation peak was shift as the scan rate increased and the absorption property of Mg 2 Ni prepared by mechanical alloying was increased even at ambient temperature. The absorption and desorption of hydrogen in Mg 2 Ni alloy were remarkably accelerated with the rising temperature. Small angel X-ray scattering results indicated that the Mg 2 Ni powder have 1-5 nm and 5-10 nm particle size distribution, which increased the acting sites of hydrogen absorption/desorption reaction and decreased the diffusion path of hydrogen desorption. It was induced to the enhanced performance of Mg 2 Ni nanocrystalline powder. The cycle life investigated results indicated that the activation property of Mg 2 Ni nanocrystal-line hydrogen storage alloy electrode was excellent, the capacitance maintenance ration was 66% after 200 cycles. The coating of epoxy resin on one side of the electrode had no effect on the activation property and the capacitance maintenance ration was better than the uncoating one. But the anode peak current value and the cathodic peak current value were decreased remarkably which indicated that the hydrogen absorption/desorption rate and the charge/discharge degree had decreased. (authors)

  11. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  12. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  13. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Aaron Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sarobol, Pylin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diantonio, Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  14. Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics

    International Nuclear Information System (INIS)

    Oćwieja, Magdalena; Morga, Maria; Adamczyk, Zbigniew

    2013-01-01

    A monodisperse silver particle suspension was produced by a chemical reduction method in an aqueous medium using sodium citrate. The average particle size determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) was 28.5 nm. The DLS measurements confirmed that the suspension was stable for the ionic strength up to 3 × 10 −2 M NaCl. The electrophoretic mobility measurements revealed that the electrokinetic charge of particles was negative for pH range 3–10, assuming −50 e for pH = 9 and 0.01 M NaCl. Using the suspension, silver particle monolayers on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express the zeta potential of silver monolayers, determined by the in situ streaming potential measurements, in terms of particle coverage. Such dependencies obtained for various ionic strengths and pH, were successfully interpreted in terms of the 3D electrokinetic model. A universal calibrating graph was produced in this way, enabling one to determine silver monolayer coverage from the measured value of the streaming potential. Our experimental data prove that it is feasible to produce uniform and stable silver particle monolayers of well-controlled coverage and defined electrokinetic properties.

  15. A Case of Argyria Following Colloidal Silver Ingestion

    OpenAIRE

    Kwon, Hyok Bu; Lee, Joon Ho; Lee, Seung Ho; Lee, Ai Young; Choi, Jong Sun; Ahn, Yeon Soon

    2009-01-01

    Argyria is a rare cutaneous discoloration caused by the intake of silver or various compounds containing silver. We report a case of argyria in a 73-year-old male following ingestion of colloidal silver as an alternative medicine over 5 years. He had a diffuse, slate gray discoloration of his face and hands. A biopsy specimen from the face revealed brown-black extracellular granules in the upper dermis and between collagen bundles. We also found silver particles in the mucous of the colon. Th...

  16. Evaluation on the Presence of Nano Silver Particle in Improving a Conventional Water-based Drilling Fluid

    Science.gov (United States)

    Husin, H.; Ahmad, N.; Jamil, N.; Chyuan, O. H.; Roslan, A.

    2018-05-01

    Worldwide demand in oil and gas energy consumption has been driving many of oil and gas companies to explore new oil and gas resource field in an ultra-deep water environment. As deeper well is drilled, more problems and challenges are expected. The successful of drilling operation is highly dependent on properties of drilling fluids. As a way to operate drilling in challenging and extreme surroundings, nanotechnology with their unique properties is employed. Due to unique physicochemical, electrical, thermal, hydrodynamic properties and exceptional interaction potential of nanomaterials, nanoparticles are considered to be the most promising material of choice for smart fluid design for oil and gas field application. Throughout this paper, the effect of nano silver particle in improving a conventional water based drilling fluid was evaluated. Results showed that nano silver gave a significant improvement to the conventional water based drilling fluid in terms of its rheological properties and filtration test performance.

  17. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion.

    Science.gov (United States)

    Liu, Xian-Hao; Luo, Xiao-Hong; Lu, Shu-Xia; Zhang, Jing-Chang; Cao, Wei-Liang

    2007-03-01

    A novel cetyltrimethyl ammonium silver bromide (CTASB) complex has been prepared simply through the reaction of silver nitrate with cetyltrimethyl ammonium bromide (CTAB) in aqueous solution at room temperature by controlling the concentration of CTAB and the molar ratio of CTAB to silver nitrate in the reaction solution, in which halogen in CTAB is used as surfactant counterion. The structure and thermal behavior of cetyltrimethyl ammonium silver bromide have been investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy, thermal analysis (TG-DTA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that the complex possesses a metastable layered structure. Upon heating the CTASB aqueous dispersion to above 80 degrees C, the structure change of the complex took place and CTAB-capped nanosized silver bromide particles further formed.

  18. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction.

    Science.gov (United States)

    Yu, Dabin; Yam, Vivian Wing-Wah

    2005-03-31

    Small colloidal silver spheres (diameter synthesis process. Adjustment of the synthesis parameters, in particular the concentrations of HTAB and [Ag(NH3)2]+, led to an obvious shape evolution of silver nanoparticles, thus resulting in the shape-selective formation of the silver nanoparticles. The monodisperse nanocubes with a well-defined crystallographical structure (a single crystal bounded by six {200} facets) have a strong tendency to assemble into two-dimensional arrays on substrates. The nanowires with uniform diameter usually existed in the form of two-dimensional alignments. The findings suggested that hydrothermal-induced assembly of small silver colloidal particles should be a convenient and effective approach to the preparation of various silver nanoparticles.

  19. Green synthesis of silver nanoparticles and its application for mosquito control

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-02-01

    Full Text Available Objective: To synthesize and characterize silver nanoparticles from aqueous root extract of Parthenium hysterophorus (P. hysterophorus and also to evaluate the potentiality of synthesized silver nanoparticles as larvacidal agent against Culex quinquefasciatus (Cx. quinquefasciatus. Methods: The silver nano particles were generated using root extract of P. hysterophorus. The characterization of synthesized nanoparticles was done by visual color change, UV-Vis spectrum, scanning electron micrograph, fluorescent microscope and Fourier transform infrared spectroscopy. Results: It was found that aqueous silver ions can be reduced by aqueous root extract of P. hysterophorus to generate extremely stable silver nanoparticles in aqueous medium. Larvae were exposed to varying concentrations of plant extracts, aqueous silver nitrate solution and synthesized silver nanoparticles for 0, 24 and 48 h separately. Aqueous root extract showed moderate larvicidal effects; however, the maximum efficacy (60.18% was observed with the synthesized silver nanoparticles against the larvae of Cx. quinquefasciatus. Conclusions: These results suggest that the green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friently approach for the control of the Cx. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the nano particle synthesized by P. hysterophorus.

  20. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    Science.gov (United States)

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al.

  1. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Katrine Bilberg

    2012-01-01

    Full Text Available The influence of water chemistry on characterised polyvinyl pyrrolidone- (PVP- coated silver nanoparticles (81 nm was investigated. NaCl solution series of 100–800 mg L−1 lead to initial and temporal increase in nanoparticles size, but agglomeration was limited. pH variation (5–8 had only minor influence on the hydrodynamic particle size. Acute toxicity of nanosivler to zebrafish (Danio rerio was investigated in a 48-hour static renewal study and compared with the toxicity of silver ions (AgNO3. The nanosilver and silver ion 48-hour median lethal concentration (LC50 values were 84 μg L−1 and 25 μg L−1, respectively. To investigate exposure-related stress, the fish behaviour was observed visually after 0, 3, 6, 12, 24, 27, 30, and 48 hours of both nanosilver and ionic silver treatments. These observations revealed increased rate of operculum movement and surface respiration after nanosilver exposure, suggesting respiratory toxicity. The present study demonstrates that silver nanoparticles are lethal to zebrafish.

  2. Influence of negative charge on the optical properties of a silver sol

    Directory of Open Access Journals (Sweden)

    JOVAN M. NEDELJKOVIC

    2000-03-01

    Full Text Available The effects of negative charge on the optical properties of a silver sol prepared using sodium borohydride as a reductant were studied. The oscillations in the position of the maximum and the intensity of the surface plasmon absorption band were obesrved. The observed effects were explained as a consequence of the fluctuation of the density of free electrons due to the alternate charging and discharging of the silver particles. The charging process involves electron injection from borohydride ions and intermediate species formed during the course of the metal-catalyzed hydrolysis of borohydride ions (BH3OH-, BH2(OH2 and BH(OH3- into the silver particles, while discharge of the silver sol, by reduction of water to hydrogen, limits the attainable negative charge on the particles.

  3. Bilirubin adsorption on nanocrystalline titania films

    International Nuclear Information System (INIS)

    Yang Zhengpeng; Si Shihui; Fung Yingsing

    2007-01-01

    Bilirubin produced from hemoglobin metabolism and normally conjugated with albumin is a kind of lipophilic endotoxin, and can cause various diseases when its concentration is high. Bilirubin adsorption on the nanocrystalline TiO 2 films was investigated using quartz crystal microbalance, UV-vis and IR techniques, and factors affecting its adsorption such as pH, bilirubin concentration, solution ionic strength, temperature and thickness of TiO 2 films were discussed. The amount of adsorption and parameters for the adsorption kinetics were estimated from the frequency measurements of quartz crystal microbalance. A fresh surface of the nanocrystalline TiO 2 films could be photochemically regenerated because holes and hydroxyl radicals were generated by irradiating the nanocrystalline TiO 2 films with UV light, which could oxidize and decompose organic materials, and the nanocrystalline TiO 2 films can be easily regenerated when it is used as adsorbent for the removal of bilirubin

  4. Enhanced field emission from Si doped nanocrystalline AlN thin films

    International Nuclear Information System (INIS)

    Thapa, R.; Saha, B.; Chattopadhyay, K.K.

    2009-01-01

    Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 deg. C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (E to ) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm 2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.

  5. Synthesis of free standing nanocrystalline Cu by ball milling at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Barai, K. [Department of Metallurgy and Materials Engineering, Bengal Engineering College, Shibpur, Howrah 711103 (India); Tiwary, C.S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering College, Shibpur, Howrah 711103 (India); Chattopadhyay, K., E-mail: kamanio@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2012-12-15

    This paper reports for the first time synthesis of free standing nano-crystalline copper crystals of a {approx}30-40 nm by ball milling of copper powder at 150 K under Argon atmosphere in a specially designed cryomill. The detailed characterization of these particles using multiple techniques that includes transmission electron microscopy confirms our conclusion. Careful analysis of the chemistry of these particles indicates that these particles are essentially contamination free. Through the analysis of existing models of grain size refinements during ball milling and low temperature deformation, we argue that the suppression of thermal processes and low temperature leads to formation of free nanoparticles as the process of fracture dominates over possible cold welding at low temperatures.

  6. Iodine, krypton and xenon retention efficiencies of silver impregnated silica gel media with different silver loadings and under different test conditions

    International Nuclear Information System (INIS)

    Motes, B.G.; Fernandez, S.J.; Tkachyk, J.W.

    1983-02-01

    The purpose of an independent study conducted by Exxon Nuclear Idaho, Co. (ENICO) was to evaluate a silver impregnated silica gel adsorption medium associated with a radioiodine air sampler developed at Brookhaven National Laboratory (BNL). Specifically, ENICO's responsibility was to evaluate the iodine and noble gas retention efficiencies of the adsorption medium. The evaluation was comprised of a four-phase program: 1) test assemblies capable of challenging the silver silica gel filled adsorber canister with radioiodine species or noble gases at flow rates up to 10 scfm and relative humidities up to 83% were constructed; 2) more than 45 kgs of the 4 and 8% silver impregnated silica gel were prepared and characterized for particle size distribution, bulk silver content, bulk density, and silver content by particle size; 3) iodine species retention efficiencies of the silver silica gel were determined; and 4 krypton and xenon retention efficiencies were measured. The iodine species retention efficiencies were greater than 90% under most conditions. A combination of flow rates >5 scfm and 4% silver loaded silica gel reduced the methyl iodide retention efficiency to less than 90%. The retention efficiencies for both krypton and xenon were on the order of 8 x 10 -2 % and were not affected greatly by any test variable except test duration. A reduced retention efficiency with increased test durations indicates adsorption equilibrium may be established within five minutes. (author)

  7. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  8. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  9. Effect of noble metal doping on the structural properties of lanthanum cobaltite

    International Nuclear Information System (INIS)

    Dharmadhikari, Dipti V.; Athawal, Anjali A.

    2016-01-01

    Pristine and Noble metal (Ag and Pd) doped lanthanum cobaltite samples have been synthesised by Hydrothermal method. Lanthanum in the A-Site and Co at B-site of Lanthanum cobaltite (LaCoO 3 ) perovskites were partially doped by silver and palladium (4%). Crystal structure analysis revealed that the hydrothermal synthesis led to the formation of pure nanocrystalline perovskite structure. Morphological analysis of the samples shows that the noble metal doping affects the morphology of the samples. Pristine sample shows spherical to oval shaped particles while the doping results in the formation of irregular shaped, spherical and rod shaped particles. Silver doping results in the agglomeration of particles. The particles were observed to be fused with each other to form rod shaped structures in case of palladium doped samples. (author)

  10. Structural, morphological and luminescence properties of nanocrystalline up-converting Y{sub 1.89}Yb{sub 0.1}Er{sub 0.01}O{sub 3} phosphor particles synthesized through aerosol route

    Energy Technology Data Exchange (ETDEWEB)

    Lojpur, V.; Mancic, L. [Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, K. Mihailova 35/IV, 11000 Belgrade (Serbia); Rabanal, M.E. [University Carlos III of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain); Dramicanin, M.D. [Vinca Institute of Nuclear Science, University of Belgrade, P.O. Box 522, Belgrade (Serbia); Tan, Z.; Hashishin, T.; Ohara, S. [JWRI, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Milosevic, O., E-mail: olivera.milosevic@itn.sanu.ac.rs [Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, K. Mihailova 35/IV, 11000 Belgrade (Serbia)

    2013-12-15

    Highlights: •The Y{sub 1.89}Yb{sub 0.1}Er{sub 0.01}O{sub 3} phosphor particles are synthesized via aerosol route. •We report influence of process parameters on the particle structure and morphology. •Spherical, submicronic size and nano-crystalline particle morphology are confirmed. •The particles show improved luminescence properties and decay time. •Synthesized powders exhibit the temperature dependant up-conversion emission. -- Abstract: Nanocrystalline up-converting Y{sub 2}O{sub 3}:Yb{sup 3+}, Er{sup 3+} phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm{sup 3}/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: {sup 2}H{sub 9/2} → {sup 4}I{sub 15/2} (blue: 407–420 nm), ({sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}) → {sup 4}I{sub 15/2} (green: 510–590 nm), and {sup 4}F{sub 9/2} → {sup 4}I{sub 15

  11. Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics.

    Science.gov (United States)

    Oćwieja, Magdalena; Morga, Maria; Adamczyk, Zbigniew

    2013-03-01

    A monodisperse silver particle suspension was produced by a chemical reduction method in an aqueous medium using sodium citrate. The average particle size determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) was 28.5 nm. The DLS measurements confirmed that the suspension was stable for the ionic strength up to 3 × 10 -2  M NaCl. The electrophoretic mobility measurements revealed that the electrokinetic charge of particles was negative for pH range 3-10, assuming -50  e for pH = 9 and 0.01 M NaCl. Using the suspension, silver particle monolayers on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express the zeta potential of silver monolayers, determined by the in situ streaming potential measurements, in terms of particle coverage. Such dependencies obtained for various ionic strengths and pH, were successfully interpreted in terms of the 3D electrokinetic model. A universal calibrating graph was produced in this way, enabling one to determine silver monolayer coverage from the measured value of the streaming potential. Our experimental data prove that it is feasible to produce uniform and stable silver particle monolayers of well-controlled coverage and defined electrokinetic properties.

  12. Self-supported silver nanoparticles containing bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Barud, Hernane S.; Barrios, Celina; Regiani, Thais; Marques, Rodrigo F.C.; Verelst, Marc; Dexpert-Ghys, Jeannette; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2008-01-01

    Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles

  13. Electrochemical deposition of silver nanostructures from aqueous solutions in the presence of sodium polyacrylate

    OpenAIRE

    Topchak, Roman; Okhremchuk, Yevhen; Kuntyi, Orest

    2013-01-01

    The silver nanostructures obtaining was investigated by electrochemical deposition from aqueous solutions ((1?10) mM AgNO3 + 50 m? NaPA) onto graphite substrate. The influence of the concentration of silver ions and cathodic potential values in the range E = -0,2 ... -1,0 V on surface filling degree and geometry of silver particles was (had been) studied. It is shown, the discrete silver particles ranging in size from 50 to 400 nm with a uniform distribution on the surface of the substrate...

  14. Gamma-Irradiation modified polypropylene and nano silver hybrid films: antibacterial activity

    International Nuclear Information System (INIS)

    Oliani, Washigton L.; Alcantara, Mara T.S.; Lima, Luis F.C.P. de; Bueno, Nelson R.; Rogero, Sizue O.; Lugao, Ademar B.; Parra, Duclerc F.; Huenuman, Nilton E.L.; Santos, Priscila M. dos

    2013-01-01

    This paper presents a study of films based on blends of polypropylene (PP) with radiation modified PP and insertion of silver nanoparticles aiming bactericide effect. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. The blend of 50/50 PP and gamma irradiated PP was processed in a twin screw extruder. The polypropylene was processed for five PP-Nanocomposite AgNPs in different concentrations of 0.25%; 0.5%; 1.0%; 2.0% and 4.0% in wt%. The material was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), cytotoxicity assay and reduction colony-forming unit (CFU). The analyzed films showed agglomeration of silver particles and regions with homogeneous distribution of the particles. The interactions of the nano silver bactericidal effect with E. coli and S. aureus were assessed. (author)

  15. Gamma-Irradiation modified polypropylene and nano silver hybrid films: antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, Washigton L.; Alcantara, Mara T.S.; Lima, Luis F.C.P. de; Bueno, Nelson R.; Rogero, Sizue O.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: washoliani@usp.br [Instituto de Pesquisas Energeticas Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Huenuman, Nilton E.L.; Santos, Priscila M. dos [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Dept. of Microbiologia; Riella, Humberto G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2013-07-01

    This paper presents a study of films based on blends of polypropylene (PP) with radiation modified PP and insertion of silver nanoparticles aiming bactericide effect. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. The blend of 50/50 PP and gamma irradiated PP was processed in a twin screw extruder. The polypropylene was processed for five PP-Nanocomposite AgNPs in different concentrations of 0.25%; 0.5%; 1.0%; 2.0% and 4.0% in wt%. The material was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), cytotoxicity assay and reduction colony-forming unit (CFU). The analyzed films showed agglomeration of silver particles and regions with homogeneous distribution of the particles. The interactions of the nano silver bactericidal effect with E. coli and S. aureus were assessed. (author)

  16. Production of nanocrystalline cermet thermal spray powders for wear resistant coatings by high-energy milling

    International Nuclear Information System (INIS)

    Eigen, N.; Klassen, T.; Aust, E.; Bormann, R.; Gaertner, F.

    2003-01-01

    TiC-Ni based nanocrystalline cermet powders for thermal spraying were produced by high-energy milling. Milling experiments were performed in an attrition mill and a vibration mill in kilogram scale, and powder morphologies and microstructures were characterized using scanning electron microscopy, X-ray diffraction, and laser scattering for particle size analysis. Milling time and powder input were optimized with respect to the desired microstructure and particle sizes, and the results using both types of mill were compared. Powders with homogeneously dispersed hard phase particles below 300 nm could be produced in both mills. Additional processes for the refinement of powder morphology and particle size distribution are discussed

  17. Low-temperature synthesis of superconducting nanocrystalline MgB2

    International Nuclear Information System (INIS)

    Lu, J.; Xiao, Z.; Lin, Q.; Claus, H.; Fang, Z.Z.

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  18. Direct patterning of silver particles on porous silicon by inkjet printing of a silver salt via in-situ reduction.

    Science.gov (United States)

    Chiolerio, Alessandro; Virga, Alessandro; Pandolfi, Paolo; Martino, Paola; Rivolo, Paola; Geobaldo, Francesco; Giorgis, Fabrizio

    2012-09-06

    We have developed a method for obtaining a direct pattern of silver nanoparticles (NPs) on porous silicon (p-Si) by means of inkjet printing (IjP) of a silver salt. Silver NPs were obtained by p-Si mediated in-situ reduction of Ag+ cations using solutions based on AgNO3 which were directly printed on p-Si according to specific geometries and process parameters. The main difference with respect to existing literature is that normally, inkjet printing is applied to silver (metal) NP suspensions, while in our experiment the NPs are formed after jetting the solution on the reactive substrate. We performed both optical and scanning electron microscopes on the NPs traces, correlating the morphology features with the IjP parameters, giving an insight on the synthesis kinetics. The patterned NPs show good performances as SERS substrates.

  19. Enhancement of single-molecule fluorescence signals by colloidal silver nanoparticles in studies of protein translation.

    Science.gov (United States)

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S; Goldman, Yale E

    2011-01-25

    Metal-enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold, respectively. Fluorescence intensity fluctuations above shot noise, at 0.1-5 Hz, were greater on silver particles. Overall signal-to-noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G.

  20. Enhancement of Single Molecule Fluorescence Signals by Colloidal Silver Nanoparticles in Studies of Protein Translation

    Science.gov (United States)

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S.; Goldman, Yale E.

    2011-01-01

    Metal enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold respectively. Fluorescence intensity fluctuations above shot noise, at 0.1 – 5 Hz, were greater on silver particles. Overall signal to noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G. PMID:21158483

  1. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography.

    Science.gov (United States)

    Zheng, Changlin; Kirmse, Holm; Long, Jianguo; Laughlin, David E; McHenry, Michael E; Neumann, Wolfgang

    2015-04-01

    The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

  2. Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification

    International Nuclear Information System (INIS)

    Ai Zhihui; Lee Shuncheng; Huang Yu; Ho Wingkei; Zhang Lizhi

    2010-01-01

    Nanocrystalline Zn 2 SnO 4 microcubes were hydrothermally synthesized and systematically characterized by XRD, SEM, TEM, XPS, N 2 adsorption-desorption, and UV-vis DRS analysis. The resulting Zn 2 SnO 4 microcubes with the edge size ranging from 0.8 to 1.2 μm were composed of numerous nanoparticles with size of 10-20 nm, and their optical band gap energy was estimated to be 3.25 eV from the UV-vis diffuse reflectance spectra. On degradation of nitrogen monoxide (NO) and formaldehyde (HCHO) at typical concentrations for indoor air quality, these nanocrystalline Zn 2 SnO 4 microcubes exhibited superior photocatalytic activity to the hydrothermally synthesized ZnO, SnO 2 , and Degussa TiO 2 P25, as well as C doped TiO 2 under UV-vis light irradiation. This enhanced photocatalytic activity of the nanocrystalline Zn 2 SnO 4 microcubes was attributed to their bigger surface areas, smaller particle size, special porous structures, and special electronic configuration. The nanocrystalline Zn 2 SnO 4 microcubes were chemically stable as there was no obvious deactivation during the multiple photocatalytic reactions. This work presents a promising approach for scaling-up industrial production of Zn 2 SnO 4 nanostructures and suggests that the synthesized nanocrystalline Zn 2 SnO 4 microcubes are promising photocatalysts for indoor air purification.

  3. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  4. Color and dichroism of silver-stained glasses

    International Nuclear Information System (INIS)

    Molina, Gloria; Murcia, Sonia; Molera, Judit; Roldan, Clodoaldo; Crespo, Daniel; Pradell, Trinitat

    2013-01-01

    Yellow decorations in glasses have been produced since the beginning of the fourteenth century by incorporating metallic silver nanoparticles into the glass (from a few to some tens of nanometers). The optical response of the glass-particles composite is determined by the surface plasmon resonance absorption and scattering of the nanometric metallic particles. Generally, the same color is perceived in reflection and in transmission although dichroic effects are occasionally observed. As silver-stained glasses were designed to be observed in transmission, tuning the transmission color from yellow to red was of technological interest. The relationship between the color observed both in transmission and reflection and the composition and nanostructure of regular (yellow) and dichroic (yellow and red) silver stains from the Renaissance (late fifteenth and sixteenth century, respectively) is related to the presence of a layer (of about 10–20 μm thick) of metallic silver nanoparticles (from few to 100 nm in size). The correlation between the colors observed and the silver stain nanostructure is studied with particular emphasis on the origin of the dichroic behavior. The optical response is computed and compared to the experimental data. Differences in the synthesis parameters responsible for the colors and for the dichroic behavior of the silver stain glasses are proposed. This is essential for the replication of the glass pieces which are required as replacements in the restoration/conservation of the windows but is also of broader interest

  5. Color and dichroism of silver-stained glasses

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Gloria [Universitat Politecnica de Catalunya, Center for Research in NanoEngineering (Spain); Murcia, Sonia [Universidad de Valencia, Instituto de Ciencia de los Materiales (Spain); Molera, Judit [Universitat de Vic, GRTD, Escola Politecnica Superior (Spain); Roldan, Clodoaldo [Universidad de Valencia, Instituto de Ciencia de los Materiales (Spain); Crespo, Daniel; Pradell, Trinitat, E-mail: Trinitat.Pradell@upc.edu [Universitat Politecnica de Catalunya, Center for Research in NanoEngineering (Spain)

    2013-09-15

    Yellow decorations in glasses have been produced since the beginning of the fourteenth century by incorporating metallic silver nanoparticles into the glass (from a few to some tens of nanometers). The optical response of the glass-particles composite is determined by the surface plasmon resonance absorption and scattering of the nanometric metallic particles. Generally, the same color is perceived in reflection and in transmission although dichroic effects are occasionally observed. As silver-stained glasses were designed to be observed in transmission, tuning the transmission color from yellow to red was of technological interest. The relationship between the color observed both in transmission and reflection and the composition and nanostructure of regular (yellow) and dichroic (yellow and red) silver stains from the Renaissance (late fifteenth and sixteenth century, respectively) is related to the presence of a layer (of about 10-20 {mu}m thick) of metallic silver nanoparticles (from few to 100 nm in size). The correlation between the colors observed and the silver stain nanostructure is studied with particular emphasis on the origin of the dichroic behavior. The optical response is computed and compared to the experimental data. Differences in the synthesis parameters responsible for the colors and for the dichroic behavior of the silver stain glasses are proposed. This is essential for the replication of the glass pieces which are required as replacements in the restoration/conservation of the windows but is also of broader interest.

  6. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xie, Ming [Kunming Institute of Precious Metals, Kunming 650106 (China); Liu, Yichun, E-mail: liuyichun@kmust.edu.cn [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yi, Jianhong [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2017-07-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  7. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao, Qi; Xie, Ming; Liu, Yichun; Yi, Jianhong

    2017-01-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  8. Iodine, krypton and xenon retention efficiencies of silver impregnated silica gel media with different silver loadings and under different test conditions

    Energy Technology Data Exchange (ETDEWEB)

    Motes, B G; Fernandez, S J; Tkachyk, J W

    1983-02-01

    The purpose of an independent study conducted by Exxon Nuclear Idaho, Co. (ENICO) was to evaluate a silver impregnated silica gel adsorption medium associated with a radioiodine air sampler developed at Brookhaven National Laboratory (BNL). Specifically, ENICO's responsibility was to evaluate the iodine and noble gas retention efficiencies of the adsorption medium. The evaluation was comprised of a four-phase program: 1) test assemblies capable of challenging the silver silica gel filled adsorber canister with radioiodine species or noble gases at flow rates up to 10 scfm and relative humidities up to 83% were constructed; 2) more than 45 kgs of the 4 and 8% silver impregnated silica gel were prepared and characterized for particle size distribution, bulk silver content, bulk density, and silver content by particle size; 3) iodine species retention efficiencies of the silver silica gel were determined; and 4 krypton and xenon retention efficiencies were measured. The iodine species retention efficiencies were greater than 90% under most conditions. A combination of flow rates >5 scfm and 4% silver loaded silica gel reduced the methyl iodide retention efficiency to less than 90%. The retention efficiencies for both krypton and xenon were on the order of 8 x 10{sup -2}% and were not affected greatly by any test variable except test duration. A reduced retention efficiency with increased test durations indicates adsorption equilibrium may be established within five minutes. (author)

  9. Preparation and Characterization of Silver Liquid Thin Films for Magnetic Fluid Deformable Mirror

    Directory of Open Access Journals (Sweden)

    Lianchao Zhang

    2015-01-01

    Full Text Available Silver liquid thin film, formed by silver nanoparticles stacking and spreading on the surface of the liquid, is one of the important parts of magnetic fluid deformable mirror. First, silver nanoparticles were prepared by liquid phase chemical reduction method using sodium citrate as reducing agent and stabilizer and silver nitrate as precursor. Characterization of silver nanoparticles was studied using X-ray diffractometer, UV-vis spectrophotometer, and transmission electron microscope (TEM. The results showed that silver nanoparticles are spherical and have a good monodispersity. Additionally, the effect of the reaction conditions on the particle size of silver is obvious. And then silver liquid thin films were prepared by oil-water two-phase interface technology using as-synthesized silver nanoparticles. Properties of the film were investigated using different technology. The results showed that the film has good reflectivity and the particle size has a great influence on the reflectivity of the films. SEM photos showed that the liquid film is composed of multilayer silver nanoparticles. In addition, stability of the film was studied. The results showed that after being stored for 8 days under natural conditions, the gloss and reflectivity of the film start to decrease.

  10. Electrical conductivity modification using silver nano particles of Jatropha Multifida L. and Pterocarpus Indicus w. extracts films

    Energy Technology Data Exchange (ETDEWEB)

    Diantoro, Markus, E-mail: markus.diantoro.fmipa@um.ac.id; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin,; Sujito,; Hidayat, Arif [Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Jl. Semarang 5 Malang 65145 (Indonesia)

    2016-03-11

    Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C{sub 6}-C{sub 3}-C{sub 6} carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.

  11. The utilization of mechanochemistry in the extractive metallurgy and at the nanocrystalline materials preparation

    Directory of Open Access Journals (Sweden)

    Boldižárová Eva

    2002-03-01

    Full Text Available The possibility of the application of mechanochemistry in the extractive metallurgy and the nanocrystalline materials preparation is studied. The aim of the experiments is the chloride leaching of a complex sulphidic CuPbZn concentrate (Hodruša-Hámre, the modification of properties of CaCO3 (Yauli, Peru for zinc sorption from model solutions and the mechanochemical reduction of copper sulphide by elemental iron.The chloride leaching of mechanically activated complex sulphidic CuPbZn concentrate is a selective process. While the recoveries of copper, lead and zinc are 65-85 %, the recoveries of silver and gold are less than 7 % and 2 %, respectively.The positive influence of CaCO3 mechanical activation for zinc sorption from ZnSO4 solution was observed. While only 58 % of zinc sorption was determined after 30 minutes for a non-activated sample, 98 % of zinc sorption was determined after 3 minutes sorption for the sample mechanically activated for 15 minutes.By the mechanochemical reduction of copper sulphide with iron, nanocrystalline copper and iron sulphide are formed. This reaction is an example of the new “solid state technology“, where chemical processes in the gaseous and liquid states are excluded.The results can serve as a contribution to the optimization of copper, lead and zinc extraction from complex sulphidic concentrates, the increase of non-ferrous metals sorption efficiency on mineral sorbents as well as to the nanocrystalline copper preparation.The application of mechanical activation has grown in the laboratory research. The Institute of Geotechnics of SAS has also achieved significant theoretical results in study of mechanical activation of sulphides and their reactivity in the different solid-phase reactions with the effect on industrial applications. The Institute has developed the technology of mechanochemical leaching (process MELT which was successfully tested in a pilot plant unit.

  12. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo L.

    Directory of Open Access Journals (Sweden)

    Fatima Abu Bakar

    2011-08-01

    Full Text Available Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM, X-ray diffraction (XRD and UV–Visible (UV-Vis spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10–30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0.

  13. Comparison of silver release predictions using PARFUME with results from the AGR-2 irradiation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P.; Demkowicz, Paul A.; Baldwin, Charles A.; Harp, Jason M.; Hunn, John D.

    2016-11-01

    The PARFUME (PARticle FUel ModEl) code was used to predict silver release from tristructural isotropic (TRISO) coated fuel particles and compacts during the second irradiation experiment (AGR-2) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-2 experiment used the fuel compact volume average temperature for each of the 559 days of irradiation to calculate the release of fission product silver from a representative particle for a select number of AGR-2 compacts and individual fuel particles containing either mixed uranium carbide/oxide (UCO) or 100% uranium dioxide (UO2) kernels. Post-irradiation examination (PIE) measurements were performed to provide data on release of silver from these compacts and individual fuel particles. The available experimental fractional releases of silver were compared to their corresponding PARFUME predictions. Preliminary comparisons show that PARFUME under-predicts the PIE results in UCO compacts and is in reasonable agreement with experimental data for UO2 compacts. The accuracy of PARFUME predictions is impacted by the code limitations in the modeling of the temporal and spatial distributions of the temperature across the compacts. Nevertheless, the comparisons on silver release lie within the same order of magnitude.

  14. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    Science.gov (United States)

    Amaladhas, T. Peter; Sivagami, S.; Akkini Devi, T.; Ananthi, N.; Priya Velammal, S.

    2012-12-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV-Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9-31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was -36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus.

  15. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    International Nuclear Information System (INIS)

    Peter Amaladhas, T; Akkini Devi, T; Ananthi, N; Priya Velammal, S; Sivagami, S

    2012-01-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV–Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9–31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was –36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus. (paper)

  16. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry.

    Science.gov (United States)

    Verleysen, E; Van Doren, E; Waegeneers, N; De Temmerman, P-J; Abi Daoud Francisco, M; Mast, J

    2015-04-08

    Metallic silver is an EU approved food additive referred to as E174. It is generally assumed that silver is only present in bulk form in the food chain. This work demonstrates that a simple treatment with water of "silver pearls", meant for decoration of pastry, results in the release of a subfraction of silver nanoparticles. The number-based size and shape distributions of the single, aggregated, and/or agglomerated particles released from the silver pearls were determined by combining conventional bright-field TEM imaging with semiautomatic particle detection and analysis. In addition, the crystal structure of the particles was studied by electron diffraction and chemical information was obtained by combining HAADF-STEM imaging with EDX spectroscopy and mapping. The TEM results were confirmed by SP-ICP-MS. The representative Ag test nanomaterial NM-300 K was used as a positive control to determine the uncertainty on the measurement of the size and shape of the particles.

  17. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    Science.gov (United States)

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  18. Studies on extracellular biosynthesis of silver nanoparticles by the fungus aspergillus niger

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.

    2011-01-01

    An eco-friendly process for the synthesis of silver nanoparticles has been attempted, using the culture filtrate of various microorganisms, included bacteria, fungi and yeast. Only fungi, especially aspergillus niger, were capable of synthesizing silver nanoparticles. The culture filtrate treated with AgNo 3 (1 mM) turned dark brown after 72 h of incubation, indicating reduction of silver ions into silver nanoparticles. This observation was confirmed with UV-vis spectroscopy analysis;a large broad band with long tail was detected at 430 nm,this band is characteristic of several metal nanoparticles.X ray diffraction revealed the crystalline nature of obtained nanoparticles. The TEM and SEM analysis showed particles spherical in shape. The average particles size determined by DLS analysis was 94.2 nm.EDX analysis indicated the presence of silver element in the nanoparticles. FT-IR analysis confirmed the presence of protein associated with the synthesized silver nanoparticles. The maximum biosynthesis of nanoparticles was achieved when the culture filtrate was treated with 4.0 mM of AgNo 3 , adjusted to ph 8.0, and incubated at 50 degree C for 96 h. Silver nanoparticles showed antibiotic activity exceeding that of silver ions against various microorganisms

  19. Control size of silver nanoparticles in sol-gel glasses

    Science.gov (United States)

    Renteria, Victor M.; Celis, Antonio C.; Garcia-Macedo, Jorge A.

    2000-10-01

    By the sol-gel processing, silver ions in presence of stabilizing function (3-thiocyanatopropyl)triethoxysilane are reduced by heating gels at 180 C for several times in air atmosphere. The spectroscopic Uv-Vis observations, confirm silver nanoparticles presence with peak maximum around 350 nm. The optical properties of the metallic particles are observed at room temperature as function of time, and the absorption spectra practically do not change, which indicated they are trapped and stabilized within the fine porous silica cage. Mie theory calculations, considering the mean free path effect of the conduction electrons, are compatible with experimental spectra, indicating homogeneity in size and form of the metallic nanoparticles. Smithard correlation curve, between half width height (W1/2) of the optical absorption and the particle diameter 2r, predict silver particles size between 4 and 10 nm, during composite heating. Activation energy was measured and compared with previous data on similar systems and the probable reduction process are discussed.

  20. Application of thermospray flame furnace atomic absorption spectrometry for investigation of silver nanoparticles.

    Science.gov (United States)

    Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya

    2017-03-01

    Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min -1 through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.

  1. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunfa; Zhang, Xianglin, E-mail: hust_zxl@mail.hust.edu.cn; Cai, Hao

    2014-01-15

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications.

  2. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    International Nuclear Information System (INIS)

    Dong, Chunfa; Zhang, Xianglin; Cai, Hao

    2014-01-01

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications

  3. Complex conductivity response to silver nanoparticles in ...

    Science.gov (United States)

    The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0–30%), nanoparticle concentrations (0–10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90–210 and 1500–2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex co

  4. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  5. Enantioselective silver nanoclusters: Preparation, characterization and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Farrag, Mostafa, E-mail: mostafafarrag@aun.edu.eg

    2016-09-01

    Herein, we report a new wet-synthesis method to separate some water-soluble chiral silver nanoclusters with high yield. The cluster material was obtained by the reduction of silver nitrate with NaBH{sub 4} in the presence of three ligands L-penicillamine (L-pen), D-penicillamine (D-pen) and racemic mixture of penicillamine (rac-pen), functioning as capping ligand. For characterizing all silver cluster samples, the particle size was assessed by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) and their average chemical formula was determined from thermogravimetric analysis (TGA) and elemental analysis (EA). The particles sizes of all three clusters are 2.1 ± 0.2 nm. The optical properties of the samples were studied by four different methods: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL) and circular dichroism (CD) spectroscopy. The spectra are dominated by the typical and intense plasmon peak at 486 nm accompanied by a small shoulder at 540 nm. Infrared spectroscopy was measured for the free ligand and protected silver nanoclusters, where the disappearance of the S-H vibrational band (2535–2570 cm{sup −1}) in the silver nanoclusters confirmed anchoring of ligand to the cluster surface through the sulfur atom. PL studies yielded the fluorescent properties of the samples. The main focus of this work, however, lies in the chirality of the particles. For all silver clusters CD spectra were recorded. While for clusters capped with one of the two enantiomers (D- or L-form) typical CD spectra were observed, no significant signals were detected for a racemic ligand mixture. Furthermore, silver clusters show quite large asymmetry factors (up to 3 × 10{sup −4}) in comparison to most other ligand protected clusters. These large factors and bands in the visible range of the spectrum suggest a strong chiral induction from the ligand to the metal core. Textural features of the

  6. Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods

    Science.gov (United States)

    Khan, G. R.; Khan, R. A.

    2015-07-01

    For maximizing productivity, minimizing cost, time-boxing process and optimizing human effort, a single-step, cost-effective, ultra-fast and environmentally benign synthesis suitable for industrial production of nanocrystalline ZnO, and Ag-doped ZnO has been reported in this paper. The synthesis based on microwave-supported aqueous solution method used zinc acetate dehydrate and silver nitrate as precursors for fabrication of nanorods. The synthesized products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Vis-NIR spectroscopy. The undoped and Ag-doped ZnO nanorods crystallized in a hexagonal wurtzite structure having spindle-like morphology. The blue shift occurred at absorption edge of Ag-doped ZnO around 260 nm compared to 365 nm of bulk ZnO. The red shift occurred at Raman peak site of 434 cm-1 compared to characteristic wurtzite phase peak of ZnO (437 cm-1). The bandgap energies were found to be 3.10 eV, 3.11 eV and 3.18 eV for undoped, 1% Ag-doped, and 3% Ag-doped ZnO samples, respectively. The TEM results provided average particle sizes of 17 nm, 15 nm and 13 nm for undoped, and 1% and 3% Ag-doped ZnO samples, respectively.

  7. Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-CO mixtures obtained by high energy milling

    International Nuclear Information System (INIS)

    Salvador, M. D.; Bonache, V.; Amigo, V.; Busquets, D.

    2008-01-01

    In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well commercial nano powders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and micro structurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 180 HV. (Author) 46 refs

  8. Autometallography: tissue metals demonstrated by a silver enhancement kit

    DEFF Research Database (Denmark)

    Danscher, G; Nørgaard, J O; Baatrup, E

    1987-01-01

    , primarily intended for the amplification of colloidal gold particles, has been used to demonstrate these catalytic tissue metals. Sections from animals exposed intravitally to aurothiomalatate, silver lactate, mercury chloride, sodium selenite or perfused with sodium sulphide were subjected to a commercial......In biological tissue, minute accumulations of gold, silver, mercury and zinc can be visualized by a technique whereby metallic silver is precipitated on tiny accumulations of the two noble metals, or on selenites or sulphides of all four metals. In the present study a silver enhancement kit...... silver enhancement kit (IntenSE, Janssen Pharmaceutica). It was found that the kit performs adequately to the silver lactate gum arabic developer and to the photographic emulsion technique. The kit can be used as a silver enhancement medium for the demonstration of zinc by the Neo-Timm and selenium...

  9. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  10. Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina

    Indian Academy of Sciences (India)

    UV-visible absorption scan of a 48 h culture exposed to 5mM silver nitrate revealed a broad peak at 450nm indicative of the surface plasmon resonance of SNPs. XRD analysis confirmed the presence of elemental silver and the crystallite size was calculated to be 25nm using Scherrer formula. The average particle size as ...

  11. In vitro percutaneous penetration and characterization of silver from silver-containing textiles

    Directory of Open Access Journals (Sweden)

    Bianco C

    2015-03-01

    chloride aggregates at sizes of up to 1 µm were identified both in the epidermis and dermis. The large size of these particles suggests that the aggregation occurred in the skin. The formation of these aggregates likely slowed down the systemic absorption of silver. Conversely, these aggregates may form a reservoir enabling prolonged release of silver ions, which might lead to local effects.Keywords: silver textile, silver release, skin

  12. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-01-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  13. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  14. An investigation of the photosubstitution reaction between N719-dyed nanocrystalline TiO2 particles and 4-tert-butylpyridine

    DEFF Research Database (Denmark)

    Nour-Mohammadi, Farahnaz; Nguyen, Thai Hoang; Boschloo, Gerrit

    2007-01-01

    concentration. Based on this observation, a degradation mechanism was proposed, in which the reaction proceeds through the rate-determining formation of a common intermediate complex, I=[RuII(H2dcbpy)2(NCS)(NCS)]+. An average degradation rate of kdeg=6×10-3s-1 was obtained from the value of Φdeg and the back...... electron-transfer rate, kback of the reaction TiO2+e-|N719+→TiO2|N719, obtained by means of photo-induced absorption (PIA) measurements. The lifetime of the solar cell sensitizer N719 was estimated to be between 34 years, based on kdeg and an average literature value of the regeneration rate, kreg=2×106M-1...... simple model experiments. In these experiments, colloidal solutions of N719-dyed nanocrystalline TiO2 particles in acetonitrile were irradiated with 532-nm laser light in the presence of 0-1mol/l of 4-TBP. Five degradation products were identified using LC-ESI-MS: the 4-tert-butylpyridine substitution...

  15. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  16. SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.

    Science.gov (United States)

    Chen, Y; Chen, S J; Li, S; Wei, J J

    2015-10-16

    In this study, normal Raman spectra of p—hydroxybenzoic acid (PHBA) powder and its surface—enhanced Raman scattering (SERS) spectra in silver colloidal solutions were measured under near infrared excitation conditions. In theoretical calculation, two models of PHBA adsorbed on the surfaces of silver nanoparticles were established. The Raman frequencies of these two models using density functional theory (DFT) method were calculated, and compared with the experimental results. It was found that the calculated Raman frequencies were in good agreement with experimental values, which indicates that there are two enhanced mechanism physical (electromagnetic, EM) enhancement and chemical (charge—transfer, CT) enhancement, in silver colloidal solutions regarding SERS effect. Furthermore, from high—quality SERS spectrum of PHBA obtained in silver colloids, we inferred that PHBA molecules in silver colloids adsorb onto the metal surfaces through carboxyl at a perpendicular orientation. The combination of SERS spectra and DFT calculation is thus useful for studies of the adsorption—orientation of a molecule on a metal colloid.

  17. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    International Nuclear Information System (INIS)

    Sarah C. Larson; Vicki H. Grassian

    2006-01-01

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO x ) and ammonia (NH 3 ) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO 2 was observed at room temperature in the presence of NH 3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO 2 reduction with NH 3 relative to nanocrystalline NaY

  18. Electron microscopy and EXAFS studies on oxide-supported gold-silver nanoparticles prepared by flame spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, Stefan [Institute of Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Grunwaldt, Jan-Dierk [Institute of Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland)]. E-mail: grunwaldt@chem.ethz.ch; Krumeich, Frank [Laboratory of Inorganic Chemistry, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Kappen, Peter [Department of Physics, La Trobe University, Victoria 3086 (Australia); Baiker, Alfons [Institute of Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland)

    2006-09-15

    Gold and gold-silver nanoparticles prepared by flame spray pyrolysis (FSP) were characterized by electron microscopy, in situ X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD) and their catalytic activity in CO oxidation. Within this one-step flame-synthesis procedure, precursor solutions of dimethyl gold(III) acetylacetonate and silver(I) benzoate together with the corresponding precursor of the silica, iron oxide or titania support, were sprayed and combusted. In order to prepare small metal particles, a low noble metal loading was required. A loading of 0.1-1 wt.% of Au and Ag resulted in 1-6 nm particles. The size of the noble metal particles increased with higher loadings of gold and particularly silver. Both scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDXS) and X-ray absorption spectroscopy (XAS) studies proved the formation of mixed Au-Ag particles. In case of 1% Au-1% Ag/SiO{sub 2}, TEM combined with electron spectroscopic imaging (ESI) using an imaging filter could be used in addition to prove the presence of silver and gold in the same noble metal particle. CO oxidation in the presence of hydrogen was chosen as a test reaction sensitive to small gold particles. Both the influence of the particle size and the alloying of gold and silver were reflected in the CO oxidation activity.

  19. Electron microscopy and EXAFS studies on oxide-supported gold-silver nanoparticles prepared by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Hannemann, Stefan; Grunwaldt, Jan-Dierk; Krumeich, Frank; Kappen, Peter; Baiker, Alfons

    2006-01-01

    Gold and gold-silver nanoparticles prepared by flame spray pyrolysis (FSP) were characterized by electron microscopy, in situ X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD) and their catalytic activity in CO oxidation. Within this one-step flame-synthesis procedure, precursor solutions of dimethyl gold(III) acetylacetonate and silver(I) benzoate together with the corresponding precursor of the silica, iron oxide or titania support, were sprayed and combusted. In order to prepare small metal particles, a low noble metal loading was required. A loading of 0.1-1 wt.% of Au and Ag resulted in 1-6 nm particles. The size of the noble metal particles increased with higher loadings of gold and particularly silver. Both scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDXS) and X-ray absorption spectroscopy (XAS) studies proved the formation of mixed Au-Ag particles. In case of 1% Au-1% Ag/SiO 2 , TEM combined with electron spectroscopic imaging (ESI) using an imaging filter could be used in addition to prove the presence of silver and gold in the same noble metal particle. CO oxidation in the presence of hydrogen was chosen as a test reaction sensitive to small gold particles. Both the influence of the particle size and the alloying of gold and silver were reflected in the CO oxidation activity

  20. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions.

    Science.gov (United States)

    Ma, Liang; Su, Wei; Liu, Jian-Xin; Zeng, Xiao-Xi; Huang, Zhi; Li, Wen; Liu, Zheng-Chun; Tang, Jian-Xin

    2017-08-01

    The present study addresses an eco-friendly and energy-saving method for extracellular biosynthesis of silver nanoparticles (AgNPs) using a cell free filtrate of the fungus strain Penicillium aculeatum Su1 as a reducing agent. Parametric optimization of the biosynthesis process demonstrated different effects on the size, distribution, yield, and synthesis rate of biosynthesized AgNPs. The transmission electron microscopy (TEM) measurements demonstrated that AgNPs were spherical or approximately spherical, with a size between 4 and 55nm. High-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) analyses indicated that AgNPs were nanocrystalline by nature, with the character of a face-centered cubic (fcc). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the existence of protein molecules that acted as a reducing agent and a capping agent during the biosynthesis process. Furthermore, the biosynthesized AgNPs exhibited higher antimicrobial activity than silver ions against Gram negative bacteria, Gram positive bacteria and fungi. Compared with silver ions, the biosynthesized AgNPs presented higher biocompatibility toward human bronchial epithelial (HBE) cells and high cytotoxicity in a dose-dependent manner with an IC 50 of 48.73μg/mL toward A549 cells. These results demonstrate that Penicillium aculeatum Su1 is a potential bioresource that can be used to produce low-cost and eco-friendly AgNPs as efficient antimicrobial agent, drug delivery vehicle or anticancer drug for clinic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Phase stability of silver particles embedded calcium phosphate ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we report the compositional variation-dependent phase stability of hydroxyapatite ... material along with other calcium phosphate bioceramics.3–5 ... Model U-3310). ... recorded using a Field Emissio scanning electron microscope .... the colour change of the silver-doped samples only after sin-.

  2. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  3. Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+

    International Nuclear Information System (INIS)

    Lu, H.W.; Liu, S.H.; Wang, X.L.; Qian, X.F.; Yin, J.; Zhu, Z.K.

    2003-01-01

    Silver nanoparticles in hyperbranched polyurethane (HP) matrix were prepared by means of UV irradiation at room temperature. HP was found to play a key role in the photochemical reduction of silver ions and the formation of nanosized particles. Transmission electron microscopic (TEM) analysis showed that silver nanoparticles were homogeneously dispersed in HP matrix. The absorption peaks due to the surface plasmon resonance of the obtained silver nanoparticles were observed at about 430 nm in the ultraviolet-visible (UV-Vis) absorption spectra. X-ray powder diffraction (XRD) was also used to characterize the obtained nanoparticles

  4. Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media

    International Nuclear Information System (INIS)

    Stuart, E J E; Tschulik, K; Compton, R G; Omanović, D; Cullen, J T; Jurkschat, K; Crossley, A

    2013-01-01

    The electrochemistry of silver nanoparticles contained in a consumer product has been studied. The redox properties of silver particles in a commercially available disinfectant cleaning spray were investigated via cyclic voltammetry before particle-impact voltammetry was used to detect single particles in both a typical aqueous electrolyte and authentic seawater media. We show that particle-impact voltammetry is a promising method for the detection of nanoparticles that have leached into the environment from consumer products, which is an important development for the determination of risks associated with the incorporation of nanotechnology into everyday products. (paper)

  5. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  6. Room temperature mechanosynthesis and microstructure characterization of nanocrystalline Si{sub 0.9}Al{sub 0.1}C

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, S. [Department of Physics, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal (India); Dutta, H. [Department of Physics, Vivekananda College, Burdwan, 713103, West Bengal (India); Kar, T. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Department of Physics, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal (India)

    2016-02-01

    This article reports the synthesis and microstructure characterization of nanocrystalline Si{sub 0.9}Al{sub 0.1}C powder obtained by mechanical milling the mixture of Si, Al and graphite powders at room temperature under inert atmosphere. XRD patterns of ball-milled powders clearly reveal the nucleation of Si{sub 0.9}Al{sub 0.1}C phase after 5 h of milling and the stoichiometric cubic Si{sub 0.9}Al{sub 0.1}C is formed after 10 h of milling with crystallite size of ∼3 nm. Microstructure of ball-milled powders in terms of different lattice imperfections is characterized by employing both Rietveld's method of structure refinement using XRD data and high resolution transmission electron microscope (HRTEM). HRTEM micrographs of 10 h milled powder substantiate the formation of nanocrystalline Si{sub 0.9}Al{sub 0.1}C compound without any contamination and confirm the findings of Rietveld analysis using XRD data. - Highlights: • Cubic Si{sub 0.9}Al{sub 0.1}C is formed after 5 h of milling of Si, Al and graphite powders. • Nanocrystalline Si{sub 0.9}Al{sub 0.1}C with particle size ∼3 nm is obtained after 10 h milling. • Average particle size of Si{sub 0.9}Al{sub 0.1}C from XRD analysis and HRTEM is very close.

  7. High fluorescence emission silver nano particles coated with poly (styrene-g-soybean oil) graft copolymers: Antibacterial activity and polymerization kinetics.

    Science.gov (United States)

    Hazer, Baki; Kalaycı, Özlem A

    2017-05-01

    Autoxidation of poly unsaturated fatty acids makes negative effect on foods. In this work, this negative effect was turned to a great advantage using autoxidized soybean oil as a macroperoxide nanocomposite initiator containing silver nano particles in free radical polymerization of vinyl monomers. The synthesis of soybean oil macro peroxide was carried out by exposing soybean oil to air oxygen with the presence of silver nanoparticles (Ag NPs) at room temperature. Autoxidized soybean oil macroperoxide containing silver nanoparticles (Agsbox) successfully initiated the free radical polymerization of styrene in order to obtain Polystyrene (PS)-g-soybean oil graft copolymer containing Ag NPs. Both autoxidized soybean oil and PS-g-sbox with Ag NPs showed a surface plasmon resonance and high fluorescence emission. Overall rate constant (K) of styrene polymerization initiated by autoxidized soybean oil macroperoxide with Ag NPs was found to be K=1.95.10 -4 Lmol -1 s -1 at 95°C. Antibacterial efficiency was observed in the PS-g-soybean oil graft copolymer film samples containing Ag NPs. 1 H NMR and GPC techniques were used for the structural analysis of the fractionated polymeric oils. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate

    International Nuclear Information System (INIS)

    Kurien, Siby; Mathew, Jose; Sebastian, Shajo; Potty, S.N.; George, K.C.

    2006-01-01

    Nanocrystalline nickel aluminate was prepared by chemical co-precipitation, and nanoparticles having different particle size were obtained by annealing the precursor at different temperatures. The TG/DTA measurements showed thermal decomposition was a three-step process with crystallisation of the spinel phase started at a temperature 420 deg. C. The X-ray diffraction analysis confirmed that the specimen began to crystallise on annealing above 420 deg. C and became almost crystalline at about 900 deg. C. The particle sizes were calculated from XRD. Dielectric properties of nickel aluminate were studied as a function of the frequency of the applied ac signal at different temperatures. It was seen the real dielectric constant ε', and dielectric loss tan δ decreased with frequency of applied field while the ac conductivity increased as the frequency of the applied field increased. The dielectric relaxation mechanism is explained by considering nanostructured NiAl 2 O 4 as a carrier-dominated dielectric with high density of hopping charge carriers. The variation of ε' with different particle size depends on several interfacial region parameters, which change with the average particle size

  9. Studies on the sensing behaviour of nanocrystalline CuGa(2)O(4) towards hydrogen, liquefied petroleum gas and ammonia.

    Science.gov (United States)

    Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan

    2010-06-15

    In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.

  10. Evaluation of the antibacterial efficacy of bamboo charcoal/silver biological protective material

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F.-C. [Department of Applied Chemistry, Chung Cheng Institute of Technology, National Defense University (NDU), No. 190, Sanyuan 1st Street, Tahsi, Taoyuan, Taiwan (China); Wu, K.-H. [Department of Applied Chemistry, Chung Cheng Institute of Technology, National Defense University (NDU), No. 190, Sanyuan 1st Street, Tahsi, Taoyuan, Taiwan (China)], E-mail: khwu@ccit.edu.tw; Liu, M.-J. [Department of Applied Chemistry, Chung Cheng Institute of Technology, National Defense University (NDU), No. 190, Sanyuan 1st Street, Tahsi, Taoyuan, Taiwan (China); Lin, W.-P. [Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan (China); Hu, M.-K. [School of Pharmacy, National Defense Medical Center, Taipei, Taiwan (China)

    2009-01-15

    Bamboo charcoal supporting silver (BC/Ag) was prepared by activation and chemical reduction. The BC/Ag composites were characterized by silver particle size and distribution, silver ion (Ag{sup +}) release and antibacterial properties. Scanning and transmission electron microscopy (SEM and TEM) showed that the Ag particles were distributed uniformly on the BC matrix. The Ag particle size was found to be less than 150 nm based on TEM. The Ag content and surface morphology of the BC/Ag composites depended on the initial concentration of AgNO{sub 3}, and the higher the Ag content, the smaller the specific surface area obtained on the BC. The antibacterial effects of the BC/Ag composite powders were assessed from the minimum inhibitory concentrations (MICs) and by the plate-counting method, and an excellent antibacterial performance was discovered.

  11. In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications

    International Nuclear Information System (INIS)

    Raho, Riccardo; Paladini, Federica; Lombardi, Fiorella Anna; Boccarella, Sandro; Zunino, Benedetta; Pollini, Mauro

    2015-01-01

    Silver nanoparticles (AgNPs) have attracted intensive research interest and have been recently incorporated in polymers, medical devices, hydrogels and burn dressings to control the proliferation of microorganisms. In this study a novel silver antibacterial coating was deposited for the first time on hydrogel fibers through an in-situ photo-chemical reaction. Hydrogel blends obtained by mixing different percentages of silver-treated and untreated fibers were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Four different fluids, such as phosphate buffered saline (PBS), simulated body fluid (SBF), chemical simulated wound fluid (cSWF), and deionized water (DI water), were used for evaluating the swelling properties. The results obtained confirmed that the presence of silver did not affect the properties of the hydrogel. Moreover, the results obtained through inductively coupled plasma mass spectrometry (ICP-MS) demonstrated very low silver release values, thus indicating the perfect adhesion of the silver coating to the substrate. Good antibacterial capabilities were demonstrated by any hydrogel blend on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through agar diffusion tests and optical density readings. - Highlights: • An innovative nano-silver deposition technique was adopted on hydrogel fibers. • Antibacterial effects was verified by agar diffusion and optical density tests. • The swelling properties were investigated using 4 different fluids. • Hydrogel blends with different percentages of silver-treated fibers were compared

  12. In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Raho, Riccardo [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); CBN, Center for Biomolecular Nanotechnologies, Fondazione Istituto Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Lecce (Italy); Paladini, Federica; Lombardi, Fiorella Anna [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Boccarella, Sandro [Megatex S.p.A., Via Cima D' Aosta, 73040 Melissano, Lecce (Italy); Zunino, Benedetta [Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00198 Roma (Italy); Pollini, Mauro, E-mail: mauro.pollini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Silvertech Ltd., Via per Monteroni, 73100 Lecce (Italy)

    2015-10-01

    Silver nanoparticles (AgNPs) have attracted intensive research interest and have been recently incorporated in polymers, medical devices, hydrogels and burn dressings to control the proliferation of microorganisms. In this study a novel silver antibacterial coating was deposited for the first time on hydrogel fibers through an in-situ photo-chemical reaction. Hydrogel blends obtained by mixing different percentages of silver-treated and untreated fibers were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Four different fluids, such as phosphate buffered saline (PBS), simulated body fluid (SBF), chemical simulated wound fluid (cSWF), and deionized water (DI water), were used for evaluating the swelling properties. The results obtained confirmed that the presence of silver did not affect the properties of the hydrogel. Moreover, the results obtained through inductively coupled plasma mass spectrometry (ICP-MS) demonstrated very low silver release values, thus indicating the perfect adhesion of the silver coating to the substrate. Good antibacterial capabilities were demonstrated by any hydrogel blend on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through agar diffusion tests and optical density readings. - Highlights: • An innovative nano-silver deposition technique was adopted on hydrogel fibers. • Antibacterial effects was verified by agar diffusion and optical density tests. • The swelling properties were investigated using 4 different fluids. • Hydrogel blends with different percentages of silver-treated fibers were compared.

  13. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.

  14. Nanocrystalline LaOx/NiO composite as high performance electrodes for supercapacitors.

    Science.gov (United States)

    Du, Guo; Zeng, Zifan; Xiao, Bangqing; Wang, Dengzhi; Yuan, Yuan; Zhu, Xiaohong; Zhu, Jiliang

    2017-12-21

    Nanocrystalline LaO x /NiO composite electrodes were synthesized via two types of facile cathodic electrodeposition methods onto nickel foam followed by thermal annealing without any binders. Scanning electron microscopy and transmission electron microscopy investigation revealed that LaO x nanocrystalline particles with an average diameter of 50 nm are uniformly distributed in the NiO layer or alternately deposited with the NiO layer onto the substrate. It is speculated that LaO x particles can participate in the faradaic reaction directly and offer more redox sites. Besides this, the unique Ni/La layered structure facilitates the diffusion of ions and retards the electrode polarization, thus leading to a better rate capability and cycling stability of NiO. As a result, the obtained electrodes display very competitive electrochemical performance (a specific capacitance of 1238 F g -1 at a current density of 0.5 A g -1 , excellent rate capability of 86% of the original capacitance at 10 A g -1 and excellent cycling stability of 93% capacitance after 10 000 cycles). In addition, asymmetric coin devices were assembled using LaO x /NiO as the positive electrode and active carbon as the negative electrode. The assembled asymmetric devices demonstrate a high energy density of 13.12 W h kg -1 at a power density of 90.72 W kg -1 .

  15. Synthesis of positively charged hybrid PHMB-stabilized silver nanoparticles: the search for a new type of active substances used in plant protection products

    Science.gov (United States)

    Krutyakov, Yurii A.; Kudrinsky, Alexey A.; Gusev, Alexander A.; Zakharova, Olga V.; Klimov, Alexey I.; Yapryntsev, Alexey D.; Zherebin, Pavel M.; Shapoval, Olga A.; Lisichkin, Georgii V.

    2017-07-01

    Modern agriculture calls for a decrease in pesticide application, particularly in order to decrease the negative impact on the environment. Therefore the development of new active substances and plant protection products (PPP) to minimize the chemical load on ecosystems is a very important problem. Substances based on silver nanoparticles are a promising solution of this problem because of the fact that in correct doses such products significantly increase yields and decrease crop diseases while displaying low toxicity to humans and animals. In this paper we for the first time propose application of polymeric guanidine compounds with varying chain lengths (from 10 to 130 elementary links) for the design and synthesis of modified silver nanoparticles to be used as the basis of a new generation of PPP. Colloidal solutions of nanocrystalline silver containing 0.5 g l-1 of silver and 0.01-0.4 g l-1 of polyhexamethylene biguanide hydrochloride (PHMB) were obtained by reduction of silver nitrate with sodium borohydride in the presence of PHMB. The field experiment has shown that silver-containing solutions have a positive effect on agronomic properties of potato, wheat and apple. Also the increase in activity of such antioxidant system enzymes as peroxidase and catalase in the tissues of plants treated with nanosilver has been registered.

  16. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.

    Science.gov (United States)

    Dror-Ehre, A; Mamane, H; Belenkova, T; Markovich, G; Adin, A

    2009-11-15

    Silver nanoparticles exhibit antibacterial properties via bacterial inactivation and growth inhibition. The mechanism is not yet completely understood. This work was aimed at elucidating the effect of silver nanoparticles on inactivation of Escherichia coli, by studying particle-particle interactions in aqueous suspensions. Stable, molecularly capped, positively or negatively charged silver nanoparticles were mixed at 1 to 60microgmL(-1) with suspended E. coli cells to examine their effect on inactivation of the bacteria. Gold nanoparticles with the same surfactant were used as a control, being of similar size but made up of a presumably inert metal. Log reduction of 5log(10) and complete inactivation were obtained with the silver nanoparticles while the gold nanoparticles did not show any inactivation ability. The effect of molecularly capped nanoparticles on E. coli survival was dependent on particle number. Log reduction of E. coli was associated with the ratio between the number of nanoparticles and the initial bacterial cell count. Electrostatic attraction or repulsion mechanisms in silver nanoparticle-E. coli cell interactions did not contribute to the inactivation process.

  17. Glass frits coated with silver nanoparticles for silicon solar cells

    International Nuclear Information System (INIS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-01-01

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells

  18. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  19. Synthesis of nanocrystalline Y2O3 in a specially designed atmospheric pressure radio frequency thermal plasma reactor

    International Nuclear Information System (INIS)

    Dhamale, G. D.; Mathe, V. L.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Ghorui, S.

    2015-01-01

    Synthesis of yttrium oxide nanoparticles in a specially designed radio frequency thermal plasma reactor is reported. Good crystallinity, narrow size distribution, low defect state concentration, high purity, good production rate, single-step synthesis, and simultaneous formation of nanocrystalline monoclinic and cubic phases are some of the interesting features observed. Synthesized particles are characterized through X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermo-luminescence (TL), and Brunauer–Emmett–Teller surface area analysis. Polymorphism of the nanocrystalline yttria is addressed in detail. Synthesis mechanism is explored through in-situ emission spectroscopy. Post-synthesis environmental effects and possible methods to eliminate the undesired phases are probed. Defect states are investigated through the study of TL spectra

  20. Synthesis and characterization of nano silver ferrite composite

    International Nuclear Information System (INIS)

    Murthy, Y.L.N.; Kondala Rao, T.; Kasi viswanath, I.V.; Singh, Rajendra

    2010-01-01

    We report the synthesis of nano sized silver ferrite composite having the empirical formula AgFeO 2 by a co-precipitation method. The resulting powders are thin platelets, transparent and a rich ruby red in color in transmission. The X-ray diffraction (XRD) powder data consisted of only nine reflections, and the analysis showed the unit cell to be rhombohedral. The powders showed extensive XRD line broadening and the sizes of the crystals are calculated to be in the range 4-36.5 nm. The morphology of the silver ferrite composite studied using scanning electron microscope showed nano sized particles. The particle size is found to increase with increase in annealing temperature. The magnetic behavior, measured using a vibrating sample magnetometer, indicated a change from paramagnetic to ferromagnetic with increase in particle size.

  1. Silver nanoparticle release from commercially available plastic food containers into food simulants

    International Nuclear Information System (INIS)

    Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss

    2016-01-01

    Silver nanoparticles (AgNPs) are currently being used in many different kinds of consumer products in order to take advantage of their antimicrobial properties. However, the potential migration of silver nanoparticles into food and subsequent consumer exposure has hardly been addressed. In the current study, we investigated four brands of commercially available plastic food storage containers and measured the total amount of silver, particle size and number concentration, and the migration rates into three different food simulants (Milli-Q grade water, 10 % ethanol, and 3 % acetic acid) for 10 days at 40 °C. The experimental setup was made according to the European Commission Directive (EU 10/2011) for articles intended to be in contact with food. The total amount of silver in plastic containers and migration solutions was quantified by ICP-MS analysis, and the size of the migrated particles was investigated by single particle ICP-MS and TEM-EDS. The total mass and median size of released particulate Ag were generally highest in 3 % acetic acid for three out of four food container brands. The total content of silver in the containers varied from 13 to 42 µg/g. The highest migration was observed in the 3 % acetic acid food simulant for all four brands of containers, with total silver release up to 3.1 ng/cm 2 after 10 days. In conclusion, the experimental results show that silver has the potential of migrating into food, especially when in contact with more acidic substances

  2. Silver nanoparticle release from commercially available plastic food containers into food simulants

    Energy Technology Data Exchange (ETDEWEB)

    Mackevica, Aiga, E-mail: aima@env.dtu.dk; Olsson, Mikael Emil; Hansen, Steffen Foss [Technical University of Denmark, Department of Environmental Engineering (Denmark)

    2016-01-15

    Silver nanoparticles (AgNPs) are currently being used in many different kinds of consumer products in order to take advantage of their antimicrobial properties. However, the potential migration of silver nanoparticles into food and subsequent consumer exposure has hardly been addressed. In the current study, we investigated four brands of commercially available plastic food storage containers and measured the total amount of silver, particle size and number concentration, and the migration rates into three different food simulants (Milli-Q grade water, 10 % ethanol, and 3 % acetic acid) for 10 days at 40 °C. The experimental setup was made according to the European Commission Directive (EU 10/2011) for articles intended to be in contact with food. The total amount of silver in plastic containers and migration solutions was quantified by ICP-MS analysis, and the size of the migrated particles was investigated by single particle ICP-MS and TEM-EDS. The total mass and median size of released particulate Ag were generally highest in 3 % acetic acid for three out of four food container brands. The total content of silver in the containers varied from 13 to 42 µg/g. The highest migration was observed in the 3 % acetic acid food simulant for all four brands of containers, with total silver release up to 3.1 ng/cm{sup 2} after 10 days. In conclusion, the experimental results show that silver has the potential of migrating into food, especially when in contact with more acidic substances.

  3. Protein-Modified-Paramagnetic-Particles as a Tool for Detection of Silver(I) Ions

    Science.gov (United States)

    Kizek, R.; Krizkova, S.; Adam, V.; Huska, D.; Hubalek, J.; Trnkova, L.

    2009-04-01

    In a number of published articles the toxic effect of silver(I) ions on aquatic organisms is described. Silver(I) ions in aquatic environment are stable in a wide range of pH. Under alkali pH AgOH and Ag(OH)2- can be formed. However, in water environment there are many compounds to interact with silver(I) ions. The most important ones are chloride anions, which forms insoluble precipitate with silver(I) ions (AgCl). The insoluble silver containing compounds do not pose any threat to aquatic organisms. Toxicity of silver ions is probably caused by their very good affinity to nucleic acids and also proteins. The binding into active enzyme site leads to the expressive enzyme reaction inhibition. Silver(I) ions are into living environment introduced thanks to anthropogenic activities. They easily contaminate atmosphere as well as aquatic environment or soils. Several authors described using of carbon electrode as working electrode for determination of silver. Recently, we have suggested heavy metal biosensor based on interaction of metal ions with low molecular mass protein called metallothionein (MT), which was adsorbed on the surface of hanging mercury drop electrode (HMDE). The biosensor was successfully used for detection of cadmium(II) and zinc(II) ions, cisplatin, cisplatin-DNA adducts and palladium(II) ions. Due to the convincing results with MT as biological component we report on suggesting of heavy metal biosensor based on immobilization of metallothionein (MT) on the surface of carbon paste electrode (CPE) via MT-antibodies. Primarily we studied of basic electrochemical behaviour of MT at surface of carbon paste electrode by using of square wave voltammetry (SWV). Detection limit (3 S/N) for MT was evaluated as 0.1 μg/ml. After that we have evaluated the electroactivity of MT at surface of SWV, we aimed our attention on the way of capturing of MT on the surface of CPE. We choose antibody against MT obtained from chicken eggs for these purposes. Antibodies

  4. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    International Nuclear Information System (INIS)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an “R” value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U–O bond. - Highlights: • Bulk quantities of nanocrystalline urania were prepared for the first time using citrate gel combustion method. • Volume combustion was observed in mixtures with fuel to nitrate ratio (R) 0.25. • The value of R was found to significantly influence the characteristics of the final product. • Typical exfoliated microstructure and nanopores were observed. • Established correlation between particle size distribution and bulk density, X-ray crystallite size and lattice strain. • Relationship between fuel to nitrate (R) mole ratio and physical characteristics of powders were also established.

  5. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    Science.gov (United States)

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  6. Nanocrystalline CdSnO3 Based Room Temperature Methanol Sensor

    Directory of Open Access Journals (Sweden)

    Shanabhau BAGUL

    2017-04-01

    Full Text Available Synthesis of nanocrystalline CdSnO3 powder by ultrasonic atomizer assisted wet chemical method is reported in this paper. Synthesized CdSnO3 powder was characterized by X-Ray Diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM and Transmission Electron Microscopy (TEM to examine phase and microstructure. FESEM and TEM analysis reveals that the CdSnO3 powder prepared here is porous monodisperse nanocrystalline in nature, with average particle size of approximately 17 nm or smaller. The material is also characterized by UV-Visible and Photoluminescence (PL spectroscopy. Thick films of synthesized CdSnO3 powder fired at 850 0C are made by using screen printing method. The films surface is modified by using dipping method. CuCl2 (0.005 M dipped (for 2 min thick film shows high response (R= 477 to 100 ppm methanol at room temperature (35 0C. The sensor shows good selectivity and fast response recovery time to methanol. The excellent methanol sensing performance, particularly high response values is observed to be mainly due to porous CdSnO3 surface.

  7. A novel wound rinsing solution based on nano colloidal silver

    Directory of Open Access Journals (Sweden)

    Soheila Kordestani

    2014-10-01

    Full Text Available Objective(s: The present study aimed to investigate the antiseptic properties of a colloidal nano silver wound rinsing solution to inhibit a wide range of pathogens including bacteria, viruses and fungus present in chronic and acute wounds. Materials and Methods:The wound rinsing solution named SilvoSept® was prepared using colloidal nano silver suspension. Physicochemical properties, effectiveness against microorganism including  Staphylocoocous aureus ATCC 6538P, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 8739 ,Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, MRSA , Mycobacterium spp. , HSV-1 and H1N1, and biocompatibility tests were carried out according to relevant standards . Results: X-ray diffraction (XRD scan was performed on the sample and verify single phase of silver particles in the compound. The size of the silver particles in the solution, measured by dynamic light scattering (DLS techniqu, ranged 80-90 nm. Transmission electron microscopy (TEM revealed spherical shape with smooth surface of the silver nanoparticles. SilvoSept® reduced 5 log from the initial count of 107 CFU/mL of Staphylocoocous aureus ATCC 6538P, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 8739, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, MRSA, Mycobacterium spp. Further assessments of SilvoSept solution exhibited a significant inhibition on the replication of HSV-1 and H1N1. The biocompatibility studies showed that the solution was non-allergic, non-irritant and noncytotoxic. Conclusion: Findings of the present study showed that SilvoSept® wound rinsing solution containing nano silver particles is an effective antiseptic solution against a wide spectrum of microorganism. This compound can be a suitable candidate for wound irrigation.   

  8. Laser induced morphology change of silver colloids: formation of nano-size wires

    International Nuclear Information System (INIS)

    Tsuji, Takeshi; Watanabe, Norihisa; Tsuji, Masaharu

    2003-01-01

    We have performed laser irradiation at 355 nm onto spherical silver colloids in pure water, which were prepared by laser ablation of silver plate in pure water. In addition to size-reduced particles due to fragmentation, we have found that nano-size wire structures were formed in solution for the first time. The width of the wires was in the 10-100 nm range, and the length of long wires was more than 1 μm. Electron diffraction patterns revealed that these wires were composed of pure silver. It was suggested that the wires were formed via fusion of particles photo-thermally melted by laser irradiation

  9. Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vinodgopal, K [Department of Chemistry, Indiana University Northwest, Gary, Indiana (United States); Kamat, Prashant V [Notre Dame Radiation Laboratory, Notre Dame, Indiana (United States)

    1995-08-01

    The principle and usefulness of electrochemically assisted photocatalysis has been illustrated with the examples of 4-chlorophenol and Acid Orange 7 degradation in aqueous solutions. Thin nanocrystalline semiconductor films coated on a conducting glass surface when employed as a photoelectrode in an electrochemical cell are effective for degradation of organic contaminants. The degradation rate can be greatly improved even in the absence of oxygen by applying an anodic bias to the TiO{sub 2} film electrodes. A ten-fold enhancement in the degradation rate was observed when TiO{sub 2} particles were coupled with SnO{sub 2} nanocrystallites at an applied bias potential of 0.83 V versus SCE

  10. Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors

    International Nuclear Information System (INIS)

    Lopez, M.; Marin, P.; Agudo, P.; Carabias, I.; Venta, J. de la; Hernando, A.

    2007-01-01

    Nanocrystalline magnetic particles obtained by high energy ball milling of FeSiBNbCu alloy were prepared from rapidly quenched ribbons as a starting material. Structural characterization was made by using X-ray diffraction (XRD), differential scanning calorimetry (DSC), atomic force microscopy (AFM) and Moessbauer spectroscopy. The structural changes observed in this amorphous material suggest that nanocrystallization process takes place in a different way from the one induced by thermal treatments. Our different studies reveals that after short grinding times (up to 40 h) the material is composed by a two phase system of very fine nanocrystals embedded in a residual amorphous phase, while for largest periods of milling (from 140 h) the sample consists of a very fine nanocrystalline phase with a large fraction of grain boundary

  11. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments

    International Nuclear Information System (INIS)

    Elzey, Sherrie; Grassian, Vicki H.

    2010-01-01

    The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5-6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 ± 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.

  12. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Elzey, Sherrie; Grassian, Vicki H., E-mail: vicki-grassian@uiowa.ed [University of Iowa, Department of Chemical and Biochemical Engineering (United States)

    2010-06-15

    The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5-6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 {+-} 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.

  13. Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al-7.5Mg alloy

    International Nuclear Information System (INIS)

    Lee, Z.; Witkin, D.B.; Radmilovic, V.; Lavernia, E.J.; Nutt, S.R.

    2005-01-01

    The microstructure, mechanical properties and deformation response of bimodal structured nanocrystalline Al-7.5Mg alloy were investigated. Grain refinement was achieved by cryomilling of atomized Al-7.5Mg powders, and then cryomilled nanocrystalline powders blended with 15 and 30% unmilled coarse-grained powders were consolidated by hot isostatic pressing followed by extrusion to produce bulk nanocrystalline alloys. Bimodal bulk nanocrystalline Al-7.5Mg alloys, which were comprised of nanocrystalline grains separated by coarse-grain regions, show balanced mechanical properties of enhanced yield and ultimate strength and reasonable ductility and toughness compared to comparable conventional alloys and nanocrystalline metals. The investigation of tensile and hardness test suggests unusual deformation mechanisms and interactions between ductile coarse-grain bands and nanocrystalline regions

  14. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  15. Synthesis of bulk nanocrystalline Pb-Sn-Te alloy under high pressure

    International Nuclear Information System (INIS)

    Zhu, P W; Chen, L X; Jia, X; Ma, H A; Ren, G Z; Guo, W L; Liu, H J; Zou, G T

    2002-01-01

    Pb-Sn-Te bulk nanocrystalline (NC) materials are prepared successfully by quenching melts under high pressure. The mean particle size is about 100 nm and the crystal structure is NaCl type. The mechanism of formation of the bulk NC alloy is explained: there is an increasing of the nucleation rate and a decrease in the growth rate of nuclei with increase of pressure during the solidification processes. The thermoelectric properties of Pb-Sn-Te bulk NC alloy are enhanced. This method is promising for producing thermoelectric materials with improved high-energy conversion efficiency

  16. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... crystalline iron oxide, which crystallized as a partially oxidized magnetite during heating in argon. After further heat treatment in air, the nanocrystallites are fully converted to maghemite. The particles are superparamagnetic at high temperatures, but the magnetic properties are strongly influenced...

  17. Rapid and Efficient Synthesis of Silver Nanofluid Using Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2013-01-01

    Full Text Available The electrical discharge machining (EDM system has been proven feasible as a rapid and efficient method for silver nanofluid preparation. This study prepared the silver nano-fluid via EDM and investigated the relationship between its process parameters and product characteristics. The prior study had found that the silver nano-fluid prepared by EDM contained both silver nanoparticles and silver ions. Silver ions had revealed the cause of the high suspension of the silver nanoparticles. To examine the relationship between the stability of silver nanofluid and the process parameters, this study quantified the relationship of process parameters to the material removal rate (MRR of silver electrode and silver ion output rate (IOR in the fluid, in order to achieve the most effective process parameter condition. Furthermore, the stability of silver nano-fluid was analyzed by various devices, including UV-Vis spectroscopy, size-distribution, and Zeta-potential analyzer. The effects of MRR, IOR, particle size, Zeta-potential, and optical properties of silver nanofluid under different process parameters are also discussed.

  18. Nanostructured silver sulfide: synthesis of various forms and their application

    Science.gov (United States)

    Sadovnikov, S. I.; Rempel, A. A.; Gusev, A. I.

    2018-04-01

    The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core–shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered. The bibliography includes 184 references.

  19. Tailoring the wettability of nanocrystalline TiO 2 films

    Science.gov (United States)

    Liang, Qiyu; Chen, Yan; Fan, Yuzun; Hu, Yong; Wu, Yuedong; Zhao, Ziqiang; Meng, Qingbo

    2012-01-01

    The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.

  20. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  1. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    International Nuclear Information System (INIS)

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  2. Inkjet-printed silver tracks : low temperature curing and thermal stability investigation

    NARCIS (Netherlands)

    Perelaer, J.; Laat, de A.W.M.; Hendriks, C.E.; Schubert, U.S.

    2008-01-01

    In this contribution the curing behavior and conductivity development of several commercially available silver inks is discussed. In addition, the preparation and characterization of a silver particle ink that shows a curing temperature as low as 80 ÝC is described. Good to excellent conductivity

  3. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    International Nuclear Information System (INIS)

    Thorat, J. H.; Kanade, K. G.; Nikam, L. K.; Chaudhari, P. D.; Panmand, R. P.; Kale, B. B.

    2012-01-01

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 °C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 °C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 °C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50–60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25–50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  4. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, J. H. [Mahatma Phule College, Department of Chemistry (India); Kanade, K. G. [Annasaheb Awate College (India); Nikam, L. K. [B.G. College (India); Chaudhari, P. D.; Panmand, R. P.; Kale, B. B., E-mail: kbbb1@yahoo.com [Center for Materials for Electronics Technology (C-MET) (India)

    2012-02-15

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 Degree-Sign C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 Degree-Sign C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 Degree-Sign C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50-60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25-50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  5. Reduction and aggregation of silver in aqueous gelatin and silica suspensions

    International Nuclear Information System (INIS)

    Kapoor, S.; Lawless, D.; Kennepohl, P.; Meisel, D.; Serpone, N.

    1994-01-01

    The investigation of silver reduction and aggregation processes are of specific interest to the photographic industry, which relies heavily on photochemical equivalents of these reactions. Mechanistic insights into the formation of small silver clusters in aqueous solution have been obtained from both pulse and γ-radiolytic studies. This paper examines the reduction of silver ions and the subsequent formation of silver clusters in aqueous gelatin solutions and on colloidal silica particles using the pulse radiolysis technique. The aggregation processes are compared with the parallel reactions in aqueous solutions

  6. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio

    International Nuclear Information System (INIS)

    Ribeiro, Fabianne; Gallego-Urrea, Julián Alberto; Jurkschat, Kerstin; Crossley, Alison; Hassellöv, Martin; Taylor, Cameron; Soares, Amadeu M.V.M.; Loureiro, Susana

    2014-01-01

    Silver nanoparticles (AgNP) have gained attention over the years due to the antimicrobial function of silver, which has been exploited industrially to produce consumer goods that vary in type and application. Undoubtedly the increase of production and consumption of these silver-containing products will lead to the entry of silver compounds into the environment. In this study we have used Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio as model organisms to investigate the toxicity of AgNP and AgNO 3 by assessing different biological endpoints and exposure periods. Organisms were exposed following specific and standardized protocols for each species/endpoints, with modifications when necessary. AgNP were characterized in each test-media by Transmission Electron Microscopy (TEM) and experiments were performed by Dynamic Light Scattering (DLS) to investigate the aggregation and agglomeration behavior of AgNP under different media chemical composition and test-period. TEM images of AgNP in the different test-media showed dissimilar patterns of agglomeration, with some agglomerates inside an organic layer, some loosely associated particles and also the presence of some individual particles. The toxicity of both AgNO 3 and AgNP differ significantly based on the test species: we found no differences in toxicity for algae, a small difference for zebrafish and a major difference in toxicity for Daphnia magna. - Highlights: •Effects of silver nanoparticles and nitrate were compared in three aquatic species. •The presence of food on the immobilization assay for Daphnia magna significantly decreased AgNP toxicity. •AgNP and AgNO 3 differ in toxicity according to the test species and endpoint. •AgNP and AgNO 3 induced dissimilar abnormalities on zebrafish embryos' development. •AgNP behavior in the test media will rule its bioavailability and uptake and therefore toxicity

  7. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabianne, E-mail: ribeiro.f@ua.pt [Department of Biology and CESAM, University of Aveiro. Campus Universitario de Santiago, 3810-193. Aveiro (Portugal); Gallego-Urrea, Julián Alberto [Department of Chemistry and Molecular Biologyx, University of Gothenburg, Kemivägen 4, 41296 Gothenburg (Sweden); Jurkschat, Kerstin; Crossley, Alison [Department of Materials, Oxford University Begbroke Science Park OX5 1PF (United Kingdom); Hassellöv, Martin [Department of Chemistry and Molecular Biologyx, University of Gothenburg, Kemivägen 4, 41296 Gothenburg (Sweden); Taylor, Cameron [Department of Materials, Oxford University Begbroke Science Park OX5 1PF (United Kingdom); Soares, Amadeu M.V.M.; Loureiro, Susana [Department of Biology and CESAM, University of Aveiro. Campus Universitario de Santiago, 3810-193. Aveiro (Portugal)

    2014-01-01

    Silver nanoparticles (AgNP) have gained attention over the years due to the antimicrobial function of silver, which has been exploited industrially to produce consumer goods that vary in type and application. Undoubtedly the increase of production and consumption of these silver-containing products will lead to the entry of silver compounds into the environment. In this study we have used Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio as model organisms to investigate the toxicity of AgNP and AgNO{sub 3} by assessing different biological endpoints and exposure periods. Organisms were exposed following specific and standardized protocols for each species/endpoints, with modifications when necessary. AgNP were characterized in each test-media by Transmission Electron Microscopy (TEM) and experiments were performed by Dynamic Light Scattering (DLS) to investigate the aggregation and agglomeration behavior of AgNP under different media chemical composition and test-period. TEM images of AgNP in the different test-media showed dissimilar patterns of agglomeration, with some agglomerates inside an organic layer, some loosely associated particles and also the presence of some individual particles. The toxicity of both AgNO{sub 3} and AgNP differ significantly based on the test species: we found no differences in toxicity for algae, a small difference for zebrafish and a major difference in toxicity for Daphnia magna. - Highlights: •Effects of silver nanoparticles and nitrate were compared in three aquatic species. •The presence of food on the immobilization assay for Daphnia magna significantly decreased AgNP toxicity. •AgNP and AgNO{sub 3} differ in toxicity according to the test species and endpoint. •AgNP and AgNO{sub 3} induced dissimilar abnormalities on zebrafish embryos' development. •AgNP behavior in the test media will rule its bioavailability and uptake and therefore toxicity.

  8. Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles.

    Science.gov (United States)

    Pivec, Tanja; Hribernik, Silvo; Kolar, Mitja; Kleinschek, Karin Stana

    2017-05-01

    This study introduces a novel green in-situ procedure for introduction of silver nanoparticles (Ag NPs) on and into cellulose fibres in a three-stage process. First-stage of the process includes the activation of cellulose fibres in alkaline solution, followed by reduction of silver nitrate to Ag NPs in the second stage, while the last stage of process involves washing and neutralization of fibres. Efficiency of the method towards incorporation of silver particles into the fibres' internal structure was characterized; the coatings' morphology and determination of spatial presence of Ag particles were imagining by the scanning electron microscopy and accompanying energy dispersive x-ray spectroscopy analysis; prepared fibres have superior durability of particles' coating against washing and excellent antimicrobial activity even after 20 washing cycles. Additionally, the water retention of silver treated fibres was improved, while the mechanical properties were not significantly impaired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Preparation and protection of silver nanoparticles with chitosan derivative

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Cuc; Cao Van Du; Nguyen Cuu Khoa; Tran Ngoc Quyen

    2013-01-01

    In this paper, nano silver solution is prepared and stabilized by chitosan dihydroxyphenyl acetamide (CDHPA). Chitosan is a natural carbohydrate polymer deriving from chitin that has biodegradable, biocompatible, antibacterial and antifungal properties, so when conjugation of the polymer and silver nanoparticles could be expected to increase bactericidal features of the obtained product. The chemical and physical methods were used to characterize the chitosan derivative such as transmission spectrum (UV-Vis), IR spectrum, nuclear magnetic resonance (1H-NMR). Morphology of the obtained nano silver particles were observed by transmission electron microscopy (TEM). (author)

  10. Combustion synthesis and photoluminescence in novel red emitting yttrium gadolinium pyrosilicate nanocrystalline phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Hedaoo, V.P., E-mail: vraikwar@rediffmail.com [Department of Physics, R. J. College, Ghatkopar, Mumbai, MS 400086 (India); Bhatkar, V.B. [Department of Physics, Shri Shivaji Science College, Amravati, MS 444602 (India); Omanwar, S.K. [Department of Physics, SGB Amravati University, Amravati, MS 444602 (India)

    2016-07-05

    Yttrium Gadolinium Pyrosilicate Y{sub 2-x}Gd{sub x}Si{sub 2}O{sub 7}:Eu{sup 3+} (x = 0.05, 0.10, 0.15) phosphor powder was prepared by facile and time efficient modified combustion method for the first time. The phosphor was characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence excitation (PLE) and emission (PL) spectroscopy and color chromaticity coordinates. XRD revealed the monoclinic crystal structure with space group P1¯. The crystallite size was calculated by Williamson-Hall (W–H) analysis. Nanoplates-like morphology was observed in FESEM analysis with size in the range 50–80 nm. TEM images confirmed the particle size and shape. Upon excitation by 254 nm UV light, the phosphor showed the characteristic red emission peaks at 589 nm and 613 nm corresponding to {sup 5}D{sub 0} → {sup 7}F{sub 1} and {sup 5}D{sub 0} → {sup 7}F{sub 2} transitions respectively. It was observed that the nanocrystalline phosphor Y{sub 2-x}Gd{sub x}Si{sub 2}O{sub 7}:Eu{sup 3+}can be tuned to emit orange to red color by adjusting the ratio Y/Gd. This phosphor thus can be a potential candidate as orange to red color emitting tunable nanocrystalline phosphor for optical devices. - Highlights: • A novel Yttrium Gadolinium Pyrosilicate doped with Eu{sup 3+} is reported. • Facile and time efficient modified combustion method is used. • The nanocrystalline structure was shown by X-ray diffraction, W–H analysis. • FESEM and TEM images confirmed the nanocrystalline structure. • The reported phosphor can be tuned from orange to red by varying Y/Gd ratio.

  11. Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation

    International Nuclear Information System (INIS)

    Hoeng, Fanny; Denneulin, Aurore; Neuman, Charles; Bras, Julien

    2015-01-01

    Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol–gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension

  12. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shibin [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Shi Gaoquan [Department of Chemistry, Tsinghua University, Beijing 100084 (China)]. E-mail: gshi@tsinghua.edu.cn

    2007-04-15

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles.

  13. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    International Nuclear Information System (INIS)

    Wang Shibin; Shi Gaoquan

    2007-01-01

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles

  14. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Science.gov (United States)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  15. In situ SU-8 silver nanocomposites

    Directory of Open Access Journals (Sweden)

    Søren V. Fischer

    2015-07-01

    Full Text Available Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  16. Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract

    International Nuclear Information System (INIS)

    White, G.V.; Kerscher, P.; Brown, R.M.; Morella, J.D.; Kitchens, C.L.; McAllister, W.; Dean, D.

    2012-01-01

    This paper details a facile approach for the synthesis of stable and monodisperse silver nanoparticles performed at ambient/low temperature, where Allium sativum (garlic) extract functions as the silver salt reducing agent during nanoparticle synthesis as well as the post synthesis stabilizing ligands. Varying the synthesis conditions provides control of particle size, size-distribution, and kinetics of particle formation. Infrared spectroscopy, energy dispersive X-ray chemical analysis, and high-performance liquid chromatography indicated that allicin and other carbohydrates in the garlic extract are the primary nanoparticle stabilizing moieties. The synthesized silver nanoparticles also demonstrate potential for biomedical applications, owing to (1) enhanced stability in biological media, (2) resistance to oxidation by the addition of H 2 O 2 , (3) ease and scalability of synthesis, and (4) lack of harsh chemicals required for synthesis. Cytotoxicity assays indicated no decrease in cellular proliferation for vascular smooth muscle cells and 3T3 fibroblasts at a concentration of 25 μg/mL, confirming that silver nanoparticles synthesized with garlic extract are potential candidates for future experimentation and implementation in the biomedical field.

  17. Silver nanoparticle–carbon nanotube hybrid films: Preparation and electrochemical sensing

    International Nuclear Information System (INIS)

    Yu Aimin; Wang, Qingxia; Yong, Jiawey; Mahon, Peter J.; Malherbe, Francois; Wang Feng; Zhang Haili; Wang, James

    2012-01-01

    Multi-walled carbon nanotube (MWCNT) multilayer thin films with controlled thickness were pre-assembled on electrodes by alternatively depositing MWCNT and poly(diallyldimethylammonium chloride) (PDDA) via a layer-by-layer self-assembly technique. Silver nanoparticles (Ag NPs) were then electro-deposited on the MWCNT surface from AgNO 3 solution using a potentiostatic double pulse technique. The size, density and morphology of silver nanoparticles that electrodeposited on MWCNT were controlled by the pulse parameters. When a voltage pulse of −600 mV was used to nucleate silver nanoparticles and a growth pulse of −105 mV was applied to grow the particles, silver particles of 10–500 nm with varied density could be electro-generated on MWCNT surface. The formation of Ag NPs and the morphology of the MWCNT/Ag NP composite films were characterized by scanning electron microscopy (SEM). The MWCNT/Ag NP composite films exhibited excellent electrocatalytic activity to the reduction of hydrogen peroxide which was also shown to be slightly affected by the size and density of Ag NPs on the film.

  18. Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea; Alstrup Jensen, Keld; Johansen, Anders

    2012-01-01

    Toxicity of nano-formulated silver to eukaryotes was assessed by exposing nematodes (Caenorhabditis elegans) to two types of silver nanoparticles (AgNPs): with average primary particle diameters of 1 nm (AgNP1) and 28 nm (AgNP28, PVP coated), respectively. Tests were performed with and without pr...

  19. Preparation of silver colloid and enhancement of dispersion stability in organic solvent

    International Nuclear Information System (INIS)

    Kim, Ki Young; Choi, Young Tai; Seo, Dae Jong; Park, Seung Bin

    2004-01-01

    Silver colloid of nanometer size was prepared in liquid phase by a reduction method. AgNO 3 , FeSO 4 .7H 2 O, and Na 3 C 6 H 5 O 7 .2H 2 O were used as silver precursor, reducing agent and dispersing agent, respectively. As precursor concentration was decreased or the concentration of dispersing agent was increased, the prepared particle size was decreased from 180 nm to 20 nm. Apparently, the particle size seemed to be decreased with the increase of stirring rate, but it was confirmed by TEM that the size of primary particle remained the same. This result indicates that the uniformity of precursor concentration in the reactor affects the particle size and the stirring rate should be kept higher than the critical value to prevent the agglomeration of particles. In order to make the dispersion stability of the prepared silver colloid maintained even in non-polar organic solvent, electrodialysis technique was applied. As ionic species in colloidal solution were removed by electrodialysis, the dispersability of the colloid in the organic solvent of long carbon chain was confirmed to be increased

  20. Process of dosimetry of a particle flux

    Energy Technology Data Exchange (ETDEWEB)

    Francois, H; Heilmann, C; Jacquot, C

    1976-06-25

    The main feature of this dosimetry process is that a nuclear emulsion plate with an emulsion of gelatine and silver bromide microcrystals is subjected to the flux of particles to be measured, that the plate is developed in a standard manner and that the amount of silver thus reduced to the metal state is then analysed by activation. The plate containing the nuclear emulsion irradiated in this way is then developed by the conventional temperature method, the effect of which is to cause traces to appear formed of metal silver particles at those places where ionising particles have penetrated into the emulsion and have given up therein all or part of their energy. Once the plates have been developed, like an ordinary photographic plate, they are then subjected to a neutron flux (nuclear reactor, accelerator, etc.) that activates the silver particles in the emulsion which then become emitters of ..gamma.. radiations which may then be detected to find out the amount of silver present in the plate, which finally is specific of the radiation flux dose received by this plate. A Geiger type gamma ray detector gives a global indication on the mass of silver contained in the emulsion. A more refined method consists in using a multi-channel gamma spectrometer and this makes it possible to have an energy selective dosimetry. The juxtaposition of several separate plates each having its own sensitivity in a given energy band enable a veritable 'sandwhich' of several plates to be made.

  1. Polypropylene film with silver nanoparticles and nanoclay aiming to action biocidal

    International Nuclear Information System (INIS)

    Oliani, W.L.; Lima, L.F.C.P.; Lugao, A.B.; Parra, D.F.; Fermino, D.M.; Diaz, F.R.V.

    2014-01-01

    This paper presents an initial study of films made of polypropylene nanoclay and silver nanoparticles. The nanocomposite of polypropylene (iPP), commercial organoclay - montmorillonite (MMT), Cloisite 20A at concentrations of 1.0% and silver nanoparticles (AgNPs) at a concentration of 0.1% were prepared in a twin-screw-extruder, using polypropylene with maleic anhydride (PP-g-MA) as coupling agent. The properties of nanocomposites of PP/MMT/AgNPs are closely related to the dispersion of silver particles and the distribution of sheets of MMT in the polymer matrix, which define its efficiency in the case of the particles and their interaction clay/polymer matrix. However, this combination of MMT and AgNPs that are polar, with the polymer matrix nonpolar in the molten state, presents a challenge. The characterization of the film was performed by analysis of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and reduction of colony forming unit (CFU %). The results indicate the formation of predominantly exfoliated microstructures and agglomeration of silver nanoparticles in the film. The effect of silver nanoparticles was evaluated against bacteria E.coli and S.aureus. (author)

  2. Formation of three-dimensional nano-porous silver films and application toward electrochemical detection of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Junpeng [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Niu, Yuchao [Department of Materials Science and Engineering, Shandong Jianzhu University, Fengming Road, Lingang Development Zone, Jinan 250101 (China); Bai, Yanwen; Xiao, Xinxin; Yang, Chuncheng; Yang, Jianfei; Yang, Jinyue [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2013-11-15

    By using the chemically dealloying method, three-dimensional nano-porous silver films (3-D NPSFs) are fabricated into a novel sensor for detecting hydrogen peroxide. The precursor films are prepared by high vacuum magnetron co-sputtering. High-resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM) are taken to investigate the structure and the micro morphology of the precursor films and nano-porous films. We find that the precursor films are composed of glassy matrix and nanocrystallines. After dealloying, the films exhibit a combination of homogenously distributed pores and silver filaments, and exhibit an open, three dimensional bicontinuous interpenetrating ligament–channel structure. Thickness and morphology of the films can be easily controlled by the sputtering time and alloy composition of the precursor films, respectively. In addition, NPSFs show a good linear responding for the concentration of hydrogen peroxide in phosphate buffered solutions, which indicates NPSFs could be a promising electrochemical material for hydrogen peroxide detection.

  3. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    Science.gov (United States)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  4. Silver Alginate Hydrogel Micro- and Nanocontainers for Theranostics: Synthesis, Encapsulation, Remote Release, and Detection.

    Science.gov (United States)

    Lengert, Ekaterina; Saveleva, Mariia; Abalymov, Anatolii; Atkin, Vsevolod; Wuytens, Pieter C; Kamyshinsky, Roman; Vasiliev, Alexander L; Gorin, Dmitry A; Sukhorukov, Gleb B; Skirtach, Andre G; Parakhonskiy, Bogdan

    2017-07-05

    We have designed multifunctional silver alginate hydrogel microcontainers referred to as loaded microcapsules with different sizes by assembling them via a template assisted approach using natural, highly porous calcium carbonate cores. Sodium alginate was immobilized into the pores of calcium carbonate particles of different sizes followed by cross-linking via addition of silver ions, which had a dual purpose: on one hand, the were used as a cross-linking agent, albeit in the monovalent form, while on the other hand they have led to formation of silver nanoparticles. Monovalent silver ions, an unusual cross-linking agent, improve the sensitivity to ultrasound, lead to homogeneous distribution of silver nanoparticles. Silver nanoparticles appeared on the shell of the alginate microcapsules in the twin-structure as determined by transmission electron microscopy. Remote release of a payload from alginate containers by ultrasound was found to strongly depend on the particle size. The possibility to use such particles as a platform for label-free molecule detection based on the surface enhanced Raman scattering was demonstrated. Cytotoxicity and cell uptake studies conducted in this work have revealed that microcontainers exhibit nonessential level of toxicity with an efficient uptake of cells. The above-described functionalities constitute building blocks of a theranostic system, where detection and remote release can be achieved with the same carrier.

  5. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-11-01

    Full Text Available Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  6. Silver removal process development for the MEO cleanout

    International Nuclear Information System (INIS)

    Hsu, P.C.; Chiba, Z.; Schumacher, B.J.; Murguia, L.C.; Adamson, M.G.

    1996-02-01

    The Mediated Electrochemical Oxidation (MEO) system is an aqueous process which treats low-level mixed wastes by oxidizing the organic components of he waste into carbon dioxide and water. As MEO system continues to run, dissolved ash and radionuclides slowly accumulate in the anolyte and must be removed to maintain process efficiency. At such time, all of the anolyte is pumped into a still feed tank, and the silver ions need to be removed before sending the solution to a thin-film evaporator for further concentration. The efficiency of removing silver ions in the solution needs to be high enough such that the residual silver sent to Final Forms would be less than 1% wt. The purpose of this work is to develop an efficient process to remove silver ions during the MEO cleanout and to demonstrate the capability of centrifugation for separating small silver chloride particles from the solution. This development work includes lab scale experiments and bench scale tests. This report summarizes the results

  7. Theoretical Studies of Optical Properties of Silver Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Zhao-Wang, Wu; Li-Hua, Zhang; Jie, Zhang

    2010-01-01

    Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization. (fundamental areas of phenomenology(including applications))

  8. Dermal exposure potential from textiles that contain silver nanoparticles.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Virji, M Abbas

    2014-01-01

    Factors that influence exposure to silver particles from the use of textiles are not well understood. The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated "use" and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0·51±0·04%) than the masterbatch process textile (0·21±0·01%); Pmasterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva.

  9. A general method for synthesis continuous silver nanoshells on dielectric colloids

    International Nuclear Information System (INIS)

    Chen Dong; Liu Huiyu; Liu Jianshu; Ren Xianglin; Meng Xianwei; Wu Wei; Tang Fangqiong

    2008-01-01

    A method for the controlled synthesis of silver nanoshells on various dielectric colloids, such as silica and polystyrene is presented in this study. The complexation of triethanolamine and silver ions is applied here to moderate the availability of the silver ions in the reaction solution, which directly affect the coating process. The morphologies of the particles were studied with transmission electron microscopy and their crystallinity and chemical composition were confirmed by X-ray and electron diffraction. The synthesis conditions were investigated and experimental results show that compact silver shells with easily controlled thickness can be deposited on dielectric cores by this method

  10. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    International Nuclear Information System (INIS)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E.

    2014-01-01

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH 4 amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green

  11. Antibacterial Activity of Silver Nanoparticles Synthesized by Using Extracts of Hedera helix

    Directory of Open Access Journals (Sweden)

    Ahmadreza Abbasifar

    2017-01-01

    Full Text Available Background Silver nanoparticles (AgNPs are one of the most widely applicable particles whose application is increasing in Nano world daily. Silver nanoparticles have expressed significant advances owing to wide range of applications in the field of bio-medical, sensors, antimicrobials, catalysts, electronics, optical fibers, agricultural, bio-labeling and the other areas. Green synthesis is the safe and easiest method of producing silver nanoparticles. Because of the production of the silver ions, silver nanoparticles are found to have the antibacterial activity. Objectives The aim of this study was to investigate antibacterial activity of silver nanoparticles synthesized by using extracts of Hedera helix against Bacillus subtilis and Klebsiella pneumoniae. Methods In this experimental study AgNPs were prepared by the reaction of 1mM silver nitrate and extracts of Hedera helix. Antibacterial activity of AgNPs was assessed by using disc diffusion method against Bacillus subtilis and Klebsiella pneumoniae. The AgNPs were characterized by UV-visible (vis spectrophotometer, particle size analyzer by dynamic light scattering (DLS method, transmission electron microscopy (TEM. Results AgNPs obtained showed significantly higher antimicrobial activities against B. subtilis and K. pneumonia in comparison to both AgNO3 and raw plant extracts. Conclusions Biological methods are a good competent for the chemical procedures, which are environment friendly and convenient.

  12. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100°C

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Massuyeau, Florian; Constantin, Liliana Violeta; Predoi, Daniela

    2011-12-01

    Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10- x Ag x (PO4)6(OH)2 ( x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp ( x = 0) and Ag:HAp ( x = 0.2). The Ag:Hap nanopowder showed higher inhibition.

  13. Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites

    Energy Technology Data Exchange (ETDEWEB)

    Žvátora, Pavel [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Veverka, Miroslav; Veverka, Pavel; Knížek, Karel; Závěta, Karel; Pollert, Emil [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Král, Vladimír [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Zentiva Development (Part of Sanofi Group), U Kabelovny 130, 102 37 Prague (Czech Republic); Goglio, Graziella; Duguet, Etienne [CNRS, University of Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France); Kaman, Ondřej, E-mail: kamano@seznam.cz [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 40 Prague (Czech Republic)

    2013-08-15

    Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for the samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.

  14. Molecular dynamics of coalescence and collisions of silver nanoparticles

    International Nuclear Information System (INIS)

    Guevara-Chapa, Enrique; Mejía-Rosales, Sergio

    2014-01-01

    We study how different relative orientations and impact velocity on the collision of two silver nanoparticles affect the first stages of the formation of a new, larger nanoparticle. In order to do this, we implemented a set of molecular dynamics simulations on the NVE ensemble on pairs of silver icosahedral nanoparticles at several relative orientations, that allowed us to follow the dynamics of the first nanoseconds of the coalescence processes. Using bond angle analysis, we found that the initial relative orientation of the twin planes has a critical role on the final stability of the resulting particle, and on the details of the dynamics itself. When the original particles have their closest twins aligned to each other, the formed nanoparticle will likely stabilize its structure onto a particle with a defined center and a low surface-to-volume ratio, while nanoparticles with misaligned twins will promote the formation of highly defective particles with a high inner energy

  15. Molecular dynamics of coalescence and collisions of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Chapa, Enrique, E-mail: enrique_guevara@hotmail.com [Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico Matemáticas (Mexico); Mejía-Rosales, Sergio [Universidad Autónoma de Nuevo León, Center for Innovation, Research and Development in Engineering and Technology (CIIDIT), and CICFIM-Facultad de Ciencias Físico Matemáticas (Mexico)

    2014-12-15

    We study how different relative orientations and impact velocity on the collision of two silver nanoparticles affect the first stages of the formation of a new, larger nanoparticle. In order to do this, we implemented a set of molecular dynamics simulations on the NVE ensemble on pairs of silver icosahedral nanoparticles at several relative orientations, that allowed us to follow the dynamics of the first nanoseconds of the coalescence processes. Using bond angle analysis, we found that the initial relative orientation of the twin planes has a critical role on the final stability of the resulting particle, and on the details of the dynamics itself. When the original particles have their closest twins aligned to each other, the formed nanoparticle will likely stabilize its structure onto a particle with a defined center and a low surface-to-volume ratio, while nanoparticles with misaligned twins will promote the formation of highly defective particles with a high inner energy.

  16. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    International Nuclear Information System (INIS)

    Luo, Zhenfei; Zhou, Xun; Yan, Dawei; Wang, Du; Li, Zeyu; Yang, Cunbang; Jiang, Yadong

    2014-01-01

    Nanocrystalline vanadium dioxide (VO 2 ) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO 2 thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T SMT ) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO 2 grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T SMT was found to decrease as average VO 2 grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO 2 film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure

  17. Heterogeneous precipitation of silver nanoparticles on kaolinite plates

    International Nuclear Information System (INIS)

    Cabal, B; Moya, J S; Torrecillas, R; Malpartida, F

    2010-01-01

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  18. Heterogeneous precipitation of silver nanoparticles on kaolinite plates.

    Science.gov (United States)

    Cabal, B; Torrecillas, R; Malpartida, F; Moya, J S

    2010-11-26

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  19. Heterogeneous precipitation of silver nanoparticles on kaolinite plates

    Energy Technology Data Exchange (ETDEWEB)

    Cabal, B; Moya, J S [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049, Cantoblanco, Madrid (Spain); Torrecillas, R [Centro de Investigacion en Nanomateriales y NanotecnologIa (CINN), Consejo Superior de Investigaciones CientIficas (CSIC)-Universidad de Oviedo-UO-Principado de Asturias, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Malpartida, F, E-mail: bcabal@icmm.csic.es [Centro Nacional de BiotecnologIa (CNB-CSIC), 28049, Cantoblanco, Madrid (Spain)

    2010-11-26

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  20. Nanocrystalline permanent magnets with enhanced properties

    International Nuclear Information System (INIS)

    Leonowicz, M.

    2002-01-01

    Parameters of permanent magnets result from the combination of intrinsic properties such as saturation magnetization, magnetic exchange, and magnetocrystalline energy, as well as microstructural parameters such as phase structure, grain size, and orientation. Reduction of grain size into nanocrystalline regime (∼ 50 nm) leads to the enhanced remanence which derives from ferromagnetic exchange coupling between highly refined grains. In this study the fundamental phenomena, quantities, and structure parameters, which define nanophase permanent magnets are presented and discussed. The theoretical considerations are confronted with experimental data for nanocrystalline Sm-Fe-N type permanent magnets. (author)

  1. Influence of surfactant on the preparation of silver nanoparticles by polyol method

    International Nuclear Information System (INIS)

    Dung Dang, Thi My; Tuyet Le, Thi Thu; Dang, Mau Chien; Fribourg-Blanc, Eric

    2012-01-01

    In this study, silver nanoparticles were synthesized from silver nitrate via a polyol method in ambient atmosphere. In our synthesis route, polyvinylpyrrolidone (PVP) is used as both size controller and capping agent, ethylene glycol acts both as solvent and reducing agent. The obtained silver nanoparticles were characterized by ultraviolet-visible spectrophotometry which indicated the formation of nanoparticles. Investigation of Fourier transform infrared spectroscopy clearly demonstrated the coordination between silver nanoparticles and PVP. Transmission electron microscopy (TEM) contributed to the particle size analysis. The surface plasmon resonance peak in absorption spectra of silver colloidal solution showed absorption from 406 to 409 nm. The average size of the resulting silver nanoparticles was below 10 nm with a dependency on the PVP concentration. (paper)

  2. Silver nanoparticle release from commercially available plastic food containers into food simulants

    DEFF Research Database (Denmark)

    Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss

    2016-01-01

    . In the current study, we investigated four brands of commercially available plastic food storage containers and measured the total amount of silver, particle size and number concentration, and the migration rates into three different food simulants (Milli-Q grade water, 10 % ethanol, and 3 % acetic acid) for 10...... days at 40 °C. The experimental setup was made according to the European Commission Directive (EU 10/2011) for articles intended to be in contact with food. The total amount of silver in plastic containers and migration solutions was quantified by ICP-MS analysis, and the size of the migrated particles...... was investigated by single particle ICP-MS and TEM-EDS. The total mass and median size of released particulate Ag were generally highest in 3 % acetic acid for three out of four food container brands. The total content of silver in the containers varied from 13 to 42 µg/g. The highest migration was observed...

  3. Thermodynamic and experimental study on phase stability in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Xu Wenwu; Song Xiaoyan; Lu Nianduan; Huang Chuan

    2010-01-01

    Nanocrystalline alloys exhibit apparently different phase transformation characteristics in comparison to the conventional polycrystalline alloys. The special phase stability and phase transformation behavior, as well as the essential mechanisms of the nanocrystalline alloys, were described quantitatively in a nanothermodynamic point of view. By introducing the relationship between the excess volume at the grain boundary and the nanograin size, the Gibbs free energy was determined distinctly as a function of temperature and the nanograin size. Accordingly, the grain-size-dependence of the phase stability and phase transformation characteristics of the nanocrystalline alloy were calculated systematically, and the correlations between the phase constitution, the phase transformation temperature and the critical nanograin size were predicted. A series of experiments was performed to investigate the phase transformations at room temperature and high temperatures using the nanocrystalline Sm 2 Co 17 alloy as an example. The phase constitution and phase transformation sequence found in nanocrystalline Sm 2 Co 17 alloys with various grain-size levels agree well with the calculations by the nanothermodynamic model.

  4. Silver-enhanced block copolymer membranes with biocidal activity

    KAUST Repository

    Madhavan, Poornima

    2014-11-12

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  5. Silver-enhanced block copolymer membranes with biocidal activity

    KAUST Repository

    Madhavan, Poornima; Hong, Pei-Ying; Sougrat, Rachid; Nunes, Suzana Pereira

    2014-01-01

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  6. Synthesis and characterization of polyacrylonitrile-silver nanocomposites by γ-irradiation

    International Nuclear Information System (INIS)

    Liu Huarong; Ge Xuewu; Ni Yonghong; Ye Qiang; Zhang Zhicheng

    2001-01-01

    The nanocomposites of stable nanosilver particles embedded in polyacrylonitrile matrix were synthesized by γ-irradiation, in which the monomer acrylonitrile was polymerized and the silver ions were reduced simultaneously by γ-irradiation to form composites in situ. The strong interactions between silver ions with -CN groups of polyacrylonitrile are found, which were confirmed by X-ray powder diffraction, IR spectrum and absorption spectra

  7. Antimicrobial activity of silver nanoparticles synthesized using honey and gamma radiation against silver-resistant bacteria from wounds and burns

    Science.gov (United States)

    Hosny, A. M. S.; Kashef, M. T.; Rasmy, S. A.; Aboul-Magd, D. S.; El-Bazza, Z. E.

    2017-12-01

    Silver nanoparticles (AgNPs) are promising antimicrobial agents for treatment of wounds and burns. We synthesized AgNPs using honey at different pH values or with different gamma irradiation doses. The resulting nanoparticles were characterized by UV-vis spectroscopy, TEM, DLS and FTIR. Their antimicrobial activity, against standard bacterial strains and silver-resistant clinical isolates from infected wounds and burns, was evaluated in vitro through determination of their minimum inhibitory concentration (MIC). AgNPs prepared using 30 g of honey exposed to 5 kGy gamma radiation had the best physical characters regarding stability and uniformity of particle size and shape. They recorded the lowest MIC values against both the standard and silver-resistant isolates. In conclusion, honey and gamma radiation can be used in synthesis of highly stable pure AgNPs, without affecting the physico-chemical and antimicrobial activity of honey. This offered an advantage in terms of inhibition of silver-resistant bacteria isolates.

  8. A process of dosimetry of a particle flux

    International Nuclear Information System (INIS)

    Francois, Henri; Heilmann, Celine; Jacquot, Claude.

    1976-01-01

    The main feature of this dosimetry process is that a nuclear emulsion plate with an emulsion of gelatine and silver bromide microcrystals is subjected to the flux of particles to be measured, that the plate is developed in a standard manner and that the amount of silver thus reduced to the metal state is then analysed by activation. The plate containing the nuclear emulsion irradiated in this way is then developed by the conventional temperature method, the effect of which is to cause traces to appear formed of metal silver particles at those places where ionising particles have penetrated into the emulsion and have given up therein all or part of their energy. Once the plates have been developed, like an ordinary photographic plate, they are then subjected to a neutron flux (nuclear reactor, accelerator, etc.) that activates the silver particles in the emulsion which then become emitters of γ radiations which may then be detected to find out the amount of silver present in the plate, which finally is specific of the radiation flux dose received by this plate. A Geiger type gamma ray detector gives a global indication on the mass of silver contained in the emulsion. A more refined method consists in using a multi-channel gamma spectrometer and this makes it possible to have an energy selective dosimetry. The juxtaposition of several separate plates each having its own sensitivity in a given energy band enable a veritable 'sandwhich' of several plates to be made [fr

  9. Tailoring and patterning the grain size of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  10. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  11. Experiments on the contact angle of n-propanol on differently prepared silver substrates at various temperatures and implications for the properties of silver nanoparticles

    Science.gov (United States)

    Pinterich, T.; Winkler, P. M.; Vrtala, A. E.; Wagner, P. E.

    2011-08-01

    In this paper we present the results of contact angle measurements between n-propanol and silver substrates in the temperature range from -10 °C to 30 °C. The interest in a potential temperature dependence of contact angles originates from recent experiments by S. Schobesberger et al. (Schobesberger S., Strange temperature dependence observed for heterogeneous nucleation of n-propanol vapor on NaCl particles. Master's thesis, University of Vienna, 2008; Schobesberger S. et al., Experiments on the temperature dependence of heterogeneous nucleation on NaCl and Ag particles. In preparation.) investigating the temperature dependence for heterogeneous nucleation of n-propanol vapour on NaCl and on silver particles. We determined dynamic advancing θ a and receding θ r angles on variously prepared silver probes. The Dynamic Wilhelmy method (Wilhelmy L., Über die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Ann. Phys. Chem., 199:177-217, 1863) was applied using a Krüss K12 Tensiometer, with a refrigerated double-walled glass top. With respect to its potential influence on heterogeneous nucleation mainly the advancing angle is of interest. The uniform probe geometry required was achieved by accurate cutting and by multiple polishing stages up to the accomplishment of a 0.04 μm grain size. The original probes consist of 925 sterling silver including a 7.5% copper content. Additional coating with silver pro Analysi (p.A.) was applied making use of pure silver powder evaporation process via Physical Vapour Deposition (PVD). Results show that a surface contamination by copper cannot be neglected for the specification of contact angles. It turned out that additional PVD coatings not only change the values of θa but also their temperature dependence. With increasing the number of coatings of a plate the contact angle decreases and its temperature dependence inverts. Since the contact angle hysteresis

  12. A re-assessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies.

    Science.gov (United States)

    Fewtrell, Lorna; Majuru, Batsirai; Hunter, Paul R

    2017-06-20

    Despite poor evidence of their effectiveness, colloidal silver and silver nanoparticles are increasingly being promoted for treating potentially contaminated drinking water in low income countries. Recently, however, concerns have been raised about the possible genotoxicity of particulate silver. The goal of this paper was to review the published mammalian in vivo genotoxicity studies using silver micro and nanoparticles. SCOPUS and Medline were searched using the following search string: ("DNA damage" OR genotox* OR Cytotox* OR Embryotox*) AND (silver OR AgNP). Included papers were any mammalian in vivo experimental studies investigating genotoxicity of silver particles. Studies were quality assessed using the ToxRTool. 16 relevant papers were identified. There were substantial variations in study design including the size of silver particles, animal species, target organs, silver dose, route of administration and the method used to detect genotoxicity. Thus, it was not possible to produce a definitive pooled result. Nevertheless, most studies showed evidence of genotoxicity unless using very low doses. We also identified one human study reporting evidence of "severe DNA damage" in silver jewellery workers occupationally exposed to silver particles. With the available evidence it is not possible to be definitive about risks to human health from oral exposure to silver particulates. However, the balance of evidence suggests that there should be concerns especially when considering the evidence from jewellery workers. There is an urgent need to determine whether people exposed to particulate silver as part of drinking water treatment have evidence of DNA damage.

  13. Production of silver nanoparticles by laser ablation in open air

    International Nuclear Information System (INIS)

    Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; Val, J. del; Pou, J.

    2015-01-01

    Highlights: • Silver nanoparticles have been obtained by laser ablation of metallic Ag in open air using nanosecond laser. • The continuous process enables increasing the production yield. • The obtained particles are rounded shape with narrow size distribution. - Abstract: Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm

  14. Production of silver nanoparticles by laser ablation in open air

    Energy Technology Data Exchange (ETDEWEB)

    Boutinguiza, M., E-mail: mohamed@uvigo.es [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9. Vigo, 36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo, 36310 (Spain); Lusquiños, F.; Riveiro, A.; Val, J. del; Pou, J. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9. Vigo, 36310 (Spain)

    2015-05-01

    Highlights: • Silver nanoparticles have been obtained by laser ablation of metallic Ag in open air using nanosecond laser. • The continuous process enables increasing the production yield. • The obtained particles are rounded shape with narrow size distribution. - Abstract: Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm.

  15. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    Science.gov (United States)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Sorption Coefficients for Iodine, Silver, and Cesium on Dust Particles

    International Nuclear Information System (INIS)

    Stempniewicz, M.M.; Goede, P.

    2014-01-01

    This paper describes the work performed to find relevant experimental data and find the sorption coefficients that represent well the available data for cesium, iodine, and silver on dust particles. The purpose of this work is to generate a set of coefficients that may be recommended for the computer code users. The work was performed using the computer code SPECTRA. Calculations were performed for the following data: • I-131 on AVR dust; • Ag-110m on AVR dust; • Cs-13 and Cs-137 on AVR dust. Available data was matched using the SPECTRA Sorption Model. S = A(T) · C_V-B(T) · C_d. The results are summarized as follows: • The available data can be correlated. The data scatter is about 4 orders of magnitude. Therefore the coefficients of the Langmuir isotherms vary by 4 orders of magnitude. • Sorption rates are higher at low temperatures and lower at high temperatures. This tendency has been observed in the data compiled at Oak Ridge. It is therefore surmised that the highest value of the sorption coefficients are appropriate for the low temperatures and the lowest value of the sorption coefficients are appropriate for the high temperatures. The recommended sorption coefficients are presented in this paper. • The present set of coefficients is very rough and should be a subject for future verification against experimental data. (author)

  17. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron

    International Nuclear Information System (INIS)

    Nie, F L; Zheng, Y F; Wei, S C; Hu, C; Yang, G

    2010-01-01

    Bulk nanocrystalline pure iron rods were fabricated by the equal channel angular pressure (ECAP) technique up to eight passes. The microstructure and grain size distribution, natural immersion and electrochemical corrosion in simulated body fluid, cellular responses and hemocompatibility were investigated in this study. The results indicate that nanocrystalline pure iron after severe plastic deformation (SPD) would sustain durable span duration and exhibit much stronger corrosion resistance than that of the microcrystalline pure iron. The interaction of different cell lines reveals that the nanocrystalline pure iron stimulates better proliferation of fibroblast cells and preferable promotion of endothelialization, while inhibits effectively the viability of vascular smooth muscle cells (VSMCs). The burst of red cells and adhesion of the platelets were also substantially suppressed on contact with the nanocrystalline pure iron in blood circulation. A clear size-dependent behavior from the grain nature deduced by the gradual refinement microstructures was given and well-behaved in vitro biocompatibility of nanocrystalline pure iron was concluded.

  18. Estimation of silver nanoparticles size in SiO2 sol-gel layers by use of UV-VIS spectroscopy

    Directory of Open Access Journals (Sweden)

    Marek Novotný

    2011-12-01

    Full Text Available Silica glass layers containing silver nanoparticles were prepared by the sol-gel method. The layers were deposited on a glass substrate by the dip-coating method, dried and heat treated at various temperatures. The average silver particle size was determined from absorption spectra according to Mie’s theory. A good correlation was found between the calculated values and analysis of HRTEM images. A very narrow size distribution was obtained by this procedure. The average particle size of silver particles fell between 1 and 2 nm for dried samples; in case of glasses treated at 500 and 550°C the size ranged between 2 and 4 nm.

  19. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry.

    Science.gov (United States)

    Adur, Alaknanda J; Nandini, N; Shilpashree Mayachar, K; Ramya, R; Srinatha, N

    2018-06-01

    Silver nanoparticles were prepared through eco-friendly, cost effective, bio-mediated technique using anaerobically digested Parthenium hysterophorous digested slurry (PDS) for the first time. The synthesized nanoparticles were characterized through different techniques such as UV-Vis spectrophotometer for optical properties; X-ray diffractometer (XRD), high resolution transmission electron spectroscopy (HR-TEM) and Fourier Transform Infra Red (FTIR) Spectroscopy for structural property investigations. It was observed that the prepared silver nanoparticles were crystallized in face centered cubic crystal structure with an average particle size of 19 nm as confirmed from XRD. Also HR-TEM studies reveal the formation of nano-sized silver particles with face centered cubic nano structure. In addition, absorption spectra exhibit Surface Plasmon Resonance (SPR) which suggests the formation of silver nanoparticles. FTIR results show the presence of different characteristic functional groups and their stretching / bending vibrations in turn responsible for the bioreduction of silver ions in Parthenium digested slurry. Further investigations on antimicrobial activity were done by subjecting the synthesized silver nanoparticles on E-coli and Pseudomonas as marker organisms for the group of gram negative bacteria by well plate method on enrichment media. The result obtained shows a clear zone of inhibition confirming the antibacterial activity. Overall, the investigated results confirm the biosynthesized silver nanoparticles are potential candidates for antimicrobial activity applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Magnetic properties of nanocrystalline pyrrhotite prepared by high-energy milling

    DEFF Research Database (Denmark)

    Balaz, P.; Godocikova, E.; Alacova, A.

    2004-01-01

    The nanocrystalline pyrrhotite was prepared by high-energy milling of lead sulphide with elemental Fe acting as reducing element. X-ray diffractometry, Mossbauer spectroscopy and VSM magnetometry were used to determine the properties of nanocrystalline iron sulphide prepared by the corresponding...... mechanochemical reaction. Pyrrhotite Fe1-xS together with the residual Fe metal were identified by the X-ray diffractometry. The kinetic studies performed by Mossbauer spectroscopy and VSM magnetometry allowed us to follow in more details the progress of the nanocrystalline magnetic phase formation during...

  1. In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P. V.; Thiyagarajan, T. K.; Sreekumar, K. P.; Vijay, M.; Selvarajan, V.; Yu, Jiaguo; Liu, Shengwei

    2010-01-01

    Nanocrystalline titanium dioxide powder was synthesized by in-flight oxidation of titanium dihydride (TiH 2 ) powder in a thermal plasma jet. TiH 2 powder was injected into the thermal plasma jet and allowed to react with oxygen injected downstream the jet. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. It is suggested that the thermo-chemistry of the oxidation process contributes significantly to the formation of nano-sized titania. The large energy released during the oxidation process dissociates the TiO 2 particles into TiO (g) and titanium vapour, which recombine downstream with oxygen and form nano particles of TiO 2 .

  2. Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites

    International Nuclear Information System (INIS)

    Nathani, H.; Misra, R.D.K.

    2004-01-01

    The magnetization studies on nanocrystalline nickel ferrite as powder particles, and as diluted dispersion (10 wt.%) in polymer matrix (polymer nanocomposites) are presented. The two polymer-based nanocomposites were prepared via ball-milling and in situ polymerization, respectively. The magnetization measurements provide strong evidence of surface effects to magnetization, which explains the non-saturation of magnetization at high fields. The differences in the magnetization behavior of nickel ferrite as powder particles and in the ball-milled nanocomposite and the nanocomposite prepared via in situ polymerization are attributed to the different extent of interparticle interactions between the particles and the preparation route. The magnetization versus applied field behavior of the three ferrite systems show a similar jump in the initial part of the magnetization curve in all the cases which implies the existence of a core-shell like morphology of the particles over a large temperature range and its dominance over the interparticle interaction effects between the particles

  3. Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent

    Science.gov (United States)

    Susilowati, E.; Maryani; Ashadi

    2018-04-01

    The present study we explore an environmentally friendly colloidal silver nanoparticles preparation using chitosan as reducing agent and stabilizer. It develops a new strategy on preparation of silver nanoparticles through the gel phase using sodium hydroxide (NaOH) as accelerator reagent. Sunlight irradiation was employed to assisted reducing process of silver ions to silver nanoparticles. Localized surface plasmon resonance (LSPR) phenomenon of silver nanoparticles was investigated using UV-Vis spectrophotometer. The shape and size of silver particles were analyzed using TEM. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 396.0–412.0 nm. The absorption peak of LSPR were affected by NaOH amount, time of sulight irradiation and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 5 to 8 nm as shown by TEM images. All colloidals were stable without any aggregation for 30 days after preparation.

  4. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  5. Synthesis of dextrin-stabilized colloidal silver nanoparticles and their application as modifiers of cement mortar.

    Science.gov (United States)

    Konował, Emilia; Sybis, Marta; Modrzejewska-Sikorska, Anna; Milczarek, Grzegorz

    2017-11-01

    Various commercial dextrins were used as reducing and stabilizing agents for a novel one-step synthesis of silver nanoparticles from ammonia complexes of silver ions. As a result, stable colloids of silver were formed during the reaction with the particle size being the function of the dextrin type. The obtained colloids were characterized by UV-vis spectrophotometry, size distribution (using Non-Invasive Backscatter optics) and transmission electron microscopy (TEM). The achieved results clearly indicate the possibility of low-cost production of large quantities of colloidal silver nanoparticles using materials derived from renewable sources. The resulting silver colloids can be used for different purposes, e.g. as bactericidal agents. Combination of the aforementioned properties of nanosilver particles with plasticizing properties of dextrin enables to obtain cement mortars with increased workability and enhanced compressive strength. Moreover, the obtained material is also characterized by increased immunity to adverse impact of microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis of nanocrystalline hydroxyapatite by using precipitation method

    International Nuclear Information System (INIS)

    Mobasherpour, I.; Heshajin, M. Soulati; Kazemzadeh, A.; Zakeri, M.

    2007-01-01

    In this investigation, hydroxyapatite powder has been synthesized from the calcium nitrate hydrated and di-ammonium hydrogen phosphate solution by precipitation method and heat treatment of hydroxyapatite powders. In order to study the structural evolution, the Fourier transform infrared spectroscopy (FTIR), the X-ray diffraction (XRD) and simultaneous thermal analysis (STA) were used. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to estimate the particle size of the powder and observe the morphology and agglomeration state of the powder. Results show that hydroxyapatite nanocrystalline can successfully be produced by precipitation technique from raw materials. Hydroxyapatite grain gradually increased in size when temperature increased from 100 to 1200 o C, and the hydroxyapatite hexagonal-dipyramidal phase was not transformed to the other calcium phosphates phases up to 1200 o C

  7. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    Science.gov (United States)

    Campillo Gloria, E.; Ederley, Vélez; Gladis, Morales; César, Hincapié; Jaime, Osorio; Oscar, Arnache; Uribe José, Ignacio; Franklin, Jaramillo

    2017-06-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ~ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated.

  8. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    International Nuclear Information System (INIS)

    Gloria, E. Campillo; Ederley, Vélez; César, Hincapié; Gladis, Morales; Jaime, Osorio; Oscar, Arnache; José, Ignacio Uribe; Franklin, Jaramillo

    2017-01-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO 3 ) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) – Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV–visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λ max ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. (paper)

  9. Green synthesis of silver nanoparticle using Bambusa arundinacea leaves

    Science.gov (United States)

    Kataria, Bharat; Shyam, Vasvani; Kaushik, Babiya; Vasoya, Jaydeep; Joseph, Joyce; Savaliya, Chirag; Kumar, Sumit; Parikh, Sachin P.; Thakar, C. M.; Pandya, D. D.; Ravalia, A. B.; Markna, J. H.; Shah, N. A.

    2017-05-01

    The synthesis of nanoparticles using ecofriendly way is an interesting area in advance nanotechnology. Silver (Ag) nanoparticles are usually synthesized by chemicals route, which are quite flammable and toxic in nature. This study deals with a biosynthesis process (environment friendly) of silver nanoparticles using Bambusa arundinacea leaves for its antibacterial activity. The formation and characterization of AgNPs was confirmed by UV-Vis spectroscopy. Silver nanoparticles were successfully synthesized from AgNO3 through a simple green route using the latex of Bambusa arundinacea leaves as reducing as well as capping agent. Scanning Electron Microscopy (SEM) study indicates the formation of grains (particles) with different size and shape.

  10. Coalescence of silver unidimensional structures by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Perez A, M.; Gutierrez W, C.E.; Mondragon, G.; Arenas, J.

    2007-01-01

    The study of nanoparticles coalescence and silver nano rods phenomena by means of molecular dynamics simulation under the thermodynamic laws is reported. In this work we focus ourselves to see the conditions under which the one can be given one dimension growth of silver nano rods for the coalescence phenomenon among two nano rods or one nano rod and one particle; what allows us to study those structural, dynamic and morphological properties of the silver nano rods to different thermodynamic conditions. The simulations are carried out using the Sutton-Chen potentials of interaction of many bodies that allow to obtain appropriate results with the real physical systems. (Author)

  11. Release of silver nanoparticles from outdoor facades

    International Nuclear Information System (INIS)

    Kaegi, Ralf; Sinnet, Brian; Zuleeg, Steffen; Hagendorfer, Harald; Mueller, Elisabeth; Vonbank, Roger; Boller, Markus; Burkhardt, Michael

    2010-01-01

    In this study we investigate the release of metallic silver nanoparticles (Ag-NP) from paints used for outdoor applications. A facade panel mounted on a model house was exposed to ambient weather conditions over a period of one year. The runoff volume of individual rain events was determined and the silver and titanium concentrations of 36 out of 65 runoff events were measured. Selected samples were prepared for electron microscopic analysis. A strong leaching of the Ag-NP was observed during the initial runoff events with a maximum concentration of 145 μ Ag/l. After a period of one year, more than 30% of the Ag-NP were released to the environment. Particles were mostly 2 S. - We provide direct evidence for the release of silver nanoparticles from exterior paints to the aquatic environment.

  12. Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers

    Science.gov (United States)

    Xu, Ping; Jeon, Sea-Ho; Mack, Nathan H.; Doorn, Stephen K.; Williams, Darrick J.; Han, Xijiang; Wang, Hsing-Lin

    2010-08-01

    A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes.A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range

  13. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  14. Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Ahn, Kangho; Kim, Sun Man; Jeon, Ki Soo; Lee, Jong Seong; Yu, Il Je

    2012-01-01

    With the increased production and widespread use of nanomaterials, human and environmental exposure to nanomaterials is inevitably increasing. Therefore, this study monitored the possible nanoparticle exposure at a workplace that manufactures silver nanoparticles. To estimate the potential exposure of workers, personal sampling, area monitoring, and real-time monitoring were conducted over 3 days using a scanning mobility particle sizer and dust monitor at a workplace where the workers handle nanomaterials. The area sampling concentrations obtained from the injection room showed the highest concentration, ranging from 0.00501 to 0.28873 mg/m 3 . However, apart from the injection room, none of the area samplings obtained from other locations showed a concentration higher than 0.0013 mg/m 3 . Meanwhile, the personal sampling concentrations ranged from 0.00004 to 0.00243 mg/m 3 over the 3 days of sampling, which was much lower than the silver TLV. The particle number concentrations at the silver nanoparticle manufacturing workplace were 911,170 (1st day), 1,631,230 (2nd day), and 1,265,024 (3rd day) particles/cm 3 with a size range of 15–710.5 nm during the operation of the reactor, while the concentration decreased to 877,364.9 (1st day), 492,732 (2nd day), and 344,343 (3rd day) particles/cm 3 when the reactor was stopped.

  15. In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract

    Energy Technology Data Exchange (ETDEWEB)

    Dauthal, Preeti; Mukhopadhyay, Mausumi, E-mail: mausumi_mukhopadhyay@yahoo.com [S.V. National Institute of Technology, Department of Chemical Engineering (India)

    2013-01-15

    In-vitro free radical scavenging activity of biosynthesized gold (Au-NPs) and silver (Ag-NPs) nanoparticles was investigated in the present study. Natural precursor Prunus armeniaca (apricot) fruit extract was used as a reducing agent for the nanoparticle synthesis. The free radical scavenging activity of the nanoparticles were observed by modified 1,1 Prime -diphynyl-2-picrylhydrazyl, DPPH and 2,2 Prime -azinobis (3-ethylbenzothiazoline-6-sulfonic acid), ABTS assay. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectroscopy, and fourier transform infrared spectroscopy (FTIR). Appearance of optical absorption peak at 537 nm (2.20 keV) and 435 nm (3 keV) within 0.08 and 0.5 h of reaction time was confirmed the presence of metallic Au and Ag nanoclusters, respectively. Nearly spherical nanoparticles with majority of particle below 20 nm (TEM) for both Au-NPs and Ag-NPs were synthesized. XRD pattern confirmed the existence of pure nanocrystalline Au-NPs while few additional peaks in the vicinity of fcc silver-speculated crystallization of metalloproteins of fruit extract on the surface of the Ag-NPs and vice versa. FTIR spectra was supported the role of amino acids of protein/enzymes of fruit extract for synthesis and stabilization of nanoparticles. Dose-dependent scavenging activity was observed for Au-NPs and Ag-NPs in both DPPH and ABTS in-vitro assay. 50 % scavenging activity for DPPH were 11.27 and 16.18 mg and for ABTS 3.40 and 7.12 mg with Au-NPs and Ag-NPs, respectively.

  16. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  17. AC magnetic properties of the soft magnetic composites based on Supermalloy nanocrystalline powder prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamtu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France); Geoffroy, O. [Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France); Grenoble Electrical Engineering, University J. Fourier, BP 46, F-38402 Saint-Martin d' Heres Cedex (France); Chicinas, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Nanocrystalline soft magnetic composites were obtained. Black-Right-Pointing-Pointer The cutting frequency of the produced nanocrystalline SMC exceeds 100 kHz. Black-Right-Pointing-Pointer A long annealing at low temperature leads to an improvement of the permeability (12%). - Abstract: The preparation and characterization of the nanocrystalline soft magnetic composite core based on Supermalloy powder obtained via mechanical alloying route are presented. The AC magnetic properties of the compacts were determined in frequency range from 100 Hz to 100 kHz for flux densities of 0.05 and 0.1 T. Composite materials were obtained by covering the Supermalloy particles with a polymer binder, then compacted into toroidal shape and finally polymerized. It is found that an increase of the compacting pressure from 600 MPa to 800 MPa leads to an increase of the compacts permeability by more than 8%. Also, reducing the polymer content from 2 wt.% to 0.5 wt.% leads to an increase of the magnetic losses (at 100 kHz and 0.1 T) by 380%. The removal of the stresses induced during compaction has been accomplished by a heat treatment at 170 Degree-Sign C for 120 h. This leads to a significant increase (12%) of the relative initial permeability of the compacts.

  18. Solvent-Free Synthesis of Silver-Nanoparticles and their Use as Additive in Poly (Dicyclopentadiene)

    International Nuclear Information System (INIS)

    Abbas, M.; Kienberger, J.

    2013-01-01

    A solvent-free environmentally benign synthesis of oleylamine capped silver nanoparticles is presented. Upon heating 10 equivalents of oleylamine and silver nitrate at 165 degree C for 30 min followed by a precipitation step using ethanol as the precipitant particles characterized by an Z-average diameter of 63 nm were obtained. Dried particles can be easily redispersed in unpolar solvents or monomers, which pave the way for using them as an antimicrobial additive in polymeric materials. In particular, newly prepared Ag-particles were dispersed in dicyclopentadiene and the mixture was cured using ring opening metathesis polymerization yielding an antimicrobially equipped duroplastic material. (author)

  19. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Samar J. [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)]. E-mail: samar@mail.ucf.edu; Bhatt, Himesh A. [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)

    2007-05-16

    During recent years, there have been efforts in developing nanocrystalline bioceramics, to enhance their mechanical and biological properties for use in tissue engineering applications. In this research, we made an attempt to synthesize nanocrystalline bioactive hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp) ceramic powder in the lower-end of nano-range (2-10 nm), using a simple low-temperature sol-gel technique and studied its densification behavior. We further studied the effects of metal ion dopants during synthesis on powder morphology, and the properties of the sintered structures. Calcium nitrate and triethyl phosphite were used as precursors for calcium and phosphorous, respectively, for sol-gel synthesis. Calculated quantities of magnesium oxide and zinc oxide were incorporated as dopants into amorphous dried powder, prior to calcination at 250-550 {sup o}C. The synthesized powders were analyzed for their phases using X-ray diffraction technique and characterized for powder morphology and particle size using transmission electron microscopy (TEM). TEM analysis showed that the average particle size of the synthesized powders were in the range of 2-10 nm. The synthesized nano-powders were uniaxially compacted and then sintered at 1250 {sup o}C and 1300 {sup o}C for 6 h, separately, in air. A maximum average sintered density of 3.29 g/cm{sup 3} was achieved in structures sintered at 1300 {sup o}C, developed from nano-powder doped with magnesium. Vickers hardness testing was performed to determine the hardness of the sintered structures. Uniaxial compression tests were performed to evaluate the mechanical properties. Bioactivity and biodegradation behavior of the sintered structures were assessed in simulated body fluid (SBF) and maintained in a dynamic state.

  20. Colloidal silver-based nanogel as nonocclusive dressing for multiple superficial pellet wounds.

    Science.gov (United States)

    Dharmshaktu, Ganesh Singh; Singhal, Aanshu; Pangtey, Tanuja

    2016-01-01

    A good dressing is mandatory to an uncomplicated wound healing, especially when foreign particles contaminate the wound. Various forms of dressing preparations are available for use and differ in chemical composition and efficacy. Silver has been a known agent with good antimicrobial and healing properties and recent times has seen an upsurge in various silver-based dressing supplements. We describe our report of use and efficacy of a silver nanoparticle- based gel dressing in the healing of multiple superficial firearm pellet wounds.

  1. Microbial Biosynthesis of Silver Nanoparticles in Different Culture Media.

    Science.gov (United States)

    Luo, Ke; Jung, Samuel; Park, Kyu-Hwan; Kim, Young-Rok

    2018-01-31

    Microbial biosynthesis of metal nanoparticles has been extensively studied for the applications in biomedical sciences and engineering. However, the mechanism for their synthesis through microorganism is not completely understood. In this study, several culture media were investigated for their roles in the microbial biosynthesis of silver nanoparticles (AgNPs). The size and morphology of the synthesized AgNPs were analyzed by UV-vis spectroscopy, Fourier-transform-infrared (FT-IR), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The results demonstrated that nutrient broth (NB) and Mueller-Hinton broth (MHB) among tested media effectively reduced silver ions to form AgNPs with different particle size and shape. Although the involved microorganism enhanced the reduction of silver ions, the size and shape of the particles were shown to mainly depend on the culture media. Our findings suggest that the growth media of bacterial culture play an important role in the synthesis of metallic nanoparticles with regard to their size and shape. We believe our findings would provide useful information for further exploration of microbial biosynthesis of AgNPs and their biomedical applications.

  2. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antimicrobial efficacy of well-known commercial antibiotics.

  3. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhenfei, E-mail: zhfluo8@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Zhou, Xun, E-mail: zx_zky@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yan, Dawei [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Wang, Du; Li, Zeyu [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yang, Cunbang [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-01-01

    Nanocrystalline vanadium dioxide (VO{sub 2}) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO{sub 2} thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T{sub SMT}) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO{sub 2} grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T{sub SMT} was found to decrease as average VO{sub 2} grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO{sub 2} film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure.

  4. Zeolite Encapsulated Nanocrystalline CuO: A Redox Catalyst for the Oxidation of Secondary Alcohols

    Directory of Open Access Journals (Sweden)

    Sakthivel Vijaikumar

    2008-01-01

    Full Text Available Zeolite encapsulated nanocrystalline CuO is synthesized and characterized by powder XRD and HRTEM analyses which clearly show that the particles are less than 15 nm and the nanoparticles are highly dispersed. This nano CuO encapsulated CuY zeolite is used as catalyst in the oxidation of aromatic secondary alcohols. CuY zeolite acts as an efficient support for nano CuO, by stabilizing it and preventing its aggregation. Plausible mechanisms for the formation of the various products are also given.

  5. Plasmonic resonance of colloidal silver in nanoporous matrix

    International Nuclear Information System (INIS)

    Andreeva, O V; Saitov, S V; Andreeva, N V; Sidorov, A I

    2014-01-01

    The object of the study in this paper – silver nanoporous silicate matrix with pore size less than 20 nm. Colloidal silver particles with volume concentration about 10 −4 are formed within free volume of pores of silicate matrix by chemical method. Changes in the attenuation spectra of the investigated object during changing of the refractive index of free volume of pores from 1.0 to 1.5 are reviewed. Comparison of the obtained experimental data with the results of calculations was carried out

  6. New route to the fabrication of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Varshney, Deepak; Morell, Gerardo; Palomino, Javier; Resto, Oscar; Gil, Jennifer; Weiner, Brad R.

    2014-01-01

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production

  7. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George, E-mail: gchumak@clemson.edu

    2015-12-01

    Graphical abstract: - Highlights: • Spin-coating of polymers onto 2D assemblies of Ag NPs was used to stabilize the assemblies against aggregation. • The polymer filled the space between the particles leaving the metal surface uncoated and accessible to various chemical reactions. • Etching nanoparticles produced crater-like structures. - Abstract: Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  8. Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity

    Science.gov (United States)

    Huang, Jing; Ding, Lei; Xi, Yaoning; Shi, Liang; Su, Ge; Gao, Rongjie; Wang, Wei; Dong, Bohua; Cao, Lixin

    2018-06-01

    In this paper, Ag(CH3NH2)2+, Ag(NH3)2+ and Ag+ with different radii have been used as silver sources to find out the distribution of Ag ions on the H-TNT surface, which is critical to the final performance. The influence of this distribution on visible photocatalytic activity is further studied. The results indicate that, when Ag+ used as silver source with low concentration, these small sized silver ions mainly distribute on interlayer spacing of H-TNT. After heat-treatment and photo-reduction, the generated silver nanoparticles uniformly embed in the anatase TiO2 nanotube walls, and bring large interfacial area between Ag particles and TiO2 nanotubes. The separation effect of photogenerated electron-hole pair in TiO2 is enhanced by Ag particles, and achieves the best at 0.15 g/L, much higher than P25, TiO2/0, Ag-N@TiO2 and Ag-C-N@TiO2. This paper provides new ideas for the modification of TiO2 nanotubes.

  9. Characterization of n-TiO2 thin films modified with silver nanoparticles

    International Nuclear Information System (INIS)

    Cueto, L.F.; Sanchez-Cervantes, E.M.

    2010-01-01

    Carbon dioxide accumulation in the atmosphere has gained much attention and has reopened many research lines that initiated two or three decades ago. Electrochemical reduction represents one of the most discussed methods, especially where semiconductor and metal-semiconductor cathodes are used to achieve CO 2 transformation into higher-energy products. In the present work, the influence of silver nanoparticles upon CO 2 reduction on n-TiO 2 cathodes in aqueous media is presented. Silver nanoparticles with an average diameter of 250nm were deposited on n-TiO 2 surfaces by the electrochemical Double-Pulse Potential method. A Grazing-Incidence X-Ray Diffraction structural analysis is presented showing the presence of metallic silver, while Atomic Force Microscopy shows surface roughness and particle size before and after surface modification. These measurements were confirmed by Scanning-Electron Microscopy acquainting for the formation of metal particles on the n-TiO 2 surface. Enhancement of CO 2 reduction by the presence of silver on cathodes is shown by cyclic voltammetry. (author)

  10. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid

    International Nuclear Information System (INIS)

    Rogers, Kim R.; Bradham, Karen; Tolaymat, Thabet; Thomas, David J.; Hartmann, Thomas; Ma, Longzhou; Williams, Alan

    2012-01-01

    The bioavailability of ingested silver nanoparticles (AgNPs) depends in large part on initial particle size, shape and surface coating, properties which will influence aggregation, solubility and chemical composition during transit of the gastrointestinal tract. Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (SSF) (pH 1.5) and changes in size, shape, zeta potential, hydrodynamic diameter and chemical composition were determined during a 1 h exposure period using Surface Plasmon Resonance (SPR), High Resolution Transmission Electron Microscopy/Energy Dispersive X-ray Spectroscopy (TEM/EDS), Dynamic Light Scattering (DLS) and X-ray Powder Diffraction (XRD) combined with Rietveld analysis. Exposure of AgNPs to SSF produced a rapid decrease in the SPR peak at 414 nm and the appearance of a broad absorbance peak in the near infrared (NIR) spectral region. During exposure to SSF, changes in zeta potential, aggregation and morphology of the particles were also observed as well as production of silver chloride which appeared physically associated with particle aggregates. - Highlights: ► Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (pH 1.5). ► Particle changes in chemical composition, zeta potential, aggregation and morphology were observed. ► Silver chloride appeared to be physically associated with the particle aggregates.

  11. Highly water-dispersible silver sulfadiazine decorated with polyvinyl pyrrolidone and its antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ping; Wu, Longlong [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Li, Binjie, E-mail: lbj821@163.com [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Medical School of Henan University, Kaifeng 475004 (China); Zhao, Yanbao [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Qu, Peng [Department of Chemistry, Shangqiu Normal University, Shangqiu 476000 (China)

    2016-03-01

    Highly water-dispersible silver sulfadiazine (SSD) was prepared by liquid phase method with polyvinyl pyrrolidone (PVP) as a surface modification agent. The structure and morphology of the PVP-modified silver sulfadiazine (P-SSD) were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier-transform infrared (FT-IR) spectrometry. The produced particles are ginkgo leaf-like architecture with the sizes of micron-nanometer. Due to hydrophilic PVP decorated on the surface, the P-SSD has excellent dispersion in water over a period of 24 h, which is obviously stable by comparison to that of the commercial silver sulfadiazine (C-SSD). In addition, the P-SSD exhibits good antibacterial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). - Highlights: • Polyvinyl pyrrolidone decorated silver sulfadiazine was synthesized via a one-pot protocol. • The produced particles present ginkgo leaf-like architectures with sizes of micro-nanometer. • The resulted silver sulfadiazine has highly dispersible in water over a period of 24 h. • The obtained sliver sulfadiazine exhibits excellent antibacterial activities against E. coli, P. aeruginosa and S. aureus.

  12. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    International Nuclear Information System (INIS)

    Cooper, Ian Richard; Pollini, Mauro; Paladini, Federica

    2016-01-01

    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies, which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobial materials for prevention of catheter-associated urinary tract infection. - Highlights: • Silver nanocoatings were deposited on urinary catheters. • Both luminal and outer surface were successfully treated. • The treated devices demonstrated were effective against different microorganisms. • The antibacterial potential of the devices was assessed.

  13. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Ian Richard [School of Pharmacy & Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Pollini, Mauro, E-mail: mauro.pollini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy); Silvertech Ltd, Via Monteroni, 73100 Lecce (Italy); Paladini, Federica [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy)

    2016-12-01

    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies, which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobial materials for prevention of catheter-associated urinary tract infection. - Highlights: • Silver nanocoatings were deposited on urinary catheters. • Both luminal and outer surface were successfully treated. • The treated devices demonstrated were effective against different microorganisms. • The antibacterial potential of the devices was assessed.

  14. Effect of particle size and lattice strain on Debye–Waller factors of ...

    Indian Academy of Sciences (India)

    Administrator

    refrigeration system and other biological applications and catalysis ... technique for fabrication of nanocrystalline structure with improved ... used to prepare the initial sample. ... but with preferred orientation of graphite particles along. [0 0 2].

  15. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    International Nuclear Information System (INIS)

    Heinonen, S; Nikkanen, J-P; Laakso, J; Levänen, E; Raulio, M; Priha, O

    2013-01-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating

  16. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    Science.gov (United States)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  17. Formation of carboxymethyl cellulose hydrogel containing silver nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Seok; Kuang, Jia; Gwon, Hui Jeong; Lim, Youn Mook; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-12-15

    Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using AgNO{sub 3} aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into 1.0 x 10{sup -2} M AgNO{sub 3} solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

  18. Colloidal silver: a novel treatment for Staphylococcus aureus biofilms?

    Science.gov (United States)

    Goggin, Rachel; Jardeleza, Camille; Wormald, Peter-John; Vreugde, Sarah

    2014-03-01

    Colloidal silver is an alternative medicine consisting of silver particles suspended in water. After using this solution as a nasal spray, the symptoms of a previously recalcitrant Staphylococcus aureus (S. aureus)-infected chronic rhinosinusitis patient were observed to have improved markedly. The aim of this study was to determine whether colloidal silver has any direct bactericidal effects on these biofilms in vitro. S. aureus biofilms were grown from the ATCC 25923 reference strain on Minimum Biofilm Eradication Concentration (MBEC) device pegs, and treated with colloidal silver. Concentrations tested ranged from 10 to 150 μL colloidal silver diluted to 200 μL with sterile water in 50 μL cerebrospinal fluid (CSF) broth. Control pegs were exposed to equivalent volumes of CSF broth and sterile water. The sample size was 4 biomass values per treatment or control group. Confocal scanning laser microscopy and COMSTAT software were used to quantify biofilms 24 hours after treatment. Significant differences from control were found for all concentrations tested bar the lowest of 10 μL colloidal silver in 200 μL. At 20 μL colloidal silver, the reduction in biomass was 98.9% (mean difference between control and treatment = -4.0317 μm(3) /μm(2) , p colloidal silver (mean differences = -4.0681 and -4.0675μm(3) /μm(2) , respectively, p Colloidal silver directly attenuates in vitro S. aureus biofilms. © 2014 ARS-AAOA, LLC.

  19. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    International Nuclear Information System (INIS)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  20. Complex conductivity response to silver nanoparticles in partially saturated sand columns

    Science.gov (United States)

    Abdel Aal, Gamal; Atekwana, Estella A.; Werkema, D. Dale

    2017-02-01

    The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0-30%), nanoparticle concentrations (0-10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90-210 and 1500-2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex conductivity parameters based on the strong power law relationships.

  1. Synthesis of silver nanoparticles using DL-alanine for ESR dosimetry applications

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Nicolucci, Patricia; Baffa, Oswaldo

    2012-01-01

    The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with DL-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. - Highlights: ► The synthesis is environmentally benign, easy to perform, and of low-cost. ► DL-Alanine was employed both as reducing and capping agent. ► Mean size of 7.5 nm, narrow size distribution, and spherical shape of particles. ► Increased sensitivity and reduced energetic dependence compared with pure alanine. ► The nanocomposite has potential application for ESR dosimetry.

  2. Colloidal silver-based nanogel as nonocclusive dressing for multiple superficial pellet wounds

    Directory of Open Access Journals (Sweden)

    Ganesh Singh Dharmshaktu

    2016-01-01

    Full Text Available A good dressing is mandatory to an uncomplicated wound healing, especially when foreign particles contaminate the wound. Various forms of dressing preparations are available for use and differ in chemical composition and efficacy. Silver has been a known agent with good antimicrobial and healing properties and recent times has seen an upsurge in various silver-based dressing supplements. We describe our report of use and efficacy of a silver nanoparticle- based gel dressing in the healing of multiple superficial firearm pellet wounds.

  3. Synthesis of pure colloidal silver nanoparticles with high electroconductivity for printed electronic circuits: the effect of amines on their formation in aqueous media.

    Science.gov (United States)

    Natsuki, Jun; Abe, Takao

    2011-07-01

    This paper describes a practical and convenient method to prepare stable colloidal silver nanoparticles for use in printed electronic circuits. The method uses a dispersant and two kinds of reducing agents including 2-(dimethylamino) ethanol (DMAE), which play important roles in the reduction of silver ions in an aqueous medium. The effect of DMAE and dispersant, as well as the factors affecting particle size and morphology are investigated. In the formation of the silver nanoparticles, reduction occurs rapidly at room temperature and the silver particles can be separated easily from the mixture in a short time. In addition, organic solvents are not used. Pure, small and relatively uniform particles with a diameter less than 10 nm can be obtained that exhibit high electroconductivity. The silver nanoparticles are stable, and can be isolated as a dried powder that can be fully redispersed in deionized water. This method of producing colloidal silver nanoparticles will find practical use in electronics applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Silver Eco-Solvent Ink for Reactive Printing of Polychromatic SERS and SPR Substrates.

    Science.gov (United States)

    Dustov, Mavlavi; Golovina, Diana I; Polyakov, Alexander Yu; Goldt, Anastasia E; Eliseev, Andrei A; Kolesnikov, Efim A; Sukhorukova, Irina V; Shtansky, Dmitry V; Grünert, Wolfgang; Grigorieva, Anastasia V

    2018-02-09

    A new reactive ink based on a silver citrate complex is proposed for a photochemical route to surface-enhanced Raman spectroscopy active substrates with controllable extinction spectra. The drop-cast test of the ink reveals homogeneous nucleation of silver and colloid particle growth originating directly from photochemical in situ reduction in droplets, while the following evaporation of the deposited ink produces small nano- and micron-size particles. The prepared nanostructures and substrates were accurately characterized by electron microscopy methods and optical extinction spectroscopy. Varying the duration of UV irradiation allows tuning the morphology of individual silver nanoparticles forming hierarchical ring structures with numerous "hot spots" for most efficient Raman enhancement. Raman measurements of probe molecules of rhodamine 6G and methylene blue reached the largest signal enhancement of 10⁶ by the resonance effects.

  5. Structure and properties of silver-doped calcium phosphate ...

    Indian Academy of Sciences (India)

    Abstract. Stable and antimicrobial silver-doped calcium phosphate nanopowders were synthesized using sol–gel .... ical morphology of HAP/Ag nanoparticles with particle size ..... [40] Buckley J J, Lee A F, Olivi L and Wilson K 2010 J. Mater.

  6. Stable and Controllable Synthesis of Silver Nanowires for Transparent Conducting Film

    Science.gov (United States)

    Liu, Bitao; Yan, Hengqing; Chen, Shanyong; Guan, Youwei; Wu, Guoguo; Jin, Rong; Li, Lu

    2017-03-01

    Silver nanowires without particles are synthesized by a solvothermal method at temperature 150 °C. Silver nanowires are prepared via a reducing agent of glycerol and a capping agent of polyvinylpyrrolidone ( M w ≈ 1,300,000). Both of them can improve the purity of the as-prepared silver nanowires. With controllable shapes and sizes, silver nanowires are grown continuously up to 10-20 μm in length with 40-50 nm in diameter. To improve the yield of silver nanowires, the different concentrations of AgNO3 synthesis silver nanowires are discussed. The characterizations of the synthesized silver nanowires are analyzed by UV-visible absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscope (AFM), and silver nanowires are pumped on the cellulose membrane and heated stress on the PET. Then, the cellulose membrane is dissolved by the steam of acetone to prepare flexible transparent conducting thin film, which is detected 89.9 of transmittance and 58 Ω/□. Additionally, there is a close loop connected by the thin film, a blue LED, a pair of batteries, and a number of wires, to determinate directly the film if conductive or not.

  7. Silver chromate and silver dichromate nanostructures: Sonochemical synthesis, characterization, and photocatalytic properties

    International Nuclear Information System (INIS)

    Soofivand, Faezeh; Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2013-01-01

    Graphical abstract: In this work, Ag 2 CrO 4 and Ag 2 Cr 2 O 7 nanostructures have been sonochemically prepared using silver salicylate. The effect of preparation parameters on the morphology of the products was investigated by SEM images. Highlights: ► Herein, Ag 2 CrO 4 and Ag 2 Cr 2 O 7 nanostructures have been sonochemically prepared. ► The effect of preparation parameters on the morphology of the products was investigated. ► The photocatalytic activity of the as-prepared Ag 2 CrO 4 nanoparticles was tested. ► XPS spectra indicated the high purity of Ag 2 Cr 2 O 7 nanostructures obtained. - Abstract: In this work, Ag 2 CrO 4 and Ag 2 Cr 2 O 7 nanostructures have been produced via a sonochemical method using silver salicylate as precursor. Besides silver salicylate, Na 2 CrO 4 and (NH 4 ) 2 Cr 2 O 7 as starting reagents were applied. To investigate the effect of preparation parameters on the morphology and particle size of Ag 2 CrO 4 and Ag 2 Cr 2 O 7 , sonication time, type of surfactant and its concentration were changed. The as-produced nanostructures were characterized by techniques like powder X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The scanning electron micrographs showed that particle-like and rod-like nanostructures of Ag 2 CrO 4 and Ag 2 Cr 2 O 7 were produced using different surfactants. To investigate the catalytic properties of Ag 2 CrO 4 nanoparticles, photooxidation of methyl orange (MO) was performed. According to the obtained results, it was found that the methyl orange degradation was about 87.3% after 280 min irradiation of visible light

  8. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones.

    Science.gov (United States)

    Jing-ying, Li; Xiu-li, Xu; Wen-quan, Liu

    2012-06-01

    The present communication deals with the leaching of gold and silver from the printed circuit boards (PCBs) of waste mobile phones using an effective and less hazardous system, i.e., a thiourea leaching process as an alternative to the conventional and toxic cyanide leaching of gold. The influence of particle size, thiourea and Fe(3+) concentrations and temperature on the leaching of gold and silver from waste mobile phones was investigated. Gold extraction was found to be enhanced in a PCBs particle size of 100 mesh with the solutions containing 24 g/L thiourea and Fe(3+) concentration of 0.6% under the room temperature. In this case, about 90% of gold and 50% of silver were leached by the reaction of 2h. The obtained data will be useful for the development of processes for the recycling of gold and silver from the PCBs of waste mobile phones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. NATO Advanced Research Workshop on Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors

    CERN Document Server

    Idzikowski, Bogdan; Miglierini, Marcel

    2005-01-01

    Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the aver...

  10. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.b [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Souza, S.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Biasi, R.S. de [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2011-04-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 {sup o}C the heat transfer is controlled by crystalline component.

  11. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    International Nuclear Information System (INIS)

    Poffo, C.M.; Lima, J.C. de; Souza, S.M.; Triches, D.M.; Grandi, T.A.; Biasi, R.S. de

    2011-01-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 o C the heat transfer is controlled by crystalline component.

  12. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  13. Silver Modified Degussa P25 for the Photocatalytic Removal of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Neil Bowering

    2007-01-01

    Full Text Available A study of the photocatalytic behaviour of silver modified titanium dioxide materials for the decomposition and reduction of nitric oxide (NO gas has been carried out. The effects of silver loading, calcination temperature, and reaction conditions have been investigated. Prepared photocatalysts were characterised using XRD, TEM, and XPS. A continuous flow reactor was used to determine the photocatalytic activity and selectivity of NO decomposition in the absence of oxygen as well as NO reduction using CO as the reducing agent, over the prepared photocatalysts. XRD and TEM analysis of the photocatalysts showed that crystalline silver nitrate particles were present on the titanium dioxide surface after calcination at temperatures of up to 200∘C. The silver nitrate particles are thermally decomposed to form metallic silver clusters at higher temperatures. XPS analysis of the photocatalysts showed that for each of the temperatures used, both Ag+ and Ag0 were present and that the Ag0/Ag+ ratio increased with increasing calcination temperature. The presence of metallic silver species on the TiO2 surface dramatically increased the selectivity for N2 formation of both decomposition and reduction reactions. When CO was present in the reaction gas, selectivities of over 90% were observed for all the Ag-TiO2 photocatalysts that had been calcined at temperatures above 200∘C. Unfortunately these high selectivities were at the expense of photocatalytic activity, with lower NO conversion rates than those achieved over unmodified TiO2 photocatalysts.

  14. Inkjet printing of silver citrate conductive ink on PET substrate

    International Nuclear Information System (INIS)

    Nie Xiaolei; Wang Hong; Zou Jing

    2012-01-01

    Highlights: ► A direct synthesis method of silver conductive film on PET substrate was presented. ► A stable particle-free conductive ink was prepared. ► Formation of silver-amine complex reduced the thermal decomposition temperature. ► Conductive patterns for flexible electronics were fabricated by inkjet printing. ► Silver film on PET substrate possessed highest adhesion rating even without polymer. - Abstract: Direct synthesis of silver conductive film on PET substrate by inkjet printing silver citrate conductive ink was presented in this paper. This kind of conductive ink contained silver citrate as silver precursor, 1,2-diaminopropane as complex agent dissolving the silver salt and methanol and isopropanol as a media adjusting the viscosity and surface tension. The formation of silver-amine complex reduced the decomposition temperature from 180 °C to 135 °C, thus the ink could be cured at relatively low temperature. The film reached the lowest resistivity of 17 μΩ cm after cured at 150 °C for 50 min, 3.1 μΩ cm at 230 °C and possessed high reflection and excellent adhesive property. Electrical conductivity, surface morphology and composition were investigated by four-point probe method, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). It is demonstrated how the cured condition affects the silver film. Moreover, radio-frequency identification (RFID) antenna was fabricated by inkjet printing, which opens up routes for the flexible electronics fabrication.

  15. Silver nanotoxicity using a light-emitting biosensor Pseudomonas putida isolated from a wastewater treatment plant.

    Science.gov (United States)

    Dams, R I; Biswas, A; Olesiejuk, A; Fernandes, T; Christofi, N

    2011-11-15

    The effect of silver ions, nano- and micro-particles on a luminescent biosensor bacterium Pseudomonas putida originally isolated from activated sludge was assessed. The bacterium carrying a stable chromosomal copy of the lux operon (luxCDABE) was able to detect toxicity of ionic and particulate silver over short term incubations ranging from 30 to 240 min. The IC(50) values obtained at different time intervals showed that highest toxicity (lowest IC(50)) was obtained after 90 min incubation for all toxicants and this is considered the optimum incubation for testing. The data show that ionic silver is the most toxic followed by nanosilver particles with microsilver particles being least toxic. Release of nanomaterials is likely to have an effect on the activated sludge process as indicated by the study using a common sludge bacterium involved in biodegradation of organic wastes. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    Science.gov (United States)

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  17. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres

    International Nuclear Information System (INIS)

    Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang

    2007-01-01

    In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results

  18. Preparation of amine coated silver nanoparticles using ...

    Indian Academy of Sciences (India)

    Administrator

    concentrations without the precipitation of particles. In this work, an analysis of the temperature influ- ence on the precipitation of silver nanoparticles was carried out. Also, the nanoparticles were func- tionalized using triethylenetetramine in order to im- prove the adhesion between the epoxy resin and the filler.

  19. Effect of the size of silver nanoparticles on SERS signal enhancement

    Science.gov (United States)

    He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.

    2017-08-01

    The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.

  20. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  1. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02

    International Nuclear Information System (INIS)

    Liu Pengpeng; Guan Rongfa; Jiang Jiaxin; Liu Mingqi; Huang Guangrong; Chen Xiaoting; Ye Xingqian

    2011-01-01

    Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 μg·mL -1 . LDH leakage significantly increased in cells exposed to Ag NPs (≥ 25 μg mL -1 ) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 μg·mL -1 ). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage. Though the exact mechanism behind Ag NPs

  2. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02

    Science.gov (United States)

    Liu, Pengpeng; Guan, Rongfa; Ye, Xingqian; Jiang, Jiaxin; Liu, Mingqi; Huang, Guangrong; Chen, Xiaoting

    2011-07-01

    Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 μg·mL-1. LDH leakage significantly increased in cells exposed to Ag NPs (>= 25 μg mL-1) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 μg·mL-1). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage. Though the exact mechanism behind Ag NPs

  3. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pengpeng; Guan Rongfa; Jiang Jiaxin; Liu Mingqi; Huang Guangrong; Chen Xiaoting [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018 (China); Ye Xingqian, E-mail: rfguan@163.com [Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029 (China)

    2011-07-06

    Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 {mu}g{center_dot}mL{sup -1}. LDH leakage significantly increased in cells exposed to Ag NPs ({>=} 25 {mu}g mL{sup -1}) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 {mu}g{center_dot}mL{sup -1}). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage

  4. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Zdenek [Institute of Physics ASCR v.v.i., Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Varga, Marian [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, Hsiung [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan (China); Kromka, Alexander [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Horak, Pavel [Nuclear Physics Institute, 250 68 Rez (Czech Republic)

    2015-11-15

    The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure. - Highlights: • Nitrogen implanted nanocrystalline diamond films exhibit ferromagnetism at room temperature. • Nitrogen implants made a Raman deviation from the typical nanocrystalline diamond films. • The ferromagnetism induced from the structure distortion is dominant at low temperature.

  5. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  6. Arsenic Removal using Silver-Impregnated Prosopis spicigera L ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-02

    Dec 2, 2017 ... PSLW carbon indicating the segregation of carbon particle after silver .... industrial process for waste water treatment. The observed data fit to the ... maximum solid phase concentration of solute (mg/g);. M is the mass of the ...

  7. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    Science.gov (United States)

    Marvel, Christopher Jonathan

    diffusivity calculations conceptually suggested that increasing W alloying concentrations can decrease the grain growth rate. The strongest evidence of grain growth stagnation was via nanoscale oxide particle drag in highly contaminated electrodeposited alloys. Interestingly, W-segregation was also detected to the oxide phase boundaries and revealed a potential indirect mechanism of thermal stability. The phase stability of pure and contaminated Ni-W alloys was investigated with density functional theory. Primarily, the calculations suggested that the intermetallic phases NiW and NiW2 are thermodynamically unstable, meaning the binary phase diagram is incorrect, but the ternary carbides Ni 6W6C and Ni2W4C are stable. Several Ni-W binary and Ni-W-C ternary phase diagrams were constructed using a simplified CALPHAD approach to improve the understanding of Ni-W phase stability. Lastly, it was determined that the fabrication process greatly influences the impurity types and concentrations of the alloys, and therefore greatly dictate which thermal stability mechanisms are active. Mechanically alloyed samples were found to be the most resistant to grain growth. The findings of this research will hopefully guide future efforts to design more thermally stable nanocrystalline alloys. The link between phase stability and grain growth behavior of Ni-W was thoroughly discussed, as well as the dependence of bulk fabrication processing on the contamination found in the alloys. Ultimately, this research has greatly expanded the general understanding of nanocrystalline Ni-W microstructures, and it is likely that similar phenomena occur in other nanocrystalline systems.

  8. Syntheses of nanocrystalline BaTiO3 and their optical properties

    Science.gov (United States)

    Yu, J.; Chu, J.; Zhang, M.

    Stoichiometric and titanium-excess nanocrystalline barium titanates were synthesized using a hydrothermal process at various hydrothermal temperatures and with further heat treatment at 500 °C and 900 °C. Owing to the different process conditions, the excess titanium exists in different states and configurations within the nanocrystalline BaTiO3 matrix; this was demonstrated by X-ray diffraction, Raman scattering, and photoluminescence. In these nanocrystalline BaTiO3, the 590, 571, 543 and 694 nm light emission bands were observed; mechanisms leading to such emissions were also discussed.

  9. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    Science.gov (United States)

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  10. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2013-02-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  11. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition

    International Nuclear Information System (INIS)

    Boies, Adam M; Girshick, Steven L; Roberts, Jeffrey T; Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-01-01

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO 2 ) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO 2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO 2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 0 C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10 7 particles cm -3 .

  12. Electrochemistry of Inorganic Nanocrystalline Electrode Materials for Lithium Batteries

    Directory of Open Access Journals (Sweden)

    C. W. Kwon

    2003-01-01

    much different from that of traditional crystalline ones because of their significant ‘surface effects’. In connection with that, the nanocrystalline cathode materials are reported to have an enhanced electrochemical activity when the first significative electrochemical step is insertion of Li ions (discharge process. The “electrochemical grafting” concept will be given as a plausible explanation. As illustrative examples, electrochemical behaviors of nanocrystalline manganese oxydes are presented.

  13. Fabrication of Antibacterial Wound Dressings from Silk Fibroin and Silver Nano particles

    International Nuclear Information System (INIS)

    Uttayarat, P.; Jetawattana, S.; Suwanmala, P.; Eamsiri, J.; Pongpat, S.

    2011-06-01

    Full text: Patients with burn wounds that cover large body surface area are susceptible to infection which can lead to fatality. Wound dressings or skin grafts are needed to cover the wound during the regeneration of new skin tissue. The aim of this research is to fabricate antibacterial wound dressings from silk fibroin derived from the natural silk cocoon and silver nanoparticles (AgNPs) prepared by gamma irradiation. Fibroin mats composed of nonwoven fibers with diameter of 670± 11.5 nm were fabricated by electro spinning. Using gamma irradiation, the starting silver nitrate solution was reduced to colloidal AgNPs. The fibroin mats were coated with AgNPs at various AgNP concentration and then evaluated for their antibacterial property by disc diffusion test. The concentration of colloidal AgNP solution ≤ 1 mM was found to be as sufficient in inhibiting the growth of Pseudomonas aeruginosa and Staphylococcus aureus as commercial wound dressings embedded with silver ions. These results demonstrate that electro spun fibroin mats coated with AgNPs exhibite antibacterial property and can be further developed for the treatment of burn wounds

  14. Demonstration of vessels in CNS and other organs by AMG silver enhancement of colloidal gold particles dispersed in gelatine.

    Science.gov (United States)

    Danscher, G; Andreasen, A

    1997-12-01

    We present a new autometallographic technique for demonstrating vessels and other small cavities at light microscopy (LM) and electron microscopy (EM) levels. It is possible to obtain detailed knowledge of the 3-D appearance of the vascular system by exchanging blood with a 40 degrees C, 8% gelatine solution containing colloidal gold particles (gold gelatine solution, GGS) and ensuing silver enhancement of the gold particles by autometallography (AMG). The GGS-AMG technique demonstrates the vascular system as a dark web that can be studied in cryostat, vibratome, methacrylate, paraffin and Epon sections at all magnifications. The infused GGS becomes increasingly viscous and finally becomes rigid when the temperature falls below 20 degrees C. An additional advantage of this technique is the fact that none of the tested counterstains or immunotechniques interfere with this AMG approach. The GGS-AMG technique is demonstrated on rat brains but can be applied to any organ. We believe that the present technique is valuable for both experimental studies and routine pathology.

  15. Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol-gel route

    International Nuclear Information System (INIS)

    Nallamuthu, N.; Prakash, I.; Satyanarayana, N.; Venkateswarlu, M.

    2011-01-01

    Research highlights: → Nanocrystalline La 10 Si 6 O 27 material was synthesized by sol-gel method. → TG/DTA curves predicted the thermal behavior of the material. → FTIR spectra confirmed the formation of SiO 4 and La-O network in the La 10 Si 6 O 27 . → XRD patterns confirmed the formation of pure crystalline La 10 Si 6 O 27 phase. → The grain interior and the grain boundary conductivities are evaluated. - Abstract: Nanocrystalline apatite type structured lanthanum silicate (La 10 Si 6 O 27 ) sample was synthesized by sol-gel process. Thermal behavior of the dried gel of lanthanum silicate sample was studied using TG/DTA. The structural coordination of the dried gel of lanthanum silicate, calcined at various temperatures, was identified from the observed FTIR spectral results. The observed XRD patterns of the calcined dried gel were compared with the ICDD data and confirmed the formation of crystalline lanthanum silicate phase. The average crystalline size of La 10 Si 6 O 27 was calculated using the Scherrer formula and it is found to be ∼80 nm. The observed SEM images of the lanthanum silicate indicate the formation of the spherical particles and the existence of O, Si and La in the lanthanum silicate are confirmed from the SEM-EDX spectrum. The grain and grain boundary conductivities are evaluated by analyzing the measured impedance data, using winfit software, obtained at different temperatures, of La 10 Si 6 O 27 sample. Also, the observed grain and grain boundary conductivity behaviors of the La 10 Si 6 O 27 sample are analysed using brick layer model. The electrical permittivity and electrical modulus were calculated from the measured impedance data and were analyzed by fitting through the Havriliak and Negami function to describe the dielectric relaxation behavior of the nanocrystalline lanthanum silicate.

  16. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO-PPO-PEO

    International Nuclear Information System (INIS)

    Bois, L.; Chassagneux, F.; Parola, S.; Bessueille, F.; Battie, Y.; Destouches, N.; Boukenter, A.; Moncoffre, N.; Toulhoat, N.

    2009-01-01

    Elaboration of mesostructured silica films with a triblock copolymer polyethylene oxide-polypropylene oxide-polyethylene oxide, (PEO-PPO-PEO) and controlled growth of silver nanoparticles in the mesostructure are described. The films are characterized using UV-visible optical absorption spectroscopy, TEM, AFM, SEM, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Organized arrays of spherical silver nanoparticles with diameter between 5 and 8 nm have been obtained by NaBH 4 reduction. The size and the repartition of silver nanoparticles are controlled by the film mesostructure. The localization of silver nanoparticles exclusively in the upper-side part of the silica-block copolymer film is evidenced by RBS experiment. On the other hand, by using a thermal method, 40 nm long silver sticks can be obtained, by diffusion and coalescence of spherical particles in the silica-block copolymer layer. In this case, migration of silver particles toward the glass substrate-film interface is shown by the RBS experiment. - Graphical abstract: Growth of silver nanoparticles in a mesostructured block copolymer F127-silica film is performed either by a chemical route involving NaBH 4 reduction or by a thermal method. An array of spherical silver nanoparticles with 10 nm diameter on the upper-side of the mesostructured film or silver sticks long of 40 nm with a preferential orientation are obtained according to the method used. a: TEM image of the Fag5SiNB sample illustrating the silver nanoparticles array obtained by the chemical process; b: HR-TEM image of the Fag20Sid2 sample illustrating the silver nanosticks obtained by the thermal process.

  17. Plane shock loading on mono- and nano-crystalline silicon carbide

    Science.gov (United States)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-03-01

    The understanding of the nanoscale mechanisms of shock damage and failure in SiC is essential for its application in effective and damage tolerant coatings. We use molecular-dynamics simulations to investigate the shock properties of 3C-SiC along low-index crystallographic directions and in nanocrystalline samples with 5 nm and 10 nm grain sizes. The predicted Hugoniot in the particle velocity range of 0.1 km/s-6.0 km/s agrees well with experimental data. The shock response transitions from elastic to plastic, predominantly deformation twinning, to structural transformation to the rock-salt phase. The predicted strengths from 12.3 to 30.9 GPa, at the Hugoniot elastic limit, are in excellent agreement with experimental data.

  18. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Kim R., E-mail: rogers.kim@epa.gov [U.S. Environmental Protection Agency, Las Vegas, NV (United States); Bradham, Karen [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Tolaymat, Thabet [U.S. Environmental Protection Agency, Cincinnati, OH (United States); Thomas, David J. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Hartmann, Thomas; Ma, Longzhou [University of Nevada, Harry Reid Center for Environmental Studies, Las Vegas, NV (United States); Williams, Alan [U.S. Environmental Protection Agency, Las Vegas, NV (United States)

    2012-03-15

    The bioavailability of ingested silver nanoparticles (AgNPs) depends in large part on initial particle size, shape and surface coating, properties which will influence aggregation, solubility and chemical composition during transit of the gastrointestinal tract. Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (SSF) (pH 1.5) and changes in size, shape, zeta potential, hydrodynamic diameter and chemical composition were determined during a 1 h exposure period using Surface Plasmon Resonance (SPR), High Resolution Transmission Electron Microscopy/Energy Dispersive X-ray Spectroscopy (TEM/EDS), Dynamic Light Scattering (DLS) and X-ray Powder Diffraction (XRD) combined with Rietveld analysis. Exposure of AgNPs to SSF produced a rapid decrease in the SPR peak at 414 nm and the appearance of a broad absorbance peak in the near infrared (NIR) spectral region. During exposure to SSF, changes in zeta potential, aggregation and morphology of the particles were also observed as well as production of silver chloride which appeared physically associated with particle aggregates. - Highlights: Black-Right-Pointing-Pointer Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (pH 1.5). Black-Right-Pointing-Pointer Particle changes in chemical composition, zeta potential, aggregation and morphology were observed. Black-Right-Pointing-Pointer Silver chloride appeared to be physically associated with the particle aggregates.

  19. Green Synthesis of Silver Nanoparticles Using Pinus eldarica Bark Extract

    Directory of Open Access Journals (Sweden)

    Siavash Iravani

    2013-01-01

    Full Text Available Recently, development of reliable experimental protocols for synthesis of metal nanoparticles with desired morphologies and sizes has become a major focus of researchers. Green synthesis of metal nanoparticles using organisms has emerged as a nontoxic and ecofriendly method for synthesis of metal nanoparticles. The objectives of this study were production of silver nanoparticles using Pinus eldarica bark extract and optimization of the biosynthesis process. The effects of quantity of extract, substrate concentration, temperature, and pH on the formation of silver nanoparticles are studied. TEM images showed that biosynthesized silver nanoparticles (approximately in the range of 10–40 nm were predominantly spherical in shape. The preparation of nano-structured silver particles using P. eldarica bark extract provides an environmentally friendly option, as compared to currently available chemical and/or physical methods.

  20. Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application

    Science.gov (United States)

    Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro

    2018-04-01

    Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.

  1. Formation of novel assembled silver nanostructures from polyglycol solution

    International Nuclear Information System (INIS)

    Zhang Jie; Liu Ke; Dai Zhihui; Feng Yuying; Bao Jianchun; Mo Xiangyin

    2006-01-01

    This paper described a simple and mild chemical reduction approach to prepare novel silver nanostructures with different morphologies. Dendritic silver nanostructure was obtained by a fast reduction reaction using hydrazine as a reducing agent in aqueous solution of polyglycol, while both the zigzag and linear Ag nanostructures were slowly assembled using polyglycol as a reducing agent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained silver nanostructures. Fourier transform infrared absorption (FT-IR) spectra were recorded to show that there exists a certain coordination of the oxygen atoms in the polyglycol with Ag + ions in aqueous solution of the AgNO 3 /polyglycol. Furthermore, the examination of the morphologies of the products obtained at different stages of the reaction of Ag + ions with polyglycol revealed that such a coordination is of utmost importance for the formation of the silver nanostructures, namely polyglycol provided lots of active sites for the coordination, nucleation, growth and serves as backbones for directing the assembly of the metal particles formed. The formation mechanism of the dendritic silver nanostructure was called a coordination-reduction-nucleation-growth-fractal growth process. The strong surface plasmon absorption bands at 470 nm for the zigzag silver and at 405 nm for the dendritic silver were found

  2. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    International Nuclear Information System (INIS)

    Singh, Asha; Jayabalan, J; Chari, Rama; Srivastava, Himanshu; Oak, S M

    2010-01-01

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  3. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Asha; Jayabalan, J; Chari, Rama [Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Srivastava, Himanshu [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Oak, S M, E-mail: jjaya@rrcat.gov.i [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2010-08-25

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  4. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Guo, Huiyuan; Zhang, Zhiyun; Xing, Baoshan; Mukherjee, Arnab; Musante, Craig; White, Jason C; He, Lili

    2015-04-07

    Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.

  5. Synthesis of antimicrobial silver/hydroxyapatite nanocomposite by gamma irradiation

    International Nuclear Information System (INIS)

    Akhavan, A.; Sheikh, N.; Khoylou, F.; Naimian, F.; Ataeivarjovi, E.

    2014-01-01

    Silver nanoparticles (AgNPs) were synthesized through γ-irradiation reduction of silver ions into hydroxyapatite as a solid support. The formation of AgNPs incorporated in the hydroxyapatite composite was studied as a function of γ-irradiation doses. The X-ray diffraction and transmission electron microscopy (TEM) measurements showed the fabrication of face-centered cubic AgNPs with a mean diameter of about 39 nm at 20 kGy absorbed dose. When the absorbed dose increases from 20 to 40 kGy the size of AgNPs particles partially increases, while with increasing absorbed dose from 40 to 60 kGy the particle diameters decreases. In addition, the results of XRD analysis indicated that increasing of γ-irradiation doses from 20 to 40 kGy enhances the concentration of AgNPs, without inducing significant changes in degree of HA crystallinity. The antibacterial test study of samples against Escherichia coli indicated a significant enhancement in the antibacterial property of Ag/HA nanocomposites. - Highlights: • Silver/hydroxyapatite nanocomposites are synthesized through γ-irradiation method. • Ag/HA nanocomposites have good antibacterial properties. • Fabricated pure nanocomposites are suitable for medical and dental applications

  6. A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles

    Science.gov (United States)

    El-Sheikh, M. A.

    2014-01-01

    The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively. PMID:24672325

  7. A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. A. El-Sheikh

    2014-01-01

    Full Text Available The water soluble photoinitiator (PI 4-(trimethyl ammonium methyl benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs. A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS, silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.

  8. Effect of grain size on corrosion of nanocrystalline copper in NaOH solution

    International Nuclear Information System (INIS)

    Luo Wei; Xu Yimin; Wang Qiming; Shi Peizhen; Yan Mi

    2010-01-01

    Research highlights: → Coppers display an active-passive-transpassive behaviour with duplex passive film. → Grain size variation has little effect on the overall corrosion behaviour of Cu. → Little effect on corrosion may be due to duplex passivation in NaOH solution. → Bulk nanocrystalline Cu show bamboo-like flake corrosion structure. - Abstract: Effect of grain size on corrosion of bulk nanocrystalline copper was investigated using potentiodynamic polarization measurements in 0.1 M NaOH solution. Bulk nanocrystalline copper was prepared by inert gas condensation and in situ warm compress (IGCWC) method. The grain sizes of all bulk nanocrystalline samples were determined to be 48, 68 and 92 nm using X-ray diffraction (XRD). Results showed that bulk coppers displayed an active-passive-transpassive behaviour with duplex passive films. From polycrystalline to nanocrystalline, grain size variation showed little effect on the overall corrosion resistance of copper samples.

  9. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Inder Pal Singh; Srivastava, Pratibha; Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur (India)

    2009-08-15

    Nanocrystalline transition metal oxides (NTMOs) have been successfully prepared by three different methods: novel quick precipitation method (Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}); surfactant mediated method (CuO), and reduction of metal complexes with hydrazine as reducing agent (Mn{sub 2}O{sub 3}). The nano particles have been characterized by X-ray diffraction (XRD) which shows an average particle diameter of 35-54 nm. Their catalytic activity was measured in the thermal decomposition of ammonium perchlorate (AP). AP decomposition undergoes a two step process where the addition of metal oxide nanocrystals led to a shifting of the high temperature decomposition peak toward lower temperature. The kinetics of the thermal decomposition of AP and catalyzed AP has also been evaluated using model fitting and isoconversional method. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  10. Nanocrystalline AL2 O2 powders produced by laser induced gas phase reactions

    International Nuclear Information System (INIS)

    Borsella, E.; Botti, S.; Martelli, S.; Zappa, G.; Giorgi, R.; Turt, S.

    1993-01-01

    Nanocrystalline Al 2 O 3 powders were successfully synthesized by a CO 2 laser-driven gas-phase reaction involving trimethylaluminium (Al(CH 3 ) 3 ) and nitrous-oxide (N 2 O). Ethylene (C 2 H 4 ) was added as gas sensitizer. The as-synthesized powder particles showed a considerable carbon contamination and an amorphous-like structure. After thermal treatment at 1200-1400 degrees C, the powder was transformed to hexagonal a-Al 2 O 3 with very low carbon contamination as confirmed by X-ray diffraction, X-ray photo-electron spectroscopy and chemical analysis. The calcinated powders resulted to be spherical single crystal nanoparticles with a mean size of 15-20 nm, as determined by X-ray diffraction, electron microscopy and B.E.T. specific surface measurements. The laser synthesized Al 2 O 3 particles are well suited dispersoids for intermetallic alloy technology

  11. Structural and Mössbauer studies of nanocrystalline Mn{sup 4+}-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} particles prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hishammw@squ.edu.om; Al-Mabsali, F. N.; Al-Hajri, F. S. [Sultan Qaboos University, Physics Department, College of Science (Oman); Khalifa, N. O. [University of Khartoum, Physics Department, Faculty of Science (Sudan); Gismelseed, A. M.; Al-Rawas, A. D.; Elzain, M.; Yousif, A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2016-12-15

    The structure and magnetic properties of spinel-related Mn{sup 4+}-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} nanocrystalline particles of the composition Li{sub 0.5}Fe{sub 2.25}Mn{sub 0.1875}O{sub 4}, prepared by milling a pristine sample for different times, were investigated. The average crystallite and particle size, respectively, decreased form ∼40 nm to ∼10 nm and ∼2.5 μm to ∼10 nm with increasing milling time from 0 h to 70 h. Rietveld refinement of the XRD data of the non-milled sample show the Mn{sup 4+} dopant ions to substitute for Fe{sup 3+} at the octahedral B-sites of the spinel-related structure. The Mössbauer spectra of the milled ferrites indicate that more particles turn superparamagnetic with increasing milling time. The Mössbauer data collected at 78 K suggest that while in the non-milled sample the Mn{sup 4+} ions substitute for Fe{sup 3+} at the octahedral B-sites, this is reversed as milling proceeds with doped Mn{sup 4+} ions, balancing Fe{sup 3+} vacancies and possibly Li{sup +} ions progressively migrate to the tetrahedral A-sites. This is supported by the slight increase observed in the magnetization of the milled samples relative to that of the non-milled one. The magnetic data suggest that in addition to the increasing superparamagentic component of the milled particles, thermal spin reversal and/or spin canting effects are possible at the surface layers of the nanoparticles.

  12. A novel polyol method to synthesize colloidal silver nanoparticles by ultrasonic irradiation.

    Science.gov (United States)

    Byeon, Jeong Hoon; Kim, Young-Woo

    2012-01-01

    A polyol synthesis of silver nanoparticles in the presence of ultrasonic irradiation was compared with other configurations (at ambient temperature, 120° C, and 120 °C with injected solutions) in the absence of ultrasonic irradiation in order to obtain systematic results for morphology and size distribution. For applying ultrasonic irradiation, rather fine and uniform spherical silver particles (21±3.7 nm) were obtained in a simple (at ambient temperature without mechanical stirring) and fast (within 4 min, 3.61×10(-3) mol min(-1)) manner than other cases (at ambient temperature (for 8 h, 0.03×10(-3) mol min(-1)): 86±16.8 nm, 120 °C (for 12 min, 1.16×10(-3) mol min(-1)): 64±14.9 nm, and 120 °C with injected solutions (during 12 min): 35±6.8 nm; all other cases contained anisotropic shaped particles). Even though the temperature of polyol reaction reached only at 80 °C (silver particle and surrounding components) by ultrasonic irradiation might induce a better formation kinetics and morphological uniformity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    International Nuclear Information System (INIS)

    Mohammadi, Majid; Ghasemi, Ali; Tavoosi, Majid

    2016-01-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe_2O_3–B_2O_3 powder mixtures with sufficient amount of CaH_2 were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys can be successfully synthesized by the reduction reaction of Fe_2O_3 and B_2O_3 with CaH_2 during mechanical alloying. The structure of produced Fe_9_5B_5 and Fe_8_5B_1_5 alloys was a combination of Fe and Fe_2B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–B_2O_3–CaH_2 during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  14. Size-controlled in situ synthesis and photo-responsive properties of silver/poly(methyl methacrylate) nanocomposite films with high silver content

    Energy Technology Data Exchange (ETDEWEB)

    Chen Cheng; Li Junguo [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Luo Guoqiang, E-mail: qhy2013@163.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Xiong Yuanlu; Zhang Qiang; Shen Lianmeng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Ag/PMMA nanocomposite films with high silver content are prepared by in situ synthesis. Black-Right-Pointing-Pointer The size of Ag nanoparticles can be controlled by reaction time. Black-Right-Pointing-Pointer The electrical properties of Ag/PMMA nanocomposites films shows enhancement compared with the pure PMMA. Black-Right-Pointing-Pointer The recycle photo-responsive properties of Ag/PMMA nanocomposite films are proposed. - Abstract: Ag/PMMA nanocomposites have attracted much attention due to its superior mechanical, optical and electrical properties. In this article, Ag/PMMA nanocomposite films with high silver content (20 wt%) have been successfully in situ synthesized. UV-vis analysis, transmission electron microscopy (TEM), current-voltage (I-V) analysis, hall effect measurement system and electrochemical workstation are used to characterize the nanocomposite films. The results reveal that silver nanoparticles (NPs) homogeneously distribute in PMMA films and the particles size of silver NPs which has been controlled from 1.68 to 6.98 nm. Ag/PMMA nanocomposite films show electrical properties due to the conduction paths created by Ag nanoparticles. With the increasing diameter of silver NPs, the current density decreases and resistivity increases, respectively. Photo-responsive properties of Ag/PMMA nanocomposite films indicate that conduction paths could be destroyed by illumination and rebuilt in dark condition.

  15. Size-controlled in situ synthesis and photo-responsive properties of silver/poly(methyl methacrylate) nanocomposite films with high silver content

    International Nuclear Information System (INIS)

    Chen Cheng; Li Junguo; Luo Guoqiang; Xiong Yuanlu; Zhang Qiang; Shen Lianmeng

    2012-01-01

    Highlights: ► Ag/PMMA nanocomposite films with high silver content are prepared by in situ synthesis. ► The size of Ag nanoparticles can be controlled by reaction time. ► The electrical properties of Ag/PMMA nanocomposites films shows enhancement compared with the pure PMMA. ► The recycle photo-responsive properties of Ag/PMMA nanocomposite films are proposed. - Abstract: Ag/PMMA nanocomposites have attracted much attention due to its superior mechanical, optical and electrical properties. In this article, Ag/PMMA nanocomposite films with high silver content (20 wt%) have been successfully in situ synthesized. UV–vis analysis, transmission electron microscopy (TEM), current–voltage (I–V) analysis, hall effect measurement system and electrochemical workstation are used to characterize the nanocomposite films. The results reveal that silver nanoparticles (NPs) homogeneously distribute in PMMA films and the particles size of silver NPs which has been controlled from 1.68 to 6.98 nm. Ag/PMMA nanocomposite films show electrical properties due to the conduction paths created by Ag nanoparticles. With the increasing diameter of silver NPs, the current density decreases and resistivity increases, respectively. Photo-responsive properties of Ag/PMMA nanocomposite films indicate that conduction paths could be destroyed by illumination and rebuilt in dark condition.

  16. Study of the spectra of silica colloidal crystals with assembled silver obtained from a photolysis method

    Science.gov (United States)

    Li, Wenjiang; He, Jinglong; He, Sailing

    2005-02-01

    The colorful artificial 3D silica colloidal crystals (opal) were prepared through self-assembly of silica spheres in the visible frequency range. We directly synthesized nano silver particles in the void of the silica artificial opal film using the photolysis of silver nitrate under UV light, nano silver particles were self-deposited around the surface of silica sphere. The shifts of the stop band of the artificial crystals after exposing different time under UV light were studied. Synthetic silica opal with three-dimensional (3D) structure is potentially useful for the development of diffractive optical devices, micro mechanical systems, and sensory elements because photonic band gaps obtained from self-assembled closely packed periodic structures.

  17. Nanocrystalline GaSbO{sub 4} with high surface area prepared via a facile hydrothermal method and its photocatalytic activity study

    Energy Technology Data Exchange (ETDEWEB)

    Fu Yanghe; Xue Hun; Qin Meng; Liu Ping; Fu Xianzhi [Research Institute of Photocatalysis, Fujian Provincial Key Laboratory of Photocatalysis - State Key Laboratory Breeding Base, Fuzhou University, Fuzhou 350002 (China); Li Zhaohui, E-mail: zhaohuili1969@yahoo.com [Research Institute of Photocatalysis, Fujian Provincial Key Laboratory of Photocatalysis - State Key Laboratory Breeding Base, Fuzhou University, Fuzhou 350002 (China)

    2012-05-05

    Graphical abstract: Nanocrystalline GaSbO{sub 4} prepared via a facile hydrothermal method possesses large specific surface area and exhibits photocatalytic activity for the degradations of salicylic acid and acetone. Highlights: Black-Right-Pointing-Pointer Facile hydrothermal method to nanocrystalline GaSbO{sub 4} with large surface area. Black-Right-Pointing-Pointer GaSbO{sub 4} shows photocatalytic activity for the degradations of salicylic acid and acetone. Black-Right-Pointing-Pointer The photocatalytic mechanism of GaSbO{sub 4} was proposed based on the ESR result. - Abstract: Nanocrystalline GaSbO{sub 4} with small particle size and large BET specific area was successfully prepared via a facile hydrothermal method from Sb{sub 2}O{sub 5}. The influence of the reaction pH on the formation of the final product was investigated. The obtained sample was characterized by X-ray diffraction (XRD), N{sub 2}-sorption BET surface area, UV-vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM). The photocatalytic activity for the degradations of salicylic acid and acetone over nanocrystalline GaSbO{sub 4} under UV irradiations was for the first time revealed. Based on the electron spin resonance (ESR) result, the reactive species involved in the photocatalytic reaction over nanocrytalline GaSbO{sub 4} are determined to be HO{center_dot} and O{sub 2}{sup -}{center_dot}. The photocatalytic mechanism of GaSbO{sub 4} was proposed.

  18. Interactions between goethite particles subjected to heat treatment

    DEFF Research Database (Denmark)

    Madsen, Daniel Esmarch; Hansen, Mikkel Fougt; Koch, C.B.

    2008-01-01

    We have studied the effect of heating on the magnetic properties of particles of nanocrystalline goethite by use of Mossbauer spectroscopy. Heating at 150 degrees C for 24 h leads to a change in the quadrupole shift in the low-temperature spectra, indicating a rotation of the sublattice...... magnetization directions. Fitting of quantiles, derived from the asymmetrically broadened spectra between 80 and 300 K, to the superferromagnetism model indicates that this change is due to a stronger magnetic coupling between the particles....

  19. Silver nanoparticles: Large scale solvothermal synthesis and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wani, Irshad A.; Khatoon, Sarvari [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmed, Jahangeer; Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmad, Tokeer, E-mail: tokeer.ch@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2010-08-15

    Silver nanoparticles have been successfully synthesized by a simple and modified solvothermal method at large scale using ethanol as the refluxing solvent and NaBH{sub 4} as reducing agent. The nanopowder was investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible and BET surface area studies. XRD studies reveal the monophasic nature of these highly crystalline silver nanoparticles. Transmission electron microscopic studies show the monodisperse and highly uniform nanoparticles of silver of the particle size of 5 nm, however, the size is found to be 7 nm using dynamic light scattering which is in good agreement with the TEM and X-ray line broadening studies. The surface area was found to be 34.5 m{sup 2}/g. UV-visible studies show the absorption band at {approx}425 nm due to surface plasmon resonance. The percentage yield of silver nanoparticles was found to be as high as 98.5%.

  20. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds

    Directory of Open Access Journals (Sweden)

    Ixtepan-Turrent Liliana

    2011-08-01

    Full Text Available Abstract The advance in nanotechnology has enabled us to utilize particles in the size of the nanoscale. This has created new therapeutic horizons, and in the case of silver, the currently available data only reveals the surface of the potential benefits and the wide range of applications. Interactions between viral biomolecules and silver nanoparticles suggest that the use of nanosystems may contribute importantly for the enhancement of current prevention of infection and antiviral therapies. Recently, it has been suggested that silver nanoparticles (AgNPs bind with external membrane of lipid enveloped virus to prevent the infection. Nevertheless, the interaction of AgNPs with viruses is a largely unexplored field. AgNPs has been studied particularly on HIV where it was demonstrated the mechanism of antiviral action of the nanoparticles as well as the inhibition the transmission of HIV-1 infection in human cervix organ culture. This review discusses recent advances in the understanding of the biocidal mechanisms of action of silver Nanoparticles.

  1. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  2. Inkjet printing of silver citrate conductive ink on PET substrate

    Energy Technology Data Exchange (ETDEWEB)

    Nie Xiaolei [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang Hong, E-mail: hongwang@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zou Jing [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A direct synthesis method of silver conductive film on PET substrate was presented. Black-Right-Pointing-Pointer A stable particle-free conductive ink was prepared. Black-Right-Pointing-Pointer Formation of silver-amine complex reduced the thermal decomposition temperature. Black-Right-Pointing-Pointer Conductive patterns for flexible electronics were fabricated by inkjet printing. Black-Right-Pointing-Pointer Silver film on PET substrate possessed highest adhesion rating even without polymer. - Abstract: Direct synthesis of silver conductive film on PET substrate by inkjet printing silver citrate conductive ink was presented in this paper. This kind of conductive ink contained silver citrate as silver precursor, 1,2-diaminopropane as complex agent dissolving the silver salt and methanol and isopropanol as a media adjusting the viscosity and surface tension. The formation of silver-amine complex reduced the decomposition temperature from 180 Degree-Sign C to 135 Degree-Sign C, thus the ink could be cured at relatively low temperature. The film reached the lowest resistivity of 17 {mu}{Omega} cm after cured at 150 Degree-Sign C for 50 min, 3.1 {mu}{Omega} cm at 230 Degree-Sign C and possessed high reflection and excellent adhesive property. Electrical conductivity, surface morphology and composition were investigated by four-point probe method, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). It is demonstrated how the cured condition affects the silver film. Moreover, radio-frequency identification (RFID) antenna was fabricated by inkjet printing, which opens up routes for the flexible electronics fabrication.

  3. Genotoxicity of Silver Nanoparticles in Lung Cells of Sprague Dawley Rats after 12 Weeks of Inhalation Exposure

    Directory of Open Access Journals (Sweden)

    Hyun Sun Cho

    2013-11-01

    Full Text Available Due to the widespread use of silver nanoparticles in consumer products, the toxicity of silver nanoparticles has also been studied in relation to their application. However, most genotoxicity studies of silver nanoparticles have been performed in vitro. Therefore, this study evaluated the DNA damage to lung cells caused by repeated inhalation of silver nanoparticles. Male Sprague Dawley rats were exposed to silver nanoparticles for 12 weeks in a whole-body inhalation chamber. The animals were divided into one control group and three dose groups that were exposed to silver nanoparticles (14–15 nm diameter at concentrations of 0.66 × 106 particles/cm3 (49 μg/m3, low dose, 1.41 × 106 particles/cm3 (117 μg/m3, middle dose, and 3.24 × 106 particles /cm3 (381 μg/m3, high dose, respectively, for six hours/day over 12 weeks. The rats were sacrificed after the 12-week exposure period and the DNA damage assessed using a Comet assay of cells obtained from the right lungs. The olive tail moment values were 2.93 ± 0.19, 3.81 ± 0.23, 3.40 ± 0.22, and 5.16 ± 0.32 for the control, low-, middle-, and high-dose groups, respectively. Although no dose-dependent results were observed, a significant increase in the level of DNA damage was noted for the high-dose group.

  4. Accumulation and recovery of defects in ion-irradiated nanocrystalline gold

    Energy Technology Data Exchange (ETDEWEB)

    Chimi, Y. E-mail: chimi@popsvr.tokai.jaeri.go.jp; Iwase, A.; Ishikawa, N.; Kobiyama, M.; Inami, T.; Okuda, S

    2001-09-01

    Effects of 60 MeV {sup 12}C ion irradiation on nanocrystalline gold (nano-Au) are studied. The experimental results show that the irradiation-produced defects in nano-Au are thermally unstable because of the existence of a large volume fraction of grain boundaries. This suggests a possibility of the use of nanocrystalline materials as irradiation-resistant materials.

  5. 2D and 3D organisation of nano-particles: synthesis and specific properties

    International Nuclear Information System (INIS)

    Taleb, Abdelhafed

    1998-01-01

    The first part of this research thesis addresses the synthesis of nano-particles of silver and cobalt in the inverse micellar system, and highlights the feasibility of two- and three-dimensional structures of these particles. The author first presents the micellar system (micro-emulsions, surfactant, properties of inverse micelles, functionalized inverse micelles, application to the synthesis of nano-particles), and then reports the study of the synthesis and organisation of colloids in 2D and 3D. He also reports the study of optical properties of metallic colloids: free electron approximation, optical properties of electron gases, optical properties of colloids, optical response of two-dimensional and three-dimensional nano-structures. The magnetic properties of colloids are then studied: magnetism of the massive metallic state, magnetic properties of nano-particles (influence of size, interactions and field, notions of magnetic order and disorder), effect of organisation. The second part of this thesis is made of a set of published articles: Synthesis of highly mono-disperse silver nano-particles from AOT reverse micelles (a way to 2D and 3D self-organisation), Optical properties of self-assembled 2D and 3D super-lattices of silver nano-particles, Collective optical properties of silver nano-particles organised in 2D super-lattices, Self assembled in 2D cobalt nano-sized particles, Self organisation of magnetic nano-sized cobalt particles, Organisation in 2D cobalt nano-particles (synthesis, characterization and magnetic properties) [fr

  6. Efficient optical trapping and visualization of silver nanoparticles

    DEFF Research Database (Denmark)

    Bosanac, Lana; Aabo, Thomas; Bendix, Pól Martin

    2008-01-01

    We performed efficient optical trapping combined with sensitive optical detection of individual silver nanoparticles. The particles ranging in size from 20 to 275 nm in diameter were trapped in three dimensions using low laser power by minimizing spherical aberrations at the focus. The optical fo...

  7. Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin

    Science.gov (United States)

    Janardhanan, A.; Roshmi, T.; Varghese, Rintu T.; Soniya, E. V.; Mathew, Jyothis; Radhakrishnan, E. K.

    2013-04-01

    This study was aimed to explore the nanoparticle synthesizing properties of a silver resistant Bacillus sp. isolated from a marine water sample. The 16SrDNA sequence analysis of the isolate proved it as a Bacillus strain. Very interestingly, the isolate was found to have the ability to form intracellular silver nanoparticles at room temperature within 24 hours. This was confirmed by the UV-Vis absorption analysis which showed a peak at 430 nm corresponding to the plasmon absorbance of silver nanoparticles. Further characterization of the nanoparticles was carried out by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis. The presence of silver nanoparticles with the size less than 100 nm was confirmed. These particles were found to be extremely stable as confirmed by the TEM analysis after three months of purification. So, the current study is the demonstration of an efficient synthesis of stable silver nanoparticles by a marine Bacillus strain.

  8. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    KAUST Repository

    Siddiq, A.; El Sayed, Tamer S.

    2013-01-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline

  9. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Y.M., E-mail: ymabbas@live.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Mansour, S.A.; Ibrahim, M.H. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Ali, Shehab E., E-mail: shehab_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt)

    2011-11-15

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: > The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. > The transmission electronic microscope analysis confirmed the X-ray results. > The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  10. Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Nowosielski, R.; Konieczny, J.; PrzybyI, A.; WysIocki, J.

    2005-01-01

    The paper concerns investigation of nanocrystalline composites technology preparation. The composites in the form of rings with rectangular transverse section, and with polymer matrix and nanocrystalline metallic powders fulfillment were made, for obtaining good ferromagnetic properties. The nanocrystalline ferromagnetic powders were manufactured by high-energy ball milling of metallic glasses strips in an as-quenched state. Generally for investigation, Co matrix alloys with the silicon polymer were used. Magnetic properties in the form of hysteresis loop by rings method were measured. Generally composite cores showed lower soft ferromagnetic properties than winded cores of nanocrystalline strips, but composite cores showed interesting mechanical properties. Furthermore, the structure of strips and powders on properties of composites were investigated

  11. Study of the lithium insertion-deinsertion mechanism in nanocrystalline γ-Fe2O3 electrodes by means of electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Quintin, M.; Devos, O.; Delville, M.H.; Campet, G.

    2006-01-01

    Lithium intercalation hosts are a key point to the energy density of the largely used LiCoO 2 (even if of high cost and toxicity) as well as of manganese oxides which have been investigated most extensively. Iron oxides are attractive electrode materials for low-voltage rechargeable lithium batteries from both cost and environmental standpoints. However, search for iron oxides of conventional crystalline structures and micrometer particle sizes as lithium intercalation cathodes, has been greeted with disappointing results. Here we report on the synthesis, characterizations, electrochemical study and electrochemical impedance spectroscopy (EIS) of a nanocrystalline γ-Fe 2 O 3 that simultaneously exhibits high lithium insertion capacity and good capacity retention upon cycling. These properties reveal thermodynamics of the nanocrystalline material inherently different from those of its microcrystalline counterpart. Moreover, EIS showed that the intercalation process of the lithium ion occurs according to two processes involving first the reduction of the surface Fe 3+ with concomitant charge neutralization by Li + ions onto the surface defects of the nanoparticle followed by the reduction of the core Fe 3+ with insertion of the Li + deeper in the particle

  12. Preparation of Crosslinked Amphiphilic Silver Nanogel as Thin Film Corrosion Protective Layer for Steel

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-07-01

    Full Text Available Monodisperse silver nanoparticles were synthesized by a new developed method via reaction of AgNO3 and oleic acid with the addition of a trace amount of Fe3+ ions. Emulsion polymerization at room temperature was employed to prepare a core-shell silver nanoparticle with controllable particle size. N,N'-methylenebisacrylamide (MBA and potassium peroxydisulfate (KPS were used as a crosslinker, and as redox initiator system, respectively for crosslinking polymerization. The structure and morphology of the silver nanogels were characterized by Fourier transform infrared spectroscopy (FTIR, transmission and scanning electron microscopy (TEM and SEM. The effectiveness of the synthesized compounds as corrosion inhibitors for steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. Monolayers of silver nanoparticle were self-assembled on the fresh active surface of the steel electrode and have been tested as a corrosion inhibitor for steel in 1 M HCl solution. The results of polarization measurements showed that nanogel particles act as a mixed type inhibitor.

  13. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  14. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  15. Preconcentration of silver as silver xanthate on activated carbon

    International Nuclear Information System (INIS)

    Ramadevi, P.; Naidu, U.V.; Naidu, G.R.K.

    1988-01-01

    Silver from aqueous solution was preconcentrated by adsorption on activated carbon as silver xanthate. Factors influencing the adsorption of silver were studied. Optimum conditions for the preconcentration of silver were established. (author) 9 refs.; 3 tabs

  16. Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour

    Science.gov (United States)

    Nakhjavani, Maryam; Nikkhah, V.; Sarafraz, M. M.; Shoja, Saeed; Sarafraz, Marzieh

    2017-10-01

    In this paper, silver nanoparticles are produced via green synthesis method using green tea leaves. The introduced method is cost-effective and available, which provides condition to manipulate and control the average nanoparticle size. The produced particles were characterized using x-ray diffraction, scanning electron microscopic images, UV visualization, digital light scattering, zeta potential measurement and thermal conductivity measurement. Results demonstrated that the produced samples of silver nanoparticles are pure in structure (based on the x-ray diffraction test), almost identical in terms of morphology (spherical and to some extent cubic) and show longer stability when dispersed in deionized water. The UV-visualization showed a peak in 450 nm, which is in accordance with the previous studies reported in the literature. Results also showed that small particles have higher thermal and antimicrobial performance. As green tea leaves are used for extracting the silver nanoparticles, the method is eco-friendly. The thermal behaviour of silver nanoparticle was also analysed by dispersing the nanoparticles inside the deionized water. Results showed that thermal conductivity of the silver nano-fluid is higher than that of obtained for the deionized water. Activity of Ag nanoparticles against some bacteria was also examined to find the suitable antibacterial application for the produced particles.

  17. Inter- and intra-agglomerate fracture in nanocrystalline nickel.

    Science.gov (United States)

    Shan, Zhiwei; Knapp, J A; Follstaedt, D M; Stach, E A; Wiezorek, J M K; Mao, S X

    2008-03-14

    In situ tensile straining transmission electron microscopy tests have been carried out on nanocrystalline Ni. Grain agglomerates (GAs) were found to form very frequently and rapidly ahead of an advancing crack with sizes much larger than the initial average grain size. High-resolution electron microscopy indicated that the GAs most probably consist of nanograins separated by low-angle grain boundaries. Furthermore, both inter- and intra-GA fractures were observed. The observations suggest that these newly formed GAs may play an important role in the formation of the dimpled fracture surfaces of nanocrystalline materials.

  18. Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals

    International Nuclear Information System (INIS)

    Song Xiaoyan; Zhang Jiuxing; Li Lingmei; Yang Keyong; Liu Guoquan

    2006-01-01

    We investigated the correlation of thermodynamics and grain growth kinetics of nanocrystalline metals both theoretically and experimentally. A model was developed to describe the thermodynamic properties of nanograin boundaries, which could give reliable predictions in the destabilization characteristics of nanograin structures and the slowing down of grain growth kinetics at a constant temperature. Both the temperature-varying and isothermal nanograin growth behaviors in pure nanocrystalline Co were studied to verify the thermodynamic predictions. The experimental results showing that discontinuous nanograin growth takes place at a certain temperature and grain growth rate decreases monotonically with time confirm our thermodynamics-based description of nanograin growth characteristics. Therefore, we propose a thermodynamic viewpoint to explain the deviation of grain growth kinetics in nanocrystalline metals from those of polycrystalline materials

  19. Exploration of Phyllanthus acidus mediated silver nanoparticles and its activity against infectious bacterial pathogen.

    Science.gov (United States)

    Sowmya, Cherukuri; Lavakumar, Vuppalapati; Venkateshan, Narayanan; Ravichandiran, Velayutham; Saigopal, D V R

    2018-04-20

    In our present investigation, synthesis of nontoxic, eco friendly and cost effective silver nanoparticles, Phyllanthus acidus (P. acidus) was used as starting material. The influence of phyto-constituents present in aqueous extracts of Phyllanthus acidus was found to be effective in reduction of silver nitrate to free silver nanoparticles (PA-AgNPs). HPTLC finger print analysis reveals the presence of flavonoid, quercetin in aqueous extracts of Phyllanthus acidus. Surface plasmon racemonance exhibited λ max at 462 nm through UV-Vis spectroscopy. Zeta size revealed that the size of nanoparticles were with in the range of 65-250 nm with polydisperse index (PDI) of 0.451. The negative charge of zeta potential value (- 16.4) indicates repulsion among PA-AgNPs with their excellent stability. FESEM-EDAX, XRD and TEM analysis confirmed the presence of nano-crystalline PA-AgNPs with different morphological textures. Further, PA-AgNPs has shown potent antibacterial effect on E. coli cells. The greater antibacterial effect (viable and dead cells) of PA-AgNPs were confirmed by using acridine orange (AO) dye which can able to provide insight of healthy as well as damaged DNA. Live cells emit florescence green and dead cells (treated with PA-AgNPS at 20 and 40 µg/ml) appear as pale orange red colour. Post treatment, investigations of PA-AgNPs on E. coli cells under SEM was found to be effective against cell membrane damages which leads to cell death or cell growth arrest. Hence, from the above findings, we strongly recommend silver nanoparticles from Phyllanthus acidus can be used as a potential source for antimicrobial agent for chronic infections and also against other harmful microorganisms.

  20. Silver Nanopartilces After Zebrafish Development and Larval Behavior: Distinct Roles for Particle Size, Coating and Composition

    Science.gov (United States)

    Background: Silver nanoparticles (AgNPs) act as antibacterials by releasing monovalent silver (Ag+) and are increasingly used in consumer products, thus elevating exposures in human and environmental populations. In vitro models indicate that AgNPs are likely to be developmental ...

  1. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    International Nuclear Information System (INIS)

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  2. Silver nanoparticles: in vivo toxicity in zebrafish embryos and a comparison to silver nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Mosselhy, Dina A.; He, Wei [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering (China); Li, Dan [Tsinghua University, MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences (China); Meng, Yaping [Tsinghua University, State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering (China)

    2016-08-15

    The wide antimicrobial administration of silver nanoparticles (AgNPs) has raised the risks associated with their exposure. However, there is lack of robust toxicological data for the applied AgNPs to be in line with their wide antimicrobial applications. This study therefore set out to assess the in vivo toxicity of two different sizes of AgNPs using zebrafish embryos (Danio rerio) as a brilliant in vivo model. The pivotal role of size of AgNPs in the toxicity was highlighted, wherein the smaller AgNPs (Ag-9 nm) exhibited more embryo toxicities than the larger particles (Ag-30 nm). Much uncertainty still exists about whether the cause of in vivo toxicity of AgNPs is the physicochemical properties of AgNPs or the released silver ions (Ag{sup +}). Therefore, another purpose of this study is to compare the toxicity of AgNPs with silver nitrate (AgNO{sub 3}) in terms of mortality, hatchability and cardiac rates, and a series of phenotypic endpoints of zebrafish embryos. Collectively, the present results point towards the remarkable size-dependent toxicity of AgNPs. Wherein, the smaller AgNPs (9 ± 2 nm) induce increased mortality rates and decreased hatchability rates than the larger particles (30 ± 5 nm) in a dose-dependent manner. Besides, AgNPs and AgNO{sub 3} induce holistic different toxic mortality and hatchability rates. We have also found striking discrepancies in the phenotypic defects that were induced by AgNPs and AgNO{sub 3}. The significant phenotypic defect induced by AgNPs is the axial deformity, while it is the deposition of Ag{sup +} on the embryonic chorion for AgNO{sub 3}. Therefore, it is proposed that AgNPs and AgNO{sub 3} induce different in vivo toxicities.

  3. EXAFS and XRD studies of nanocrystalline cerium oxide: the effect of preparation method on the microstructure

    International Nuclear Information System (INIS)

    Savin, S.L.P.; Chadwick, A.V.; Smith, M.E.; O'Dell, L.A.

    2007-01-01

    There is considerable interest in nanocrystalline materials due to their unusual properties, such as enhanced ionic conductivity in the case of nanocrystalline ionic solids. This has potential commercial applications, particularly for oxide ion conductors. However, a detailed knowledge of the microstructure is important in fully understanding the novel properties exhibited by nanocrystalline materials. The final microstructure of a material is dependent on the preparation method used, for example, sol-gel and ball-milling methods are commonly used in the preparation of nanocrystalline oxides. Additionally, there is a problem in maintaining the materials in nanocrystalline form when they are subjected to elevated temperatures. We have been exploring strategies to restrict the growth of nanocrystalline oxides and have found that adding a small amount of an inert material, e.g. SiO 2 or Al 2 O 3 , is particularly effective. We will report XRD and EXAFS studies of nanocrystalline ceria prepared by sol-gel, sol-gel pinned and ball-milling methods and the effect of preparation method on the final microstructure. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Temperature-dependent rigidity and magnetism of polyamide 6 nanocomposites based on nanocrystalline Fe-Ni alloy of various geometries

    Directory of Open Access Journals (Sweden)

    M. A. A. Mohamed

    2016-10-01

    Full Text Available The focus of this study is to explore the potential use of Polyamide 6 nanocomposite reinforced with nanocrystalline (nc Fe20Ni80 alloy (Fe20Ni80/PA6 PNC in electromagnetic applications and provide understanding of how the alloy particle geometry is controlling the nanocomposite’s physical properties. Thermomechanical rigidity, room-temperature soft magnetic performance and thermal soft magnetic stability of Fe20Ni80/PA6 PNCs based on spherical-sea urchin alloy particles (UMB2-SU and necklace-like alloy chains (UMB2-NC have been investigated. Both PNCs have considerably superior bulk properties compared to neat PA6 and UMB2-SU exhibits the most remarkable overall performance. Morphological observations disclose two relevant phenomena: i improved dispersion and distribution of the SU alloy particles than the NC ones within PA6 matrix, leading to stronger filler-matrix interfacial interactions within the UMB2-SU as compared to the UMB2-NC and ii presence of constraint polymer regions in between alloy segments within the UMB2-SU that provide secondary reinforcing and soft magnetic mechanisms. Such phenomena along with the lower alloy crystallite size and PA6 γ-crystal type content within the UMB2-SU than in the UMB2-NC, are considered the main responsible factors for the distinctive performance of UMB2-SU. Overall, compared to various ferromagnetic nanocrystalline metallic materials, the research proposes the SU nc Fe20Ni80 alloy as a valuable nanofiller in polymers for electromagnetic applications.

  5. The mode of occurrence of gold and silver in the Dominian Reef and their response to cyanidation after pressure leading

    International Nuclear Information System (INIS)

    Glatthaar, C.W.; Feather, C.E.

    1985-01-01

    Gold and silver in the Upper Reef of the Dominion Group in the Afrikander Lease area occur in several minerals. Native gold, electrum, and amalgam are the main gold bearers, whereas silver, in addition to being present in the above alloys, is also represented by native silver, in mercurian silver (arquerite), acanthite, stromeyerite, and a bismuth-silver sulphide (schaba-chite or pavionite), and in solid solution in galena. Only minute quantities of these silver-bearing minerals were found, and attempts to evaluate their relative abundances in the ore proved to be difficult. It was possible, however, by use of an electron microprobe, to quantify the silver contents in electrum, amalgam, mercurian silver, and galena. Mass-balance studies based on the calculated galena content suggest that about half of the total silver is associated with galena in solid solution. In practice, the uranium present in the conglomerates of the Dominion Group is extracted first. Because of the refractory nature of the uranium-bearing minerals, a leach at high temperature and high pressure is recommended. While this pressure leach is beneficial to the subsequent cyanidation of gold, a large proportion of the silver present is rendered refractory. The poor recoveries of silver are believed to be due close association of silver and galena. It is believed that silver is released during the dissolution of galena, acanthite, other silver sulphides, and native silver, and subsequently precipitated either as an insoluble complex silver-iron sulphate (argentojarosite) or in solid solution in jarosite (potassium-iron sulphate). Neither compound is amenable to cyanidation. A mixture of plumbojarosite (lead-iron sulphate) and jarosite were seen to form protective coatings on galena particles, and may occlude other silver-bearing minerals in the same manner. In contrast, finely divided gold particles are liberated from pyrite and other minerals during pressure leaching and become readily available to

  6. Synthesis of Hollow Silver Spheres using Spherical Vaterite-type Calcium Carbonate as Template

    Energy Technology Data Exchange (ETDEWEB)

    Park, Minyoung; Go, Hani; Kim, Jae-Hyun; Rhee, Seog Woo [Kongju National University, Kongju (Korea, Republic of)

    2016-03-15

    In this work, we describe the synthesis of hollow silver spheres using vaterite-type CaCO{sub 3} as template. The spherical vaterite-type CaCO{sub 3} was selectively precipitated d reaction of aqueous CaCl{sub 2} and Na{sub 2}CO{sub 3} in the presence of the polyelectrolyte poly(4-styrenesulfonate). Aqueous AgNO{sub 3} solution containing NH{sub 2}-functionalized CaCO{sub 3} particles was treated with reducing agents such as ascorbic acid, NaBH{sub 4}, and acetaldehyde, and the reduced silver particles were deposited on the surface of CaCO{sub 3}particles to form uniform silvershells. The CaCO{sub 3} used as template was removed from the CaCO{sub 3}/Ag composite by treatment with acid. Finally, the hollow silver sphere was obtained. The morphologies of product were investigated using electron microscopy, the chemical composition of the composite was analyzed using energy-dispersive X-ray spectroscopy, the vibration modes of the carbonate ion were investigated by Fourier transform infrared spectroscopy, the thermal mass change was measured using the thermogravimetric analysis, and the solid phases were confirmed by powder X-ray diffraction.

  7. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method.

    Science.gov (United States)

    Wani, Irshad A; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ahmad, Tokeer; Manzoor, Nikhat

    2013-01-01

    Silver nanoparticles have been synthesized in the inverse microemulsions formed using three different surfactants viz., cetyl-trimethyl ammonium bromide (CTAB), Tergitol and Triton X-100. We have done a systematic study of the effect of the surfactants on the particle size and properties of the silver nanoparticles. Microscopic studies show the formation of spheres, cubes and discs shaped silver nanostructures with the size in the range from 8 to 40 nm. Surface plasmon resonance (SPR) peak was observed around 400 nm and 500 nm. In addition to SPR some extra peaks have also been observed due to the formation of silver metal clusters. The surface area increases from 3.45 to 15.06 m(2)/g with decreasing the size of silver nanoparticles (40-8 nm). To investigate the antimicrobial activity of silver nanoparticles, the nanoparticles were tested against the yeast, Candida albicans and the bacterium, E. coli. The results suggest very good antimicrobial activity of the silver nanoparticles against the test microbes. The mode of action of the antimicrobial activity was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Bioleaching of a manganese and silver Ore

    International Nuclear Information System (INIS)

    Porro, S.; Tedesco, P.H.; La Plata

    1990-01-01

    The bioleaching with a strain of Thiobacillus thiooxidans of the ore of Farallon Negro (Catamarca, Argentina) was studied in order to estimate its application to the solution and recovery of the manganese, and to improve the silver extraction. The State company which works the mine has not yet found an economical process to extract the manganese and has only reached a 30% efficiency in the recovery of silver by cianuration. The effects of pulp density variations and the addition of different quantities of FeS were analysed looking for the best working conditions. 74 μm (mesh Tyler 200) of ore particles were used because that is the size used in this plant for the cianuration process. (Author)

  9. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  10. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  11. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    Science.gov (United States)

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation.

  12. Nanocrystalline and ultrafine grain copper obtained by mechanical attrition

    Directory of Open Access Journals (Sweden)

    Rodolfo Rodríguez Baracaldo

    2010-01-01

    Full Text Available This article presents a method for the sample preparation and characterisation of bulk copper having grain size lower than 1 μm (ultra-fine grain and lower than 100 nm grain size (nanocrystalline. Copper is initially manufactured by a milling/alloying me- chanical method thereby obtaining a powder having a nanocrystalline structure which is then consolidated through a process of warm compaction at high pressure. Microstructural characterisation of bulk copper samples showed the evolution of grain size during all stages involved in obtaining it. The results led to determining the necessary conditions for achieving a wide range of grain sizes. Mechanical characterisation indicated an increase in microhardness to values of around 3.40 GPa for unconsolida- ted nanocrystalline powder. Compressivee strength was increased by reducing the grain size, thereby obtaining an elastic limit of 650 MPa for consolidated copper having a ~ 62 nm grain size.

  13. Creep behavior of a nanocrystalline Fe-B-Si alloy

    International Nuclear Information System (INIS)

    Xiao, M.; Kong, Q.P.

    1997-01-01

    The research of nanocrystalline materials has attracted much attention in the world. In recent years, there have been several studies on their creep behavior. Among these, the authors have studied the tensile creep of a nanocrystalline Ni-P alloy (28 nm) at temperatures around 0.5 Tm (Tm is the melting point). The samples were prepared by the method of crystallization of amorphous ribbon. Based on the data of stress exponent and activation energy, they suggested that the creep was controlled by boundary diffusion; while the creep of the same alloy with a larger grain size (257 nm) was controlled by a different mechanism. In the present paper, the authors extend the research to the creep of a nanocrystalline Fe-B-Si alloy. The samples are also prepared by crystallization of amorphous ribbon. The samples such prepared have an advantage that the interfaces are naturally formed without artificial compaction and porosity

  14. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    International Nuclear Information System (INIS)

    Abbas, Y.M.; Mansour, S.A.; Ibrahim, M.H.; Ali, Shehab E.

    2011-01-01

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: → The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. → The transmission electronic microscope analysis confirmed the X-ray results. → The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  15. Printed silver nanowire antennas with low signal loss at high-frequency radio

    Science.gov (United States)

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji

    2012-05-01

    Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those

  16. Improvement of Electrochemical Properties of Lithium–Oxygen Batteries Using a Silver Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Bum; Luo, Xiangyi; Lu, Jun; Shin, Chang Dae; Yoon, Chong Seung; Amine, Khalil; Sun, Yang-Kook

    2015-07-09

    Silver (Ag) electrodes are prepared by an electrodeposition method at -0.25 V versus SCE. To evaluate the effect of particle size on Li–air cells, deposition times are 3, 10, 30, and 300 s. When cycled at a current density of 0.032 mA cm–2, the Ag-deposited electrode for 300 s shows very low polarization corresponding to the oxygen evolution reaction potential at 3.6 V. X-ray diffraction studies confirm that the main discharge product is Li2O2, and the results of scanning electron microscopy and transmission electron microscopy of the discharged electrodes show lithium peroxides at different positions due to the limitation of active sites on silver particles.

  17. Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Varam, Sreedevi; Rajulapati, Koteswararao V., E-mail: kvrse@uohyd.ernet.in; Bhanu Sankara Rao, K.

    2014-02-05

    Nanocrystalline aluminium powder synthesized using high energy ball milling process was characterized by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The studies indicated the powder having an average grain size of ∼42 nm. The consolidation of the powder was carried out by high-pressure compaction using a uni-axial press at room temperature by applying a pressure of 1.5 GPa. The cold compacted bulk sample having a density of ∼98% was subjected to nanoindentation which showed an average hardness and elastic modulus values of 1.67 ± 0.09 GPa and 83 ± 8 GPa respectively at a peak force of 8000 μN and a strain rate of 10{sup −2} s{sup −1}. Achieving good strength along with good ductility is challenging in nanocrystalline metals. When enough sample sizes are not available to measure ductility and other mechanical properties as per ASTM standards, as is the case with nanocrystalline materials, nanoindentation is a very promising technique to evaluate strain rate sensitivity. Strain rate sensitivity is a good measure of ductility and in the present work it is measured by performing indentation at various loads with varying loading rates. Strain rate sensitivity values of 0.024–0.054 are obtained for nanocrystalline Al which are high over conventional coarse grained Al. In addition, Scanning Probe Microscopy (SPM) image of the indent shows that there is some plastically flown region around the indent suggesting that this nanocrystalline aluminium is ductile.

  18. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  19. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  20. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Parnklang, Tewarak; Lamlua, Banjongsak; Gatemala, Harnchana; Thammacharoen, Chuchaat [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Kuimalee, Surasak [Industrial Chemistry and Textile Technology Programme, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Lohwongwatana, Boonrat [Metallurgical Engineering Department, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Ekgasit, Sanong, E-mail: sanong.e@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand)

    2015-03-01

    In this paper we demonstrate a simple and rapid shape transformation of silver nanospheres (AgNSs) to silver nanoplates (AgNPls) using the oxidation and reduction capabilities of hydrogen peroxide. AgNPls having tunable surface plasmon resonance across the visible region with average size of 40–100 nm and thickness of 10–15 nm can be fabricated within 2 min simply by adding H{sub 2}O{sub 2} into a colloid of AgNSs with average particle size of 7 nm. The efficiency of H{sub 2}O{sub 2} as a shape-transforming agent depends strongly on its concentration, pH of the AgNS colloid, and the employed stabilizers. H{sub 2}O{sub 2} oxidizes AgNSs to silver ions while concertedly reduces silver ions to silver atom necessary for the growth of AgNPls. The shape transformation reaction was conducted at a relatively low concentration of H{sub 2}O{sub 2} in order to minimize the oxidative dissolution while facilitating kinetically controlled growth of AgNPls under a near neutral pH. Polyvinyl-pyrrolidone is an effective steric stabilizer preventing aggregation while assisting the growth of AgNPls. Trisodium citrate inhibits the formation of AgNPls under the H{sub 2}O{sub 2} reduction as it forms a stable complex with silver ions capable of withstanding the weakly reducing power of H{sub 2}O{sub 2}. After a complete consumption of AgNSs, large nanoplates grows with an expense of smaller nanoplates. The growth continues until H{sub 2}O{sub 2} is exhausted. A high concentration H{sub 2}O{sub 2} promotes catalytic decomposition of H{sub 2}O{sub 2} on the surface of AgNSs and oxidative dissolution of AgNSs without a formation of AgNPls. - Graphical abstract: Proposed mechanism for the shape transformation of AgNSs to AgNPls induced by the oxidation/reduction of H{sub 2}O{sub 2}. - Highlights: • Rapid shape transformation of silver nanospheres to nanoplates by H{sub 2}O{sub 2}. • Structural change completes in 2 min with a yellow-to-blue color change. • Selective fabrication of