WorldWideScience

Sample records for nanocrystalline ni-fe alloy

  1. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys

    International Nuclear Information System (INIS)

    Sriraman, K.R.; Ganesh Sundara Raman, S.; Seshadri, S.K.

    2007-01-01

    The present work deals with evaluation of corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys. Corrosion behaviour of the coatings deposited on steel substrates was studied using polarization and electrochemical impedance spectroscopy techniques in 3.5% NaCl solution while their passivation behaviour was studied in 1N sulphuric acid solution. The corrosion resistance of Ni-W alloys increased with tungsten content up to 7.54 at.% and then decreased. In case of Ni-Fe-W alloys it increased with tungsten content up to 9.20 at.% and then decreased. The ternary alloy coatings exhibited poor corrosion resistance compared to binary alloy coatings due to preferential dissolution of iron from the matrix. Regardless of composition all the alloys exhibited passivation behaviour over a wide range of potentials due to the formation of tungsten rich film on the surface

  2. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  3. Electrodeposition and characterization of nanocrystalline CoNiFe films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Wang, Q.P. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cai, C. [School of Chemistry and chemical engineering, Ningxia University, Yinchuan 750021 (China); Yuan, Y.N. [Department of Materials and Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cao, F.H. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Z., E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, J.Q. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2012-02-29

    Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} films have been fabricated using cyclic voltammetry technique from the solutions containing sulfate, then characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer. Meanwhile, Electrochemical Impedance Spectroscopy technique has been employed to probe into the nucleation/growth behavior of Co{sub 45}Ni{sub 10}Fe{sub 24} films. The results show that, the obtained Co{sub 45}Ni{sub 10}Fe{sub 24} film possesses low coercivity of 973.3 A/m and high saturation magnetic flux density of 1.59 Multiplication-Sign 10{sup 5} A/m. Under the experimental conditions, the nucleation/growth process of Co{sub 45}Ni{sub 10}Fe{sub 24} films is mainly under activation control. With the increase of the applied cathodic potential bias, the charge transfer resistance for CoNiFe deposition decreases exponentially. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} film is obtained using cyclic voltammetry technique. Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} possesses low coercivity of 973.3 A/m. Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} possesses high saturation magnetic flux density. Black-Right-Pointing-Pointer The nucleation/growth process of CoNiFe films is mainly under activation control. Black-Right-Pointing-Pointer The charge transfer resistance for CoNiFe deposition decreases exponentially.

  4. Structural, mechanical and magnetic study on galvanostatic electroplated nanocrystalline NiFeP thin films

    Science.gov (United States)

    Kalaivani, A.; Senguttuvan, G.; Kannan, R.

    2018-03-01

    Nickel based alloys has a huge applications in microelectronics and micro electromechanical systems owing to its superior soft magnetic properties. With the advantages of simplicity, cost-effectiveness and controllable patterning, electroplating processes has been chosen to fabricate thin films in our work. The soft magnetic NiFeP thin film was successfully deposited over the surface of copper plate through galvanostatic electroplating method by applying constant current density of 10 mA cm-2 for a deposition rate for half an hour. The properties of the deposited NiFeP thin films were analyzed by subjecting it into different physio-chemical characterization such as XRD, SEM, EDAX, AFM and VSM. XRD pattern confirms the formation of NiFeP particles and the structural analysis reveals that the NiFeP particles were uniformly deposited over the surface of copper substrate. The surface roughness analysis of the NiFeP films was done using AFM analysis. The magnetic studies and the hardness of the thin film were evaluated from the VSM and hardness test. The NiFeP thin films possess lower coercivity with higher magnetization value of 69. 36 × 10-3 and 431.92 Gauss.

  5. Forming a structure of the CoNiFe alloys by X-ray irradiation

    Science.gov (United States)

    Valko, Natalia; Kasperovich, Andrey; Koltunowicz, Tomasz N.

    The experimental data of electrodeposition kinetics researches and structure formation of ternary CoNiFe alloys deposited onto low-carbon steel 08kp in the presence of X-rays are presented. Relations of deposit rate, current efficiencies, element and phase compositions of CoNiFe coatings formed from sulfate baths with respect to cathode current densities (0.5-3A/dm2), electrolyte composition and irradiation were obtained. It is shown that, the CoNiFe coatings deposited by the electrochemical method involving exposure of the X-rays are characterized by more perfect morphology surfaces with less developed surface geometry than reference coatings. The effect of the X-ray irradiation on the electrodeposition of CoNiFe coatings promotes formatting of alloys with increased electropositive component and modified phase composition.

  6. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chakraborty, Debasish; Chorkendorff, Ib

    2012-01-01

    A rational design approach was used to develop an alloyed Ni-Fe/Al2O3 catalyst for decomposition of ammonia. The dependence of the catalytic activity is tested as a function of the Ni-to-Fe ratio, the type of Ni-Fe alloy phase, the metal loading and the type of oxide support. In the tests with high...... temperatures and a low NH3-to-H2 ratio, the catalytic activity of the best Ni-Fe/Al2O3 catalyst was found to be comparable or even better to that of a more expensive Ru-based catalyst. Small Ni-Fe nanoparticle sizes are crucial for an optimal overall NH3 conversion because of a structural effect favoring...

  7. Preparation of NiFe binary alloy nanocrystals for nonvolatile memory applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,an idea which applies binary alloy nanocrystal floating gate to nonvolatile memory application was introduced.The relationship between binary alloy’s work function and its composition was discussed theoretically.A nanocrystal floating gate structure with NiFe nanocrystals embedded in SiO2 dielectric layers was fabricated by magnetron sputtering.The micro-structure and composition deviation of the prepared NiFe nanocrystals were also investigated by TEM and EDS.

  8. Features of Pd-Ni-Fe solder system for vacuum brazing of low alloy steels

    International Nuclear Information System (INIS)

    Radzievskij, V.N.; Kurochko, R.S.; Lotsmanov, S.N.; Rymar', V.I.

    1975-01-01

    The brazing solder of the Pd-Ni-Fe alloyed with copper and lithium, in order to decrease the melting point and provide for a better spreading, when soldered in vacuum ensures a uniform strength of soldered joints with the base metal of low-alloyed steels of 34KHNIM-type. The properties of low-alloyed steel joints brazed with the Pd-Ni-Fe-system solder little depend on the changes in the soldering parameters. The soldered joint keeps a homogeneous structure after all the stages of heat treatment (annealing, quenching and tempering)

  9. High-frequency permeability of electroplated CoNiFe and CoNiFe-C alloys

    International Nuclear Information System (INIS)

    Rhen, Fernando M.F.; McCloskey, Paul; O'Donnell, Terence; Roy, Saibal

    2008-01-01

    We have investigated CoNiFe and CoNiFe-C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co 59.4 Fe 27.7 Ni 12.8 show coercivity of 95 A m -1 (1.2 Oe) and magnetization saturation flux (μ 0 M s ) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μ r ' ∼475 up to 30 MHz with a quality factor (Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe-C, which have resistivity and permeability of 85, 38 μΩ cm, μ r '=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe-C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency

  10. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    In this paper, ternary NiFeW alloy coatings were prepared by jet electrodeposition, and the effects of lord salt concentration, jet speed, current density and temperature on the properties of the coatings, including the composition, microhardness, surface morphology, structure and corrosion resistance, were investigated.

  11. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  12. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    International Nuclear Information System (INIS)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita

    2016-01-01

    In this work, Pd:NiFe 2 O 4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe 2 O 4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe 2 O 4 nanoparticle thin film were fabricated. • Pd incorporation in NiFe 2 O 4 matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe 2 O 4 thin film sensor displays excellent long–term stability.

  13. Phase and magnetic studies of the high-energy alloyed Ni-Fe

    Czech Academy of Sciences Publication Activity Database

    Jirásková, Yvonna; Buršík, Jiří; Turek, Ilja; Hapla, Miroslav; Titov, A.; Životský, O.

    2014-01-01

    Roč. 594, May (2014), s. 133-140 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/1350 Grant - others:VŠB(CZ) CZ.1.07/2.3.00/20.0074 Institutional support: RVO:68081723 Keywords : Ni-Fe * mechanical alloying * magnetic properties * microstructure * particle interactions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.999, year: 2014

  14. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  15. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Science.gov (United States)

    Kabir, L.; Mandal, A. R.; Mandal, S. K.

    2010-04-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  16. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    International Nuclear Information System (INIS)

    Kabir, L.; Mandal, A.R.; Mandal, S.K.

    2010-01-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  17. Magnetic regimes in amorphous Ni--Fe--P--B alloys

    International Nuclear Information System (INIS)

    Durand, J.

    1976-10-01

    A complete substitution of iron for nickel was obtained by splat-cooling in amorphous alloys of composition (Ni/sub 100-y/Fe/sub y/) 79 P 13 B 8 . Results of high-field magnetization (up to 70 kOe), ac and dc low-field susceptibility, Curie temperature, and resistivity measurements over a temperature range of 1.7 to 300 0 K are reported. The Ni 79 P 13 B 8 alloy is not ferromagnetic, but the magnetization behavior as a function of field and temperature is typically that of alloys in the critical concentration range for ferromagnetism. The Fe 79 P 13 B 8 alloy is ferromagnetic with a Curie temperature T/sub c/ of 616 0 K. For y = 1 at. percent, the Fe atoms are magnetic. The variation of the moment per Fe atom as a function of y is discussed. When y is increased, the Ni atoms are likely to be polarized progressively and the moment per Ni atom would be roughly constant for y equal to or greater than 30 at. percent. Various magnetic behaviors were defined as a function of the Fe content. The value of T/sub c/ reaches a maximum for y similarly ordered 90 at. percent and extrapolates to zero for y similarly ordered 7 at. percent. Alloys within the range 1 equal to or less than y equal to or less than 10 at. percent did not exhibit well-defined Curie transition, but sharp maxima in low-field susceptibility measurements were observed at T/sub M/. The value of T/sub M/ is proportional to y for 1 equal to or less than y equal to or less than 4 at. percent, as in classical spin-glass regimes. For 4 less than y equal to or less than 10 at. percent, the variation of T/sub M/ as a function of y implies a more complicated type of magnetic ordering (micromagnetism or superparamagnetism). Homogeneous ferromagnetic ordering emerges only for y greater than 10 at. percent. Results of resistivity measurements are discussed in relation to the magnetic properties of different regimes in the magnetic phase diagram. 6 figures, 2 tables

  18. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    Science.gov (United States)

    Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita

    2016-10-01

    In this work, Pd:NiFe2O4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe2O4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost.

  19. Note: Erosion of W-Ni-Fe and W-Cu alloy electrodes in repetitive spark gaps.

    Science.gov (United States)

    Wu, Jiawei; Han, Ruoyu; Ding, Weidong; Qiu, Aici; Tang, Junping

    2018-02-01

    A pair of W-Ni-Fe and W-Cu electrodes were tested under 100 kA level pulsed currents for 10 000 shots, respectively. Surface roughness and morphology characteristics of the two pairs of electrodes were obtained and compared. Experimental results indicated cracks divided the W-Cu electrode surface to polygons while the W-Ni-Fe electrode surface remained as a whole with pits and protrusions. Accordingly, the surface roughness of W-Ni-Fe electrodes increased to ∼3 μm while that of W-Cu electrodes reached ∼7 μm at the end of the test. The results reveal that the W-Ni-Fe alloy has a better erosion resistance and potential to be further applied in spark gaps.

  20. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    International Nuclear Information System (INIS)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  1. Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy

    Science.gov (United States)

    Wang, Changshuai; Su, Haijun; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang

    2017-09-01

    Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy, considered as boiler and turbine materials in 700 °C advanced ultra-supercritical coal-fired power plants, have been investigated by differential thermal analysis and directional solidification quenching technique. Results reveal that P decreases the solidus temperature, but only has negligible influence on liquidus temperature. After P was added, the solidification sequence has no apparent change, but the width of the mushy zone increases and dendritic structures become coarser. Moreover, P increases the amount and changes the morphology of MC carbide. Energy-dispersive spectroscopy analysis reveals that P has obvious influence on the segregation behavior of the constitute elements with equilibrium partition coefficients (ki) far away from unity, whereas has negligible effect on the constituent elements with ki close to unity and has more influence on the final stage of solidification than at early stage. The distribution profiles reveal that P atoms pile up ahead of the solid/liquid (S/L) interface and strongly segregate to the interdendritic liquid region. The influence of P on solidification characteristics and segregation behavior of Ni-Fe-Cr-based alloy could be attributed to the accumulation of P ahead of the S/L interface during solidification.

  2. Certain structural properties of the phase-binder of the alloys in W-Ni-Fe system

    International Nuclear Information System (INIS)

    Minakova, R.V.; Storchak, N.A.; Verkhovodov, P.A.; Bazhenova, L.G.; Poltoratskaya, V.L.

    1980-01-01

    The paper is concerned with effect of cooling conditions and subsequent heat treatment on grain size, lattice parameter and distribution of composing elements in the phase-binder of the W-Ni-Fe-alloy. The X-ray diffraction analysis was used to determine that the phase-binder structure depends on the heat treatment after liquid-phase sintering and consists of coarse grains with a diameter 3-8 mm for the annealed W-Ni-Fe-alloy decreasing to 40-100 μm at slow cooling. The determined change in solubility and of grain interface enrichment with tungsten in the phase-binder

  3. Magnetic Behavior of Ni-Fe Core-Shell and Alloy Nanowires

    Science.gov (United States)

    Tripathy, Jagnyaseni; Vargas, Jose; Spinu, Leonard; Wiley, John

    2013-03-01

    Template assisted synthesis was used to fabricate a series of Ni-Fe core-shell and alloy nanowires. By controlling reaction conditions as well as pore structure, both systems could be targeted and magnetic properties followed as a function of architectures. In the core-shell structure coercivity increases with decrease in shell thickness while for the alloys, coercivity squareness improve with increase pore diameter. Details on the systematic studies of these materials will be presented in terms of hysteretic measurements, including first order reversal curves (FORC), and FMR data. Magnetic variation as a function of structure and nanowire aspect ratios will be presented and the origins of these behaviors discussed. Advanced Material Research Institute

  4. A study on the electrodeposition of NiFe alloy thin films using chronocoulometry and electrochemical quartz crystal microgravimetry

    CERN Document Server

    Myung, N S

    2001-01-01

    Ni, Fe and NiFe alloy thin films were electrodeposited at a polycrystalline Au surface using a range of electrolytes and potentials. Coulometry and EQCM were used for real-time monitoring of electroplating efficiency of the Ni and Fe. The plating efficiency of NiFe alloy thin films was computed with the aid of ICP spectrometry. In general, plating efficiency increased to a steady value with deposition time. Plating efficiency of Fe was lower than that of Ni at -0.85 and -1.0 V but the efficiency approached to the similar plateau value to that of Ni at more negative potentials. The films with higher content of Fe showed different stripping behavior from the ones with higher content of Ni. Finally, compositional data and real-time plating efficiency are presented for films electrodeposited using a range of electrolytes and potentials.

  5. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  6. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    Science.gov (United States)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  7. Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028

    Science.gov (United States)

    Zhang, LiNa; Szpunar, Jerzy A.; Dong, JianXin; Ojo, Olanrewaju A.; Wang, Xu

    2018-03-01

    The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.

  8. Evaluation of alloying effect on the formation of Ni-Fe nanosized powders by pulsed wire discharge

    International Nuclear Information System (INIS)

    Park, Gyu-Hyeon; Lee, Gwang-Yeob; Kim, Hyeon-Ah; Lee, A-Young; Oh, Hye-Ryeong; Kim, Song-Yi; Kim, Do-Hyang; Lee, Min-Ha

    2016-01-01

    Highlights: • Synthesizing Ni-Fe alloy nano-powder employing Ni-plating layer of Fe wire by PWD process. • The mean particle size is decreased with increasing the charging voltage affecting to the super heating factor (K). • The mean particle size of PWD Ni-Fe nanosized powder is accordance with applied voltage. • Uniformity of mean particel size can be controlled by adjusting charging voltage and super heating factor (K). - Abstract: This study investigates the effects of varying the explosion time and charging voltage of pulsed wire discharge (PWD) on the mean particle size, dispersibility and alloying reliability of powders produced from pure Ni and Ni-plated Fe wires. It was found that with increasing charging voltage, the mean particle size of Ni powders is reduced from 40.11 ± 0.23 to 25.63 ± 0.07 nm, which is attributed to a change in the extent of super heating with particle size. Nanosized powders of Ni-Fe alloy with a mean particle size between 25.91 ± 0.24 and 26.30 ± 0.26 nm were also successfully fabricated and found to consist of particles with a γ-(Ni/Fe) core and FeO shell. The reliability for the optimization of processing parameters to control particle sizes is also evaluated.

  9. Evaluation of alloying effect on the formation of Ni-Fe nanosized powders by pulsed wire discharge

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyu-Hyeon [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Lee, Gwang-Yeob [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyeon-Ah [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, A-Young; Oh, Hye-Ryeong; Kim, Song-Yi [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Kim, Do-Hyang [Deparment of Advanced Materials Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Min-Ha, E-mail: mhlee1@kitech.re.kr [Advanced Functional Materials R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of)

    2016-10-15

    Highlights: • Synthesizing Ni-Fe alloy nano-powder employing Ni-plating layer of Fe wire by PWD process. • The mean particle size is decreased with increasing the charging voltage affecting to the super heating factor (K). • The mean particle size of PWD Ni-Fe nanosized powder is accordance with applied voltage. • Uniformity of mean particel size can be controlled by adjusting charging voltage and super heating factor (K). - Abstract: This study investigates the effects of varying the explosion time and charging voltage of pulsed wire discharge (PWD) on the mean particle size, dispersibility and alloying reliability of powders produced from pure Ni and Ni-plated Fe wires. It was found that with increasing charging voltage, the mean particle size of Ni powders is reduced from 40.11 ± 0.23 to 25.63 ± 0.07 nm, which is attributed to a change in the extent of super heating with particle size. Nanosized powders of Ni-Fe alloy with a mean particle size between 25.91 ± 0.24 and 26.30 ± 0.26 nm were also successfully fabricated and found to consist of particles with a γ-(Ni/Fe) core and FeO shell. The reliability for the optimization of processing parameters to control particle sizes is also evaluated.

  10. Irradiation-induced softening of Ni3P and (Ni, Fe, Cr)3P alloys

    International Nuclear Information System (INIS)

    Schumacher, G.; Miekeley, W.; Wahi, R.P.

    1993-01-01

    Production of amorphous alloys by solid state reactions (SSR) has attracted much interest during the last few years. One of the methods to induce such a reaction is the irradiation of suitable crystalline alloys by fast particles. Examination of this kind of SSR in M 3 P type of brazing alloys (M: Metal) is attractive because of the following reason: In brazed joints of candidate structural materials like 316L stainless steel for applications in fusion reactors, crystalline intermetallic phases have been detected which are unstable relative to the amorphous state when irradiated at moderate temperatures with fast particles. It is expected that the transition to the amorphous state is accompanied by changes of the mechanical properties, which are of fundamental interest in this context. Until now, only a few studies on the evolution of mechanical properties during amorphization have been performed. Measurements of microhardness of the crystalline and the corresponding amorphous phase do not exist to the authors knowledge. In this communication, the authors present results on changes of microhardness, due to amorphization by fast ions. The measurements have been performed on a model alloy Ni 3 P and on the brazed joint of stainless steel 316L, containing M 3 P (M: Ni, Fe, Cr) as one of the phases. Though microhardness is not a fundamental property of materials, it is a manifestation of several related properties, such as yield stress, ductility, work-hardening, elastic modulus and residual stress states. It represents a resistance for indentation and is, therefore, appropriate for comparative purposes

  11. Stress corrosion cracking of Ni-Fe-Cr alloys in acid sulfate environments relevant to CANDU steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, S.Y.; Carcea, A.G., E-mail: suraj.persaud@mail.utoronto.ca [Univ. of Toronto, Toronto, ON (Canada); Huang, J.; Korinek, A.; Botton, G.A. [McMaster Univ., Hamilton, ON (Canada); Newman, R.C. [Univ. of Toronto, Toronto, ON (Canada)

    2014-07-01

    Ni-Fe-Cr alloys used in nuclear plants have been found susceptible to stress corrosion cracking (SCC) in acid sulfate environments. Electrochemical measurements and SCC tests were done using Ni, Alloy 600, and Alloy 800 in acid sulfate solutions at 315 {sup o}C. Electrochemical measurements suggested that sulfate is a particularly aggressive anion in mixed chloride systems. Cracks with lengths in excess of 300 μm were present on stressed Alloy 800 samples after 60 hours. High resolution analytical electron microscopy was used to extract a crack tip from an Alloy 800 sample and draw final conclusions with respect to the mechanism of SCC. (author)

  12. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  13. Theoretical analysis of experimental tracer and interdiffusion data in Cu-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Belova, I.V.; Murch, G.E.; Filipek, R.; Danielewski, M.

    2005-01-01

    In this paper, we present strategies to extract fundamental atomistic information from measured diffusion coefficients in a ternary alloy system. The strategies are exemplified with Cu-Ni-Fe alloys at 1271 K where recent extensive interdiffusion coefficients and tracer diffusion coefficients for all three components have become available. We develop new defining phenomenological expressions for the vacancy-wind factors in terms of the diffusion coefficients. We show that the measured tracer diffusion coefficients can be processed using the Manning and Moleko, Allnatt and Allnatt random alloy diffusion kinetics formalisms (with and without the assumption of the Gibbs-Duhem relation between the thermodynamic activities) to give jump frequencies, tracer correlation factors, vacancy-wind factors and phenomenological coefficients. It is shown for example that Cu is generally the most correlated component in its diffusion behavior and that the off-diagonal phenomenological coefficients can be as high as 64% of the smallest of the diagonal phenomenological coefficients. It is also shown that the Darken formalism (which ignores off-diagonal phenomenological coefficients) is in fact a reasonable approximation for expressing the diagonal phenomenological coefficients in terms of the tracer diffusion coefficients. It is then shown how the measured interdiffusivities can be processed with these formalisms to give tracer diffusivities, vacancy-wind factors and phenomenological coefficients. Finally, we show how a straightforward strategy starting with the Darken analysis that is then followed by the Manning or Moleko, Allnatt and Allnatt analysis can be used to gain access to the vacancy-wind factors and the off-diagonal phenomenological coefficients

  14. The chemical composition and parameters of production processes influence on structure and properties of W-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Majewski, T.; Przetakiewicz, W.

    2000-01-01

    Tungsten heavy alloys, i.e. tungsten based metal-matrix composites are characterized by unique properties, because except their high hardness, strength and density, they also possess excellent ductility, impact strength, machinability and corrosion resistance. This combination of properties makes these alloys suitable for wide range of engineering applications, e.g. in the mechanical engineering, in the mining, sport and medicine and also in the armament and aviation. Production process of these materials consists of many phases and it is very difficult to accomplish, because properties of heavy alloys are extremely sensitive to processing history. In this article dependence of chemical composition of mixture of powders on structure and mechanical properties of W-Ni-Fe alloys was determined. It was found that increase of tungsten contents and Ni/Fe ratio causes reduction of ductility and increase of growth rate of tungsten particle. There is the maximum ultimate tensile strength of W-Ni-Fe alloys with content of tungsten 93%. The study also presents relationship between these properties and succeeding parameters of production process: composition of sintering atmosphere, time and temperature following heat treatment and plastic working. Using a wet hydrogen atmosphere (with high dew point) causes reduction of porosity and improvement of mechanical properties. With sintering temperature above 1500 o C these parameters decrease. If the sintering time is elongated above 1 h also density and mechanical properties of heavy alloys decrease. Tungsten heavy alloys are also used for production of kinetic energy penetrators and so properties for different range of strain rates were compared. It was found that yield and failure strengths increase with increasing strain rate, failure strain decreases with increasing strain rate. This information can help in optimization the production process of such composites. (author)

  15. Nanocrystalline Pd:NiFe{sub 2}O{sub 4} thin films: A selective ethanol gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita, E-mail: smb.agc@gmail.com

    2016-10-15

    In this work, Pd:NiFe{sub 2}O{sub 4} thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe{sub 2}O{sub 4} thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe{sub 2}O{sub 4} nanoparticle thin film were fabricated. • Pd incorporation in NiFe{sub 2}O{sub 4} matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe{sub 2}O{sub 4} thin film sensor displays excellent long–term stability.

  16. Study of the microstructure and of microhardness variation of a Ni-Fe-Cr austenitic alloy by niobium

    International Nuclear Information System (INIS)

    Carvalho e Camargo, M.U. de; Lucki, G.

    1979-01-01

    The mechanisms of hardening and corrosion resistance increase in Ni-Fe-Cr austenitic stainless steels by Nb additions are of interest to nuclear technology Niobium additions to a 321 type stainless steel were made in order to study the microhardness, electrical resistivity and metallography. Experimental measurements results are shown. The effect of Nb additions as a micro-alloying element and the thermal and mechanical processes (cold working in particular) in the microstructure and microhardness properties of the 11% Ni - 70%Fe - 17% Cr austenitic alloys were studied. (Author) [pt

  17. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  18. Moessbauer study of Mg-Ni(Fe) alloys processed as materials for solid state hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P.; Principi, G., E-mail: giovanni.principi@unipd.it; Sartori, S.; Maddalena, A. [Universita di Padova, Settore Materiali, DIM (Italy); Lo Russo, S. [Universita di Padova, Dipartimento di Fisica (Italy); Schinteie, G.; Kuncser, V.; Filoti, G. [National Institute for Materials Physics, Solid State Magnetism Department (Romania)

    2006-02-15

    Mg-Ni-Fe magnesium-rich intermetallic compounds were prepared following two distinct routes. A Mg{sub 88}Ni{sub 11}Fe{sub 1} sample (A) was prepared by melt spinning Mg-Ni-Fe pellets and then by high-energy ball milling for 6 h the obtained ribbons. A (MgH{sub 2}){sub 88}Ni{sub 11}Fe{sub 1} sample (B) was obtained by high-energy ball milling for 20 h a mixture of Ni, Fe and MgH{sub 2} powders in the due proportions. A SPEX8000 shaker mill with a 10:1 ball to powder ratio was used for milling in argon atmosphere. The samples were submitted to repeated hydrogen absorption/desorption cycles in a Sievert type gas-solid reaction controller at temperatures in the range 520 - 590 K and a maximum pressure of 2.5 MPa during absorption. The samples were analysed before and after the hydrogen absorption/desorption cycles by X-ray diffraction and Moessbauer spectroscopy. The results concerning the hydrogen storage properties of the studied compounds are discussed in connection with the micro-structural characteristics found by means of the used analytical techniques. The improved kinetics of hydrogen desorption for sample A, in comparison to sample B, has been ascribed to the different behaviour of iron atoms in the two cases, as proved by Moessbauer spectroscopy. In fact, iron results homogeneously distributed in sample A, partly at the Mg{sub 2}Ni grain boundaries, with catalytic effect on the gas-solid reaction; in sample B, instead, iron is dispersed inside the hydride powder as metallic iron or superparamagnetic iron.

  19. Hydrogen induced dis-proportionation studies on Zr-Co-M (M=Ni, Fe, Ti) ternary alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.; Sastry, P.U.; Jayakrishnan, V.B.

    2016-01-01

    The intermetallic compound ZrCo is considered as a suitable material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER). However, upon repeated hydriding-dehydriding cycles, the hydrogen storage capacity of ZrCo decreases, which is attributed to the disproportionate reaction ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The reduction of hydrogen storage capacity of ZrCo is not desirable for its use in tritium facilities. In our previous studies, attempts were made to improve the durability of ZrCo against dis-proportionation by including a third element. The present study is aimed to investigate the hydrogen induced dis-proportionation of Zr-Co-M (M=Ni, Fe and Ti) ternary alloys under hydrogen delivery conditions

  20. Synthesis of nano-crystalline NiFe2O4 powders in subcritical and supercritical ethanol

    Czech Academy of Sciences Publication Activity Database

    Ćosović, A.; Žák, Tomáš; Glisić, S.; Sokić, M.; Lazarević, S.; Ćosović, V.; Orlović, A.

    2016-01-01

    Roč. 113, JUL (2016), s. 96-105 ISSN 0896-8446 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : supercritical * subcritical * nano-crystalline powders * nickel ferrite * metal oxide * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.991, year: 2016

  1. Probing exotic magnetic phases and electrical transport in Cr-rich γ-NiFeCr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Pampa [S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Majumdar, A.K., E-mail: akm@bose.res.in [S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Ramakrishna Mission Vivekananda University, PO Belur Math, Howrah 711202 (India); Nigam, A.K. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2015-05-01

    We have identified ferromagnetic, antiferromagnetic, and re-entrant spin-glass-like phases in Cr-rich γ-NiFeCr alloys and studied their critical magnetic behavior. Their electrical resistivity exhibits distinct minima between 10 and 24 K with ρ∞−√T due to electron–electron interaction effects. Electron–phonon and electron–magnon contributions to ρ are isolated. The magnetoresistance shows hysteresis effects, a signature of spin-glass-like phases and a sign reversal with change of magnetic states. We have also observed that the nature of magnetic states strongly depends on the concentration of Fe and Cr. In this system, even a small amount of Fe enhances ferromagnetism a lot while addition of a little bit of Cr suppresses ferromagnetism and takes the system to the antiferromagnetic regime. The correlation between the magnetic and the electrical properties are more meaningful here since both studies were done on the same set of samples which have rather high melting points. - Highlights: • Identified ferro, antiferro, and re-entrant spin-glass phases in Ni–Fe–Cr alloys. • Resistivity ρ~−√T shows minima from 10–24 K due to electron–electron interaction. • Electron–phonon and electron–magnon contributions to ρ are isolated. • Magneto-transport measurements strengthened the magnetic phases identified. • Correlation in magnetic/electrical properties more meaningful if same samples used.

  2. Effect of cathode vibration and heat treatment on electromagnetic properties of flake-shaped diatomite coated with Ni-Fe alloy by electroplating

    Science.gov (United States)

    Lan, Mingming; Li, Huiqin; Huang, Weihua; Xu, Guangyin; Li, Yan

    2015-03-01

    In this paper, flake-shaped diatomite particles were used as forming templates for the fabrication of the ferromagnetic functional fillers by way of electroplating Ni-Fe alloy method. The effects of cathode vibration frequency on the content of Ni-Fe alloy in the coating and the surface morphologies of the coatings were evaluated. The electromagnetic properties of the coated diatomite particles before and after heat treatment were also investigated in detail. The results show that the core-shell flake-shaped diatomite particles with high content of Ni-Fe alloy and good surface qualities of the coatings can be obtained by adjusting cathode vibration frequency. The coated diatomite particles with heat treatment filled paraffin wax composites exhibit a superior microwave absorbing and electromagnetic properties compared to the non-heat treated samples. Additionally, the peaks of reflection loss are found to be able to shift to lower frequency by the heat treatment process, which indicates the heat treatment can adjust microwave absorbing frequency band.

  3. Microstructural and magnetic characterization of iron precipitation in Ni-Fe-Al alloys

    International Nuclear Information System (INIS)

    Duman, Nagehan; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2011-01-01

    The influence of annealing on the microstructural evolution and magnetic properties of Ni 50 Fe x Al 50-x alloys for x = 20, 25, and 30 has been investigated. Solidification microstructures of as-cast alloys reveal coarse grains of a single B2 type β-phase and typical off eutectic microstructure consisting of proeutectic B2 type β dendrites and interdendritic eutectic for x = 20 and x > 20 at.% Fe respectively. However, annealing at 1073 K results in the formation of FCC γ-phase particles along the grain boundaries as well as grain interior in x = 20 at.% Fe alloy. The volume fraction of interdentritic eutectic regions tend to decrease and their morphologies start to degenerate by forming FCC γ-phase for x > 20 at.% Fe alloys with increasing annealing temperatures. Increasing Fe content of alloys induce an enhancement in magnetization and a rise in the Curie transition temperature (T C ). Temperature scan magnetic measurements and transmission electron microscopy reveal that a transient rise in the magnetization at temperatures well above the T C of the alloys would be attributed to the precipitation of a nano-scale ferromagnetic BCC α-Fe phase. Retained magnetization above the Curie transition temperature of alloy matrix, together with enhanced room temperature saturation magnetization of alloys annealed at favorable temperatures support the presence of ferromagnetic precipitates. These nano-scale precipitates are shown to induce significant precipitation hardening of the β-phase in conjunction with enhanced room temperature saturation magnetization in particular when an annealing temperature of 673 K is used. - Research Highlights: → Evolution of microstructure and magnetic properties with varying Fe content. → Transient rise in magnetization via the formation of ferromagnetic phase. → Enhancements in saturation magnetization owing to precipitated ferromagnetic phase. → Nanoscale precipitation of ferromagnetic BCC α-Fe confirmed by TEM.

  4. Microstructure, Texture, and Mechanical Behavior of As-cast Ni-Fe-W Matrix Alloy

    Science.gov (United States)

    Rao, A. Sambasiva; Manda, Premkumar; Mohan, M. K.; Nandy, T. K.; Singh, A. K.

    2018-04-01

    This article describes the tensile properties, flow, and work-hardening behavior of an experimental alloy 53Ni-29Fe-18W in as-cast condition. The microstructure of the alloy 53Ni-29Fe-18W displays single phase (fcc) in as-cast condition along with typical dendritic features. The bulk texture of the as-cast alloy reveals the triclinic sample symmetry and characteristic nature of coarse-grained materials. The alloy exhibits maximum strength ( σ YS and σ UTS) values along the transverse direction. The elongation values are maximum and minimum along the transverse and longitudinal directions, respectively. Tensile fracture surfaces of both the longitudinal and transverse samples display complete ductile fracture features. Two types of slip lines, namely, planar and intersecting, are observed in deformed specimens and the density of slip lines increases with increasing the amount of deformation. The alloy displays moderate in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values, respectively. The instantaneous or work-hardening rate curves portray three typical stages (I through III) along both the longitudinal and transverse directions. The alloy exhibits dislocation-controlled strain hardening during tensile testing, and slip is the predominant deformation mechanism.

  5. Study the microstructure of three and four component phases in Al-Ni-Fe-La alloys

    KAUST Repository

    Kolobylina, Natalia

    2016-12-21

    Aluminium alloys play a key role in modern engineering since they are the most used non-ferrous material. They have been widely used in automotive, aerospace, and construction engineering due to their good corrosion resistance, superior mechanical properties along with good machinability, weldability, and relatively low cost. The progress in practical application has been determined by intensive research and development works on the Al alloys. A new class of Al–REM–TM aluminum alloys (REM indicates rare earth metal and TM is transition metal) was revealed in the end of the last century. These alloys differ from conventional ones by their extraordinary ability to form metal glasses and nanoscale composites in a wide range of compositions. Having low density, these alloys possess unique mechanical characteristics and corrosion resistance. Two as received alloys, namely Al85Ni9Fe2La4 and Al85Ni7Fe4La4 were obtained in the form of ingots from melts of corresponding compositions upon cooling in air were studied by scanning/transmission electron microscopy (STEM), energy dispersive X-ray (EDX) microanalysis and X-ray diffraction (XRD). The microstructural analyses were performed in a aberration corrected TITAN 80-300 TEM/STEM (FEI, USA) attached with EDX spectrometer with ultrathin window (EDAX, USA). The specimens for transmission electron microscopy (TEM) were prepared by an electrochemical or ion etching. It was found that the received alloys exhibits along with fcc Al and Al4La (Al11La3) particles, these alloys contain a ternary phase Al3Ni1 Fe isostructural to the Al3Ni phase and a quaternary phase Al8Fe2 NiLa isostructural to the Al8Fe2Eu phase and monoclinic phase Al9(Fe,Ni)2 isostructural to the Al9Co2. The study by HRSTEM together with a new atomic resolution energy dispersive X-ray microanalysis method demonstrated that Fe and Ni atoms substituted one another in the Al8Fe2–NiLa quaternary compound. Besides, several types of defects were determined: first

  6. Near boundary acoustic streaming in Ni-Fe alloy electrodeposition control

    DEFF Research Database (Denmark)

    Pocwiardowski, Pawel; Lasota, H.; Ravn, Christian

    2005-01-01

    Alloy electrodeposition is strongly influenced by diffusion layer phenomena affecting the ion concentration distribution in a different way for each component. This paper presents the method of acoustic agitation leading to controlled uniform electrodeposition of alloys. The method consists...... in generating acoustic flow perpendicular to the surface in the field of an acoustic standing wave parallel to the plated substrate - so called modified Rayleigh streaming. The result showed that the near boundary streaming offers controlled mass transportation in the micrometer thick layer close to the cathode...

  7. THE BEHAVIOR OF SOLUBLE METALS ELUTED FROM Ni/Fe-BASED ALLOY REACTORS AFTER HIGH-TEMPERATURE AND HIGH-PRESSURE WATER PROCESS

    Directory of Open Access Journals (Sweden)

    M. Faisal

    2012-05-01

    Full Text Available The behavior of heavy metals eluted from the wall of Ni/Fe-based alloy reactors after high-temperature and high-pressure water reaction were studied at temperatures ranging from 250 to 400oC. For this purpose, water and cysteic acid were heated in two reactor materials which are SUS 316 and Inconel 625. Under the tested conditions, the erratic behaviors of soluble metals eluted from the wall of Ni/Fe-based alloy in high temperature water were observed. Results showed that metals could be eluted even at a short contact time. The presence of air also promotes elution at sub-critical conditions. At sub-critical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. It was observed that eluted metals tend to increased under acidic conditions and most of those metals were over the limit of WHO guideline for drinking water. The results are significant both on the viewpoint of environmental regulation on disposal of wastes containing heavy metals, toxicity of resulting product and catalytic effect on a particular reaction.

  8. The scale constituents and spalling characteristics of Ni-Fe(O-60%) alloys oxidized in air at 800-12000C

    International Nuclear Information System (INIS)

    Tomlinson, W.J.; Gardner, M.J.; Kowalski, R.J.

    1977-01-01

    The spalling behaviour of scales on Ni-Fe alloys containing 0, 2, 10, 20, 30, 40, 50 and 60% Fe oxidized in air at 900, 1000, 1100 and 1200 0 C for periods up to 165 h have been investigated. The phases present and their relative amounts in the scales formed at 1200 0 C have been determined. Spalling was most severe in the Ni-30% Fe alloy, which had a scale consisting of 30% Nisub(x)Fesub(3-x)O 4 and 70% Nisub(1-x)Fesub(x)O. (author)

  9. Diffusion of 51Cr along high-diffusivity paths in Ni-Fe alloys

    International Nuclear Information System (INIS)

    Cermak, J.

    1990-01-01

    Penetration profiles of 51 Cr in polycrystalline alloys Ni-xFe (x = 0, 20, 40, and 60 wt.% Fe) after diffusion anneals at temperatures between 693 and 1473 K are studied. Sectioning of diffusion zones of samples annealed above 858 K is carried out by grinding, at lower temperatures by DC glow discharge sputtering. The concentration of 51 Cr in depth x is assumed to be proportional to relative radioactivity of individual sections. With help of volume and pipe self-diffusion data taken from literature, the temperature dependence of product P = δD g (δ and D g are grain boundary width and grain boundary diffusion coefficient, respectively) is obtained: P = (2.68 - 0.88 +1.3 ) x 10 -11 exp [-(221.3 ± 3.0) kJ/mol/RT]m 3 /s. This result agrees well with the previous measurements of 51 Cr diffusivity in Fe-18 Cr-12 Ni and Fe-21 Cr-31 Ni. It indicates that the mean chemical composition of Fe-Cr-Ni ternary alloys is not a dominant factor affecting the grain boundary diffusivity of Cr in these alloys. (author)

  10. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Donoso, E.

    2014-01-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi 3 phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi 3 phase. (Author)

  11. Radiation influence on properties of nanocrystalline alloy

    International Nuclear Information System (INIS)

    Holkova, D.; Sitek, J.; Novak, P.; Dekan, J.

    2016-01-01

    Our work is focused on the studied of structural changes amorphous and nanocrystalline alloys after irradiation with electrons. For the analysis of these alloy we use two spectroscopic methods: Moessbauer spectroscopy and XRD. Measurements of nanocrystalline (Fe 3 Ni 1 ) 81 Nb 7 B 12 samples before and after electrons irradiation by means of Moessbauer spectroscopy and XRD showed that the electrons causes changes in magnetic structure which is reflected changes of direction of net magnetic moment. Structural changes occurs in the frame of error indicated by both spectroscopic methods. We can confirm that this kind alloys a resistive again electrons irradiation up to doses of 4 MGy. We observed in this frame only beginning of the radiation damage. (authors)

  12. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys; Estudio cinetico de las reacciones de recocido en aleaciones de Cu-Ni-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2014-07-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi{sub 3} phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi{sub 3} phase. (Author)

  13. Low pressure plasma spray deposition of W-Ni-Fe alloy

    International Nuclear Information System (INIS)

    Mutasim, Z.Z.; Smith, R.W.

    1991-01-01

    The production of net shape refractory metal structural preforms are increasing in importance in chemical processing, defense and aerospace applications. Conventional methods become limited for refractory metal processing due to the high melting temperatures and fabrication difficulties. Plasma spray forming, a high temperature process, has been shown to be capable of refractory metal powder consolidation in net shape products. The research reported here has evaluated this method for the deposition of heavy tungsten alloys. Plasma Melted Rapidly Solidified (PMRS) W 8%Ni-2%Fe refractory metal powders were spray formed using vacuum plasma spray (VPS) process and produced 99% dense, fine grain and homogeneous microstructures. In this paper plasma operating parameters (plasma arc gas type and flowrate plasma gun nozzle size and spray distance) were studied and their effects on deposit's density and microstructure are reported

  14. Negative and positive magnetocaloric effect in Ni-Fe-Mn-Ga alloy

    International Nuclear Information System (INIS)

    Duan Jingfang; Huang Peng; Zhang Hu; Long Yi; Wu Guangheng; Rongchang Ye; Chang Yongqin; Farong Wan

    2007-01-01

    The phase transition process and magnetic entropy change ΔS of Ni 54.5 FeMn 20 Ga 24.5 alloy were studied. Substitution of Fe for Ni increases the Curie temperature and decreases the temperature of martensitic phase transition. The transition from ferromagnetic martensitic to ferrormagnetic austenitic state leads to an abrupt increase of magnetization below 0.5T and an abrupt decrease of magnetization above 0.5T. The sign of ΔS changes from positive to negative with increasing the applied field from 0.5 to 2T. The maximal value of the positive magnetic entropy change ΔS is about 3.1J/kgK for the applied field from 0 to 0.5T. The increase of applied field from 1.5T results in a negative ΔS. The peak of negative ΔS is -2.1J/kgK for a field change of 2T

  15. Creation of submicrocrystalline structure and enhancing of functional properties of Ti-Ni-Fe alloys with the shape-memory effect using equichannel-angular pressing (ECAP)

    International Nuclear Information System (INIS)

    Prokoshkin, S.D.; Belousov, M.N.; Abramov, V.Ya.

    2007-01-01

    Methods of X-ray diffraction analysis, transmission electron microscopy, mechanical and thermomechanical tests are used to study structure, mechanical and service properties of Ti-Ni-Fe system shape memory alloys (Ti-47.6 % Ni-2.4 % Fe; Ti-47 % Ni-3 % Fe; Ti-46.6 % Ni-3.4 % Fe). The alloys are subjected to hardening, high temperature thermomechanical treatment (HTMT) and equal-channel angular pressing (EChAP). Thermomechanical connecting pieces of given alloys are tested for carrying capacity and low temperature stability. It is established that the use of EChAP and post-deformation annealing at pressing temperature provides more high properties of the alloys in comparison with hardening and HTMT [ru

  16. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    International Nuclear Information System (INIS)

    Mousavi, S. A. A. Akbari; Ebrahimzadeh, H.

    2011-01-01

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  17. Effect of magnetic field annealing on the magneto-elastic properties of nanocrystalline NiFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Sowmya, N. Shara [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India); National Institute of Technology, Warangal 506004 (India); Srinivas, A., E-mail: adirajs@gmail.com [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India); Saravanan, P. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India); Reddy, K. Venu Gopal [National Institute of Technology, Warangal 506004 (India); Reddy, Monaji Vinitha; Das, Dibakar [School of Engineering Science and Technology, University of Hyderabad, Hyderabad 500 046 (India); Kamat, S.V. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India)

    2017-08-15

    Highlights: • NiFe{sub 2}O{sub 4} was processed by citrate-gel method followed by magnetic-field annealing. • Field-annealing resulted in induced magneto-crystalline anisotropy. • M{sub s} of 41 emu/g and λ{sub s} of −40 ppm at 2 kOe was achieved after field-annealing. • Maximum strain sensitivity ‘q’ of −3.3 ppm/Oe was obtained at 5 Oe. • Schematic was proposed and explained using atomic-pair ordering theory. - Abstract: The effect of magnetic-field annealing on the strain sensitivity (q) and saturation magnetostriction (λ{sub s}) of NiFe{sub 2}O{sub 4} nanoparticles synthesized by citrate-gel method was investigated. The use of field-annealing resulted in improved magnetoelastic properties at the expense of coercivity. A maximum λ{sub s} of −40 ppm at 2 kOe, associated with q value of −3.3 ppm/Oe at 5 Oe was achieved in the field-annealed NiFe{sub 2}O{sub 4}.

  18. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  19. Tailoring and patterning the grain size of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  20. Study of the ternary alloy systems Al-Ni-Fe and Al-Cu-Ru with special regard to quasicrystalline phases

    International Nuclear Information System (INIS)

    Lemmerz, U.

    1996-07-01

    Two ternary alloy-systems, the Al-Ni-Fe system and the Al-Cu-Ru system were studied with special regard to quasicrystalline phases. Isothermal sections were established in both systems in the stoichiometric area of the quasicrystalline phase. In the Al-Ni-Fe system a new stable decagonal phase was found. Its stoichiometric range is very small around Al 71.6 Ni 23.0 Fe 5.4 . The temperature range in which it is stable lies between 847 and 930 C. The decagonal phase undergoes a eutectoid reaction to the three crystalline phases Al 3 Ni 2 , Al 3 Ni and Al 13 Fe 4 at 847 C. It melts peritectically at 930 C forming Al 13 Fe 4 , Al 3 Ni 2 and a liquid. The investigations in the Al-Cu-Ru system concentrated on the phase equilibria between the icosahedral phase and its neighbouring phases in a temperature range between 600 and 1000 C. The icosahedral phase was observed in the whole temperature range. The investigated stoichiometric area extends down to Al contents of 45%, which allows the fields of existence to be determined for the ternary phases α-AlCuRu, the icosahedral phase and Al 7 Cu 2 Ru. Binary phases were determined down to the upper (high Al content) border of AlRu. No hitherto unknown phase was observed in the investigated area. Rietveld analyses were carried out on α-AlCuRu and Al 7 Cu 2 Ru showing some discrepancies from the α-AlMnSi structure taken as a base for α-AlCuRu and confirming the Al 7 Cu 2 Fe structure for Al 7 Cu 2 Ru. (orig.)

  1. Thermodynamic and experimental study on phase stability in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Xu Wenwu; Song Xiaoyan; Lu Nianduan; Huang Chuan

    2010-01-01

    Nanocrystalline alloys exhibit apparently different phase transformation characteristics in comparison to the conventional polycrystalline alloys. The special phase stability and phase transformation behavior, as well as the essential mechanisms of the nanocrystalline alloys, were described quantitatively in a nanothermodynamic point of view. By introducing the relationship between the excess volume at the grain boundary and the nanograin size, the Gibbs free energy was determined distinctly as a function of temperature and the nanograin size. Accordingly, the grain-size-dependence of the phase stability and phase transformation characteristics of the nanocrystalline alloy were calculated systematically, and the correlations between the phase constitution, the phase transformation temperature and the critical nanograin size were predicted. A series of experiments was performed to investigate the phase transformations at room temperature and high temperatures using the nanocrystalline Sm 2 Co 17 alloy as an example. The phase constitution and phase transformation sequence found in nanocrystalline Sm 2 Co 17 alloys with various grain-size levels agree well with the calculations by the nanothermodynamic model.

  2. Fabrication and electromagnetic properties of bio-based helical soft-core particles by way of Ni-Fe alloy electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Lan Mingming, E-mail: lan_mingming@163.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Zhang Deyuan; Cai Jun; Zhang Wenqiang; Yuan Liming [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2011-12-15

    Ni-Fe alloy electroplating was used as a bio-limited forming process to fabricate bio-based helical soft-core ferromagnetic particles, and a low frequency vibration device was applied to the cathode to avoid microorganism (Spirulina platens) cells adhesion to the copper net during the course of plating. The morphologies and ingredients of the coated Spirulina cells were characterized using scanning electron microscopy and energy dispersive spectrometer. The complex permittivity and permeability of the samples containing the coated Spirulina cells before and after heat treatment were measured and investigated by a vector network analyzer. The results show that the Spirulina cells after plating keep their initial helical shape, and applying low frequency vibration to the copper net cathode in the plating process can effectively prevent agglomeration and intertwinement of the Spirulina cells. The microwave absorbing and electromagnetic properties of the samples containing the coated Spirulina cells particles with heat treatment are superior to those samples containing the coated Spirulina cells particles without heat treatment. - Highlights: > We used the microorganism cells as forming template to fabricate the bio-based helical soft-core ferromagnetic particles. > Microorganism selected as forming templates was Spirulina platens, which are of natural helical shape and have high aspect ratio. > Coated Spirulina cells were a kind lightweight ferromagnetic particle.

  3. Creep behavior of a nanocrystalline Fe-B-Si alloy

    International Nuclear Information System (INIS)

    Xiao, M.; Kong, Q.P.

    1997-01-01

    The research of nanocrystalline materials has attracted much attention in the world. In recent years, there have been several studies on their creep behavior. Among these, the authors have studied the tensile creep of a nanocrystalline Ni-P alloy (28 nm) at temperatures around 0.5 Tm (Tm is the melting point). The samples were prepared by the method of crystallization of amorphous ribbon. Based on the data of stress exponent and activation energy, they suggested that the creep was controlled by boundary diffusion; while the creep of the same alloy with a larger grain size (257 nm) was controlled by a different mechanism. In the present paper, the authors extend the research to the creep of a nanocrystalline Fe-B-Si alloy. The samples are also prepared by crystallization of amorphous ribbon. The samples such prepared have an advantage that the interfaces are naturally formed without artificial compaction and porosity

  4. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  5. Studies on polyethylene glycol coating on NiFe2O4 nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Phadatare, M.R.; Khot, V.M.; Salunkhe, A.B.; Thorat, N.D.; Pawar, S.H.

    2012-01-01

    The NiFe 2 O 4 nanoparticles were prepared by the combustion method and these nanoparticles were successfully coated with polyethylene glycol (PEG) for the possible biomedical applications such as magnetic resonance imaging, drug delivery, tissue repair, magnetic fluid hyperthermia etc. The structural and magnetic characterizations of NiFe 2 O 4 nanoparticles were carried out by x-ray diffraction and vibrating sample magnetometry techniques, respectively. The morphology of the uncoated and coated nanoparticles was studied by scanning electron microscopy. The existence of PEG layer on NiFe 2 O 4 nanoparticles was confirmed by fourier transform infrared spectroscopy technique. - Highlights: ► Synthesis of nanocrystalline NiFe 2 O 4 by the combustion method. ► Magnetic properties of the NiFe 2 O 4 nanoparticles at room temperature. ► Coating of NiFe 2 O 4 nanoparticles by Polyethylene glycol (PEG).

  6. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    Science.gov (United States)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  7. Stress-induced magnetic anisotropy in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Varga, L.K.; Gercsi, Zs.; Kovacs, Gy.; Kakay, A.; Mazaleyrat, F.

    2003-01-01

    Stress-annealing experiments were extended to both nanocrystalline alloy families, Finemet and Nanoperm (Hitperm), and, for comparison, to amorphous Fe 62 Nb 8 B 30 alloy. For both Finemet and bulk amorphous, stress-annealing results in a strong induced transversal anisotropy (flattening of hysteresis loop) but yields longitudinal induced anisotropy (square hysteresis loop) in Nanoperm and Hitperm. These results are interpreted in terms of back-stress theory

  8. Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al-7.5Mg alloy

    International Nuclear Information System (INIS)

    Lee, Z.; Witkin, D.B.; Radmilovic, V.; Lavernia, E.J.; Nutt, S.R.

    2005-01-01

    The microstructure, mechanical properties and deformation response of bimodal structured nanocrystalline Al-7.5Mg alloy were investigated. Grain refinement was achieved by cryomilling of atomized Al-7.5Mg powders, and then cryomilled nanocrystalline powders blended with 15 and 30% unmilled coarse-grained powders were consolidated by hot isostatic pressing followed by extrusion to produce bulk nanocrystalline alloys. Bimodal bulk nanocrystalline Al-7.5Mg alloys, which were comprised of nanocrystalline grains separated by coarse-grain regions, show balanced mechanical properties of enhanced yield and ultimate strength and reasonable ductility and toughness compared to comparable conventional alloys and nanocrystalline metals. The investigation of tensile and hardness test suggests unusual deformation mechanisms and interactions between ductile coarse-grain bands and nanocrystalline regions

  9. Deformation behavior of multilayered NiFe with bimodal grain size distribution at room and elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fiebig, Jochen, E-mail: jmfiebig@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); Jian, Jie [Department of Electrical and Computer Engineering, Texas A& M University, College Station, TX 77843-3128 (United States); Kurmanaeva, Lilia [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); McCrea, Jon [Integran Technologies Inc., Toronto (Canada); Wang, Haiyan [Department of Electrical and Computer Engineering, Texas A& M University, College Station, TX 77843-3128 (United States); Lavernia, Enrique [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697 (United States); Mukherjee, Amiya [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States)

    2016-02-22

    We describe a study of the temperature dependent deformation behavior of a multilayered NiFe-60 wt%Fe alloy with a layer thickness of 5 μm fabricated by electrodeposition. The structure of adjacent layers alternates between a nanocrystalline and a coarse grained. Uniaxial tensile tests at temperature between 20 °C and 400 °C and strain rate of 10{sup −4}–10{sup −2} were used to determine the mechanical behavior. Microstructure observations via transmission electron microscopy and fractography were performed to provide insight into the underlying deformation mechanism. The mechanical behavior is discussed in the context of the bimodal microstructure of multilayered samples and the contribution of each sub-layer to strength and ductility. The results reveal that even at higher temperatures the nanocrystalline layer determines the mechanical performance of multilayered materials.

  10. Soft magnetic properties of hybrid ferromagnetic films with CoFe, NiFe, and NiFeCuMo layers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-Gu [Eastern-western Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Hwang, Do-Guwn [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Rhee, Jang-Roh [Dept. of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Lee, Sang-Suk, E-mail: sslee@sangji.ac.kr [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of)

    2011-09-30

    Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of H{sub EC} (easy-axis coercivity), H{sub HS} (hard-axis saturation field), and {chi} (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (H{sub EC}, H{sub HS}, and {chi}) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.

  11. Effect of current density and pH in obtaining the Ni-Fe alloy by electrodeposition; Efeito da densidade de corrente e pH na obtencao da liga Ni-Fe por eletrodeposicao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Anderson Machado; Raulino, Anamelia de Medeiros Dantas; Raulino, Jose Leonardo Costa; Campos, Ana Regina Nascimento; Prasad, Shiva; Santana, Renato Alexandre Costa de, E-mail: jmo.anderson@gmail.com, E-mail: anameliadantas@yahoo.com.br, E-mail: leonardo.jcr@hotmail.com, E-mail: arncampos@yahoo.com.br, E-mail: prasad@deq.ufcg.edu.br, E-mail: renatoacs@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Lab. de Eletroquimica e Corrosao

    2017-01-15

    Metallic coatings can be applied for different purposes, for example to improve the mechanical, catalytic, anti corrosive properties or simply to improve the decorative appearance. In the work the Fe-Ni alloys have been obtained by electrodeposition process using a simple electrolytic bath containing the reagents, nickel sulfate, iron sulfate and sodium tartrate. A complete experimental design 2{sup 2} , associated with the response surface methodology (RSM) technique was used as optimization tool. Chemical composition, current efficiency, surface morphology and electrochemical corrosion measures were performed. It was observed that a decrease in the pH favored an increase in iron and decrease in nickel contents in the alloy. The iron content influenced the alloy morphology. The best experiment showed an average corrosion resistance 5471.5 Ω.cm² and a corrosion current density 4.814x10{sup -6} A/cm². This experiment presented a composition of 70 wt% Ni and 30 wt% Fe in the alloy and an average deposition current efficiency of 58.7%. (author)

  12. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  13. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    International Nuclear Information System (INIS)

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  14. Structure and coercivity of nanocrystalline Fe–Si–B–Nb–Cu alloys

    Indian Academy of Sciences (India)

    Unknown

    Fe–Si–B–Nb–Cu alloy; melt-spinning; crystallization; nanocrystalline ... to possess a unique combination of soft magnetic properties ... meability and high electrical resistivity (Yoshizawa et al ... ture and thermal stability of the alloy ribbons.

  15. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  16. Development of amorphous and nanocrystalline Al65Cu35-xZrx alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Manna, I.; Chattopadhyay, P.P.; Banhart, F.; Fecht, H.J.

    2004-01-01

    Mechanical alloying of Al 65 Cu 35-x Zr x (x=5, 15 and 25 at.% Zr) elemental powder blends by planetary ball milling up to 50 h yields amorphous and/or nanocrystalline products. Microstructure of the milled product at different stages of milling has been characterized by X-ray diffraction, (XRD) high-resolution transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Among the different alloys synthesized by mechanical alloying, Al 65 Cu 20 Zr 15 yields a predominantly amorphous product, while the other two alloys develop a composite microstructure comprising nanocrystalline and amorphous solid solutions in Al 65 Cu 10 Zr 25 and nano-intermetallic phase/compound in Al 65 Cu 30 Zr 5 , respectively. The genesis of solid-state amorphization in Al 65 Cu 20 Zr 15 and Al 65 Cu 10 Zr 25 is investigated

  17. Elemental separation in nanocrystalline Cu-Al alloys

    Science.gov (United States)

    Wang, Y. B.; Liao, X. Z.; Zhao, Y. H.; Cooley, J. C.; Horita, Z.; Zhu, Y. T.

    2013-06-01

    Nanocrystallization by high-energy severe plastic deformation has been reported to increase the solubility of alloy systems and even to mix immiscible elements to form non-equilibrium solid solutions. In this letter, we report an opposite phenomenon—nanocrystallization of a Cu-Al single-phase solid solution by high-pressure torsion separated Al from the Cu matrix when the grain sizes are refined to tens of nanometers. The Al phase was found to form at the grain boundaries of nanocrystalline Cu. The level of the separation increases with decreasing grain size, which suggests that the elemental separation was caused by the grain size effect.

  18. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  19. Mechanically alloyed PrFeB nanocrystalline magnets

    International Nuclear Information System (INIS)

    Kaszuwara, W.; Leonowicz, M.

    1998-01-01

    Mechanically alloyed PrFeB nanocrystalline magnets were prepared by extensive ball milling of Pr, Fe and Fe 80 B 20 powders, followed by diffusion annealing. After milling, the material consisted of nanocrystalline α-Fe crystallites embedded in amorphous Pr-rich matrix. Thermomagnetic and calorimetric investigations of the transformations which occurred during annealing showed that the amorphous phase crystallised at 240 C, leading to the formation of crystalline Pr having lattice constants 10% greater than those shown in the ASTM data. This fact indicated that mechanical alloying and low temperature annealing led to the formation of a solid solution of either Fe or B in Pr, which does not exist in the equilibrium state. The Pr 2 Fe 14 B phase was subsequently formed within a temperature range of 420-620 C. The magnetic properties of magnets depend on the phase structure and grain size. Milling time appears to be a decisive processing parameter for the tailoring of the magnetic properties. Depending on the phase structure, the coercivities varied from 100 to 1200 kA/m and, respectively, the remanences from 0.98 T to 0.6 T. The highest maximum energy product was 80 kJ/m 3 . (orig.)

  20. NATO Advanced Research Workshop on Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors

    CERN Document Server

    Idzikowski, Bogdan; Miglierini, Marcel

    2005-01-01

    Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the aver...

  1. Visualizing decoupling in nanocrystalline alloys: A FORC-temperature analysis

    Science.gov (United States)

    Rivas, M.; Martínez-García, J. C.; Gorria, P.

    2016-02-01

    Devitrifying ferromagnetic amorphous precursors in the adequate conditions may give rise to disordered assemblies of densely packed nanocrystals with extraordinary magnetic softness well explained by the exchange coupling among multiple crystallites. Whether the magnetic exchange interaction is produced by direct contact or mediated by the intergranular amorphous matrix has a strong influence on the behaviour of the system above room temperature. Multi-phase amorphous-nanocrystalline systems dramatically harden when approaching the amorphous Curie temperature (TC) due to the hard grains decoupling. The study of the thermally induced decoupling of nanosized crystallites embedded in an amorphous matrix has been performed in this work by the first-order reversal curves (FORCs) analysis. We selected a Fe-rich amorphous alloy with TC = 330 K, in order to follow the evolution of the FORC diagrams obtained below and above such temperature in samples with different percentages of nanocrystalline phase. The existence of up to four regions exhibiting unlike magnetic behaviours is unambiguously determined from the temperature evolution of the FORC.

  2. Magnetic induction heating of FeCr nanocrystalline alloys

    International Nuclear Information System (INIS)

    Gómez-Polo, C.; Larumbe, S.; Pérez-Landazábal, J.I.; Pastor, J.M.; Olivera, J.; Soto-Armañanzas, J.

    2012-01-01

    In this work the thermal effects of magnetic induction heating in (FeCr) 73.5 Si 13.5 Cu 1 B 9 Nb 3 amorphous and nanocrystalline wires were analyzed. A single piece of wire was immersed in a glass capillary filled with water and subjected to an ac magnetic field (frequency, 320 kHz). The initial temperature rise enabled the determination of the effective Specific Absorption Rate (SAR). Maximum SAR values are achieved for those samples displaying high magnetic susceptibility, where the eddy current losses dominate the induction heating behavior. Moreover, the amorphous sample with Curie temperature around room temperature displays characteristic features of self-regulated hyperthermia. - Highlights: ► Amorphous and nanocrystalline Fe based alloys with tailored Curie temperature of the amorphous phase. ► Induction heating effects under the action of a ac magnetic field. ► Self-regulated characteristics based on the control of the Curie temperature. ► Dominant role of the eddy-current losses in the self-heating phenomena.

  3. The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Tao; Chen, Zheng; Zhang, Jinyong; Zhang, Ping [China Univ. of Mining and Technology, Xuzhou (China). School of Mateial Science and Engineering; Yang, Xiaoqin [China Univ. of Mining and Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2017-06-15

    The grain growth and thermodynamic stability induced by solute co-segregation in ternary alloys are presented. Grain growth behavior of the single-phase supersaturated grains prepared in Ni-Fe-Pb alloy melt at different undercoolings was investigated by performing isothermal annealings at T = 400 C-800 C. Combining the multicomponent Gibbs adsorption equation and Guttmann's grain boundary segregation model, an empirical relation for isothermal grain growth was derived. By application of the model to grain growth in Ni-Fe-Pb, Fe-Cr-Zr and Fe-Ni-Zr alloys, it was predicted that driving grain boundary energy to zero is possible in alloys due to the co-segregation induced by the interactive effect between the solutes Fe/Pb, Zr/Ni and Zr/Cr. A non-linear relationship rather than a simple linear relation between 1/D* (D* the metastable equilibrium grain size) and ln(T) was predicted due to the interactive effect.

  4. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    International Nuclear Information System (INIS)

    Mohammadi, Majid; Ghasemi, Ali; Tavoosi, Majid

    2016-01-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe_2O_3–B_2O_3 powder mixtures with sufficient amount of CaH_2 were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys can be successfully synthesized by the reduction reaction of Fe_2O_3 and B_2O_3 with CaH_2 during mechanical alloying. The structure of produced Fe_9_5B_5 and Fe_8_5B_1_5 alloys was a combination of Fe and Fe_2B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–B_2O_3–CaH_2 during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  5. Microstructure and magnetic properties of rapidly solidified nanocrystalline Fe81Zr7B12 alloy

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Muddle, B.C.; Finlayson, T.R.

    2000-01-01

    Full text: Nanocrystalline Fe-Zr-B alloys have aroused extensive research interest due to their high saturation magnetization. There have been several studies [Suzuki et al., 1994; Kim et al., 1994] of the effect of boron on the formation of nanocrystalline structure and magnetic properties, showing that the addition of boron to Fe-Zr alloys improves the glass-forming ability and refines the primary bcc α-Fe grains during crystallization. However, when the boron content is increased to 8 at.%, the magnetic permeability is observed to decrease. There has been no detailed work to date concerning the microstructural evolution and magnetic properties in those alloys with higher boron content

  6. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    Science.gov (United States)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  7. Effect of tungsten (W) on structural and magnetic properties of electroplated NiFe thin films for MEMS applications

    Science.gov (United States)

    Kannan, R.; Devaki, P.; Premkumar, P. S.; Selvambikai, M.

    2018-04-01

    Electrodeposition of nanocrystalline NiFe and NiFeW thin films were carried out from ammonium citrate bath at a constant current density and controlled pH of 8 by varying the bath temperature from 40 °C to 70 °C. The surface morphology and chemical composition of the electrodeposited NiFe and NiFeW soft magnetic thin films were studied by using SEM and EDAX. The SEM micrographs of the films coated at higher electrodeposited bath temperature have no micro cracks and also the films have more uniform surface morphology. The existence of crystalline nature of the coated films were analysed by XRD. The presence of predominant peaks in x-ray diffraction pattern (compared with JCPDS data) reveal that the average crystalline size was in the order of few tens of nano meters. The magnetic properties such as coercivity, saturation magnetization and magnetic flux density have been calculated from vibrating sample magnetometer analysis. The VSM result shows that the NiFeW thin film synthesised at 70 °C exhibit the lower coercivity with higher saturation magnetization. The hardness and adhesion of the electroplated films have been investigated. Reasons for variation in magnetic properties and structural characteristics are also discussed. The electroplated NiFe and NiFeW thin films can be used for Micro Electro Mechanical System (MEMS) applications due to their excellent soft magnetic behaviour.

  8. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  9. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  10. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    Science.gov (United States)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  11. Surface properties of a nanocrystalline Fe-Ni-Nb-B alloy after neutron irradiation

    International Nuclear Information System (INIS)

    Pavuk, M.; Sitek, J.; Sedlackova, K.

    2014-01-01

    In this work, we studied the impact of a neutron radiation on the surface properties of the nanocrystalline (Fe_0_._2_5Ni_0_._7_5)_8_1Nb_7B_1_2 alloy. Changes in topography and domain structure were observed by means of magnetic force microscopy (MFM). (authors)

  12. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Majid; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid

    2016-12-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe{sub 2}O{sub 3}–B{sub 2}O{sub 3} powder mixtures with sufficient amount of CaH{sub 2} were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys can be successfully synthesized by the reduction reaction of Fe{sub 2}O{sub 3} and B{sub 2}O{sub 3} with CaH{sub 2} during mechanical alloying. The structure of produced Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys was a combination of Fe and Fe{sub 2}B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the reduction reaction of Fe{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the reduction reaction of Fe{sub 2}O{sub 3}–B{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  13. Fe(Co)SiBPCCu nanocrystalline alloys with high Bs above 1.83 T

    Science.gov (United States)

    Liu, Tao; Kong, Fengyu; Xie, Lei; Wang, Anding; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan

    2017-11-01

    Fe84.75-xCoxSi2B9P3C0.5Cu0.75 (x = 0, 2.5 and 10) nanocrystalline alloys with excellent magnetic properties were successfully developed. The fully amorphous alloy ribbons exhibit wide temperature interval of 145-156 °C between the two crystallization events. It is found that the excessive substitution of Co for Fe greatly deteriorates the magnetic properties due to the non-uniform microstructure with coarse grains. The alloys with x = 0 and 2.5 exhibit high saturation magnetization (above 1.83 T), low core loss and relatively low coercivity (below 5.4 A/m) after annealing. In addition, the Fe84.75Si2B9P3C0.5Cu0.75 nanocrystalline alloy also exhibits good frequency properties and temperature stability. The excellent magnetic properties were explained by the uniform microstructure with small grain size and the wide magnetic domains of the alloy. Low raw material cost, good manufacturability and excellent magnetic properties will make these nanocrystalline alloys prospective candidates for transformer and motor cores.

  14. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    Science.gov (United States)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  15. Electrodeposited nanocrystalline bronze alloys as replacement for Ni

    NARCIS (Netherlands)

    Hovestad, A.; Tacken, R.A.; Mannetje, H.H.'t

    2008-01-01

    Nanocrystalline white-bronze, CuSn, electroplating was investigated as alternative to Ni plating as undercoat for noble metals in jewellery applications. A strongly acidic plating bath was developed with an organic additive to suppress hydrogen evolution and obtain bright coatings. Polarization

  16. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu ...

    Indian Academy of Sciences (India)

    The diameter of wires can be easily varied by pore size of alumina, ranging ... saturated HgCl2 solution to remove the remaining Al, and then dipped in 5 wt% ... for NiFe alloy it is 1.3 V, that is higher than for Ni/Cu nanowires to diminish Cu.

  17. Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Jia Haoling [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China); Zhang Zhonghua [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China)], E-mail: zh_zhang@sdu.edu.cn; Qi Zhen [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China); Liu Guodong [School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); Bian Xiufang [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China)

    2009-03-20

    In this paper, the formation of nanocrystalline TiC from titanium powders and different carbon resources by mechanical alloying (MA) has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results show that nanocrystalline TiC can be synthesized from Ti powders and different carbon resources (activated carbon, carbon fibres or carbon nanotubes) by MA at room temperature. Titanium and different carbon resources have a significant effect on the Ti-C reaction and the formation of TiC during MA. Moreover, the formation of nanocrystalline TiC is governed by a gradual diffusion reaction mechanism during MA, regardless of different carbon resources.

  18. Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Ghosh, B.; Pradhan, S.K.

    2010-01-01

    Nanocrystalline TiC is produced by mechanical milling the stoichiometric mixture of α-Ti and graphite powders at room temperature under argon atmosphere within 35 min of milling through a self-propagating combustion reaction. Microstructure characterization of the unmilled and ball-milled samples was done by both X-ray diffraction and electron microscopy. It reveals the fact that initially graphite layers were oriented along and in the course of milling, thin graphite layers were distributed evenly among the grain boundaries of α-Ti particles. Both α-Ti and TiC lattices contain stacking faults of different kinds. The grain size distribution obtained from the Rietveld's method and electron microscopy studies ensure that nanocrystalline TiC particles with almost uniform size (∼13 nm) can be prepared by mechanical alloying technique. The result obtained from X-ray analysis corroborates well with the microstructure characterization of nanocrystalline TiC by electron microscopy.

  19. The electrochemical characteristics of Mg2Ni nanocrystalline hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Ling; Zhou Xiaosong; Peng Shuming

    2008-06-01

    The nanocrystalline Mg 2 Ni materials were prepared by mechanical alloying. The cyclic voltametry results indicated that the potential of oxidation peak was shift as the scan rate increased and the absorption property of Mg 2 Ni prepared by mechanical alloying was increased even at ambient temperature. The absorption and desorption of hydrogen in Mg 2 Ni alloy were remarkably accelerated with the rising temperature. Small angel X-ray scattering results indicated that the Mg 2 Ni powder have 1-5 nm and 5-10 nm particle size distribution, which increased the acting sites of hydrogen absorption/desorption reaction and decreased the diffusion path of hydrogen desorption. It was induced to the enhanced performance of Mg 2 Ni nanocrystalline powder. The cycle life investigated results indicated that the activation property of Mg 2 Ni nanocrystal-line hydrogen storage alloy electrode was excellent, the capacitance maintenance ration was 66% after 200 cycles. The coating of epoxy resin on one side of the electrode had no effect on the activation property and the capacitance maintenance ration was better than the uncoating one. But the anode peak current value and the cathodic peak current value were decreased remarkably which indicated that the hydrogen absorption/desorption rate and the charge/discharge degree had decreased. (authors)

  20. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    Science.gov (United States)

    2016-02-24

    film deposited just like the pick-up of a turn-table music player. The contact pads provide the electrical contacts to the starting and end point of...anisotropy using the geometry of the thin toroid. We have shown experimentally that the thin film toroid calculations may be applicable to up to millimeter...thin film as well as bulk devices. 15. SUBJECT TERMS Micromagnetic Calculations, Nanocrystalline cobalt-iron, Thin Film Toroids 16. SECURITY

  1. Industrialization of nanocrystalline Fe–Si–B–P–Cu alloys for high magnetic flux density cores

    International Nuclear Information System (INIS)

    Takenaka, Kana; Setyawan, Albertus D.; Sharma, Parmanand; Nishiyama, Nobuyuki; Makino, Akihiro

    2016-01-01

    Nanocrystalline Fe–Si–B–P–Cu alloys exhibit high saturation magnetic flux density (B s ) and extremely low magnetic core loss (W), simultaneously. Low amorphous-forming ability of these alloys hinders their application potential in power transformers and motors. Here we report a solution to this problem. Minor addition of C is found to be effective in increasing the amorphous-forming ability of Fe–Si–B–P–Cu alloys. It allows fabrication of 120 mm wide ribbons (which was limited to less than 40 mm) without noticeable degradation in magnetic properties. The nanocrystalline (Fe 85.7 Si 0.5 B 9.5 P 3.5 Cu 0.8 ) 99 C 1 ribbons exhibit low coercivity (H c )~4.5 A/m, high B s ~1.83 T and low W~0.27 W/kg (@ 1.5 T and 50 Hz). Success in fabrication of long (60–100 m) and wide (~120 mm) ribbons, which are made up of low cost elements is promising for mass production of energy efficient high power transformers and motors - Highlights: • Minor addition of C in FeSiBPCu alloy increases amorphous-forming ability. • The FeSiBPCuC alloy exhibits B s close to Si-steel and Core loss lower than it. • Excellent soft magnetic properties were obtained for 120 mm wide ribbons. • Nanocrystalline FeSiBPCuC alloy can be produced at industrial scale with low cost. • The alloy is suitable for making low energy loss power transformers and motors.

  2. Structural, thermal and magnetic investigations on immiscible Ag–Co nanocrystalline alloy with addition of Mn

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B.N., E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chabri, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India); Sardar, G. [Department of Zoology, Baruipur College, South 24 Parganas 743610 (India); Nath, D.N. [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2016-08-15

    50Ag–50Co (at%) and 40Ag–40Co–20Mn (at%) alloys prepared by ball milling up to 50 h and subsequent isothermal annealing at the temperature range of 350–650 °C for 1 h has been investigated systematically. Mn promotes early formation of the nanostructures and solid solutions of the alloys by ball milling. In contrast, annealing at 350 °C of Ag–Co alloy resulted the dissolution of hcp Co. Annealing above 350 °C decomposes the metastable Ag–Co alloy into the polycrystalline and segregated Ag and fcc Co. Enthalpy of mixing of both the alloy has increased with increase in milling time. Both the nanocrystalline alloys prepared by ball milling and annealing have been revealed the ferromagnetic behavior. The most significant improvement of magnetic properties is yielded in as-milled Ag–Co–Mn alloy obtained after annealing at 550 °C for 1 h. - Highlights: • A complete solid solution of Ag–Co–Mn alloy obtained after 50 h of milling. • A complete solid solution of milled Ag–Co alloy forms annealed at 350 {sup °}C for 1 h. • Precipitation of fcc Co are observed after annealing above 350 °C. • Enthalpy of mixing of the alloys increased with increase in milling time. • The superior magnetic properties achieved of Ag–Co–Mn alloy annealed at 550 °C.

  3. Novel synthesis of Ni-ferrite (NiFe2O4) electrode material for supercapacitor applications

    International Nuclear Information System (INIS)

    Venkatachalam, V.; Jayavel, R.

    2015-01-01

    Novel nanocrystalline NiFe 2 O 4 has been synthesized through combustion route using citric acid as a fuel. Phase of the synthesized material was analyzed using powder X-ray diffraction. The XRD study revealed the formation of spinel phase cubic NiFe 2 O 4 with high crystallinity. The average crystallite size of NiFe 2 O 4 nanomaterial was calculated from scherrer equation. The electrochemical properties were realized by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The electrode material shows a maximum specific capacitance of 454 F/g with pseudocapacitive behavior. High capacitance retention of electrode material over 1000 continuous charging-discharging cycles suggests its excellent electrochemical stability. The results revealed that the nickel ferrite electrode is a potential candidate for energy storage applications in supercapacitor

  4. Ferromagnetic resonance study of sputtered NiFe/V/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Alayo, W., E-mail: willian.rodriguez@ufpel.edu.br [Departamento de Física – IFM, Universidade Federal de Pelotas, 96010-900 Rio Grande do Sul (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, 22290-180 (Brazil)

    2015-03-01

    The Ni{sub 81}Fe{sub 19}/V/Ni{sub 81}Fe{sub 19} heterostructures has been produced by magnetron sputtering and analyzed by ferromagnetic resonance. Two systems were investigated: the non symmetrical NiFe(50 Å)/V(t)/NiFe(30 Å) trilayers and the symmetrical NiFe(80 Å)/V(t)/NiFe(80 Å) trilayers, with variable ultrathin V thickness t. Ferromagnetic exchange coupling was evidenced for t below 10 Å by the excitation of the optic mode, in the case of the non symmetrical samples, and by the observation of a single resonance mode for the symmetrical trilayers. For larger V thickness, all samples exhibited two modes, which were attributed to the resonance of the individual NiFe layers with different effective magnetizations. The analysis with the equilibrium and resonance conditions provided the exchange coupling constants and effective magnetizations. - Highlights: • We present a study of symmetrical and non symmetrical NiFe/V/NiFe trilayers deposited on Si single crystals by ferromagnetic resonance (FMR) at room temperature. • For the non symmetrical trilayers, the FMR spectra show the optic and acoustic modes for samples with very thin V layer thicknesses, evidencing ferromagnetic exchange coupling, whereas, for larger V thickness, the spectra exhibited two well resolved modes associated to each independent NiFe layer. For the symmetrical trilayers, strong ferromagnetic exchange coupling is evidenced by the observation of a single resonance mode. • The analysis with the equilibrium condition and dispersion relation provides the exchange coupling constants and effective magnetizations.

  5. HRTEM study of the nanocrystalline Al85Y10Ni5 alloy

    International Nuclear Information System (INIS)

    Kozubowski, J.A.; Latuch, J.

    1999-01-01

    Nanocrystalline alloy Al 85 Y 10 Ni 5 obtained by annealing of the amorphous ribbons formed by melt spinning was studied by transmission electron microscopy and energy dispersive X-ray spectroscopy (EDS). The combined use of electron diffraction, electron microscopy and EDS has revealed the presence of several nano-phases: separate grains of Al(Y) and Al(N) solid solutions Al 3 Y grains and an unidentified phase of composition close to Al 3 (Ni,Y). (author)

  6. Synthesis of bulk nanocrystalline Pb-Sn-Te alloy under high pressure

    International Nuclear Information System (INIS)

    Zhu, P W; Chen, L X; Jia, X; Ma, H A; Ren, G Z; Guo, W L; Liu, H J; Zou, G T

    2002-01-01

    Pb-Sn-Te bulk nanocrystalline (NC) materials are prepared successfully by quenching melts under high pressure. The mean particle size is about 100 nm and the crystal structure is NaCl type. The mechanism of formation of the bulk NC alloy is explained: there is an increasing of the nucleation rate and a decrease in the growth rate of nuclei with increase of pressure during the solidification processes. The thermoelectric properties of Pb-Sn-Te bulk NC alloy are enhanced. This method is promising for producing thermoelectric materials with improved high-energy conversion efficiency

  7. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg₂Ni-type Alloy by Melt Spinning.

    Science.gov (United States)

    Zhang, Yang-Huan; Li, Bao-Wei; Ren, Hui-Ping; Li, Xia; Qi, Yan; Zhao, Dong-Liang

    2011-01-18

    Mg₂Ni-type Mg₂Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg₂Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio () of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio () from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10 - 11 to 3.88 × 10 - 11 cm²/s and the limiting current density I L from 150.9 to 887.4 mA/g.

  8. Developments in nanocrystalline magnetic alloys for industry; Alliages magnetiques nanocristallins industriels. Etat de l'art et evolution

    Energy Technology Data Exchange (ETDEWEB)

    Waeckerle, T.; Cremer, P. [Imphy Ugine Precision, 92 - Paris la Defense (France); Gautard, D. [Mecagis, 45 - Amilly (France)

    2003-10-01

    The French industrial production of nanocrystalline precursor ribbon (Imphy Ugine Precision - IUP) and nanocrystalline wound cores (Mecagis) is now mature, promoting then one of the first worldwide provider in this market. Recent progress in ribbon elaboration will provide large increase of industrial efficiency, leading the cost of a nanocrystalline solution to be closed to the cost of a ferrite solution. The precise study and control of magnetoelastic energy allowed the production scattering to be reduced, the alloy to be weakly dependant on external stresses (production, packaging, thermal dilatation), further promoting the performances. Whatever the alloy is very brittle in the nanocrystalline state, some improvements are using or are going around this intrinsic behaviour, and are now developed: powder core for low dissipative filtering, cut core for storage and strong power transformation, wound cores from ribbon nano-crystallized with high stresses during annealing, for the storage and current metering. (authors)

  9. Magnetic properties of nanocrystalline Fe–10%Ni alloy obtained by planetary ball mills

    International Nuclear Information System (INIS)

    Hamzaoui, Rabah; Elkedim, Omar

    2013-01-01

    Highlights: •Solid solution formation accompanied by a grain refinement for nanocrystalline Fe-Ni. •The shock mode process (SMP) prevails when Ω > >ω. •The friction mode process (FMP) is stronger when Ω < <ω. •The FMP leads to the formation of alloys exhibiting a soft magnetic behavior. -- Abstract: Planetary ball mill PM 400 from Retsch (with different milling times for Ω = 400 rpm, ω = 800 rpm) and P4 vario ball mill from Fritsch (with different milling conditions (Ω/ω), Ω and ω being the disc and the vial rotation speeds, respectively) are used for obtaining nanocrystalline Fe–10wt% Ni. The structure and magnetic properties are studied by using X-ray diffraction, SEM and hysteresis measurements, respectively. The bcc-Fe(Ni) phase formation is identified by X-ray diffraction. The higher the shock power and the higher milling time are, the larger the bcc lattice parameter and the lower the grain size. The highest value of the coercivity is 1600 A/m for Fe–10 wt.%Ni (with shock mode (424 rpm/100 rpm) after 36 h of milling), while the lowest value is 189 A/m for (400 rpm/800 rpm) after 72 h of milling. The milling performed in the friction mode has been found to lead the formation of alloys exhibiting a soft magnetic behavior for nanocrystalline Fe–10%Ni

  10. Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongzhen [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Wang, Anding; Chang, Chuntao [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai District, Ningbo, Zhejiang 315201 (China); Wang, Yanguo [Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080 (China); Dong, Bangshao [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Zhou, Shaoxiong, E-mail: sxzhou@atmcn.com [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2014-10-25

    Highlights: • Thermal stability of the FeSiBPNbCu alloys is strongly dependent on the Fe content. • The FeSiBPNbCu alloys with high Fe content exhibit good soft magnetic properties. • The coexistence of Cu, P and Nb leads to the excellent soft magnetic properties. - Abstract: A series of [Fe{sub 0.76+x}(Si{sub 0.4}B{sub 0.4}P{sub 0.2}){sub 0.24−x}]{sub 98.25}Nb{sub 1}Cu{sub 0.75} (x = 0–0.08) nanocrystalline soft-magnetic alloys with high saturation magnetization were synthesized by adjusting Fe content and improving the crystallization behavior, soft-magnetic properties and microstructure. It is found that the temperature interval between the two crystallization peaks is significantly enlarged from 50 to 180 °C when the Fe content of the alloys increases from x = 0 to x = 0.08, which greatly expands the optimum annealing temperature range. The alloys with higher Fe content are prone to form more uniform nanocomposite microstructure with better thermal stability and soft magnetic properties. The Fe-rich FeSiBPNbCu nanocrystalline alloys with x = 0.08 exhibit excellent soft-magnetic properties, including the high saturation magnetic flux density of up to 1.74 T, low coercivity of about 3.3 A/m and high effective permeability of more than 2.2 × 10{sup 4} at 1 kHz under a field of 1 A/m. The combination of excellent soft-magnetic properties, low cost and good productivity makes the FeSiBPNbCu alloys to be a kind of promising soft-magnetic materials for electrical and electronic industry applications.

  11. Microstructure and physical properties of laser Zn modified amorphous-nanocrystalline coating on a titanium alloy

    Science.gov (United States)

    Li, Jia-Ning; Gong, Shui-Li; Shi, Yi-Ning; Suo, Hong-Bo; Wang, Xi-Chang; Deng, Yun-Hua; Shan, Fei-Hu; Li, Jian-Quan

    2014-02-01

    A Zn modified amorphous-nanocrystalline coating was fabricated on a Ti-6Al-4V alloy by laser cladding of the Co-Ti-B4C-Zn-Y2O3 mixed powders. Such coating was researched by means of a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM), etc. Experimental results indicated that the Co5Zn21 and TiB2 nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation, and TiB2 grew along (010), (111) and (024). The Co5Zn21 nanocrystals were produced attached to the ceramics, which mainly consisted of the Co nanoparticles embedded in a heterogeneous zinc, and had varied crystalline orientations.

  12. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    Science.gov (United States)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  13. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    International Nuclear Information System (INIS)

    Lohmiller, Jochen; Spolenak, Ralph; Gruber, Patric A.

    2014-01-01

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility

  14. Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique

    Science.gov (United States)

    Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan

    2018-05-01

    Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.

  15. Change of magnetic properties of nanocrystalline alloys under influence of external factors

    Science.gov (United States)

    Sitek, Jozef; Holková, Dominika; Dekan, Julius; Novák, Patrik

    2016-10-01

    Nanocrystalline (Fe3Ni1)81Nb7B12 alloys were irradiated using different types of radiation and subsequently studied by Mössbauer spectroscopy. External magnetic field of 0.5 T, electron-beam irradiation up to 4 MGy, neutron irradiation up to 1017 neutrons/cm2 and irradiation with Cu ions were applied on the samples. All types of external factors had an influence on the magnetic microstructure manifested as a change in the direction of the net magnetic moment, intensity of the internal magnetic field and volumetric fraction of the constituent phases. The direction of the net magnetic moment was the most sensitive parameter. Changes of the microscopic magnetic parameters were compared after different external influence and results of nanocrystalline samples were compared with their amorphous precursors.

  16. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  17. Effect of degassing temperature on the microstructure of a nanocrystalline Al-Mg alloy

    International Nuclear Information System (INIS)

    Ahn, Byungmin; Newbery, A. Piers; Lavernia, Enrique J.; Nutt, Steven R.

    2007-01-01

    The microstructural evolution of a nanocrystalline Al-Mg alloy was investigated to determine the effects of degassing temperature. Al 5083 powder was ball-milled in liquid nitrogen to obtain a nanocrystalline structure, then vacuum degassed to remove contaminants. The degassed powder was consolidated by cold isostatic pressing and then forged to produce bulk, low-porosity material. The material microstructure was analyzed at different stages using optical microscopy, transmission electron microscopy, and density measurements. The impurity concentration of the final product was also measured. The forged material exhibited a bimodal grain size distribution, consisting of both ultra fine and coarse grains. The bimodal distribution was attributed to the presence of residual coarse grains in the as-milled powder. Higher degassing temperatures resulted in higher density values and lower hydrogen content in the consolidated materials, although these materials also exhibited more extensive grain growth

  18. Structure characterization of nanocrystalline Ni–W alloys obtained by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Indyka, P., E-mail: paulina.indyka@uj.edu.pl [Jagiellonian University, Faculty of Chemistry, 3 Ingardena St., 30-059 Krakow (Poland); Beltowska-Lehman, E.; Tarkowski, L.; Bigos, A. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); García-Lecina, E. [Surface Finishing Department, CIDETEC-IK4 – Centre for Electrochemical Technologies, P° Miramón 196, 20009 Donostia-San Sebastián (Spain)

    2014-03-25

    Highlights: • Ni–W alloy coatings were electrodeposited from an aqueous electrolyte solutions. • The microstructure was studied with respect to electrodeposition process parameters. • We report optimal plating conditions for crack-free, nanocrystalline Ni–W coatings. • Crystalline Ni–W coatings exhibited the phase structure of an α-Ni(W) solid solution. • Coatings revealed tensile residual stresses and weakly pronounced 〈1 1 0〉 fiber texture. -- Abstract: Ni–W coatings of different tungsten content (2–50 wt%) were electrodeposited on a steel substrates from an aqueous complex sulfate–citrate galvanic baths, under controlled hydrodynamic conditions in a Rotating Disk Electrode (RDE) system. The optimum conditions for the electrodeposition of crack-free, homogeneous nanocrystalline Ni–W coatings were determined on the basis of the microstructure investigation results. The XRD structural characterizations of Ni–W alloy coatings obtained under different experimental conditions were complemented by SEM and TEM analysis. Results of the study revealed that the main factor influencing the microstructure formation of the Ni–W coatings is the chemical composition of an electrolyte solution. X-ray and electron diffraction patterns of all nanocrystalline Ni–W coatings revealed mainly the fcc phase structure of an α-Ni(W) solid solution with a lattice parameter increased along with tungsten content. The use of additives in the plating bath resulted in the formation of equiaxial/quasifibrous, nanocrystalline Ni–W grains of an average size of about 10 nm. The coatings were characterized by relatively high tensile residual stresses (500–1000 MPa), depending on the electrodeposition conditions. Ni–W coatings exhibited weakly pronounced fiber type 〈1 1 0〉 crystallographic texture, consistent with the symmetry of the plating process. Coatings of the highest tungsten content 50 wt% were found to be amorphous.

  19. Comparison of high temperature, high frequency core loss and dynamic B-H loops of two 50 Ni-Fe crystalline alloys and an iron-based amorphous alloy

    International Nuclear Information System (INIS)

    Wieserman, W.R.; Schwarze, G.E.; Niedra, J.M.

    1994-01-01

    The availability of experimental data that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency is almost non-existent. An experimental investigation was conducted over the temperature range of 23 to 300 C and frequency range of 1 to 50 kHz to determine the effects of temperature and frequency on the core loss and dynamic B-H loops of three different soft magnetic materials; an oriented-grain 50Ni-50Fe alloy, a nonoriented-grain 50Ni-50Fe alloy, and an iron-based amorphous material (Metglas 2605SC). A comparison of these materials show that the nonoriented-grain 50Ni-50Fe alloy tends to have either the lowest or next lowest core loss for all temperatures and frequencies investigated

  20. Creep of FINEMET alloy at amorphous to nanocrystalline transition

    NARCIS (Netherlands)

    Csach, K.; Miškuf, J.; Juríková, A.; Ocelík, V.

    2009-01-01

    The application of FINEMET-type materials with specific magnetic properties prepared by the crystallization of amorphous alloys is often limited by their brittleness. The structure of these materials consists of nanosized Fe-based grains surrounded with amorphous phase. Then the final macroscopic

  1. Microstructure and corrosion behavior of electrodeposited nano-crystalline nickel coating on AZ91 Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zarebidaki, Arman, E-mail: arman.zare@iauyazd.ac.ir; Mahmoudikohani, Hassan, E-mail: hassanmahmoudi.k@gmail.com; Aboutalebi, Mohammad-Reza

    2014-12-05

    Highlights: • Activation, zincating, and Cu electrodeposition were used as pretreatment processes for electrodeposition of nickel coatings. • Nano-crystalline nickel coatings were successfully electrodeposited onto the AZ91 Mg alloys. • Effect of nickel electrodeposited coating on the corrosion resistance of AZ91 Mg alloy has been studied. - Abstract: In order to enhance the corrosion resistance, nickel coating was electrodeposited onto AZ91 Mg alloy. Activation, zincating, and Cu electrodeposition used as pretreatment processes for better adhesion and corrosion performance of the nickel over layer. The corrosion properties of the AZ91 Mg alloy, nickel electroplated AZ91 Mg alloy, and pure nickel was assessed via polarization and electrochemical impedance spectroscopy (EIS) methods in 3.5 wt% NaCl solution. Moreover, the structure of the coating was investigated by means of X-ray diffraction, whereas specimen’s morphology and elemental composition were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). Measurements revealed that the coating has a nano-crystalline structure with the grain size of 95 nm. Corrosion results showed superior corrosion resistance for the coated AZ91 Mg alloy as the corrosion current density decreased from 2.5 × 10{sup −4} A cm{sup −2}, for the uncoated sample, to 1.5 × 10{sup −5} A cm{sup −2}, for coated specimen and the corrosion potential increased from −1.55 V to −0.98 V (vs. Ag/AgCl) at the same condition.

  2. Ternary NiFeX as soft biasing film in a magnetoresistive sensor

    Science.gov (United States)

    Chen, Mao-Min; Gharsallah, Neila; Gorman, Grace L.; Latimer, Jacquie

    1991-04-01

    The properties of NiFeX ternary films (X being Al, Au, Nb, Pd, Pt, Si, and Zr) have been studied for soft-film biasing of the magnetoresistive (MR) trilayer sensor. In general, the addition of the element X into the NiFe alloy film decreases the saturation magnetization Bs and magnetoresistance coefficient of the film, while increasing the film's electrical resistivity ρ. One of the desirable properties of a soft film for biasing is high sheet resistance for minimum current flow. A figure of merit Bsρ that takes into account both the rate of increase in Bs and the rate of decrease in ρ when adding X element was derived to compare the effectiveness of various X elements in reducing the current shunting through the soft-film layer. Using this criterion, NiFeNb and NiFeZr emerge as good soft-film materials having a maximum sheet resistance relative to the MR layer. Other critical properties such as magnetoresistance coefficient, magnetostriction, coercivity, and anisotropy field were also examined and are discussed in this paper.

  3. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Roberts, S.G.; Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Bade, K. [Institut fuer Mikrostrukturtechnik (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-04-30

    Nanocrystalline nickel-tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni-12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni-12.7 at.%W was in the range of 1.49-5.14 MPa {radical}m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: Black-Right-Pointing-Pointer Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. Black-Right-Pointing-Pointer Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. Black-Right-Pointing-Pointer Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. Black-Right-Pointing-Pointer Fracture toughness values lower than that of nanocrystalline nickel.

  4. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni–W alloy films

    International Nuclear Information System (INIS)

    Armstrong, D.E.J.; Haseeb, A.S.M.A.; Roberts, S.G.; Wilkinson, A.J.; Bade, K.

    2012-01-01

    Nanocrystalline nickel–tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni–12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni–12.7 at.%W was in the range of 1.49–5.14 MPa √m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: ► Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. ► Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. ► Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. ► Fracture toughness values lower than that of nanocrystalline nickel.

  5. External influence on magnetic properties of Fe-based nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, Jozef [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)]. E-mail: jozef.sitek@stuba.sk; Degmova, Jarmila [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Sedlackova, Katarina [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Butvin, Pavol [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2006-09-15

    Amorphous and nanocrystalline ribbons of NANOPERM, FINEMET and HITPERM were studied by Moessbauer spectroscopy (MS) after the influence of external factors: different annealing atmospheres, tensile stress and several kinds of corrosion. MS is a suitable tool for such studies because the spectral parameters are very sensitive to changes in the vicinity of the probe -{sup 57}Fe nuclei. The most sensitive parameters were hyperfine magnetic field in crystalline component, average hyperfine field in amorphous component and direction of net magnetic moments. Influence of external factors modified also the structure of the alloys, i.e. new or modified phases were identified by MS phase analysis.

  6. Recoil-free Fraction in Amorphous and Nanocrystalline Aluminium Based Alloys

    Science.gov (United States)

    Sitek, Jozef

    2008-10-01

    Aluminium based rapidly quenched alloys of nominal composition Al90Fe7Nb3 and Al94Fe2V4 were studied by Mössbauer spectroscopy. We have measured the recoil-free fraction and thermal shift at room and liquid nitrogen temperature. The frequency modes of atomic vibrations were determined and consequently the characteristic Debye temperature was derived. Characteristic temperature calculated from f-factor was lower than those fitted from second order Doppler shift. This indicates the presence of different frequency modes for amorphous and nanocrystalline states.

  7. External influence on magnetic properties of Fe-based nanocrystalline alloys

    International Nuclear Information System (INIS)

    Sitek, Jozef; Degmova, Jarmila; Sedlackova, Katarina; Butvin, Pavol

    2006-01-01

    Amorphous and nanocrystalline ribbons of NANOPERM, FINEMET and HITPERM were studied by Moessbauer spectroscopy (MS) after the influence of external factors: different annealing atmospheres, tensile stress and several kinds of corrosion. MS is a suitable tool for such studies because the spectral parameters are very sensitive to changes in the vicinity of the probe - 57 Fe nuclei. The most sensitive parameters were hyperfine magnetic field in crystalline component, average hyperfine field in amorphous component and direction of net magnetic moments. Influence of external factors modified also the structure of the alloys, i.e. new or modified phases were identified by MS phase analysis

  8. Surface crack nucleation and propagation in electrodeposited nanocrystalline Ni-P alloy during high cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Shigeaki; Kamata, Akiyuki [Department of Mechanical Engineering, Faculty of Engineering, Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan); Watanabe, Tadao, E-mail: skoba@ashitech.ac.j [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang, 110004 (China)

    2010-07-01

    The morphology of specimen surface after fatigue fracture was evaluated in connection with grain orientation distribution and grain boundary microstructure to reveal a mechanism of fatigue fracture in nanocrystalline materials. The electrodeposited and sharply {l_brace}001{r_brace} textured Ni -2.0 mass% P alloy with the average grain size of ca. 45 nm and high fractions of low-angle and {Sigma}3 boundaries showed 2 times higher fatigue limit than electrodeposited microcrystalline Ni polycrystal. The surface features of fatigued specimen were classified into two different types of morphologies characterized as brittle fracture at the central area and as ductile fracture at the surrounding area.

  9. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheytani, M.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Bagheri, H.R.; Masiha, H.R.; Rouhaghdam, A. Sabour

    2015-11-15

    In this paper, micro- and nanocrystalline AZ31B magnesium alloy were coated by micro-arc oxidation method. In order to fabricate nanocrystalline surface layer, surface mechanical attrition treatment was performed and nano-grains with average size of 5–10 nm were formed on the surface of the samples. Coating process was carried out at different conditions including two coating times and two types of electrolyte. Alumina nanoparticles were utilized as suspension in electrolyte to form nanocomposite coatings by micro-arc oxidation method. Potentiodynamic polarization, percentage of porosity, and wettability tests were performed to study various characteristics of the coated samples. The results of scanning electron microscope imply that samples coated in silicate-based electrolyte involve much lower surface porosity (∼25%). Besides, the results of wettability test indicated that the maximum surface tension with deionized water is for nanocrystalline sample. In this regard, the sample coated in silicate-based suspension was 4 times more hydrophilic than the microcrystalline sample. - Highlights: • MAO in phosphate electrolyte needs higher energy as compared to silicate electrolyte. • Less porosity and finer grain size on free surface of the silicate-based coatings. • Observed porosity from top surface of coating shows the effect of the final MAO sparks. • SMAT affects surface roughness and accelerates growth kinetics.

  10. Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Lin [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Yang, Weiming [School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Haishun, E-mail: liuhaishun@126.com [School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Men, He [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Anding, E-mail: anding@nimte.ac.cn [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Chang, Chuntao [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Shen, Baolong, E-mail: blshen@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-12-01

    Through gradient substitution of Co for Fe, the magnetic properties and microstructures of (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} (x=0.1, 0.2, 0.3, 0.4, 0.5) nanocrystalline alloys were investigated. Because of the strong ferromagnetic exchange coupling between Co and Fe, substantial improvement in saturation magnetization was achieved with proper levels of Co addition. Meanwhile, the Curie temperature increased noticeably with increasing Co addition. After heat treatment, the (Fe{sub 0.9}Co{sub 0.1}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloy showed a refined microstructure with an average grain size of 10–20 nm, exhibiting a comparatively high saturation magnetization of 1.82 T and a lower coercivity of 12 A/m compared to other Hitperm-type alloys with higher Co contents. Additionally, the Curie temperature reached 1150 K upon introduction of Co. As the soft magnetic properties are strengthened by adding a small amount of Co, the combination of fine, soft magnetic properties and low cost make this nanocrystalline alloy a potential magnetic material. - Highlights: • New (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloys are successfully synthesized. • Minor Co addition improves the Curie temperature of (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} alloy system. • (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloys exhibit high saturation magnetization above 1.82 T.

  11. Magnetic ageing study of high and medium permeability nanocrystalline FeSiCuNbB alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lekdim, Atef, E-mail: atef.lekdim@univ-lyon1.fr; Morel, Laurent; Raulet, Marie-Ange

    2017-04-15

    increasing the energy efficiency is one of the most important issues in modern power electronic systems. In aircraft applications, the energy efficiency must be associated with a maximum reduction of mass and volume, so a high components compactness. A consequence from this compactness is the increase of operating temperature. Thus, the magnetic materials used in these applications, have to work at high temperature. It raises the question of the thermal ageing problem. The reliability of these components operating at this condition becomes a real problem which deserves serious interest. Our work takes part in this context by studying the magnetic material thermal ageing. The nanocrystalline materials are getting more and more used in power electronic applications. Main advantages of nanocrystalline materials compared to ferrite are: high saturation flux density of almost 1.25 T and low dynamic losses for low and medium frequencies. The nanocrystalline Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloys have been chosen in our aging study. This study is based on monitoring the magnetic characteristics for several continuous thermal ageing (100, 150, 200 and 240 °C). An important experimental work of magnetic characterization is being done following a specific monitoring protocol. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena. - Highlights: • The magnetic ageing of the nanocrystalline materials is related to their annealing. • The degradations with ageing are not related to a change of the grain size diameter. • The amount of anisotropies introduced with ageing depends just on ageing conditions.

  12. The microstructure of mechanically alloyed nanocrystalline aluminium-magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Gubicza, J. [Dept. of General Physics, Eoetvoes Univ., Budapest (Hungary); Dept. of Solid State Physics, Eoetvoes Univ., Budapest (Hungary); Kassem, M. [Dept. of Materials Science and Engineering, Faculty of Petroleum and Mining, Suez Canal Univ., Suez (Egypt); Ungar, T. [Dept. of General Physics, Eoetvoes Univ., Budapest (Hungary)

    2004-07-01

    The effect of the nominal Mg content and the milling time on the microstructure of mechanically alloyed Al(Mg) solid solutions is studied. The crystallite size distribution and the dislocation structure are determined by X-ray diffraction peak profile analysis. Magnesium gradually goes into solid solution during ball milling and after 3 h almost all of the Mg atoms are soluted into the Al matrix. With increasing milling time the Mg content in solid solution, the dislocation density as well as the hardness are increasing, whereas the crystallite size is decreasing. A similar tendency of these parameters is observed at a particular duration of ball milling with increasing of the nominal Mg content. At the same time for a long milling period the dislocation density slightly decreases together with a slight reduction of the hardness. (orig.)

  13. High-temperature grain size stabilization of nanocrystalline Fe–Cr alloys with Hf additions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu, E-mail: lli18@ncsu.edu; Saber, Mostafa; Xu, Weizong; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2014-09-08

    The influence of 1–4 at% Hf additions on the thermal stability of mechanically alloyed nanocrystalline Fe–14Cr alloys was studied in this work. XRD-calculated grain size and microhardness results were reported versus isochronal annealing treatments up to 1100 °C. Microstructural evolution was investigated using channeling contrast FIB imaging and TEM. Grain size of samples with 4 at% Hf was found to be maintained in the nanoscale range at temperatures up to 1000 °C. Zener pinning was considered as a major source of high temperature grain size stabilization. By comparing the Orowan strengthening contribution to the total hardness, the deviation of grain size predictions from the actual grain size in Fe–14Cr–4Hf suggests the presence of thermodynamic stabilization by the solute segregation to grain boundaries (GBs). A predictive thermodynamic model indicates that the thermodynamic stabilization can be expected.

  14. Anisotropic nanolaminated CoNiFe cores integrated into microinductors for high-frequency dc–dc power conversion

    International Nuclear Information System (INIS)

    Kim, Jooncheol; Kim, Minsoo; Herrault, Florian; Kim, Jung-Kwun; Allen, Mark G

    2015-01-01

    This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300–1000 nm thick metallic alloys (i.e. Ni 80 Fe 20 or Co 44 Ni 37 Fe 19 ) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50–100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500–1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc–dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors. (fast track communication)

  15. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    Do-Minh, N.; Le-Thi, C.; Nguyen-Anh, S.

    2003-01-01

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag 4 Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag 3 Sn/Ag 4 Sn-Cu 3 Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu 3 Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  16. Soft magnetic characteristics of laminated magnetic block cores assembled with a high Bs nanocrystalline alloy

    Directory of Open Access Journals (Sweden)

    Atsushi Yao

    2018-05-01

    Full Text Available This paper focuses on an evaluation of core losses in laminated magnetic block cores assembled with a high Bs nanocrystalline alloy in high magnetic flux density region. To discuss the soft magnetic properties of the high Bs block cores, the comparison with amorphous (SA1 block cores is also performed. In the high Bs block core, both low core losses and high saturation flux densities Bs are satisfied in the low frequency region. Furthermore, in the laminated block core made of the high Bs alloy, the rate of increase of iron losses as a function of the magnetic flux density remains small up to around 1.6 T, which cannot be realized in conventional laminated block cores based on amorphous alloy. The block core made of the high Bs alloy exhibits comparable core loss with that of amorphous alloy core in the high-frequency region. Thus, it is expected that this laminated high Bs block core can achieve low core losses and high saturation flux densities in the high-frequency region.

  17. High-speed jet electrodeposition and microstructure of nanocrystalline Ni-Co alloys

    International Nuclear Information System (INIS)

    Qiao Guiying; Jing Tianfu; Wang Nan; Gao Yuwei; Zhao Xin; Zhou Jifeng; Wang Wei

    2005-01-01

    The jet electrodeposition from watts baths with a device of electrolyte jet was carried out to prepare nano-crystalline cobalt-nickel alloys. The influence of the concentration of Co 2+ ions in the electrolyte and electrolysis parameters, such as the cathodic current density, the temperature as well as the electrolyte jet speed, on the chemistry and microstructure of Ni-Co-deposit alloys were investigated. Experimental results indicated that increasing the Co 2+ ions concentration in the bath, the electrolyte jet speed and decreasing of the cathodic current density and decrease of the electrolyte temperature all results in an increase of cobalt content in the alloy. Detailed microstructure changes upon the changes of alloy composition and experimental conditions were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD results show the Ni-Co solid solution was formed through the jet electrodeposition. Phase constitution of solid solution changes progressively under different electrolyte concentration. Alloys with low Co concentration exhibit single phase of face-centered cubic (fcc) structure; The Co concentration over 60.39 wt.%, the alloys are composed of face-centered cubic (fcc) phase and hexagonal close-packed (hcp) phase. Furthermore, the formation of the nanostructured Ni-Co alloy deposit is investigated. Increasing the Co 2+ ions concentration in the bath, the cathodic current density, the electrolyte temperature and the electrolyte jet speed all result in the finer grains in the deposits. Additives such as saccharin in the electrolyte also favor the formation of the finer grains in the alloy deposits

  18. Magnetoelectric coupling characteristics in multiferroic heterostructures with different thickness of nanocrystalline soft magnetic alloy

    Science.gov (United States)

    Chen, Lei; Wang, Yao

    2016-05-01

    Magnetoelectric(ME) coupling characteristics in multiferroic heterostructures with different thickness of nanocrystalline soft magnetic alloy has been investigated at low frequency. The ME response with obvious hysteresis, self-biased and dual-peak phenomenon is observed for multiferroic heterostructures, which results from strong magnetic interactions between two ferromagnetic materials with different magnetic properties, magnetostrictions and optimum bias magnetic fields Hdc,opti. The proposed multiferroic heterostructures not only enhance ME coupling significantly, but also broaden dc magnetic bias operating range and overcomes the limitations of narrow bias range. By optimizing the thickness of nanocrystalline soft magnetic alloy Tf, a significantly zero-biased ME voltage coefficient(MEVC) of 14.8mV/Oe (185 mV/cmṡ Oe) at Tf = 0.09 mm can be obtained, which is about 10.8 times as large as that of traditional PZT/Terfenol-D composite with a weak ME coupling at zero bias Hdc,zero. Furthermore, when Tf increases from 0.03 mm to 0.18 mm, the maximum MEVC increases nearly linearly with the increased Tf at Hdc,opti. Additionally, the experimental results demonstrate the ME response for multiferroic heterostructures spreads over a wide magnetic dc bias operating range. The excellent ME performance provides a promising and practicable application for both highly sensitive magnetic field sensors without bias and ME energy harvesters.

  19. Hysteresis properties of conventionally annealed and Joule-heated nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys

    International Nuclear Information System (INIS)

    Tiberto, P.; Basso, V.; Beatrice, C.; Bertotti, G.

    1996-01-01

    The dependence of magnetic properties on the thermal treatment used to induce the amorphous-to-nanocrystalline transformation in Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloy has been studied. Quasi-static hysteresis loops and initial permeability measurements were performed on nanocrystalline samples obtained by conventional annealing and Joule heating. A comparison between the magnetic properties of nanocrystalline samples obtained by the two heating procedures is presented. (orig.)

  20. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    Science.gov (United States)

    Marvel, Christopher Jonathan

    The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice

  1. Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications

    KAUST Repository

    Liang, Hanfeng

    2017-04-11

    Water splitting driven by electricity or sunlight is one of the most promising ways to address the global terawatt energy needs of future societies; however, its large-scale application is limited by the sluggish kinetics of the oxygen evolution reaction (OER). NiFe-based compounds, mainly oxides and hydroxides, are well-known OER catalysts and have been intensively studied; however, the utilization of the synergistic effect between two different NiFe-based materials to further boost the OER performance has not been achieved to date. Here, we report the rapid conversion of NiFe double hydroxide into metallic NiFeP using PH3 plasma treatment and further construction of amorphous NiFe hydroxide/NiFeP/Ni foam as efficient and stable oxygen-evolving anodes. The strong electronic interactions between NiFe hydroxide and NiFeP significantly lower the adsorption energy of H2O on the hybrid and thus lead to enhanced OER performance. As a result, the hybrid catalyst can deliver a geometrical current density of 300 mA cm–2 at an extremely low overpotential (258 mV, after ohmic-drop correction), along with a small Tafel slope of 39 mV decade–1 and outstanding long-term durability in alkaline media.

  2. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys

    Science.gov (United States)

    Noskova, N. I.; Vil'Danova, N. F.; Filippov, Yu. I.; Churbaev, R. V.; Pereturina, I. A.; Korshunov, L. G.; Korznikov, A. V.

    2006-12-01

    Changes in the structure, hardness, mechanical properties, and friction coefficient of Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb (wt %) alloys subjected to severe plastic deformation by equal-channel angular pressing (with a force of 40 tonne) and by shear at a pressure of 5 GPa have been studied. The transition into the nanocrystalline state was shown to occur at different degrees of plastic deformation. The hardness exhibits nonmonotonic variations, namely, first it increases and subsequently decreases. The friction coefficient of the Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys quenched from the melt was found to be 0.33; the friction coefficients of these alloys in the submicrocrystalline state (after equal-channel angular pressing) equal 0.24, 0.32, and 0.35, respectively. The effect of disintegration into nano-sized powders was found to occur in the Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys after severe plastic deformation to ɛ = 6.4 and subsequent short-time holding.

  3. Magnetoresistance Effect in NiFe/BP/NiFe Vertical Spin Valve Devices

    Directory of Open Access Journals (Sweden)

    Leilei Xu

    2017-01-01

    Full Text Available Two-dimensional (2D layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR properties of a black phosphorus (BP spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.

  4. Phase evolution and its effects on the magnetic performance of nanocrystalline SmCo7 alloy

    International Nuclear Information System (INIS)

    Zhang Zhexu; Song Xiaoyan; Xu Wenwu

    2011-01-01

    The evolution of the phase constitution and the microstructure, as well as their effects on magnetic performance, were investigated systematically using a prepared nanocrystalline single-phase SmCo 7 alloy as the starting material for a series of annealing processes. The SmCo 7 (1:7 H) phase was discovered to have a good single-phase stability from room temperature up to 600 deg. C. The destabilization of the SmCo 7 phase results in the formation of the Sm 2 Co 17 (2:17 R) and SmCo 5 (1:5 H) phases, which exist as phase-transformation twins and particulate precipitates, respectively, with a completely coherent relationship with the 1:7 H parent phase. For the first time the formation mechanism of the 2:17 R phase-transformation twins has been proposed, in which the ordered substitution of 1/3 of the Sm atoms by Co-Co dumbbell pairs along two particular crystal directions was demonstrated. The characteristic width values of the 2:17 R phase-transformation twins, as deduced from this model of the mechanism, were unambiguously verified by the experimental results. Among the SmCo 7 alloys with various phase constitutions and microstructures, the best magnetic properties were obtained in the nanocrystalline 1:7 H single-phase alloys. The present work may promote a new understanding of nanoscale-stabilized single-phase SmCo 7 and its potential applications as unique high-temperature permanent magnets.

  5. Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time

    Energy Technology Data Exchange (ETDEWEB)

    Lala, S. [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal (India); Brahmachari, S.; Das, P.K. [Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032 (India); Das, D. [UGC-DAE Consortium for Scientific Research, Kolkata-700098 (India); Kar, T. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal (India)

    2014-09-01

    Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO{sub 3} and CaHPO{sub 4}.2H{sub 2}O powders in open air at room temperature within 2 h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite. - Graphical abstract: Biocompatible A-Type Carbonated Hydroxyapatite (A-cHAp) has been synthesized by mechanical alloying in polycrystalline form within 2 h of milling. The shape and position of CO channel have been shown. - Highlights: • A-cHAp phase is completed within 2 h of milling. • FTIR analysis confirms A-type carbonation in HAp. • Amorphization of a part of crystalline A-cHAp. • Particle size and strain are anaisotropic in nature. • High cell viability under MTT assay.

  6. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  7. Effect of Nano-crystalline Ceramic Coats Produced by Plasma Electrolytic Oxidation on Corrosion Behavior of AA5083 Aluminum Alloy

    International Nuclear Information System (INIS)

    Thayananth, T.; Muthupandi, V.; Rao, S. R. Koteswara

    2010-01-01

    High specific strength offered by aluminum and magnesium alloys makes them desirable in modern transportation industries. Often the restrictions imposed on the usage of these alloys are due to their poor tribological and corrosion properties. However, their corrosion properties can be further enhanced by synthesizing ceramic coating on the substrate through Plasma Electrolytic Oxidation (PEO) process. In this study, nano-crystalline alumina coatings were formed on the surface of AA5083 aluminum alloy test coupons using PEO process in aqueous alkali-silicate electrolyte with and without addition of sodium aluminate. X-ray diffraction (XRD) studies showed that the crystallite size varied between 38 and 46 nm and α- and γ- alumina were the dominant phases present in the coatings. Corrosion studies by potentiodynamic polarization tests in 3.5% NaCl revealed that the electrolyte composition has an influence on the corrosion resistance of nano-crystalline oxide layer formed.

  8. Nanocrystalline (Fe{sub 60}Al{sub 40}){sub 80}Cu{sub 20} alloy prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Krifa, M.; Mhadhbi, M. [Laboratoire de Chimie Inorganique, 99/UR/12-22, FSS – Université de Sfax, B.P. 1171, Sfax 3018 (Tunisia); Escoda, L.; Güell, J.M. [Dept. de Fisica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Suñol, J.J., E-mail: joanjosep.sunyol@udg.edu [Dept. de Fisica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Llorca-Isern, N.; Artieda-Guzmán, C. [Dept. CMEM, Universitat de Barcelona, Martí Franques 1, 08028 Barcelona (Spain); Khitouni, M. [Laboratoire de Chimie Inorganique, 99/UR/12-22, FSS – Université de Sfax, B.P. 1171, Sfax 3018 (Tunisia)

    2013-03-25

    Highlights: ► Nanocrystalline Fe(Al, Cu) powdered alloy (10 nm) has been synthesized by MA. ► Decreasing the crystallite size increases coercivity and squareness ratio. ► As low crystallites size stronger hard ferromagnetic material results. -- Abstract: A nanostructured disordered Fe(Al, Cu) solid solution was obtained from prealloyed FeAl and elemental Cu powders using a high-energy ball mill. The transformations occurring in the material during milling were studied with the use of X-ray diffraction. The transformation of the phase depends upon the milling time. With the increase of milling time all Cu atoms became dissolved in the bcc Fe and the final product of the MA process was the nanocrystalline Fe(Al, Cu) solid solution with a mean crystallite size of 10 nm. Scanning electron microscopy (SEM) was employed to examine the morphology of the samples as a function of milling times. Magnetic properties were also investigated and were related to the microstructural changes. The system showed hard magnetic behavior.

  9. Effect of nanocrystalline phase on the electrochemical behavior of the alloy Ti{sub 60}Ni{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Shubhra, E-mail: shubhramathur3@gmail.com [Department of Physics, Jagannath Gupta Institute of Engineering and Technology, Jaipur 303905 (India); Jain, Rohit [Department of Physics, Jagannath Gupta Institute of Engineering and Technology, Jaipur 303905 (India); Kumar, Praveen [Surface Physics and Nanostructure Group, National Physical Laboratory, New Delhi 110012 (India); Sachdev, K.; Sharma, S.K. [Department of Physics, Malaviya National Institute of Technology, JLN-Marg, Jaipur 302017 (India)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Polarization studies carried out on different structural states of the alloy Ti{sub 60}Ni{sub 40}. Black-Right-Pointing-Pointer Nanocrystalline state exhibits superior corrosion resistance as compared to other states of the alloy Ti{sub 60}Ni{sub 40}. Black-Right-Pointing-Pointer XPS results show that nanocrystalline specimen contains only TiO{sub 2} species. Black-Right-Pointing-Pointer It leads to the formation of adherent and stable film and improves the corrosion resistance. - Abstract: Polarization studies were carried out on crystalline, amorphous and nanocrystalline states of the alloy Ti{sub 60}Ni{sub 40} in 1 M NaCl aqueous medium at room temperature. It was observed that nanocrystalline state exhibits superior corrosion resistance as compared to other states of the alloy Ti{sub 60}Ni{sub 40}. Cyclic voltammetry studies and weight loss data corroborates the polarization studies. X-ray photoelectron spectroscopy (XPS) technique was used in order to decipher the nature of the oxide film formed after corrosion test on the specimens of the alloy Ti{sub 60}Ni{sub 40}. The crystalline specimen of the alloy Ti{sub 60}Ni{sub 40} shows the presence of Ti{sup 2+}, Ti{sup 3+} and Ti{sup 4+} species along with some unoxidized Ti in metallic form (Ti{sup 0}) whereas the amorphous specimen consists of Ti{sup 3+} and Ti{sup 4+} species. On the other hand nanocrystalline specimen contains only Ti{sup 4+} species. Thus it is likely that the presence of fewer species and the absence of Ti{sup 3+} in the oxide film formed on nanocrystalline specimen of Ti{sub 60}Ni{sub 40} lead to the formation of a film with greater homogeneity and protective quality in comparison to the films formed on crystalline and amorphous states of the alloy Ti{sub 60}Ni{sub 40} in 1 M NaCl aqueous medium.

  10. Microstructure and tribological property of nanocrystalline Co–W alloy coating produced by dual-pulse electrodeposition

    International Nuclear Information System (INIS)

    Su Fenghua; Huang Ping

    2012-01-01

    Highlights: ► The nanocrystalline Co–W alloy coating were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate. ► The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of electrodeposited Co–W alloy coatings were established. ► By careful control of the electrodeposition condition and the bath composition, the Co–W alloy coating excellent performance of microhardness and tribological properties, can exhibit excellent performances of microhardness and tribological properties. - Abstract: The nanocrystalline Co–W alloy coatings were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate (Na 2 WO 4 ). Influence of the current density and Na 2 WO 4 concentration in bath on the microstructure, morphology and hardness of the Co–W alloy coatings were investigated using an X-ray diffraction, a scanning electronic microscope and a Vickers hardness tester, respectively. In addition, the friction and wear properties of the Co–W alloy coating electrodeposited under different condition were evaluated with a ball-on-disk UMT-3MT tribometer. The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of the deposited Co–W alloy coatings were discussed in detail. The results showed that the microhardness of the deposited Co–W alloy coating was significantly affected by its average grain size, W content and crystal orientation. Smaller grain size, higher W content and strong hcp (1 0 0) orientation favor the improvement of the hardness for Co–W alloy coatings. The deposited Co–W alloy coating could obtain the maximum microhardness over 1000 kgf mm −2 by careful control of the electrodeposition conditions. The tribological properties of the electrodeposited Co–W alloy coating were greatly

  11. Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy

    International Nuclear Information System (INIS)

    Bahmanpour, Hamed; Youssef, Khaled M.; Horky, Jelena; Setman, Daria; Atwater, Mark A.; Zehetbauer, Michael J.; Scattergood, Ronald O.; Koch, Carl C.

    2012-01-01

    Nanocrystalline Cu–30% Zn samples were produced by high energy ball milling at 77 K and room temperature. Cryomilled flakes were further processed by ultrahigh strain high pressure torsion (HPT) or room temperature milling to produce bulk artifact-free samples. Deformation-induced grain growth and a reduction in twin probability were observed in HPT consolidated samples. Investigations of the mechanical properties by hardness measurements and tensile tests revealed that at small grain sizes of less than ∼35 nm Cu–30% Zn deviates from the classical Hall–Petch relation and the strength of nanocrsytalline Cu–30% Zn is comparable with that of nanocrystalline pure copper. High resolution transmission electron microscopy studies show a high density of finely spaced deformation nanotwins, formed due to the low stacking fault energy of 14 mJ m –2 and low temperature severe plastic deformation. Possible softening mechanisms proposed in the literature for nanotwin copper are addressed and the twin-related softening behavior in nanotwinned Cu is extended to the Cu–30% Zn alloy based on detwinning mechanisms.

  12. Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state

    Science.gov (United States)

    Datta, M. K.; Pabi, S. K.; Murty, B. S.

    2000-06-01

    Solid state reactions induced by mechanical alloying (MA) of elemental blends of Ni and Si have been studied over the entire composition range of the Ni-Si system. A monotonous increase of the lattice parameter of the Ni rich solid solution, Ni(Si), is observed with refinement of crystallite size. Nanocrystalline phase/phase mixtures of Ni(Si), Ni(Si)+Ni31Si12, Ni31Si12+Ni2Si, Ni2Si+NiSi and NiSi+Si, have been obtained during MA, over the composition ranges of 0-10, 10-28, 28-33, 33-50, and >50 at. % Si, respectively. The results clearly suggest that only congruent melting phases, Ni31Si12, Ni2Si, and NiSi form, while the formation of noncongruent melting phases, Ni3Si, Ni3Si2, and NiSi2, is bypassed in the nanocrystalline state. The phase formation during MA has been discussed based on thermodynamic arguments. The predicted phase fields obtained from effective free energy calculations are quite consistent with those obtained during MA.

  13. Properties and in vivo investigation of nanocrystalline hydroxyapatite obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.C.; Pinheiro, A.G.; Oliveira, R.S. de; Goes, J.C.; Aranha, N.; Oliveira, L.R. de; Sombra, A.S.B

    2004-06-01

    Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P=1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 5/3 congruent with 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, had not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells.

  14. Properties and in vivo investigation of nanocrystalline hydroxyapatite obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, C.C.; Pinheiro, A.G.; Oliveira, R.S. de; Goes, J.C.; Aranha, N.; Oliveira, L.R. de; Sombra, A.S.B.

    2004-01-01

    Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P=1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 5/3 congruent with 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, had not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells

  15. Structure-property correlations in nanocrystalline Al-Zr alloy composites

    International Nuclear Information System (INIS)

    Rittner, M.N.; Argonne National Lab., IL; Weertman, J.R.; Eastman, J.A.

    1996-01-01

    A study of the structure, grain size stability and Vickers microhardness of nanocrystalline aluminum-zirconium alloy composites was conducted. Samples were synthesized by the inert gas condensation process with electron beam evaporation. Transmission electron microscope examinations of the samples were performed at room and elevated temperatures. The behavior of the microstructures of the samples with time and temperature was investigated as a function of specimen composition. Vickers microhardness data were evaluated at room temperature in as-produced and polished compacted specimens. The local chemical composition of individual microhardness indents and average values of the grain size and porosity level were determined for a number of samples. Correlations among these microstructural variables and hardness were determined using multiple regression techniques

  16. Magnetic Properties of Nanocrystalline FexCu1-x Alloys Prepared by Ball Milling

    International Nuclear Information System (INIS)

    Yousif, A.; Bouziane, K.; Elzain, M. E.; Ren, X.; Berry, F. J.; Widatallah, H. M.; Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A.

    2004-01-01

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe x Cu 1-x alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x≥0.8 and x≤0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x≥0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  17. Structure and magnetic properties of nanocrystalline Fe75Si25 powders prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Kalita, M.P.C.; Perumal, A.; Srinivasan, A.

    2008-01-01

    Nanocrystalline Fe 75 Si 25 powders were prepared by mechanical alloying in a planetary ball mill. The evolution of the microstructure and magnetic properties during the milling process were studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The evolution of non-equilibrium solid solution Fe (Si) during milling was accompanied by refinement of crystallite size down to 10 nm and the introduction of high density of dislocations of the order of 10 17 m -2 . During the milling process, Fe sites get substituted by Si. This structural change and the resulting disorder are reflected in the lattice parameters and average magnetic moment of the powders milled for various time periods. A progressive increase of coercivity was also observed with increasing milling time. The increase of coercivity could be attributed to the introduction of dislocations and reduction of powder particle size as a function of milling time

  18. Thermal conductivity of nanocrystalline SiGe alloys using molecular dynamics simulations

    Science.gov (United States)

    Abs da Cruz, Carolina; Katcho, Nebil A.; Mingo, Natalio; Veiga, Roberto G. A.

    2013-10-01

    We have studied the effect of nanocrystalline microstructure on the thermal conductivity of SiGe alloys using molecular dynamics simulations. Nanograins are modeled using both the coincidence site lattice and the Voronoi tessellation methods, and the thermal conductivity is computed using the Green-Kubo formalism. We analyze the dependence of the thermal conductivity with temperature, grain size L, and misorientation angle. We find a power dependence of L1/4 of the thermal conductivity with the grain size, instead of the linear dependence shown by non-alloyed nanograined systems. This dependence can be derived analytically underlines the important role that disorder scattering plays even when the grains are of the order of a few nm. This is in contrast to non-alloyed systems, where phonon transport is governed mainly by the boundary scattering. The temperature dependence is weak, in agreement with experimental measurements. The effect of angle misorientation is also small, which stresses the main role played by the disorder scattering.

  19. Method of mechanochemical synthesis for the production of nanocrystalline Nb-Al alloys

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tret'yakov, K.V.; Logacheva, A.I.; Logunov, A.V.; Razumovskij, I.M.

    2004-01-01

    Using X-ray diffraction and DS analyses the process of solid phase synthesis on cooperative comminution of components (Nb, Al, Cr) in a planetary ball mill is investigated. Powder nanocrystalline Nb 3 Al base alloys of various compositions with simultaneous introduction of chromium are synthesized. High power milling results in block size of ∼ 20 nm. It is shown that final chromium dissolution and partial decomposition of Nb(Al) supersaturated solid solutions proceed after heating up to 1100 deg C only. With the help of doping with niobium by the method of mechanical alloying, a two-phase alloy Nb 3 Al + Nb 2 Al having been produced by arc melting, is corrected by composition and transferred to the two-phase region of Nb 3 Al + Nb(Al). It is revealed that the process of niobium aluminide phase formation during mechanochemical synthesis and the process of mechanical activation of Nb-Al system intermetallics enriched with niobium always proceed through formation of supersaturated solid solutions. The mechanism of the process is probably associated with stacking faults formation due to deformation [ru

  20. Thermal evolution of nanocrystalline co-sputtered Ni–Zr alloy films: Structural, magnetic and MD simulation studies

    International Nuclear Information System (INIS)

    Bhattacharya, Debarati; Rao, T.V. Chandrasekhar; Bhushan, K.G.; Ali, Kawsar; Debnath, A.; Singh, S.; Arya, A.; Bhattacharya, S.; Basu, S.

    2015-01-01

    Monophasic and homogeneous Ni 10 Zr 7 nanocrystalline alloy films were successfully grown at room temperature by co-sputtering in an indigenously developed three-gun DC/RF magnetron sputtering unit. The films could be produced with long-range crystallographic and chemical order in the alloy, thus overcoming the widely acknowledged inherent proclivity of the glass forming Ni–Zr couple towards amorphization. Crystallinity of these alloys is a desirable feature with regard to improved efficacy in applications such as hydrogen storage, catalytic activity and nuclear reactor engineering, to name a few. Thermal stability of this crystalline phase, being vital for transition to viable applications, was investigated through systematic annealing of the alloy films at 473 K, 673 K and 923 K for various durations. While the films were stable at 473 K, the effect of annealing at 673 K was to create segregation into nanocrystalline Ni (superparamagnetic) and amorphous Ni + Zr (non-magnetic) phases. Detailed analyses of the physical and magnetic structures before and after annealing were performed through several techniques effectual in analyzing stratified configurations and the findings were all consistent with each other. Polarized neutron and X-ray reflectometry, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy were used to gauge phase separation at nanometer length scales. SQUID based magnetometry was used to investigate macroscopic magnetic properties. Simulated annealing performed on this system using molecular dynamic calculations corroborated well with the experimental results. This study provides a thorough understanding of the creation and thermal evolution of a crystalline Ni–Zr alloy. - Highlights: • Nanocrystalline Ni 10 Zr 7 alloy thin films deposited successfully by co-sputtering. • Creation of a crystalline alloy in a binary system with a tendency to amorphize. • Quantitative

  1. Effect of interface intermixing on giant magnetoresistance in NiFe/Cu and Co/NiFe/Co/Cu multilayers

    International Nuclear Information System (INIS)

    Nagamine, L.C.C.M.; Biondo, A.; Pereira, L.G.; Mello, A.; Schmidt, J.E.; Chimendes, T.W.; Cunha, J.B.M.; Saitovitch, E.B.

    2003-01-01

    This article reports on the important influence of the spontaneously built-in paramagnetic interfacial layers on the magnetic and magnetoresistive properties of NiFe/Cu and Co/NiFe/Co/Cu multilayers grown by magnetron sputtering. A computational simulation, based on a semiclassical model, has been used to reproduce the variations of the resistivity and of the magnetoresistance (MR) amplitude with the thickness of the NiFe, Cu, and Co layers. We showed that the compositionally intermixed layers at NiFe/Cu interfaces, which are paramagnetic, reduce the flow of polarized electrons and produce a masking on the estimated mean-free path of both types of electrons due to the reduction of their effective values, mainly for small NiFe thickness. Moreover, the transmission coefficients for the electrons decrease when Fe buffer layers are replaced by NiFe ones. This result is interpreted in terms of the variations of the interfacial intermixing and roughness at the interfaces, leading to an increase of the paramagnetic interfacial layer thickness. The effect provoked by Co deposition at the NiFe 16 A/Cu interfaces has also been investigated. The maximum of the MR amplitudes was found at 5 A of Co, resulting in the quadruplication of the MR amplitude. This result is partially attributed to the interfacial spin-dependent scattering due to the increase of the magnetic order at interfaces. Another effect observed here was the increase of the spin-dependent scattering events in the bulk NiFe due to a larger effective NiFe thickness, since the paramagnetic interfacial layer thickness is decreased

  2. Investigation on effect of iron and corundum content on corrosion resistance of the NiFe-Al2O3 coatings

    International Nuclear Information System (INIS)

    Starosta, R.; Zielinski, A.

    1999-01-01

    The alloy NiFe and composite NiFe-Al 2 O 3 coatings, obtained by electrodeposition on the base of cast iron, were investigated. The iron content in alloy coatings was dependent on iron content in galvanic bath, and was estimated by means of X-ray microanalysis at 18.5 wt. pct. and 41.2 wt. pct. No existence of ordered Ni 3 Fe phase was found by diffraction technique. Both potentiodynamic and impedance measurements disclosed that a presence of Al 2 O 3 or increasing iron content in the layer caused the decrease in corrosion resistance. (author)

  3. Ag diffusion and interface segregation in nanocrystalline γ-FeNi alloy with a two-scale microstructure

    International Nuclear Information System (INIS)

    Divinski, S.V.; Hisker, F.; Kang, Y.-S.; Lee, J.-S.; Herzig, Chr.

    2004-01-01

    Solute diffusion of Ag in nanocrystalline γ-Fe - 40wt%Ni alloy was studied by means of the radiotracer technique in an extended temperature interval (489-1200 K). The powder metallurgical method was applied to produce nanomaterial which consisted of micrometer-large clusters (agglomerates) of nanometer sized grains. Two types of internal interfaces contributed as short-circuit paths for diffusion: the nanocrystalline grain boundaries (GB) and the inter-agglomerate interfaces (subscript a). Combining the recent results on Ag GB diffusion in coarse-grained γ-Fe - 40wt%Ni alloy and the present diffusion data in the nanocrystalline alloy the Ag segregation was determined as function of temperature. Ag segregates strongly at GBs in the γ-Fe - 40wt%Ni alloy with a segregation enthalpy of H s =-47 kJ/mol. Knowing the segregation factor, the experimental data on Ag diffusion along both nanocrystalline and inter-agglomerate interfaces in the nanomaterial were systematically analyzed in dependence on the different kinetic regimes. The sensitive radiotracer experiments and the subsequent diffusion profile analysis resulted in a consistent set of diffusion data in the whole investigated temperature range with Arrhenius behavior for both the Ag nano-GB diffusion (D 0 gb =4.7x10 -4 m 2 /s, H gb =173 kJ/mol) as well as for the much faster inter-agglomerate interface diffusion (D 0 a =8.1x10 -5 m 2 /s, H a =91 kJ/mol)

  4. Study of dipole interaction in micron-width NiFe/Cu/NiFe/NiO wire using exchange anisotropy

    International Nuclear Information System (INIS)

    Kimura, Takashi; Itagaki, Yoshio; Wakaya, Fujio; Gamo, Kenji

    2001-01-01

    The dipole interaction between a NiFe layer pinned by a NiO and a free NiFe layer in a micron-wide NiFe/Cu/NiFe/NiO wire was studied by changing the direction of the exchange bias from the NiO layer. The effect of the dipole interaction when the exchange bias was perpendicular to the wire axis was larger than that when the exchange bias was parallel to the wire axis, and was consistently explained by the stray field caused by the magnetic charges of the pinned layer. It was demonstrated that this method, using exchange anisotropy, is useful for investigating the dipole interaction between ferromagnetic materials separated by a nonmagnetic material in small-scale magnetic multilayers. [copyright] 2001 American Institute of Physics

  5. Structural investigations on nanocrystalline Ni-W alloy films by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M. [Institut fuer Materialforschung, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Bade, K., E-mail: klaus.bade@imt.fzk.d [Institut fuer Mikrostrukturtechnik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)

    2009-10-30

    Electrodeposited Ni-W alloys have been investigated in the as-deposited state by transmission electron microscopy in order to investigate the microstructural features in dependence of the tungsten content. Within the tungsten content range from 7 at.% up to 12 at.%, the microstructure is nanocrystalline characterized by a bimodal grain size distribution, consisting out of 20 to 200 nm sized grains and also larger grains with several 100 nm characteristic dimension. No clear trend in microstructure formation is visible with W content or deposition conditions in the investigated W content range. Only solid solution phase characteristics were observed. The lattice constant is 0.360 nm for 12 at.% W as derived from electron diffraction for the solid solution face centered cubic structure. Larger grains show twinning and stacking faults. Voids with diameter of a few nm were detected along with some multiple twinned particles, indicating high stress level during growth. About 2 at.% difference in the alloy composition from grain to grain was measured.

  6. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloy by Melt Spinning

    Directory of Open Access Journals (Sweden)

    Hui-Ping Ren

    2011-01-01

    Full Text Available Mg2Ni-type Mg2Ni1−xCox (x = 0, 0.1, 0.2, 0.3, 0.4 alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD and transmission electron microscopy (TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1 alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg2Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s to 30 m/s, the hydrogen absorption saturation ratio ( of the (x = 0.4 alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio ( from 54.5 to 70.2%, the hydrogen diffusion coefficient (D from 0.75 × 10−11 to 3.88 × 10−11 cm2/s and the limiting current density IL from 150.9 to 887.4 mA/g.

  7. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Directory of Open Access Journals (Sweden)

    Xingjie Jia

    2018-05-01

    Full Text Available Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ∼17.5 nm, and exhibits a high Bs of ∼1.75 T and a low Hc of ∼5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  8. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Science.gov (United States)

    Jia, Xingjie; Li, Yanhui; Wu, Licheng; Zhang, Wei

    2018-05-01

    Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D) of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc) by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs) is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ˜17.5 nm, and exhibits a high Bs of ˜1.75 T and a low Hc of ˜5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  9. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  10. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography.

    Science.gov (United States)

    Zheng, Changlin; Kirmse, Holm; Long, Jianguo; Laughlin, David E; McHenry, Michael E; Neumann, Wolfgang

    2015-04-01

    The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

  11. Structural and magnetic properties of nanocrystalline Fe–Co–Ni alloy processed by mechanical alloying

    International Nuclear Information System (INIS)

    Raanaei, Hossein; Eskandari, Hossein; Mohammad-Hosseini, Vahid

    2016-01-01

    In this present work, a nanostructured iron–cobalt–nickel alloy with Fe_5_0Co_3_0Ni_2_0 composition has been processed by mechanical alloying. The structural and magnetic properties have been investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. It is shown that the crystallize size reaches to about 18.7 nm after 32 h milling time. A remarkable decrease in coercivity after 16 h milling time and also a continuous increase in remanent magnetization during the mechanical alloying process are observed. Heat treatment of the samples milled at 32 and 48 h demonstrates the crystalline constituent elements and also Fe_3O_4 crystalline phase. - Highlights: • This article focuses on mechanical alloying of Fe_5_0Co_3_0Ni_2_0 composition. • Structural and magnetic properties were investigated. • Saturation magnetization was increased sharply after 16 h of milling time. • The heat treatment revealed the signature of Fe_3O_4 as well as FeNi_3 and Co crystalline phases.

  12. Structural and magnetic properties of nanocrystalline Fe–Co–Ni alloy processed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Raanaei, Hossein, E-mail: hraanaei@yahoo.com [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Eskandari, Hossein [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Mohammad-Hosseini, Vahid [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2016-01-15

    In this present work, a nanostructured iron–cobalt–nickel alloy with Fe{sub 50}Co{sub 30}Ni{sub 20} composition has been processed by mechanical alloying. The structural and magnetic properties have been investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. It is shown that the crystallize size reaches to about 18.7 nm after 32 h milling time. A remarkable decrease in coercivity after 16 h milling time and also a continuous increase in remanent magnetization during the mechanical alloying process are observed. Heat treatment of the samples milled at 32 and 48 h demonstrates the crystalline constituent elements and also Fe{sub 3}O{sub 4} crystalline phase. - Highlights: • This article focuses on mechanical alloying of Fe{sub 50}Co{sub 30}Ni{sub 20} composition. • Structural and magnetic properties were investigated. • Saturation magnetization was increased sharply after 16 h of milling time. • The heat treatment revealed the signature of Fe{sub 3}O{sub 4} as well as FeNi{sub 3} and Co crystalline phases.

  13. Temperature-dependent rigidity and magnetism of polyamide 6 nanocomposites based on nanocrystalline Fe-Ni alloy of various geometries

    Directory of Open Access Journals (Sweden)

    M. A. A. Mohamed

    2016-10-01

    Full Text Available The focus of this study is to explore the potential use of Polyamide 6 nanocomposite reinforced with nanocrystalline (nc Fe20Ni80 alloy (Fe20Ni80/PA6 PNC in electromagnetic applications and provide understanding of how the alloy particle geometry is controlling the nanocomposite’s physical properties. Thermomechanical rigidity, room-temperature soft magnetic performance and thermal soft magnetic stability of Fe20Ni80/PA6 PNCs based on spherical-sea urchin alloy particles (UMB2-SU and necklace-like alloy chains (UMB2-NC have been investigated. Both PNCs have considerably superior bulk properties compared to neat PA6 and UMB2-SU exhibits the most remarkable overall performance. Morphological observations disclose two relevant phenomena: i improved dispersion and distribution of the SU alloy particles than the NC ones within PA6 matrix, leading to stronger filler-matrix interfacial interactions within the UMB2-SU as compared to the UMB2-NC and ii presence of constraint polymer regions in between alloy segments within the UMB2-SU that provide secondary reinforcing and soft magnetic mechanisms. Such phenomena along with the lower alloy crystallite size and PA6 γ-crystal type content within the UMB2-SU than in the UMB2-NC, are considered the main responsible factors for the distinctive performance of UMB2-SU. Overall, compared to various ferromagnetic nanocrystalline metallic materials, the research proposes the SU nc Fe20Ni80 alloy as a valuable nanofiller in polymers for electromagnetic applications.

  14. Temperature dependent mechanical properties and thermal activation plasticity of nanocrystalline and coarse grained Ni-18.75 at.% Fe alloy

    International Nuclear Information System (INIS)

    Tabachnikova, E D; Podolskiy, A V; Smirnov, S N; Psaruk, I A; Liao, P K

    2014-01-01

    Mechanical properties of Ni-18.75 at.% Fe in coarse grained (average grain size 15 gm) and nanocrystalline (average grain size 22 nm) states were studied in uniaxial compression in the temperature range 4.2-350 K. Temperature dependences of the flow stress, strain rate sensitivity and activation volume of plastic deformation were measured. The thermal activation analysis of the experimental data has been fulfilled for the the plastic deformation value of 2 %. It was shown that plastic deformation in temperature range from 35 to 350 K in both studied structural states has the thermally activated type. Comparative analysis of low temperature thermal activation plastic deformation was carried out for the alloy in coarse grained and nanocrystalline states. Empirical estimates of parameters of the dislocation interaction with local barriers and internal stress value estimates were obtained for the both studied structural states. Analysis of the results indicates that different mechanisms control the thermal activation plasticity of the Ni-18.75 at.% Fe alloy in coarse grained and nanocrystalline states. Possible mechanisms, which control plactisity of the studied states, are disscussed

  15. Grain size stability and hardness in nanocrystalline Cu–Al–Zr and Cu–Al–Y alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D., E-mail: droy2k6@gmail.com [Material Science and Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Materials and Metallurgical Engineering Department, NIFFT, Ranchi 834003 (India); Mahesh, B.V. [Department of Mechanical and Aerospace Engineering, Monash University (Australia); Atwater, M.A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Chan, T.E.; Scattergood, R.O.; Koch, C.C. [Material Science and Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-03-01

    Cryogenic high energy ball milling has been used to synthesize nanocrystalline Cu–14Al, Cu–12Al–2Zr and Cu–12Al–2Y alloys by mechanical alloying. The alloys were studied with the aim of comparing the effect of substituting Y and Zr in place of Al, in Cu–Al alloys, on the grain size stability at elevated temperatures. The as-milled alloys were subjected to annealing at various temperatures between 200 and 900 °C and the resulting grain morphology has been studied using X-ray diffraction and transmission electron microscopy. The addition of Y results in significantly reduced susceptibility to grain growth whereas in case of CuAl and CuAlZr alloys, the susceptibility to grain growth was much higher. The hardness is substantially increased due to Zr and Y addition in the as-milled CuAl powders. However, the hardness of Cu–12Al–2Zr gradually decreases and approaches that of Cu–14Al alloy after the annealing treatment whereas in case of Cu–12Al–2Y alloy, the relative drop in the hardness is much lower after annealing. Accordingly, the efficacy of grain size stabilization by Y addition at high homologous temperatures has been explained on the basis of a recent thermodynamic stabilization models.

  16. Grain size stability and hardness in nanocrystalline Cu–Al–Zr and Cu–Al–Y alloys

    International Nuclear Information System (INIS)

    Roy, D.; Mahesh, B.V.; Atwater, M.A.; Chan, T.E.; Scattergood, R.O.; Koch, C.C.

    2014-01-01

    Cryogenic high energy ball milling has been used to synthesize nanocrystalline Cu–14Al, Cu–12Al–2Zr and Cu–12Al–2Y alloys by mechanical alloying. The alloys were studied with the aim of comparing the effect of substituting Y and Zr in place of Al, in Cu–Al alloys, on the grain size stability at elevated temperatures. The as-milled alloys were subjected to annealing at various temperatures between 200 and 900 °C and the resulting grain morphology has been studied using X-ray diffraction and transmission electron microscopy. The addition of Y results in significantly reduced susceptibility to grain growth whereas in case of CuAl and CuAlZr alloys, the susceptibility to grain growth was much higher. The hardness is substantially increased due to Zr and Y addition in the as-milled CuAl powders. However, the hardness of Cu–12Al–2Zr gradually decreases and approaches that of Cu–14Al alloy after the annealing treatment whereas in case of Cu–12Al–2Y alloy, the relative drop in the hardness is much lower after annealing. Accordingly, the efficacy of grain size stabilization by Y addition at high homologous temperatures has been explained on the basis of a recent thermodynamic stabilization models

  17. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    International Nuclear Information System (INIS)

    Kalay, Yunus Eren

    2008-01-01

    deviation indicates an adiabatic type solidification path where heat of fusion is reabsorbed. It is interesting that this particle size range is also consistent with the appearance of a microcellular growth. While no glass formation is observed within this system, the smallest size powders appear to consist of a mixture of nanocrystalline Si and Al. Al-Sm alloys have been investigated within a composition range of 34 to 42 wt% Sm. Gas atomized powders of Al-Sm are investigated to explore the morphological and structural hierarchy that correlates with different degrees of departure from full equilibrium conditions. The resultant powders show a variety of structural selection with respect to amount of undercooling, with an amorphous structure appearing at the highest cooling rates. Because of the chaotic nature of gas atomization, Cu-block melt-spinning is used to produce a homogeneous amorphous structure. The as-quenched structure within Al-34 to 42 wt% Sm consists of nanocrystalline fcc-Al (on the order of 5 nm) embedded in an amorphous matrix. The nucleation density of fcc-Al after initial crystallization is on the order of 10 22 -10 23 m -3 , which is 10 5 -10 6 orders of magnitude higher than what classical nucleation theory predicts. Detailed analysis of liquid and as-quenched structures using high energy synchrotron X-ray diffraction, high energy transmission electron microscopy, and atom probe tomography techniques revealed an Al-Sm network similar in appearance to a medium range order (MRO) structure. A model whereby these MRO clusters promote the observed high nucleation density of fcc-Al nanocrystals is proposed. The devitrification path was identified using high temperature, in-situ, high energy synchrotron X-ray diffraction techniques and the crystallization kinetics were described using an analytical Johnson-Mehl-Avrami (JMA) approach.

  18. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    each other. This deviation indicates an adiabatic type solidification path where heat of fusion is reabsorbed. It is interesting that this particle size range is also consistent with the appearance of a microcellular growth. While no glass formation is observed within this system, the smallest size powders appear to consist of a mixture of nanocrystalline Si and Al. Al-Sm alloys have been investigated within a composition range of 34 to 42 wt% Sm. Gas atomized powders of Al-Sm are investigated to explore the morphological and structural hierarchy that correlates with different degrees of departure from full equilibrium conditions. The resultant powders show a variety of structural selection with respect to amount of undercooling, with an amorphous structure appearing at the highest cooling rates. Because of the chaotic nature of gas atomization, Cu-block melt-spinning is used to produce a homogeneous amorphous structure. The as-quenched structure within Al-34 to 42 wt% Sm consists of nanocrystalline fcc-Al (on the order of 5 nm) embedded in an amorphous matrix. The nucleation density of fcc-Al after initial crystallization is on the order of 1022-1023m-3, which is 105-106 orders of magnitude higher than what classical nucleation theory predicts. Detailed analysis of liquid and as-quenched structures using high energy synchrotron X-ray diffraction, high energy transmission electron microscopy, and atom probe tomography techniques revealed an Al-Sm network similar in appearance to a medium range order (MRO) structure. A model whereby these MRO clusters promote the observed high nucleation density of fcc-Al nanocrystals is proposed. The devitrification path was identified using high temperature, in-situ, high energy synchrotron X-ray diffraction techniques and the crystallization kinetics were described using an analytical Johnson-Mehl-Avrami (JMA) approach.

  19. Hexagonal close packed to face centered cubic polymorphic transformation in nanocrystalline titanium-zirconium system by mechanical alloying

    International Nuclear Information System (INIS)

    Bera, S.; Manna, I.

    2006-01-01

    The present study reports a reversible hexagonal close packed (hcp) to face centered cubic (fcc) polymorphic phase transformation in four different nanocrystalline titanium-zirconium binary alloys in the course of mechanical alloying in a planetary ball mill. This transformation is monitored at appropriate stages by X-ray diffraction and high-resolution transmission electron microscopy. Lattice parameter of the nanocrystalline fcc phase is a function of the alloy composition. For a given alloy, the lattice parameter and hence volume per atom increase with increase in milling time under comparable conditions. On the other hand, crystallite size, measured from X-ray peak broadening, significantly decreases with the progress of milling. It is suggested that structural instability due to plastic strain, increasing lattice expansion, and negative (from core to boundary) hydrostatic pressure is responsible for this hcp → fcc polymorphic transformation. The said transformation seems reversible as isothermal annealing at 1000 deg. C for 1 h or melting the powder mass leads to partial or complete transformation of the milled product from single phase fcc to hcp

  20. Vibrational thermodynamics of Fe90Zr7B3 nanocrystalline alloy from nuclear inelastic scattering

    DEFF Research Database (Denmark)

    Stankov, S.; Miglierini, M.; Chumakov, A. I.

    2010-01-01

    Recently we determined the iron-partial density of vibrational states (DOS) of nanocrystalline Fe(90)Zr(7)B(3) (Nanoperm), synthesized by crystallization of an amorphous precursor, for various stages of nanocrystallization separating the DOS of the nanograins from that of the interfaces [S. Stank......, vibrational entropy, and lattice specific heat as the material transforms from amorphous, through nanocrystalline, to fully crystallized state. The reported results shed new light on the previously observed anomalies in the vibrational thermodynamics of nanocrystalline materials....

  1. Nanocrystalline β-Ta Coating Enhances the Longevity and Bioactivity of Medical Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Linlin Liu

    2016-09-01

    Full Text Available A β-Ta nanocrystalline coating was engineered onto a Ti-6Al-4V substrate using a double cathode glow discharge technique to improve the corrosion resistance and bioactivity of this biomedical alloy. The new coating has a thickness of ~40 μm and exhibits a compact and homogeneous structure composed of equiaxed β-Ta grains with an average grain size of ~22 nm, which is well adhered on the substrate. Nanoindentation and scratch tests indicated that the β-Ta coating exhibited high hardness combined with good resistance to contact damage. The electrochemical behavior of the new coating was systematically investigated in Hank’s physiological solution at 37 °C. The results showed that the β-Ta coating exhibited a superior corrosion resistance as compared to uncoated Ti-6Al-4V and commercially pure tantalum, which was attributed to a stable passive film formed on the β-Ta coating. The in vitro bioactivity was studied by evaluating the apatite-forming capability of the coating after seven days of immersion in Hank’s physiological solution. The β-Ta coating showed a higher apatite-forming ability than both uncoated Ti-6Al-4V and commercially pure Ta, suggesting that the β-Ta coating has the potential to enhance functionality and increase longevity of orthopaedic implants.

  2. Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors

    International Nuclear Information System (INIS)

    Lopez, M.; Marin, P.; Agudo, P.; Carabias, I.; Venta, J. de la; Hernando, A.

    2007-01-01

    Nanocrystalline magnetic particles obtained by high energy ball milling of FeSiBNbCu alloy were prepared from rapidly quenched ribbons as a starting material. Structural characterization was made by using X-ray diffraction (XRD), differential scanning calorimetry (DSC), atomic force microscopy (AFM) and Moessbauer spectroscopy. The structural changes observed in this amorphous material suggest that nanocrystallization process takes place in a different way from the one induced by thermal treatments. Our different studies reveals that after short grinding times (up to 40 h) the material is composed by a two phase system of very fine nanocrystals embedded in a residual amorphous phase, while for largest periods of milling (from 140 h) the sample consists of a very fine nanocrystalline phase with a large fraction of grain boundary

  3. Thermal evolution of nanocrystalline co-sputtered Ni–Zr alloy films: Structural, magnetic and MD simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rao, T.V. Chandrasekhar; Bhushan, K.G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ali, Kawsar [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Debnath, A. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Arya, A. [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhattacharya, S. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Basu, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-11-15

    Monophasic and homogeneous Ni{sub 10}Zr{sub 7} nanocrystalline alloy films were successfully grown at room temperature by co-sputtering in an indigenously developed three-gun DC/RF magnetron sputtering unit. The films could be produced with long-range crystallographic and chemical order in the alloy, thus overcoming the widely acknowledged inherent proclivity of the glass forming Ni–Zr couple towards amorphization. Crystallinity of these alloys is a desirable feature with regard to improved efficacy in applications such as hydrogen storage, catalytic activity and nuclear reactor engineering, to name a few. Thermal stability of this crystalline phase, being vital for transition to viable applications, was investigated through systematic annealing of the alloy films at 473 K, 673 K and 923 K for various durations. While the films were stable at 473 K, the effect of annealing at 673 K was to create segregation into nanocrystalline Ni (superparamagnetic) and amorphous Ni + Zr (non-magnetic) phases. Detailed analyses of the physical and magnetic structures before and after annealing were performed through several techniques effectual in analyzing stratified configurations and the findings were all consistent with each other. Polarized neutron and X-ray reflectometry, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy were used to gauge phase separation at nanometer length scales. SQUID based magnetometry was used to investigate macroscopic magnetic properties. Simulated annealing performed on this system using molecular dynamic calculations corroborated well with the experimental results. This study provides a thorough understanding of the creation and thermal evolution of a crystalline Ni–Zr alloy. - Highlights: • Nanocrystalline Ni{sub 10}Zr{sub 7} alloy thin films deposited successfully by co-sputtering. • Creation of a crystalline alloy in a binary system with a tendency to amorphize.

  4. Magnetization reversal process and nonlinear magneto-impedance in Cu/NiFe and Nb/NiFe composite wires

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.S.; Buznikov, N.A. E-mail: n_buznikov@mail.ru; Granovsky, A.B.; Iakubov, I.T.; Prokoshin, A.F.; Rakhmanov, A.L.; Yakunin, A.M

    2002-08-01

    The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors.

  5. Magnetization reversal process and nonlinear magneto-impedance in Cu/NiFe and Nb/NiFe composite wires

    International Nuclear Information System (INIS)

    Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B.; Iakubov, I.T.; Prokoshin, A.F.; Rakhmanov, A.L.; Yakunin, A.M.

    2002-01-01

    The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors

  6. Study of self-diffusion of Fe in nanocrystalline FeNZr alloys using nuclear resonance reflectivity from isotopic multilayers

    International Nuclear Information System (INIS)

    Gupta, Ajay; Chakravarty, Sajoy; Gupta, Mukul; Horisberger, M.; Rueffer, Rudolf; Wille, Hans-Christian; Leupold, Olaf

    2005-01-01

    It is demonstrated that nuclear resonance reflectivity from isotopic multilayers can be used to do accurate measurements of self diffusion of iron in thin film samples. Diffusion lengths down to ∼ 1A 0 can be measured. The technique has been used to measure the self-diffusion of iron in FeNZr nanocrystalline alloys. The activation energy for self-diffusion of iron is found to be 0.8% ± 0.01 eV while the pre-exponential factor is 3.54 x 10 13 m 2 /s. (author)

  7. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications

    International Nuclear Information System (INIS)

    Xie, Kelvin Y.; Wang, Yanbo; Zhao, Yonghao; Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang; Liao, Xiaozhou; Lavernia, Enrique J.; Valiev, Ruslan Z.; Sarrafpour, Babak; Zoellner, Hans; Ringer, Simon P.

    2013-01-01

    High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated

  8. AC magnetic properties of the soft magnetic composites based on Supermalloy nanocrystalline powder prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamtu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France); Geoffroy, O. [Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France); Grenoble Electrical Engineering, University J. Fourier, BP 46, F-38402 Saint-Martin d' Heres Cedex (France); Chicinas, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Nanocrystalline soft magnetic composites were obtained. Black-Right-Pointing-Pointer The cutting frequency of the produced nanocrystalline SMC exceeds 100 kHz. Black-Right-Pointing-Pointer A long annealing at low temperature leads to an improvement of the permeability (12%). - Abstract: The preparation and characterization of the nanocrystalline soft magnetic composite core based on Supermalloy powder obtained via mechanical alloying route are presented. The AC magnetic properties of the compacts were determined in frequency range from 100 Hz to 100 kHz for flux densities of 0.05 and 0.1 T. Composite materials were obtained by covering the Supermalloy particles with a polymer binder, then compacted into toroidal shape and finally polymerized. It is found that an increase of the compacting pressure from 600 MPa to 800 MPa leads to an increase of the compacts permeability by more than 8%. Also, reducing the polymer content from 2 wt.% to 0.5 wt.% leads to an increase of the magnetic losses (at 100 kHz and 0.1 T) by 380%. The removal of the stresses induced during compaction has been accomplished by a heat treatment at 170 Degree-Sign C for 120 h. This leads to a significant increase (12%) of the relative initial permeability of the compacts.

  9. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  10. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  11. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  12. Magnetic and frequency properties for nanocrystalline Fe-Ni alloys prepared by high-energy milling method

    International Nuclear Information System (INIS)

    Liu Yongsheng; Zhang Jincang; Yu, Liming; Jia Guangqiang; Jing Chao; Cao Shixun

    2005-01-01

    Fe-based nano-crystalline soft magnetic alloy with Ni-doping was fabricated successfully by high-energy milling. It was proved that a Fe-Ni solid solution is formed and the evaluated average grain size is about 20 nm. The effect of doping Ni on the frequency properties was systematically investigated. From the magnetic measurement results, it can be concluded that, the nickel doped decreases the resonance frequency of Fe-Ni alloy, but Ni doping enhances the frequency stability. The corresponding value of initial permeability as a function of Ni doping concentration was given at 10 kHz and the result indicates that the peak value of initial permeability shifts to the region of low Ni concentration for the samples milled for 72 h

  13. Preparation of nanocrystalline Ce1-xSmx(Fe,Co)11Ti by melt spinning and mechanical alloying

    Science.gov (United States)

    Wuest, H.; Bommer, L.; Huber, A. M.; Goll, D.; Weissgaerber, T.; Kieback, B.

    2017-04-01

    Permanent magnetic materials based on Ce(Fe, Co)12-xTix with the ThMn12 structure are promising candidates for replacing NdFeB magnets. Its intrinsic magnetic properties are not far below the values of Nd2Fe14B, and the high amount of Fe and the fact that Ce is much more abundant and less expensive than Nd encourages the reasonable interest in these compounds. Nanocrystalline magnetic material of the composition Ce1-xSmxFe11-yCoyTi (x=0-1 and y=0; 1.95) has been produced by both melt spinning and mechanical alloying. Alloys containing only Ce as rare earth element (x=0) show coercivities below 77 kA/m, while for x=1 Hc,J values up to 392 kA/m are reached. Coercivity shows rather an exponential than a linear dependence on the gradual substitution of Ce by Sm.

  14. Magnetic properties and EXAFS study of nanocrystalline Fe2Mn0.5Cu0.5Al synthesized using mechanical alloying technique

    International Nuclear Information System (INIS)

    Nanto, Dwi; Yang, Dong-Seok; Yu, Seong-Cho

    2014-01-01

    Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has been synthesized by the mechanical alloying technique and studied as a function of milling time. Alloy nature of Fe 2 Mn 0.5 Cu 0.5 Al was observed in a sample milled for 96 h. The magnetic saturation is 4.0 μ B /f.u., which coincidently follows Slater–Pauling rule at 5 K. Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has enhanced saturate magnetization compared to any other fabrication of Fe 2 MnAl reported. Cu element plays an important role in site competes with other elements and may result in the enhancement of saturate magnetization. In accordance to the magnetic results and EXAFS pattern, it was revealed that the dynamics of magnetic properties were confirmed as structural changes of nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al

  15. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  16. Facile directing agent-free synthesis and magnetism of nanocrystalline Fe–Ni alloy with tunable shape

    International Nuclear Information System (INIS)

    Mohamed, Marwa A.A.

    2014-01-01

    Highlights: • Simple directing agent-free wet chemical method for high-yield synthesis of nc Fe-Ni particles with tunable shape. • The alloy morphology is controlled by varying synthesis conditions; concentration of metal ions and pH of reaction. • Synthesis conditions control the final shape of alloy particles via controlling their growth rate and capping with OH − ions. • The alloy magnetic behavior is driven away from soft magnetic toward hard one, by particles anisotropy and size reduction. • The branched wires morphology can be considered a new morphology of distinctive magnetic behavior, for nc Fe-Ni alloy. - Abstract: This article reports the synthesis of nanocrystalline (nc) Fe 20 Ni 80 particles with tunable shape, using a heterogeneous directing agent-free aqueous wet chemical method of mild synthesis conditions. The particle morphology has been controlled by varying synthesis conditions. The results demonstrate that the morphology of alloy particles changes from quasi-isotropic to anisotropic architecture by decreasing concentration of metal ions or increasing pH of reaction solution. Deep interpretations of such phenomena are reported. Magnetic behavior of the alloy is driven away from soft magnetic and toward hard magnetic behavior, by anisotropy and size reduction of alloy particles. This broadens practical applications of nc Fe 20 Ni 80 alloy. Overall, the study provides an effective economical way for high-yield synthesis of nc Fe–Ni particles with tailored shape and subsequently magnetic properties for a specific technological application. Additionally, it adds a new morphology, highly branched wires, of distinctive magnetic behavior to the known morphologies of nc Fe–Ni particles

  17. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and shape-optimized nanocrystalline alloys.

    Science.gov (United States)

    Zhang, Jitao; Li, Ping; Wen, Yumei; He, Wei; Yang, Aichao; Lu, Caijiang

    2014-03-01

    An enhancement for magnetoelectric (ME) effects is studied in a three-phase ME architecture consisting of two magnetostrictive Terfenol-D (Tb(0.3)Dy(0.7)Fe(1.92)) plates, a piezoelectric PZT (Pb(Zr,Ti)O3) plate, and a pair of shape-optimized FeCuNbSiB nanocrystalline alloys. By modifying the conventional shape of the magnetic flux concentrator, the shape-optimized flux concentrator has an improved effective permeability (μ(eff)) due to the shape-induced demagnetizing effect at its end surface. The flux concentrator concentrates and amplifies the external magnetic flux into Terfenol-D plate by means of changing its internal flux concentrating manner. Consequently, more flux lines can be uniformly concentrated into Terfenol-D plates. The effective piezomagnetic coefficients (d(33m)) of Terfenol-D plate and the ME voltage coefficients (α(ME)) can be further improved under a lower magnetic bias field. The dynamic magneto-elastic properties and the effective magnetic induction of Terfenol-D are taken into account to derive the enhanced effective ME voltage coefficients (α(ME,eff)), the consistency of experimental results and theoretical analyses verifies this enhancement. The experimental results demonstrate that the maximum d(33m) in our proposed architecture achieves 22.48 nm/A under a bias of 114 Oe. The maximum α(ME) in the bias magnetic range 0-900 Oe reaches 84.73 mV/Oe under the low frequency of 1 kHz, and 2.996 V/Oe under the resonance frequency of 102.3 kHz, respectively. It exhibits a 1.43 times larger piezomagnetic coefficient and a 1.87 times higher ME voltage coefficient under a smaller magnetic bias of 82 Oe than those of a conventional Terfenol-D/PZT/Terfenol-D composite. These shape-induced magnetoelectric behaviors provide the possibility of using this ME architecture in ultra-sensitive magnetic sensors.

  18. Magneto-thermoelectric effects in NiFe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Maximilian

    2015-11-01

    In this thesis magneto-thermoelectric effects are investigated in a systematic way to separate the transverse spin Seebeck effect from other parasitic effects like the anomalous Nernst effect. In contrast to the first studies found in the literature, in NiFe thin films a contribution of the transverse spin Seebeck effect can be excluded. This surprising outcome was crosschecked in a variety of different sample layouts and collaborations with other universities to ensure the validity of these results. In general, this thesis solves a long time discussion about the existence of the transverse spin Seebeck effect in NiFe films and supports the importance of control measurements for the scientific community. Even if such ''negative'' results may not be the award winning ones, new discoveries should be treated with constructive criticism and be checked carefully by the scientific community.

  19. The influence of oxygen contamination on the thermal stability and hardness of nanocrystalline Ni–W alloys

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, Christopher J., E-mail: cjm312@lehigh.edu [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Yin, Denise [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Cantwell, Patrick R. [Department of Mechanical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States); Harmer, Martin P. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States)

    2016-05-10

    Nanocrystalline Ni–W alloys are reported in the literature to be stabilized against high temperature grain growth by W-segregation at the grain boundaries. However, alternative thermal stability mechanisms have been insufficiently investigated, especially in the presence of impurities. This study explored the influence of oxygen impurities on the thermal stability and mechanical properties of electrodeposited Ni-23 at% W with aberration-corrected scanning transmission electron microscopy (STEM) and nanoindentation hardness testing. The primary finding of this study was that nanoscale oxides were of sufficient size and volume fraction to inhibit grain growth. The oxide particles were predominantly located on grain boundaries and triple points, which strongly suggests that a particle drag mechanism was active during annealing. In addition, W-segregation was observed at the oxide/Ni(W) interfaces rather than the presumed Ni(W) grain boundaries, further supporting the argument that alternative mechanisms are responsible for thermal stability in these alloys. Lastly, alloys with nanoscale oxides exhibited a higher hardness compared to similar alloys without oxides, suggesting that the particles are widely advantageous. Overall, this work demonstrates that impurity oxide particles can limit grain growth, and alternative mechanisms may be responsible for Ni–W thermal stability.

  20. Nanocrystallinity and magnetic property enhancement in melt-spun iron-rare earth-base hard magnetic alloys

    International Nuclear Information System (INIS)

    Davies, H.A.; Manaf, A.; Zhang, P.Z.

    1993-01-01

    Refinement of the grain size below ∼35 nm mean diameter in melt-spun FeNdB-base alloys leads to enhancement of remanent polarization, J r , above the level predicted by the Stoner-Wohlfarth theory for an aggregate of independent, randomly oriented, and uniaxial magnetic particles. This article summarizes the results of the recent systematic research on this phenomenon, including the influence of alloy composition and processing conditions on the crystallite size, degree of enhancement of J r , and maximum energy product (BH) max . It has been shown that the effect can also occur in ternary FeNdB alloys, without the addition of silicon or aluminum, which was originally thought necessary, providing the nanocrystallites are not magnetically decoupled by a paramagnetic second phase. Values of (BH) max above 160 kJ. m -3 have been achieved. The relationship between grain size, J r , intrinsic coercivity, J H c , and (BH) max are discussed in terms of magnetic exchange coupling, anisotropy, and other parameters. Recent extension of this work to the enhancement of properties in Fe-Mischmental-Boron-base alloys and to bonded magnets with a nanocrystalline structure is also described

  1. Anomalous fast diffusion in Cu-NiFe nanolaminates.

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Alan F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Energy Nanomaterials Dept.

    2017-09-01

    For this work, the decomposition of the one-dimensional composition wave in Cu-NiFe nanolaminate structures is examined using x-ray diffraction to assess the kinetics of phase decomposition. The anomalously high diffusivity value found for long-term aging at room temperature is attributed to the inherent nanostructure that features paths for short-circuit diffusion in nanolaminates as attributed to interlayer grain boundaries.

  2. Thermally Stable Nanocrystalline Steel

    Science.gov (United States)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  3. Diffusion and segregation of substrate copper in electrodeposited Ni-Fe thin films

    International Nuclear Information System (INIS)

    Ahadian, M.M.; Iraji zad, A.; Nouri, E.; Ranjbar, M.; Dolati, A.

    2007-01-01

    The Cu surface segregation is investigated in the electrodeposited Ni-Fe layers using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and atomic force microscopy (AFM). The results indicate that Cu segregation and accumulation take place in areated and deareated baths and the amount of segregated copper increases after air exposure. This phenomenon is explained by lower interfacial tension of the Cu in comparison with Ni and Fe. Our results reveal more surface segregation in the electrodeposit than vacuum reported results. This should be due to interface charging and higher surface diffusion in applied potential. The effect of interface charging on the interfacial tension is discussed based on Lippmann equation. Increasing of the Cu accumulation after air exposure is related to selective oxidation in alloys and higher tendency of Cu to surface oxidation

  4. Nanocrystalline alloys of Fe-Cu-Nb-Si-B after neutron irradiation

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Degmova, J.; Uvacik, P.

    1997-01-01

    Transmission Moessbauer spectroscopy was used to study changes induced by irradiation of amorphous and nanocrystalline samples. In an as-cast sample, neutrons mostly affect the orientation of the net magnetic moment. The average hyperfine field decreases with increasing neutron fluencies. In the case of the nanocrystalline samples a new disordered structure is created in the amorphous remainder corresponding to boride phases as it is shown in the samples isothermally heated from 1 to 8 hours. The structural changes of the amorphous remainder depend on the stage of crystallization and total neutron fluencies. (author). 1 tab., 3 figs., 7 refs

  5. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction

    Science.gov (United States)

    Fang, Zhiqiang; Hao, Zhaomin; Dong, Qingsong; Cui, Yong

    2018-04-01

    Transition metal oxides that derived from metal-organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.

  6. Magnetic Properties of Nanocrystalline Fe{sub x}Cu{sub 1-x} Alloys Prepared by Ball Milling

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A.; Bouziane, K., E-mail: bouzi@squ.edu.om; Elzain, M. E. [Sultan Qaboos University, Physics Department, College of Science (Oman); Ren, X.; Berry, F. J. [The Open University, Department of Chemistry (United Kingdom); Widatallah, H. M. [Sudan Atomic Energy Commission, Institute of Nuclear Research (Sudan); Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2004-12-15

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe{sub x}Cu{sub 1-x} alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x{>=}0.8 and x{<=}0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x{>=}0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  7. The effect of process control agent on the structure and magnetic properties of nanocrystalline mechanically alloyed Fe–45% Ni powders

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, Kh., E-mail: khgheisari@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Javadpour, S. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2013-10-15

    In this study, nanocrystalline Fe-45 wt% Ni alloy powders were prepared by mechanical alloying via high-energy ball milling. The effect of adding stearic acid as a process control agent (PCA) on the particle size, structure and magnetic properties of Fe-45 wt% Ni alloy powders have been studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The results show that the addition of 1 wt% PCA causes fine uniform spherical powder particles of the fcc γ-(Fe, Ni) phase to be formed after 48 h milling time. It is also found that crystallite size, lattice strain and content of γ-(Fe, Ni) phase are three of the most important variables that are significantly affected by PCA content and can influence the magnetic properties. - Highlights: • Different amount of stearic acid as a PCA was used during milling. • Particle size and crystallite size decrease with increasing PCA content. • The addition of 1 wt% PCA leads to a good combination of structure and magnetic properties.

  8. The effect of process control agent on the structure and magnetic properties of nanocrystalline mechanically alloyed Fe–45% Ni powders

    International Nuclear Information System (INIS)

    Gheisari, Kh.; Javadpour, S.

    2013-01-01

    In this study, nanocrystalline Fe-45 wt% Ni alloy powders were prepared by mechanical alloying via high-energy ball milling. The effect of adding stearic acid as a process control agent (PCA) on the particle size, structure and magnetic properties of Fe-45 wt% Ni alloy powders have been studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The results show that the addition of 1 wt% PCA causes fine uniform spherical powder particles of the fcc γ-(Fe, Ni) phase to be formed after 48 h milling time. It is also found that crystallite size, lattice strain and content of γ-(Fe, Ni) phase are three of the most important variables that are significantly affected by PCA content and can influence the magnetic properties. - Highlights: • Different amount of stearic acid as a PCA was used during milling. • Particle size and crystallite size decrease with increasing PCA content. • The addition of 1 wt% PCA leads to a good combination of structure and magnetic properties

  9. Growth of single-crystal W whiskers during humid H2/N2 reduction of Ni, Fe-Ni, and Co-Ni doped tungsten oxide

    International Nuclear Information System (INIS)

    Wang Shiliang; He Yuehui; Zou Jou; Wang Yong; Huang Han

    2009-01-01

    Numbers of W whiskers were obtained by reducing Ni, Ni-Fe, and Ni-Co doped tungsten oxide in a mixed atmosphere of humid H 2 and N 2 . The phases and morphologies of the reduction products were characterized by XRD and SEM. Intensive TEM and EDS analyses showed that the obtained whiskers were W single crystals which typical have alloyed particles (Ni-W, Fe-Ni, or Co-Ni-W) at the growth tips. The formed W whiskers were presumed to be induced by the alloyed particles. Our experimental results revealed that, during the reduction process of tungsten oxide, the pre-reduced Ni, Fe-Ni, or Co-Ni particles not only served as nucleation aids for the initial growth of W phase from W oxide but also played the roles of catalysts during the reductive decomposition of gaseous WO 2 (OH) 2 .

  10. CoCr/NiFe double layers studied by FMR and VSM

    NARCIS (Netherlands)

    Stam, M.T.H.C.W.; Gerritsma, G.J.; Lodder, J.C.; Popma, T.J.A.

    1987-01-01

    CoCr/NiFe double layers were investigated by FMR and VSM. The FMR linewidth of NiFe of the double layer is about twice that of a single NiFe layer. The resonance field is the same in both cases. Using the VSM the coercive field of the CoCr layer of the double layer was obtained. It is approximately

  11. Magnetization switching of NiFeSiB free layers for magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Oh, B.S.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Saito, S.; Yoshimura, S.; Tsunoda, M.; Takahashi, M.; Kim, Y.K.

    2006-01-01

    Ferromagnetic amorphous Ni 16 Fe 62 Si 8 B 14 layer have been studied as free layers for magnetic tunnel junctions (MTJs) to enhance cell switching performance. Traditional MTJ free layer materials such as NiFe and CoFe were also prepared for switching comparison purposes. Both NiFeSiB and NiFe resulted in an order of magnitude smaller switching fields compared to the CoFe. The switching field was further reduced for the synthetic antiferromagnetic NiFeSiB free layered structure

  12. Clarifying roughness and atomic diffusion contributions to the interface broadening in exchange-biased NiFe/FeMn/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, V.P., E-mail: valberpn@yahoo.com.br [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Merino, I.L.C.; Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Alayo, W. [Departamento de Física, Universidade de Pelotas, 96010-610 Pelotas (Brazil); Tafur, M. [Instituto de Ciências Exatas, Universidade Federal de Itajubá, 37500-903 Itajubá (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, 74001-970 Goiânia (Brazil); Magalhães-Paniago, R. [Universidade Federal de Minas Gerais, Belo Horizonte (Brazil); Alvarenga, A.D. [Instituto Nacional de Metrologia, 25250-020 Xerém (Brazil); Saitovitch, E.B. [Coordenação de Física Experimental e Baixas Energias, Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro (Brazil)

    2013-09-02

    NiFe(30 nm)/FeMn(13 nm)/NiFe(10 nm) heterostructures prepared by magnetron sputtering at different argon working pressures (0.27, 0.67 and 1.33 Pa) were systematically investigated by using specular and off-specular diffuse X-ray scattering experiments, combined with ferromagnetic resonance technique, in order to distinguish the contribution from roughness and atomic diffusion to the total structural disorder at NiFe/FeMn interfaces. It was shown that an increase in the working gas pressure from 0.27 to 1.33 Pa causes an enhancement of the atomic diffusion at the NiFe/FeMn interfaces, an effect more pronounced at the top FeMn/NiFe interface. In particular, this atomic diffusion provokes a formation of non-uniform magnetic dead-layers at the NiFe/FeMn interfaces (NiFeMn regions with paramagnetic or weak antiferromagnetic properties); that are responsible for the substantial reduction of the exchange bias field in the NiFe/FeMn system. Thus, this work generically helps to understand the discrepancies found in the literature regarding the influence of the interface broadening on the exchange bias properties (e.g., exchange bias field) of the NiFe/FeMn system. - Highlights: • Roughness and atomic diffusion contributions to the interface broadening • Clarification of the exchange bias field dependence on the interface disorder • Ferromagnetic, paramagnetic and antiferromagnetic phases at the magnetic interface • Magnetic dead layers formed by increasing the argon work pressure • Atomic diffusion in heterostructures prepared at higher argon pressure.

  13. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying

    International Nuclear Information System (INIS)

    Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.

    2017-01-01

    The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.

  14. Compositional optimization for nanocrystalline hard magnetic MRE–Fe–B–Zr alloys via modifying RE and B contents

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.Y.; Hussain, M.; Zheng, Z.G.; Zhong, X.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X.X. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-06-15

    To reduce the rare earth content and maintain good magnetic properties for NdFeB based alloys, the effects of RE and B contents on the micro-structure and magnetic properties of nanocrystalline MRE{sub 11−y}Fe{sub 79.5}B{sub 8+y}Zr{sub 1.5} (MRE=Nd{sub 0.8}(Dy{sub 0.5}Y{sub 0.5}){sub 0.2}, y=0–3) alloys have been investigated. Increasing B concentration leads to the appearance and increase of soft magnetic Fe{sub 3}B phase and reduced grain size. With decreasing MRE and increasing B concentrations, the coercivity decreased from 1159.8 kA/m for y=0 to 619.0 kA/m for y=3. The saturation magnetization and remanence increased with B content until y=2 then decreases. The B content also has effects on the exchange coupling, microstructure and thermal stability. While comparing MRE{sub 10}Fe{sub 82.5}B{sub 6}Zr{sub 1.5} alloy with MRE{sub 11−y}Fe{sub 79.5}B{sub 8+y}Zr{sub 1.5} (y=1 and 2) alloys, the alloy with 9 at% MRE can achieve similar magnetic properties as that with 10 at% MRE. The magnetic properties with coercivity of 792.2 kA/m, (BH){sub max} of 128 kJ/m{sup 3} and good thermal stability have been obtained for MRE{sub 9}Fe{sub 79.5}B{sub 10}Zr{sub 1.5} alloy. - Highlights: • Nanocomposite NdFeB composition is optimized to reduce RE from 10 to 9 at.%. • Increasing B content benefits microstructure, exchange coupling, thermal stability. • Alloy with 9% RE has H{sub c}=792kA/m, (BH){sub max}=128kJ/m{sup 3} and low temperature coefficients.

  15. Nuclear Magnetic Resonance (NMR) study of the nanocrystalline alloy Fe73.5 Cu1 Nb3 Si13.5 B9

    International Nuclear Information System (INIS)

    Aliaga-Guerra, D.; Iannarella, L.; Fontes, M.B.; Guimaraes, A.P.; Skorvanek, I.

    1994-05-01

    Nanocrystalline Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloys were studied with spin echo NMR at 4.2 K, from 15 to 100 MHz. Several lines are observed, with signals from domains and domain walls. Signals at 50-90 MHz appear to arise from 93 Nb nuclei in the amorphous matrix and in the interface of the crystallites. (author). 5 refs, 3 figs

  16. Structural, microstructural and Mössbauer studies of nanocrystalline Fe100-x Alx powders elaborated by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Akkouche K.

    2012-06-01

    Full Text Available Nanocrystalline Fe100-xAlx powders (x= 25, 30, 34 and 40 at % were prepared by the mechanical alloying process using a vario-planetary high-energy ball mill for a milling time of 35 h. The formation and physical properties of the alloys were investigated as a function of Al content by means of X-ray diffraction, scanning electron microscopy (SEM, energy dispersive X-ray and Mössbauer spectroscopy. For all Fe100-xAlx samples, the complete formation of bcc phase was observed after 35 h of milling. As Al content increases, the lattice parameter increases, whereas the grain size decreases from 106 to 12 nm. The powder particle morphology for different compositions was observed by SEM. The Mössbauer spectra were adjusted with a singlet line and a sextet containing two components. The singlet was attributed to the formation of paramagnetic A2 disordered structure rich with Al. About the sextet, the first component indicated the formation of Fe clusters/ Fe-rich phases; however, the second component is characteristic of disordered ferromagnetic phase.

  17. Magnetoimpedance effects in a CoNiFe nanowire array

    Energy Technology Data Exchange (ETDEWEB)

    Atalay, S., E-mail: selcuk.atalay@inonu.edu.tr [Inonu University, Science and Arts Faculty, Physics Department, Malatya (Turkey); Kaya, H.; Atalay, F.E.; Aydogmus, E. [Inonu University, Science and Arts Faculty, Physics Department, Malatya (Turkey)

    2013-06-05

    Highlights: ► CoNiFe nanowires were produced by electrodeposition method. ► Magnetoimpedance effect of nanowires arrays were investigated. ► Single peak behaviour was observed in the magnetoimpedance curve. ► Nanowire arrays exhibit uniaxial magnetic anisotropy along the wire axis. -- Abstract: This report describes the growth of CoNiFe nanowires into highly ordered porous anodic alumina oxide (AAO) templates by DC electrodeposition at a pH value of 2.6. Scanning electron microscopy (SEM) observations revealed that the wires have diameters of approximately 270–290 nm and a length of 25 μm. The energy dispersive X-ray (EDX) analysis indicated that the composition of the nanowires is Co{sub 12}Ni{sub 64}Fe{sub 24}. Electrical contacts were created on both sides of the nanowire array, and their magnetoimpedance (MI) properties were investigated. The impedance value was initially 1.2 ohm at low frequency and increased to approximately 1000 ohm for a 33-MHz driving current frequency under no applied magnetic field. All the MI curves exhibited single peak behaviour due to the high shape anisotropy. The maximum MI change at the 33-MHz driving current frequency was 2.72%. The maximum resistance change was 5.4% at 33 MHz.

  18. Soft Magnetic Properties of Nanocrystalline Fe-M-(B and/or O)(M=Group IV A, V A Elements) Alloy Films

    OpenAIRE

    Hayakawa, Y.; Makino, A.; Inoue, A.; Masumoto, T.

    1996-01-01

    In Fe-M-(B and/or O)(M=group IV A, V A elements) alloy films, nanocrystalline bcc phase are formed by annealing the amorphous single phase for Fe-M-B films, whereas the bcc nanocrystals are already formed in an as-deposited state for Fe-M-O or Fe-M-B-O) films. Among Fe-M-B films with various M elements, Fe-(Zr, Hf, Nb, Ta)-B alloy films exhibit high saturation magnetization (Is) above 1.4 T and high relative permeability (|μ|) above 1000 at 1MHz. The highest |μ| of 3460 at 1MHz is obtained fo...

  19. Effects of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by a chemical reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Chokprasombat, Komkrich, E-mail: komkrich28@gmail.com [Department of Physics, Faculty of Science, Thaksin University, Phatthalung 93210 Thailand (Thailand); Pinitsoontorn, Supree [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand (Thailand)

    2016-05-01

    Magnetic properties of Fe–Co–Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe{sub 50}Co{sub 50−x}Ni{sub x} nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe{sub 50}Ni{sub 50} nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe–Co–Ni alloys could be adjusted by varying the Ni content. - Highlights: • We prepared nanocrystalline Fe–Co–Ni alloys by a novel chemical reduction process. • Elemental compositions could be well controlled by the molar ratio of metal sources. • Particle size and magnetic properties clearly depended on the Ni contents. • Fe{sub 50}Co{sub 10}Ni{sub 40} exhibited high saturation magnetization of 126.3 emu/g.

  20. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    Energy Technology Data Exchange (ETDEWEB)

    Amanov, Auezhan, E-mail: amanov_a@yahoo.com [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of); Cho, In-Sik [R& D Group, Mbrosia Co., Ltd., Asan 336-708 (Korea, Republic of); Pyun, Young-Sik [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • A nanostructured surface was produced by UNSM technique. • Porosities were eliminated from the surface by UNSM technique. • Extremely high hardness obtained at the top surface after UNSM treatment. • Friction and wear behavior was improved by UNSM technique. • Resistance to scratch behavior was improved by UNSM technique. - Abstract: A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  1. Magnetic properties of electroplated nano/microgranular NiFe thin films for rf application

    NARCIS (Netherlands)

    Zhuang, Y.; Vroubel, M.; Rejaei, B.; Burghartz, J.N.; Attenborough, K.

    2005-01-01

    A granular NiFe thin film with large in-plane magnetic anisotropy and high ferromagnetic-resonance frequency developed for radio-frequency integrated circuit (IC) applications is presented. During the deposition, three-dimensional (3D) growth occurs, yielding NiFe grains (? ? 1.0??m). Nanonuclei (?

  2. Enhancement of the power factor in two-phase silicon-boron nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Narducci, Dario; Lorenzi, Bruno [Department of Materials Science, University of Milano Bicocca, Milan (Italy); Zianni, Xanthippe [Department of Aircraft Technologies, Technological Educational Institution of Sterea Ellada, Psachna (Greece); Department of Microelectronics, IAMPPNM, NCSR Demokritos, Athens (Greece); Neophytou, Neophytos [Institute for Microelectronics, TUV, Vienna (Austria); School of Engineering, University of Warwick, Coventry (United Kingdom); Frabboni, Stefano [Department of FIM, University of Modena and Reggio Emilia, Modena (Italy); CNR-Institute of Nanoscience-S3, Modena (Italy); Gazzadi, Gian Carlo [CNR-Institute of Nanoscience-S3, Modena (Italy); Roncaglia, Alberto; Suriano, Francesco [IMM-CNR, Bologna (Italy)

    2014-06-15

    In previous publications it was shown that the precipitation of silicon boride around grain boundaries may lead to an increase of the power factor in nanocrystalline silicon. Such an effect was further explained by computational analyses showing that the formation of an interphase at the grain boundaries along with high boron densities can actually lead to a concurrent increase of the electrical conductivity σ and of the Seebeck coefficient S. In this communication we report recent evidence of the key elements ruling such an unexpected effect. Nanocrystalline silicon films deposited onto a variety of substrates were doped to nominal boron densities in excess of 10{sup 20} cm{sup -3} and were annealed up to 1000 C to promote boride precipitation. Thermoelectric properties were measured and compared with their microstructure. A concurrent increase of σ and S with the carrier density was found only upon formation of an interphase. Its dependency on the film microstructure and on the deposition and processing conditions will be discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Correlation between crystallographic texture, microstructure and magnetic properties of pulse electrodeposited nanocrystalline Nickel–Cobalt alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amit; Chhangani, Sumit; Madhavan, R.; Suwas, Satyam, E-mail: satyamsuwas@materials.iisc.ernet.in

    2017-07-15

    Highlights: • Nano-crystalline Ni–Co materials with varying composition has been deposited by pulse electrodeposition. • Overall weakening of <1 1 1> texture and strengthening of <2 0 0> fibre texture is observed with increasing cobalt content. • Higher thermal stability of Ni–70Co is interpreted in terms of low mobility twins and texture. • A clear transition from soft to hard magnetic character is observed with an increase cobalt content. - Abstract: This paper reports the evolution of microstructure and texture in Nickel–Cobalt electrodeposits fabricated by pulse electrodeposition (PED) technique and the correlation of these attributes with the magnetic properties. The structural and microstructural investigation using X-ray diffraction and transmission electron microscopic studies indicate the presence of nanocrystalline grains and nano-twins in the electrodeposits. Convoluted Multiple Whole profile fitting reveals an increase in dislocation density and twin density with increasing cobalt content in the as-deposited samples. Strengthening of <1 1 1> fibre texture and weakening of <2 0 0> fibre texture with increasing cobalt concentration has been observed with X-ray texture analysis. A corresponding significant increase in the saturation magnetization and coercivity observed with increasing cobalt content. A significant improvement in the soft magnetic character in the electrodeposits in terms of increase in saturation magnetization and decrease in coercivity has been observed with thermal annealing.

  4. Synthesis and Characterization of Nanocrystalline Al-20 at. % Cu Powders Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Molka Ben Makhlouf

    2016-06-01

    Full Text Available Mechanical alloying is a powder processing technique used to process materials farther from equilibrium state. This technique is mainly used to process difficult-to-alloy materials in which the solid solubility is limited and to process materials where nonequilibrium phases cannot be produced at room temperature through conventional processing techniques. This work deals with the microstructural properties of the Al-20 at. % Cu alloy prepared by high-energy ball milling of elemental aluminum and copper powders. The ball milling of powders was carried out in a planetary mill in order to obtain a nanostructured Al-20 at. % Cu alloy. The obtained powders were characterized using scanning electron microscopy (SEM, differential scanning calorimetry (DSC and X-ray diffraction (XRD. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite sizes, microstrains and lattice parameters are determined.

  5. Ferromagnetic behavior of nanocrystalline Cu–Mn alloy prepared by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B.N., E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Sardar, G. [Department of Zoology, Baruipur College, South 24 parganas 743 610 (India); Nath, D.N. [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2014-12-15

    50Cu–50Mn (wt%) alloy was produced by ball milling. The milling was continued up to 30 h followed by isothermal annealing over a four interval of temperature from 350 to 650 °C held for 1 h. Crystallite size, lattice strain, lattice parameter were determined by Rietveld refinement structure analysis of X-ray diffraction data. The amount of dissolved/precipitated Mn (wt%) after ball milling/milling followed by annealing was calculated by quantative phase analysis (QPA). The increase of coercivity could be attributed to the introduction of lattice strain and reduction of crystallite size as a function of milling time. Electron paramagnetic resonance and superconducting quantum interface device analysis indicate that soft ferromagnetic behavior has been achieved by ball milled and annealed Cu–Mn alloy. The maximum coercivity value of Cu–Mn alloy obtained after annealing at 350 °C for 1 h is 277 Oe. - Highlights: • A small amount of Mn has dissolved in Cu after ball milling for 30 h. • Coercivity of the Cu–Mn alloy has increased with an increase in milling time. • Substantial MnO has formed after annealing at 650 °C for 1 h. • The ball milled and annealed alloy have revealed soft ferromagnetic behavior. • The alloy annealed at 350 °C shows the maximum value of coercivity.

  6. Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying

    International Nuclear Information System (INIS)

    Alijani, Fatemeh; Amini, Rasool; Ghaffari, Mohammad; Alizadeh, Morteza; Okyay, Ali Kemal

    2014-01-01

    Highlights: • Potential to produce B1′ (thermal- and stress-induced) and B2 was established. • Martensitic transformation occurred without the formation of intermediate R-phase. • Formation of unwanted intermetallics during heating was hindered by milling. • During milling, microhardness was increased, then reduced, and afterward re-increased. • By milling evolution, thermal crystallization steps changed from 3 to 2. - Abstract: In the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti–41Ni–9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0–12 h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19′) and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time

  7. Magnetic characterization of nanocrystalline Fe80−xCrxCo20 (15≤x≤35) alloys during milling and subsequent annealing

    International Nuclear Information System (INIS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Sodaee, Tahmineh

    2016-01-01

    Magnetic characterization of nanocrystalline Fe–Cr–Co alloys during milling and annealing process was the goal of this study. To formation of Fe 80−x Cr x Co 20 (15≤x≤35) solid solution, different powder mixtures of Fe, Cr and Co elements were mechanically milled in a planetary ball mill. The annealing process was done in as-milled samples at different temperature in the range of 500–640 °C for 2 h. The produced samples were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. Performed mechanical alloying in different powder mixtures lead to the formation of Fe–Cr–Co α-phase solid solution with average crystallite sizes of about 10 nm. The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The coercivity of produced alloys after annealing process decreased and reached to about 40–150 Oe. The highest value of coercivity in as-milled and annealed samples was achieved in alloys with higher Cr contents. - Highlights: • Hc and Ms of produced alloys obtained in the range of 110–200 Oe and 150–220 emu/g. • The highest value of Hc in milled and annealed samples was achieved in Fe 45 Cr 35 Co 20 . • Hc of produced alloys after spinodal decomposition decreased to about 40–150 Oe. • The effect of crystalline defects and residual strain on magnetic fields pinning in milled samples is higher than spinodal decomposition in annealed samples. • The highest value of Hc in as-milled and annealed samples was achieved in Fe 45 Cr 35 Co 20 . The coercivity of produced alloys after annealing process decreased and reach to about 40–150 Oe. • The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively.

  8. Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy “NANOMET®” cores

    Directory of Open Access Journals (Sweden)

    N. Nishiyama

    2016-05-01

    Full Text Available Recently updated nanocrystalline soft magnetic Fe-Co-Si-B-P-Cu alloys “NANOMET®” exhibit high saturation magnetic flux density (Bs > 1.8 T, low coercivity (Hc < 10 A/m and low core loss (W1.7/50 ∼ 0.4 W/kg even in a ribbon form with a thickness of up to 40 μm. By utilize excellent magnetic softness, several products such as motors or transformers for electrical appliances are now under developing by industry-academia collaboration. In particular, it is found that a brushless DC motor using NANOMET® core exhibited remarkable improvement in energy consumption. The prototype motor with an outer core diameter of 70 mm and a core thickness of 50 mm was constructed using laminated nano-crystallized NANOMET® ribbons. Core-loss for the constructed motor was improved from 1.4 W to 0.4 W only by replacing the non-oriented Si-steel core with NANOMET® one. The overall motor efficiency is evaluated to be 3% improvement. In this work, the relation between processing and resulting magnetic properties will be presented. In addition, feasibility for commercialization will also be discussed.

  9. Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Kim, Dong Hyun; Hong, Hyun Seon; Kim, Sun Jae; Song, Jae Sung; Lee, Kyung Sub

    2004-01-01

    Nanocrystalline Fe-doped TiO 2 powders were synthesized by mechanical alloying (MA) with varying Fe contents from 0 up to 4.8 wt.% to shift the absorption threshold into the visible light region. The photocatalytic feasibility of the Fe-doped TiO 2 powder was evaluated by quantifying the visible light absorption capacity using ultraviolet and visible (UV-Vis) spectroscopy and photoluminescence spectroscopy. Effects of Fe additions on the crystal structures and the morphologies of the Fe-doped powders were also investigated as a function of the doping content using transmission electron microscopy-electron diffraction pattern (TEM-EDP), X-ray diffraction (XRD) and energy dispersive X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS). The UV-Vis study showed that the UV absorption for the Fe-doped powder moved to a longer wavelength (red shift) and the photoefficiency was enhanced. Based on the analysis of the photoluminescence spectra, the red shift was believed to be induced by localizing the dopant level near the valence band of TiO 2 . The UV-Vis absorption depended on the Fe concentration. TEM-EDP and XRD investigations showed that the Fe-doped powder had a rutile phase in which the added Fe atoms were dissolved. The rutile phase was composed of spherical particles and chestnut bur shaped particles, resulting in a larger surface area than the spherical P-25 powder

  10. Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al2O3 nanocomposite coating

    DEFF Research Database (Denmark)

    Torabinejad, V.; Aliofkhazraei, M.; Rouhaghdam, A. Sabour

    2017-01-01

    properties and wear resistance of composite coatings were studied. The shear punch testing method was employed to evaluate the room temperature mechanical properties. It was shown that increasing the pulse frequency and decreasing the pulse duty cycle improved the mechanical properties of monolithic coatings......A sulfate-based electrolyte was used for synthesis of multilayer (ML) and monolithic Ni-Fe-Al2O3 coatings. The ML electrodeposits were achieved by consecutive alteration of duty cycle of pulsed current between two values of 20% and 90%. The influences of the ML microstructure on mechanical....... The electrodeposited ML coatings exhibited a pronounced improvement in microhardness, shear strength and wear resistance in comparison to the monolithic coatings. Pin-on-disk sliding wear tests revealed that the main mechanisms of wear are plastic deformation, fatigue crack of deformed layers and delamination....

  11. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Jumpei, E-mail: higuchi@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Sato, Yoichi [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    NiFe epitaxial films are prepared on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  12. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  13. Uniform nanocrystalline AB{sub 5}-type hydrogen storage alloy: Preparation and properties as negative materials of Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongsheng; Li, Weishan; Hu, Shejun [Department of Chemistry, South China Normal University, 510631 (China); Xiao, Fangming; Tang, Renheng [Guangzhou Institute for Nonferrous Metal Research, 510651 (China)

    2006-05-15

    AB{sub 5}-type nanocrystalline hydrogen storage alloy was prepared by a twin-roll process. X-ray diffraction (XRD), scanning electron microscope (SEM), pressure-composition isotherms (PCT), and charge-discharge cycling were used to characterize its performances. The alloy has a hexagonal CaCu{sub 5}-type structure and a uniform crystallite size of about 40nm. It shows good high-rate discharge ability (HRD). The initial discharge capacity of the alloy is high up to 312mAh/g, and its capacity loss is low, only about 20% after 400 cycles under 640mA/g. At the discharge current density of 2000mA/g, the high-rate discharge ability (HRD) is 90% and the discharge capacity 211mAh/g after 400 cycles, 85% of the initial capacity. (author)

  14. Preparation and Characterization of Lecithin-Nano Ni/Fe for Effective Removal of PCB77

    OpenAIRE

    Shu Ding; Lin Zhao; Yun Qi; Qian-qian Lv

    2014-01-01

    A kind of combined material (named lecithin-nano Ni/Fe) that is composed of lecithin and nanoscale Ni/Fe bimetal was synthesized via microemulsion method. The efficacy of such an original material was tested using 3,3′,4,4′-tetrachlorobiphenyl (PCB77) as target pollutant. A microemulsion system was optimized as template to prepare Ni/Fe nanoparticles, which was followed by an insite loading process with the deposition of lecithin carrier. It was proved by the characterization that subtle Ni/F...

  15. Oxidation behavior of a Ni-Fe support in SOFC anode atmosphere

    DEFF Research Database (Denmark)

    Xu, Na; Chen, Ming; Han, Minfang

    2018-01-01

    In this work, we investigated the long-term oxidation behavior of a Ni-Fe (1:1 weight ratio) support for solid oxide fuel cell (SOFC) applications. Ni-Fe supports were obtained through tape casting, high temperature sintering and pre-reducing in 97% H2/N2 (9/91)-3% H2O at 750 and 1000 °C, respect...... annealed in the two atmospheres maintained sufficiently high conductivity. The results from the current work demonstrate that the porous Ni-Fe support can be well employed in SOFCs, especially metal-supported SOFCs....

  16. Synthesis of nano-crystalline Zn-Ni alloy coatings by D.C plating

    International Nuclear Information System (INIS)

    Rizwan, R.; Mehmood, M.; Imran, M.; Akhtar, J.I.

    2006-01-01

    Nano crystalline Zinc-Nickel Alloy coatings were obtained from additive free chloride bath. The aqueous bath composition was varied from ZnCl/sub 2/ -200 g/l to 50 g/l, NiCI/sub 2/ 6H/sub 2/O -200 g/l to 50 g/l and H/sub 3/BO/sub 3/ -40 g/l. XRD patterns of electrodeposited alloys on copper substrate revealed the presence of gamma (Ni/sub 5/Zn/sub 21/) inter-metallic compound and eta (solid solution of nickel in zinc). The apparent grain size measured from FWHM of XRD reflections was found to be about 20nm- 50nm depending upon deposit composition. Analysis by EDX of deposits confirms the presence of Zn (81 to 94%), and Ni (6-19%) depending upon bath composition and current density applied. With increase in bath temperature deposition and dissolution potentials are shifted to nobler values. The temperature also affects the phase composition of alloy deposited. Cyclic Voltametry was performed on platinum substrate and deposits obtained for short duration exhibit voltamograms that reflects strong dependence of alloy components on solution chemistry during initial stage of deposition. Hence, initial composition of the deposit varies with solution chemistry but composition becomes almost independent of solution chemistry for thick deposits. The grain size of the deposits also depends upon the composition of deposit. (author)

  17. Synthesis of Fe–Si–B–Mn-based nanocrystalline magnetic alloys ...

    Indian Academy of Sciences (India)

    Administrator

    ing/alloying is employed for the synthesis of amorphous and other materials ... applications in aerospace and chemical industries. Pro- duction of magnetic .... a2 = −1∙7756 from Cauchy constants from the Langford table. The lattice strain could ...

  18. Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy

    Science.gov (United States)

    Xia, Minglu; Sun, Qingping

    2017-10-01

    Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.

  19. Structure and Magnetic Properties of Nanocrystalline NiFe2O4 Prepared via Precipitation Route

    Czech Academy of Sciences Publication Activity Database

    Žák, Tomáš; David, Bohumil; Ćosović, A.; Ćosović, V.; Živković, D.; Talijan, N.

    2014-01-01

    Roč. 126, č. 1 (2014), s. 142-143 ISSN 0587-4246. [CSMAG 2014 - Czech and Slovak Conference on Magnetism /15./. Košice, 17.07.2013-21.07.2013] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : NICKEL FERRITE * PARTICLES Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.530, year: 2014

  20. Microstructural properties of electrochemically prepared Ni-Fe-W powders

    Energy Technology Data Exchange (ETDEWEB)

    Ribic-Zelenovic, L. [Faculty of Agronomy, University of Kragujevac, Cacak (Serbia); Cirovic, N. [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Spasojevic, M. [Faculty of Agronomy, University of Kragujevac, Cacak (Serbia); Mitrovic, N., E-mail: nmitrov@tfc.kg.ac.rs [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Maricic, A. [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Pavlovic, V. [Faculty of Agriculture, University of Belgrade, Belgrade (Serbia)

    2012-07-16

    A nanostructured Ni-Fe-W powder was obtained by electrodeposition from ammonium citrate electrolyte within the current density range of 500-1000 mA cm{sup -2} at the electrolyte temperature of 50 Degree-Sign C-70 Degree-Sign C. XRD analysis shows that the powder contains an amorphous matrix having embedded nanocrystals of the FCC solid solution of iron and tungsten in nickel, with an average crystal grain size of 3.4 nm, a high internal microstrain value and a high density of chaotically distributed dislocations. EDS analysis exhibits that the chemical composition of the Ni-24%Fe-11%W powder does not depend upon current density and electrolyte temperature due to the diffusion control of the process of codeposition of nickel, iron and tungsten. SEM micrographs show that the electrodeposition results in the formation of two particle shapes: large cauliflower-like particles and small dendrite particles. The cauliflower-like particles contain deep cavities at hydrogen evolution sites. Cavity density increases with increasing deposition current density. Smaller powder particles are formed at higher temperatures and at higher current densities. During the first heating, relative magnetic permeability decreases reaching the Curie temperature at about 350 Degree-Sign C and after cooling exhibits a 12% increase due to the performed relaxation process. Following the second heating to 500 Degree-Sign C, the magnetic permeability of the powder is about 5% lower than that of the as-prepared powder due to crystallization of the amorphous phase of the powder and the crystal grain growth in FCC phase. - Highlights: Black-Right-Pointing-Pointer Electrodeposition Ni-Fe-W powder from ammonium citrate electrolyte (500-1000 mA cm{sup -2}). Black-Right-Pointing-Pointer Powder contains amorphous matrix and embedded nanocrystals 3.4 nm. Black-Right-Pointing-Pointer Chemical composition Ni-24%Fe-11%W do not depend upon current density and electrolyte temperature. Black

  1. Formation of nanocrystalline phases during decomposition of amorphous Ni-P alloys by continuous linear heating

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, A.; Lendvai, J. [Eoetvoes Lorand Tudomanyegyeten, Budapest (Hungary). Dept. for General Physics; Cziraki, A. [Eoetvoes Univ. (Hungary). Dept. of Solid State Physics; Liebermann, H.H. [Honeywell Amorphous Metals, Morristown, NJ (United States); Bakonyi, I. [Hungarian Academy of Sciences (Hungary). Research Inst. for Solid State Physics and Optics

    2001-05-01

    Differential scanning calorimetry (DSC), powder diffraction and high-resolution X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations have been performed on melt-quenched amorphous Ni-P alloys with compositions of 18 to 22 at.% P. The calorimetric results revealed different crystallization routes during linear heating below, at and above the eutectic point (19 at.% P) but with the same general transformation scheme as reported previously for electrodeposited and electroless Ni-P amorphous alloys. The composition dependence of the activation energy of the crystallization and the heats evolved during the structural transformations were determined from DSC measurements. The average grain size was derived from XRD line broadening and important information on the crystallization products and their microstructure could be revealed also from the TEM studies. All these findings will have special significance when analysing the results of isothermal annealing experiments to be described in a forthcoming paper. (orig.)

  2. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  3. An investigation on hydrogen storage kinetics of nanocrystalline and amorphous Mg2Ni1-xCox (x = 0-0.4) alloy prepared by melt spinning

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huipin; Ding Xiaoxia; Liu Xiaogang; Chen Lele

    2011-01-01

    Research highlights: → The investigation of the structures of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys indicates that a nanocrystalline and amorphous structure can be obtained in the experiment alloys by melt spinning technology. The substitution of Co for Ni facilitates the glass formation in the Mg 2 Ni-type alloy. And the amorphization degree of the alloys visibly increases with increasing Co content. → Both the melt spinning and Co substitution significantly improve the hydrogen storage kinetics of the alloys. The hydrogen absorption saturation ratio (R t a ) and hydrogen desorption ratio (R t d ) as well as the high rate discharge ability (HRD) increase with rising spinning rate and Co content. The hydrogen diffusion coefficient (D), the Tafel polarization curves and the electrochemical impedance spectra (EIS) measurements show that the electrochemical kinetics notably increases with rising spinning rate and Co content. → Furthermore, all the as-spun alloys, when the spinning rate reaches to 30 m/s, have nearly same hydrogen absorption kinetics, indicating that the hydrogen absorption kinetics of the as-spun alloy is predominately controlled by diffusion ability of hydrogen atoms. - Abstract: In order to improve the hydrogen storage kinetics of the Mg 2 Ni-type alloys, Ni in the alloy was partially substituted by element Co, and melt-spinning technology was used for the preparation of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The hydrogen diffusion coefficients in the alloys are calculated by virtue of potential-step method. The electrochemical impedance spectrums (EIS) and the Tafel

  4. The Cold Gas-Dynamic Spray and Characterization of Microcrystalline and Nanocrystalline Copper Alloys

    Science.gov (United States)

    2012-12-01

    set—the vial itself is constructed of a polycarbonate shell with stainless steel end plugs with a stainless steel impactor contained within the vial...Alloying of Refractory Metals in Austenitic and Ferritic/ Martensitic Steels ,” M.S. Thesis, MAE Dept., Naval Postgraduate School, Monterey, CA, 2012...Process. From [2]. .....................................................5  Figure 3.  Individual Particle after Impact with a Steel Substrate. From [15

  5. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds

    International Nuclear Information System (INIS)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G.

    2002-01-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  6. New amorphous and nanocrystalline alloys based on the Ni-Si-B system

    Energy Technology Data Exchange (ETDEWEB)

    Battezzati, L.; Rizzi, P.; Romussi, S. [Turin Univ. (Italy). Dipt. di Chimica

    1998-08-01

    The glass formation and crystallization of a Ni{sub 36}Fe{sub 32}Ta{sub 7}Si{sub 8}B{sub 17} alloy is reported. In its equilibrium state it has a complex constitution made of at least four phases. It starts melting at 1227 K and displays a liquidus at 1460 K, but it shows a tendency to undercool even on cooling at 10 K/min in a HTDSC cell. Amorphous ribbons were produced by melt spinning. In DSC experiments the crystallization of the amorphous alloy occurs with a primary reaction giving a peak skewed on the high temperature side with onset at 836 K using an heating rate of 40 K/min. XRD analysis and TEM observations demonstrate that crystals with size below 10 nm and lattice parameter close to that of Ni are formed during this transformation. The mechanism of crystallization is very sensitive to changes in composition. In fact, nanocrystals are not found in alloys easily amorphized as the present one but containing a different ratio of metallic elements. (orig.) 16 refs.

  7. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela; Shinagawa, Tatsuya; Qureshi, Muhammad; Dhawale, Dattatray Sadashiv; Takanabe, Kazuhiro

    2016-01-01

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER

  8. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kelvin Y. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wang, Yanbo, E-mail: yanbo.wang@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Zhao, Yonghao [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Liao, Xiaozhou, E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Valiev, Ruslan Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marksa 12, Ufa 450000 (Russian Federation); Sarrafpour, Babak; Zoellner, Hans [The Cellular and Molecular Pathology Research Unit, Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, The University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, NSW 2145 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)

    2013-08-01

    High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated.

  9. Study on soft magnetic properties of Finemet-type nanocrystalline alloys with Mo substituting for Nb

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Dehui; Zhou, Bingwen; Jiang, Boyu; Ya, Bin; Zhang, Xingguo [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China)

    2017-10-15

    The thermal stability, microstructure, and soft magnetic properties as a function of annealing time were studied for Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3-x}Mo{sub x} (x = 0, 1, 2, 3) (atom percent, at.%,) ribbons. It was found that substituting Nb by Mo reduced the thermal stability. After 15 min short time vacuum annealing, Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples obtained higher permeability and similar coercivity compared to the original Finemet alloy (Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3}), Mo substituting Nb reduced the optimum annealing time in Finemet-type alloys, and meanwhile marginally increased the saturation magnetization. Substituting all Nb by Mo led to the earlier formation of non-soft magnetic phase, thus deteriorated the soft magnetic properties. XRD and TEM structural analysis showed that in Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples (annealed for 15 min), nanocrystals ∝10 nm in size were obtained, and the good soft magnetic properties of these alloys could be attributed to the small grain size. The relationship between annealing time, soft magnetic properties, and microstructure was established. Reducing annealing time and temperature to obtain best soft magnetic properties could cut down the production costs of Finemet-type alloys. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The characteristic of deformability and quantitative description of the microstructure of hot-deformed Ni-Fe superalloy

    Directory of Open Access Journals (Sweden)

    Ducki K. J.

    2017-03-01

    Full Text Available The paper presents the results of research concerning the influence of hot plastic working parameters on the deformability and microstructure of a Ni-Fe superalloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150°C, at a strain rates 0.1 and 1.0 s-1. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so-called “freezing”. The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the maximum yield stress and the average grain area have been developed and the activation energy for hot working has been estimated.

  11. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    International Nuclear Information System (INIS)

    Sarac, U; Kaya, M; Baykul, M C

    2016-01-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density. (paper)

  12. Development of a high gradient rf system using a nanocrystalline soft magnetic alloy

    Directory of Open Access Journals (Sweden)

    Chihiro Ohmori

    2013-11-01

    Full Text Available The future high intensity upgrade project of the J-PARC (Japan Proton Accelerator Research Complex MR (Main Ring includes developments of high gradient rf cavities and magnet power supplies for high repetition rate. The scenario describing the cavity replacements is reported. By the replacement plan, the total acceleration voltage will be almost doubled, while the number of rf stations remains the same. The key issue is the development of a high gradient rf system using high impedance magnetic alloy, FT3L. The FT3L is produced by the transverse magnetic field annealing although the present cavity for the J-PARC adopts the magnetic alloy, FT3M, which is annealed without magnetic field. After the test production using a large spectrometer magnet in 2011, a dedicated production system for the FT3L cores was assembled in 2012. This setup demonstrated that we can produce material with 2 times higher μ_{p}^{′}Qf product compared to the cores used for present cavities. In this summer, the production system was moved to the company from J-PARC and is used for mass production of 280 FT3L cores for the J-PARC MR. The cores produced in the first test production are already used for standard machine operation. The operation experience shows that the power loss in the cores was reduced significantly as expected.

  13. Structural, thermal, and photoacoustic study of nanocrystalline Cr{sub 3}Ge produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Prates, P. B.; Maliska, A. M.; Ferreira, A. S. [Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Poffo, C. M. [Universidade Federal de Santa Catarina, Campus de Araranguá, 88900-000 Araranguá, Santa Catarina (Brazil); Borges, Z. V. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Lima, J. C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Biasi, R. S. de [Seção de Engenharia Mecânica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro (Brazil)

    2015-10-21

    A thermodynamic analysis of the Cr-Ge system suggested that it was possible to produce a nanostructured Cr{sub 3}Ge phase by mechanical alloying. The same analysis showed that, due to low activation energies, Cr-poor crystalline and/or amorphous alloy could also be formed. In fact, when the experiment was performed, Cr{sub 11}Ge{sub 19} and amorphous phases were present for small milling times. For milling times larger than 15 h these additional phases decomposed and only the nanostructured Cr{sub 3}Ge phase remained up to the highest milling time used (32 h). From the differential scanning calorimetry measurements, the Avrami exponent n was obtained, indicating that the nucleation and growth of the nanostructured Cr{sub 3}Ge phase may be restricted to one or two dimensions, where the Cr and Ge atoms diffuse along the surface and grain boundaries. In addition, contributions from three-dimensional diffusion with a constant nucleation rate may be present. The thermal diffusivity of the nanostructured Cr{sub 3}Ge phase was determined by photoacoustic absorption spectroscopy measurements.

  14. [Co/Pd]4–Co–Pd–NiFe spring magnets with highly tunable and uniform magnetization tilt angles

    International Nuclear Information System (INIS)

    Anh Nguyen, T.N.; Benatmane, N.; Fallahi, V.; Fang, Yeyu; Mohseni, S.M.; Dumas, R.K.; Åkerman, Johan

    2012-01-01

    By varying the Pd thickness (t Pd ) from 0 to 8 nm in [Co/Pd] 4 /Co/Pd(t Pd )/NiFe exchange springs, we demonstrate (i) continuous tailoring of the exchange coupling between a [Co/Pd] 4 /Co layer with perpendicular anisotropy, and a NiFe layer with an in-plane easy axis, (ii) tuning of the NiFe out-of-plane magnetization angle from 20 ○ to 80 ○ , and (iii) an up to two-fold increase in the NiFe damping. The partial decoupling also results in a highly uniform NiFe magnetization. These properties make [Co/Pd] 4 /Co/Pd(t Pd )/NiFe spring magnets ideal candidates for use as tilted polarizers, by combining stable and well-defined spin directions of its carriers with a high degree of angular freedom. - Highlights: ► Continuous tailoring of the exchange coupling between a [Co/Pd] 4 /Co layer and a NiFe layer. ►Tuning of the NiFe out-of-plane magnetization angle from 20° to 80°. ►A highly uniform NiFe magnetization. ►An up to two-fold increase in the NiFe damping.

  15. Interplay between out-of-plane anisotropic L1{sub 1}-type CoPt and in-plane anisotropic NiFe layers in CoPt/NiFe exchange springs

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, P. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw; Tsai, C. L. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Tsai, C. Y.; Lin, Y. H. [Graduate Institute of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Kuo, C. Y.; Wu, J.-C. [Department of Physics, National Chang Hua University of Education, Chang Hua 50000, Taiwan (China); Lee, C.-M. [Graduate School of Materials Science, National Yunlin University of Science and Technology, Douliou 64002, Taiwan (China)

    2014-06-28

    Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysis on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.

  16. Determination of Microstructural Parameters of Nanocrystalline Hydroxyapatite Prepared by Mechanical Alloying Method

    Science.gov (United States)

    Joughehdoust, Sedigheh; Manafi, Sahebali

    2011-12-01

    Hydroxyapatite [HA, Ca10(PO4)6(OH)2] is chemically similar to the mineral component of bones and hard tissues. HA can support bone ingrowth and osseointegration when used in orthopaedic, dental and maxillofacial applications. In this research, HA nanostructure was synthesized by mechanical alloying method. Phase development, particle size and morphology of HA were investigated by X-ray diffraction (XRD) pattern, zetasizer instrument, scanning electron microscopy (SEM), respectively. XRD pattern has been used to determination of the microstructural parameters (crystallite size, lattice parameters and crystallinity percent) by Williamson-Hall equation, Nelson-Riley method and calculating the areas under the peaks, respectively. The crystallite size and particle size of HA powders were in nanometric scales. SEM images showed that some parts of HA particles have agglomerates. The ratio of lattice parameters of synthetic hydroxyapatite (c/a = 0.73) was determined in this study is the same as natural hydroxyapatite structure.

  17. Preparation of nanocrystalline Ce{sub 1−x}Sm{sub x}(Fe,Co){sub 11}Ti by melt spinning and mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, H., E-mail: holger.wuest@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Bommer, L., E-mail: lars.bommer@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Huber, A.M., E-mail: arne.huber@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Goll, D., E-mail: dagmar.goll@htw-aalen.de [Aalen University, Materials Research Institute, Beethovenstr. 1, 73430 Aalen (Germany); Weissgaerber, T., E-mail: thomas.weissgaerber@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Kieback, B., E-mail: bernd.kieback@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute for Materials Science, Helmholtzstraße 7, 01069 Dresden (Germany)

    2017-04-15

    Permanent magnetic materials based on Ce(Fe, Co){sub 12−x}Ti{sub x} with the ThMn{sub 12} structure are promising candidates for replacing NdFeB magnets. Its intrinsic magnetic properties are not far below the values of Nd{sub 2}Fe{sub 14}B, and the high amount of Fe and the fact that Ce is much more abundant and less expensive than Nd encourages the reasonable interest in these compounds. Nanocrystalline magnetic material of the composition Ce{sub 1−x}Sm{sub x}Fe{sub 11−y}Co{sub y}Ti (x=0−1 and y=0; 1.95) has been produced by both melt spinning and mechanical alloying. Alloys containing only Ce as rare earth element (x=0) show coercivities below 77 kA/m, while for x=1 H{sub c,J} values up to 392 kA/m are reached. Coercivity shows rather an exponential than a linear dependence on the gradual substitution of Ce by Sm. - Highlights: • CeFe{sub 11}Ti nanocrystalline samples demonstrate values of H{sub c,J} up to 77 kA/m. • SmFe{sub 11}Ti nanocrystalline samples demonstrate values of H{sub c,J} up to 392 kA/m. • Dependence of H{sub c,J} on x in Ce{sub 1−x}Sm{sub x(}Fe, Co){sub 11}Ti obeys non-linear dependence. • Optimum annealing shifts to from 800 °C for CeFe{sub 11}Ti to 900 °C for SmFe{sub 11}Ti.

  18. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kim Jaoon YH

    2010-07-01

    Full Text Available Abstract Background Hydrogenases catalyze reversible reaction between hydrogen (H2 and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hyaA and hyaB genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability. Results Recombinant BL21 expressing [NiFe]-hydrogenase 1 actively produced H2 (12.5 mL H2/(h·L in 400 mL glucose minimal medium under micro-aerobic condition, whereas the wild type BL21 did not produce H2 even when formate was added as substrate for formate hydrogenlyase (FHL pathway. The majority of recombinant protein was produced as an insoluble form, with translocation of a small fraction to the membrane. However, the membrane fraction displayed high activity (~65% of total cell fraction, based on unit protein mass. Supplement of nickel and iron to media showed these metals contribute essentially to the function of [NiFe]-hydrogenase 1 as components of catalytic site. In addition, purified E. coli [NiFe]-hydrogenase 1 using his6-tag displayed oxygen-tolerant activity of ~12 nmol H2/(min·mg protein under a normal aeration environment, compared to [FeFe]-hydrogenase, which remains inactive under this condition. Conclusions This is the first report on physiological function of E. coli [NiFe]-hydrogenase 1 for H2 production. We found that [NiFe]-hydrogenase 1 has H2 production ability even under the existence of oxygen. This oxygen-tolerant property is a significant advantage because it is

  19. Sintered powder cores of high Bs and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-06-01

    Full Text Available Nano-crystalline Fe-rich Fe84.3Si4B8P3Cu0.7 alloy ribbon with saturation magnetic flux density (Bs close to Si-steel exhibits much lower core loss (Wt than Si-Steels. Low glass forming ability of this alloy limits fabrication of magnetic cores only to stack/wound types. Here, we report on fabrication, structural, thermal and magnetic properties of bulk Fe84.3Si4B8P3Cu0.7 cores. Partially crystallized ribbons (obtained after salt-bath annealing treatment were crushed into powdered form (by ball milling, and were compacted to high-density (∼88% bulk cores by spark plasma sintering (SPS. Nano-crystalline structure (consisting of α-Fe grain in remaining amorphous matrix similar to wound ribbon cores is preserved in the compacted cores. At 50 Hz, cores sintered at Ts = 680 K show Wt 1 kHz. A trade-off between porosity and electrical resistivity is necessary to get low Wt at higher f. In the f range of ∼1 to 100 kHz, we have shown that the cores mixed with SiO2 exhibit much lower Wt than Fe-powder cores, non-oriented Si-steel sheets and commercially available sintered cores. We believe our core material is very promising to make power electronics/electrical devices much more energy-efficient.

  20. Atomic level structural modulation during the structural relaxation and its effect on magnetic properties of Fe81Si4B10P4Cu1 nanocrystalline alloy

    Science.gov (United States)

    Cao, C. C.; Zhu, L.; Meng, Y.; Zhai, X. B.; Wang, Y. G.

    2018-06-01

    The evolution of local structure and defects in the Fe81Si4B10P4Cu1 amorphous alloy during the structural relaxation has been investigated by Mössbauer spectroscopy, positron annihilation lifetime spectroscopy and transmission electron microscopy to explore their effects on magnetic properties of the nanocrystalline. The atomic rearrangements at the early stage of the structural relaxation cause the density increase of the amorphous matrix, but the subsequent atomic rearrangements contribute to the transformation of Fe3B-like atomic arrangements to FeB-like ones with the temperature increasing. As the structural relaxation processes, the released Fe atoms both from Fe3B- and Fe3P-like atomic arrangements result in the formation of new Fe clusters and the increase of Fe-Fe coordination number in the existing Fe clusters and the nucleation sites for α-Fe gradually increase, both of which promote the crystallization. However, the homogeneity of amorphous matrix will be finally destroyed under excessive relaxation temperature, which coarsens nanograins during the crystallization instead. Therefore, soft magnetic properties of the Fe81Si4B10P4Cu1 nanocrystalline alloy can be improved by pre-annealing the amorphous precursor at an appropriate temperature due to the atomic level structural optimization.

  1. Efecto magnetocalórico en aleaciones ferromagnéticas con memoria de forma monocristalinas de NiFeCoGa.

    OpenAIRE

    Vázquez Risco, Alain

    2017-01-01

    Este trabajo se centrará en el estudio del efecto magnetocalórico de una aleación monocristalina ferromagnética de composición Ni-Fe-Co-Ga. Este tipo de material entra dentro de las denominadas aleaciones con memoria de forma o SMA (Shape Memory Alloys). Estas aleaciones presentan los efectos de memoria de forma de las propias SMA y otras características como las uperelasticidad, los efectos magnetocalóricos directo e inverso. El interés de estos materiales se debe a que pued...

  2. Effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yonglin, E-mail: leiyonglin@163.com [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Lin, Xiaoyan, E-mail: linxy@swust.edu.cn [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Liao, Huiwei, E-mail: liaohw@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-06-15

    The effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions was studied. Structural and physical characterization of all the samples was carried out by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) method, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric (TG). The results revealed that the interplanar spacing decreased with increasing Fe content, the grain size decreased with increasing Ni content, the substitution of Ni{sup 2+} in the tetrahedral sites by Fe{sup 2+} increased with increasing Fe content. And increase of iron could improve Ni-Fe-Mn-O high temperature stability. The low-temperature thermal removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 83.8%, 75.2%, 78.5% and 60.3% at 2400 min, respectively. And the microwave combining with H{sub 2}O{sub 2} removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 96.5%,93.8%, 98.7% and 98% at 6.0 min, respectively. These results indicated that the Ni-Fe-Mn-O ceramics with appropriate increase of iron were useful for industrial applications on degrading organic pollute. - Highlights: • The relationship of composition and catalytic properties of Ni-Fe-Mn-O was proposed. • The interplanar spacing decreased with increasing Fe content. • The grain size decreased with increasing Ni content. • The substitution of Ni{sup 2+} in the tetrahedral site by Fe{sup 2+} with increasing Fe content.

  3. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics, and mechanism

    International Nuclear Information System (INIS)

    Fang Zhanqiang; Qiu Xinhong; Chen Jinhong; Qiu Xiuqi

    2011-01-01

    Polybrominated diphenyl ethers have been identified as a new class of organic pollutants with ecological risk due to their toxicity, bioaccumulation, and global distribution. Proper remediation technologies are needed to remove them from the environment. In this paper, Ni/Fe bimetallic nanoparticles were synthesized by chemical deposition and used to degrade decabromodiphenyl ether (BDE209). The characteristics of Ni/Fe nanoparticles were analyzed by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and Brunnaer-Emmett-Teller surface area analysis. Ni/Fe bimetallic nanoparticles with diameters in the order of 20-50 nm could effectively degrade BDE209 in the solvent (tetrahydrofuran/water). Influence factors, such as Ni/Fe nanoparticle dosage, initial BDE209 concentration, and Ni loading, on the removal of BDE209 were studied. The results indicated that the degradation of BDE209 followed pseudo-first-order kinetics, and the degradation rate of BDE209 increased with increasing the amount of nano Ni/Fe particles, Ni/Fe ratio, and decreasing the initial concentration of BDE209. Through analyzed the mass balance of the BDE209 removal, degradation was the main process of BDE209 removal. The mechanism of debromination was deduced by analyzing the reaction products using gas chromatography-mass spectrometry, the bromide ion in the solution and varying the solvent conditions. Stepwise hydrogen reduction is the main process of debromination, and the hydrion play an important role in the reaction. Moreover, the experiment of long term performance and leaching of Ni were also carried out to test the stability and durability of Ni/Fe nanoparticles in BDE209 degradation.

  4. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.

    Science.gov (United States)

    Senger, Moritz; Stripp, Sven T; Soboh, Basem

    2017-07-14

    Metalloenzymes catalyze complex and essential processes, such as photosynthesis, respiration, and nitrogen fixation. For example, bacteria and archaea use [NiFe]-hydrogenases to catalyze the uptake and release of molecular hydrogen (H 2 ). [NiFe]-hydrogenases are redox enzymes composed of a large subunit that harbors a NiFe(CN) 2 CO metallo-center and a small subunit with three iron-sulfur clusters. The large subunit is synthesized with a C-terminal extension, cleaved off by a specific endopeptidase during maturation. The exact role of the C-terminal extension has remained elusive; however, cleavage takes place exclusively after assembly of the [NiFe]-cofactor and before large and small subunits form the catalytically active heterodimer. To unravel the functional role of the C-terminal extension, we used an enzymatic in vitro maturation assay that allows synthesizing functional [NiFe]-hydrogenase-2 of Escherichia coli from purified components. The maturation process included formation and insertion of the NiFe(CN) 2 CO cofactor into the large subunit, endoproteolytic cleavage of the C-terminal extension, and dimerization with the small subunit. Biochemical and spectroscopic analysis indicated that the C-terminal extension of the large subunit is essential for recognition by the maturation machinery. Only upon completion of cofactor insertion was removal of the C-terminal extension observed. Our results indicate that endoproteolytic cleavage is a central checkpoint in the maturation process. Here, cleavage temporally orchestrates cofactor insertion and protein assembly and ensures that only cofactor-containing protein can continue along the assembly line toward functional [NiFe]-hydrogenase. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Artificial neural network methodology: Application to predict magnetic properties of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Hamzaoui, R.; Cherigui, M.; Guessasma, S.; ElKedim, O.; Fenineche, N.

    2009-01-01

    This paper is dedicated to the optimization of magnetic properties of iron based magnetic materials with regard to milling and coating process conditions using artificial neural network methodology. Fe-20 wt.% Ni and Fe-6.5 wt.% Si, alloys were obtained using two high-energy ball milling technologies, namely a planetary ball mill P4 vario ball mill from Fritsch and planetary ball mill from Retch. Further processing of Fe-Si powder allowed the spraying of the feedstock material using high-velocity oxy-fuel (HVOF) process to obtain a relatively dense coating. Input parameters were the disc Ω and vial ω speed rotations for the milling technique, and spray distance and oxygen flow rate in the case of coating process. Two main magnetic parameters are optimized namely the saturation magnetization and the coercivity. Predicted results depict clearly coupled effects of input parameters to vary magnetic parameters. In particular, the increase of saturation magnetization is correlated to the increase of the product Ωω (shock power) and the product of spray parameters. Largest coercivity values are correlated to the increase of the ratio Ω/ω (shock mode process) and the increase of the product of spray parameters.

  6. A study on electrodeposited NixFe1−x alloy films

    Indian Academy of Sciences (India)

    Several techniques such as X-ray diffraction [9], VSM. [10], Mössbauer spectroscopy [11], four-point probe [12] etc. are used to investigate the crystallographic, magnetic and magnetotransport properties of NiFe systems. In this study our aim is to prepare NiFe alloy films relatively thicker (in µm scale) than those reported in ...

  7. Stability of an Electrodeposited Nanocrystalline Ni-Based Alloy Coating in Oil and Gas Wells with the Coexistence of H₂S and CO₂.

    Science.gov (United States)

    Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin

    2017-06-09

    The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H₂S/CO₂ environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H₂S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni₃S₂, NiS, or Ni₃S₄, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate.

  8. Stability of an Electrodeposited Nanocrystalline Ni-Based Alloy Coating in Oil and Gas Wells with the Coexistence of H2S and CO2

    Directory of Open Access Journals (Sweden)

    Yiyong Sui

    2017-06-01

    Full Text Available The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H2S/CO2 environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H2S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni3S2, NiS, or Ni3S4, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate.

  9. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr, E-mail: piotrogr@if.pw.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Stobiecki, Feliks [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Dijken, Sebastiaan van [NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-08-15

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  10. Ultrathin NiO/NiFe2O4 Nanoplates Decorated Graphene Nanosheets with Enhanced Lithium Storage Properties

    International Nuclear Information System (INIS)

    Du, Dejian; Yue, Wenbo; Fan, Xialu; Tang, Kun; Yang, Xiaojing

    2016-01-01

    Highlights: • Ultrathin NiO/NiFe 2 O 4 nanoplates derived from NiFe layered double hydroxides are fabricated on the graphene. • NiO/NiFe 2 O 4 nanoplates on the graphene show superior electrochemical performance compared to pure NiO/NiFe 2 O 4 aggregates. • The effects of the content and the particle size/component of NiO/NiFe 2 O 4 on the electrochemical performances are studied. • Graphene-encapsulated NiO/NiFe 2 O 4 is prepared and shows slightly decreased performance compared to graphene-based composite. - Abstract: As anode materials for lithium-ion batteries, bicomponent metal oxide composites show high reversible capacities; but the morphology and particle size of the composites are hardly controllable, which may reduce their electrochemical properties. In this work, ultrathin NiO/NiFe 2 O 4 nanoplates with a diameter of 5 ∼ 7 nm and a thickness of ∼2 nm are controllably fabricated on the graphene derived from NiFe layered double hydroxides (NiFe-LDHs), and exhibit superior electrochemical performance compared to pure NiO/NiFe 2 O 4 aggregates without graphene. The nanosized NiO and NiFe 2 O 4 plates are separated from each other and the graphene substrate can prevent the aggregation of NiO/NiFe 2 O 4 as well as enhance the electronic conductivity of the composite, which is beneficial to improving the electrochemical performance. Moreover, the effects of the content and the particle size/component of NiO/NiFe 2 O 4 on the electrochemical performances are also studied in order to achieve optimal performance. Ultrathin NiO/NiFe 2 O 4 nanoplates are further encapsulated by graphene nanosheets and show slightly decreased performance compared to those supported by graphene nanosheets. The different electrochemical behaviors of graphene-containing composites may be attributed to the different interactions between graphene nanosheets and NiO/NiFe 2 O 4 nanoplates.

  11. Facile synthesis, dielectric properties and electrocatalytic activities of PMMA-NiFe2O4 nanocomposite

    International Nuclear Information System (INIS)

    Maji, Pranabi; Choudhary, Ram Bilash

    2017-01-01

    The paper deals with the dielectric and catalytic properties of poly (methyl methacrylate)-nikel ferrite (PMMA-NiFe 2 O 4 ) nanocomposite. The nanocomposite was prepared by using a general and facile synthesis strategy. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra confirmed the formation of PMMA-NiFe 2 O 4 nanocomposite. Field effect scanning electron microscopic (FESEM) and transmission electron microscopic (TEM) images revealed that NiFe 2 O 4 nanoparticles were uniformly distributed and were tightly adhered with PMMA matrix owing to surface modification with 3-methacryloyloxy propyl trimethoxy silane (KH-570). Thermal stability was enhanced by incorporation of NiFe 2 O 4 nanofillers. The nanocomposite showed high dielectric constant and low dielectric loss. The achieved dielectric and thermal property inferred the potential application of this material in energy storage and embedded electronics devices. Further, the as prepared nanocomposite also offered a remarkable electrochemical performance towards hydrogen peroxide (H 2 O 2 ) sensing. - Highlights: • PMMA-NiFe 2 O 4 nanocomposite was synthesized via free radical polymerization. • The nanocomposite exhibited high value of dielectric constant (51) and tanδ (0.3). • Thermal stability of the PMMA matrix was improved by the incorporation of NiFe 2 O 4. • The H 2 O 2 detection limit was estimated 44 μM when signal to noise (S/N) ration was 3. • The electrochemical sensitivity of H 2 O 2 was calculated 0.6727 μA mM -1 .

  12. Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy

    Science.gov (United States)

    Ye, Yongda; Wang, Haibo; Tang, Guoyi; Song, Guolin

    2018-05-01

    The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.

  13. Direct selenylation of mixed Ni/Fe metal-organic frameworks to NiFe-Se/C nanorods for overall water splitting

    Science.gov (United States)

    Xu, Bo; Yang, He; Yuan, Lincheng; Sun, Yiqiang; Chen, Zhiming; Li, Cuncheng

    2017-10-01

    Development of low-cost, highly active bifunctional catalyst for efficient overall water splitting based on earth-abundant metals is still a great challenging task. In this work, we report a NiFe-Se/C composite nanorod as efficient non-precious-metal electrochemical catalyst derived from direct selenylation of a mixed Ni/Fe metal-organic framework. The as-obtained catalyst requires low overpotential to drive 10 mA cm-2 for HER (160 mV) and OER (240 mV) in 1.0 M KOH, respectively, and its catalytic activity is maintained for at least 20 h. Moreover, water electrolysis using this catalyst achieves high water splitting current density of 10 mA cm-2 at cell voltage of 1.68 V.

  14. Comment on "Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps"

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Hofmann, S.

    2015-01-01

    Roč. 107, Sep (2015), s. 235-237 ISSN 0927-0256 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : nanocrystalline materials * grain size * grain boundary energy * grain boundary segregation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.086, year: 2015

  15. On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys

    International Nuclear Information System (INIS)

    Shakibi Nia, N.; Savall, C.; Creus, J.; Bourgon, J.; Girault, P.; Metsue, A.; Cohendoz, S.; Feaugas, X.

    2016-01-01

    Nano-crystalline nickel-tungsten alloys are investigated in order to provide evidence of the contribution of the solute content (light elements and tungsten) and grain-boundaries on hardness. For this purpose, Ni-W alloys were elaborated by electrodeposition in an additive free citrate ammonium bath. The variation of electrodeposition conditions leads to W contents up to 18 at%, with a broad range of grain sizes (5–650 nm). The incorporation of light elements (H, O, C, N) depends on the deposition applied conditions and a progressive modification of the texture is observed with the following sequence: {110}, NT (Non-Textured) and {111} textures. We show that the Hall-Petch relationship for these alloys is influenced by the presence of light elements, the nature of the crystallographic texture and the grain boundaries character. The dependence of grain size on flow stress is a direct consequence of the solute content (solute strengthening) and the evolution of the internal stresses with grain size. To explain the experimental data, two competing physical mechanisms are suggested: grain boundary shearing and dislocation emission at grain boundary, which are affected by the nature of the grain boundary and the solute content.

  16. On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shakibi Nia, N., E-mail: Niusha.Shakibi-Nia@uibk.ac.at [LaSIE (UMR 7356) CNRS, Université de La Rochelle, Av. Michel Crépeau, F-17000, La Rochelle (France); Savall, C.; Creus, J. [LaSIE (UMR 7356) CNRS, Université de La Rochelle, Av. Michel Crépeau, F-17000, La Rochelle (France); Bourgon, J. [ICMPE (UMR 7182) CNRS-UPEC, Université Paris Est, 2-8 rue Henri Dunant, F-94320, Thiais (France); Girault, P.; Metsue, A.; Cohendoz, S.; Feaugas, X. [LaSIE (UMR 7356) CNRS, Université de La Rochelle, Av. Michel Crépeau, F-17000, La Rochelle (France)

    2016-12-15

    Nano-crystalline nickel-tungsten alloys are investigated in order to provide evidence of the contribution of the solute content (light elements and tungsten) and grain-boundaries on hardness. For this purpose, Ni-W alloys were elaborated by electrodeposition in an additive free citrate ammonium bath. The variation of electrodeposition conditions leads to W contents up to 18 at%, with a broad range of grain sizes (5–650 nm). The incorporation of light elements (H, O, C, N) depends on the deposition applied conditions and a progressive modification of the texture is observed with the following sequence: {110}, NT (Non-Textured) and {111} textures. We show that the Hall-Petch relationship for these alloys is influenced by the presence of light elements, the nature of the crystallographic texture and the grain boundaries character. The dependence of grain size on flow stress is a direct consequence of the solute content (solute strengthening) and the evolution of the internal stresses with grain size. To explain the experimental data, two competing physical mechanisms are suggested: grain boundary shearing and dislocation emission at grain boundary, which are affected by the nature of the grain boundary and the solute content.

  17. Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band

    Science.gov (United States)

    Bateer, Buhe; Zhang, Jianjao; Zhang, Hongchen; Zhang, Xiaochen; Wang, Chunyan; Qi, Haiqun

    2018-01-01

    Composites with good dispersion and excellent microwave absorption properties have important applications. Therefore, an easily dispersible NiFe2O4/reduced graphene oxide (RGO) composite has been prepared conveniently through a simple hydrothermal method. Highly crystalline, small size (about 7 nm) monodispersed NiFe2O4 nanoparticles (NPs) are evenly distributed on the surface of RGO. The microwave absorbability revealed that the NiFe2O4/RGO composite exhibits excellent microwave absorption properties in the X-band (8-12 GHz), and the minimum reflection loss of the NiFe2O4/RGO composite is -27.7 dB at 9.2 GHz. The NiFe2O4/RGO composite has good dispersibility in nonpolar solvent, which facilitates the preparation of stable commercial microwave absorbing coatings. It can be a promising candidate for lightweight microwave absorption materials in many application fields.

  18. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN- Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases.

    Science.gov (United States)

    Perotto, Carlo U; Sodipo, Charlene L; Jones, Graham J; Tidey, Jeremiah P; Blake, Alexander J; Lewis, William; Davies, E Stephen; McMaster, Jonathan; Schröder, Martin

    2018-03-05

    The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN - ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N 2 S 2 )Fe(CO) 2 (CN) 2 ], [Ni( S 4 )Fe(CO) 2 (CN) 2 ], and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO) 2 (CN) 2 } unit. X-ray crystallographic studies on [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc + /Fc and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] possesses a reversible oxidation process at 0.17 V vs Fc + /Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a Ni III Fe II formulation for [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + . The singly occupied molecular orbital (SOMO) in [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + is based on Ni 3d z 2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a Ni III Fe II formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] and its [Ni( N 2 S 3 )] precursor, together with calculations on the oxidized [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + and [Ni( N 2 S 3 )] + forms suggests that the binding of the {Fe(CO)(CN) 2 } unit to the {Ni(CysS) 4 } center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors

  19. Preparation of Ni-Fe bimetallic porous anode support for solid oxide fuel cells using LaGaO{sub 3} based electrolyte film with high power density

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Young-Wan; Ida, Shintaro; Ishihara, Tatsumi [Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-Ku, Fukuoka 819-0395 (Japan); Eto, Hiroyuki [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-Shi, Ibaraki 311-0102 (Japan); Inagaki, Toru [The Kansai Electric Power Co., Inc., 11-20 Nakoji 3-Chome, Amagasaki, Hyogo 661-0974 (Japan)

    2010-10-01

    Optimization of sintering temperature for NiO-Fe{sub 2}O{sub 3} composite oxide substrate was studied in order to obtain a dense substrate with smooth surface. By in situ reduction, the substrate was changed to a porous Ni-Fe alloy metal. The volumetric shrinkage and porosity of the substrate were also studied systematically with the Ni-Fe substrate reduced at different temperatures. A Sr and Mg-doped LaGaO{sub 3} (LSGM) thin film was prepared on dense substrate by the pulsed laser deposition (PLD) method. The LSGM film with stoichiometric composition was successfully prepared under optimal deposition parameters and a target composition. Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} (SSC55) cathode was prepared by the slurry coating method on the deposited film. Prepared SOFC single cell shows high power density and the maximum power density (MPD) achieved was 1.79, 0.82 and 0.29 W cm{sup -2} at 973, 873 and 773 K, respectively. After thermal cycle from 973 to 298 K, the cell shows almost theoretical open circuit potential (1.1 V) and the power density of 1.62 W cm{sup -2}, which is almost the same as that at first cycles. Therefore, the Ni-Fe porous metal support made by the selective reduction is highly promising as a metal anode substrate for SOFC using LaGaO{sub 3} thin film. (author)

  20. Exchange anisotropy and micromagnetic properties of PtMn/NiFe bilayers

    International Nuclear Information System (INIS)

    Pokhil, Taras; Linville, Eric; Mao, Sining

    2001-01-01

    Magnetic microstructure, exchange induced uniaxial and unidirectional anisotropy and structural transformation have been studied in PtMn/NiFe bilayer films and small elements as a function of annealing time. The relationship between the fcc-fct ordering phase transformation in PtMn and the development of exchange induced magnetic properties in PtMn/NiFe bilayers is complicated by the fact that the transformation occurs throughout the entire volume of the PtMn film, while the exchange between the layers is predominantly an interface effect. Consequently, the development of the exchange anisotropy should depend primarily on the character of the structural transformation at the interface between PtMn and NiFe. The purpose of this article is to correlate the volume phase transformation in PtMn to the development of exchange anisotropy and micromagnetic behavior in PtMn/NiFe bilayers. The interface structure can be inferred from the anisotropy and micromagnetic measurements, leading to a model that explains the relationship between the volume and interface transformation structures in PtMn, and magnetic properties of the bilayers. The structure and magnetic properties were characterized by x-ray diffraction, vibrating sample magnetometry, and magnetic force microscopy. [copyright] 2001 American Institute of Physics

  1. Hydrothermal synthesis of NiFe2O4 nano-particles: structural ...

    Indian Academy of Sciences (India)

    2. Experimental. In order to synthesize NiFe2O4 nano-particles, Ni(NO3)2· ... Nickel and iron nitrates are dissolved in distilled ... are in good agreement with standard JCPDS: 86-2267. The ... in order to evaluate micro-strain (ε) and crystallite size (D) using the ..... Impedance spectroscopic studies are useful for investigating.

  2. Hydrothermal Synthesis of NiFe2O4 nano-particles: Structural ...

    Indian Academy of Sciences (India)

    10

    Cole plots are drawn to study electrical conduction mechanism and the kind of ... Zeiss), Transmission Electron Microscope (TEM: Model Tecnai G20, FEI, USA), JASCO ...... Z' Vs. Z" plot (Nyquist plot) of NiFe2O4 at room temperature (RT).

  3. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase

    Science.gov (United States)

    Brazzolotto, Deborah; Gennari, Marcello; Queyriaux, Nicolas; Simmons, Trevor R.; Pécaut, Jacques; Demeshko, Serhiy; Meyer, Franc; Orio, Maylis; Artero, Vincent; Duboc, Carole

    2016-11-01

    Hydrogen production through water splitting is one of the most promising solutions for the storage of renewable energy. [NiFe] hydrogenases are organometallic enzymes containing nickel and iron centres that catalyse hydrogen evolution with performances that rival those of platinum. These enzymes provide inspiration for the design of new molecular catalysts that do not require precious metals. However, all heterodinuclear NiFe models reported so far do not reproduce the Ni-centred reactivity found at the active site of [NiFe] hydrogenases. Here, we report a structural and functional NiFe mimic that displays reactivity at the Ni site. This is shown by the detection of two catalytic intermediates that reproduce structural and electronic features of the Ni-L and Ni-R states of the enzyme during catalytic turnover. Under electrocatalytic conditions, this mimic displays high rates for H2 evolution (second-order rate constant of 2.5 × 104 M-1 s-1 turnover frequency of 250 s-1 at 10 mM H+ concentration) from mildly acidic solutions.

  4. Nonlocal magnon spin transport in NiFe2O4 thin films

    NARCIS (Netherlands)

    Shan, Juan; Bougiatioti, P; Liang, Lei; Reiss, G; Kuschel, Timo; van Wees, Bart

    2017-01-01

    We report magnon spin transport in nickel ferrite(NiFe2O4, NFO)/platinum (Pt) bilayer systems at room temperature. A nonlocal geometry is employed, where the magnons are excited by the spin Hall effect or by the Joule heating induced spin Seebeck effect at the Pt injector and detected at a certain

  5. The key role of biochar in the rapid removal of decabromodiphenyl ether from aqueous solution by biochar-supported Ni/Fe bimetallic nanoparticles

    Science.gov (United States)

    Yi, Yunqiang; Wu, Juan; Wei, Yufen; Fang, Zhanqiang; Tsang, Eric Pokeung

    2017-07-01

    Some problems exist in the current remediation of polybrominated diphenyl ethers (PBDEs) from aqueous solution by using iron-based nanoparticles. Our efforts have contributed to the synthesis of biochar-supported Ni/Fe bimetallic nanoparticle composites (BC@Ni/Fe). Under the optimum operating parameters of BC@Ni/Fe, the morphologic analysis revealed that biochar effectively solved the agglomeration of Ni/Fe nanoparticles and the removal efficiency of BDE209 obtained by BC@Ni/Fe (91.29%) was seven times higher than the sum of biochar (2.55%) and Ni/Fe (11.22%) in 10 min. The degradation products of BDE209 in the solution and absorbed on the BC@Ni/Fe were analyzed with gas chromatography-mass spectroscopy, which indicated that the degradation of BDE209 was mainly a process of stepwise debromination. Meanwhile, compared with Ni/Fe nanoparticles, the adsorption ability of the by-products of BDE209 by BC@Ni/Fe was greater, to a certain extent, which reduced the additional environmental burden. In addition, the concentration of nickle ion leaching from the Ni/Fe nanoparticles was 3.09 mg/L; conversely, the concentration of nickle leaching from BC@Ni/Fe was not detected. This excellent performance in our study indicates a possible means to enhance the reactivity and reduce the secondary risks of Ni/Fe nanoparticles.

  6. Trichloroethene (TCE) hydrodechlorination by NiFe nanoparticles: Influence of aqueous anions on catalytic pathways.

    Science.gov (United States)

    Han, Yanlai; Liu, Changjie; Horita, Juske; Yan, Weile

    2018-08-01

    Amending bulk and nanoscale zero-valent iron (ZVI) with catalytic metals significantly accelerates hydrodechlorination of groundwater contaminants such as trichloroethene (TCE). The bimetallic design benefits from a strong synergy between Ni and Fe in facilitating the production of active hydrogen for TCE reduction, and it is of research and practical interest to understand the impacts of common groundwater solutes on catalyst and ZVI functionality. In this study, TCE hydrodechlorination reaction was conducted using fresh NiFe bimetallic nanoparticles (NiFe BNPs) and those aged in chloride, sulfate, phosphate, and humic acid solutions with concurrent analysis of carbon fractionation of TCE and its daughter products. The apparent kinetics suggest that the reactivity of NiFe BNPs is relatively stable in pure water and chloride or humic acid solutions, in contrast to significant deactivation observed of PdFe bimetallic particles in similar media. Exposure to phosphate at greater than 0.1 mM led to a severe decrease in TCE reaction rate. The change in kinetic regimes from first to zeroth order with increasing phosphate concentration is consistent with consumption of reactive sites by phosphate. Despite severe kinetic effect, there is no significant shift in TCE 13 C bulk enrichment factor between the fresh and the phosphate-aged particles. Instead, pronounced retardation of TCE reaction by NiFe BNPs in deuterated water (D 2 O) points to the importance of hydrogen spillover in controlling TCE reduction rate by NiFe BNPs, and such process can be strongly affected by groundwater chemistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Ferromagnetic resonance study of structure and relaxation of magnetization in NiFe/Ru superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Alayo, W., E-mail: willian.rodriguez@ufpel.edu.br [Depto. de Física, Univ. Federal de Pelotas, Campus Universitário, 96010-900, Pelotas, RS (Brazil); Landi Jr, S. [Instituto Federal Goiano, Rio Verde 75901-970 (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia 74001-970 (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil)

    2014-01-15

    The structural properties and relaxation processes of magnetization in [Ni{sub 81}Fe{sub 19}(t{sub 1})/Ru(t{sub 2})]{sub N} superlattices (N=number of bilayers) were analyzed by ferromagnetic resonance (FMR) with a fixed microwave frequency. One series of samples was deposited with constant NiFe layer thickness (t{sub 1}) and variable Ru layer thickness (t{sub 2}); the other series, with constant t{sub 2} and variable t{sub 1}. A single FMR mode was observed for t{sub 2}<15 Å and t{sub 1}>75 Å and it has been attributed to the resonance of the exchange-coupled NiFe layers across the Ru interlayers. For the other values of t{sub 1} and t{sub 2}, several FMR modes appeared and they were associated to non-coupled magnetic phases with different effective magnetization formed during the multilayer growth. The FMR linewidths were analyzed as a function of the magnetic layer thickness and a strong dependence on t{sub 1}{sup −2} was observed. It was attributed to the contribution of the two-magnon scattering mechanism for the linewidth. - Highlights: • We present a study of magnetic properties of NiFe/Ru superlattices by ferromagnetic resonance (FMR). • The FMR spectra show several modes for large Ru thicknesses and for low NiFe thicknesses. • The above behavior is correlated with the interlayer exchange coupling. • The two-magnon scattering mechanism is revealed by the dependence of the FMR linewidth on the NiFe thickness.

  8. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 ...

    Indian Academy of Sciences (India)

    Abstract. Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route .... is controlled by the iron oxide film in case of alloys with ..... the surface is covered, thus, producing effective protection of.

  9. MFM of nanocrystalline NdFeB: a study of the effect of processing route on the micromagnetic structure

    Science.gov (United States)

    Al-Khafaji, M. A.; Marashi, S. P. H.; Rainforth, W. M.; Gibbs, M. R. J.; Davies, H. A.; Bishop, J. E. L.; Heydon, G.

    1998-12-01

    The magnetic domain structure of near stoichiometric (Nd 11.8Fe 82.3B 5.9) nanocrystalline alloy ribbon has been examined using magnetic force microscopy (MFM) as a function of processing conditions. Amorphous structured ribbons of Nd 2Fe 14B with an average thickness of 25 μm were produced by chill block melt-spinning. Subsequently, samples were heat treated at 600°C for 4 min to produce a nanocrystalline structure consisting of Nd 2Fe 14B grains of average size ˜35 nm. These were compared to ribbons of the same composition, but melt spun directly to the nanocrystalline state, also with an average grain size of ˜35 nm. MFM imaging was undertaken using CoCr, NiFe and Fe/SiO 2 coated pyramidal Si tips. The as-cast amorphous ribbons exhibited weak magnetic contrast with a correlation length of 130±20 nm, but with a small elongation in one direction, as shown by Fourier transforms of the MFM images. Nanocrystalline samples produced by devitrification exhibited longer correlation lengths of 1000±50 nm and with a stronger angular component to the Fourier transform. The application of a 5 T field to the nanophase sample in a direction normal to the sample plane resulted in a reduction of the correlation length to 600±50 nm and a reduction in the directionality of the magnetic contrast. However, the application of a 5 T field in the plane of the ribbon resulted in an elongation of the contrast in a direction parallel to the applied field, irrespective of the in-plane field direction. In contrast, ribbon melt spun directly to a nanocrystalline structure exhibited a uniform Fourier transform both in the as-cast and remanent states. The length scale of dominant magnetic structure was 350±30 nm for the as-cast and 620±30 nm for the remanent state. Within the dominant magnetic structure, a finer structure was apparent, of a scale comparable to the grain size.

  10. The effect of thermomechanical processing on the microstructure and mechanical properties of the nanocrystalline TiNiCo shape memory alloy

    International Nuclear Information System (INIS)

    Mohammad Sharifi, E.; Kermanpur, A.; Karimzadeh, F.

    2014-01-01

    The effect of thermomechanical processing comprising cold rolling followed by annealing on the microstructural evolution and mechanical behavior of the Ti 50 Ni 48 Co 2 shape memory alloy was investigated. The annealed specimens were subjected to cold rolling at room temperature with various thickness reductions up to 70%. Transmission electron microscopy revealed that the initial deformation mechanism of Ti 50 Ni 48 Co 2 alloy during cold rolling was stress-induced martensitic transformation followed by plastic deformation of martensite via dislocation slip and subsequent martensite to austenite transformation via the reverse transformation after unloading. Microstructural investigations showed that by increasing the cold deformation, a high density of dislocations is accumulated, leading gradually to nanocrystallization and amorphization. After annealing at 400 °C for 1 h, the amorphous phase formed in the cold rolled specimens was completely crystallized and an entirely nanocrystalline structure was achieved. Results showed that the stress–strain curves of the cold rolled specimens exhibited plastic deformation of austenite without the stress plateau region. However, the stress plateau appeared in the stress–strain curves of the annealed specimens, whose stress level and length were increased with increasing thickness reduction

  11. The practical limits for enhancing magnetic property combinations for bulk nanocrystalline NdFeB alloys through Pr, Co and Dy substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.W. [Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD (Singapore)]. E-mail: phylz@nus.edu.sg; Davies, H.A. [Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD (Singapore)

    2007-06-15

    Pr, Co and Dy additions have been employed to improve the combinations of magnetic properties for nanocrystalline Nd {sub x} Fe{sub 94-} {sub x} B{sub 6} melt spun alloys. The dependences of the magnetic properties on the solute element concentrations have been extensively investigated and the relationships between the measured remanence, maximum energy product (BH){sub max} and intrinsic coercivity for several compositional series are discussed. The composition ranges for these elemental substitutions which can be used to achieve the highest values of (BH){sub max} are identified. It is found that, when we employ individual or combined substitutions of Pr and Dy for Nd and Co for Fe in NdFeB alloys with various RE:Fe ratios, the practical limit of (BH){sub max} lies in the range {approx}160-180 kJ/m{sup 3}, combined with a coercivity in the range {approx}400-800 kA/m.

  12. Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5 Intermetallic Compound During Mechanical Alloying Process

    Directory of Open Access Journals (Sweden)

    A. Khajesarvi

    2015-07-01

    Full Text Available In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5 intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many researchers. Powders produced from milling were analyzed using scanning electron microscopy (SEM and X-ray diffractometry (XRD. The results showed that intermetallic compound of NiAl formed at different stage of milling operation. It was concluded that at first disordered solid solution of (Ni,Al was formed then it converted into ordered intermetallic compound of NiAl. With increasing the atomic percent of molybdenum, average grain size decreased from 3 to 0.5 μm. Parameter lattice and lattice strain increased with increasing the atomic percent of molybdenum, while the crystal structure became finer up to 10 nm. Also, maximum microhardness was obtained for NiAl49Mo1 alloy.

  13. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S. [Istituto Officina dei Materiali del CNR (IOM-CNR), Unità di Perugia, I-06123 Perugia (Italy); Del Bianco, L. [Department of Physics and Astronomy, University of Bologna, I-40127 Bologna (Italy); Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia (Italy)

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  14. Bulk Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    Science.gov (United States)

    2014-05-13

    grain size of copper: e.g., Bi,76 Ag,77 Fe,78 Zn,79 W,80 Sb,81 Zr ,82,83 Nb ,84 and Ta.28,29 In gen- eral, the addition of solutes in these systems has...grain size (in percent) as a function of the homologous temperature of Cu for several different solutes: Bi, W, Ag, Fe, Nb , Zr (in increasing order of...electrons in metals, increasing the density of grain boundaries in nanocrystalline materials greatly increases the electrical resistivity (which has

  15. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  16. Prediction of the new efficient permanent magnet SmCoNiFe3

    Science.gov (United States)

    Söderlind, P.; Landa, A.; Locht, I. L. M.; Åberg, D.; Kvashnin, Y.; Pereiro, M.; Däne, M.; Turchi, P. E. A.; Antropov, V. P.; Eriksson, O.

    2017-09-01

    We propose a new efficient permanent magnet, SmCoNiFe3, which is a development of the well-known SmCo5 prototype. More modern neodymium magnets of the Nd-Fe-B type have an advantage over SmCo5 because of their greater maximum energy products due to their iron-rich stoichiometry. Our new magnet, however, removes most of this disadvantage of SmCo5 while preserving its superior high-temperature efficiency over the neodymium magnets. We show by means of first-principles electronic-structure calculations that SmCoNiFe3 has very favorable magnetic properties and could therefore potentially replace SmCo5 or Nd-Fe-B types in various applications.

  17. Characteristics of magnetic tunnel junctions comprising ferromagnetic amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Kim, Y.K.; Hwang, J.Y.; Yim, H.I.; Rhee, J.R.; Kim, T.W.

    2007-01-01

    Magnetic tunnel junctions (MTJs), which consisted of amorphous ferromagnetic Ni 16 Fe 62 Si 8 B 14 free layers, were investigated. NiFeSiB has a lower saturation magnetization (M s : 800 emu/cm 3 ) than Co 90 Fe 10 and a higher anisotropy constant (K u : 2700 erg/cm 3 ) than Ni 80 Fe 20 . By increasing the free layer thickness, the tunnel magnetoresistance (TMR) ratio of up to 41% was achieved and it exhibited a much lower switching field (H sw ) than the conventionally used CoFe free layer MTJ. Furthermore, by inserting a thin CoFe layer (1 nm) at the tunnel barrier/NiFeSiB interface, the TMR ratio and switching squareness were enhanced

  18. Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shizhong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)], E-mail: shizwang@sohu.com; He, Qiong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)], E-mail: meilin.liu@mse.gatech.edu

    2009-06-01

    A number of composite materials in the Ni-Fe-LSGMC family have been studied as potential anodes for solid oxide fuel cells (SOFCs) based on strontium, magnesium, and cobalt doped lanthanum gallate electrolyte (LSGMC). The results show that Ni reacts with LSGMC especially under reducing conditions at high temperatures, resulting in high contact resistance, large electrode polarization, and poor performance. The reaction between Ni and LSGMC depends strongly on the composition and pre-sintering temperature of LSGMC, the concentration of iron in the electrode, and the processing and operating temperatures. Under proper conditions, Ni-Fe-LSGMC5 could be a promising high-performance anode with good compatibility with LSGMC5 electrolyte.

  19. Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Wang Shizhong; He, Qiong; Liu Meilin

    2009-01-01

    A number of composite materials in the Ni-Fe-LSGMC family have been studied as potential anodes for solid oxide fuel cells (SOFCs) based on strontium, magnesium, and cobalt doped lanthanum gallate electrolyte (LSGMC). The results show that Ni reacts with LSGMC especially under reducing conditions at high temperatures, resulting in high contact resistance, large electrode polarization, and poor performance. The reaction between Ni and LSGMC depends strongly on the composition and pre-sintering temperature of LSGMC, the concentration of iron in the electrode, and the processing and operating temperatures. Under proper conditions, Ni-Fe-LSGMC5 could be a promising high-performance anode with good compatibility with LSGMC5 electrolyte.

  20. The fabrication and the coercivity mechanism of segmented (Ni/Fe)m composite nanowire arrays

    International Nuclear Information System (INIS)

    Xue, D S; Shi, H G; Si, M S

    2004-01-01

    Arrays of segmented (Ni/Fe) m (m = 1,2,3,4,5) composite nanowires about 3 μm in length and with aspect ratios of about 60 were electrodeposited on anodic porous alumina templates using a dual bath. The structure, morphology and magnetic properties of the samples were characterized by means of x-ray diffraction, transmission electron microscopy and vibrating sample magnetometry, respectively. It is found that Fe(110) and Ni(111) orientations along nanowire axis are preferred. The large aspect ratio of the composite nanowires reveals a strong shape magnetic anisotropy. As the number of the Ni/Fe composite segments m increases, the coercivity of the nanowire arrays, with the magnetic field applied parallel to the wire, gradually increases. The coercivity variation of the segmented composite nanowires is closely related to the effective exchange coupling between the Ni and Fe segments

  1. Parallel ferromagnetic resonance and spin-wave excitation in exchange-biased NiFe/IrMn bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcos Antonio de, E-mail: marcossharp@gmail.com [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Pelegrini, Fernando [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Alayo, Willian [Departamento de Física, Universidade Federal de Pelotas, Pelotas, 96010-900 (Brazil); Quispe-Marcatoma, Justiniano; Baggio-Saitovitch, Elisa [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, 22290-180 (Brazil)

    2014-10-01

    Ferromagnetic Resonance study of sputtered Ru(7 nm)/NiFe(t{sub FM})/IrMn(6 nm)/Ru(5 nm) exchange-biased bilayers at X and Q-band microwave frequencies reveals the excitation of spin-wave and NiFe resonance modes. Angular variations of the in-plane resonance fields of spin-wave and NiFe resonance modes show the effect of the unidirectional anisotropy, which is about twice larger for the spin-wave mode due to spin pinning at the NiFe/IrMn interface. At Q-band frequency the angular variations of in-plane resonance fields also reveal the symmetry of a uniaxial anisotropy. A modified theoretical model which also includes the contribution of a rotatable anisotropy provides a good description of the experimental results.

  2. Synthesis and characterization of nanocomposite NiFe2O4 ...

    African Journals Online (AJOL)

    In this work, nano ferrite spinel NiFe2O4 was synthesized by sol-gel method and characterized by SEM, XRD, FT-IR, and VSM. In second step Schiff base made from salicylaldehyde and amino propyl triethoxy silane was used for modification of the synthesized nano ferrit. In the third step removal of Ni(II) was done using ...

  3. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, Zachary K.; Harshan, Aparna K.; Gerken, James B.; Vörös, Márton; Galli, Giulia; Stahl, Shannon S.; Hammes-Schiffer, Sharon

    2017-03-06

    NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fedoped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixedmetal oxidation states in heterogeneous catalysts.

  4. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela

    2016-01-25

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER kinetics were investigated. For electrocatalysis, a NiFeOx catalyst was hydrothermally decorated on Ni foam. In 1 M KOH solution, the NiFeOx electrocatalyst achieved 10 mA cm-2 at an overpotential of 260 mV. The same catalyst was decorated on the surface of Ta3N5 photocatalyst powder. The reaction was conducted in the presence of 0.1 M Na2S2O8 as a strong electron scavenger, thus likely leading to the OER being kinetically relevant. When compared with the bare Ta3N5, NiFeOx/Ta3N5 demonstrated a 5-fold improvement in photocatalytic activity in the OER under visible light irradiation, achieving a quantum efficiency of 24 % at 480 nm. Under the conditions investigated, a strong correlation between the electrocatalytic and photocatalytic performances was identified: an improvement in electrocatalysis corresponded with an improvement in photocatalysis without altering the identity of the materials. The rate change at different pH was likely associated with electrocatalytic kinetics that accordingly influenced the photocatalytic rates. The sensitivity of the reaction rates with respective to the reaction temperature resulted in an apparent activation energy of 25 kJ mol-1 in electrocatalysis, whereas that in photocatalysis was 16 kJ mol-1. The origin of the difference in these activation energy values is likely attributed to the possible effects of temperature on the individual thermodynamic and kinetic parameters of the reaction process. The work described herein demonstrates a method of “transferring the knowledge of electrocatalysis to photocatalysis” as a strong tool to rationally and quantitatively understand the complex reaction schemes involved in photocatalytic reactions.

  5. Field-angle dependence of magnetic resonance in Pt/NiFe films

    International Nuclear Information System (INIS)

    Inoue, H.Y.; Harii, K.; Saitoh, E.

    2007-01-01

    Ferromagnetic resonance in NiFe/ amorphous Pt bilayer thin films was investigated with changing the external field direction. The spectral width of the ferromagnetic resonance depends critically on the external-magnetic-field direction. We found that the sample dependence of the spectral width is enhanced with deviation of external field direction from the direction along the film plain, implying an important role of spin directions in field-induced spin-decoherence mechanism in Pt

  6. Ostwald ripening of Pb nanocrystalline phase in mechanically milled Al-Pb alloys and the influence of Cu additive

    International Nuclear Information System (INIS)

    Wu, Z.F.; Zeng, M.Q.; Ouyang, L.Z.; Zhang, X.P.; Zhu, M.

    2005-01-01

    The coarsening behavior of nanosized Pb phase in both Al-10%Pb and Al-10%Pb-4.5%Cu alloys has been studied by X-ray diffraction and transmission electron microscopy analysis. The coarsening of Pb nanophase in Al-Pb alloys still follows the classical ripening theory (the LSW theory) and the addition of Cu decreases the coarsening rate of Pb nanophase

  7. Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting

    Science.gov (United States)

    Lv, Xiaowei; Xiao, Xin; Cao, Minglei; Bu, Yi; Wang, Chuanqing; Wang, Mingkui; Shen, Yan

    2018-05-01

    Modification of semiconductor photoanodes with oxygen evolution catalyst (OEC) is an effective approach for improving photoelectrochemical (PEC) water splitting efficiency. In the configuration, how to increase the activity of OEC is crucial to further improve PEC performance. Herein, a ternary photoanode system was designed to enhance PEC efficiency of photoelectrodes through introducing carbon dots (CDs), NiFe-layered double hydroxide (NiFe-LDH) nanosheets on BiVO4 particles. Systematic research shows that NiFe-LDH serves as an OEC which accelerates oxygen evolution kinetics, while the introduction of CDs can further reduce charge transfer resistance and overpotential for oxygen evolution. Under the synergistic effect of NiFe-LDH and CDs, the photocurrent and incident photon to current conversion efficiency (IPCE) of the resulting CDs/NiFe-LDH/BiVO4 photoanode is improved significantly than those of the NiFe-LDH/BiVO4 electrode. Consequently, such a ternary heterostructure could be an alternative way to further enhance PEC water splitting performance.

  8. Research on microstructure properties of the TiC/Ni-Fe-Al coating prepared by laser cladding technology

    Science.gov (United States)

    Jiao, Junke; Xu, Zifa; Zan, Shaoping; Zhang, Wenwu; Sheng, Liyuan

    2017-10-01

    In this paper, the laser cladding method was used to preparation the TiC reinforced Ni-Fe-Al coating on the Ni base superalloy. The Ti/Ni-Fe-Al powder was preset on the Ni base superalloy and the powder layer thickness is 0.5mm. A fiber laser was used the melting Ti/Ni-Fe-Al powder in an inert gas environment. The shape of the cladding layer was tested using laser scanning confocal microscope (LSCM) under different cladding parameters such as the laser power, the melting velocity and the defocused amount. The microstructure, the micro-hardness was tested by LSCM, SEM, Vickers hardness tester. The test result showed that the TiC particles was distributed uniformly in the cladding layer and hardness of the cladding layer was improved from 180HV to 320HV compared with the Ni-Fe-Al cladding layer without TiC powder reinforced, and a metallurgical bonding was produced between the cladding layer and the base metal. The TiC powder could make the Ni-Fe-Al cladding layer grain refining, and the more TiC powder added in the Ni-Fe-Al powder, the smaller grain size was in the cladding layer.

  9. Magnetic characterization of nanocrystalline Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) alloys during milling and subsequent annealing

    Energy Technology Data Exchange (ETDEWEB)

    Rastabi, Reza Amini; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid; Sodaee, Tahmineh

    2016-10-15

    Magnetic characterization of nanocrystalline Fe–Cr–Co alloys during milling and annealing process was the goal of this study. To formation of Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) solid solution, different powder mixtures of Fe, Cr and Co elements were mechanically milled in a planetary ball mill. The annealing process was done in as-milled samples at different temperature in the range of 500–640 °C for 2 h. The produced samples were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. Performed mechanical alloying in different powder mixtures lead to the formation of Fe–Cr–Co α-phase solid solution with average crystallite sizes of about 10 nm. The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The coercivity of produced alloys after annealing process decreased and reached to about 40–150 Oe. The highest value of coercivity in as-milled and annealed samples was achieved in alloys with higher Cr contents. - Highlights: • Hc and Ms of produced alloys obtained in the range of 110–200 Oe and 150–220 emu/g. • The highest value of Hc in milled and annealed samples was achieved in Fe{sub 45}Cr{sub 35}Co{sub 20}. • Hc of produced alloys after spinodal decomposition decreased to about 40–150 Oe. • The effect of crystalline defects and residual strain on magnetic fields pinning in milled samples is higher than spinodal decomposition in annealed samples. • The highest value of Hc in as-milled and annealed samples was achieved in Fe{sub 45}Cr{sub 35}Co{sub 20}. The coercivity of produced alloys after annealing process decreased and reach to about 40–150 Oe. • The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu

  10. Magnetic hybride layers. Magnetic properties of locally exchange-coupled NiFe/IrMn layers; Magnetische Hybridschichten. Magnetische Eigenschaften lokal austauschgekoppelter NiFe/IrMn-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Christine

    2010-10-06

    By the lateral modification of the magnetic properties of exchange-coupled NiFe/IrMn layers soft-magnetic layers were produced, which show both new static and dynamic properties. As lateral structuration methods hereby the localoxidation as well as ion implantation were applied. By means of thes procedures it has been succeeded to mould specific magnetic domain configurations with strp structure into the layers. In dependence of the structure orientation as well as strip period the remagnetization behavior as well as the magnetic-resonance frequency and damping of the layers could directly be modified. The new dynamical properties are hereby discussed in the framework of the coupling via dynamical charges and the direct affection of the effective field of the artificially inserted domain state. The presented results prove by this the large potential of the lateral magneto-structuration for the tuning of specifical static as well as dynamic properties of magnetically thin layers.

  11. Nanocrystalline soft ferromagnetic Ni-Co-P thin film on Al alloy by low temperature electroless deposition

    International Nuclear Information System (INIS)

    Aal, A. Abdel; Shaaban, A.; Hamid, Z. Abdel

    2008-01-01

    Soft ferromagnetic ternary Ni-Co-P films were deposited onto Al 6061 alloy from low temperature Ni-Co-P electroless plating bath. The effect of deposition parameters, such as time and pH, on the plating rate of the deposit were examined. The results showed that the plating rate is a function of pH bath and the highest coating thickness can be obtained at pH value from 8 to10. The surface morphology, phase structure and the magnetic properties of the prepared films have been investigated using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and vibrating magnetometer device (VMD), respectively. The deposit obtained at optimum conditions showed compact and smooth with nodular grains structure and exhibited high magnetic moments and low coercivety. Potentiodynamic polarization corrosion tests were used to study the general corrosion behavior of Al alloys, Ni-P and Ni-Co-P coatings in 3.5% NaCl solution. It was found that Ni-Co-P coated alloy demonstrated higher corrosion resistance than Ni-P coating containing same percent of P due to the Co addition. The Ni-Co-P coating with a combination of high corrosion resistance, high hardness and excellent magnetic properties would be expected to enlarge the applications of the aluminum alloys

  12. Effect of zirconium on grain growth and mechanical properties of a ball-milled nanocrystalline FeNi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Hasan, E-mail: hkotan@ncsu.edu [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States); Darling, Kris A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Saber, Mostafa; Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} powders were hardened up to 10 GPa by ball milling. Black-Right-Pointing-Pointer Annealing of Fe and Fe{sub 92}Ni{sub 8} leads to reduced hardness and extensive grain growth. Black-Right-Pointing-Pointer The addition of Zr to Fe{sub 92}Ni{sub 8} increases its stability and strength by second phases. Black-Right-Pointing-Pointer The second phases are found to promote the stability of Fe{sub 91}Ni{sub 8}Zr{sub 1} by Zener pinning. Black-Right-Pointing-Pointer The Zr-containing precipitates contribute to the overall strength of the material. - Abstract: Grain growth of ball-milled pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} alloys has been studied using X-ray diffractometry (XRD), focused ion beam (FIB) microscopy and transmission electron microscopy (TEM). Mechanical properties with respect to compositional changes and annealing temperatures have been investigated using microhardness and shear punch tests. We found the rate of grain growth of the Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy to be much less than that of pure Fe and the Fe{sub 92}Ni{sub 8} alloy at elevated temperatures. The microstructure of the ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy remains nanoscale up to 700 Degree-Sign C where only a few grains grow abnormally whereas annealing of pure iron and the Fe{sub 92}Ni{sub 8} alloy leads to extensive grain growth. The grain growth of the ternary alloy at high annealing temperatures is coupled with precipitation of Fe{sub 2}Zr. A fine dispersion of precipitated second phase is found to promote the microstructural stability at high annealing temperatures and to increase the hardness and ultimate shear strength of ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy drastically when the grain size is above nanoscale.

  13. Alloys of nickel-iron and nickel-silicon do not swell under fast neutron irradiation

    International Nuclear Information System (INIS)

    Silvestre, G.; Silvent, A.; Regnard, C.; Sainfort, G.

    1975-01-01

    This research is concerned with the effect of fast-neutron irradiation on the swelling of nickel and nickel alloys. Ni-Fe (0-60at%Fe) and Ni-Si (0-8at%Si) were studied, and the fluences were in the range 10 20 -4.3x10 22 n/cm 2 . In dilute alloys, the added elements are dissolved and reduce swelling, silicon being particularly effective. In more concentrated alloys, irradiation of Ni-Fe and Ni-Si alloys brings about the formation of plate-shaped precipitates of Ni 3 X and these alloys do not swell. (Auth.)

  14. Synthesis and characterization of NiFe2O4–Pd magnetically recyclable catalyst for hydrogenation reaction

    International Nuclear Information System (INIS)

    Karaoğlu, E.; Özel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Sözeri, H.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe 2 O 4 –Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe 2 O 4 –Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe 2 O 4 –Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd 2+ was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH 4 ) and NiFe 2 O 4 nanoparticles was prepared by sonochemically using FeCI 3 ·6H 2 O and NiCl 2 . The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe 2 O 4 –Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe 2 O 4 –Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe 2 O 4 –Pd MRCs showed very efficient catalytic activity and multiple usability.

  15. Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors

    Science.gov (United States)

    Kumar, Nagesh; Kumar, Amit; Huang, Guan-Min; Wu, Wen-Wei; Tseng, Tseung Yuen

    2018-03-01

    Morphology and synergistic effect of constituents are the two very important factors that greatly influence the physical, chemical and electrochemical properties of a composite material. In the present work, we report the enhanced electrochemical performance of mesoporous NiFe2O4 and multiwall carbon nanotubes (MWCNTs) nanocomposites synthesized via hexamethylene tetramine (HMT) assisted one-pot hydrothermal approach. The synthesized cubic phase spinel NiFe2O4 nanomaterial possesses high specific surface area (148 m2g-1) with narrow mesopore size distribution. The effect of MWCNTs addition on the electrochemical performance of nanocomposite has been probed thoroughly in a normal three electrode configuration using 2 M KOH electrolyte at room temperature. Experimental results show that the addition of mere 5 mg MWCNTs into fixed NiFe2O4 precursors amount enhances the specific capacitance up to 1291 F g-1 at 1 A g-1, which is the highest reported value for NiFe2O4 nanocomposites so far. NiFe2O4/CNT nanocomposite exhibits small relaxation time constant (1.5 ms), good rate capability and capacitance retention of 81% over 500 charge-discharge cycles. This excellent performance can be assigned to high surface area, mesoporous structure of NiFe2O4 and conducting network formed by MWCNTs in the composite. Further, to evaluate the device performance of the composite, an asymmetric pseudocapacitor has been designed using NiFe2O4/CNT nanocomposite as a positive and N-doped graphene as a negative electrode material, respectively. Our designed asymmetric pseudocapacitor gives maximum energy density of 23 W h kg-1 at power density of 872 W kg-1. These promising results assert the potential of synthesized nanocomposite in the development of efficient practical high-capacitive energy storage devices.

  16. Optimization of NiFe2O4/rGO composite electrode for lithium-ion batteries

    Science.gov (United States)

    Li, Chen; Wang, Xia; Li, Shandong; Li, Qiang; Xu, Jie; Liu, Xiaomin; Liu, Changkun; Xu, Yuanhong; Liu, Jingquan; Li, Hongliang; Guo, Peizhi; Zhao, Xiu Song

    2017-09-01

    The combination of carbon compositing and the proper choice of binders in one system offer an effective strategy for improving electrode performance for lithium ion batteries (LIBs). Here, we focus on the optimization of reduced graphene oxide content in NiFe2O4/reduced graphene oxide (abbreviated to NiFe2O4/rGO) composites and the proper choice of binders to enhance the cycling stability of the NiFe2O4 electrode. The NiFe2O4/rGO composites were fabricated by a hydrothermal-annealing method, in which the mean size of spinel NiFe2O4 nanoparticles was approximately 20 nm. When tested as anode materials for LIBs, the NiFe2O4/rGO electrodes with carboxymethylcellulose (CMC) binder exhibited excellent lithium-storage performance including high reversible capacity, good cycling durability and high-rate capability. The capacity could be retained as high as 1105 mAh g-1 at a current density of 100 mA g-1 for over 50 cycles, even cycled at higher current density of 1000 mA g-1, a capacity of 800 mAh g-1can be obtained, whereas the electrode with the polyvinylidene fluoride (PVDF) binder suffered from rapid capacity decay under the same test conditions. As a result, the NiFe2O4/rGO composites with CMC binder electrode in this work are promising as anodes for high-performance LIBs, resulting from the synergistic effect of optimal graphene content and proper choice of binder.

  17. Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment

    Energy Technology Data Exchange (ETDEWEB)

    Tuzi, Silvia, E-mail: silvia.tuzi@chalmers.se [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Lai, Haiping [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Göransson, Kenneth [Westinghouse Electric Sweden AB, SE-721 63 Västerås (Sweden); Thuvander, Mattias; Stiller, Krystyna [Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2017-04-01

    Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe{sub 2}O{sub 4} crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.

  18. Amorphous and nanocrystalline fraction calculus for the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Moya, J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina); Cremaschi, V.J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina) and Carrera del Investigador, CONICET (Argentina)]. E-mail: vcremas@fi.uba.ar; Sirkin, H.R.M. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina)

    2007-09-01

    We studied the relationship between the saturation magnetization (M {sub S}) of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy and its nanocrystalline structure. Amorphous ribbons obtained by the melt spinning technique were heat-treated for 1 h at different temperatures. The optimal treatment to obtain a homogeneous structure of Fe{sub 3}(Si,Ge) nanocrystals with a grain size of around 10 nm embedded in an amorphous matrix involved heating at 540 C for 1 h. We calculated the magnetic contribution of the nanocrystals to the heat treated alloy using a linear model and measured the M {sub S} of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} nanocrystalline and of an amorphous alloy of the same composition of the amorphous matrix: Fe{sub 58}Si{sub 0.5}Ge{sub 3.5}Cu{sub 3}Nb{sub 9}B{sub 26}. Using experimental data and theoretical calculations, we obtained the amorphous and crystalline fraction of the heat-treated ribbons.

  19. Novel multifunctional NiFe{sub 2}O{sub 4}/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hua-Yue [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Jiang, Ru, E-mail: jiangru0576@163.com [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Fu, Yong-Qian [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Li, Rong-Rong [College of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Yao, Jun; Jiang, Sheng-Tao [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China)

    2016-04-30

    Graphical abstract: - Highlights: • The NiFe{sub 2}O{sub 4} was decorated on ZnO surface by a hydrothermal method. • NiFe{sub 2}O{sub 4}/ZnO hybrids show high adsorption capacity and excellent photostability. • The main active species in dye decolorization by NiFe{sub 2}O{sub 4}/ZnO hybrids are ·OH and h{sup +}. • NiFe{sub 2}O{sub 4}/ZnO hybrids can be easily separated by an external magnet. - Abstract: Novel multifunctional NiFe{sub 2}O{sub 4}/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV–vis DRS. The adsorption and photocatalytic performance of NiFe{sub 2}O{sub 4}/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g{sup −1}) of NiFe{sub 2}O{sub 4}/ZnO hybrids is higher than those of NiFe{sub 2}O{sub 4}, ZnO and mechanically mixed NiFe{sub 2}O{sub 4}/ZnO hybrids. The removal of congo red solution (20 mg L{sup −1}) by NiFe{sub 2}O{sub 4}/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. ·OH and h{sup +} play important roles in the decolorization of congo red solution by NiFe{sub 2}O{sub 4}/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe{sub 2}O{sub 4}/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO{sub 3}{sup −} and Cl{sup −} anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe{sub 2}O{sub 4}/ZnO hybrids. Moreover, the magnetic NiFe{sub 2}O{sub 4}/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  20. Novel multifunctional NiFe_2O_4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    International Nuclear Information System (INIS)

    Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao

    2016-01-01

    Graphical abstract: - Highlights: • The NiFe_2O_4 was decorated on ZnO surface by a hydrothermal method. • NiFe_2O_4/ZnO hybrids show high adsorption capacity and excellent photostability. • The main active species in dye decolorization by NiFe_2O_4/ZnO hybrids are ·OH and h"+. • NiFe_2O_4/ZnO hybrids can be easily separated by an external magnet. - Abstract: Novel multifunctional NiFe_2O_4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV–vis DRS. The adsorption and photocatalytic performance of NiFe_2O_4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe_2O_4, NiFe_2O_4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g"−"1) of NiFe_2O_4/ZnO hybrids is higher than those of NiFe_2O_4, ZnO and mechanically mixed NiFe_2O_4/ZnO hybrids. The removal of congo red solution (20 mg L"−"1) by NiFe_2O_4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. ·OH and h"+ play important roles in the decolorization of congo red solution by NiFe_2O_4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe_2O_4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO_3"− and Cl"− anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe_2O_4/ZnO hybrids. Moreover, the magnetic NiFe_2O_4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  1. [NiFe] hydrogenase structural and functional models: new bio-inspired catalysts for hydrogen evolution

    International Nuclear Information System (INIS)

    Oudart, Y.

    2006-09-01

    Hydrogenase enzymes reversibly catalyze the oxidation and production of hydrogen in a range close to the thermodynamic potential. The [NiFe] hydrogenase active site contains an iron-cyano-carbonyl moiety linked to a nickel atom which is in an all sulphur environment. Both the active site originality and the potential development of an hydrogen economy make the synthesis of functional and structural models worthy. To take up this challenge, we have synthesised mononuclear ruthenium models and more importantly, nickel-ruthenium complexes, mimicking some structural features of the [NiFe] hydrogenase active site. Ruthenium is indeed isoelectronic to iron and some of its complexes are well-known to bear hydrides. The compounds described in this study have been well characterised and their activity in proton reduction has been successfully tested. Most of them are able to catalyze this reaction though their electrocatalytic potentials remain much more negative compared to which of platinum. The studied parameters point out the importance of the complexes electron richness, especially of the nickel environment. Furthermore, the proton reduction activity is stable for several hours at good rates. The ruthenium environment seems important for this stability. Altogether, these compounds represent the very first catalytically active [NiFe] hydrogenase models. Important additional results of this study are the synergetic behaviour of the two metals in protons reduction and the evidence of a protonation step as the limiting step of the catalytic cycle. We have also shown that a basic site close to ruthenium improves the electrocatalytic potential of the complexes. (author)

  2. Interface adjustment and exchange coupling in the IrMn/NiFe system

    Energy Technology Data Exchange (ETDEWEB)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Del Bianco, L., E-mail: lucia.delbianco@unife.it

    2017-01-01

    The exchange bias effect was investigated, in the 5–300 K temperature range, in samples of IrMn [100 Å]/NiFe [50 Å] (set A) and in samples with inverted layer-stacking sequence (set B), produced at room temperature by DC magnetron sputtering in a static magnetic field of 400 Oe. The samples of each set differ for the nominal thickness (t{sub Cu}) of a Cu spacer, grown at the interface between the antiferromagnetic and ferromagnetic layers, which was varied between 0 and 2 Å. It has been found out that the Cu insertion reduces the values of the exchange field and of the coercivity and can also affect their thermal evolution, depending on the stack configuration. Indeed, the latter also determines a peculiar variation of the exchange bias properties with time, shown and discussed with reference to the samples without Cu of the two sets. The results have been explained considering that, in this system, the exchange coupling mechanism is ruled by the glassy magnetic behavior of the IrMn spins located at the interface with the NiFe layer. Varying the stack configuration and t{sub Cu} results in a modulation of the structural and magnetic features of the interface, which ultimately affects the spins dynamics of the glassy IrMn interfacial component. - Highlights: • Exchange bias effect in IrMn/NiFe samples with interfacial Cu spacer. • A variation of exchange bias with time is observed in as-deposited samples. • Magnetic modification of the interface by varying the stack sequence and Cu thickness. • Interface adjustment affects the dynamics of interfacial IrMn spins. • The exchange bias properties can be tuned by interface adjustment.

  3. Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gräfe, Joachim, E-mail: graefe@is.mpg.de; Schütz, Gisela; Goering, Eberhard J., E-mail: goering@is.mpg.de

    2016-12-01

    Antidot lattices can be used to artificially engineer magnetic properties in thin films, however, a conclusive model that describes the coercivity enhancement in this class of magnetic nano-structures has so far not been found. We prepared Fe, Ni, and NiFe thin films and patterned each with 21 square antidot lattices with different geometric parameters and measured their hysteretic behavior. On the basis of this extensive dataset we are able to provide a model that can describe both the coercivity scaling over a wide range of geometric lattice parameters and the influence of different materials.

  4. NiFe2O4 nanoparticles decorated activated carbon nanocomposite ...

    Indian Academy of Sciences (India)

    psg

    Figure S4. Standard deviation plot and DPV response of blank voltammogram on NiFe2O4-. AC/GCE……..5 ... plot (µA µM-1). m= 0.47 µA µM-1. Sm is defined as. Sm = Sbl + kσbl. (3). Where k is a number illustrating the confidence level of the detection, usually 3 and σbl is the standard deviation of the blank (0.063 µA).

  5. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    Science.gov (United States)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  6. Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys

    Energy Technology Data Exchange (ETDEWEB)

    Granberg, F., E-mail: fredric.granberg@helsinki.fi [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Djurabekova, F. [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Levo, E.; Nordlund, K. [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland)

    2017-02-15

    Highlights: • We studied the damage buildup in equiatomic multicomponent alloys by MD simulations. • Edge dislocation mobility was lower in the studied alloys compared to elemental Ni. • Damage buildup in alloys saturated at lower levels than in elemental Ni. • Initial damage buildup is faster in alloys compared to elemental Ni. - Abstract: A new class of single phase metal alloys of equal atomic concentrations has shown very promising mechanical properties and good corrosion resistance. Moreover, a significant reduction in damage accumulation during prolonged irradiation has also been observed in these equiatomic multicomponent alloys. A comparison of elemental Ni with the two component NiFe- and the three component NiCoCr-alloy showed a substantial reduction in damage in both alloys, and an even larger difference was seen if only larger clusters were considered. One of the factors limiting the damage build-up in the alloys compared to the elemental material was seen to be dislocation mobility (Granberg et al., 2016). In this Article, we focus on a more thorough investigation of the mobility of edge dislocations in different cases of the Ni-, NiFe- and NiCoCr-samples. We find that even though the saturated amount of defects in the alloys is lower than in elemental Ni, the defect buildup in the early stages is faster in the alloys. We also find that the dislocation mobility in NiFe is lower than in Ni, at low stresses, and that the onset stress in NiFe is higher than in Ni. The same phenomenon was seen in comparison between NiFe and NiCoCr, since the three component alloy had lower dislocation mobility and higher onset stress. The dislocation velocity in elemental Ni plateaued out just under the forbidden velocity, whereas the alloys showed a more complex behaviour.

  7. Effects of interfacial Fe electronic structures on magnetic and electronic transport properties in oxide/NiFe/oxide heterostructures

    International Nuclear Information System (INIS)

    Liu, Qianqian; Chen, Xi; Zhang, Jing-Yan; Yang, Meiyin; Li, Xu-Jing; Jiang, Shao-Long; Liu, Yi-Wei; Cao, Yi; Wu, Zheng-Long; Feng, Chun; Ding, Lei; Yu, Guang-Hua

    2015-01-01

    Highlights: • The magnetic and transport properties of oxide/NiFe/oxide films were studied. • The oxide (SiO 2 , MgO and HfO 2 ) has different elemental electronegativity. • Redox reaction at different NiFe/oxide interface is dependent on the oxide layer. • Different interfacial electronic structures shown by XPS influence the properties. - Abstract: We report that the magnetic and electronic transport properties in oxide/NiFe(2 nm)/oxide film (oxide = SiO 2 , MgO or HfO 2 ) are strongly influenced by the electronic structure of NiFe/oxide interface. Magnetic measurements show that there exist magnetic dead layers in the SiO 2 sandwiched film and MgO sandwiched film, whereas there is no magnetic dead layer in the HfO 2 sandwiched film. Furthermore, in the ultrathin SiO 2 sandwiched film no magnetoresistance (MR) is detected, while in the ultrathin MgO sandwiched film and HfO 2 sandwiched film the MR ratios reach 0.35% and 0.88%, respectively. The investigation by X-ray photoelectron spectroscopy reveals that the distinct interfacial redox reactions, which are dependent on the oxide layers, lead to the variation of magnetic and transport properties in different oxide/NiFe/oxide heterostructures

  8. Interfacial mixing in double-barrier magnetic tunnel junctions with amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Kim, Y.K.

    2007-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) comprising Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer (CoFe 4/NiFeSiB 2/CoFe 4, CoFe 10, or NiFeSiB 10)/AlO x /CoFe 7/IrMn 10/Ru 60 (nm) have been examined with an emphasis given on understanding the interfacial mixing effects. The DMTJ, consisted of NiFeSiB, shows low switching field and low bias voltage dependence because the amorphous NiFeSiB has lower M S (=800 emu/cm 3 ) and offers smoother interfaces than polycrystalline CoFe. An interesting feature observed in the CoFe/NiFeSiB/CoFe sandwich free layered DMTJ is the presence of a wavy MR transfer curve at high-resistance region. Because the polycrystalline CoFe usually grows into a columnar structure, diamagnetic CoSi, paramagnetic FeSi, and/or diamagnetic CoB might have been formed during the sputter-deposition process. By employing electron energy loss spectrometry (EELS) and Auger electron spectroscopy (AES), we were able to confirm that Si and B atoms were arranged evenly in the top and bottom portions of AlO x /CoFe interfaces. This means that the interfacial mixing resulted in a distorted magnetization reversal process

  9. Magnetic properties of NiFe{sub 2}O{sub 4}/carbon nanofibers from Venezuelan petcoke

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Silva, Pedro; Molina, Wilmer; Brämer-Escamilla, Werner; Alcalá, Olgi [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Cañizales, Edgard [Área de Análisis Químico Inorgánico, PDVSA, INTEVEP, Los Teques 1070-A (Venezuela, Bolivarian Republic of)

    2015-05-01

    NiFe{sub 2}O{sub 4}/carbon nanofibers (NiFe{sub 2}O{sub 4}/CNFs) have been successfully synthesized by hydrotermal method using Venezuelan petroleum coke (petcoke) as carbon source and NiFe{sub 2}O{sub 4} as catalyst. The morphology, structural and magnetic properties of nanocomposite products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometry (VSM) and electron paramagnetic resonance (EPR). XRD analysis revealed a cubic spinel structure and ferrite phase with high crystallinity. HR-TEM reveals the presence of CNFs with diameters of 4±2 nm. At room temperature, NiFe{sub 2}O{sub 4}/CNFs show superparamagnetic behavior with a maximum magnetization of 15.35 emu/g. Our findings indicate that Venezuelan petroleum coke is suitable industrial carbon source for the growth of magnetic CNFs. - Highlights: • NiFe{sub 2}O{sub 4}/CNFs have been synthesized by hydrothermal method using petroleum coke. • Nickel ferrite nanoparticles were used as the catalyst. • HR-TEM reveals the presence of CNFs with diameters of 4±2 nm. • The size of the nanoparticles defines the diameter of the CNFs.

  10. Self-assembled NiFe{sub 2}O{sub 4}/carbon nanotubes sponge for enhanced glucose biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingchun; Zhao, Minggang, E-mail: zhaomg@ouc.edu.cn; Chen, Jing; Fan, Sisi; Liang, Jingjing; Ding, Longjiang; Chen, Shougang, E-mail: sgchen@ouc.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • Self-assembled NiFe{sub 2}O{sub 4}/CNTs sponge was prepared by ice-templating method. • The mechanism of NiFe{sub 2}O{sub 4} modified CNTs relied on π-π interactions and static cling. • The porous structure made for GO{sub x} load, electrons transport and reactants diffusion. • Double catalysis and enhanced glucose sensing were achieved with elements Ni and Fe. - Abstract: In this work, self-assembled NiFe{sub 2}O{sub 4}/carbon nanotubes (CNTs) sponge was prepared by ice-templating method. The device synergized the advantageous features of both the 3D porous nanostructure and the catalytic properties of CNTs with GOx and NiFe{sub 2}O{sub 4} nanoparticles. The porous network construction of the NiFe{sub 2}O{sub 4}/CNTs sheets offered enlarged specific surface for GOx immobilization and opened channels for facilitating the electrons transport and reactants diffusion. With the help of the abnormal-valence elements Ni and Fe, double catalysis has happened and the enhanced glucose biosensing performance has been achieved. The fabricated glucose biosensor exhibited two large linear ranges (0–3.0 and 3.2–12.4 mM) and distinct sensitivities (84.1 and 24.6 μA mM{sup −1} cm{sup −2}).

  11. Development and structural characterization of exchange-spring-like nanomagnets in (Fe,Co)-Pt bulk nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, O.; Crisan, A.D.; Mercioniu, I. [National Institute for Materials Physics, P.O. Box MG-7, 077125 Magurele, Bucharest (Romania); Nicula, R. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Vasiliu, F., E-mail: fvasiliu@infim.ro [National Institute for Materials Physics, P.O. Box MG-7, 077125 Magurele, Bucharest (Romania)

    2016-03-01

    FePt-based alloys are currently under scrutiny for their possible use as materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that may operate at higher temperatures than the classic Nd–Fe–B magnets. Within this study, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. In the as-cast FeCoPt ribbons, a three-phase structure comprising well-ordered CoFePt and CoPt L1{sub 0} phases embedded in a disordered fcc FePt matrix was evidenced by XRD, HREM and SAED. Extended transmission electron microscopy analysis demonstrates the incipient formation of ordered L1{sub 0} phases. X-ray diffraction was used to characterize the phase structure and to obtain the structural parameters of interest for L1{sub 0} ordering. In the as-cast state, the co-existence of hard magnetic CoFePt and CoPt L1{sub 0} tetragonal phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains (grain sizes from 1 to 7 nm). Following a thermal treatment of 1 h at 670 °C, the soft magnetic fcc matrix phase transforms to tetragonal L1{sub 0} phases (disorder–order transition). The resulting CoPt and CoFePt L1{sub 0} phases have grains of around 5–20 nm in size. In the as-cast state, magnetic measurements show a quite large remanence (0.75 T), close to the value of the parent L1{sub 0} FePt phase. Coercive fields of about 200 kA/m at 5 K were obtained, comparable with those reported for some FePt-based bulk alloys. Upon annealing both remanence and coercivity are increased and values of up to 254 kA/m at 300 K are obtained. The polycrystalline structure of the annealed FeCoPt samples, as well as the formation of multiple c-axis domains in different CoPt and CoFePt regions (which leads to a reduction of the magneto-crystalline anisotropy) may account for the observed coercive fields that are

  12. Consolidation of mechanically alloyed nanocrystalline Cu-Nb-ZrO{sub 2} powder by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Eymann, K., E-mail: Konrad.Eymann@tu-dresden.de [Institute of Materials Science, Technische Universitaet Dresden, 01062 Dresden (Germany); Riedl, T.; Bram, A.; Ruhnow, M.; Boucher, R.; Kirchner, A.; Kieback, B. [Institute of Materials Science, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Solid solution of Cu-Nb was achieved by mechanically alloying Cu, Nb and ZrO{sub 2}. Black-Right-Pointing-Pointer In as-milled state the Cu-Nb-ZrO{sub 2} powders show an average Cu grain size of 16 nm. Black-Right-Pointing-Pointer Mechanical and electrical properties are studied in dependence of thermal exposure. Black-Right-Pointing-Pointer Compaction at 1000 Degree-Sign C/1 min using SPS increases Cu grain size to 43 nm. Black-Right-Pointing-Pointer Bulk samples reach a maximum IACS of 16% and 98% relative density. - Abstract: This work presents the synthesis of ultra fine grained high-strength Cu-Nb-ZrO{sub 2} bulk samples via mechanical alloying and spark plasma sintering. Technologically relevant properties such as density, micro-hardness, and electrical conductivity were studied in terms of the compaction parameters, in particular the sintering temperature and holding time. An optimum process parameter combination has been found T = 950 Degree-Sign C, t = 1 min, and 65 MPa, which yield a micro-hardness of 325 HV, 97.5% relative density, and electrical conductivity of 10% IACS. The dependence of these properties on the compaction parameters is explained by analyzing the microstructure, i.e. grain size, presence and distribution of phases, and porosity, with X-ray diffraction, optical and electron microscopy as well as with an Archimedes densitometer.

  13. Study the microstructure of three and four component phases in Al-Ni-Fe-La alloys

    KAUST Repository

    Kolobylina, Natalia; Vasiliev, Alexander; Lopatin, Sergei; Presniakov, Mikhail; Bakhteeva, Natalia; Ivanova, Anna; Todorova, Elena

    2016-01-01

    in air were studied by scanning/transmission electron microscopy (STEM), energy dispersive X-ray (EDX) microanalysis and X-ray diffraction (XRD). The microstructural analyses were performed in a aberration corrected TITAN 80-300 TEM/STEM (FEI, USA

  14. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    1State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, ... 18 May 2017; accepted 1 September 2017; published online 23 March 2018 ..... Figure 7 shows the dependence of DK on the microhardness.

  15. Effects of phase transformation and interdiffusion on the exchange bias of NiFe/NiMn

    International Nuclear Information System (INIS)

    Lai, Chih-Huang; Lien, W. C.; Chen, F. R.; Kai, J. J.; Mao, S.

    2001-01-01

    The correlation between the exchange field of NiFe/NiMn and the phase transformation of NiMn was investigated. Transmission electron microscopy (TEM) dark-field images, contributed by the order phase of NiMn, were used to identify the location and volume fraction of the order phase. TEM selected area diffraction patterns showed the (110) superlattice diffraction rings of NiMn, verifying the existence of the order phase in the annealed samples. The order volume fraction can be calculated by the dark field image contributed by the (110) diffraction. The exchange field increased almost linearly with increasing order volume fraction. Energy dispersive x-ray spectroscopy attached to TEM indicated that Mn diffused into NiFe for annealing at 280 degreeC, leading to a larger coercivity and small coercivity squareness. Part of the NiMn still maintains the paramagnetic phase even after annealing at 280 degreeC. [copyright] 2001 American Institute of Physics

  16. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, S. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Moradi, M., E-mail: m.moradi@kashanu.ac.ir [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Mohseni, S.M. [Department of Physics, Shahid Beheshti University, Evin, Tehran, 19839 (Iran, Islamic Republic of)

    2016-12-15

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism. - Highlights: • Large magneto-optical response in Cu/NiFe/Cu multilayer nanostructure is achieved. • Layer thickness and sequence are studied to find large transverse Kerr signal. • Hybridization of surface plasmon excitation and cavity resonance were done.

  17. Investigation of magnetoimpedance effect on electrodeposited NiFe/Cu wire using inductance spectroscopy

    International Nuclear Information System (INIS)

    Mishra, Amaresh Chandra; Sahoo, Trilochan; Srinivas, V.; Thakur, Awalendra K.

    2011-01-01

    In this report, inductance spectroscopy (IS) has been used as a tool to investigate the thickness dependence of magnetoimpedance (MI) on electrodeposited NiFe thin films. An MI value as high as 140% has been observed under an applied magnetic field of 76 Oe at 300 kHz frequency for a film thickness of 6.8 μm. This result is in sharp contrast to earlier reports in literature showing monotonous increase in MI as a function of thickness. Maximum of MI was found at an optimum film thickness whose position varies with frequency. These reports exhibiting strong frequency dependence of MI prompted us to investigate the underlying physics using IS. The origin of MI lies in the combined effect of domain wall motion and spin rotation, which contributes to permeability. A parallel inductance and resistance (LR) circuit in series with series LR circuit model has been proposed as an equivalent electrical model to describe the property of these coated wires. The circuit elements have been linked with the phenomenon of domain wall motion and spin rotation. The experimental results obtained appear to be consistent with the proposed equivalent circuit model. -- Research Highlights: →GMI study on electrodeposited NiFe/Cu wire has been done to resolve the existing controversies. →Inductance spectroscopy has been used to evaluate the magnetic character. →The sample has been modeled as an equivalent electrical circuit. →A correlation between circuit parameters and GMI has been achieved.

  18. Moessbauer studies of superexchange interactions in NiFe sub 2 O sub 4

    CERN Document Server

    Kim, S J; Kim, C S; Lee, S W

    2000-01-01

    NiFe sub 2 O sub 4 has been studied using Moessbauer spectroscopy and X-ray diffraction. The crystal was found to have a inverse cubic spinel structure with the lattice constant a sub 0 =8.326+-0.003 A. Moessbauer spectra of NiFe sub 2 O sub 4 was obtained at various absorber temperatures from 13 K to the Neel temperature. The Moessbauer spectra consisted of two sets of six lines corresponding to Fe sup + sup 3 at the tetrahedral (A) and the octahedral (B) sites. The temperature dependence of the magnetic hyperfine fields at sup 5 sup 7 Fe nuclei at the tetrahedral (A) and the octahedral (B) sites was analyzed by the Neel theory of ferrimagnetism. The intersublattice A-O-B and intrasublattice A-O-A superexchange interactions were found to be antiferromagnetic with strengths of J sub A sub - sub B =-25.0 k sub B and J sub A sub - sub A =-4.0 K sub B , respectively, while the intrasublattice B-O-B superexchange interaction is ferromagnetic with a strength J sub B sub - sub B =4.2 k sub B.

  19. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gandhi, Hasand; Cornish, Adam J.; Moran, James J.; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2016-01-30

    Hydrogenases catalyze the reversible formation of H2 from electrons and protons with high efficiency. Understanding the relationships between H2 production, H2 uptake, and H2-H2O exchange can provide insight into the metabolism of microbial communities in which H2 is an essential component in energy cycling. In this manuscript, we used stable H isotopes (1H and 2H) to probe the isotope effects associated with three [FeFe]-hydrogenases and three [NiFe]-hydrogenases. All six hydrogenases displayed fractionation factors for H2 formation that were significantly less than 1, producing H2 that was severely depleted in 2H relative to the substrate, water. Consistent with differences in their active site structure, the fractionation factors for each class appear to cluster, with the three [NiFe]-hydrogenases (α = 0.27-0.40) generally having smaller values than the three [FeFe]-hydrogenases (α = 0.41-0.55). We also obtained isotopic fractionation factors associated with H2 uptake and H2-H2O exchange under conditions similar to those utilized for H2 production, providing us with a more complete picture of the three reactions catalyzed by hydrogenases. The fractionation factors determined in our studies can be used as signatures for different hydrogenases to probe their activity under different growth conditions and to ascertain which hydrogenases are most responsible for H2 production and/or uptake in complex microbial communities.

  20. Investigation of the magnetic properties of electrodeposited NiFe thin films

    International Nuclear Information System (INIS)

    Bakkaloglu, O. F.; Bedir, M.; Oeztas, M.; Karahan, I. H.

    2002-01-01

    Most magnetic devices used today are based on the magnetic thin film. Rapid and extensive developments in magnetic sensor / actuator and magnetic recording technology place a growing demand on the use of different thin film fabrication techniques for magnetic materials. The electroplating technique is especially interesting due to its low cost, high throughput and high quality of the deposits which are extensively used in the magnetic recording industry to deposit relatively thick permalloy layers. Much recent attention has focused on the electrodeposited NiFe thin films, which exhibit giant magneto resistive behaviour as well as anisotropic magnetoresistance properties. n this study, NiFe thin films were developed by using electrodeposition technique and their crystallinity structures were investigated by using x-ray diffractometer measurements. The magneto resistive properties of the samples were investigated by Wan der Pauw method with a home made electromagnet under the different magnetic fields. The magnetoresistance measurements of the samples were carried out in two configurations; current parallel ( longitudinal ) and perpendicular ( transverse ) to the magnetic field. In the longitudinal configuration giant magnetoresistance was observed while anisotropic magnetoresistance was detected in the other configuration

  1. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics and mechanism

    International Nuclear Information System (INIS)

    Xie, Yingying; Fang, Zhanqiang; Cheng, Wen; Tsang, Pokeung Eric; Zhao, Dongye

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are commonly used as additive flame retardants in all kinds of electronic products. PBDEs are now ubiquitous in the environment, with soil as a major sink, especially in e-waste recycling sites. This study investigated the degradation of decabromodiphenyl ether (BDE209) in a spiked soil using Ni/Fe bimetallic nanoparticles. The results indicated that Ni/Fe bimetallic nanoparticles are able to degrade BDE209 in soil at ambient temperature and the removal efficiency can reach 72% when an initial pH of 5.6 and at a Ni/Fe dosage of 0.03 g/g. A declining trend in degradation was noticed with decreasing Ni loading and increasing of initial BDE209 concentration. The degradation products of BDE209 were analyzed by GC-MS, which showed that the degradation of BDE209 was a process of stepwise debromination from nBr to (n − 1)Br. And a possible debromination pathway was proposed. At last, the degradation process was analyzed as two-step mechanism, mass transfer and reaction. This current study shows the potential ability of Ni/Fe nanoparticles to be used for removal of PBDEs in contaminated soil. - Highlights: • Ni/Fe bimetallic nanoparticles could effectively degradate BDE209 in soil. • The effects of various factors on remediation of BDE209 in soil using Ni/Fe were considered. • The degradation of BDE209 was a process of stepwise debromination from nBr to (n − 1)Br. • A possible debromination pathway and mechanism about removal of BDE209 in soil were proposed

  2. Facile synthesis, dielectric properties and electrocatalytic activities of PMMA-NiFe{sub 2}O{sub 4} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Maji, Pranabi; Choudhary, Ram Bilash, E-mail: rbcism@gmail.com

    2017-06-01

    The paper deals with the dielectric and catalytic properties of poly (methyl methacrylate)-nikel ferrite (PMMA-NiFe{sub 2}O{sub 4}) nanocomposite. The nanocomposite was prepared by using a general and facile synthesis strategy. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra confirmed the formation of PMMA-NiFe{sub 2}O{sub 4} nanocomposite. Field effect scanning electron microscopic (FESEM) and transmission electron microscopic (TEM) images revealed that NiFe{sub 2}O{sub 4} nanoparticles were uniformly distributed and were tightly adhered with PMMA matrix owing to surface modification with 3-methacryloyloxy propyl trimethoxy silane (KH-570). Thermal stability was enhanced by incorporation of NiFe{sub 2}O{sub 4} nanofillers. The nanocomposite showed high dielectric constant and low dielectric loss. The achieved dielectric and thermal property inferred the potential application of this material in energy storage and embedded electronics devices. Further, the as prepared nanocomposite also offered a remarkable electrochemical performance towards hydrogen peroxide (H{sub 2}O{sub 2}) sensing. - Highlights: • PMMA-NiFe{sub 2}O{sub 4} nanocomposite was synthesized via free radical polymerization. • The nanocomposite exhibited high value of dielectric constant (51) and tanδ (0.3). • Thermal stability of the PMMA matrix was improved by the incorporation of NiFe{sub 2}O{sub 4.} • The H{sub 2}O{sub 2} detection limit was estimated 44 μM when signal to noise (S/N) ration was 3. • The electrochemical sensitivity of H{sub 2}O{sub 2} was calculated 0.6727 μA mM{sup -1}.

  3. Investigations of the microstructural stability of wrought Ni-(Fe)-based syperalloys for steam turbine rotor application beyond 700 C; Untersuchungen der Strukturstabilitaet von Ni-(Fe)-Basislegierungen fuer Rotorwellen in Dampfturbinen mit Arbeitstemperaturen ueber 700 C

    Energy Technology Data Exchange (ETDEWEB)

    Seliga, T.

    2005-07-01

    There is a continuous trend to improve the efficiency of modern power plants with steam turbine require operating steam temperature from 700 to 720 C. For substantial parts like turbine rotors and discs this means increased requirements on the high temperature resistance, which can not longer be fulfilled by the presently used steel. As new materials for the components, which are thermo-mechanically loaded, only Ni-based superalloys are suitable for their fabrication, structure stability and thermo-mechanical characteristics. With view on creep and creep crack growth resistance as suitable candidates in the context a DFG research project wrought Ni-based superalloy Waspaloy and Ni-Fe-based alloy Inconel 706 were selected, which exhibited different hardening mechanisms. Waspaloy is a {gamma}'-hardened material with small portion of carbides on the grain boundaries. Inconel 706 is a particle hardened alloy with a very complex microstructure, it consists of {gamma}', {gamma}{sup ''}-particle, {eta}-phase und carbides. Concerning to their castability, forgeability, creep and creep crack growth and microstructural stability these candidate materials have been investigated and modelled. The knowledge about their long time stability of the microstructure, castability, forgeability and mechanical properties leads to the two new modification (Waspaloy{yields}DT750 and Inconel 706{yields}DT706). The modification of the Waspaloy to DT 750 served better castability (elimination of the Freckle formation). An improvement of the long-term stability of the microstructure was not necessary, by a changed heat treatment was reached a homogeneous, monomodale {gamma}'-particle distribution. The modification of Inconel 706 to DT 706 served to stabilize the {gamma}'-phase and to reduce of the {gamma}{sup ''} phase without suppressing the cellular {eta}-phase colonies on the grain boundaries. This work presents the test results for the structural

  4. Anomalous grain growth in nanocrystalline Fe73.5Cu1Nb3Su13.5B9 alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1997-01-01

    The grain growth of the FeSi phase during the crystallization process of the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy was studied using transmission electron microscopy and x-ray diffractometry. An anomalous grain growth behaviour of the FeSi phase in the samples annealed in temperature range from 743...... to 823 K for one hour was observed, i.e. the grain size of the FeSi phase slightly decreases when the annealing temperature increases from 743 K ot 823 K. The mechanism of the anomalous grain growth may be due to the different nucleation and volume diffusion rates in the samples anneales at low and high...

  5. Effect of nanocrystalline surface of substrate on microstructure and ...

    Indian Academy of Sciences (India)

    surface layers or bulk nanocrystalline metals and alloys more effectively. ... severe plastic deformation on surface layers of bulk met- als at high strains and strain rates. .... scanning electron microscopy (SEM) (Zeiss, model: Sigma. VP), energy ...

  6. Microstructure, AC impedance and DC electrical conductivity characteristics of NiFe2-xGdxO4 (x = 0, 0.05 and 0.075

    Directory of Open Access Journals (Sweden)

    K. Kamala Bharathi

    2012-03-01

    Full Text Available The structure and electrical characteristics of Gd doped Ni ferrite materials, namely NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4, are reported to demonstrate their improved electrical properties compared to that of pure NiFe2O4. NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds crystallize in the cubic inverse spinel phase with a very small amount of GdFeO3 additional phase while pure NiFe2O4 crystallize in inverse spinel phase without any impurity phase. The back scattered electron imaging analysis indicate the primary and secondary formation in NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds. Atomic force microscopy measurements indicate that the bulk grains are ∼2-5 micron size while the grain boundaries are thin compared to bulk grains. Impedance spectroscopic analysis at different temperature indicates the different relaxation mechanisms and their variation with temperature, bulk grain and grain-boundary contributions to the electrical conductivity (Rg and capacitance (Cg of these materials. The conductivity in pure NiFeO4 is found to be predominantly due to intrinsic bulk contribution (Rg=213 kΩ and Cg=4.5 x 10-8 F. In the case of NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds, grain and grain-boundary contributions to the conductivity are clearly observed. The DC conductivity values (at 300 K of NiFe2O4, NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds are found to be 1.06 x 10-7 Ω-1 cm-1, 5.73 x 10-8 Ω-1 cm-1 and 1.28 x 10-8 Ω-1 cm-1 respectively.

  7. Development of plastic elongation in nanocrystalline and amorphous Ni–W dual phase alloys by brushing technique

    International Nuclear Information System (INIS)

    Nakayama, S.; Adachi, H.; Yamasaki, T.

    2015-01-01

    Highlights: • A novel agitation technique called the brushing technique is proposed. • A homogeneous material can be obtained with the brushing technique. • The brushed material exhibits large plastic elongation with work hardening. - Abstract: A novel agitation technique, referred to as the “brushing technique” is proposed to treat the surface of a Ni–W alloy film during electrodeposition. This technique was developed to directly remove hydrogen bubbles on the film surface and to apply Ni ions to the interfacial layer with the substrate. The intrinsic mechanical properties of the Ni–W electrodeposits are then evaluated with respect to application. High resolution transmission electron microscopy observations revealed that both treated and untreated films have nanocrystallites of approximately 5 nm in diameter and an amorphous phase. There was a compositional difference of about. 1.4 at% W between the face side and the reverse side of the film that was not subjected to the brushing technique, whereas this difference was absent in the film subjected to the brushing technique. In addition, the brushing technique reduced the surface roughness of the film and decreased the number of defects. As a result, a large plastic strain of about. 2.9% was observed with work hardening under tensile testing

  8. Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN)2CO, biology's way to activate H2

    NARCIS (Netherlands)

    Pierik, A.J.; Roseboom, W.; Happe, R.P.; Bagley, K.A.; Albracht, S.P.J.

    1999-01-01

    Infrared-spectroscopic studies on the [NiFe]-hydrogenase of Chromatium vinosum-enriched in 15N or 13C, as well as chemical analyses, show that this enzyme contains three non-exchangeable, intrinsic, diatomic molecules as ligands to the active site, one carbon monoxide molecule and two cyanide

  9. Preparation, characterization, and antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Allafchian, Alireza, E-mail: Allafchian@cc.iut.ac.ir [Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Jalali, Seyed Amir Hossein [Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Department of Natural Resources, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of); Bahramian, Hamid; Ahmadvand, Hossein [Department of physics, Isfahan University of Technology, Isfahan 84156–83111 (Iran, Islamic Republic of)

    2016-04-15

    We have described a facile fabrication of silver deposited on the TiO{sub 2}, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2}) through a three-step procedure. A pre-synthesized NiFe{sub 2}O{sub 4} was first coated with PAMA polymer and then Ag–TiO{sub 2} was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}/Ag, AgNPs and NiFe{sub 2}O{sub 4}/PAMA. The results demonstrated that the AgNPs, when embedded in TiO{sub 2} and combined with NiFe{sub 2}O{sub 4}/PAMA, became an excellent antibacterial agent. The NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field. - Highlights: • A novel NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} magnetic nanocomposite has been prepared. • This nanocomposite displays potent antimicrobial activity. • The antibacterial effect was evaluated by the disk diffusion method. • Recyclable antibacterial activity of NiFe{sub 2}O{sub 4}/PAMA/Ag–TiO{sub 2} was studied.

  10. Ni@Fe2O3 heterodimers: controlled synthesis and magnetically recyclable catalytic application for dehalogenation reactions

    Science.gov (United States)

    Nakhjavan, Bahar; Tahir, Muhammad Nawaz; Natalio, Filipe; Panthöfer, Martin; Gao, Haitao; Dietzsch, Michael; Andre, Rute; Gasi, Teuta; Ksenofontov, Vadim; Branscheid, Robert; Kolb, Ute; Tremel, Wolfgang

    2012-07-01

    Ni@Fe2O3 heterodimer nanoparticles (NPs) were synthesized by thermal decomposition of organometallic reactants. After functionalization, these Ni@Fe2O3 heterodimers became water soluble. The pristine heterodimeric NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetic susceptibility measurements. A special advantage of the heterodimers lies in the fact that nanodomains of different composition can be used as catalysts for the removal of environmentally hazardous halogenated pollutants.Ni@Fe2O3 heterodimer nanoparticles (NPs) were synthesized by thermal decomposition of organometallic reactants. After functionalization, these Ni@Fe2O3 heterodimers became water soluble. The pristine heterodimeric NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetic susceptibility measurements. A special advantage of the heterodimers lies in the fact that nanodomains of different composition can be used as catalysts for the removal of environmentally hazardous halogenated pollutants. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr12121b

  11. Variation of magnetoimpedance of electrodeposited NiFe/Cu with deposition current density

    Science.gov (United States)

    Mishra, A. C.; Jha, A. K.

    2017-12-01

    An investigation about influence of deposition current density on electrodeposited magnetic film is reported in this paper. Ferromagnetic NiFe thin films were electrodeposited on copper wires of 100 μm diameter for various electrdepostion current densities ranging from 10 to 60 mA/cm2 maintaining equal thickness in all films. The composition of deposited film varied with deposition current density and in particular, a composition of Ni79Fe21 was achieved for a current density of 20 mA/cm2. The surface microstructure of the film deposited at the current density of 20 mA/cm2 was found to have excellent smoothness. The coercivity of the film was lowest and highest value of magnetoimpedance was measured for this film. The influence of current density on film composition and hence magnetic properties was attributed to the change of deposition mechanism.

  12. Fabrication of solenoid-type inductor with electroplated NiFe magnetic core

    International Nuclear Information System (INIS)

    Gao Xiaoyu; Cao Ying; Zhou Yong; Ding Wen; Lei Chong; Chen Jian

    2006-01-01

    Solenoid-type inductor with ultra-low profile was fabricated by MEMS (Microelectromechanical systems) technique. NiFe film was electroplated as the magnetic core, and polyimide with a low relative permittivity was used as the insulation material. In the fabrication process, UV-LIGA, dry etching, fine polishing and electroplating technique have been adopted to achieve high performance of the solenoid-type inductor. The inductor was in size of 1.5 mmx0.9 mmx0.1 mm with coil width of 20 μm and aspect ratio of 5:1. The inductance and the quality factor were 0.42-0.345 μH and 1.8-5.3 in the frequency range of 1-10 MHz, respectively

  13. Synthesis of NiFe2O4 nanoparticles for energy and environment applications

    Science.gov (United States)

    Zhang, Ying; Rimal, Gaurab; Tang, Jinke; Dai, Qilin

    2018-02-01

    Magnetic nanoparticles are of great interest due to their applications in energy and environment. In this work, we developed a chemical solution based method to synthesize NiFe2O4 (NFO) nanoparticles with different sizes and structures by organic ligands and studied their applications in magnetic electrolyte concentration cells and waste water treatment. NFO nanoparticle growth is controlled by the organic passivating ligand ratios, reaction temperatures, and reaction solution concentrations to achieve the control of NFO nanoparticle size ranging from 25 nm to 160 nm. The NFO growth mechanism is controlled by aggregation related mechanism, leading to tunable magnetic properties and concentration cell device performance. Magnetic biochar consisting of biochar/NFO composite was also obtained based on the developed method. Waste water containing Rhodamine B was tested by the synthesized magnetic biochar. We believe the method developed in this work about magnetic NFO nanoparticles and magnetic biochar will shed light on the application of magnetic nanoparticles in energy and environment.

  14. Evaluation as a catalyst in ferrispinel NiFe_2O_4 esterification and transesterification

    International Nuclear Information System (INIS)

    Pereira, Kleberson Ricardo de Oliveira; Dantas, Joelda; Costa, Ana Cristina Figueiredo de Melo; Silva, Adriano Sant'Ana; Kiminami, Ruth Herta Goldschmidt Aliaga

    2014-01-01

    The advancement of nanoscience and nanotechnology, magnetic nanoparticles ferrispinels type, have found numerous applications in biochemistry, molecular biology, biomedicine, diagnosis and heterogeneous catalysis for biodiesel production. Therefore, we propose to synthesize ferrispinel NiFe_2O_4 and evaluate its performance as a catalyst for esterification and transesterification of the methyl soybean oil. The sample was obtained through combustion reaction with production of 10 g / batch and characterized by XRD, SEM and BET. The catalytic reaction was conducted in high-pressure reactor at 180 °C for 1 hour, with a molar ratio of oil:ethanol 1:12 with 2% catalyst. The results showed the formation of ferrispinel phase, morphology composed of aggregates in the form of irregular blocks formed by pre sintered particles and low interparticle porosity. As a catalyst, the conversion values presented ferrispinel 52% and 4% in the esterification and transesterification, respectively, indicating that promising material for use in biodiesel production. (author)

  15. Structural and optical properties of NiFe2O4 synthesized via green technology

    Science.gov (United States)

    Patel, S.; Saleem, M.; Varshney, Dinesh

    2018-05-01

    The nanoparticles of NiFe2O4 were successfully synthesized via green technology using banana peel extract as the catalyst as well as the medium for reaction technique is reported. Analysis of X-ray diffraction spectrum revealed the cubic structure for the prepared spinel ferrite samples crystallized into cubic spinel structure with the space group Fd3m. The Retvield refinement was carried out which obeyed the results obtained from the XRD spectrum analysis of the sample. Raman spectrum provided confirmation for the spinel structure formation and five active Raman modes were observed. Since the optical band-gap value shows inverse response to the crystallite size, The UV-Vis spectrum study confirmed dual but reduced band-gap value.

  16. Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys

    Science.gov (United States)

    Granberg, F.; Djurabekova, F.; Levo, E.; Nordlund, K.

    2017-02-01

    A new class of single phase metal alloys of equal atomic concentrations has shown very promising mechanical properties and good corrosion resistance. Moreover, a significant reduction in damage accumulation during prolonged irradiation has also been observed in these equiatomic multicomponent alloys. A comparison of elemental Ni with the two component NiFe- and the three component NiCoCr-alloy showed a substantial reduction in damage in both alloys, and an even larger difference was seen if only larger clusters were considered. One of the factors limiting the damage build-up in the alloys compared to the elemental material was seen to be dislocation mobility (Granberg et al., 2016). In this Article, we focus on a more thorough investigation of the mobility of edge dislocations in different cases of the Ni-, NiFe- and NiCoCr-samples. We find that even though the saturated amount of defects in the alloys is lower than in elemental Ni, the defect buildup in the early stages is faster in the alloys. We also find that the dislocation mobility in NiFe is lower than in Ni, at low stresses, and that the onset stress in NiFe is higher than in Ni. The same phenomenon was seen in comparison between NiFe and NiCoCr, since the three component alloy had lower dislocation mobility and higher onset stress. The dislocation velocity in elemental Ni plateaued out just under the forbidden velocity, whereas the alloys showed a more complex behaviour.

  17. Nanostructural and magnetic studies of virtually monodispersed NiFe2O4 nanocrystals synthesized by a liquid–solid-solution assisted hydrothermal route

    International Nuclear Information System (INIS)

    Li Xinghua; Tan Guoguo; Chen Wei; Zhou Baofan; Xue Desheng; Peng Yong; Li, Fashen; Mellors, Nigel J.

    2012-01-01

    This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ∼9.5 nm virtually monodispersed nickel ferrite (NiFe 2 O 4 ) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe 2 O 4 particles at nano scale for the first time. It is found that each NiFe 2 O 4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe 2 O 4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe 2 O 4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe 2 O 4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.

  18. Influence of static and dynamic dipolar fields in bulk YIG/thin film NiFe systems probed via spin rectification effect

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Tay, Z.J. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Yakovlev, N.L. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Ong, C.K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore)

    2017-03-15

    The characteristics of the static and dynamic components of the dipolar fields originating from a bulk polycrystalline yttrium iron garnet (YIG) substrate are probed by depositing a NiFe (Permalloy) layer on it, which acts as a detector. By measuring dc voltages generated via spin rectification effect (SRE) within the NiFe layer under microwave excitation, we characterize the influence of dipolar fields from bulk YIG on the NiFe layer. It is found that the dynamic YIG dipolar fields modify the self-SRE of NiFe, driving its own rectification voltages within the NiFe layer, an effect we term as non-local SRE. This non-local SRE only occurs near the simultaneous resonance of both YIG and NiFe. On the other hand, the static dipolar field from YIG manifests itself as a negative anisotropy in the NiFe layer which shifts the latter’s ferromagnetic resonance frequency. - Highlights: • We demonstrate the quantification of both the static and dynamic components of the dipolar fields due to a YIG slab. • The detection and characterisation of such dipolar fields are important in many magnetic applications such as magnonics. • The dipolar fields can pose potential pitfalls if not properly considered in certain spin-electronics systems.

  19. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Aaron Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sarobol, Pylin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diantonio, Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  20. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  1. Effect of Ovality in Inlet Pigtail Pipe Bends Under Combined Internal Pressure and In-Plane Bending for Ni-Fe-Cr B407 Material

    Directory of Open Access Journals (Sweden)

    Ramaswami P.

    2017-09-01

    Full Text Available The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h. By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.

  2. Hydrogen Activation by Biomimetic [NiFe]-Hydrogenase Model Containing Protected Cyanide Cofactors

    Science.gov (United States)

    Manor, Brian C.; Rauchfuss, Thomas B.

    2013-01-01

    Described are experiments that allow incorporation of cyanide cofactors and hydride substrate into active site models [NiFe]-hydrogenases (H2ases). Complexes of the type (CO)2(CN)2Fe(pdt)Ni(dxpe), (dxpe = dppe, 1; dxpe = dcpe, 2) bind the Lewis acid B(C6F5)3 (BArF3) to give the adducts (CO)2(CNBArF3)2Fe(pdt)Ni(dxpe), (1(BArF3)2, 2(BArF3)2). Upon decarbonylation using amine oxides, these adducts react with H2 to give hydrido derivatives Et4N[(CO)(CNBArF3)2Fe(H)(pdt)Ni(dxpe)], (dxpe = dppe, Et4N[H3(BArF3)2]; dxpe = dcpe, Et4N[H4(BArF3)2]). Crystallographic analysis shows that Et4N[H3(BArF3)2] generally resembles the active site of the enzyme in the reduced, hydride-containing states (Ni-C/R). The Fe-H…Ni center is unsymmetrical with rFe-H = 1.51(3) and rNi-H = 1.71(3) Å. Both crystallographic and 19F NMR analysis show that the CNBArF3− ligands occupy basal and apical sites. Unlike cationic Ni-Fe hydrides, [H3(BArF3)2]− and [H4(BArF3)2]− oxidize at mild potentials, near the Fc+/0 couple. Electrochemical measurements indicate that in the presence of base, [H3(BArF3)2]− catalyzes the oxidation of H2. NMR evidence indicates dihydrogen bonding between these anionic hydrides and ammonium salts, which is relevant to the mechanism of hydrogenogenesis. In the case of Et4N[H3(BArF3)2], strong acids such as HCl induce H2 release to give the chloride Et4N[(CO)(CNBArF3)2Fe(pdt)(Cl)Ni(dppe)]. PMID:23899049

  3. Synthesis of NiFe2O4 with PEG as Template Via Hydrothermal Method%PEG为软模板水热法合成NiFe2O4

    Institute of Scientific and Technical Information of China (English)

    张俊玲; 杨巧珍; 王晶; 滕红霞

    2012-01-01

    以聚乙二醇(PEG)为软模板,采用水热法合成了尖晶石型NiFe2O4纳米晶,考察了PEG分子量对样品的影响,并对样品进行了X射线衍射,振动样品磁强计,扫描电镜,低温氮吸脱附和原子发射光谱表征.结果表明合成的NiFe2O4纳米晶具有尖晶石结构且粒度分布较为均匀.以PEG-400为软模板水热合成的样品粒度小、比表面积较大、饱和磁化强度较高;PEG-1500合成的样品粒度稍大、饱和磁化强度较高.%NiFe2O4 nanocrystals were synthesized by hydrothermal method with polyethylene glycol (PEG) as a soft template. The effect of PEG molecular weight on properties of the sample was investigated. The samples were characterized by XRD, VSM.SEM.BET and ICP. The results show that as-synthesized NiFe2O4 nanocrystals with spinel cyrstal structure and unifor-mer particle distribution. The sample synthesized with PEG-400 as soft template has small particle size , higher specific surface and saturation magnetization ; as-synthesized sample with PEG-1500 has larger particle size and higher saturation magnetization.

  4. Nanocrystalline magnetic alloys and ceramics

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    exchange anisotropy in magnetic core-shell structures where the core and the shell com- prise of a ferromagnetic metal and antiferromagnetic oxide respectively (Prados et al. 1999). A number of techniques both physical and chemical have been developed to prepare nanosized magnetic particles. In this paper, the various ...

  5. Roughness development in electrodeposited soft magnetic CoNiFe films in the presence of organic additives

    Directory of Open Access Journals (Sweden)

    STEVE RIEMER

    2003-05-01

    Full Text Available The effects of three additives, sodium lauryl sulfate (NaLS, saccharin (Sacc, and NaLS + Sacc, on roughness development during the electrodeposition of CoNiFe films were investigated. The characterization of these films by atomic force microscopy shows that the electrodeposits produced from NaLS containing solution result in a rough surface. The role of NaLS surfactant is to change the interfacial tension and clean non-polar species like hydrogen bubbles from the surface. In Sacc containing solution, the evolution of a smooth surface is controlled by adsorbed Sacc molecule at the interface. The kinetic roughening of these deposits was investigated by dynamic scaling analysis. It was demonstrated that the roughness of CoNiFe films, obtained in the presence of NaLS + Sacc additives, was also dependent on current density, roughness of substrate, and the temperature of plating bath.

  6. Electric-field tunable spin waves in PMN-PT/NiFe heterostructure: Experiment and micromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ziȩtek, Slawomir, E-mail: zietek@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Chȩciński, Jakub [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Kraków (Poland); Frankowski, Marek; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland)

    2017-04-15

    We present a comprehensive theoretical and experimental study of voltage-controlled standing spin waves resonance (SSWR) in PMN-PT/NiFe multiferroic heterostructures patterned into microstrips. A spin-diode technique was used to observe ferromagnetic resonance (FMR) mode and SSWR in NiFe strip mechanically coupled with a piezoelectric substrate. Application of an electric field to a PMN-PT creates a strain in permalloy and thus shifts the FMR and SSWR fields due to the magnetostriction effect. The experimental results are compared with micromagnetic simulations and a good agreement between them is found for dynamics of FMR and SSWR with and without electric field. Moreover, micromagnetic simulations enable us to discuss the amplitude and phase spatial distributions of FMR and SSWR modes, which are not directly observable by means of spin diode detection technique.

  7. Mechanism of magnetoresistance ratio enhancement in MgO/NiFe/MgO heterostructure by rapid thermal annealing

    Science.gov (United States)

    Zhao, Chong-Jun; Liu, Yang; Zhang, Jing-Yan; Sun, Li; Ding, Lei; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Yu, Guang-Hua

    2012-08-01

    To reveal thermal effects on the film quality/microstructure evolution and the resulted magnetoresistance (MR) ratio in MgO/NiFe/MgO heterostructures, positron annihilation spectroscopy studies have been performed. It is found that the ionic interstitials in the MgO layers recombine with the nearby vacancies at lower annealing temperatures (200-300 °C) and lead to a slow increase in sample MR. Meanwhile, vacancy defects agglomeration/removal and ordering acceleration in MgO will occur at higher annealing temperatures (450-550 °C) and the improved MgO and MgO/NiFe interfaces microstructure are responsible for the observed significant MR enhancement.

  8. Hydrogen solubility in austenite of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Zhirnova, V.V.; Mogutnov, B.M.; Tomilin, I.A.

    1981-01-01

    Hydrogen solubility in Fe-Ni-Cr alloys at 600-1000 deg C is determined. Hydrogen solubility in ternary alloys can not be predicted on the basis of the data on its solubility in binary Fe-Ni, Fe-Cr alloys. Chromium and nickel effect on hydrogen solubility in iron is insignificant in comparison with the effect of these elements on carbon or nitrogen solubility [ru

  9. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.

    Science.gov (United States)

    Louie, Mary W; Bell, Alexis T

    2013-08-21

    A detailed investigation has been carried out of the structure and electrochemical activity of electrodeposited Ni-Fe films for the oxygen evolution reaction (OER) in alkaline electrolytes. Ni-Fe films with a bulk and surface composition of 40% Fe exhibit OER activities that are roughly 2 orders of magnitude higher than that of a freshly deposited Ni film and about 3 orders of magnitude higher than that of an Fe film. The freshly deposited Ni film increases in activity by as much as 20-fold during exposure to the electrolyte (KOH); however, all films containing Fe are stable as deposited. The oxidation of Ni(OH)2 to NiOOH in Ni films occurs at potentials below the onset of the OER. Incorporation of Fe into the film increases the potential at which Ni(OH)2/NiOOH redox occurs and decreases the average oxidation state of Ni in NiOOH. The Tafel slope (40 mV dec(-1)) and reaction order in OH(-) (1) for the mixed Ni-Fe films (containing up to 95% Fe) are the same as those for aged Ni films. In situ Raman spectra acquired in 0.1 M KOH at OER potentials show two bands characteristic of NiOOH. The relative intensities of these bands vary with Fe content, indicating a change in the local environment of Ni-O. Similar changes in the relative intensities of the bands and an increase in OER activity are observed when pure Ni films are aged. These observations suggest that the OER is catalyzed by Ni in Ni-Fe films and that the presence of Fe alters the redox properties of Ni, causing a positive shift in the potential at which Ni(OH)2/NiOOH redox occurs, a decrease in the average oxidation state of the Ni sites, and a concurrent increase in the activity of Ni cations for the OER.

  10. NiFe{sub 2}O{sub 4}/activated carbon nanocomposite as magnetic material from petcoke

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brämer-Escamilla, W., E-mail: wbramer@ivic.gob.ve [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Silva, P. [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); García, J.; Del Castillo, H.; Villarroel, M. [Laboratorio de Cinética y Catálisis, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes ULA, Mérida 5101-A (Venezuela, Bolivarian Republic of); Rodriguez, J.P. [Laboratorio de Microscopia Electrónica. Instituto de Estudios Científicos y Tecnológicos IDECYT. Apartado 47925 - Caracas 1041-A (Venezuela, Bolivarian Republic of); Ramos, M.A.; Morales, R. [Instituto Zuliano de Investigaciones Tecnológicas INZIT. Apdo. Postal 331. La Cañada-Maracaibo (Venezuela, Bolivarian Republic of); Diaz, Y. [Centro de Química, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2014-06-01

    Nickel ferrite (NiFe{sub 2}O{sub 4}) was supported on activated carbon (AC) from petroleum coke (petcoke). Potassium hydroxide (KOH) was employed with petcoke to produce activated carbon. NiFe{sub 2}O{sub 4} were synthesized using PEG-Oleic acid assisted hydrothermal method. The structural and magnetic properties were determined using thermogravimetric and differential thermal analysis (TGA–DTA), X-ray diffraction (XRD), Fourier Transform Infrared (IR-FT), surface area (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD analysis revealed the cubic spinel structure and ferrite phase with high crystallinity. IR-FT studies showed that chemical modification promoted the formation of surface oxygen functionalities. Morphological investigation by SEM showed conglomerates of spherical nanoparticles with an average particle size of 72 nm and TEM showed the formation of NiFe{sub 2}O{sub 4}/carbon nanofibers. Chemical modification and activation temperature of 800 °C prior to activation dramatically increased the BET surface area of the resulting activated carbon to 842.4 m{sup 2}/g while the sulfur content was reduced from 6 to 1%. Magnetic properties of nanoparticles show strong dependence on the particle size. - Highlights: • TEM showed the formation of NiFe{sub 2}O{sub 4}/carbon nanofibers. • Nanoparticles were supported on the activated carbon from petcoke. • Activation dramatically increased the BET surface area to 842 m{sup 2}/g. • Magnetic properties show strong dependence on the particle size. • Sulphur content was reduced from 6 to 1% with the petcoke activation.

  11. Synthesis and characterization of multilayered BaTiO3/NiFe2O4 thin films

    Directory of Open Access Journals (Sweden)

    Branimir Bajac

    2013-03-01

    Full Text Available Presented research was focused on the fabrication of multiferroic thin film structures, composed of ferrielectric barium titanate perovskite phase and magnetostrictive nickel ferrite spinel phase. The applicability of different, solution based, deposition techniques (film growth from solution, dip coating and spin coating for thefabrication of multilayered BaTiO3 /NiFe2O4 thin films was investigated. It was shown that only spin coating produces films of desired nanostructure, thickness and smooth and crackfree surfaces.

  12. The fabrication of ordered arrays of exchange biased Ni/FeF2 nanostructures

    International Nuclear Information System (INIS)

    Kovylina, M; Labarta, A; Batlle, X; Erekhinsky, M; Schuller, I K; Morales, R

    2010-01-01

    The fabrication of ordered arrays of exchange biased Ni/FeF 2 nanostructures by focused ion beam lithography is reported. High quality nano-elements, with controlled removal depth and no significant re-deposition, were carved using small ion beam currents (30 pA), moderate dwell times (1 μs) and repeated passages over the same area. Two types of nanostructures were fabricated: square arrays of circular dots with diameters from 125 ± 8 to 500 ± 12 nm and periodicities ranging from 200 ± 8 to 1000 ± 12 nm, and square arrays of square antidots (207 ± 8 nm in edge length) with periodicities ranging from 300 ± 8 to 1200 ± 12 nm. The arrays were characterized using scanning ion and electron microscopy, and atomic force microscopy. The effect of the patterning on the exchange bias field (i.e., the shift in the hysteresis loop of ferromagnetic Ni due to proximity to antiferromagnetic FeF 2 ) was studied using magneto-transport measurements. These high quality nanostructures offer a unique method to address some of the open questions regarding the microscopic origin of exchange bias. This is not only of major relevance in the fabrication and miniaturization of magnetic devices but it is also one of the important proximity phenomena in nanoscience and materials science.

  13. Current induced magnetization switching in Co/Cu/Ni-Fe nanopillar with orange peel coupling

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, D.; Daniel, M. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024 (India); Sabareesan, P. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur - 613 401 (India)

    2015-07-15

    The impact of orange peel coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the switching dynamics of magnetization of the free layer governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The value of the critical current required to initiate the magnetization switching is calculated analytically by solving the LLGS equation and verified the same through numerical analysis. Results of numerical simulation of the LLGS equation using Runge-Kutta fourth order procedure shows that the presence of orange peel coupling between the spacer and the ferromagnetic layers reduces the switching time of the nanopillar device from 67 ps to 48 ps for an applied current density of 4 × 10{sup 12}Am{sup −2}. Also, the presence of orange peel coupling reduces the critical current required to initiate switching, and in this case, from 1.65 × 10{sup 12}Am{sup −2} to 1.39 × 10{sup 12}Am{sup −2}.

  14. Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films

    International Nuclear Information System (INIS)

    Silva, E F; Corrêa, M A; Chesman, C; Bohn, F; Della Pace, R D; Plá Cid, C C; Kern, P R; Carara, M; Alves Santos, O; Rodríguez-Suárez, R L; Azevedo, A; Rezende, S M

    2017-01-01

    We investigate the thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. We go beyond quasi-static measurements and focus on the dynamic magnetic response by considering three complementary techniques: the ferromagnetic resonance, magnetoimpedance and magnetic permeability measurements. We verify remarkable modifications in the magnetic anisotropy, i.e. the well-known behavior of in-plane uniaxial magnetic anisotropy systems gives place to a complex magnetic behavior as the thickness increases, and splits the films in two groups according to the magnetic properties. We identify magnetoimpedance and magnetic permeability curves with multiple resonance peaks, as well as the evolution of the ferromagnetic resonance absorption spectra, as fingerprints of strong changes of the magnetic properties associated to the vanishing of the in-plane magnetic anisotropy and to the emergence of non-homogeneous magnetization configuration, local anisotropies and out-of-plane anisotropy contribution arisen as a consequence of the non-uniformities of the stress stored in the film as the thickness is increased and/or to the columnar growth of the film. We interpret the experimental results in terms of the structural and morphological properties, quasi-static magnetic behavior, magnetic domain structure and different mechanisms governing the magnetization dynamics at distinct frequency ranges. (paper)

  15. Designed Surface Residue Substitutions in [NiFe] Hydrogenase that Improve Electron Transfer Characteristics

    Directory of Open Access Journals (Sweden)

    Isaac T. Yonemoto

    2015-01-01

    Full Text Available Photobiological hydrogen production is an attractive, carbon-neutral means to convert solar energy to hydrogen. We build on previous research improving the Alteromonas macleodii “Deep Ecotype” [NiFe] hydrogenase, and report progress towards creating an artificial electron transfer pathway to supply the hydrogenase with electrons necessary for hydrogen production. Ferredoxin is the first soluble electron transfer mediator to receive high-energy electrons from photosystem I, and bears an electron with sufficient potential to efficiently reduce protons. Thus, we engineered a hydrogenase-ferredoxin fusion that also contained several other modifications. In addition to the C-terminal ferredoxin fusion, we truncated the C-terminus of the hydrogenase small subunit, identified as the available terminus closer to the electron transfer region. We also neutralized an anionic patch surrounding the interface Fe-S cluster to improve transfer kinetics with the negatively charged ferredoxin. Initial screening showed the enzyme tolerated both truncation and charge neutralization on the small subunit ferredoxin-binding face. While the enzyme activity was relatively unchanged using the substrate methyl viologen, we observed a marked improvement from both the ferredoxin fusion and surface modification using only dithionite as an electron donor. Combining ferredoxin fusion and surface charge modification showed progressively improved activity in an in vitro assay with purified enzyme.

  16. Hydrogen evolution in [NiFe] hydrogenases and related biomimetic systems: similarities and differences.

    Science.gov (United States)

    Das, Ranjita; Neese, Frank; van Gastel, Maurice

    2016-09-21

    In this work, a detailed quantum chemical study of the mechanism of [Ni(bdt)(dppf)] (Ni(II)L) catalyzed hydrogen formation [A. Gan, T. L. Groy, P. Tarakeshwar, S. K. S. Mazinani, J. Shearer, V. Mujica and A. K. Jones, J. Am. Chem. Soc., 2015, 137, 1109-1115] following an electro-chemical-electro-chemical (ECEC) pathway is reported. The complex exclusively catalyzes the reduction of protons to molecular hydrogen. The calculations suggest that the first one-electron reduction of the [Ni(II)L] catalyst is the rate limiting step of the catalytic cycle and hence, the buildup of detectable reaction intermediates is not expected. The catalytic activity of the [Ni(II)L] complex is facilitated by the flexibility of the ligand system, which allows the ligand framework to adapt to changes in the Ni oxidation state over the course of the reaction. Additionally, a comparison is made with the catalytic activity of [NiFe] hydrogenase. It is argued that the directionality of the reversible hydrogen formation reaction is controlled by the ligand field of the nickel ion and the possibility for side-on (η(2)) binding of H2: if the ligand framework does not allow for η(2) binding of H2, as is the case for [Ni(II)L], the catalyst irreversibly reduces protons. If the ligand field allows η(2) binding of H2, the catalyst can in principle work reversibly. The conditions for η(2) binding are discussed.

  17. Cotunneling enhancement of magnetoresistance in double magnetic tunnel junctions with embedded superparamagnetic NiFe nanoparticles

    International Nuclear Information System (INIS)

    Dempsey, K.J.; Arena, D.; Hindmarch, A.T.; Wei, H.X.; Qin, Q.H.; Wen, Z.C.; Wang, W.X.; Vallejo-Fernandez, G.; Han, X.F.; Marrows, C.H.

    2010-01-01

    Temperature and bias voltage-dependent transport characteristics are presented for double magnetic tunnel junctions (DMTJs) with self-assembled NiFe nanoparticles embedded between insulating alumina barriers. The junctions with embedded nanoparticles are compared to junctions with a single barrier of comparable size and growth conditions. The embedded particles are characterized using x-ray absorption spectroscopy, transmission electron microscopy, and magnetometry techniques, showing that they are unoxidized and remain superparamagnetic to liquid helium temperatures. The tunneling magnetoresistance (TMR) for the DMTJs is lower than the control samples, however, for the DMTJs an enhancement in TMR is seen in the Coulomb blockade region. Fitting the transport data in this region supports the theory that cotunneling is the dominant electron transport process within the Coulomb blockade region, sequential tunneling being suppressed. We therefore see an enhanced TMR attributed to the change in the tunneling process due to the interplay of the Coulomb blockade and spin-dependent tunneling through superparamagnetic nanoparticles, and develop a simple model to quantify the effect, based on the fact that our nanoparticles will appear blocked when measured on femtosecond tunneling time scales.

  18. Hydrogen storage in Mg-Ni-Fe compounds prepared by melt spinning and ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Sartori, S. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Maddalena, A. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Principi, G. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy)]. E-mail: giovanni.principi@unipd.it; Lo Russo, S. [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Lazarescu, M. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Schinteie, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Kuncser, V. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Filoti, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)

    2006-05-18

    Magnesium-rich Mg-Ni-Fe intermetallic compounds have been prepared by two different routes: (a) short time ball milling of ribbons obtained by melt spinning; (b) long time ball milling of a mixture of MgH{sub 2}, Ni and Fe powders. The first type of samples displays an hydrogen desorption kinetics better than the second one. Pressure composition isotherm measurements exhibit for both type of samples two plateaux, the lower and wider corresponding to the MgH{sub 2} phase and the upper and shorter corresponding to the Mg{sub 2}NiH{sub 4} phase. The presence of the two types of hydrides is confirmed by X-ray diffraction analysis. Moessbauer spectroscopy shows that in melt spun and subsequently milled samples iron is mainly in a disordered structure and segregates after hydrogenation, while in directly milled powders remains mainly unalloyed. After multiple hydrogen absorption/desorption cycles the main part of iron is in metallic state in samples of both types, those of first type preserving better hydrogen desorption kinetics.

  19. Electrical transport and optical band gap of NiFe2Ox thin films

    Science.gov (United States)

    Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter

    2017-12-01

    We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.

  20. Breakdown of antiferromagnet order in polycrystalline NiFe/NiO bilayers probed with acoustic emission

    Science.gov (United States)

    Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.

    2017-07-01

    Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.

  1. Current induced magnetization switching in Co/Cu/Ni-Fe nanopillar with orange peel coupling

    International Nuclear Information System (INIS)

    Aravinthan, D.; Daniel, M.; Sabareesan, P.

    2015-01-01

    The impact of orange peel coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the switching dynamics of magnetization of the free layer governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The value of the critical current required to initiate the magnetization switching is calculated analytically by solving the LLGS equation and verified the same through numerical analysis. Results of numerical simulation of the LLGS equation using Runge-Kutta fourth order procedure shows that the presence of orange peel coupling between the spacer and the ferromagnetic layers reduces the switching time of the nanopillar device from 67 ps to 48 ps for an applied current density of 4 × 10 12 Am −2 . Also, the presence of orange peel coupling reduces the critical current required to initiate switching, and in this case, from 1.65 × 10 12 Am −2 to 1.39 × 10 12 Am −2

  2. Temperature dependence of the magnetostriction and the induced anisotropy in nanocrystalline FeCuNbSiB alloys, and their fluxgate properties

    DEFF Research Database (Denmark)

    Nielsen, Otto V; Petersen, Jan Raagaard

    1994-01-01

    Making use of the stress induced magnetic anisotropy in some iron-rich FeCuNbSiB nanocrystalline materials we studied the thermal dependence of their magnetostriction which becomes zero below the Curie temperature. The choice of a suitable composition and annealing temperature results in materials...... with zero magnetostriction at room temperature. Due to the low magnetostriction these materials have very promising fluxgate properties which were studied as well...

  3. Carbonized polydopamine coated single-crystalline NiFe2O4 nanooctahedrons with enhanced electrochemical performance as anode materials in a lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Xinxin; Zhang, Tong; Qu, Yue; Tian, Ge; Yue, Huijuan; Zhang, Dong; Feng, Shouhua

    2017-01-01

    Graphical abstract: NiFe 2 O 4 @ NCweresuccessfullyfabricatedviaasubsequentcarbonizationofpolydopamine.(*) A nanocomposite containing 20% mass fraction of dopamine exhibited enhanced lithium ion battery performance with high reversible cycle capacity and good rate retention performance. - Highlights: • NiFe 2 O 4 nanooctahedrons were synthesized by a facile hydrothermal process. • A phase formation mechanism was studied by time-dependent experiments. • NiFe 2 O 4 with N-doped carbon shell was fabricated via carbonization of polydopamine. • NiFe 2 O 4 @NC 20 showed the best rate capability and cycle stability. - Abstract: Combining nanostructure engineering with conductive carbonaceous material is a promising strategy to obtain high-performance lithium ion batteries (LIBs). In this work, spinel NiFe 2 O 4 nanooctahedrons were initially synthesized at a low temperature without further annealing. We investigated the phase formation mechanism by time-dependent experiments. Next, octahedral NiFe 2 O 4 with a nitrogen-doped carbon shell (NiFe 2 O 4 @NC) were successfully fabricated via a subsequent carbonization of polydopamine (PDA). We systematically varied the dopamine content in the NiFe 2 O 4 /carbon nanocomposites and found that a nanocomposite containing 20% mass fraction of dopamine exhibited enhanced lithium ion battery performance with high reversible cycle capacity and good rate retention performance compared with the pure material. Remarkably, the hybrid nanocomposite delivered a high reversible capacity of 1297 mAh g −1 even after 50 cycles at a current density of 100 mA g −1 . Additionally, a high capacity of 1204 mAh g −1 was retained at a high current density of 500 mA g −1 after 300 cycles. This improvement in electrochemical performance is attributed to the enhanced structural stability and electrical conductivity caused by the carbon layer, and is supported by TEM and EIS measurements.

  4. Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field

    International Nuclear Information System (INIS)

    Houlding, Thomas K.; Gao, Pengzhao; Degirmenci, Volkan; Tchabanenko, Kirill; Rebrov, Evgeny V.

    2015-01-01

    Highlights: • Novel NiFe 2 O 4 –TiO 2 composite magnetic catalysts have been prepared by mechanochemical synthesis. • The synthesis time of 30 min provides the highest specific absorption rate (SAR) in RF heating. • Formation of NiTiO 3 phase during calcination decreases the SAR of the catalysts. • High stability of the NiFe 2 O 4 –TiO 2 catalyst was observed in a continuous amide bond synthesis under RF heating. - Abstract: Composite NiFe 2 O 4 –TiO 2 magnetic catalysts were prepared by mechanochemical synthesis from a mixture of titania supported nickel ferrite nanoparticles and P25 titania (Evonic). The former provides fast and efficient heating under radiofrequency field, while the latter serves as an active catalyst or catalyst support. The highest heating rate was observed over a catalyst prepared for a milling time of 30 min. The catalytic activity was measured over the sulfated composite catalysts in the condensation of aniline and 3-phenylbutyric acid in a stirred tank reactor and in a continuous RF heated flow reactor in the 140–170 °C range. The product yield of 47% was obtained over the sulfated P25 titania catalyst in the flow reactor

  5. The evaluation of Young's modulus and residual stress of Cu films by NiFe/Cu bilayer film microbridge tests

    International Nuclear Information System (INIS)

    Zhou Zhimin; Zhou Yong; Cao Ying; Ding Wen; Mao Haiping

    2008-01-01

    This paper proposes a method to estimate the thickness limit for single-layer microbridge tests and also the thickness limit of one film on another film with known thickness for bilayer microbridge tests. To evaluate the mechanical properties of the Cu film, which could not be measured by single-layer microbridge tests, the NiFe single-layer film and NiFe/Cu bilayer film on silicon substrate are fabricated onto the microbridge by the MEMS technique. A load–deflection experiment is conducted upon the ceramic shaft adhered to the microbridge center by means of the XP nanoindenter system. From single-layer microbridge theory, Young's modulus and the residual stress of the NiFe film are deduced to be 192.74 ± 8.10 GPa and 287.75 ± 16.18 MPa, respectively. The data are introduced into bilayer microbridge theory and Young's modulus and the residual stress of the copper film are calculated to be 118.71 ± 6.54 GPa and 41.34 ± 4.42 MPa, respectively. The experimental results correspond well with those of nanoindentation

  6. Nickel-zinc ferrite/permalloy (Ni0.5Zn0.5Fe2O4/Ni-Fe soft magnetic nanocomposites fabricated by electro-infiltration

    Directory of Open Access Journals (Sweden)

    Xiao Wen

    2016-05-01

    Full Text Available Magnetically soft NiZn ferrite (Ni0.5Zn0.5Fe2O4 nanoparticles are embedded within a permalloy (Ni-Fe matrix via an electro-infiltration process as thin films intended for use as on-chip inductor cores in the MHz frequency regime. A layer of NiZn ferrite nanoparticles is first deposited, and then permalloy is electroplated through the voids to encapsulate the particles and form three-dimensional ferrite/alloy nanocomposites. The composites are estimated to contain 37% ferrite by volume and exhibit a relative permeability of ∼320, a saturation of ∼1.15 T, and an operational bandwidth of 93 MHz. Compared to a permalloy thin film of similar thickness, the nanocomposite exhibits 39% higher electrical resistivity and 50% higher bandwidth.

  7. Synthesis and physico-chemical property evaluation of PANI–NiFe{sub 2}O{sub 4} nanocomposite as electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, B.; Vijaya Sankar, K. [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India); Sanjeeviraja, C. [School of Physics, Alagappa University, Karaikudi 630006, Tamil Nadu (India); Kalai Selvan, R., E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India)

    2013-03-15

    Highlights: ► PANI–NiFe{sub 2}O{sub 4} composite prepared by in situ-chemical oxidative polymerization method. ► NP1 exhibits high SC (448 F/g) and energy density (50.4 Wh/kg) at 1 mA/cm{sup 2}. ► 80% of capacitance retained even after 1000 cycles at current density of 10 mA/cm{sup 2}. -- Abstract: Nanosized PANI–NiFe{sub 2}O{sub 4} composites were prepared by in situ-chemical oxidative polymerization method, whereas NiFe{sub 2}O{sub 4} was synthesized by solution combustion synthesis (SCS) technique. Structural, morphological and electrochemical properties of NiFe{sub 2}O{sub 4}, PANI and PANI–NiFe{sub 2}O{sub 4} composites were characterized by XRD, FT-IR, TGA, SEM, TEM, cyclic voltammetry, and galvanostatic charge–discharge techniques. The crystalline nature of NiFe{sub 2}O{sub 4} and PANI–NiFe{sub 2}O{sub 4} composites was elucidated by X-ray diffraction. FT-IR spectra inferred the polymerization of aniline and revealed the corresponding functional groups of PANI. Cyclic voltammetry and galvanostatic charge–discharge experiments were carried out to study the electrochemical capacitive properties. The PANI–NiFe{sub 2}O{sub 4} composites (NP1, NP2 and NP3) exhibited enhanced capacitive performance due to the increase in conducting network of PANI. The composite NP1 was provided higher SC of 448 F/g compared to PANI (292 F/g) and other PANI–NiFe{sub 2}O{sub 4} composites. For the sample NP1, maximum energy density of 50.4 Wh/kg was observed at a current density of 1 mA/cm{sup 2}. Above 80% of capacitance was maintained after 1000 cycles at a higher current density of 10 mA/cm{sup 2}. Hence, the prepared PANI–NiFe{sub 2}O{sub 4} composites can be used as suitable electrode materials for redox supercapacitors.

  8. Structural, magnetic, electrical and electrochemical properties of NiFe{sub 2}O{sub 4} synthesized by the molten salt technique

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, Baskaran [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Kalai Selvan, Ramakrishnan, E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Vinothbabu, Palanisamy [Department of Physics, Gobi Arts and Science College, Gobichettipalayam 638 453 (India); Perelshtein, Ilana [Kanbar Laboratory for Nanomaterials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Gedanken, Aharon, E-mail: gedanken@mail.biu.ac.il [Kanbar Laboratory for Nanomaterials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2011-10-17

    Highlights: {yields} The article describes the comprehensive study of molten salt synthesised NiFe{sub 2}O{sub 4}. {yields} The optimized NiFe{sub 2}O{sub 4} were further studied for their application as electrodes in redox supercapacitors and hydrogen evolving reaction (HER) using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques, respectively. {yields} The electrochemical characterization of NiFe{sub 2}O{sub 4} showed pseudocapacitive property and exhibited specific capacitance of 18.5 F g{sup -1}. {yields} It also confirmed through LSV, the prepared NiFe{sub 2}O{sub 4} has good electrocatalytic behavior compared with its individual constituents like NiO and Fe{sub 2}O{sub 3} as well as the NiFe{sub 2}O{sub 4} prepared by solid state reaction. - Abstract: Submicron-sized NiFe{sub 2}O{sub 4} particles were synthesized by the molten salt method at 900 deg. C using binary melts of a NaCl and KCl mixture that acts as a flux. The X-ray diffraction pattern confirmed the single phase, high crystalline and cubic structure of NiFe{sub 2}O{sub 4} with a Fd3m space group. The FT-IR spectra reveal the stretching vibration of octahedral complexes of Fe{sup 3+}-O{sup 2-} through the observed band around 552.3 cm{sup -1}. The SEM and TEM image had indicated the formation of submicron-sized NiFe{sub 2}O{sub 4} particles. The ferrimagnetic behavior and high saturation magnetization of 44 emu g{sup -1} was elucidated by VSM. The maximum electrical conductivity of 1.42 x 10{sup -4} S cm{sup -1} was observed at 873 K. The NiFe{sub 2}O{sub 4} showed a pseudocapacitive property in 1 M of a LiClO{sub 4} electrolyte and exhibited a specific capacitance of 18.5 F g{sup -1} at 10 mV s{sup -1}. The hydrogen evolution reaction was also studied for NiFe{sub 2}O{sub 4} in 1 M of a H{sub 2}SO{sub 4} solution.

  9. Matrix composition effects on the tensile properties of tungsten-molybdenum heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.; German, R.N.

    1990-01-01

    Tungsten-base heavy alloys are liquid-phase sintered from mixed tungsten, nickel, and iron powders. The sintered product is a composite consisting of interlaced tungsten and solidified matrix (W-Ni-Fe) phases. These alloys are most useful in applications requiring high density, strength, and toughness. The design of improved tungsten heavy alloys has been the subject of several research investigations. Much success has taken place through improved processing, but parallel compositional studies have resulted in new microstructure-property combinations. As part of these investigations, the Ni/Fe ratio has been varied, with the general conclusion that optimal strength and ductility occur with a ratio between 2 and 4. Brittle intermetallic phases can form outside of this composition range. Historically, a 7/3 Ni/Fe ratio has been selected for processing studies. Recently, others reported higher ductilities and impact energies for 90 and 93 pct W heavy alloys with the 8/2 Ni/Fe ratio. Alternatively, these alloys can be strengthened by both solid solution and grain size refinement through incorporation of molybdenum, tantalum, or rhenium. These additions are soluble in both the tungsten and matrix phases and retard solution-reprecipitation during liquid phase sintering. In this study, the alloy composition was varied in the nickel/iron ratio and molybdenum was partially substituted for tungsten. The sintered tensile properties are assessed vs these compositional variations

  10. Cathodic Electrodeposition of Ni-Mo on Semiconducting NiFe2 O4 for Photoelectrochemical Hydrogen Evolution in Alkaline Media.

    Science.gov (United States)

    Wijten, Jochem H J; Jong, Ronald P H; Mul, Guido; Weckhuysen, Bert M

    2018-04-25

    Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni-Mo layers on NiFe 2 O 4 substrates, deposited by spin coating on F:SnO 2 -glass. Analysis confirmed the formation of two separate layers, without significant reduction of NiFe 2 O 4 . Bare NiFe 2 O 4 was found to be unstable under alkaline conditions during (photo)electrochemistry. To improve the stability significantly, the deposition of a bifunctional Ni-Mo layer through a facile electrodeposition process was performed and the composite electrodes showed stable operation for at least 1 h. Moreover, photocurrents up to -2.1 mA cm -2 at -0.3 V vs. RHE were obtained for Ni-Mo/NiFe 2 O 4 under ambient conditions, showing that the new combination functions as both a stabilizing and catalytic layer for the photoelectrochemical evolution of hydrogen. The photoelectrochemical response of these composite electrodes decreased with increasing NiFe 2 O 4 layer thickness. Transient absorption spectroscopy showed that the lifetime of excited states is short and on the ns timescale. An increase in lifetime was observed for NiFe 2 O 4 of large layer thickness, likely explained by decreasing the defect density in the primary layer(s), as a result of repetitive annealing at elevated temperature. The photoelectrochemical and transient absorption spectroscopy results indicated that a short charge carrier lifetime limits the performance of Ni-Mo/NiFe 2 O 4 photocathodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Preparation, characterization and enhanced adsorption performance for Cr(VI) of mesoporous NiFe2O4 by twice pore-forming method

    International Nuclear Information System (INIS)

    Jia, Zhigang; Peng, Kuankuan; Xu, Lixin

    2012-01-01

    Magnetic mesoporous NiFe 2 O 4 with higher surface area has been prepared by the twice pore-forming method, including the calcination of the oxalate precursor and leaching of ZnO pore-forming agent. The X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and BET surface area measurement are used to evaluate the pore structural parameters and surface chemistry of the adsorbent respectively. The pore-forming mechanism is proposed based on the experimental results. The adsorption behavior of mesoporous NiFe 2 O 4 for Cr(VI) is investigated in detail. The results show that kinetic data follow a pseudo-second-order model and equilibrium data are well fitted by the Langmuir model. The maximum adsorption capacity is 43.68 mg g −1 at pH 2. The removal for Cr(VI) is mainly physisorption process derived from coulombic interaction. The as-prepared TPF-NiFe 2 O 4 is promising as sorbent for Cr(VI) removal because of its higher adsorption capacity, separation convenience and highly efficient reusability. -- Highlights: ► The increase of BET area was realized by leaching of ZnO from mesoporous ZnO/NiFe 2 O 4 . ► TPF-NiFe 2 O 4 demenstrates higher adsorption capacity for Cr(VI) in aqueous solution. ► TPF-NiFe 2 O 4 with magnetic sensitivity is promosing for Cr(VI) removal. ► The used TPF-NiFe 2 O 4 adsorbent can be recycled.

  12. A feasibility study on SnO2/NiFe2O4 nanocomposites as anodes for Li ion batteries

    International Nuclear Information System (INIS)

    Balaji, S.; Vasuki, R.; Mutharasu, D.

    2013-01-01

    Highlights: ► The morphological analysis performed has shown the existence of nanocomposite. ► Sp. capacity after 50 cycles of pure NiFe 2 O 4 , 5 and 10 wt.% SnO 2 are 450, 750 and 780 mA h/g. ► The results are higher than the theoretical capacity of graphite (374 mA h/g). ► The capacity retention is also found to increase with SnO 2 addition in the NiFe 2 O 4 . ► Charge and discharge capacities of LiMn 2 O 4 vs. 10 wt.% SnO 2 /NiFe 2 O 4 are 232 and 138 mA h/g. -- Abstract: The SnO 2 /NiFe 2 O 4 nanocomposite samples with varying concentration of SnO 2 such as 5 wt.% and 10 wt.% were synthesized via urea assisted combustion synthesis. The kinetics of the combustion reactions were studied using thermo gravimetry analysis and from which the compound formation temperature of all the samples were observed to be below 400 °C. From the morphological analysis the grain size of NiFe 2 O 4 , 5 wt.% SnO 2 /NiFe 2 O 4 and 10 wt.% SnO 2 /NiFe 2 O 4 samples were observed to be around 1.7, 2.3 and 3.5 μm. The chrono potentiometry analyses of the samples were performed against lithium metal electrode. The capacity retention was found to be higher for composite with 10 wt.% SnO 2 . The discharge capacity of 10 wt.% SnO 2 sample with respect to Li metal and LiMn 2 O 4 electrode was observed to be around 980 mA h/g and 138 mA h/g respectively

  13. A novel material Li{sub 2}NiFe{sub 2}O{sub 4}: Preparation and performance as anode of lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Keqiang, E-mail: dkeqiang@263.net [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 (China); Zhao, Jing [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 (China); Zhou, Jinming, E-mail: zhoujm@iccas.ac.cn [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 (China); Zhao, Yongbo; Chen, Yuying; Liu, Likun [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 (China); Wang, Li [Institute of Nuclear & New Energy Technology, Beijing Key Lab of Fine Ceramics, Tsinghua University, Beijing, 100084 (China); He, Xiangming, E-mail: hexm@tsinghua.edu.cn [Institute of Nuclear & New Energy Technology, Beijing Key Lab of Fine Ceramics, Tsinghua University, Beijing, 100084 (China); Guo, Zhanhu, E-mail: zguo10@utk.edu [Integrated Composites Laboratory (ICL), Chemical and Biomolecular Engineering Department, University of Tennessee Knoxville, Knoxville, NT, 37996 (United States)

    2016-07-01

    For the first time, the preparation and characterization of a novel anode material Li{sub 2}NiFe{sub 2}O{sub 4} are reported in this work. The preparation of Li{sub 2}NiFe{sub 2}O{sub 4} is conducted under the air conditions by using a subsection calcination method. The influence of annealing periods on the properties of the resultant materials is thoroughly explored. The characteristics of the materials are mainly examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS). The results of the XRD patterns effectively demonstrate the formation of crystalline Li{sub 2}NiFe{sub 2}O{sub 4}, and the SEM images indicate that particles with octahedron crystal morphology are prepared and the 9 h-annealed sample has the smallest particle size among all the prepared samples. The results of electrochemical measurements reveal that 9 h-calcined sample delivers a high specific capacity of 203 mAh g{sup −1} after 20 cycles at a current density of 100 mA g{sup −1}. The successful preparation of Li{sub 2}NiFe{sub 2}O{sub 4} is believed to be able to trigger the research work concerning the novel group of Li{sub 2}MFe{sub 2}O{sub 4} materials. - Highlights: • A novel anode material Li{sub 2}NiFe{sub 2}O{sub 4} was prepared under the air conditions. • Li{sub 2}NiFe{sub 2}O{sub 4} showed well-defined octahedron crystal morphology. • 9 h-annealed Li{sub 2}NiFe{sub 2}O{sub 4} delivered a capacity of 203 mAh g{sup −1}.

  14. Synthesis and characterization of NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst for hydrogenation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Karaoğlu, E., E-mail: ekaraoglu@fatih.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, 34500 B. Cekmece, Istanbul (Turkey); Özel, U.; Caner, C.; Baykal, A.; Summak, M.M. [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, 34500 B. Cekmece, Istanbul (Turkey); Sözeri, H. [TUBITAK-UME, National Metrology Institute, PO Box 54, 41470 Gebze-Kocaeli (Turkey)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}–Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4} nanoparticles was prepared by sonochemically using FeCI{sub 3}·6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}–Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}–Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}–Pd MRCs showed very efficient catalytic activity and multiple usability.

  15. One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation

    Science.gov (United States)

    Chen, Hong; Yan, Junqing; Wu, Huan; Zhang, Yunxia; Liu, Shengzhong (Frank)

    2016-08-01

    Water splitting has been intensively investigated as a promising solution to resolve the future environmental and energy crises. The oxygen evolution reaction (OER) of the photo- and electric field-induced water splitting limits the development of other reactions, including hydrogen evolution reaction (HER). Fe, Ni and NiFe (hydro) oxide-based catalysts are generally acknowledged among the best candidates of OER catalysts for water splitting. Herein, we developed a one-pot simple hydrothermal process to assemble NiFe2O4 nanoparticles onto the α-Ni(OH)2 nanosheets. The first formed NiFe2O4 under high temperature and pressure environment induces and assists the α-Ni(OH)2 formation without any further additives, because the distance between the neighboring Ni atoms in the cubic NiFe2O4 is similar to that in the α-Ni(OH)2 {003} facets. We have synthesized a series of NiFe2O4/α-Ni(OH)2 compounds and find that the overpotential decreases with the increase of Ni(OH)2 content while the OER kinetics stays unchanged, suggesting that Ni(OH)2 plays a major role in overpotential while NiFe2O4 mainly affects the OER kinetics. The obtained NiFe2O4/α-Ni(OH)2 compounds is also found to be a promising co-catalyst for the photocatalytic water oxidation. In fact, it is even more active than the noble PtOx with acceptable stability for the oxygen generation.

  16. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  17. [NiFe] hydrogenase structural and functional models: new bio-inspired catalysts for hydrogen evolution; Modeles structuraux et fonctionnels du site actif des hydrogenases [NiFe]: de nouveaux catalyseurs bio-inspires pour la production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Oudart, Y

    2006-09-15

    Hydrogenase enzymes reversibly catalyze the oxidation and production of hydrogen in a range close to the thermodynamic potential. The [NiFe] hydrogenase active site contains an iron-cyano-carbonyl moiety linked to a nickel atom which is in an all sulphur environment. Both the active site originality and the potential development of an hydrogen economy make the synthesis of functional and structural models worthy. To take up this challenge, we have synthesised mononuclear ruthenium models and more importantly, nickel-ruthenium complexes, mimicking some structural features of the [NiFe] hydrogenase active site. Ruthenium is indeed isoelectronic to iron and some of its complexes are well-known to bear hydrides. The compounds described in this study have been well characterised and their activity in proton reduction has been successfully tested. Most of them are able to catalyze this reaction though their electrocatalytic potentials remain much more negative compared to which of platinum. The studied parameters point out the importance of the complexes electron richness, especially of the nickel environment. Furthermore, the proton reduction activity is stable for several hours at good rates. The ruthenium environment seems important for this stability. Altogether, these compounds represent the very first catalytically active [NiFe] hydrogenase models. Important additional results of this study are the synergetic behaviour of the two metals in protons reduction and the evidence of a protonation step as the limiting step of the catalytic cycle. We have also shown that a basic site close to ruthenium improves the electrocatalytic potential of the complexes. (author)

  18. Solubility of Carbon in Nanocrystalline -Iron

    OpenAIRE

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  19. An investigation on the hydrogen storage characteristics of the melt-spun nanocrystalline and amorphous Mg20-xLaxNi10 (x = 0, 2) hydrogen storage alloys

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huiping; Guo Shihai; Wu Zhongwang; Wang Xinlin

    2009-01-01

    Mg 2 Ni-type hydrogen storage alloys Mg 20-x La x Ni 10 (x = 0, 2) were prepared by casting and rapid quenching. The structures and morphologies of the as-cast and quenched alloys were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM). Thermal stability of the as-quenched alloys was researched by differential scanning calorimetry (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus, and their electrochemical properties were measured by a tri-electrode open cell. The results showed that the no amorphous phase formed in the as-quenched La-free alloy, but the as-quenched alloys containing La held a major amorphous phase. The quenching rate induced a light influence on the crystallization temperature of the amorphous phase, and it significantly improved the initial hydrogenation rate and the hydrogen absorption capacity of the alloys. The discharge capacity and the cycle stability of the alloys grew with the increase of the quenching rate. When the quenching rate increased from 0 (as-cast was defined at a quenching rate of 0 m s -1 ) to 30 m s -1 , the hydrogen absorption capacity of the alloys for x = 0 and 2 at 200 deg. C and 1.5 MPa in 10 min changed from 1.21 to 3.10 wt.% and from 1.26 to 2.60 wt.%, the maximum discharge capacity from 30.26 to 135.51 mAh g -1 and from 197.23 to 406.51 mAh g -1 at a current density of 20 mA g -1 , and the capacity retaining rate at 20th cycle from 36.71 to 27.06% and from 37.26 to 78.33%, respectively

  20. Structure and properties of nanosize NiFe2O4 prepared by template and precipitation methods

    Czech Academy of Sciences Publication Activity Database

    Ćosović, A.; Ćosović, B.; Žák, Tomáš; David, Bohumil; Talijan, N.

    2013-01-01

    Roč. 49, č. 3 (2013), s. 271-277 ISSN 1450-5339 R&D Projects: GA ČR(CZ) GAP108/11/1350; GA MŠk(CZ) ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z2041904 Institutional support: RVO:68081723 Keywords : nanosized NiFe2O4 * template method * precipitation route * microstructure * phase composition * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.135, year: 2013

  1. Magnetocapacidad en nanopartículas de Fe3O4 y NiFe2O4

    Directory of Open Access Journals (Sweden)

    Mira, J.

    2010-02-01

    Full Text Available We have synthesized NiFe2O4 (φ∼ 6 nm and Fe3O4 (φ∼ 30 nm magnetic nanoparticles by solvothermal synthesis; furthermore the Fe3O4 nanoparticles have been coated with a SiO2 shell of approximately 5 nm of thickness by the Stöber method. In the study of the dielectric properties as a function of the frequency, temperature and applied magnetic field, we observe a magnetocapacitive behavior (MC at room temperature and under a moderate magnetic field (H=0.5T, that is specially important in the case of the Fe3O4, nanoparticles (MC≈ 6%. On the other hand, the NiFe2O4 and Fe3O4@SiO2 samples present smaller magnetocapacitive effects: MC≈ 2% y MC≈ 1%, respectively. These MC values, that are higher than those reported in the literature for other related magnetic nanoparticles, corroborate the theoretical model proposed by Catalán in which the combination of Maxwell-Wagner effects and magnetoresistance promote the appearance of stronger magnetocapacitive effects.Hemos preparado nanopartículas magnéticas de NiFe2O4 (φ∼ 6 nm y Fe3O4 (φ∼ 30 nm mediante el método de síntesis solvotermal; además estas últimas han sido recubiertas con una capa de SiO2 de unos 5 nm de espesor mediante el método de Stöber. Al estudiar el comportamiento dieléctrico en función de la frecuencia, temperatura y campo magnético aplicado, observamos un comportamiento magnetocapacitivo (MC a temperatura ambiente y bajo un campo magnético moderado (H= 0.5 T que es especialmente importante en el caso de las nanopartículas de Fe3O4 (MC≈ 6%. Por su parte las muestras de NiFe2O4 y Fe3O4@SiO2 presentan efectos magnetocapacitivos menores: MC≈ 2% y MC≈ 1%, respectivamente. Estos valores de MC, que son considerablemente superiores a los descritos hasta el momento para otras nanopartículas magnéticas, corroboran la predicción teórica de Catalán de que la combinación de efecto Maxwell-Wagner con efectos magnetorresitivos potencian la aparición de fen

  2. Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases.

    Science.gov (United States)

    Bruschi, Maurizio; Tiberti, Matteo; Guerra, Alessandro; De Gioia, Luca

    2014-02-05

    A comparative analysis of a series of DFT models of [NiFe]-hydrogenases, ranging from minimal NiFe clusters to very large systems including both the first and second coordination sphere of the bimetallic cofactor, was carried out with the aim of unraveling which stereoelectronic properties of the active site of [NiFe]-hydrogenases are crucial for efficient H2 binding and cleavage. H2 binding to the Ni-SIa redox state is energetically favored (by 4.0 kcal mol(-1)) only when H2 binds to Ni, the NiFe metal cluster is in a low spin state, and the Ni cysteine ligands have a peculiar seesaw coordination geometry, which in the enzyme is stabilized by the protein environment. The influence of the Ni coordination geometry on the H2 binding affinity was then quantitatively evaluated and rationalized analyzing frontier molecular orbitals and populations. Several plausible reaction pathways leading to H2 cleavage were also studied. It turned out that a two-step pathway, where H2 cleavage takes place on the Ni-SIa redox state of the enzyme, is characterized by very low reaction barriers and favorable reaction energies. More importantly, the seesaw coordination geometry of Ni was found to be a key feature for facile H2 cleavage. The discovery of the crucial influence of the Ni coordination geometry on H2 binding and activation in the active site of [NiFe]-hydrogenases could be exploited in the design of novel biomimetic synthetic catalysts.

  3. SYNTHESIS OF MAGNETIC NANOPARTICLES OF TiO2-NiFe2O4: CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY ON DEGRADATION OF RHODAMINE B

    Directory of Open Access Journals (Sweden)

    Rahmayeni Rahmayeni

    2012-12-01

    Full Text Available Magnetic nanoparticles of TiO2-(xNiFe2O4 with x = 0.01, 0.1, and 0.3have been synthesized by mixture of titanium isopropoxide (TIP and nitric metal as precursors. The particles were characterized by XRD, SEM-EDX, and VSM. XRD pattern show the peaks at 2q = 25.3°, 38.4° and 47.9° which are referred as anatase phase of TiO2. Meanwhile NiFe2O4 phase was observed clearly for x = 0.3. The present of NiFe2O4 can prevent the transformation of TiO2 from anatase to rutile when the calcination temperature increased. Microstructure analyses by SEM show the homogeneous form and size of particles. The magnetic properties analysis by VSM indicates that TiO2-NiFe2O4 is paramagnetic behavior. TiO2 doped NiFe2O4 has higher photocatalytic activity than TiO2 synthesized for degradation of Rhodamine B in aqueous solution under solar light irradiation.

  4. CoCr double-layered media with NiFe and CoZrNb soft-magnetic layers (invited)

    International Nuclear Information System (INIS)

    Bernards, J.P.C.; Schrauwen, C.P.G.; Zieren, V.; Luitjens, S.B.

    1988-01-01

    The magnetic, structural, and recording properties of CoCr double-layered media are investigated. The underlayer materials NiFe (crystalline) and CoZrNb (amorphous) were combined with two different kinds of intermediate layers: Ti (crystalline) and Ge (amorphous). Applying a bias voltage during sputtering of NiFe results in a low coercivity of the NiFe layer and in a high coercivity of the CoCr layer. The structure of the NiFe layer influences the structure of the CoCr layer. A Ti layer between the NiFe and CoCr layers decreases the in-plane remanence of the CoCr layer. The coercivity of all CoZrNb layers is low, independent of the application of a bias voltage. The orientation and structure of CoCr on CoZrNb can be improved by using a Ge intermediate layer, which results in a low coercivity of the CoCr. A Ti intermediate layer increases the coercivity. Ring heads show a dependence of spike noise on the underlayer coercivity and on the applied normal force. A probe-type head shows a dependence of its output on the CoCr coercivity, which may be understood in terms of demagnetization and writing depth

  5. Round table discussion: Present and future applications of nanocrystalline magnetic materials

    International Nuclear Information System (INIS)

    Herzer, G.; Vazquez, M.; Knobel, M.; Zhukov, A.; Reininger, T.; Davies, H.A.; Groessinger, R.; Sanchez Ll, J.L.

    2005-01-01

    Examples of existing or potential applications of nanocrystalline magnetic materials, ranging from soft to hard magnetic alloys, are presented and discussed by experts in the respective fields of research and technology

  6. Stress and annealing induced changes in the Curie temperature of amorphous and nanocrystalline FeZr and FeNb based alloys

    International Nuclear Information System (INIS)

    Gorria, P.; Orue, I.; Fernandez-Gubieda, M.L.; Plazaola, F.; Zabala, N.; Barandiaran, J.M.

    1996-01-01

    The stress and annealing dependence of the Curie temperature in FeZrBCu alloys is presented. A change of about 50 /GPa has been observed. The change in amorphous matrix composition upon crystallization produces an expected increase in T C (about 200 C) which is similar to the experimentally observed increase. This behaviour is opposite to that observed in Fe-Nb based alloys. (orig.)

  7. Screening of NiFe2O4 Nanoparticles as Oxygen Carrier in Chemical Looping Hydrogen Production

    DEFF Research Database (Denmark)

    Liu, Shuai; He, Fang; Huang, Zhen

    2016-01-01

    ) methods were used to prepare NiFe2O4 oxygen carriers. Samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, as well as Barrett-Joyner-Halenda (BJH......The objective of this paper is to systematically investigate the influences of different preparation methods on the properties of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production (CLH). The solid state (SS), coprecipitation (CP), hydrothermal (HT), and sol-gel (SG...... gas (24% H2 + 24% CO + 12% CO2 + N2 balance), then reacted with steam to produce H2, and finally fully oxidized by air. The NiFe2O4 oxygen carrier prepared by the sol gel method showed the best capacity for hydrogen production and the highest recovery degree of lattice oxygen, in agreement...

  8. In-situ confined formation of NiFe layered double hydroxide quantum dots in expanded graphite for active electrocatalytic oxygen evolution

    Science.gov (United States)

    Guo, Jinxue; Li, Xiaoyan; Sun, Yanfang; Liu, Qingyun; Quan, Zhenlan; Zhang, Xiao

    2018-06-01

    Development of noble-metal-free catalysts towards highly efficient electrochemical oxygen evolution reaction (OER) is critical but challenging in the renewable energy area. Herein, we firstly embed NiFe LDHs quantum dots (QDs) into expanded graphite (NiFe LDHs/EG) via in-situ confined formation process. The interlayer spacing of EG layers acts as nanoreactors for spatially confined formation of NiFe LDHs QDs. The QDs supply huge catalytic sites for OER. The in-situ decoration endows the strong affinity between QDs with EG, thus inducing fast charge transfer. Based on the aforementioned benefits, the designed catalyst exhibits outstanding OER properties, in terms of small overpotential (220 mV required to generate 10 mA cm-2), low Tafel slope, and good durable stability, making it a promising candidate for inexpensive OER catalyst.

  9. Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting.

    Science.gov (United States)

    Chen, Qian-Qian; Hou, Chun-Chao; Wang, Chuan-Jun; Yang, Xiao; Shi, Rui; Chen, Yong

    2018-06-06

    NiFe-layered double hydroxide (NiFe LDH) is a state-of-the-art oxygen evolution reaction (OER) electrocatalyst, yet it suffers from rather poor catalytic activity for the hydrogen evolution reaction (HER) due to its extremely sluggish water dissociation kinetics, severely restricting its application in overall water splitting. Herein, we report a novel strategy to expedite the HER kinetics of NiFe LDH by an Ir4+-doping strategy to accelerate the water dissociation process (Volmer step), and thus this catalyst exhibits superior and robust catalytic activity for finally oriented overall water splitting in 1 M KOH requiring only a low initial voltage of 1.41 V delivering at 20 mA cm-2 for more than 50 h.

  10. Flexible in-plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications.

    Science.gov (United States)

    Li, La; Lou, Zheng; Han, Wei; Shen, Guozhen

    2016-08-11

    The development of wearable electronic devices in recent decades has brought new opportunities in the exploration of micro-supercapacitors as energy storage units. In this work, we report the fabrication of flexible NiFe2O4 nanofiber based in-plane micro-supercapacitors (MSCs), which can serve as energy storage receptors to drive a portable graphene pressure sensor. The obtained NiFe2O4 nanofiber electrodes exhibited a specific capacitance of 2.23 F cm(-3) at the scan rate of 100 mV s(-1), and excellent rate capability and robust cycling stability with a capacitance retention of 93.6% after 10 000 charge/discharge cycles. Moreover, the in-plane MSCs have superior flexibility and outstanding stability even after repetition of charge/discharge cycles during the convex and concave bending states. The MSCs offered a high energy density of 0.197 mWh cm(-3) and power density up to 2.07 W cm(-3). We also coupled the MSCs with a graphene pressure sensor as a micro-integrated system to implement it's pressure response function and used MATLAB to simulate this system behavior as well. The performance of the designed systems exhibited a stable pressure response, and the simulated results coincide well with the experimental data, demonstrating its feasibility in wearable electronic devices.

  11. First-principles study of oxygen evolution reaction on Co doped NiFe-layered double hydroxides

    Science.gov (United States)

    Yu, Jie; Perdew, John; Yan, Qimin

    The conversion of solar energy to renewable fuels is a grand challenge. One of the crucial steps for this energy conversion process is the discovery of efficient catalysts with lower overpotential for the oxygen evolution reaction (OER). Layered double hydroxides (LDH) with earth abundant elements such as Ni and Fe have been found as promising OER catalysts and shown to be active for water oxidation. Doping is one of the feasible ways to even lower the overpotential of host materials and breaks the linear scaling law. In this talk we'll present our study on the reaction mechanism of OER on pure and Co-doped NiFe-LDH systems in alkaline solution. We study the absorption energetics of reaction intermediate states and calculate the thermodynamic reaction energy using density functional theory with the PBE +U and the newly developed SCAN functionals. It is shown that the NiFe-LDH system with Co dopants has lower overpotential and higher activity compared with the undoped system. The improvement in activity is related to the presence of Co states in the electronic structure. The work provides a clear clue for the further improvement of the OER activity of LDH systems by chemical doping. The work was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

  12. Ring head recording on perpendicular media: Output spectra for CoCr and CoCr/NiFe media

    Science.gov (United States)

    Stubbs, D. P.; Whisler, J. W.; Moe, C. D.; Skorjanec, J.

    1985-04-01

    The recording density response for sputtered CoCr (thickness=0.5 μm) and CoCr/NiFe (t=0.25 μm/0.5 μm) as well as evaporated CoNi (t=0.12 μm) and Co surface-doped iron oxide particulate media has been measured by reading and writing with Mn-Zn ferrite heads (gap length=0.375 μm, track width=37 μm) in contact with the media. Measurements to 200 kfc/i (thousand flux changes per inch) show a gap null around 115 kfc/i. The data have been normalized by dividing out the head sensitivity to obtain the value of spacing plus transition width (d+a) for the various media. For the CoCr media this value varied from 0.075-0.088 μm; for CoNi, 0.100 μm, and for the particulate medium, 0.163 μm. In addition, testing with a larger gapped Mn-Zn ferrite head (g=2.43 μm) shows that the head fields are distorted by the soft magnetic underlayer in dual layer CoCr/NiFe samples when the gap length is large compared to the distance to the underlayer.

  13. Synthesis, characterization and magnetic properties of NiFe{sub 2−x}Ce{sub x}O{sub 4} nanoribbons by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianan; Jing, Panpan; Zhang, Xinlei; Cao, Derang; Wei, Jinwu; Pan, Lining [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Zhenlin [Analysis and researching center of Gansu province, Lanzhou 730000 (China); Wang, Jianbo [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education, Lanzhou University, Lanzhou 730000 (China); Liu, Qingfang, E-mail: liuqf@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2017-03-01

    NiFe{sub 2−x}Ce{sub x}O{sub 4} (x = 0–0.03) nanoribbons have been successfully fabricated using electrospinning technique and followed by calcining in air at 500 °C. The crystalline, morphologies and compositions of NiFe{sub 2−x}Ce{sub x}O{sub 4} nanoribbons are characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscope, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDX). The results show that the components, mean crystallite sizes and morphologies change along with the content of Ce{sup 3+}. A formation mechanism of NiFe{sub 2-x}Ce{sub x}O{sub 4} nanoribbons is proposed. The magnetic hysteresis loops of NiFe{sub 2−x}Ce{sub x}O{sub 4} nanoribbons reveals that the coercivity changes from 165 Oe to 64 Oe and saturation magnetizations change from 40.97 emu/g to 25.05 emu/g at room temperature. Morevover, the Mössbauer spectra of {sup 57}Fe in NiFe{sub 2−x}Ce{sub x}O{sub 4} nanoribbons is discussed in detail. It is believed that this work will play important role in magnetic application with the advantage of excellent magnetic properties, efficient functionalization and relatively low cost. - Highlights: • The NiFe{sub 2−x}Ce{sub x}O{sub 4} nanoribbons have been fabricated using electrospinning technique. • Ce{sup 3+} ions occupy B sites by replacing Fe{sup 3+} ions. • The coercivity changes from 165 Oe to 64 Oe. • The saturation magnetizations change from 40.97 emu/g to 25.05 emu/g.

  14. A study on electrodeposited NixFe1−x alloy films

    Indian Academy of Sciences (India)

    on the magnetic and magnetoresistance properties of NiFe alloy films are mostly focused on the ... is clear from the figure that the Ni deposit content is measured to be 42 wt% for .... grain size change, the degree of ferromagnetic coupling etc.

  15. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sasaki, T.; Meguro, S.; Asami, K.

    2004-01-01

    Tailoring active nickel alloy cathodes for hydrogen evolution in a hot concentrated hydroxide solution was attempted by electrodeposition. The carbon addition to Ni-Mo alloys decreased the nanocrystalline grain size and remarkably enhanced the activity for hydrogen evolution, changing the mechanism of hydrogen evolution. The Tafel slope of hydrogen evolution was about 35 mV per decade. This suggested that the rate-determining step is desorption of adsorbed hydrogen atoms by recombination. As was distinct from the binary Ni-Mo alloys, after open circuit immersion, the overpotential, that is, the activity of nanocrystalline Ni-Mo-C alloys for hydrogen evolution was not changed, indicating the sufficient durability in the practical electrolysis

  16. Study of total oxidation of ethanol using the perovskite-type oxides LaBO{sub 3} (B= Mn, Ni, Fe); Estudo da oxidacao total do etanol usando oxidos tipo perovskita LaBO{sub 3} (B= Mn, Ni, Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Ana Brigida [Centro Federal de Educacao Tecnologica do Espirito Santo, Vitoria, ES (Brazil). Centro de Ciencias e Tecnologias Quimicas]. E-mail: brigida@cefetes.br; Silva, Paulo Roberto Nagipe da [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias e Tecnologia; Freitas, Jair C.C. [Universidade Federal do Espirito Santo, Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Fisica; Almeida, Clara Muniz de [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Fisica

    2007-09-15

    The present work investigated the effect of coprecipitation-oxidant synthesis on the specific surface area of perovskite-type oxides LaBO{sub 3} (BMn, Ni, Fe) for total oxidation of ethanol. The perovskite-type oxides were characterized by X-ray diffraction, nitrogen adsorption (BET method), thermogravimetric analysis (TGA-DTA), TPR and X-ray photoelectron spectroscopy (XPS). Through method involving the coprecipitation-oxidant was possible to obtain catalysts with different BET specific surface areas, of 33-51 m{sup 2}/g. The results of the catalytic test confirmed that all oxides investigated in this work have specific catalytic activity for total oxidation of ethanol, though the temperatures for total conversion change for each transition metal. (author)

  17. Evaluation as a catalyst in ferrispinel NiFe{sub 2}O{sub 4} esterification and transesterification; Avaliacao do ferroespinelio NiFe{sub 2}O{sub 4} como catalisador em reacao de esterificacao e transesterificacao

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Kleberson Ricardo de Oliveira; Dantas, Joelda; Costa, Ana Cristina Figueiredo de Melo; Silva, Adriano Sant' Ana, E-mail: klebersonric@usp.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Kiminami, Ruth Herta Goldschmidt Aliaga [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    The advancement of nanoscience and nanotechnology, magnetic nanoparticles ferrispinels type, have found numerous applications in biochemistry, molecular biology, biomedicine, diagnosis and heterogeneous catalysis for biodiesel production. Therefore, we propose to synthesize ferrispinel NiFe{sub 2}O{sub 4} and evaluate its performance as a catalyst for esterification and transesterification of the methyl soybean oil. The sample was obtained through combustion reaction with production of 10 g / batch and characterized by XRD, SEM and BET. The catalytic reaction was conducted in high-pressure reactor at 180 °C for 1 hour, with a molar ratio of oil:ethanol 1:12 with 2% catalyst. The results showed the formation of ferrispinel phase, morphology composed of aggregates in the form of irregular blocks formed by pre sintered particles and low interparticle porosity. As a catalyst, the conversion values presented ferrispinel 52% and 4% in the esterification and transesterification, respectively, indicating that promising material for use in biodiesel production. (author)

  18. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    International Nuclear Information System (INIS)

    Suharyadi, Edi; Riyanto, Agus; Abraha, Kamsul

    2016-01-01

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co_6_5Ni_1_5Fe_2_0, Co_6_2Ni_1_5Fe_2_3, and Co_5_5Ni_1_5Fe_3_0 thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co_6_5Ni_1_5Fe_2_0, Co_6_2Ni_1_5Fe_2_3, and Co_5_5Ni_1_5Fe_3_0 thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending on annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.

  19. Identification of Optimum Magnetic Behavior of NanoCrystalline CmFeAl Type Heusler Alloy Powders Using Response Surface Methodology

    Science.gov (United States)

    Srivastava, Y.; Srivastava, S.; Boriwal, L.

    2016-09-01

    Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.

  20. Applications of shape memory alloys in Japan

    International Nuclear Information System (INIS)

    Asai, M.; Suzuki, Y.

    2000-01-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and other field today. (orig.)

  1. Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.

    Science.gov (United States)

    Kalms, Jacqueline; Schmidt, Andrea; Frielingsdorf, Stefan; van der Linden, Peter; von Stetten, David; Lenz, Oliver; Carpentier, Philippe; Scheerer, Patrick

    2016-04-25

    [NiFe] hydrogenases are metalloenzymes catalyzing the reversible heterolytic cleavage of hydrogen into protons and electrons. Gas tunnels make the deeply buried active site accessible to substrates and inhibitors. Understanding the architecture and function of the tunnels is pivotal to modulating the feature of O2 tolerance in a subgroup of these [NiFe] hydrogenases, as they are interesting for developments in renewable energy technologies. Here we describe the crystal structure of the O2 -tolerant membrane-bound [NiFe] hydrogenase of Ralstonia eutropha (ReMBH), using krypton-pressurized crystals. The positions of the krypton atoms allow a comprehensive description of the tunnel network within the enzyme. A detailed overview of tunnel sizes, lengths, and routes is presented from tunnel calculations. A comparison of the ReMBH tunnel characteristics with crystal structures of other O2 -tolerant and O2 -sensitive [NiFe] hydrogenases revealed considerable differences in tunnel size and quantity between the two groups, which might be related to the striking feature of O2 tolerance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Temperature dependence of exchange bias in (NiFe/IrMn)n multilayer films studied through static and dynamic techniques

    Science.gov (United States)

    Adams, Daniel J.; Khanal, Shankar; Khan, Mohammad Asif; Maksymov, Artur; Spinu, Leonard

    2018-05-01

    The in-plane temperature dependence of exchange bias was studied through both dc magnetometry and ferromagnetic resonance spectroscopy in a series of [NiFe/IrMn]n multilayer films, where n is the number of layer repetitions. Major hysteresis loops were recorded in the temperature range of 300 K to 2 K to reveal the effect of temperature on the exchange bias in the static regime while temperature-dependent continuous-wave ferromagnetic resonance for frequencies from 3 to 16 GHz was used to determine the exchange bias dynamically. Strong divergence between the values of exchange bias determined using the two different types of measurements as well as a peak in temperature dependence of the resonance linewidth were observed. These results are explained in terms of the slow-relaxer mechanism.

  3. Electrokinetic properties of PMAA functionalized NiFe2O4 nanoparticles synthesized by thermal plasma route

    Science.gov (United States)

    Bhosale, Shivaji V.; Mhaske, Pravin; Kanhe, N.; Navale, A. B.; Bhoraskar, S. V.; Mathe, V. L.; Bhatt, S. K.

    2014-04-01

    The magnetic nickel ferrite (NiFe2O4) nanoparticles with an average size of 30nm were synthesised by Transferred arc DC Thermal Plasma route. The synthesized nickel ferrite nanoparticles were characterized by TEM and FTIR techniques. The synthesized nickel ferrite nanoparticles were further functionalized with PMAA (polymethacrylic acid) by self emulsion polymerization method and subsequently were characterized by FTIR and Zeta Analyzer. The variation of zeta potential with pH was systematically studied for both PMAA functionalized (PNFO) and uncoated nickel ferrite nanoparticles (NFO). The IEP (isoelectric points) for PNFO and NFO was determined from the graph of zeta potential vs pH. It was observed that the IEP for NFO was at 7.20 and for PNFO it was 2.52. The decrease in IEP of PNFO was attributed to the COOH functional group of PMAA.

  4. Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation

    Directory of Open Access Journals (Sweden)

    A. V. Svalov

    2013-09-01

    Full Text Available FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.

  5. Microfabrication of magnetostrictive beams based on NiFe film doped with B and Mo for integrated sensor systems

    KAUST Repository

    Alfadhel, Ahmed

    2012-03-09

    This paper reports the development of integrated micro-sensors consisting of 1 -µm-thick magnetostrictive cantilevers or bridges with 500 µm in length and conducting interrogation elements. The thin films are fabricated by sputter deposition of NiFe doped with B and Mo, and the magnetic properties are enhanced by field annealing, resulting in a coercivity of 2.4 Oe. In operation, an alternating current applied to the interrogation elements magnetizes the magnetostrictive structures. The longitudinal resonant frequency is detected as an impedance change of the interrogation elements. The magnetostrictive micro-beams provide high resonant frequencies—2.95 MHz for the cantilever and 5.46 MHz for the bridge—which can be exploited to develop sensors of high sensitivity.

  6. Control of domain wall pinning by localised focused Ga + ion irradiation on Au capped NiFe nanowires

    International Nuclear Information System (INIS)

    Burn, D. M.; Atkinson, D.

    2014-01-01

    Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetization change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.

  7. A feasibility study on SnO{sub 2}/NiFe{sub 2}O{sub 4} nanocomposites as anodes for Li ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, S., E-mail: sbalaji@tce.edu [Department of Chemistry, Thiagarajar College of Engineering, Madurai 625 015 (India); Vasuki, R. [Department of Physics, Thiagarajar College of Engineering, Madurai (India); Mutharasu, D. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2013-03-25

    Highlights: ► The morphological analysis performed has shown the existence of nanocomposite. ► Sp. capacity after 50 cycles of pure NiFe{sub 2}O{sub 4}, 5 and 10 wt.% SnO{sub 2} are 450, 750 and 780 mA h/g. ► The results are higher than the theoretical capacity of graphite (374 mA h/g). ► The capacity retention is also found to increase with SnO{sub 2} addition in the NiFe{sub 2}O{sub 4}. ► Charge and discharge capacities of LiMn{sub 2}O{sub 4} vs. 10 wt.% SnO{sub 2}/NiFe{sub 2}O{sub 4} are 232 and 138 mA h/g. -- Abstract: The SnO{sub 2}/NiFe{sub 2}O{sub 4} nanocomposite samples with varying concentration of SnO{sub 2} such as 5 wt.% and 10 wt.% were synthesized via urea assisted combustion synthesis. The kinetics of the combustion reactions were studied using thermo gravimetry analysis and from which the compound formation temperature of all the samples were observed to be below 400 °C. From the morphological analysis the grain size of NiFe{sub 2}O{sub 4}, 5 wt.% SnO{sub 2}/NiFe{sub 2}O{sub 4} and 10 wt.% SnO{sub 2}/NiFe{sub 2}O{sub 4} samples were observed to be around 1.7, 2.3 and 3.5 μm. The chrono potentiometry analyses of the samples were performed against lithium metal electrode. The capacity retention was found to be higher for composite with 10 wt.% SnO{sub 2}. The discharge capacity of 10 wt.% SnO{sub 2} sample with respect to Li metal and LiMn{sub 2}O{sub 4} electrode was observed to be around 980 mA h/g and 138 mA h/g respectively.

  8. Transformation processes during annealing of Al-amorphous alloys

    International Nuclear Information System (INIS)

    Petrescu, N.; Petrescu, M.; Calin, M.; Jianu, A.D.; Fecioru, M.

    1993-01-01

    As the amorphous aluminum alloys represent the newest achievement in rapid solidification of Al-based high strength heat resistent materials, a study was undertaken on the amorphous alloys in the Al-RE-TM system, the rare-earth metal being a lanthanide mixture and the transition metal a Ni-Fe substitution in definite proportions. The decomposition on heating of the most highly alloyed amorphous alloy in the investigated series is characterized by differential thermal analysis, electron microscopy and X-ray diffraction. (orig.)

  9. Transformation processes during annealing of Al-amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, N. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Petrescu, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Calin, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Jianu, A.D. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania) IFTM-Bucharest (Romania)); Fecioru, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania) DACIA Enterprise-Bucharest (Romania))

    1993-11-01

    As the amorphous aluminum alloys represent the newest achievement in rapid solidification of Al-based high strength heat resistent materials, a study was undertaken on the amorphous alloys in the Al-RE-TM system, the rare-earth metal being a lanthanide mixture and the transition metal a Ni-Fe substitution in definite proportions. The decomposition on heating of the most highly alloyed amorphous alloy in the investigated series is characterized by differential thermal analysis, electron microscopy and X-ray diffraction. (orig.).

  10. Influence of Chloride Ion and Temperature on the Corrosion Behavior of Ni-Fe-Cr Alloy 028

    Science.gov (United States)

    Zhang, L. N.; Dong, J. X.; Szpunar, J. A.; Zhang, M. C.; Basu, R.

    Recently, the working condition of tubing systems used in oil and natural gas industries are severer than before with the increasing exploitation of acidic gas fields. The corrosion problems induced from the corrosive environment with chloride ion medium and high temperature have been much more concerned. The presence of chloride ion can accelerate the dissolution of metals. The corrosion performance is also sensitive to the operating temperature. Classic localized corrosions such as the pitting or the crevice type due to environmental temperature and chloride ion.

  11. Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    Savin, Peter, E-mail: peter.savin@urfu.ru [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Guzmán, Jorge [Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain); Lepalovskij, Vladimir [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Svalov, Andrey; Kurlyandskaya, Galina [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Vizcaya (Spain); Asenjo, Agustina [Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain); Vas’kovskiy, Vladimir [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Vazquez, Manuel [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain)

    2016-03-15

    Short (5 min) post-deposition thermal treatments under magnetic field at low temperature (up to 200 °C) performed in exchange-coupled FeNi(40 nm)/FeMn(20 nm) bilayer thin films prepared by magnetron sputtering are shown to be effective to significantly modify their exchange field (from around 40 Oe down to 27 Oe) between FeNi and FeMn layers. A similar exchange field decrease was observed for the first deposited FeNi layer of the FeNi(40 nm)/FeMn(20 nm)/FeNi(40 nm) trilayer films after the same thermal treatments. The exchange field value for the second FeNi layer was not substantially changed. The X-ray diffraction patterns indicates that such a heat treatment has no effect on the grain size and crystalline texture of the films, while atomic force microscope studies reveal an increase of the surface roughness after the treatment which is more noticeable in the case of the trilayer film. Analysis of the experimental results leads us to conclude that the variations of the exchange field after heat treatment are likely caused by a modification of interfacial roughness and/or interfacial magnetic structure, but unlikely by the changes in the microstructure and/or changes of composition of the antiferromagnetic FeMn layer. - Highlights: • FeNi/FeMn bilayers and FeNi/FeMn/FeNi trilayers were prepared by magnetron sputtering. • Post-deposition heat treatments at the temperatures below 200 °C during 5 min were made. • Annealing reduces the exchange field for the first FeNi layer in trilayers. • The exchange field value for the second FeNi layer was not substantially changed. • Exchange field changes are most likely caused by a modification of interface roughness.

  12. Characterization of carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles as a novel electrochemical sensor: Application for highly selective determination of sotalol using voltammetry

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Allafchian, Ali R.; Rezaei, B.; Mohammadzadeh, R.

    2013-01-01

    A magnetic nano‐composite of multiwall carbon nanotube, decorated with NiFe 2 O 4 nanoparticles, was synthesized with citrate sol–gel method. The multiwall carbon nanotubes decorated with NiFe 2 O 4 nanoparticles (NiFe 2 O 4 –MWCNTs) were characterized with different methods such as Fourier transform infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The new nano-composite acts as a suitable electrocatalyst for the oxidation of sotalol at a potential of 500 mV at the surface of the modified electrode. Linear sweep voltammetry exhibited two wide linear dynamic ranges of 0.5–1000 μmol L −1 sotalol with a detection limit of 0.09 μmol L −1 . The modified electrode was used as a novel electrochemical sensor for the determination of sotalol in real samples such as pharmaceutical, patient and safe human urine. - Graphical abstract: Multiwall carbon nanotube, decorated with NiFe 2 O 4 nanoparticles, was prepared using citrate sol–gel method. We characterized the new nanoparticles with different spectroscopic and voltammetric methods. The nano sensor was used as a voltammetric sensor for the determination of trace amounts of sotalol at pH 7.0. Highlights: ► We synthesized and prepared new sensor, multiwall carbon nanotubes decorated with NiFe 2 O 4 . ► Several spectroscopic and voltammetric methods were used to study its characteristics. ► The nanoparticles act as suitable electrocatalyst for the oxidation of sotalol. ► Sotalol could be measured as low as 0.09 μmol L −1 using linear sweep voltammetry.

  13. Reducing agent (NaBH{sub 4}) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe{sub 2}O{sub 4}) nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G. [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Thambidurai, M. [Luminous Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical & Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yuvakkumar, R., E-mail: yuvakkumar@gmail.com [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India)

    2017-04-15

    Nickel ferrite (Ni-Fe{sub 2}O{sub 4}) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH{sub 4}) influence on structural, morphological and magnetic properties of NiFe{sub 2}O{sub 4} nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe{sup 3+} tetrahedral A site and Ni{sup 2+} octahedral B site. The observed Raman characteristic peak at 488 and 683 cm{sup −1} were corresponded to E{sub 1} {sub g} and A{sub 1} {sub g} mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe{sub 2}O{sub 4} inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe{sup 3+} ions in site A of inverse spinel structure and Ni{sup 2+} ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH{sub 4} concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe{sub 2}O{sub 4} and increase in NaBH{sub 4} concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH{sub 4} concentration. • Further increasing NaBH{sub 4} concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe{sub 2}O{sub 4}.

  14. Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods

    International Nuclear Information System (INIS)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G.; Thambidurai, M.; Yuvakkumar, R.

    2017-01-01

    Nickel ferrite (Ni-Fe 2 O 4 ) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH 4 ) influence on structural, morphological and magnetic properties of NiFe 2 O 4 nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe 3+ tetrahedral A site and Ni 2+ octahedral B site. The observed Raman characteristic peak at 488 and 683 cm −1 were corresponded to E 1 g and A 1 g mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe 2 O 4 inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe 3+ ions in site A of inverse spinel structure and Ni 2+ ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH 4 concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe 2 O 4 and increase in NaBH 4 concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH 4 concentration. • Further increasing NaBH 4 concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe 2 O 4 .

  15. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Wen, Haiming; Zhang, Dalong; Chen, Zhen; Zheng, Baolong; Zhou, Yizhang; Lavernia, Enrique J.

    2016-01-01

    We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (∼130–700 MPa). Compared to those of the bulk coarse-grained (CG) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA.

  16. Atomistic study on the interaction of nitrogen and Mg lattice and the nitride formation in nanocrystalline Mg alloys synthesized using cryomilling process

    International Nuclear Information System (INIS)

    Nezafati, Marjan; Giri, Anit; Hofmeister, Clara; Cho, Kyu; Schneider, Matthew M.; Zhou, Le; Sohn, Yongho; Kim, Chang-Soo

    2016-01-01

    Cryomilling is a broadly applied technique to synthesize nanostructured alloys and composites through powder metallurgy (PM) processing. Understanding the interactions between liquid nitrogen and the nanostructured metal powder is important as it can potentially impact the mechanical performance of these materials. In this study, we performed a series of ab initio density functional theory (DFT) computations to examine the interactions of liquid nitrogen and Mg-based matrices and the formation of Mg-nitrides. The diffusion energy barriers of nitrogen in the Mg and/or Mg-Al alloys were systematically quantified by calculating the transition state (TS) for the displacement of nitrogen between two neighboring equivalent positions. The TS calculation results indicate that diffusion of N atoms is much easier than that of N 2  molecule in the Mg matrix. It is predicted that at least ∼0.4 eV is required to overcome the diffusion energy barrier in the Mg matrix. We also quantified the formation energy of Mg nitride in the matrix. The presence of Mg nitride was demonstrated experimentally using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). In conjunction with the DFT computations and TEM/EELS analysis, we performed analytical calculations for the strain energy introduced during cryomilling to examine the impacts of processing parameters.

  17. Some magnetic and magnetoresistive properties of RF-sputtered thin NiFe-Si films.

    Science.gov (United States)

    Vatskicheva, M.; Vatskichev, Ly.; Dimitrov, I.; Kunev, B.

    The galvanomagnetic properties and some structural peculiarities of rf-sputtered alloy films (NI80Fe20)100-xSix at 0 < x < 30 at. % were studied and compared with the corresponding properties of evaporated films of the same thickness and composition. The content of silicon increased with the increasing of the velocity of deposition and led to the amorphousation of the films. Coercivity decreased with the velocity of growth but it did not depend on the thickness and on the velocity of film deposition. The magnetoresistance ratio Dr/r of the sputtered films was about three times higher then that of the evaporated films.

  18. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  19. Effect of Ta buffer and NiFe seed layers on pulsed-DC magnetron sputtered Ir{sub 20}Mn{sub 80}/Co{sub 90}Fe{sub 10} exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Oksuezoglu, Ramis Mustafa, E-mail: rmoksuzoglu@anadolu.edu.t [University of Anadolu, Faculty of Engineering and Architecture, Department of Materials Sciences and Engineering, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Yildirim, Mustafa; Cinar, Hakan [University of Anadolu, Faculty of Engineering and Architecture, Department of Materials Sciences and Engineering, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Hildebrandt, Erwin; Alff, Lambert [Department of Materials Sciences, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt (Germany)

    2011-07-15

    A systematic investigation has been done on the correlation between texture, grain size evolution and magnetic properties in Ta/Ni{sub 81}Fe{sub 19}/Ir{sub 20}Mn{sub 80}/Co{sub 90}Fe{sub 10}/Ta exchange bias in dependence of Ta buffer and NiFe seed layer thickness in the range of 2-10 nm, deposited by pulsed DC magnetron sputtering technique. A strong dependence of <1 1 1> texture on the Ta/NiFe thicknesses was found, where the reducing and increasing texture was correlated with exchange bias field and unidirectional anisotropy energy constant at both NiFe/IrMn and IrMn/CoFe interfaces. However, a direct correlation between average grain size in IrMn and H{sub ex} and H{sub c} was not observed. L1{sub 2} phase IrMn{sub 3} could be formed by thickness optimization of Ta/NiFe layers by deposition at room temperature, for which the maximum exchange coupling parameters were achieved. We conclude finally that the coercivity is mainly influenced by texture induced interfacial effects at NiFe/IrMn/CoFe interfaces developing with Ta/NiFe thicknesses. - Research highlights: We discussed the influence of Ta/NiFe thicknesses on structure and grain size in AF layer and texture. A direct correlation between the <1 1 1> texture and exchange coupling was found. A direct relation between average grain size and H{sub ex} and H{sub c} was not observed. L1{sub 2} phase IrMn{sub 3} was formed by deposition at room temperature for Ta (5-6 nm)/NiFe (6-8 nm). We conclude that the coercivity is influenced by order/disorder at NiFe/IrMn/CoFe interfaces.

  20. Nanotextured Spikes of α-Fe2O3/NiFe2O4 Composite for Efficient Photoelectrochemical Oxidation of Water.

    Science.gov (United States)

    Hussain, Shabeeb; Tavakoli, Mohammad Mahdi; Waleed, Aashir; Virk, Umar Siddique; Yang, Shihe; Waseem, Amir; Fan, Zhiyong; Nadeem, Muhammad Arif

    2018-03-27

    We demonstrate for the first time the application of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films as anode materials for light-assisted electrolysis of water. The p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films were deposited on planar fluorinated tin oxide (FTO)-coated glass as well as on 3D array of nanospike (NSP) substrates. The effect of substrate (planar FTO and 3D-NSP) and percentage change of each component (i.e., NiFe 2 O 4 and Fe 2 O 3 ) of composite was studied on photoelectrochemical (PEC) water oxidation reaction. This work also includes the performance comparison of p-NiFe 2 O 4 /n-Fe 2 O 3 composite (planar and NSP) devices with pure hematite for PEC water oxidation. Overall, the nanostructured p-NiFe 2 O 4 /n-Fe 2 O 3 device with equal molar 1:1 ratio of NiFe 2 O 4 and Fe 2 O 3 was found to be highly efficient for PEC water oxidation as compared with pure hematite, 1:2 and 1:3 molar ratios of composite. The photocurrent density of 1:1 composite thin film on planar substrate was equal to 1.07 mA/cm 2 at 1.23 V RHE , which was 1.7 times higher current density as compared with pure hematite device (0.63 mA/cm 2 at 1.23 V RHE ). The performance of p-NiFe 2 O 4 /n-Fe 2 O 3 composites in PEC water oxidation was further enhanced by their deposition over 3D-NSP substrate. The highest photocurrent density of 2.1 mA/cm 2 at 1.23 V RHE was obtained for the 1:1 molar ratio p-NiFe 2 O 4 /n-Fe 2 O 3 composite on NSP (NF1-NSP), which was 3.3 times more photocurrent density than pure hematite. The measured applied bias photon-to-current efficiency (ABPE) value of NF1-NSP (0.206%) was found to be 1.87 times higher than that of NF1-P (0.11%) and 4.7 times higher than that of pure hematite deposited on FTO-coated glass (0.044%). The higher PEC water oxidation activity of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin film as compared with pure hematite is attributed to the Z-path scheme and better separation of electrons and holes. The increased surface area and greater light

  1. Nano-crystalline P/M aluminium for automotive applications

    International Nuclear Information System (INIS)

    Hummert, K; Schattevoy, R; Broda, M; Knappe, M; Beiss, P; Klubberg, F; Schubert, T H; Leuschner, R

    2009-01-01

    The reduction of total vehicle weight and lowering of moving masses within the engine are key elements to overcome future emission challenges of the automotive industry. Within a German BMBF funded project the melt spinning technology will be driven to a series production status. The very fast cooling condition of the melt leads to a nano-structure of the aluminium material. This results in new material properties of known alloys. The strength increases dramatically without lowered forming behaviour. With this process the freedom of designing complex alloys is very flexible. Different alloys have been investigated for several applications, where high strength at room and elevated temperatures and/or high wear resistance is required. This paper presents some results regarding the processing, microstructure and mechanical properties of a developed Al-Ni-Fe alloy. This joined research project with partners from the automotive industry as well as automotive suppliers and universities is funded by the German BMBF 'NanoMobile' Program under Project number 03X3008.

  2. Thermodynamic analysis of binary Fe{sub 85}B{sub 15} to quinary Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, A., E-mail: takeuchi@imr.tohoku.ac.jp; Zhang, Y.; Takenaka, K.; Makino, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-05-07

    Fe-based Fe{sub 85}B{sub 15}, Fe{sub 84}B{sub 15}Cu{sub 1}, Fe{sub 82}Si{sub 2}B{sub 15}Cu{sub 1}, Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, and Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} (NANOMET{sup ®}) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (B{sub s}) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermic enthalpies of the primary and secondary crystallizations (ΔH{sub x1} and ΔH{sub x2}) and their crystallization temperatures (T{sub x1} and T{sub x2}), respectively. The ratio ΔH{sub x1}/ΔH{sub x2} measured by DSC experimentally tended to be extremely high for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (V{sub f}) of α-Fe tends to increase from 0.56 for the Fe{sub 85}B{sub 15} to 0.75 for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (G{sub α-Fe} and G{sub amor}) shows that a relationship G{sub α-Fe} ∼ G{sub amor} holds for the Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, whereas G{sub α-Fe} < G{sub amor} for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy at T{sub x1} and that an extremely high V{sub f} = 0.75 was achieved for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe{sub 85}Si{sub 2}B

  3. Role of Ta-spacer layer on tuning the tilt angle magnetic anisotropy of L1{sub 1}-CoPt/Ta/NiFe exchange springs

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, P., E-mail: psdrdo@gmail.com [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Talapatra, A.; Mohanty, J. [Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad 502285 (India); Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Kamat, S.V. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)

    2017-06-15

    Highlights: • Role of Ta-spacer layer in L1{sub 1}-CoPt(10 nm)/Ta//NiFe(4 nm) trilayers was investigated. • Domain size increased at the expense of magnetic phase contrast with increasing t{sub Ta}. • Tilt angle magnetization increased from 43° to 77° upon increasing t{sub Ta} (0–2.5 nm). • Micromagnetic studies confirmed the existence of tilted magnetic anisotropy. • Ta-spacer is effective in preserving competing anisotropies of CoPt and NiFe-layers. - Abstract: L1{sub 1}-CoPt/Ta/NiFe trilayers are chosen as model films for probing the role of spacer layer on tuning the tilt angle magnetization (θ{sub M}) in such exchange springs. For this purpose, a non-magnetic layer (Ta) with varying thickness (t{sub Ta}) from 0 to 2.5 nm was inserted between 10-nm thick CoPt film exhibiting strong perpendicular magnetic anisotropy (PMA) and 4-nm thick NiFe film having in-plane magnetic anisotropy (IMA). With the insertion of Ta-spacer, the magnetic hysteresis loops become more and more tilted as t{sub Ta} increases. Upon increasing the t{sub Ta} from 0 to 2.5 nm, the estimated SQR{sub ⊥} (=M{sub r⊥}/M{sub s⊥}) from the M–H loops is found to decrease moderately; while the θ{sub M} increases significantly from 43° to 77°. MFM images revealed maze-like domain patterns and the domain size tends to increase at the expense of magnetic phase contrast with increasing t{sub Ta}. Micro-magnetic simulation of tilt in the anisotropy axis with respect to the bare CoPt-layer showed a trend similar to that of those observed with the M–H loops obtained by VSM measurements. The results of present study suggest that the insertion of Ta-spacer is not only beneficial in terms of preserving the competing anisotropies such as PMA and IMA of CoPt and NiFe-layers respectively through weakened exchange coupling; but also, act as an appropriate means for realizing tunable tilted magnetic anisotropy in the L1{sub 1}-CoPt/NiFe exchange springs.

  4. Cermet anode compositions with high content alloy phase

    Science.gov (United States)

    Marschman, Steven C.; Davis, Norman C.

    1989-01-01

    Cermet electrode compositions comprising NiO-NiFe.sub.2 O.sub.4 -Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe.sub.2 O.sub.4 oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm.sup.-1 cm.sup.-1. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  5. Analysis of iron-base alloys by low-wattage glow discharge emission spectrometry

    International Nuclear Information System (INIS)

    Wagatsuma, K.; Hirokawa, K.

    1984-01-01

    Several iron-base alloys were investigated by low-wattage glow discharge emission spectrometry. The emission intensity principally depended on the sputtering parameters of constituent elements in the alloy. However, in the case of chromium, stable and firm oxides formed on the surface influencing the yield of ejected atoms. This paper discusses the relation between the sputtering parameters in Fe-Ni, Fe-Cr, and Fe-Co alloys and their relative emission intensities. Additionally, quantitative analysis was performed for some ternary iron-base alloys and commercial stainless steels with the calibration factors of binary alloy systems

  6. Nanocrystalline and ultrafine grain copper obtained by mechanical attrition

    Directory of Open Access Journals (Sweden)

    Rodolfo Rodríguez Baracaldo

    2010-01-01

    Full Text Available This article presents a method for the sample preparation and characterisation of bulk copper having grain size lower than 1 μm (ultra-fine grain and lower than 100 nm grain size (nanocrystalline. Copper is initially manufactured by a milling/alloying me- chanical method thereby obtaining a powder having a nanocrystalline structure which is then consolidated through a process of warm compaction at high pressure. Microstructural characterisation of bulk copper samples showed the evolution of grain size during all stages involved in obtaining it. The results led to determining the necessary conditions for achieving a wide range of grain sizes. Mechanical characterisation indicated an increase in microhardness to values of around 3.40 GPa for unconsolida- ted nanocrystalline powder. Compressivee strength was increased by reducing the grain size, thereby obtaining an elastic limit of 650 MPa for consolidated copper having a ~ 62 nm grain size.

  7. Morphological and structural analysis of ferrite NiFe{sub 2}O{sub 4} doped with chromium; Analise estrutural e morfologica de ferrita NiFe{sub 2}O{sub 4} dopada com cromo

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.C.F., E-mail: anacristina@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Viana, K.M.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Escola de Ciencias e Tecnologia; Miola, E.J.; Antonio, S.G.; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Paiva-Santos, C.O. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Departamento de Fisico-Quimica

    2011-07-01

    This paper reports on the effect of the substitution of Fe{sup 3+} for Cr{sup 3+} ions in the spinel lattice of the powders was investigated. Nickel ferrite powders with a NiFe{sub 2-x}Cr{sub x}O{sub 4} nominal composition (x = 0.0; 0.5; 1.0 and 1.5 mol of the chromium) were synthesized by combustion reaction using urea as fuel. The powders resulting were characterized by XRD, nitrogen adsorption by BET, SEM and Mössbauer spectroscopy ({sup 57}Fe Mössbauer spectra). The results show that the substitution of the Fe{sup 3+} for Cr{sup 3+} ions increased the crystalline degree of the phase, reduced the superficial area and consequently increased the particle size. The Mössbauer spectra of the samples also confirm the distribution of the particles size by the magnetic properties. Analyze of the spectra Mössbauer gives an estimate of the superparamagnetic and ferromagnetic particles behavior in each sample for several chromium concentrations. (author)

  8. Process for fabricating articles of tungsten-nickel-iron alloy

    Science.gov (United States)

    Northcutt, Jr., Walter G.; Snyder, Jr., William B.

    1976-01-01

    A high density W--Ni--Fe alloy of composition 85-96% by weight W and the remainder Ni and Fe in a wt. ratio of 5:5-8:2 having enhanced mechanical properties is prepared by compacting the mixed powders, sintering the compact in reducing atmosphere to near theoretical density followed by further sintering at a temperature where a liquid phase is present, vacuum annealing, and cold working to achieve high uniform hardness.

  9. Process for fabricating articles of tungsten--nickel--iron alloy

    International Nuclear Information System (INIS)

    Northcutt, W.G. Jr.; Snyder, W.B. Jr.

    1976-01-01

    A high density W--Ni--Fe alloy of composition 85 to 96 percent by weight W and the remainder Ni and Fe in a wt. ratio of 5:5 to 8:2 having enhanced mechanical properties is prepared by compacting the mixed powders, sintering the compact in reducing atmosphere to near theoretical density followed by further sintering at a temperature where a liquid phase is present, vacuum annealing, and cold working to achieve high uniform hardness. 7 claims

  10. Structure, magnetic ordering, and spin filtering efficiency of NiFe{sub 2}O{sub 4}(111) ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, S.; Moussy, J.-B., E-mail: jean-baptiste.moussy@cea.fr [CEA, IRAMIS, SPCSI, F-91191 Gif-sur-Yvette (France); Wei, P. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Gatel, C. [CEMES-CNRS, F-31055 Toulouse (France); Cezar, J. C. [ESRF, F-38043 Grenoble (France); Arrio, M. A.; Sainctavit, Ph. [IMPMC, F-75015 Paris (France); Moodera, J. S. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-05

    NiFe{sub 2}O{sub 4}(111) ultrathin films (3–5 nm) have been grown by oxygen-assisted molecular beam epitaxy and integrated as effective spin-filter barriers. Structural and magnetic characterizations have been performed in order to investigate the presence of defects that could limit the spin filtering efficiency. These analyses have revealed the full strain relaxation of the layers with a cationic order in agreement with the inverse spinel structure but also the presence of antiphase boundaries. A spin-polarization up to +25% has been directly measured by the Meservey-Tedrow technique in Pt(111)/NiFe{sub 2}O{sub 4}(111)/γ-Al{sub 2}O{sub 3}(111)/Al tunnel junctions. The unexpected positive sign and relatively small value of the spin-polarization are discussed, in comparison with predictions and previous indirect tunnelling magnetoresistance measurements.

  11. Structural characterization of Mg substituted on A/B sites in NiFe_2O_4 nanoparticles using autocombustion method

    Science.gov (United States)

    De, Manojit; Tewari, H. S.

    2017-07-01

    In the present paper, we are reporting the synthesis of pure nickel and magnesium ferrite [NiFe_2O_4, MgFe_2O_4] and magnesium-substituted nickel ferrite (Ni_{1-x}Mg_{x/y}Fe_{2-y}O_4; x=y=0.60) on A/B sites with particles size in nanometer range using autocombustion technique. In this study, it has been observed that with increase in sintering temperature, the estimated bulk density of the materials increases. The XRD patterns of the samples show the formation of single-phase materials and the lattice parameters are estimated from XRD patterns. From Raman spectra, the Raman shift of pure NiFe_2O_4 and MgFe_2O_4 are comparable with the experimental values reported in literature. The Raman spectra give five Raman active modes (A_{{1g}} + Eg + 3F_{2g}) which are expected in the spinel structure.

  12. Study on the Ni Mo alloy nano crystals

    International Nuclear Information System (INIS)

    Goncalves, Lidice A. Pereira; Pontes, Luiz Renato de Araujo

    1996-01-01

    Materials with nanocrystalline microstructures are solids that contain such a high density of defects, with the spacings between neighboring defects approaching interatomic distances. As result, nanocrystalline solids exhibit physical and chemical properties different from those usually found in normal crystalline s or amorphous materials with the same chemical composition. In this work, the nanocrystalline Ni Mo alloy was prepared by melt-spinning method. The novelly synthesized nanocrystalline Ni Mo alloy was characterized by X-ray diffraction (XRD), differential scanning calorimetry (D S C) and microscopy. The estimated average crystalline size by the Debye-Scherrer formulas was 20 nm. (author)

  13. In Situ Characterization of Ni and Ni/Fe Thin Film Electrodes for Oxygen Evolution in Alkaline Media by a Raman-Coupled Scanning Electrochemical Microscope Setup.

    Science.gov (United States)

    Steimecke, Matthias; Seiffarth, Gerda; Bron, Michael

    2017-10-17

    We present a spectroelectrochemical setup, in which Raman microscopy is combined with scanning electrochemical microscopy (SECM) in order to provide both spectroscopic and electrochemical information on the very same location of an electrode at the same time. The setup is applied to a subject of high academic and practical interest, namely, the oxygen evolution reaction at Ni and Ni/Fe electrodes. It comprises a transparent substrate electrode, onto which Ni and Ni/Fe thin films are deposited. An ultramicroelectrode (UME) is placed closely above the substrate to obtain electrochemical information, while a Raman microscope probes the same sample spot from below. To obtain information on oxygen evolution activity and structural changes, increasingly positive potentials from 0.1 up to 0.7 V vs Hg|HgO|1 M KOH were applied to the Ni/Fe-electrodes in 0.1 M KOH solution. Evolved oxygen is detected by reduction at a Pt UME, allowing for the determination of onset potentials, while the substrate current, which is recorded in parallel, is due to both overlapping oxygen evolution and the oxidation of Ni(OH) 2 to NiOOH. An optimum of 15% Fe in Ni/Fe films with respect to oxygen evolution activity was determined. At the same time, the potential-dependent formation of γ-NiOOH characterized by the Raman double band at 475 and 557 cm -1 allows for the conclusion that a certain amount of disorder introduced by Fe atoms is necessary to obtain high oxygen evolution reaction (OER) activity.

  14. Irreversibility in room temperature current–voltage characteristics of NiFe{sub 2}O{sub 4} nanoparticles: A signature of electrical memory effect

    Energy Technology Data Exchange (ETDEWEB)

    Dey, P., E-mail: pujaiitkgp2007@gmail.com [Department of Physics, Kazi Nazrul University, Asansol, W.B. 713340 (India); Debnath, Rajesh; Singh, Swati; Mandal, S.K. [Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India); Roy, J.N. [Department of Physics, Kazi Nazrul University, Asansol, W.B. 713340 (India); Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India)

    2017-01-01

    Room temperature I–V characteristics study, both in presence and absence of magnetic field (1800 Oe), has been performed on NiFe{sub 2}O{sub 4} nanoparticles, having different particle size (φ~14, 21 and 31 nm). Our experiments on these nanoparticles provide evidences for: (1) electrical irreversibility or hysteretic behaviour; (2) positive magnetoresistance and (3) magnetic field dependent electrical irreversibility or hysteresis in the sample. “Hysteretic” nature of I–V curve reveals the existence of electrical memory effect in the sample. Significantly, such hysteresis has been found to be tuned by magnetic field. In order to explain the observed electrical irreversibility, we have proposed a phenomenological model on the light of induced polarization in the sample. Both the positive magnetoresistance and the observed magnetic field dependence of electrical irreversibility have been explained through magnetostriction phenomenon. Interestingly, such effects are found to get reduced with increasing particle size. For NiFe{sub 2}O{sub 4} nanoparticles having φ=31 nm, we did not observe any irreversibility effect. This feature has been attributed to the enhanced grain surface effect that in turn gives rise to the residual polarization and hence electrical memory effect in NiFe{sub 2}O{sub 4} nanoparticles, having small nanoscopic particle size. - Highlights: • I-V characteristics study of NiFe{sub 2}O{sub 4} nanoparticles with varying particle sizes. • Experiments evident electrical hysteretic behaviour, i.e., electrical memory effect. • Magnetic field dependent electrical irreversibility is due to magnetostriction. • A phenomenological model has been proposed on the light of induced polarization. • Such electrical irreversibility decreases with increasing particle sizes.

  15. Irreversibility in room temperature current–voltage characteristics of NiFe_2O_4 nanoparticles: A signature of electrical memory effect

    International Nuclear Information System (INIS)

    Dey, P.; Debnath, Rajesh; Singh, Swati; Mandal, S.K.; Roy, J.N.

    2017-01-01

    Room temperature I–V characteristics study, both in presence and absence of magnetic field (1800 Oe), has been performed on NiFe_2O_4 nanoparticles, having different particle size (φ~14, 21 and 31 nm). Our experiments on these nanoparticles provide evidences for: (1) electrical irreversibility or hysteretic behaviour; (2) positive magnetoresistance and (3) magnetic field dependent electrical irreversibility or hysteresis in the sample. “Hysteretic” nature of I–V curve reveals the existence of electrical memory effect in the sample. Significantly, such hysteresis has been found to be tuned by magnetic field. In order to explain the observed electrical irreversibility, we have proposed a phenomenological model on the light of induced polarization in the sample. Both the positive magnetoresistance and the observed magnetic field dependence of electrical irreversibility have been explained through magnetostriction phenomenon. Interestingly, such effects are found to get reduced with increasing particle size. For NiFe_2O_4 nanoparticles having φ=31 nm, we did not observe any irreversibility effect. This feature has been attributed to the enhanced grain surface effect that in turn gives rise to the residual polarization and hence electrical memory effect in NiFe_2O_4 nanoparticles, having small nanoscopic particle size. - Highlights: • I-V characteristics study of NiFe_2O_4 nanoparticles with varying particle sizes. • Experiments evident electrical hysteretic behaviour, i.e., electrical memory effect. • Magnetic field dependent electrical irreversibility is due to magnetostriction. • A phenomenological model has been proposed on the light of induced polarization. • Such electrical irreversibility decreases with increasing particle sizes.

  16. Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H2-driven NAD+-reduction in the presence of O2.

    Science.gov (United States)

    Preissler, Janina; Wahlefeld, Stefan; Lorent, Christian; Teutloff, Christian; Horch, Marius; Lauterbach, Lars; Cramer, Stephen P; Zebger, Ingo; Lenz, Oliver

    2018-01-01

    Biocatalysts that mediate the H 2 -dependent reduction of NAD + to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD + -reducing [NiFe]‑hydrogenase that sustains catalytic activity at high temperatures and in the presence of O 2 , which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD + -reducing [NiFe]‑hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1 T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H 2 -oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H 2 -mediated NAD + reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O 2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]‑hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD + -reducing [NiFe]‑hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H 2 -driven cofactor recycling under oxic conditions at elevated temperatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity

    Science.gov (United States)

    Bhosale, S. V.; Ekambe, P. S.; Bhoraskar, S. V.; Mathe, V. L.

    2018-05-01

    The present work reports the role of surface properties of NiFe2O4 nanoparticles on the antimicrobial activity. The NiFe2O4 nanoparticles were synthesized by gas phase condensation and chemical co-precipitation route. These nanoparticles were extensively investigated using X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electro-kinetic property measurements. The HRTEM was used to analyze surface morphology of nickel ferrite nanoparticles obtained by two different routes. Electro-kinetic properties of the nanoparticles under investigation were recorded, analyzed and correlated with the antimicrobial properties. It was observed that nickel ferrite nanoparticles synthesized by thermal plasma route (NFOTP) formed highly stable colloidal solution as compared to chemically synthesized (NFOCP), as the later tends to agglomerate due to low surface charge. The antimicrobial activity of NiFe2O4 nanoparticles were investigated on two Gram positive bacteria Staphylococcus aureus and Streptococcus pyogenes, two Gram negative bacteria Escherichia coli and Salmonella typhimurium and one fungal species Candida albicans. It was noted that the surface properties of NiFe2O4 particles have revealing effect on the antimicrobial activity. The NFOTP nanoparticles showed significant activity for gram negative E. coli bacteria however no activity was observed for other bacteria's and fungi under study. Moreover NFOCP particles did not show any significant activity for both bacteria's and fungi. Further, antimicrobial activity of nickel ferrite nanoparticles were studied even for different concentration to obtain the minimum inhibition concentration (MIC).

  18. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol–gel driven NiFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hessien, M.M. [Materials Science & Engineering Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Advanced Materials Dept, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87, Helwan, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Materials Science & Engineering Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2016-01-15

    Citric, oxalic and tartaric acids were used for synthesis of NiFe{sub 2}O{sub 4} using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400–1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe{sub 2}O{sub 4} with considerable amount of α-Fe{sub 2}O{sub 3} at 400 °C. Increase in the annealing temperature caused reaction of α-Fe{sub 2}O{sub 3} with iron-deficient ferrite phase. The amount of initially formed α-Fe{sub 2}O{sub 3} is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe{sub 2}O{sub 3}. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C. - Highlights: • Citric, oxalic and tartaric acids were used for synthesis of NiFe{sub 2}O{sub 4}. • Carboxylic acid type affects the produced powders. • At low temperatures all carboxylic acids produce iron-deficient NiFe{sub 2}O{sub 4} and α-Fe{sub 2}O{sub 3}. • α-Fe{sub 2}O{sub 3} is correlated with the decomposition of Fe(III) carboxylate precursors.

  19. In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation.

    Science.gov (United States)

    Xing, Jiale; Guo, Kailu; Zou, Zehua; Cai, Minmin; Du, Jing; Xu, Cailing

    2018-06-06

    Well-ordered NiFe-MOF-74 is in situ grown on Ni foam by the induction of Fe2+ and directly used as an OER electrocatalyst. Benefited from the intrinsic open porous structure of MOF-74, the in situ formed MOF arrays and the synergistic effect of Ni and Fe, outstanding water oxidation activity is obtained in alkaline electrolytes with an overpotential of 223 mV at 10 mA cm-2.

  20. Cubic superparamagnetic nanoparticles of NiFe{sub 2}O{sub 4} via fast microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Galvão, W. S.; Freire, R. M. [Universidade Federal do Ceará–UFC, Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química (Brazil); Ribeiro, T. S.; Vasconcelos, I. F. [Universidade Federal do Ceará, Departamento de Engenharia Metalúrgica e de Materiais (Brazil); Costa, L. S. [State University of Campinas–UNICAMP, Department of Inorganic Chemistry, Institute of Chemistry (Brazil); Freire, V. N.; Sales, F. A. M. [Universidade Federal do Ceará, Departamento de Física, Centro de Ciências (Brazil); Denardin, J. C. [Universidad de Santiago de Chile, USACH, Departamento de Física (Chile); Fechine, P. B. A., E-mail: fechine@ufc.br [Universidade Federal do Ceará–UFC, Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química (Brazil)

    2014-12-15

    This study demonstrated the possibility of using microwave heating as a fast and cheap method for synthesizing superparamagnetic nanoparticles. In this sense, NiFe{sub 2}O{sub 4} samples were subjected to microwave heating at various temperatures to determine the lowest temperature at which the crystalline phase of the nanoparticles occurs. X-Ray powder diffraction, {sup 57}Fe Mössbauer spectroscopy, and transmission electron microscopy of the samples were performed to confirm the formed nanoparticles. It was observed a cubic structure of inverse spinel type with good crystallinity. The magnetic properties of the samples were studied using a vibrating sample magnetometer and was found to zero values to remanent magnetization and coercivity field. This behavior suggests superparamagnetic features for all samples. The crystallite size (9, 10, and 12 nm) and saturation magnetization (31–45 emu/g) were used as a function of the increase of the temperature treatment time. Blocking temperature was found by tracing remanent magnetization versus temperature.

  1. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe.

    Science.gov (United States)

    Wei, Jianjun; Qian, Yajing; Liu, Wenjuan; Wang, Lutao; Ge, Yijie; Zhang, Jianghao; Yu, Jiang; Ma, Xingmao

    2014-05-01

    Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhanced reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and poor durability. Here, we report OER catalysts of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells derived from bimetallic metal–organic frameworks (MOFs) precursors. The optimal OER catalyst shows excellent activity (360 mV overpotential at 10 mA cm–2GEO) and durability (no obvious degradation after 20 000 cycles). The electron-donation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by chemical state of precursors. Severe metal particle growth probably caused by oxidation of carbon shells and encapsulated nanoparticles is believed to the main mechanism for activity degradation in these catalysts.

  3. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.

  4. Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles

    Science.gov (United States)

    Zehra, Saman; Gul, Iftikhar Hussain; Hussain, Zakir

    2018-06-01

    A simple, sensitive, selective and real time detection protocol was developed for Pb2+ ions in water using liquid crystals (LCs). In this method, NiFe2O4 nanoparticles were synthesized using chemical co-precipitation method. Crystallite size, morphological, functional groups and magnetization studies were confirmed using X-ray diffraction, Scanning Electron Microscopy, and Fourier transform infrared spectroscopy techniques, respectively. The nanoparticles were mono dispersed with average particle size of 20 ± 2 nm. The surfactant stabilized magnetic nanoparticles were incubated in liquid crystal based sensor system for the detection of Pb+2 ions. The bright to dark transition of LC was observed through optical microscope. When this system was further immersed with a solution containing Pb2+ ions, it caused homeotropic to planar orientation of LC. This interaction is attributed to the presence of abundant hydroxyl groups in such as M-OH, Fe-OH on the surface of spinel ferrites nanoparticles. These groups interact with metal ions at aqueous interface, causing disruption in LCs orientation giving bright texture. This sensor showed higher selectivity towards Pb2+ ions. The detection limit was estimated to be 100 ppb. The cheap and effective protocol reported here should make promising development of LC based sensor for lead ion detection.

  5. Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Saman Zehra

    2018-06-01

    Full Text Available A simple, sensitive, selective and real time detection protocol was developed for Pb2+ ions in water using liquid crystals (LCs. In this method, NiFe2O4 nanoparticles were synthesized using chemical co-precipitation method. Crystallite size, morphological, functional groups and magnetization studies were confirmed using X-ray diffraction, Scanning Electron Microscopy, and Fourier transform infrared spectroscopy techniques, respectively. The nanoparticles were mono dispersed with average particle size of 20 ± 2 nm. The surfactant stabilized magnetic nanoparticles were incubated in liquid crystal based sensor system for the detection of Pb+2 ions. The bright to dark transition of LC was observed through optical microscope. When this system was further immersed with a solution containing Pb2+ ions, it caused homeotropic to planar orientation of LC. This interaction is attributed to the presence of abundant hydroxyl groups in such as M-OH, Fe-OH on the surface of spinel ferrites nanoparticles. These groups interact with metal ions at aqueous interface, causing disruption in LCs orientation giving bright texture. This sensor showed higher selectivity towards Pb2+ ions. The detection limit was estimated to be 100 ppb. The cheap and effective protocol reported here should make promising development of LC based sensor for lead ion detection. Keywords: Chemical co-precipitation method, Fourier transform infrared spectroscopy, Liquid crystals, Nanoparticles, Sensor, X-ray diffraction

  6. Tuning magnetic properties of magnetoelectric BiFeO 3-NiFe 2O 4 nanostructures

    Science.gov (United States)

    Crane, S. P.; Bihler, C.; Brandt, M. S.; Goennenwein, S. T. B.; Gajek, M.; Ramesh, R.

    2009-02-01

    Multifunctional thin film nanostructures containing soft magnetic materials such as nickel ferrite are interesting for potential applications in microwave signal processing because of the possibility to shrink the size of device architecture and limit device power consumption. An essential prerequisite to future applications of such a system is a firm understanding of its magnetic properties. We show that nanostructures composed of ferrimagnetic NiFe 2O 4 pillars in a multiferroic BiFeO 3 matrix can be tuned magnetically by altering the aspect ratio of the pillars by depositing films of varying thickness. Magnetic anisotropy is studied using ferromagnetic resonance, which shows that the uniaxial magnetic anisotropy in the growth direction changes sign upon increasing the film thickness. The magnitude of this anisotropy contribution can be explained via a combination of shape and magnetostatic effects, using the object-oriented micromagnetic framework (OOMMF). The key factors determining the magnetic properties of the films are shown to be the aspect ratio of individual pillars and magnetostatic interactions between neighboring pillars.

  7. Tuning magnetic properties of magnetoelectric BiFeO3-NiFe2O4 nanostructures

    International Nuclear Information System (INIS)

    Crane, S.P.; Bihler, C.; Brandt, M.S.; Goennenwein, S.T.B.; Gajek, M.; Ramesh, R.

    2009-01-01

    Multifunctional thin film nanostructures containing soft magnetic materials such as nickel ferrite are interesting for potential applications in microwave signal processing because of the possibility to shrink the size of device architecture and limit device power consumption. An essential prerequisite to future applications of such a system is a firm understanding of its magnetic properties. We show that nanostructures composed of ferrimagnetic NiFe 2 O 4 pillars in a multiferroic BiFeO 3 matrix can be tuned magnetically by altering the aspect ratio of the pillars by depositing films of varying thickness. Magnetic anisotropy is studied using ferromagnetic resonance, which shows that the uniaxial magnetic anisotropy in the growth direction changes sign upon increasing the film thickness. The magnitude of this anisotropy contribution can be explained via a combination of shape and magnetostatic effects, using the object-oriented micromagnetic framework (OOMMF). The key factors determining the magnetic properties of the films are shown to be the aspect ratio of individual pillars and magnetostatic interactions between neighboring pillars

  8. Introduction and pinning of domain walls in 50 nm NiFe constrictions using local and external magnetic fields

    International Nuclear Information System (INIS)

    Zahnd, G.; Pham, V.T.; Marty, A.; Jamet, M.; Beigné, C.; Notin, L.; Vergnaud, C.; Rortais, F.; Vila, L.; Attané, J.-P.

    2016-01-01

    We study domain wall injection in 100 nm wide NiFe nanowires, followed by domain wall propagation and pinning on 50 nm wide constrictions. The injection is performed using local and external magnetic fields. Using several nucleation pad geometries, we show that at these small dimensions the use of an external field only does not allow obtaining a reproducible injection/pinning process. However, the use of an additional local field, created by an Oersted line, allows to nucleate a reversed domain at zero external applied field. Then, an external field of 5 mT enables the domain wall to propagate far from the Oersted line, and the pinning occurs reproducibly. We also show that notwithstanding the reproducibility of the pinning process, the depinning field is found to be stochastic, following a bimodal distribution. Using micromagnetic simulation we link two different DW configurations, vortex and transverse, to the two typical depinning fields. - Highlights: • Magnetic domain wall introduction and pinning in Permalloy nanowires with 50 nm wide constrictions. • Magnetic domain nucleation at zero external applied field. • Bimodal distribution of the domain wall configuration in the constriction.

  9. Electrochemistry of metalloproteins: protein film electrochemistry for the study of E. coli [NiFe]-hydrogenase-1.

    Science.gov (United States)

    Evans, Rhiannon M; Armstrong, Fraser A

    2014-01-01

    Protein film electrochemistry is a technique which allows the direct control of redox-active enzymes, providing particularly detailed information on their catalytic properties. The enzyme is deposited onto a working electrode tip, and through control of the applied potential the enzyme activity is monitored as electrical current, allowing for direct study of inherent activity as electrons are transferred to and from the enzyme redox center(s). No mediators are used. Because the only enzyme present in the experiment is bound at the electrode surface, gaseous and liquid phase inhibitors can be introduced and removed whilst the enzyme remains in situ. Potential control means that kinetics and thermodynamics are explored simultaneously; the kinetics of a reaction can be studied as a function of potential. Steady-state catalytic rates are observed directly as current (for a given potential) and non-steady-state rates (such as interconversions between different forms of the enzyme) are observed from the change in current with time. The more active the enzyme, the higher the current and the better the signal-to-noise. In this chapter we outline the practical aspects of PFE for studying electroactive enzymes, using the Escherichia coli [NiFe]-hydrogenase 1 (Hyd-1) as an example.

  10. Electroplating technologies of alloys

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Kim, Seung Ho; Jeong, Hyun Kyu; Hwnag, Sung Sik; Seo, Yong Chil; Kim, Dong Jin; Seo, Moo Hong

    2001-12-01

    In localization of electrosleeving technique, there are some problems like the following articles. Firstly, Patents published by OHT have claimed Ni-P, Ni-B alloy plating and Mo, Mn Cr, W, Co as a pinning agent. Secondly, alloy platings have many restrictions. There are some method to get alloy plating in spite of the various restrictions. If current density increase above limiting current density in one of the metals, both of the metals discharge at the same time. The addition of surface active agent(sufactant) in the plating solution is one of the methods to get alloy plating. Alloy plating using pulse current easily controls chemical composition and structure of deposit. Ni-Fe alloy plating is known to exhibit anomalous type of plating behavior in which deposition of the less noble metal is favoured. Presence of hypophohphite ion can control the iron codeposition by changing the deposition mechanism. Hypophohphite suppresses the deposition of Fe and also promotes Ni. Composite plating will be considered to improve the strength at the high temperature. Addition of particle size of 10δ400μm makes residual stress compressive in plate layer and suppress the grain growth rate at the high temperature. Addition of particle makes suface roughness high and fracture stress low at high temperature. But, selection of the kinds of particle and control of additives amount overcome the problems above

  11. Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl-Group Channeling during [NiFe]-Hydrogenase Cofactor Generation.

    Directory of Open Access Journals (Sweden)

    Sven T Stripp

    Full Text Available [NiFe]-hydrogenases catalyze uptake and evolution of H2 in a wide range of microorganisms. The enzyme is characterized by an inorganic nickel/ iron cofactor, the latter of which carries carbon monoxide and cyanide ligands. In vivo generation of these ligands requires a number of auxiliary proteins, the so-called Hyp family. Initially, HypF binds and activates the precursor metabolite carbamoyl phosphate. HypF catalyzes removal of phosphate and transfers the carbamate group to HypE. In an ATP-dependent condensation reaction, the C-terminal cysteinyl residue of HypE is modified to what has been interpreted as thiocyanate. This group is the direct precursor of the cyanide ligands of the [NiFe]-hydrogenase active site cofactor. We present a FT-IR analysis of HypE and HypF as isolated from E. coli. We follow the HypF-catalyzed cyanation of HypE in vitro and screen for the influence of carbamoyl phosphate and ATP. To elucidate on the differences between HypE and the HypEF complex, spectro-electrochemistry was used to map the vibrational Stark effect of naturally cyanated HypE. The IR signature of HypE could ultimately be assigned to isothiocyanate (-N=C=S rather than thiocyanate (-S-C≡N. This has important implications for cyanyl-group channeling during [NiFe]-hydrogenase cofactor generation.

  12. Synthesis and characterization of the NiFe{sub 2}O{sub 4}@TEOS–TPS@Ag nanocomposite and investigation of its antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Allafchian, Ali R., E-mail: Allafchian@cc.iut.ac.ir [Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jalali, S.A.H., E-mail: ahjalali2002@gmail.com [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Amiri, R., E-mail: razieh.amiri@gmail.com [Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shahabadi, Sh., E-mail: shirinshahabadi@rocketmail.com [Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-11-01

    Highlights: • The new NiFe{sub 2}O{sub 4}@TEOS–TPS@Ag nanocomposite was synthesized and characterized. • The VSM technique was applied for investigation of their magnetic properties. • By using magnetic decantation, they can be easily removed from the disinfected media. • These nanocomposites exhibit good antibacterial activity and high reusability. - Abstract: In this study, the NiFe{sub 2}O{sub 4} was embedded in (3–mercaptopropyl) trimethoxysilane (TPS) and tetraethyl orthosilicate (TEOS) using the sol–gel method. These compounds were used as the support of Ag nanoparticles (Ag NPs). The NiFe{sub 2}O{sub 4}@TEOS–TPS@Ag nanocomposites were obtained with the development of bonding between the silver atoms of Ag NPs and the sulfur atoms of TPS molecule. Field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM), X–ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT–IR) were used for the characterization of the Ag nanocomposites. Also, the magnetic properties of these nanocomposites were studied by using a vibrating sample magnetometer (VSM) technique. The disk diffusion, minimum inhibition concentration (MIC) and minimum bactericidal concentrations (MBC) tests were used for the investigation of the antibacterial effect of this nanocomposite against bacterial strains. The synthesized nanocomposite presented high reusability and good antibacterial activity against gram–positive and gram–negative bacteria. Remarkably, this nanocomposite could be easily removed from the disinfected media by magnetic decantation.

  13. Hierarchical 3D NiFe2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors.

    Science.gov (United States)

    Zhang, Xinyang; Zhang, Ziqing; Sun, Shuanggan; Sun, Qiushi; Liu, Xiaoyang

    2018-02-13

    Hierarchical NiFe 2 O 4 @MnO 2 core-shell nanosheet arrays (NSAs) were synthesized on Ni foam as an integrated electrode for supercapacitors, using a facile two-step hydrothermal method followed by calcination treatment. The NiFe 2 O 4 nanosheets were designed as the core and ultrathin MnO 2 nanoflakes as the shell, creating a unique three-dimensional (3D) hierarchical electrode on Ni foam. The composite electrode exhibited remarkable electrochemical performance with a high specific capacitance of 1391 F g -1 at a current density of 2 mA cm -2 and long cycling stability at a high current density of 10 mA cm -2 (only 11.4% loss after 3000 cycles). Additionally, an asymmetric supercapacitor (ASC) device was fabricated with a NiFe 2 O 4 @MnO 2 composite as the positive electrode material and activated carbon (AC) as the negative one. The ASC device exhibited a high energy density (45.2 W h kg -1 ) at a power density of 174 W kg -1 , and an excellent cycling stability over 3000 cycles with 92.5% capacitance retention. The remarkable electrochemical performance demonstrated its great potential as a promising candidate for high-performance supercapacitors.

  14. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    International Nuclear Information System (INIS)

    Li, Jian-wei; Zhao, Chong-jun; Feng, Chun; Yu, Guang-hua; Zhou, Zhongfu

    2015-01-01

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress

  15. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    Science.gov (United States)

    Li, Jian-wei; Zhao, Chong-jun; Feng, Chun; Zhou, Zhongfu; Yu, Guang-hua

    2015-08-01

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.

  16. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-wei [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Chong-jun; Feng, Chun; Yu, Guang-hua [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhou, Zhongfu [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2015-08-15

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.

  17. Modelling the active site of NiFe hydrogenases: new catalysts for the electro-production of H2 and mechanistic studies

    International Nuclear Information System (INIS)

    Canaguier, S.

    2009-01-01

    NiFe hydrogenases are unique metalloenzymes that catalyze H + /H 2 interconversion with remarkable efficiency close to the thermodynamic potential. Their active site consists of a hetero-bimetallic complex containing a nickel ion in a sulphur-rich environment connected by two thiolate bridges to an organometallic cyano-carbonyl iron moiety. In order to improve the understanding of the enzymatic mechanism and to obtain new base-metal electrocatalysts for H 2 production, we synthesized a series of bio-inspired low molecular weight model complexes with the butterfly structure Ni(μ-S 2 )M (M= Ru, Mn and Fe). All these compounds displayed a catalytic activity of hydrogen production. Modulating the electronic and steric properties of the ruthenium center allowed optimizing the catalytic performances of these compounds in terms of stability, catalytic rate and overpotential. Mechanistic studies of the catalytic cycle of the Ni-Ru complexes have also been carried out. They allowed us to suggest a bio-relevant bridging hydride as the catalytic intermediate. Finally, we synthesized one of the first Ni-Fe complexes that is both a structural and a functional model of NiFe hydrogenase. (author) [fr

  18. Size-controlled synthesis of NiFe2O4 nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    International Nuclear Information System (INIS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    Graphical abstract: - Highlights: • Hydrothermal synthesis of NiFe 2 O 4 NPs with (C 4 H 9 ) 3 N as hydroxylating agent. • PEG 4000 was used as surfactant to control sizes of NPs. • The TEM images revealed the material to be spherical in shape with sizes 2–10 nm. • NiFe 2 O 4 was used as recyclable catalyst for oxidation of alcohols by periodic acid. - Abstract: A novel and facile approach for synthesis of spinel nickel ferrites (NiFe 2 O 4 ) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe 2 O 4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption–desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe 2 O 4 and TEM image showed spherical particles of sizes 2–10 nm. These NiFe 2 O 4 NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  19. Ordered mesoporous MFe(2)O(4) (M = Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, uniform 16 nm diameter pores and high thermal stability: template-directed synthesis and characterization of redox active trevorite.

    Science.gov (United States)

    Haetge, Jan; Suchomski, Christian; Brezesinski, Torsten

    2010-12-20

    In this paper, we report on ordered mesoporous NiFe(2)O(4) thin films synthesized via co-assembly of hydrated ferric nitrate and nickel chloride with an amphiphilic diblock copolymer, referred to as KLE. We establish that the NiFe(2)O(4) samples are highly crystalline after calcination at 600 °C, and that the conversion of the amorphous inorganic framework comes at little cost to the ordering of the high quality cubic network of pores averaging 16 nm in diameter. We further show that the synthesis method employed in this work can be readily extended to other ferrites, such as CoFe(2)O(4), CuFe(2)O(4), MgFe(2)O(4), and ZnFe(2)O(4), which could pave the way for innovative device design. While this article focuses on the self-assembly and characterization of these materials using various state-of-the-art techniques, including electron microscopy, grazing incidence small-angle X-ray scattering (GISAXS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), as well as UV-vis and Raman spectroscopy, we also examine the electrochemical properties and show the benefits of combining a continuous mesoporosity with nanocrystalline films. KLE-templated NiFe(2)O(4) electrodes exhibit reasonable levels of lithium ion storage at short charging times which stem from facile pseudocapacitance.

  20. Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    International Nuclear Information System (INIS)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya; Maensiri, Santi

    2013-01-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe 2 O 4 , MgFe 2 O 4 and MnFe 2 O 4 respectively, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe 2 O 4 powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M s of 68.9 emu/g at 10 kOe were observed for the samples of MnFe 2 O 4 . - Abstract: Nanocrystalline spinel ferrite MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac) 3 , M(acac) 3 (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe 2 O 4 and CoFe 2 O 4 samples contain nanoparticles, whereas the MnFe 2 O 4 and MgFe 2 O 4 samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe 2 O 4 sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe 2 O 4 , MnFe 2 O 4 and MgFe 2 O 4 samples, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 exhibit a superparamagnetic behavior

  1. Modified analytic EAM potentials for the binary immiscible alloy systems

    International Nuclear Information System (INIS)

    Fang, F.; Shu, X.L.; Deng, H.Q.; Hu, W.Y.; Zhu, M.

    2003-01-01

    Modified analytic embedded atom method (MAEAM) type potentials have been constructed for seven binary immiscible alloy systems: Al-Pb, Ag-Ni, Fe-Cu, Ag-Cu, Cu-Ta, Cu-W and Cu-Co. The potentials are fitted to the lattice constant, cohesive energy, unrelaxed monovacancy formation energy and elastic constants for only pure metals which consist the immiscible alloy systems. In order to test the reliability of the constructed MAEAM potentials, formation enthalpies of disordered alloys for those seven binary immiscible alloy systems have been calculated. The calculated results are in general agreement with the experimental data available and those theoretical results calculated by other authors. As only very limited experimental information is available for alloy properties in immiscible alloy systems, the MAEAM is demonstrated to be a reasonable method to construct the interatomic potentials for immiscible alloy systems because only the properties of pure elements are needed in calculation

  2. Hydrogen Storage and Release Properties of Transition Metal-Added Magnesium Hydride Alloy Fabricated by Grinding in a Hydrogen Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sung Nam; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of); Park, Hye Ryoung [Chonnam National University, Gwangju (Korea, Republic of)

    2016-07-15

    90 wt% MgH{sub 2}+5 wt% Ni+2.5 wt% Fe+2.5 wt% Ti (called MgH{sub 2}+Ni+Fe+Ti), a hydrogen storage and release material, was fabricated by grinding in a hydrogen atmosphere, and then its quantities of stored and released hydrogen as a function of time were examined. A nanocrystalline MgH{sub 2}+Ni+Fe+Ti specimen was made by grinding in a hydrogen atmosphere and subsequent hydrogen storage-release cycling. The crystallite size of Mg and the strain of the Mg crystallite after ten hydrogen storage-release cycles, which were obtained using the Williamson-Hall method, were 38.6 (±1.4) nm and 0.025 (±0.0081) %, respectively. The MgH{sub 2}+Ni+Fe+Ti sample after the process of grinding in a hydrogen atmosphere was highly reactive with hydrogen. The sample exhibited an available storage capacity of hydrogen (the amount of hydrogen stored during 60 minutes) of about 5.7 wt%. At the first cycle, the MgH2+Ni+Fe+Ti sample stored hydrogen of 5.53 wt% in 5 minutes, 5.66 wt% in 10 minutes and 5.73 wt% in 60 minutes at 573 K and 12 bar of hydrogen. The MgH{sub 2}+Ni+Fe+Ti after activation released hydrogen of 0.56 wt% in 5 minutes, 1.26 wt% in 10 minutes, 2.64 wt% in 20 minutes, 3.82 wt% in 30 minutes, and 5.03 wt% in 60 minutes.

  3. Electrochemical passivation behaviour of nanocrystalline Fe 80 Si ...

    Indian Academy of Sciences (India)

    Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route is studied and compared with that of the commercial pure iron and cast Fe80Si20 in sodium borate buffer solution at two different pH values (7.7 and 8.4). The coating reveals single passivation at a pH of 7.7 and ...

  4. Catalytic Properties of the Isolated Diaphorase Fragment of the NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha

    Science.gov (United States)

    Lauterbach, Lars; Idris, Zulkifli; Vincent, Kylie A.; Lenz, Oliver

    2011-01-01

    The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 catalyzes the H2-driven reduction of NAD+, as well as reverse electron transfer from NADH to H+, in the presence of O2. It comprises six subunits, HoxHYFUI2, and incorporates a [NiFe] H+/H2 cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD+ reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD+/NADH couple. Michaelis-Menten constants of 56 µM and 197 µM were determined for NADH and NAD+, respectively. Catalysis in both directions is product inhibited with K I values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O2, however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed, meaning that the formation of reactive oxygen species (ROS) observed for the native SH can be attributed mainly to HoxFU. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis. PMID:22016788

  5. Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Nowosielski, R.; Konieczny, J.; PrzybyI, A.; WysIocki, J.

    2005-01-01

    The paper concerns investigation of nanocrystalline composites technology preparation. The composites in the form of rings with rectangular transverse section, and with polymer matrix and nanocrystalline metallic powders fulfillment were made, for obtaining good ferromagnetic properties. The nanocrystalline ferromagnetic powders were manufactured by high-energy ball milling of metallic glasses strips in an as-quenched state. Generally for investigation, Co matrix alloys with the silicon polymer were used. Magnetic properties in the form of hysteresis loop by rings method were measured. Generally composite cores showed lower soft ferromagnetic properties than winded cores of nanocrystalline strips, but composite cores showed interesting mechanical properties. Furthermore, the structure of strips and powders on properties of composites were investigated

  6. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property.

    Science.gov (United States)

    Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-02-08

    Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.

  7. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    OpenAIRE

    Jian-wei Li; Chong-jun Zhao; Chun Feng; Zhongfu Zhou; Guang-hua Yu

    2015-01-01

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observe...

  8. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases

    OpenAIRE

    Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2008-01-01

    The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, an