WorldWideScience

Sample records for nanocrystalline mgb2 thin

  1. Low-temperature synthesis of superconducting nanocrystalline MgB2

    International Nuclear Information System (INIS)

    Lu, J.; Xiao, Z.; Lin, Q.; Claus, H.; Fang, Z.Z.

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  2. MgB2 thin films by hybrid physical-chemical vapor deposition

    International Nuclear Information System (INIS)

    Xi, X.X.; Pogrebnyakov, A.V.; Xu, S.Y.; Chen, K.; Cui, Y.; Maertz, E.C.; Zhuang, C.G.; Li, Qi; Lamborn, D.R.; Redwing, J.M.; Liu, Z.K.; Soukiassian, A.; Schlom, D.G.; Weng, X.J.; Dickey, E.C.; Chen, Y.B.; Tian, W.; Pan, X.Q.; Cybart, S.A.; Dynes, R.C.

    2007-01-01

    Hybrid physical-chemical vapor deposition (HPCVD) has been the most effective technique for depositing MgB 2 thin films. It generates high magnesium vapor pressures and provides a clean environment for the growth of high purity MgB 2 films. The epitaxial pure MgB 2 films grown by HPCVD show higher-than-bulk T c due to tensile strain in the films. The HPCVD films are the cleanest MgB 2 materials reported, allowing basic research, such as on magnetoresistance, that reveals the two-band nature of MgB 2 . The carbon-alloyed HPCVD films demonstrate record-high H c2 values promising for high magnetic field applications. The HPCVD films and multilayers have enabled the fabrication of high quality MgB 2 Josephson junctions

  3. Growth of high quality large area MgB2 thin films by reactive evaporation

    OpenAIRE

    Moeckly, Brian H.; Ruby, Ward S.

    2006-01-01

    We report a new in-situ reactive deposition thin film growth technique for the production of MgB2 thin films which offers several advantages over all existing methods and is the first deposition method to enable the production of high-quality MgB2 films for real-world applications. We have used this growth method, which incorporates a rotating pocket heater, to deposit MgB2 films on a variety of substrates, including single-crystalline, polycrystalline, metallic, and semiconductor materials u...

  4. Microwave surface impedance of MgB2 thin film

    International Nuclear Information System (INIS)

    Jin, B B; Klein, N; Kang, W N; Kim, Hyeong-Jin; Choi, Eun-Mi; Lee, Sung-I K; Dahm, T; Maki, K

    2003-01-01

    The microwave surface impedance Z s = R s + jωμ 0 λ was measured with dielectric resonator techniques for two c-axis-oriented MgB 2 thin films. The temperature dependence of the penetration depth λ measured with a sapphire resonator at 17.93 GHz can be well fitted from 5 K close to T c by the standard BCS integral expression assuming the reduced energy gap Δ(0)/kT c to be as low as 1.13 and 1.03 for the two samples. From these fits the penetration depth at zero temperatures was determined to be 102 nm and 107 nm, respectively. The results clearly indicate the s-wave nature of the order parameter. The temperature dependence of surface resistance R s , measured with a rutile dielectric resonator, shows an exponential behaviour below about T c /2 with a reduced energy gap being consistent with the one determined from the λ data. The R s value at 4.2 K was found to be as low as 19 μΩ at 7.2 GHz, which is comparable with that of a high-quality high-temperature thin film of YBa 2 Cu 3 O 7 . A higher-order mode at 17.9 GHz was employed to determine the frequency f dependence of R s ∝ f n(T) . Our results revealed a decrease of n with increasing temperature ranging from n = 2 below 8 K to n 1 from 13 to 34 K

  5. Progress in the deposition of MgB2 thin films

    International Nuclear Information System (INIS)

    Xi, X X; Pogrebnyakov, A V; Zeng, X H; Redwing, J M; Xu, S Y; Li, Qi; Liu, Zi-Kui; Lettieri, J; Vaithyanathan, V; Schlom, D G; Christen, H M; Zhai, H Y; Goyal, A

    2004-01-01

    An MgB 2 thin film deposition technology is the first critical step in the development of superconducting electronics utilizing the 39 K superconductor. It turned out to be a challenging task due to the volatility of Mg and phase stability of MgB 2 , the low sticking coefficients of Mg at elevated temperatures, and the reactivity of Mg with oxygen. A brief overview of current deposition techniques is provided here from a thermodynamic perspective, with an emphasis on a very successful technique for high quality in situ epitaxial MgB 2 films, the hybrid physical-chemical vapour deposition. Examples of heterostructures of MgB 2 with other materials are also presented

  6. Molecular-Beam Epitaxially Grown MgB2 Thin Films and Superconducting Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Laloë

    2011-01-01

    Full Text Available Since the discovery of its superconducting properties in 2001, magnesium diboride has generated terrific scientific and engineering research interest around the world. With a of 39 K and two superconducting gaps, MgB2 has great promise from the fundamental point of view, as well as immediate applications. Several techniques for thin film deposition and heterojunction formation have been established, each with its own advantages and drawbacks. Here, we will present a brief overview of research based on MgB2 thin films grown by molecular beam epitaxy coevaporation of Mg and B. The films are smooth and highly crystalline, and the technique allows for virtually any heterostructure to be formed, including all-MgB2 tunnel junctions. Such devices have been characterized, with both quasiparticle and Josephson tunneling reported. MgB2 remains a material of great potential for a multitude of further characterization and exploration research projects and applications.

  7. Laser-induced thermoelectric voltage in normal state MgB2 thin films

    International Nuclear Information System (INIS)

    Zhao Songqing; Zhou Yueliang; Zhao Kun; Wang Shufang; Chen Zhenghao; Jin Kuijuan; Lue Huibin; Cheng Bolin; Yang Guozhen

    2006-01-01

    Laser-induced voltage has been observed in c-axis oriented MgB 2 thin film at room temperature. The amplitude of the signal is approximately proportional to the film thickness. For the film with the thickness of 150 nm, a very fast response has been detected when the film was irradiated by a 308 nm pulsed laser of 20 ns duration. The rise time and full width at half-maximum of the signal are about 3 and 25 ns, respectively. The physical origin of the laser-induced voltage can be attributed to a transverse thermoelectricity due to the anisotropic thermopower in MgB 2

  8. Scanning tunneling spectroscopy on neutron irradiated MgB2 thin films

    International Nuclear Information System (INIS)

    Di Capua, Roberto; Salluzzo, Marco; Vaglio, Ruggero; Ferdeghini, Carlo; Ferrando, Valeria; Putti, Marina; Xi Xiaoxing; Aebersold, Hans U.

    2007-01-01

    Neutron irradiation was performed on MgB 2 thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the π gap with increasing disorder was found

  9. Pinning enhancement in MgB2 superconducting thin films by ...

    Indian Academy of Sciences (India)

    The magnetic field dependence of the critical current density Jc was calculated from the M–H loops and magnetic field dependence of ... MgB2 thin film; Fe2O3 nanoparticles; critical current density; r-plane Al2O3 substrate. 1. Introduction. The discovery of ... It was thought that from these cal- culations, one can choose an ...

  10. Enhancement of Jc of MgB2 thin films by introduction of oxygen during deposition

    International Nuclear Information System (INIS)

    Mori, Zon; Doi, Toshiya; Hakuraku, Yoshinori; Kitaguchi, Hitoshi

    2006-01-01

    The introduction of various pinning center are examined as the effective means for improvement of J c of MgB 2 thin films. We have investigated the effects of introduction of oxygen during deposition on the superconducting properties of MgB 2 thin films. MgB 2 thin films were prepared on polished sapphire C(0001) single crystal substrates by using electron beam evaporation technique (EB) without any post-annealing. The background pressure was less than 1.3x10 -6 Pa. The evaporation flux ratio of Mg was set at 30 times as high as that of B, and the growth rate of MgB 2 film was 1nm/s. The film thickness was typically 300nm at 5min deposition. The substrate temperature was 245 deg. C. Under these conditions, we controlled the oxygen partial pressure (P O 2 ) within the range from 1.3x10 -6 to 1.3x10 -3 Pa by using a quadrapole mass spectrometer. Although T c of deposited thin film decreased in order of P O 2 , ΔM in the magnetization hysteresis loops measured from 0 to 6T at 4.2K increased up to 1.3x10 -5 . On the other hand, thin film prepared under P O 2 of 1.3x10 -3 Pa does not show superconducting transition. Between these films, there is no difference in the crystal structure from X-ray diffraction (XRD). These results suggest that the pinning center in the thin films increased by introduction of oxygen. Extremely small amount of oxygen introduction has enabled the control of growth of oxide

  11. Scaling behavior of mixed-state hall effect in MgB2 thin films

    International Nuclear Information System (INIS)

    Jung, Soon-Gil; Seong, W.K.; Kang, W.N.; Choi, Eun-Mi; Kim, Heon-Jung; Lee, Sung-Ik; Kim, Hyeong-Jin; Kim, H.C.

    2006-01-01

    The Hall resistivity (ρ xy ) and the longitudinal resistivity (ρ xx ) in c-axis-oriented superconducting MgB 2 thin films have been investigated in extended fields up to 18T. We have observed a scaling behavior between the Hall resistivity and the longitudinal resistivity, ρ xy =Aρ xx β , where the exponent (β) is observed to be independent of the temperatures and the magnetic fields. For a wide magnetic field region from 1 to 18T and a wide temperature region from 10 to 28K, a universal power law with β=2.0+/-0.1 was observed in c-axis-oriented MgB 2 thin films. These results can be well interpreted by using recent models

  12. The effects of Fe2O3 nanoparticles on MgB2 superconducting thin films

    International Nuclear Information System (INIS)

    Koparan, E.T.; Sidorenko, A.; Yanmaz, E.

    2013-01-01

    Full text: Since the discovery of superconductivity in binary MgB 2 compounds, extensive studies have been carried out because of its excellent properties for technological applications, such as high transition temperature (T c = 39 K), high upper critical field (H c2 ), high critical current density (J c ). Thin films are important for fundamental research as well as technological applications of any functional materials. Technological applications primarily depend on critical current density. The strong field dependence of J c for MgB 2 necessitates an enhancement in flux pinning performance in order to improve values in high magnetic fields. An effective way to improve the flux pinning is to introduce flux pinning centers into MgB 2 through a dopant having size comparable to the coherence length of MgB 2 . In this study, MgB 2 film with a thickness of about 600 nm was deposited on the MgO (100) single crystal substrate using a 'two-step' synthesis technique. Firstly, deposition of boron thin film was carried out by rf magnetron sputtering on MgO substrates and followed by a post deposition annealing at 850 degrees Celsius in magnesium vapour. In order to investigate the effect of Fe 2 O 3 nanoparticles on the structural and magnetic properties of films, MgB 2 films were coated with different concentrations of Fe 2 O 3 nanoparticles by a spin coating process. The effects of different concentrations of ferromagnetic Fe 2 O 3 nanoparticles on superconducting properties of obtained films were carried out by using structural (XRD, SEM, AFM), electrical (R-T) and magnetization (M-H, M-T and AC Susceptibility) measurements. It was calculated that anisotropic coefficient was about γ = 1.2 and coherence length of 5 nm for the uncoated film. As a result of coherence length, the appropriate diameters of Fe 2 O 3 nanoparticles were found to be 10 nm, indicating that these nanoparticles served as the pinning centers. Based on the data obtained from this study, it can be

  13. MgB2 thin films on silicon nitride substrates prepared by an in situ method

    International Nuclear Information System (INIS)

    Monticone, Eugenio; Gandini, Claudio; Portesi, Chiara; Rajteri, Mauro; Bodoardo, Silvia; Penazzi, Nerino; Dellarocca, Valeria; Gonnelli, Renato S

    2004-01-01

    Large-area MgB 2 thin films were deposited on silicon nitride and sapphire substrates by co-deposition of Mg and B. After a post-annealing in Ar atmosphere at temperatures between 773 and 1173 K depending on the substrate, the films showed a critical temperature higher than 35 K with a transition width less than 0.5 K. The x-ray diffraction pattern suggested a c-axis preferential orientation in films deposited on amorphous substrate. The smooth surface and the good structural properties of these MgB 2 films allowed their reproducible patterning by a standard photolithographic process down to dimensions of the order of 10 μm and without a considerable degradation of the superconducting properties

  14. Stabilization of the dissipation-free current transport in inhomogeneous MgB2 thin films

    International Nuclear Information System (INIS)

    Treiber, S.; Stahl, C.; Schütz, G.; Soltan, S.; Albrecht, J.

    2014-01-01

    Highlights: • We investigate transport properties of inhomogeneous MgB 2 films. • An inhomogeneous microstructure stabilizes supercurrents. • Vortex pinning forces and energies have been analyzed experimentally. • In inhomogeneous films the increase of the pinning energy is responsible for stable supercurrents. - Abstract: In type-II superconductors at T = 0 the critical current density is determined by the pinning of flux lines. Considering an arbitrarily shaped energy landscape the pinning force at each pinning site is given by the derivative of the flux line energy with respect to the considered direction. At finite temperatures, in addition, thermal activation can lead to a depinning of flux lines. The governing property in this case is the depth of the corresponding pinning potential, i.e. the pinning energy. We show a detailed analysis of both pinning forces and pinning energies of MgB 2 films with inhomogeneous microstructure. We show that a pronounced increase of the pinning energy is responsible for the significantly enhanced stability of the dissipation-free current transport in thin inhomogeneous MgB 2 films. This is found even if the corresponding pinning forces are small

  15. Nanostructure characterization of Ni and B layers as artificial pinning centers in multilayered MgB2/Ni and MgB2/B superconducting thin films

    International Nuclear Information System (INIS)

    Sosiati, H.; Hata, S.; Doi, T.; Matsumoto, A.; Kitaguchi, H.; Nakashima, H.

    2013-01-01

    Highlights: ► Nanostructure characterization of Ni and B layers as artificial pinning centers (APCs). ► Relationship between nanostructure and J c property. ► Enhanced J c in parallel field by parallel APCs within the MgB 2 film. -- Abstract: Research on the MgB 2 /Ni and MgB 2 /B multilayer films fabricated by an electron beam (EB) evaporation technique have been extensively carried out. The critical current density, J c of MgB 2 /Ni and MgB 2 /B multilayer films in parallel fields has been suggested to be higher than that of monolayer MgB 2 film due to introducing the artificial pinning centers of nano-sized Ni and B layers. Nanostructure characterization of the artificial pinning centers in the multilayer films were examined by transmission electron microscopy (TEM) and scanning TEM (STEM-energy dispersive X-ray spectroscopy (STEM-EDS))–EDS to understand the mechanism of flux pinning. The growth of columnar MgB 2 grains along the film-thickness direction was recognized in the MgB 2 /Ni multilayer film, but not in the MgB 2 /B multilayer film. Nano-sized Ni layers were present as crystalline epitaxial layers which is interpreted that Ni atoms might be incorporated into the MgB 2 lattice to form (Mg,Ni)B 2 phase. On the other hand, nano-sized B layers were amorphous layers. Crystalline (Mg,Ni)B 2 layers worked more effectively than amorphous B-layers, providing higher flux-pinning force that resulted in higher J c of the MgB 2 /Ni multilayer film than the MgB 2 /B multilayer film

  16. Growth of high-quality large-area MgB2 thin films by reactive evaporation

    International Nuclear Information System (INIS)

    Moeckly, B H; Ruby, W S

    2006-01-01

    We report a new in situ reactive deposition thin film growth technique for the production of MgB 2 thin films which offers several advantages over all existing methods and is the first deposition method to enable the production of high-quality MgB 2 films for real-world applications. We have used this growth method, which incorporates a rotating pocket heater, to deposit MgB 2 films on a variety of substrates, including single-crystalline, polycrystalline, metallic, and semiconductor materials up to 4 inch in diameter. This technique allows growth of double-sided, large-area films in the intermediate temperature range of 400-600 deg. C. These films are clean, well-connected, and consistently display T c values of 38-39 K with low resistivity and residual resistivity values. They are also robust and uncommonly stable upon exposure to atmosphere and water. (rapid communication)

  17. Hall conductivity and the vortex phase in MgB2 thin films

    International Nuclear Information System (INIS)

    Jung, Soon-Gil; Seong, W K; Huh, Ji Young; Lee, T G; Kang, W N; Choi, Eun-Mi; Kim, Heon-Jung; Lee, Sung-Ik

    2007-01-01

    In a MgB 2 thin film superconductor, we have found that Hall conductivity (σ xy ) is described by the sum of two terms, σ xy = C 1 /H+C 3 H, where C 1 and C 3 are independent of the magnetic fields and have positive values. C 1 is observed to be proportional to (1-t) n with n = 4.2, where t is the reduced temperature (T/T c ), and C 3 is weakly dependent on the temperature. These results are consistent with those of the overdoped La 2-x Sr x CuO 4 superconductors. Based on Hall angle data, we obtained a vortex phase diagram with three regions, vortex-solid, crossover, and vortex-liquid regions in the H-T plane

  18. Critical current density of MgB2 thin films and the effect of interface pinning

    International Nuclear Information System (INIS)

    Choi, Eun-Mi; Gupta, S K; Sen, Shashwati; Lee, Hyun-Sook; Kim, Hyun-Jung; Lee, Sung-Ik

    2004-01-01

    Preferentially oriented MgB 2 thin films with c-axis normal to the surface have been prepared and characterized for microstructure and transport properties. The magnetic field dependence of superconducting critical current density J c has been determined from the magnetization hysteresis (M-H) loops at various temperatures using the Bean's critical state model. High J c of these films show their potential for applications. We have also measured the angular dependences of J c . The angular dependence is seen to be in agreement with the anisotropic Ginzburg-Landau model except that at angles close to the ab plane, increased pinning due to film-substrate interaction is observed. The angular range where interface pinning is effective has been determined by measurement of asymmetry in dissipation on reversal of current for fields applied at angles close to the ab plane

  19. Crystallinity and superconductivity of as-grown MgB2 thin films with AlN buffer layers

    International Nuclear Information System (INIS)

    Tsujimoto, K.; Shimakage, H.; Wang, Z.; Kaya, N.

    2005-01-01

    The effects of aluminum nitride (AlN) buffer layers on the superconducting properties of MgB 2 thin film were investigated. The AlN buffer layers and as-grown MgB 2 thin films were deposited in situ using the multiple-target sputtering system. The best depositing condition for the AlN/MgB 2 bi-layer occurred when the AlN was deposited on c-cut sapphire substrates at 290 deg. C. The crystallinity of the AlN/MgB 2 bi-layer was studied using the XRD φ-scan and it showed that AlN and MgB 2 had the same in-plane alignment rotated at an angle of 30 deg. as compared to c-cut sapphire. The critical temperature of the MgB 2 film was 29.8 K and the resistivity was 50.0 μΩ cm at 40 K

  20. Preparation of high quality superconducting thin MgB2 films for electronics

    International Nuclear Information System (INIS)

    Surdu, Andrei; Zdravkov, Vladimir; Sidorenko, Anatolie; Rossolenko, Anna; Ryazanov, Valerii; Bdikin, Igor; Kroemer, Oliver; Nold, Eberhard; Koch, Thomas; Schimmel, Thomas

    2007-01-01

    In this work we report the growth of high-Tc MgB 2 smooth films which are prepared in a two-step process: 1) deposition of the precursor films and 2) their annealing in Mg vapor with a specially designed, reusable reactor. Our method opens perspectives for the use of MgB 2 films in microelectronics, especially for high-frequency applications. (authors)

  1. Investigation of the resistive transition of MgB2 thin film through current noise

    International Nuclear Information System (INIS)

    Gandini, C; Rajteri, M; Portesi, C; Monticone, E; Masoero, A; Mazzetti, P

    2006-01-01

    In this paper we present measurements concerning the current noise produced during the resistive transition in a MgB 2 polycrystalline thin film. The power spectrum of the current noise, observed when the temperature is slowly changed across its critical value, presents a large electrical noise of the 1/f n type (n ≅ 3) over a quite wide range of frequencies. This noise may be considered as generated by the abrupt creation of resistive strips across the specimen constituted by grains which have undergone the resistive transition. A computer model that takes into account fluctations of the grain critical currents and of the number of grain per strips, has been developed to simulate the resistive transition and to evaluate the noise power spectrum. When the temperature is incresed and reaches its critical value, resistive strips are formed according to a percolative process, giving rise to resistance steps which are at the origin of the noise. The theoretical results obtained by this model are in good agreement, concerning both the shape and intensity of the noise power spectrum, with the experimental data directly measured on the specimen

  2. Effects of α-particle beam irradiation on superconducting properties of thin film MgB2 superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Bum; Duong, Pham van; Ha, Dong Hyup; Oh, Young Hoon; Kang, Won Nam; Chai, Jong Seo [Sungkunkwan Univeversity, Suwon (Korea, Republic of); Hong, Seung Pyo; Kim, Ran Young [Kore Institute of Radiological and Medical Science, Seoul (Korea, Republic of)

    2016-06-15

    Superconducting properties of thin film MgB2 superconductors irradiated with 45 MeV α-particle beam were studied. After the irradiation, enhancement of the critical current density and pinning force was observed, scaling close to strong pinning formula. Double logarithmic plots of the maximum pinning force density with irreversible magnetic field show a power law behavior close to carbon-doped MgB2 film or polycrystals. Variation of normalized pinning force density in the reduced magnetic field suggests scaling formulas for strong pinning mechanism like planar defects. We also observed a rapid decay of critical current density as the vortex lattice constant decreases, due to the strong interaction between vortices and increasing magnetic field.

  3. The microwave surface impedance of MgB2 thin films

    International Nuclear Information System (INIS)

    Purnell, A J; Zhukov, A A; Nurgaliev, T; Lamura, G; Bugoslavsky, Y; Lockman, Z; MacManus-Driscoll, J L; Zhai, H Y; Christen, H M; Paranthaman, M P; Lowndes, D H; Jo, M H; Blamire, M G; Hao, Ling; Gallop, J C; Cohen, L F

    2003-01-01

    In this paper we present the results of measurements of the microwave surface impedance of a powder sample and two films of MgB 2 . The powder sample has a T c = 39 K and the films have T c = 29 K and 38 K. These samples show different temperature dependences of the field penetration depth. Over a period of six months, the film with T c = 38 K degraded to a T c of 35 K. We compare the results on all samples with data obtained elsewhere and discuss the implications as far as is possible at this stage

  4. MgB2 thin-film bolometer for applications in far-infrared instruments on future planetary missions

    International Nuclear Information System (INIS)

    Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Nguyen, L.; Stevenson, T.; Waczynski, A.

    2012-01-01

    A SiN membrane based MgB 2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 2.56 × 10 -13 W/√Hz operating at 30 Hz and a responsivity of 702 kV/W. It is predicted that with the inclusion of a gold black absorber that an optical specific detectivity of 8.3 × 10 10 cm/√Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17-250 μm spectral wavelength range.

  5. Magnetic anisotropy of thin sputtered MgB2 films on MgO substrates in high magnetic fields

    Directory of Open Access Journals (Sweden)

    Savio Fabretti

    2014-03-01

    Full Text Available We investigated the magnetic anisotropy ratio of thin sputtered polycrystalline MgB2 films on MgO substrates. Using high magnetic field measurements, we estimated an anisotropy ratio of 1.35 for T = 0 K with an upper critical field of 31.74 T in the parallel case and 23.5 T in the perpendicular case. Direct measurements of a magnetic-field sweep at 4.2 K show a linear behavior, confirmed by a linear fit for magnetic fields perpendicular to the film plane. Furthermore, we observed a change of up to 12% of the anisotropy ratio in dependence of the film thickness.

  6. MgB2 Thin-Film Bolometer for Applications in Far-Infrared Instruments on Future Planetary Missions

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Stevenson, T.; Waczynski, A.

    2012-01-01

    A SiN membrane based MgB2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 256 fW/square root Hz operating at 30 Hz in the 8.5 - 12.35 micron spectral bandpass. This value corresponds to an electrical specific detectivity of 7.6 x 10(exp 10) cm square root Hz/W. The bolometer shows a measured blackbody (optical) specific detectivity of 8.8 x 10(exp 9) cm square root Hz/W, with a responsivity of 701.5 kV/W and a first-order time constant of 5.2 ms. It is predicted that with the inclusion of a gold black absorber that a blackbody specific detectivity of 6.4 x 10(exp 10) cm/square root Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17 - 250 micron spectral wavelength range.

  7. Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields

    Directory of Open Access Journals (Sweden)

    Andrei E. Surdu

    2011-12-01

    Full Text Available The effect of depositing FeO nanoparticles with a diameter of 10 nm onto the surface of MgB2 thin films on the critical current density was studied in comparison with the case of uncoated MgB2 thin films. We calculated the superconducting critical current densities (Jc from the magnetization hysteresis (M–H curves for both sets of samples and found that the Jc value of FeO-coated films is higher at all fields and temperatures than the Jc value for uncoated films, and that it decreases to ~105 A/cm2 at B = 1 T and T = 20 K and remains approximately constant at higher fields up to 7 T.

  8. Enhanced J c property in nano-SiC doped thin MgB2/Fe wires by a modified in situ PIT process

    International Nuclear Information System (INIS)

    Jiang, C.H.; Nakane, T.; Hatakeyama, H.; Kumakura, H.

    2005-01-01

    A modified in situ PIT process, which included a short time pre-annealing and intermediate drawing step in the conventional in situ PIT process, was employed to fabricate thin round MgB 2 /Fe wires from MgH 2 and B powders. The pores and cracks resulted from the MgH 2 decomposition during the pre-annealing were effectively eliminated by the intermediate drawing step, which subsequently increased the core density and J c property of final heat treated wires. A higher reduction rate after the pre-annealing led to a larger enhancement in J c within this study. The reproducibility of our new process on the J c improvement in MgB 2 wires was confirmed in two series of wires doped with 5 mol% or 10 mol% nano-SiC particles separately

  9. Deposition of MgB2 Thin Films on Alumina-Buffered Si Substrates by using Hybrid Physical-Chemical Vapor Deposition Method

    International Nuclear Information System (INIS)

    Lee, T. G.; Park, S. W.; Seong, W. K.; Huh, J. Y.; Jung, S. G.; Kang, W. N.; Lee, B. K.; An, K. S.

    2008-01-01

    [ MgB 2 ] thin films were fabricated using hybrid physical-chemical vapor deposition (HPCVD) method on silicon substrates with buffers of alumina grown by using atomic layer deposition method. The growth war in a range of temperatures 500 - 600 degrees C and under the reactor pressures of 25 - 50 degrees C. There are some interfacial reactions in the as-grown films with impurities of mostly Mg 2 Si, MgAl 2 O 4 , and other phases. The T c 's of MgB 2 films were observed to be as high as 39 K, but the transition widths were increased with growth temperatures. The magnetization was measured as a function of temperature down to the temperature of 5 K, but the complete Meissner effect was not observed, which shows that the granular nature of weak links is prevailing. The formation of mostly Mg 2 Si impurity in HPCVD process is discussed, considering the diffusion and reaction of Mg vapor with silicon substrates.

  10. MgB2 superconducting wires basics and applications

    CERN Document Server

    2016-01-01

    The compendium gives a complete overview of the properties of MgB2 (Magnesium Diboride), a superconducting compound with a transition temperature of Tc = 39K, from the fundamental properties to the fabrication of multifilamentary wires and to the presentation of various applications. Written by eminent researchers in the field, this indispensable volume not only discusses superconducting properties of MgB2 compounds, but also describes known preparation methods of thin films and of bulk samples obtained under high pressure methods. A unique selling point of the book is the detailed coverage of various applications based on MgB2, starting with MRI magnets and high current cables, cooled by Helium (He) vapor. High current cables cooled by liquid hydrogen are also highlighted as an interesting alternative due to the shrinking He reserves on earth. Other pertinent subjects comprise permanent magnets, ultrafine wires for space applications and wind generator projects.

  11. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  12. Insulator layer formation in MgB2 SIS junctions

    International Nuclear Information System (INIS)

    Shimakage, H.; Tsujimoto, K.; Wang, Z.; Tonouchi, M.

    2005-01-01

    The dependence of current-voltage characteristics on thin film deposition conditions was investigated using MgB 2 /AlN/NbN SIS junctions. By increasing the substrate temperature in AlN insulator deposition, the current density decreased and the normal resistance increased. The results indicated that an additional insulator layer between the MgB 2 and AlN formed, either before or during the AlN deposition. The thickness of the additional insulator layer was increased with an increase in the AlN deposition temperature. From the dependence of current density on the thickness of AlN in low temperature depositions, the thickness of the additional insulator layer was estimated to be 1-1.5 nm when the AlN insulator was deposited from 0.14 to 0.7 nm. Moreover, with the current density of MgB 2 /AlN/MgB 2 SIS junctions, further insulator layer formation was confirmed

  13. Concurrent doping effect of Ti and nano-diamond on flux pinning of MgB2

    International Nuclear Information System (INIS)

    Zhao, Y.; Ke, C.; Cheng, C.H.; Feng, Y.; Yang, Y.; Munroe, P.

    2010-01-01

    Nano-diamond and titanium concurrently doped MgB 2 nanocomposites have been prepared by solid state reaction method. The effects of carbon and Ti concurrent doping on J c -H behavior and pinning force scaling features of MgB 2 have been investigated. Although T c was slightly depressed, J c of MgB 2 have been significantly improved by the nano-diamond doping, especially in the high field region. In the mean time, the J c value in low field region is sustained though concurrent Ti doping. Microstructure analysis reveals that when nano-diamond was concurrently doped with titanium in MgB 2 , a unique nanocomposite in which TiB 2 forms a thin layer surrounding MgB 2 grains whereas nano-diamond particles were wrapped inside the MgB 2 grains. Besides, nano-diamond doping results in a high density stress field in the MgB 2 samples, which may take responsibility for the Δκ pinning behavior in the carbon-doped MgB 2 system.

  14. Application of superconducting magnesium diboride (MGB2) in superconducting radio frequency cavities

    Science.gov (United States)

    Tan, Teng

    The superconductivity in magnesium diboride (MgB2) was discovered in 2001. As a BCS superconductor, MgB2 has a record-high Tc of 39 K, high Jc of > 107 A/cm2 and no weak link behavior across the grain boundary. All these superior properties endorsed that MgB2 would have great potential in both power applications and electronic devices. In the past 15 years, MgB2 based power cables, microwave devices, and commercial MRI machines emerged and the next frontier are superconducting radio frequency (SRF) cavities. SRF cavities are one of the leading accelerator technologies. In SRF cavities, applied microwave power generates electrical fields that accelerate particle beams. Compared with other accelerator techniques, SRF cavity accelerators feature low loss, high acceleration gradients and the ability to accelerate continuous particle beams. However, current SRF cavities are made from high-purity bulk niobium and work at 2 K in superfluid helium. The construction and operational cost of SRF cavity accelerators are very expensive. The demand for SRF cavity accelerators has been growing rapidly in the past decade. Therefore, a lot of effort has been devoted to the enhancement of the performance and the reduction of cost of SRF cavities. In 2010, an acceleration gradient of over 50 MV/m has been reported for a Nb-based SRF cavity. The magnetic field at the inner surface of such a cavity is ~ 1700 Oe, which is close to the thermodynamic critical field of Nb. Therefore, new materials and technologies are required to raise the acceleration gradient of future SRF cavity accelerators. Among all the proposed approaches, using MgB2 thin films to coat the inner surface of SRF cavities is one of the promising tactics with the potential to raise both the acceleration gradient and the operation temperature of SRF cavity accelerators. In this work, I present my study on MgB2 thin films for their application in SRF cavities. C-epitaxial MgB2 thin films grown on SiC(0001) substrates

  15. Fluctuations on the magnetic response of superconducting thin films of Nb and MgB2 - Percolation limit of vortex mobility

    International Nuclear Information System (INIS)

    Colauto, F.; Orgiani, P.; Xi, X.X.; Kang, W.N.; Choi, E.M.; Kim, H.J.; Lee, S.I.; Patino, E.; Blamire, M.G.; Ortiz, W.A.

    2007-01-01

    Application of a magnetic field of sufficient intensity orthogonal to superconducting thin films may produce dendritic patterns, where penetrated and Meissner regions coexist. The dendritic mode can be detected by AC-susceptibility measurements, since fingers penetrated by the magnetic field act as intergranular material. Measurements of the AC-susceptibility have the conventional shape for smaller values of magnitude and frequency of the excitation field. However, for frequencies in the vicinity of 1 kHz and AC-fields around 3 Oe and above, the curve deviates from its canonical behavior and fluctuates, the excursion becoming wider as the amplitude is increased. In this contribution we present results of a systematic study conducted to determine the threshold between smooth and fluctuating regimes of the magnetic response of the film, which is interpreted as the percolation limit of vortex mobility throughout the sample

  16. Texture-dependent twin formation in nanocrystalline thin Pd films

    International Nuclear Information System (INIS)

    Wang, B.; Idrissi, H.; Shi, H.; Colla, M.S.; Michotte, S.; Raskin, J.P.; Pardoen, T.; Schryvers, D.

    2012-01-01

    Nanocrystalline Pd films were produced by electron-beam evaporation and sputter deposition. The electron-beam-evaporated films reveal randomly oriented nanograins with a relatively high density of growth twins, unexpected in view of the high stacking fault energy of Pd. In contrast, sputter-deposited films show a clear 〈1 1 1〉 crystallographic textured nanostructure without twins. These results provide insightful information to guide the generation of microstructures with enhanced strength/ductility balance in high stacking fault energy nanocrystalline metallic thin films.

  17. Electronic structure of MgB2

    Indian Academy of Sciences (India)

    Abstract. Results of ab initio electronic structure calculations on the compound MgB2 using the. FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, c/a ratio and the bulk modulus, all of which are in excellent ...

  18. Electronic structure of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound MgB2 using the FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  19. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film .... The electrical resistivity of CdTe films was studied in air. Figure 3 shows the variation of log ...

  20. MICROSTRUCTURE OF SUPERCONDUCTING MGB(2).

    Energy Technology Data Exchange (ETDEWEB)

    ZHU,Y.; LI,Q.; WU,L.; VOLKOV,V.; GU,G.; MOODENBAUGH,A.R.

    2001-07-12

    Recently, Akimitsu and co-workers [1] discovered superconductivity at 39 K in the intermetallic compound MgB{sub 2}. This discovery provides a new perspective on the mechanism for superconductivity. More specifically, it opens up possibilities for investigation of structure/properties in a new class of materials. With the exceptions of the cuprate and C{sub 60} families of compounds, MgB{sub 2} possesses the highest superconducting transition temperature T{sub c}. Its superconductivity appears to follow the BCS theory, apparently being mediated by electron-phonon coupling. The coherence length of MgB{sub 2} is reported to be longer than that of the cuprates [2]. In contrast to the cuprates, grain boundaries are strongly coupled and current density is determined by flux pinning [2,3]. Presently, samples of MgB{sub 2} commonly display inhomogeneity and porosity on the nanoscale, and are untextured. In spite of these obstacles, magnetization and transport measurements show that polycrystalline samples may carry large current densities circulating across many grains [3,4]. Very high values of critical current densities and critical fields have been recently observed in thin films [5,6]. These attributes suggest possible large scale and electronic applications. The underlying microstructure can be intriguing, both in terms of basic science and in applied areas. Subsequent to the discovery, many papers were published [1-13], most dealing with synthesis, physical properties, and theory. There have yet been few studies of microstructure and structural defects [11, 14]. A thorough understanding of practical superconducting properties can only be developed after an understanding of microstructure is gained. In this work we review transmission electron microscopy (TEM) studies of sintered MgB{sub 2} pellets [14]. Structural defects, including second phase particles, dislocations, stacking faults, and grain boundaries, are analyzed using electron diffraction, electron

  1. MgB2 ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling

    Directory of Open Access Journals (Sweden)

    Narendra Acharya

    2016-08-01

    Full Text Available In this letter, we report on the structural and transport measurements of ultrathin MgB2 films grown by hybrid physical-chemical vapor deposition followed by low incident angle Ar ion milling. The ultrathin films as thin as 1.8 nm, or 6 unit cells, exhibit excellent superconducting properties such as high critical temperature (Tc and high critical current density (Jc. The results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB2 at the 2D limit.

  2. In vitro behaviour of nanocrystalline silver-sputtered thin films

    International Nuclear Information System (INIS)

    Piedade, A P; Vieira, M T; Martins, A; Silva, F

    2007-01-01

    Silver thin films were deposited with different preferential orientations and special attention was paid to the bioreactivity of the surfaces. The study was essentially focused on the evaluation of the films by x-ray diffraction (XRD), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron probe microanalysis (EPMA) and contact angle measurements. The deposited thin films were characterized before and after immersion in S-enriched simulated human plasma in order to estimate the influence of the preferential crystallographic orientation on the in vitro behaviour. Silver thin films with and without (111) preferential crystallographic orientation were deposited by r.f. magnetron sputtering to yield nanocrystalline coatings, high compact structures, very hydrophobic surfaces and low roughness. These properties reduce the chemisorption of reactive species onto the film surface. The in vitro tests indicate that silver thin films can be used as coatings for biomaterials applications

  3. Electrochromic properties of nanocrystalline MoO3 thin films

    International Nuclear Information System (INIS)

    Hsu, C.-S.; Chan, C.-C.; Huang, H.-T.; Peng, C.-H.; Hsu, W.-C.

    2008-01-01

    Electrochromic MoO 3 thin films were prepared by a sol-gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO 3 thin films. The effects of annealing temperatures ranging from 100 o C to 500 o C were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO 4 /propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO 3 thin films heat-treated at 350 o C varied from 80% to 35% at λ = 550 nm (ΔT = ∼ 45%) and from 86% to 21% at λ ≥ 700 nm (ΔT = ∼ 65%) after coloration. Films heat-treated at 350 deg. C exhibited the best electrochromic properties in the present study

  4. Nanocrystalline CdTe thin films by electrochemical synthesis

    Directory of Open Access Journals (Sweden)

    Ramesh S. Kapadnis

    2013-03-01

    Full Text Available Cadmium telluride thin films were deposited onto different substrates as copper, Fluorine-doped tin oxide (FTO, Indium tin oxide (ITO, Aluminum and zinc at room temperature via electrochemical route. The morphology of the film shows the nanostructures on the deposited surface of the films and their growth in vertical direction. Different nanostructures developed on different substrates. The X-ray diffraction study reveals that the deposited films are nanocrystalline in nature. UV-Visible absorption spectrum shows the wide range of absorption in the visible region. Energy-dispersive spectroscopy confirms the formation of cadmium telluride.

  5. Stacking fault-mediated ultrastrong nanocrystalline Ti thin films

    Science.gov (United States)

    Wu, K.; Zhang, J. Y.; Li, G.; Wang, Y. Q.; Cui, J. C.; Liu, G.; Sun, J.

    2017-11-01

    In this work, we prepared nanocrystalline (NC) Ti thin films with abundant stacking faults (SFs), which were created via partial dislocations emitted from grain boundaries and which were insensitive to grain sizes. By employing the nanoindentation test, we investigated the effects of SFs and grain sizes on the strength of NC Ti films at room temperature. The high density of SFs significantly strengthens NC Ti films, via dislocation-SF interactions associated with the reported highest Hall-Petch slope of ˜20 GPa nm1/2, to an ultrahigh strength of ˜4.4 GPa, approaching ˜50% of its ideal strength.

  6. The radiation response of mesoporous nanocrystalline zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Ayelén M.; Alurralde, Martin A. [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Giménez, Gustavo [Instituto Nacional de Tecnología Industrial - CMNB, Av. General Paz 5445, 1650 San Martín, Provincia de Buenos Aires (Argentina); Luca, Vittorio, E-mail: vluca@cnea.gov.ar [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina)

    2016-12-15

    The next generation of nuclear systems will require materials capable of withstanding hostile chemical, physical and radiation environments over long time-frames. Aside from its chemical and physical stability, crystalline zirconia is one of the most radiation tolerant materials known. Here we report the first ever study of the radiation response of nanocrystalline and mesoporous zirconia and Ce{sup 3+}-stabilized nanocrystalline zirconia (Ce{sub 0.1}Zr{sub 0.9}O{sub 2}) thin films supported on silicon wafers. Zirconia films prepared using the block copolymer Brij-58 as the template had a thickness of around 60–80 nm. In the absence of a stabilizing trivalent cation they consisted of monoclinic and tetragonal zirconia nanocrystals with diameters in the range 8–10 nm. Films stabilized with Ce{sup 3+} contained only the tetragonal phase. The thin films were irradiated with iodine ions of energies of 70 MeV and 132 keV at low fluences (10{sup 13} - 10{sup 14} cm{sup −2}) corresponding to doses of 0.002 and 1.73 dpa respectively, and at 180 keV and high fluences (2 × 10{sup 16} cm{sup −2}) corresponding to 82.4 dpa. The influence of heavy ion irradiation on the nanocrystalline structure was monitored through Rietveld analysis of grazing incidence X-ray diffraction (GIXRD) patterns recorded at angles close to the critical angle to ensure minimum contribution to the diffraction pattern from the substrate. Irradiation of the mesoporous nanocrystalline zirconia thin films with 70 MeV iodine ions, for which electronic energy loss is dominant, resulted in slight changes in phase composition and virtually no change in crystallographic parameters as determined by Rietveld analysis. Iodine ion bombardment in the nuclear energy loss regime (132–180 keV) at low fluences did not provoke significant changes in phase composition or crystallographic parameters. However, at 180 keV and high fluences the monoclinic phase was totally eliminated from the GIXRD

  7. Formation of polycrystalline MgB2 synthesized by powder in sealed tube method with different initial boron phase

    Science.gov (United States)

    Yudanto, Sigit Dwi; Imaduddin, Agung; Kurniawan, Budhy; Manaf, Azwar

    2018-04-01

    Magnesium diboride, MgB2 is a new high critical temperature superconductor that discovered in the beginning of the 21st century. The MgB2 has a simple crystal structure and a high critical temperature, which can be manufactured in several forms like thin films, tapes, wires including bulk in the large scale. For that reason, the MgB2 has good prospects for various applications in the field of electronic devices. In the current work, we have explored the synthesis of MgB2 polycrystalline using powder in a sealed tube method. Different initial boron phase for the synthesized of MgB2 polycrystalline were used. These were, in addition to magnesium powders, crystalline boron, amorphous boron and combination both of them were respectively fitted in the synthesis. The raw materials were mixed in a stoichiometric ratio of Mg: B=1:2, ground using agate mortar, packed into stainless steel SS304. The pack was then sintered at temperature of 800°C for 2 hours in air atmosphere. Phase formation of MgB2 polycrystalline in difference of initial boron phase was characterized using XRD and SEM. Referring to the diffraction pattern and microstructure observation, MgB2 polycrystalline was formed, and the formation was effective when using the crystalline Mg and fully amorphous B as the raw materials. The critical temperature of the specimen was evaluated by the cryogenic magnet. The transition temperature of the MgB2 specimen synthesized using crystalline magnesium and full amorphous boron is 42.678 K (ΔTc = 0.877 K).

  8. Multiband model for tunneling in MgB2 junctions

    NARCIS (Netherlands)

    Brinkman, Alexander; Golubov, Alexandre Avraamovitch; Rogalla, Horst; Dolgov, O.V.; Kortus, J.; Kong, Y.; Jepsen, O.; Andersen, O.K.

    2002-01-01

    A theoretical model for quasiparticle and Josephson tunneling in multiband superconductors is developed and applied to MgB2-based junctions. The gap functions in different bands in MgB2 are obtained from an extended Eliashberg formalism, using the results of band structure calculations. The

  9. Magnetotransport in nanocrystalline SmB6 thin films

    Directory of Open Access Journals (Sweden)

    Jie Yong

    2015-07-01

    Full Text Available SmB6 has been predicted to be a prototype of topological Kondo insulator (TKI but its direct experimental evidence as a TKI is still lacking to date. Here we report on our search for the signature of a topological surface state and investigation of the effect of disorder on transport properties in nanocrystalline SmB6 thin films through longitudinal magnetoresistance and Hall coefficient measurements. The magnetoresistance (MR at 2 K is positive and linear (LPMR at low field and become negative and quadratic at higher field. While the negative part is understood from the reduction of the hybridization gap due to Zeeman splitting, the positive dependence is similar to what is observed in other topological insulators (TI. We conclude that the LPMR is a characteristic of TI and is related to the linear dispersion near the Dirac cone. The Hall resistance shows a sign change around 50K. It peaks and becomes nonlinear around 10 K then decreases below 10 K. This indicates that carriers with opposite signs emerge below 50 K. These properties indicate that the surface states are robust and probably topological in our nanocrystalline films.

  10. Thickness dependence of J_c (0) in MgB_2 films

    International Nuclear Information System (INIS)

    Chen, Yiling; Yang, Can; Jia, Chunyan; Feng, Qingrong; Gan, Zizhao

    2016-01-01

    Highlights: • A serial of MgB_2 superconducting films from 10 nm to 8 µm have been prepared. • T_c and J_c (5 K, 0 T) of films are high. • J_c (5 K, 0 T) reaches its maximum 2.3 × 10"8 A cm"−"2 for 100 nm films. • The relationship between thickness and J_c has been discussed in detail. - Abstract: MgB_2 superconducting films, whose thicknesses range from 10 nm to 8 µm, have been fabricated on SiC substrates by hybrid physical–chemical vapor deposition (HPCVD) method. It is the first time that the T_c and the J_c of MgB_2 films are studied on such a large scale. It is found that with the increasing of thickness, T_c elevates first and then keeps roughly stable except for some slight fluctuations, while J_c (5 K, 0 T) experiences a sharp increase followed by a relatively slow fall. The maximum J_c (5 K, 0 T) = 2.3 × 10"8 A cm"−"2 is obtained for 100 nm films, which is the experimental evidence for preparing high-quality MgB_2 films by HPCVD method. Thus, this work may provide guidance on choosing the suitable thickness for applications. Meanwhile, the films prepared by us cover ultrathin films, thin films and thick films, so the study on them will bring a comprehensive understanding of MgB_2 films.

  11. Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vinodgopal, K [Department of Chemistry, Indiana University Northwest, Gary, Indiana (United States); Kamat, Prashant V [Notre Dame Radiation Laboratory, Notre Dame, Indiana (United States)

    1995-08-01

    The principle and usefulness of electrochemically assisted photocatalysis has been illustrated with the examples of 4-chlorophenol and Acid Orange 7 degradation in aqueous solutions. Thin nanocrystalline semiconductor films coated on a conducting glass surface when employed as a photoelectrode in an electrochemical cell are effective for degradation of organic contaminants. The degradation rate can be greatly improved even in the absence of oxygen by applying an anodic bias to the TiO{sub 2} film electrodes. A ten-fold enhancement in the degradation rate was observed when TiO{sub 2} particles were coupled with SnO{sub 2} nanocrystallites at an applied bias potential of 0.83 V versus SCE

  12. Defect structure of ultrafine MgB2 nanoparticles

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Repp, Sergej; Erdem, Emre; Thomann, Ralf; Acar, Selçuk

    2014-01-01

    Defect structure of MgB 2 bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB 2 , namely, boron 95 (purity 95%–97%, <1.5 μm) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB 2 , respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB 2 in comparison with bulk MgB 2 . Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB 2 can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB 2 material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications

  13. Pulse laser irradiation into superconducting MgB2 detector

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Miki, Shigehito; Satoh, Kazuo; Yotsuya, Tsutomu; Shimakage, Hisashi; Wang, Zhen; Okayasu, Satoru; Katagiri, Masaki; Machida, Masahiko; Kato, Masaru; Ishida, Takekazu

    2005-01-01

    We performed 20-ps pulse laser irradiation experiments on a MgB 2 neutron detector to know a thermal-relaxation process for designing a MgB 2 neutron detector. The membrane-type structured MgB 2 device was fabricated to minimize the heat capacity of sensing part of a detector as well as to enhance its sensitivity. We successfully observed a thermal-relaxation signal resulting from pulse laser irradiation by developing a detection circuit. The response time was faster than 1 μs, meaning that the detector would be capable of counting neutrons at a rate of more than 10 6 events per second

  14. Grain Growth in Nanocrystalline Mg-Al Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Venkata Rama Ses; Kovarik, Libor; Moser, Trevor H.; Evans, James E.; Browning, Nigel D.

    2017-10-05

    An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg - Al thin films containing ~10 wt.% Al and with 14.5 nm average grain size were produced by magnetron-sputtering and subjected to heat-treatments. The grain growth evolution in the early stages of heat treatment at 423 K (150 °C), 473 K (200 °C) and 573K (300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7±2 and the activation energy for grain growth was 31.1±13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.

  15. MgB2 energy gap determination by scanning tunnelling spectroscopy

    International Nuclear Information System (INIS)

    Heitmann, T W; Bu, S D; Kim, D M; Choi, J H; Giencke, J; Eom, C B; Regan, K A; Rogado, N; Hayward, M A; He, T; Slusky, J S; Khalifah, P; Haas, M; Cava, R J; Larbalestier, D C; Rzchowski, M S

    2004-01-01

    We report scanning tunnelling spectroscopy (STS) measurements of the gap properties of both ceramic MgB 2 and c-axis oriented epitaxial MgB 2 thin films. Both show a temperature dependent zero bias conductance peak and evidence for two superconducting gaps. We report tunnelling spectroscopy of superconductor-insulator-superconductor (S-I-S) junctions formed in two ways in addition to normal metal-insulator-superconductor (N-I-S) junctions. We find a gap δ = 2.2-2.8 meV, with spectral features and temperature dependence that are consistent between S-I-S junction types. In addition, we observe evidence of a second, larger gap, δ 7.2 meV, consistent with a proposed two-band model

  16. Quench Property of Twisted-Pair MgB$_2$ Superconducting Cables in Helium Gas

    CERN Document Server

    Spurrell, J; Falorio, I; Pelegrin, J; Ballarino, A; Yang, Y

    2015-01-01

    CERN's twisted-pair superconducting cable is a novel design which offers filament transposition, low cable inductance and is particularly suited for tape conductors such as 2G YBCO coated conductors, Ag-sheathed Bi2223 tapes and Ni/Monel-sheathed MgB2 tapes. A typical design of such twistedpair cables consists of multiple superconducting tapes intercalated with thin copper tapes as additional stabilizers. The copper tapes are typically not soldered to the superconducting tapes so that sufficient flexibility is retained for the twisting of the tape assembly. The electrical and thermal contacts between the copper and superconducting tapes are an important parameter for current sharing, cryogenic stability and quench propagation. Using an MgB2 twisted-pair cable assembly manufactured at CERN, we have carried out minimum quench energy (MQE) and propagation velocity (vp) measurements with point-like heat deposition localized within a tape. Furthermore, different contacts between the copper and superconductor aroun...

  17. Fabrication of superconducting MgB2 nanostructures by an electron beam lithography-based technique

    Science.gov (United States)

    Portesi, C.; Borini, S.; Amato, G.; Monticone, E.

    2006-03-01

    In this work, we present the results obtained in fabrication and characterization of magnesium diboride nanowires realized by an electron beam lithography (EBL)-based method. For fabricating MgB2 thin films, an all in situ technique has been used, based on the coevaporation of B and Mg by means of an e-gun and a resistive heater, respectively. Since the high temperatures required for the fabrication of good quality MgB2 thin films do not allow the nanostructuring approach based on the lift-off technique, we structured the samples combining EBL, optical lithography, and Ar milling. In this way, reproducible nanowires 1 μm long have been obtained. To illustrate the impact of the MgB2 film processing on its superconducting properties, we measured the temperature dependence of the resistance on a nanowire and compared it to the original magnesium diboride film. The electrical properties of the films are not degraded as a consequence of the nanostructuring process, so that superconducting nanodevices may be obtained by this method.

  18. Intrinsic flux pinning mechanisms in different thickness MgB2 films

    Directory of Open Access Journals (Sweden)

    C. Yang

    2017-03-01

    Full Text Available MgB2 films in four thickness (60 nm, 200nm, 600nm and 1μm have been fabricated by hybrid physical–chemical vapor deposition technique (HPCVD. By measuring the magnetization hysteresis loops and the resistivity, we have obtained the transport and magnetic properties of the four films. After that, the pinning mechanisms in them were discussed. Comparing the pinning behaviors in these ultrathin films, thin films and thick films, it was found that there exist different pinning types in MgB2 films of different thickness. In combination with the study of the surface morphology, cross-section and XRD results, we concluded that MgB2 films had different growth modes in different growth stages. For thin films, films grew along c axis, and grain boundaries acted as surface pinning. While for thick films, films grew along c axis at first, and then changed to a-b axis growth. As a result, the a-b axis grains acted as strong volume pinning.

  19. Pseudopotential approach to superconductivity in MgB2

    International Nuclear Information System (INIS)

    Sharma, K.S.; Bhargava, Nidhi; Jain, Ritu; Goyal, Varsha; Sharma, Ritu; Sharma, Smita

    2010-01-01

    Superconductivity in MgB 2 has been re-examined in BCS-Eliashberg framework by employing Mc-Millan's T c -equation and form factors of MgB 2 computed from the form factors of component metals (Model-I). The empty core model pseudopotential due to Ashcroft and random phase approximation form of dielectric screening due to Gellmann and Brueckner are used in the present work. An excellent agreement between the present values and other theoretically computed values of T c and with the relevant experimental data for MgB 2 confirms the validity of the present approach. The explicit dependence of λ and T c on the isotopic masses of Mg and B, as revealed from the present work, confirms the role of lattice vibrations in the superconducting behaviour of MgB 2 and the high value of T c in it may be attributed to the phonon mediated e-e interaction coupled with higher values of phonon frequencies due to light mass of B atoms. It has also been observed that the pseudo-atom model (Model-II) with appropriate choice of the potential parameter r c successfully explains high value of T c and isotope effect in MgB 2 , confirming the prominent role played by electron-phonon interaction in the high-T c superconductivity observed in MgB 2 . The isotope effect exponent α-values obtained from the two models are in complete agreement with each other and the present value α = 0.46 is also much closer to the BCS value of 0.5. Interaction strength N 0 V values obtained from the two models are also in perfect agreement with each other and the present value N 0 V = 0.48 suggests that MgB 2 is a strong coupling superconductor. (author)

  20. Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films

    DEFF Research Database (Denmark)

    Esposito, Vincenzo; Ni, D. W.; Gualandris, Fabrizio

    2017-01-01

    Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical...

  1. Dry cryomagnetic system with MgB2 coil

    Science.gov (United States)

    Abin, D. A.; Mineev, N. A.; Osipov, M. A.; Pokrovskii, S. V.; Rudnev, I. A.

    2017-12-01

    MgB2 may be the future superconducting wire material for industrial magnets due to it’s higher operation temperature and potentially lower cost than low temperature superconductors (LTS) have. We designed a compact cryomagnetic system with the use of MgB2. The possibility of creating a magnet with a central field of 5 T from a commercial MgB2 wire by the “react and wound” method was investigated. The magnetic system is cooled by a cryocooler through a copper bus. The magnet has a warm bore diameter of 4 cm. The design of a magnet consisting of three concentric solenoids is proposed: an internal one of high-temperature superconductor (HTS), an average of MgB2, and an external of NbTi. The operating current of the system is 100 A. Two pairs of current leads are used. A separate pair of current leads for power supplying NbTi coil allows testing of MgB2 and HTS coils in an external field. The load curves for each of the magnets are calculated.

  2. Nanocrystalline magnetite thin films grown by dual ion-beam sputtering

    International Nuclear Information System (INIS)

    Prieto, Pilar; Ruiz, Patricia; Ferrer, Isabel J.; Figuera, Juan de la; Marco, José F.

    2015-01-01

    Highlights: • We have grown tensile and compressive strained nanocrystalline magnetite thin films by dual ion beam sputtering. • The magnetic and thermoelectric properties can be controlled by the deposition conditions. • The magnetic anisotropy depends on the crystalline grain size. • The thermoelectric properties depend on the type of strain induced in the films. • In plane uniaxial magnetic anisotropy develops in magnetite thin films with grain sizes ⩽20 nm. - Abstract: We have explored the influence of an ion-assisted beam in the thermoelectric and magnetic properties of nanocrystalline magnetite thin films grown by ion-beam sputtering. The microstructure has been investigated by XRD. Tensile and compressive strained thin films have been obtained as a function of the parameters of the ion-assisted beam. The evolution of the in-plane magnetic anisotropy was attributed to crystalline grain size. In some films, magneto-optical Kerr effect measurements reveal the existence of uniaxial magnetic anisotropy induced by the deposition process related with a small grain size (⩽20 nm). Isotropic magnetic properties have observed in nanocrystalline magnetite thin film having larger grain sizes. The largest power factor of all the films prepared (0.47 μW/K 2 cm), obtained from a Seebeck coefficient of −80 μV/K and an electrical resistivity of 13 mΩ cm, is obtained in a nanocrystalline magnetite thin film with an expanded out-of-plane lattice and with a grain size ≈30 nm

  3. Microwave absorption studies of MgB2 superconductor

    Indian Academy of Sciences (India)

    band (9–. 10 GHz) spectrometer. Both polycrystalline pellet and single-grain MgB2, having nearly the same Tc (∼ 39 K) and same size (3×2×1 mm3), were used in the present investigations. Low field modulated microwave absorption signals ...

  4. Electronic structure and superconductivity of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound, MgB2, using the FPLAPW method employing GGA for the exchange–correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  5. Preparation and characterization of MgB2 superconductor

    Indian Academy of Sciences (India)

    2Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. Abstract. The MgB2 superconductor, synthesized using solid-state and liquid-phase sintering methods, have been characterized for various properties. The upper critical field, irreversibility line and critical current density have been ...

  6. Microwave absorption studies of MgB 2 superconductor

    Indian Academy of Sciences (India)

    Microwave absorption studies have been carried out on MgB2 superconductor using a standard X-band EPR spectrometer. The modulated low-field microwave absorption signals recorded for polycrystalline (grain size ∼ 10m) samples suggested the absence of weak-link character. The field dependent direct microwave ...

  7. Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films

    International Nuclear Information System (INIS)

    Hsu, C.-S.; Lin, C.-K.; Chan, C.-C.; Chang, C.-C.; Tsay, C.-Y.

    2006-01-01

    TiO 2 materials possessing not only photocatalytic but also electrochromic properties have attracted many research and development interests. Though WO 3 exhibits excellent electrochromic properties, the much higher cost and water-sensitivity of WO 3 as compared with the TiO 2 may restrict the practical application of WO 3 materials. In the present study, the feasibility of preparing nanocrystalline porous TiO 2 /WO 3 composite thin films was investigated. Precursors of sols TiO 2 and/or WO 3 and polystyrene microspheres were used to prepare nanocrystalline pure TiO 2 , WO 3 , and composite TiO 2 /WO 3 thin films by spin coating. The spin-coated thin films were amorphous and, after heat treating at a temperature of 500 o C, nanocrystalline TiO 2 , TiO 2 /WO 3 , and WO 3 thin films with or without pores were prepared successfully. The heat-treated thin films were colorless and coloration-bleaching phenomena can be observed during cyclic voltammetry tests. The heat-treated thin films exhibited good reversible electrochromic behavior while the porous TiO 2 /WO 3 composite film exhibited improved electrochromic properties

  8. Recent developments in melt processed Gd-123 and MgB2 materials at RTRI

    International Nuclear Information System (INIS)

    Muralidhar, M.; Fukumoto, Y.; Ishihara, A.; Suzuki, K.; Tomita, M.; Koblischka, M.R.; Yamamoto, A.; Kishio, K.

    2014-01-01

    Highlights: •Large size Gd-123 bulk material grown in air, using novel thin film Nd-123 seeds grown on MgO crystals. •Quality and uniformity of the Gd-123 materials are excellent. •Batch processed Gd-123 material was used for construction of chilled Maglev vehicle. •MgB 2 bulks can be utilized around 20 K similarly to the Gd-123 material at 77 K. -- Abstract: In this contribution we will report on the current status, recent developments in GdBa 2 Cu 3 O y “Gd-123” and MgB 2 material processing, characterization, and applications at the Railway Technical Research Institute (RTRI). Batch-processing of Gd-123 bulk material grown in air was performed using novel thin film Nd-123 seeds grown on MgO crystals. In this way, we are able to fabricate materials with good quality, and uniform performance. We examined the technology of the uniform performance of the large 45 mm diameter, single grain Gd-123 bulks for use in application of NMR. For this purpose, four 5 mm thick pieces are cut vertically from a single grain Gd-123 material and the magnetic field distribution is measured using a scanning hall sensor. We found that all four pieces are single domain and exhibit a quite uniform field distribution. Furthermore, the batch-processed bulk materials are used for the construction of a chilled Maglev vehicle. On the other hand, to optimize the trapped field performance of bulk MgB 2 material, several samples were prepared by solid state reaction at different temperatures ranging from 750 to 950 °C in pure argon atmosphere. X-ray diffraction results indicated that single phase and homogenous MgB 2 bulks are produced when sintering them around 775 °C. Further, atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated that an uniform grain size results by controlling the processing temperature. So, higher trapped fields can be achieved in sintered MgB 2 material

  9. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    Science.gov (United States)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  10. A chemical route to room-temperature synthesis of nanocrystalline TiO2 thin films

    International Nuclear Information System (INIS)

    Pathan, Habib M.; Kim, Woo Young; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    A lot of methods are developed for the deposition of TiO 2 thin films; however, in each of these methods as-deposited films are amorphous and need further heat treatment at high temperature. In the present article, a chemical bath deposition (CBD) method was used for the preparation of TiO 2 thin films. We investigated nanocrystalline TiO 2 thin films using CBD at room temperature onto glass and ITO coated glass substrate. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The chemically synthesized films were nanocrystalline and composed of crystal grains of 2-3 nm

  11. A new approach to MgB2 superconducting magnet fabrication

    International Nuclear Information System (INIS)

    Miyazoe, A; Ando, T; Wada, H; Abe, H; Hirota, N; Sekino, M

    2008-01-01

    Fabrication of MgB 2 -based superconducting magnets has been attempted by a new approach using film coated on symmetric tubes. Superconducting MgB 2 films have been prepared on iron substrates by electroplating in molten electrolytes. The critical current (I c ) of the MgB 2 electroplating films at 4.2 K and at self-field was 15 A on the basis of 1 μV/cm of I c criterion. A model calculation has shown that MgB 2 -based superconducting magnets based on MgB 2 electroplating films have the potential to generate magnetic fields over 0.5 T

  12. Active Protection of an MgB2 Test Coil

    Science.gov (United States)

    Park, Dong Keun; Hahn, Seungyong; Bascuñán, Juan; Iwasa, Yukikazu

    2011-01-01

    This paper presents results of a study, experimental and computational, of a detect-and-activate-the-heater protection technique applied to a magnesium diboride (MgB2) test coil operated in semi-persistent mode. The test coil with a winding ID of 25 cm and wound with ~500-m long reacted MgB2 wire was operated at 4.2 K immersed in a bath of liquid helium. In this active technique, upon the initiation of a “hot spot” of a length ~10 cm, induced by a “quench heater,” a “protection heater” (PH) of ~600-cm long planted within the test coil is activated. The normal zone created by the PH is large enough to absorb the test coil’s entire initial stored energy and still keeps the peak temperature within the winding below ~260 K. PMID:22081754

  13. Electromagnetic densification of MgB2/Cu wires

    International Nuclear Information System (INIS)

    Woźniak, M; Glowacki, B A

    2014-01-01

    Electromagnetic compaction of in situ MgB 2 /Cu wire has been achieved using a custom-built 200 J device. The monofilament core packing density was increased by 8% and up to 31% for unreacted and reacted wires respectively. The higher density of the MgB 2 core resulted in a critical current density increase of up to 75% in comparison to that for cold-drawn-only wire. Applying this treatment to a wire with Cu powder additions to the core and with an optimized heat treatment resulted in one of the highest ever reported values of J c for MgB 2 /Cu wires of 6.83 × 10 3  A cm −2 at 4.2 K and 6 T. (paper)

  14. Observation of pseudogap in MgB2

    Science.gov (United States)

    Patil, S.; Medicherla, V. R. R.; Ali, Khadiza; Singh, R. S.; Manfrinetti, P.; Wrubl, F.; Dhar, S. K.; Maiti, Kalobaran

    2017-11-01

    We investigate the electronic structure of a specially prepared highly dense conventional high temperature superconductor, MgB2, employing high resolution photoemission spectroscopy. The spectral evolution close to the Fermi energy is commensurate to BCS descriptions as expected. However, the spectra in the wider energy range reveal the emergence of a pseudogap much above the superconducting transition temperature indicating an apparent departure from the BCS scenario. The energy scale of the pseudogap is comparable to the energy of the E2g phonon mode responsible for superconductivity in MgB2 and the pseudogap can be attributed to the effect of electron-phonon coupling on the electronic structure. These results reveal a scenario of the emergence of the superconducting gap within an electron-phonon coupling induced pseudogap and have significant implications in the study of high temperature superconductors.

  15. Investigation of pinning in MgB2 superconductors

    International Nuclear Information System (INIS)

    Mohammad, S.; Reissner, M.; Steiner, W.; Bauer, E.; Giovannini, M.

    2006-01-01

    Full text: The pinning behaviour of bulk MgB 2 superconductors is peculiar in many respects. Pinning seems to be stronger than in classical high T C materials and there seems to be no weak link problem in these compounds, giving hope to produce bulk samples and wires with current densities appropriate for technical applications. But, although many studies concerning the pinning behaviour in this compound appeared in recent years, the results are still contradictory. In the present work we present results of an investigation of the pinning behaviour by magnetic relaxation measurements of three MgB 2 samples: a pure one, a sample with 8 at% Al substitution and a sample with 10 wt% of SiC admixture. A comparison of different analyses methods is given. (author)

  16. Measurement of the penetration depth and coherence length of MgB2 in all directions using transmission electron microscopy

    DEFF Research Database (Denmark)

    Loudon, J. C.; Yazdi, Sadegh; Kasama, Takeshi

    2015-01-01

    We demonstrate that images of flux vortices in a superconductor taken with a transmission electron microscope can be used to measure the penetration depth and coherence length in all directions at the same temperature and magnetic field. This is particularly useful for MgB2, where these quantities...... vary with the applied magnetic field and values are difficult to obtain at low field or in the c direction. We obtained images of flux vortices from a MgB2 single crystal cut in the ac plane by focused ion beam milling and tilted to 45 degrees. with respect to the electron beam about...... the crystallographic a axis. A new method was developed to simulate these images that accounted for vortices with a nonzero core in a thin, anisotropic superconductor and a simplex algorithm was used to make a quantitative comparison between the images and simulations to measure the penetration depths and coherence...

  17. Vapor annealing synthesis of non-epitaxial MgB2 films on glassy carbon

    Science.gov (United States)

    Baker, A. A.; Bayu Aji, L. B.; Bae, J. H.; Stavrou, E.; Steich, D. J.; McCall, S. K.; Kucheyev, S. O.

    2018-05-01

    We describe the fabrication and characterization of 25–800 nm thick MgB2 films on glassy carbon substrates by Mg vapor annealing of sputter-deposited amorphous B films. Results demonstrate a critical role of both the initial B film thickness and the temperature–time profile on the microstructure, elemental composition, and superconducting properties of the resultant MgB2 films. Films with thicknesses of 55 nm and below exhibit a smooth surface, with a roughness of 1.1 nm, while thicker films have surface morphology consisting of elongated nano-crystallites. The suppression of the superconducting transition temperature for thin films scales linearly with the oxygen impurity concentration and also correlates with the amount of lattice disorder probed by Raman scattering. The best results are obtained by a rapid (12 min) anneal at 850 °C with large temperature ramp and cooling rates of ∼540 °C min‑1. Such fast processing suppresses the deleterious oxygen uptake.

  18. MgB2 magnetometer with a directly coupled pick-up loop

    Science.gov (United States)

    Portesi, C.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.; Monticone, E.; Gonnelli, R. S.

    2006-05-01

    In this work, we show the results obtained in the fabrication and characterization of an MgB2 magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which incorporates two nanobridges as weak links in a superconducting loop. The nanobridges were realized by focused ion beam milling; they were 240 nm wide and had a critical current density of 107 A cm-2. The magnetometer was characterized at different temperatures and also measurements of the noise levels have been performed. The device shows Josephson quantum interference up to 20 K and the calculated effective area at low temperatures was 0.24 mm2. The transport properties of the magnetometer allow determining fundamental materials properties of the MgB2 thin films, such as the penetration depth.

  19. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    International Nuclear Information System (INIS)

    Lohmiller, Jochen; Spolenak, Ralph; Gruber, Patric A.

    2014-01-01

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility

  20. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  1. Effect of process variables on synthesis of MgB2 by a high energy ball mill

    Directory of Open Access Journals (Sweden)

    Kurama Haldun

    2016-01-01

    Full Text Available The discovery of superconductivity of MgB2 in 2001, with a critical temperature of 39 K, offered the promise of important large-scale applications at around 20 K. Except than the other featured synthesis methods, mechanical activation performed by high energy ball mills, as bulk form synthesis or as a first step of wire and thin film productions, has considered as an effective alternative production route in recent years. The process of mechanical activation (MA starts with mixing the powders in the right proportion and loading the powder mixture into the mill with the grinding media. The milled powder is then consolidated into a bulk shape and heat-treated to obtain desired microstructure and properties. Thus, the important components of the MA process are the raw materials, mill type and process variables. During the MA process, heavy deformation of particles occure. This is manifested by the presence of a variety of crystal defects such as dislocations, vacancies, stacking faults and increased number of particle boundaries. The presence of this defect structure enhances the diffusivity of solute hence the critical currents and magnetic flux pinning ability of MgB2 are improved. The aim of the present study is to determine the effects of process variables such as ball-to-powder mass ratio, size of balls, milling time, annealing temperature and contribution of process control agent (toluene on the product size, morphology and conversion level of precursor powders to MgB2 after subsequent heat treatment. The morphological analyses of the samples were performed by a high vacuum electron microscope ZEISS SUPRA VP 50. The phase compositions of the samples were performed with an Rigaku-Rint 2200 diffractometer, with nickel filtered Cu Kα radiation and conversion level. The MgB2 phase wt % was calculated by the Rietveld refinement method. The obtained results were discussed according to the process variables to find out their affect on the structure

  2. Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping

    Science.gov (United States)

    Dou, S. X.; Soltanian, S.; Horvat, J.; Wang, X. L.; Zhou, S. H.; Ionescu, M.; Liu, H. K.; Munroe, P.; Tomsic, M.

    2002-10-01

    Doping of MgB2 by nano-SiC and its potential for the improvement of flux pinning were studied for MgB2-x)(SiCx/2 with x=0, 0.2, and 0.3 and for 10 wt % nano-SiC-doped MgB2 samples. Cosubstitution of B by Si and C counterbalanced the effects of single-element doping, decreasing Tc by only 1.5 K, introducing intragrain pinning centers effective at high fields and temperatures, and significantly enhancing Jc and Hirr. Compared to the undoped sample, Jc for the 10 wt % doped sample increased by a factor of 32 at 5 K and 8 T, 42 at 20 K and 5 T, and 14 at 30 K and 2 T. At 20 K and 2 T, the Jc for the doped sample was 2.4 x105 A/cm2, which is comparable to Jc values for the best Ag/Bi-2223 tapes. At 20 K and 4 T, Jc was twice as high as for the best MgB2 thin films and an order of magnitude higher than for the best Fe/MgB2 tapes. The magnetic Jc is consistent with the transport Jc which remains at 20 000 A/cm2 even at 10 T and 5 K for the doped sample, an order of magnitude higher than the undoped one. Because of such high performance, it is anticipated that the future MgB2 conductors will be made using a formula of MgBxSiyCz instead of pure MgB2.

  3. Properties of hot pressed MgB2/Ti tapes

    International Nuclear Information System (INIS)

    Kovac, P.; Husek, I.; Melisek, T.; Fedor, J.; Cambel, V.; Morawski, A.; Kario, A.

    2009-01-01

    Hot axial and hot isostatic pressing was applied for single-core MgB 2 /Ti tapes. Differences in transport current density, n-exponents and critical current anisotropy are discussed and related to the grain connectivity influenced by pressing. The magnetic Hall probe scanning measurements allowed observing the isolated regions for axially hot pressed sample attributed to the longitudinally oriented cracks introduced by pressing. The highest current densities were measured for the tape subjected to hot isostatic pressing due to improved connectivity.

  4. Specific heat of MgB_2 after irradiation

    OpenAIRE

    Wang, Yuxing; Bouquet, Frederic; Sheikin, Ilya; Toulemonde, Pierre; Revaz, Bernard; Eisterer, Michael; Weber, Harald W.; Hinderer, Joerg; Junod, Alain

    2002-01-01

    We studied the effect of disorder on the superconducting properties of polycrystalline MgB_2 by specific-heat measurements. In the pristine state, these measurements give a bulk confirmation of the presence of two superconducting gaps with 2 Delta 0 / k_B T_c = 1.3 and 3.9 with nearly equal weights. The scattering introduced by irradiation suppresses T_c and tends to average the two gaps although less than predicted by theory. We also found that by a suitable irradiation process by fast neutr...

  5. Al-doped MgB_2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan

    2016-01-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB_2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB_2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB_2. Above a certain level of Al doping, enhanced conductive properties of MgB_2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  6. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    Science.gov (United States)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  7. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  8. Nanocrystalline Sr2CeO4 thin films grown on silicon by laser ablation

    International Nuclear Information System (INIS)

    Perea, Nestor; Hirata, G.A.

    2006-01-01

    Blue-white luminescent Sr 2 CeO 4 thin films were deposited by using pulsed laser ablation (λ = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr 2 CeO 4 grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr 2 CeO 4 however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems

  9. Characterisation of nanocrystalline CdS thin films deposited by CBD

    International Nuclear Information System (INIS)

    Devi, R.; Sarma, B.K.

    2006-01-01

    Nanocrystalline thin films of CdS are deposited on glass substrates by chemical bath deposition using polyvinyl alcohol (PVA) matrix solution. Crystallite sizes of the films are determined from X-ray diffraction and are found to vary from 5.4 nm to 7 nm. The band gaps of the nanocrystalline material is determined from the U-V spectrograph and are found to be within the range from 2.6 eV to 2.8 eV as grain size decreases. The band gaps are also determined from the dependence of electrical conductivity of the films with temperature. An increase of molarity decreases the grain size which in turn increases the band gap. (author)

  10. Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay [Carbon Technology Unit, Engineering Materials Division, National Physical Laboratory, New-Delhi, 110012 (India); Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan); Japan Science and Technology Agency, Kawaguchi-shi, Saitama, 332-0012 (Japan); Gupta, Shubhra; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan)

    2010-06-01

    Spinels are not known for their supercapacitive nature. Here, we have explored electrochemically synthesized nanostructured NiCo{sub 2}O{sub 4} spinel thin-film electrode for electrochemical supercapacitors. The nanostructured NiCo{sub 2}O{sub 4} spinel thin film exhibited a high specific capacitance value of 580 F g{sup -1} and an energy density of 32 Wh kg{sup -1} at the power density of 4 kW kg{sup -1}, accompanying with good cyclic stability. (author)

  11. MgB2-based superconductors for fault current limiters

    Science.gov (United States)

    Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.

    2017-02-01

    A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.

  12. Ultra thin films of nanocrystalline Ge studied by AFM and ...

    Indian Academy of Sciences (India)

    Unknown

    peak position and an asymmetrical broadening on the lower frequency side when compared with the spectrum of the bulk Ge sample. The shift of the Raman .... resultant fit to Ic(ω) (1) (thin line) and a Lorentzian function (dotted line). Figure 6 shows Raman spectra of the samples B and C. A shoulder at 280 cm–1 can be.

  13. Thermoluminescent properties of nanocrystalline ZnTe thin films: Structural and morphological studies

    Science.gov (United States)

    Rajpal, Shashikant; Kumar, S. R.

    2018-04-01

    Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.

  14. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  15. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO:S thin films

    International Nuclear Information System (INIS)

    Tong, Y.H.; Tang, Q.X.; Liu, Y.C.; Shao, C.L.; Xu, C.S.; Liu, Y.X.

    2005-01-01

    Mn-passivated nanocrystalline ZnO:S thin films were fabricated by thermally oxidizing Mn-doped ZnS (ZnS:Mn) films prepared by electron beam evaporation. Mn was introduced to passivate the surface defects of ZnO and to improve the optical properties. X-ray diffraction (XRD) and photoluminescence (PL) spectra at 81.9 K indicated the S content in ZnO thin film gradually decreased with increasing annealing temperature. The fitted result of the temperature-dependent PL spectra in the range from 81.9 to 302.2 K showed that S dopant could broaden the optical band gap energy of ZnO. Room temperature PL spectra confirmed that the ultraviolet peak shifted to lower energy with the decrease of S content in the thin film because of the Burstein-Moss effect

  16. Electrodeposition of nanocrystalline CdSe thin films from dimethyl sulfoxide solution: Nucleation and growth mechanism, structural and optical studies

    International Nuclear Information System (INIS)

    Henriquez, R.; Badan, A.; Grez, P.; Munoz, E.; Vera, J.; Dalchiele, E.A.; Marotti, R.E.; Gomez, H.

    2011-01-01

    Highlights: → Electrodeposition of CdSe nanocrystalline semiconductor thin films. → Polycrystalline wurtzite structure with a slight (1010) preferred orientation. → Absorption edge shifts in the optical properties due to quantum confinement effects. - Abstract: Cadmium selenide (CdSe) nanocrystalline semiconductor thin films have been synthesized by electrodeposition at controlled potential based in the electrochemical reduction process of molecular selenium in dimethyl sulfoxide (DMSO) solution. The nucleation and growth mechanism of this process has been studied. The XRD pattern shows a characteristic polycrystalline hexagonal wurtzite structure with a slight (1 0 1 0) crystallographic preferred orientation. The crystallite size of nanocrystalline CdSe thin films can be simply controlled by the electrodeposition potential. A quantum size effect is deduced from the correlation between the band gap energy and the crystallite size.

  17. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    Science.gov (United States)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  18. Note: Progress on the use of MgB2 superconducting joint technique for the development of MgB2 magnets for magnetic resonance imaging (MRI).

    Science.gov (United States)

    Kim, Y G; Song, J B; Kim, J C; Kim, J M; Yoo, B H; Yun, S B; Hwang, D Y; Lee, H G

    2017-08-01

    This note presents a superconducting joint technique for the development of MgB 2 magnetic resonance imaging (MRI) magnets. The MgB 2 superconducting joint was fabricated by a powder processing method using Mg and B powders to establish a wire-bulk-wire connection. The joint resistance measured using a field-decay method was magnets operating in the persistent current mode.

  19. Phase 1 Final Technical Report - MgB2 Synthesis: Pushing to High Field Performance

    International Nuclear Information System (INIS)

    Bhatia, Mohit; McIntyre, Peter

    2009-01-01

    Accelerator Technology Corp. (ATC) has successfully completed its Phase 1 effort to develop rf plasma torch synthesis of MgB2 superconducting powder. The overall objective is to de-velop a way to introduce homogeneous alloying of C and SiC impurities into phase-pure MgB2. Several groups have attained remarkable benefits from such alloying in raising the upper critical field Hc2 from ∼14 T to ∼30 T (bulk) and ∼50 T (thin films). But no one has succeeded in pro-ducing that benefit homogeneously, so that current transport in a practical powder-in-tube (PIT) conductor is largely the same as without the alloying. ATC has conceived the possibility of attaining such homogeneity by passing aerosol suspen-sions of reactant powders through an rf plasma torch, with each reactant transported on a stream-line that heats it to an optimum temperature for the synthesis reaction. This procedure would uniquely access non-equilibrium kinetics for the synthesis reaction, and would provide the possi-bility to separately control the temperature and stoichiometry of each reactant as it enters the mixing region where synthesis occurs. It also facilitates the introduction of seed particles (e.g. nanoscale SiC) to dramatically enhance the rate of the synthesis reaction compared to gas-phase synthesis in rf plasma reported by Canfield and others. During the Phase 1 effort ATC commissioned its 60 kW 5 MHz rf source for a manufactur-ing-scale rf plasma torch. This effort required repair of numerous elements, integration of cooling and input circuits, and tuning of the load characteristics. The effort was successful, and the source has now been tested to ∼full power. Also in the Phase 1 effort we encountered a subsidiary but very important problem: the world is running out of the only present supply of phase-pure amorphous boron. The starting boron powder must be in the amorphous phase in order for the synthesis reaction to produce phase-pure MgB2. Even small contamination with

  20. Formation of MgB2 at ambient temperature with an electrochemical process: a plausible mechanism

    International Nuclear Information System (INIS)

    Jadhav, A B; Subhedar, K M; Hyam, R S; Talaptra, A; Sen, Pintu; Bandyopadhyay, S K; Pawar, S H

    2005-01-01

    The binary intermetallic MgB 2 superconductor has been synthesized by many research groups. However, the mechanism of its formation is not clearly understood. In this communication, a comprehensive mechanism of the formation of MgB 2 from Le Chatelier's principle of equilibrium reaction has been explained both for solid-state reaction and electrodeposition methods. (rapid communication)

  1. Measurement of the anisotropy ratios in MgB2 single crystals

    International Nuclear Information System (INIS)

    Kim, Heon-Jung; Kang, Byeongwon; Lee, Hyun-Sook; Lee, Sung-Ik

    2006-01-01

    We present our recent measurements on the anisotropy ratios of MgB 2 single crystals. Our measurements indicate that the anisotropy ratios of the penetration depth and of the upper critical field have different magnitudes and temperature dependences, as predicted by theoretical calculations. These results imply that the two-gap nature can strongly influence the superconducting properties of MgB 2

  2. Directional scanning tunneling spectroscopy in MgB2

    International Nuclear Information System (INIS)

    Iavarone, M.; Karapetrov, G.; Koshelev, A.E.; Kwok, W.K.; Crabtree, G.W.; Hinks, D.G.; Cook, R.; Kang, W.N.; Choi, E.M.; Kim, H.J.; Lee, S.I.

    2003-01-01

    The superconductivity in MgB 2 has a two-band character with the dominating band having a 2D character and the second band being isotropic in the three dimensions. We use tunneling microscopy and spectroscopy to reveal the two distinct energy gaps at Δ 1 =2.3 meV and Δ 2 =7.1 meV. Different spectral weights of the partial superconducting density of states are a reflection of different tunneling directions in this multi-band system. The results are consistent with the existence of two-band superconductivity in the presence of strong interband superconducting pair interaction and quasiparticle scattering. The temperature evolution of the tunneling spectra shows both gaps vanishing at the bulk T c

  3. Specific heat of MgB2 after irradiation

    International Nuclear Information System (INIS)

    Wang Yuxing; Bouquet, Frederic; Sheikin, Ilya; Toulemonde, Pierre; Revaz, Bernard; Eisterer, Michael; Weber, Harald W; Hinderer, Joerg; Junod, Alain

    2003-01-01

    We studied the effect of disorder on the superconducting properties of polycrystalline MgB 2 by specific-heat measurements. In the pristine state, these measurements give a bulk confirmation of the presence of two superconducting gaps with 2Δ 0 /k B T c =1.3 and 3.9 with nearly equal weights. The scattering introduced by irradiation suppresses T c and tends to average the two gaps although less than predicted by theory. We also found that by a suitable irradiation process by fast neutrons, a substantial bulk increase of dH c2 /dT at T c can be obtained without sacrificing more than a few degrees in T c . The upper critical field of the sample after irradiation exceeds 28 T at T→0

  4. On heavy carbon doping of MgB2

    International Nuclear Information System (INIS)

    Kasinathan, Deepa; Lee, K.-W.; Pickett, W.E.

    2005-01-01

    Heavy carbon doping of MgB 2 is studied by first principles electronic structure studies of two types, an ordered supercell (Mg(B 1-x C x ) 2 , x 0.0833) and also the coherent potential approximation method that incorporates effects of B-C disorder. For the ordered model, the twofold degenerate σ-bands that are the basis of the high temperature superconductivity are split by 60 meV (i.e. 7 meV/% C) and the σ Fermi cylinders contain 0.070 holes/cell, compared to 0.11 for MgB 2 . A virtual crystal treatment tends to overestimate the rate at which σ holes are filled by substitutional carbon. The coherent potential approximation (CPA) calculations give the same rate of band filling as the supercell method. The occupied local density of states of C is almost identical to that of B in the upper 2 eV of the valence bands, but in the range -8 eV to -2 eV, C has a considerably larger density of states. The calculations indicate that the σ Fermi surface cylinders pinch off at the zone center only above the maximum C concentration x ∼ 0.10. These results indicate that Mg(B 1-x C x ) 2 as well as Mg 1-x Al x B 2 is a good system in which to study the evolution of the unusual electron-phonon coupling character and strength as the crucial σ hole states are filled

  5. Towards a Cryogen-Free MgB2-Based Superconducting Radio Frequency Accelerating Cavities

    Science.gov (United States)

    Nassiri, Alireza

    Studies on the application of Magnesium diboride (MgB2) superconducting films have shown promise for use with the radio-frequency (SRF) accelerating cavities. MgB2\\ coating is a potential candidate to replace bulk niobium (Nb) SRF cavities. The ultimate goal of our research is to demonstrate MgB2 coating on copper cavities to allow operation at about 20 K or so as a result of the high transition temperature (Tc) of MgB2 and taking advantage of the excellent thermal conductivity of copper. Here, we will report on our recent experimental results of applying hybrid physical-chemical vapor deposition (HPCVD) to grow MgB2 films on 2-inch diameter copper discs as well as on a 2.8 GHz resonator cavity *Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06H11357.

  6. Effects of sintering conditions on critical current properties and microstructures of MgB2 bulks

    International Nuclear Information System (INIS)

    Yamamoto, Akiyasu; Shimoyama, Jun-ichi; Ueda, Shinya; Katsura, Yukari; Iwayama, Isao; Horii, Shigeru; Kishio, Kohji

    2005-01-01

    The effects of heating conditions on critical current properties and microstructures of undoped MgB 2 bulks were systematically studied. Strong correlation was observed between J c and microstructures. The network structure with an excellent inter-grain connectivity of MgB 2 grains contributed to high-J c under low magnetic fields, and small grain size of MgB 2 enhanced the grain boundary flux pinning. Long time heating at low temperatures below the melting point of magnesium was discovered to be most effective for synthesis of MgB 2 bulks having strongly connected MgB 2 network structure with small grains. The sample heated at 550 deg. C for 1200 h recorded a high-J c of 4.02 x 10 5 A cm -2 at 20 K in self-field, while high-temperature and long time heating brought a significant grain growth which resulted in low J c

  7. Morphology dependent dye-sensitized solar cell properties of nanocrystalline zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K., E-mail: sanjeevlrs732000@yahoo.co.in [Department of Information and Communication, Cheju Halla College, Jeju City 690 708 (Korea, Republic of); Inamdar, A.I.; Im, Hyunsik [Department of Semiconductor Science, Dongguk University, Seoul 100 715 (Korea, Republic of); Kim, B.G. [Department of Information and Communication, Cheju Halla College, Jeju City 690 708 (Korea, Republic of); Patil, P.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2011-02-03

    Research highlights: > Nano-crystalline zinc oxide thin films were electrosynthesized from an aqueous zinc acetate [Zn(CH{sub 3}COO){sub 2}.2H{sub 2}O] solution onto FTO coated conducting glass substrates using two different electrochemical routes, namely (i) without an organic surfactant and (ii) with an organic surfactant, viz. PVA (poly-vinyl alcohol) or SDS (sodium dodecyl sulfate). > The reproducibility of the catalytic activity of the SDS and PVA surfactants in the modification of the morphologies was observed. > Vertically aligned nest-like and compact structures were observed from the SDS and PVA mediated films, respectively, while the grain size in the ZnO thin films without an organic surfactant was observed to be {approx}150 nm. > The dye sensitized ZnO electrodes displayed excellent properties in the conversion process from light to electricity. The efficiencies of the surfactant mediated nanocrystalline ZnO thin films, viz. ZnO:SDS and ZnO:PVA, sensitized with ruthenium-II (N3) dye were observed to be 0.49% and 0.27%, respectively. - Abstract: Nano-crystalline zinc oxide thin films were electrosynthesized with an aqueous zinc acetate [Zn(CH{sub 3}COO){sub 2}.2H{sub 2}O] solution on to FTO coated glass substrates. Two different electrochemical baths were used, namely (i) without an organic surfactant and (ii) with an organic surfactant, viz. PVA (poly-vinyl alcohol) and SDS (sodium dodecyl sulfate). The organic surfactants played an important role in modifying the surface morphology, which influenced the size of the crystallites and dye-sensitized solar cell (DSSC) properties. The vertically aligned thin and compact hexagonal crystallites were observed with SDS mediated films, while the grain size in the films without an organic surfactant was observed to be {approx}150 nm. The conversion efficiencies of the ZnO:SDS:Dye and ZnO:PVA:Dye thin films were observed to be 0.49% and 0.27%, respectively.

  8. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D., E-mail: doina.craciun@inflpr.ro [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Socol, G. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Lambers, E. [Major Analytical Instrumentation Center, College of Engineering, University of Florida, Gainesville, FL 32611 (United States); McCumiskey, E.J.; Taylor, C.R. [Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States); Martin, C. [Ramapo College of New Jersey (United States); Argibay, N. [Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, NM 87123 (United States); Tanner, D.B. [Physics Department, University of Florida, Gainesville, FL 32611 (United States); Craciun, V. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania)

    2015-10-15

    Highlights: • Nanocrystalline ZrC thin film were grown on Si by pulsed laser deposition technique. • Structural properties weakly depend on the CH{sub 4} pressure used during deposition. • The optimum deposition pressure for low resistivity is around 2 × 10{sup −5} mbar CH{sub 4}. • ZrC films exhibited friction coefficients around 0.4 and low wear rates. - Abstract: Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH{sub 4} pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH{sub 4} pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. Tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  9. Synthesis and characterization of electrochemically deposited nanocrystalline CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ragini Raj, E-mail: raginirajsingh@gmail.com [Department of Physics, Bhopal University, Bhopal-462026 (India); Department of Physical Electronics, Iby and Aladar Fleishman Faculty of Engineering, Tel-Aviv University, Tel-Aviv-69978 (Israel); Painuly, Diksha [Centre for Nanoscience and Nanotechnology, University of Kerala, Thiruanantpuram, Kerala (India); Pandey, R.K. [Department of Physics, Bhopal University, Bhopal-462026 (India)

    2009-07-15

    Electrodeposition is emerging as a method for the synthesis of semiconductor thin films and nanostructures. In this work we prepared the nanocrystalline CdTe thin films on indium tin oxide coated glass substrate from aqueous acidic bath at the deposition temperature 50 {+-} 1 deg. C. The films were grown potentiostatically from -0.60 V to -0.82 V with respect to saturated calomel reference electrode. The structural, compositional, morphological and optical properties were investigated using X-ray diffraction (XRD), energy dispersive analysis by X-rays (EDAX), atomic force microscopy (AFM), and UV-vis spectroscopy respectively and cyclic voltammetery. The structural and optical studies revealed that films are nanocrystalline in nature and possess cubic phase, also the films are preferentially oriented along the cubic (1 1 1) plane. The effect of cadmium composition on the deposited morphology was also investigated. The size dependent blue shift in the experimentally determined absorption edge has been compared with the theoretical predictions based on the effective mass approximation and tight binding approximation. It is shown that the experimentally determined absorption edges depart from the theoretically calculated values.

  10. Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions

    International Nuclear Information System (INIS)

    Chang, C.-C.; Lin, C.-K.; Chan, C.-C.; Hsu, C.-S.; Chen, C.-Y.

    2006-01-01

    In the present study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin coating technique. While, by introducing polystyrene (PS) microspheres, porous TiO 2 /Ag films were obtained after calcining at a temperature of 500 o C. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. After 500 o C calcination, the microstructure of PS-TiO 2 film without Ag addition exhibited a sponge-like microstructure while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Meanwhile, coalescence of nanocrystalline anatase-phase TiO 2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO 2 doped with 1 mol% Ag exhibited the best photocatalytic efficiency where 72% methylene blue can be decomposed after UV exposure for 12 h

  11. Effect of texture and grain size on the residual stress of nanocrystalline thin films

    Science.gov (United States)

    Cao, Lei; Sengupta, Arkaprabha; Pantuso, Daniel; Koslowski, Marisol

    2017-10-01

    Residual stresses develop in thin film interconnects mainly as a result of deposition conditions and multiple thermal loading cycles during the manufacturing flow. Understanding the relation between the distribution of residual stress and the interconnect microstructure is of key importance to manage the nucleation and growth of defects that can lead to failure under reliability testing and use conditions. Dislocation dynamics simulations are performed in nanocrystalline copper subjected to cyclic loading to quantify the distribution of residual stresses as a function of grain misorientation and grain size distribution. The outcomes of this work help to evaluate the effect of microstructure in thin films failure by identifying potential voiding sites. Furthermore, the simulations show how dislocation structures are influenced by texture and grain size distribution that affect the residual stress. For example, when dislocation loops reach the opposite grain boundary during loading, these dislocations remain locked during unloading.

  12. MgB2 thick films on three-dimensional structures fabricated by HPCVD

    Science.gov (United States)

    Guo, Zhengshan; Cai, Xingwei; Liao, Xuebin; Chen, Yiling; Yang, Can; Niu, Ruirui; Luo, Wenhao; Huang, Zigeng; Feng, Qingrong; Gan, Zizhao

    2018-06-01

    Magnetic shielding has been a key factor in the measurement of ultra-weak magnetic fields, especially for shielding from low frequency electromagnetic noise. With the recent development of superconducting quantum interference devices, superconducting magnetic shielding has become an important area of research. MgB2 has shown great potential in magnetic shielding for its remarkable superconducting properties, the feasibility of its use in this capacity having been demonstrated by MgB2 bulk samples. However, the potential for application of such bulk samples is limited. In this work, we have investigated the possibility of the fabrication of MgB2 films on three-dimensional (3D) structures using a hybrid physical‑chemical vapor deposition system. MgB2 films 10 μm thick have been fabricated on the outer surface of a polycrystalline Al2O3 cylinder. The deposited film showed a transition temperature (TC) of 39 K and J C of 5.1 × 105 A · cm‑2, which are comparable to those of planar MgB2 films. This work shows the feasibility of depositing MgB2 films onto a 3D structure, and sheds light on the potential use of MgB2 films in superconducting magnetic shielding.

  13. Improving magnetic properties of MgB_2 bulk superconductors by synthetic engine oil treatment

    International Nuclear Information System (INIS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-01-01

    Highlights: • The effects of synthetic engine oil treatment on magnetic properties of bulk MgB_2 superconductors has been first time investigated and reported. • Synthetic engine oil used as a product which is cheap and a rich carbon source obviously has improved the superconducting magnetic properties of MgB_2. • The critical current density of all of MgB_2 samples immersed at different standby time in engine oil in whole field range has been better than that of the pure MgB_2 sample. • The MgB_2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. - Abstract: The present study focuses on the effects of standby time of the MgB_2 samples immersed in synthetic engine oil on the critical current density ( J_c(H)), magnetic field dependence of the pinning force density f_p(b) and T_c performances of MgB_2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB_2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB_2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB_2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB_2 sample because of the number of the pinning centers. The MgB_2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The J_c value for the pure sample is 2.0 × 10"3 A/cm"2, whereas for the MgB_2 sample immersed at 300 min standby time in engine oil the J_c is enhanced to 4.8 × 10"3 A/cm"2 at 5 K and 3 T. The superconducting transition temperature (T_c) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB_2 superconductors. It was found that all MgB_2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB_2 bulk superconductors makes MgB_2 samples immersed in synthetic engine oil a good candidate for industrial applications.

  14. Lightweight MgB2 superconducting 10 MW wind generator

    Science.gov (United States)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  15. Lightweight MgB2 superconducting 10 MW wind generator

    International Nuclear Information System (INIS)

    Marino, I; Pujana, A; Sarmiento, G; Sanz, S; Merino, J M; Tropeano, M; Sun, J; Canosa, T

    2016-01-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB 2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator’s main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator. (paper)

  16. Grain-size effect on the electrical properties of nanocrystalline indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hoon [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); Kim, Young Heon, E-mail: young.h.kim@kriss.re.kr [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Ahn, Sang Jung [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Ha, Tae Hwan [University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Kim, Hong Seung [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-Ro, Busan 606-791 (Korea, Republic of)

    2015-09-15

    Highlights: • Nanometer-sized small grains were observed in the ITO thin films. • The grain size increased as the post-thermal annealing temperature increased. • The mobility of ITO thin films increased with increasing grain size. • The ITO film annealed at 300 °C was an amorphous phase, while the others were polycrystalline structure. - Abstract: In this paper, we demonstrate the electrical properties, depending on grain size, of nanocrystalline indium tin oxide (ITO) thin films prepared with a solution process. The size distributions of nanometer-sized ITO film grains increased as the post-annealing temperature increased after deposition; the grain sizes were comparable with the calculated electron mean free path. The mobility of ITO thin films increased with increasing grain size; this phenomenon was explained by adopting the charge-trapping model for grain boundary scattering. These findings suggest that it is possible to improve mobility by reducing the number of trapping sites at the grain boundary.

  17. Structural and nanomechanical properties of nanocrystalline carbon thin films for photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Ishpal [Department of Physics, Kirorimal College, University of Delhi, Delhi 110007 (India); Panwar, Omvir Singh, E-mail: ospanwar@mail.nplindia.ernet.in; Tripathi, Ravi Kant; Chockalingam, Sreekumar [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, Avanish Kumar [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Kumar, Mahesh [Ultrafast Optoelectronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2015-05-15

    This paper reports the effect of helium gas pressure upon the structural, nanomechanical, and photoconductive properties of nanocrystalline carbon thin (NCT) films deposited by the filtered cathodic jet carbon arc technique. High-resolution transmission electron microscopy images confirm the nanocrystalline nature of the deposited films with different crystallite sizes (3–7 nm). The chemical structure of the deposited films is further analyzed by x-ray photoelectron spectroscopy and Raman spectroscopy, which suggest that the deposited films change from graphitelike to diamondlike, increasing in sp{sup 3} content, with a minor change in the dilution of the inert gas (helium). The graphitic character is regained upon higher dilution of the helium gas, whereupon the films exhibit an increase in sp{sup 2} content. The nanomechanical measurements show that the film deposited at a helium partial pressure of 2.2 × 10{sup −4} has the highest value of hardness (37.39 GPa) and elastic modulus (320.50 GPa). At a light intensity of 100 mW/cm{sup 2}, the NCT films deposited at 2.2 × 10{sup −4} and 0.1 mbar partial pressures of helium gas exhibit good photoresponses of 2.2% and 3.6%, respectively.

  18. Enhanced field emission from Si doped nanocrystalline AlN thin films

    International Nuclear Information System (INIS)

    Thapa, R.; Saha, B.; Chattopadhyay, K.K.

    2009-01-01

    Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 deg. C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (E to ) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm 2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.

  19. Phthalocyanine doping to improve critical current densities in MgB2 tapes

    International Nuclear Information System (INIS)

    Zhang Xianping; Ma Yanwei; Wang Dongliang; Gao Zhaoshun; Wang Lei; Qi Yanpeng; Awaji, Satoshi; Watanabe, Kazuo; Mossang, Eric

    2009-01-01

    Phthalocyanine-doped MgB 2 tapes were prepared by the in situ powder-in-tube method. The relationships between the critical current properties, crystallinity and microstructure were studied as a function of the phthalocyanine doping level. It is found that both H irr and H c2 were improved when MgB 2 samples were doped with phthalocyanine, which are mainly attributed to the effective carbon substitution and enhanced flux pinning strength caused by very fine grain sizes. Furthermore, compared to pure samples, the MgO content remained almost unchanged in all doped tapes, which is very beneficial to having better grain connectivity in MgB 2 . Significantly improved J c was obtained in the phthalocyanine-doped MgB 2 tapes, especially under high magnetic fields.

  20. Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film

    Science.gov (United States)

    Plesco, Irina; Dragoman, Mircea; Strobel, Julian; Ghimpu, Lidia; Schütt, Fabian; Dinescu, Adrian; Ursaki, Veaceslav; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion

    2018-05-01

    In this paper, we report on functionalization of graphene aerogel with a CdS thin film deposited by magnetron sputtering and on the development of flexible pressure sensors based on ultra-lightweight CdS-aerogel nanocomposite. Analysis by scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analysis disclose the uniform deposition of nanocrystalline CdS films with quasi-stoichiometric composition. The piezoresistive response of the aforementioned nanocomposite in the pressure range from 1 to 5 atm is found to be more than one order of magnitude higher than that inherent to suspended graphene membranes, leading to an average sensitivity as high as 3.2 × 10-4 kPa-1.

  1. Chemical Bath Deposition of PbS:Hg2+ Nanocrystalline Thin Films

    Directory of Open Access Journals (Sweden)

    R. Palomino-Merino

    2013-01-01

    Full Text Available Nanocrystalline PbS thin films were prepared by Chemical Bath Deposition (CBD at 40 ± 2°C onto glass substrates and their structural and optical properties modified by in-situ doping with Hg. The morphological changes of the layers were analyzed using SEM and the X-rays spectra showing growth on the zinc blende (ZB face. The grain size determined by using X-rays spectra for undoped samples was found to be ~36 nm, whereas with the doped sample was 32–20 nm. Optical absorption spectra were used to calculate the Eg, showing a shift in the range 1.4–2.4 eV. Raman spectroscopy exhibited an absorption band ~135 cm−1 displaying only a PbS ZB structure.

  2. Synthesis of nanocrystalline ceria thin films by low-temperature thermal decomposition of Ce-propionate

    International Nuclear Information System (INIS)

    Roura, P.; Farjas, J.; Ricart, S.; Aklalouch, M.; Guzman, R.; Arbiol, J.; Puig, T.; Calleja, A.; Peña-Rodríguez, O.; Garriga, M.; Obradors, X.

    2012-01-01

    Thin films of Ce-propionate (thickness below 20 nm) have been deposited by spin coating and pyrolysed into ceria at temperatures below 200 °C. After 1 h of thermal treatment, no signature of the vibrational modes of Ce-propionate is detected by infrared spectroscopy, indicating that decomposition has been completed. The resulting ceria films are nanocrystalline as revealed by X-ray diffraction (average grain size of 2–2.5 nm) and confirmed by microscopy. They are transparent in the visible region and show the characteristic band gap absorption below 400 nm. A direct band gap energy of 3.50 ± 0.05 eV has been deduced irrespective of the pyrolysis temperature (160, 180 and 200 °C).

  3. Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    Directory of Open Access Journals (Sweden)

    Verveniotis Elisseos

    2011-01-01

    Full Text Available Abstract We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems.

  4. Development of MgB2 superconductor wire with high critical current

    International Nuclear Information System (INIS)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong; Kim, Nam Kyu; Kim, Yi Jeong; Yi, Ji Hye; Lee, Ji Hyun; Tan, Kai Sin

    2009-07-01

    The MgB 2 superconductor with smaller grain size could improve its critical properties by providing flux pinning centers with high grain boundary density. The effects of C doping such as charcoal, paper ash and glycerin on the superconducting properties was investigated for in situ processed MgB 2 samples using low purity semi-crystalline B powder. The results show a decrease in Tc and an enhancement of Jc at high fields for the C-doped samples as compared to the un-doped samples. A combined process of a mechanical ball milling and liquid glycerin (C 3 H 8 O 3 ) treatment of B powder has been conducted to enhance the superconducting properties of MgB 2 . The mechanical ball milling was effective for grain refinement, and a lattice disorder was easily achieved by glycerin addition. With the combined process, the critical properties was further increased due to a higher grain boundary density and a greater C substitution. To get fine grain structure of MgB 2 with high critical current properties, mechanical milling for as-received B powder and low temperature solid-state reaction of 550 or 600 .deg. C were attempted to in situ powder-in-tube processed MgB 2 /Fe wires. The critical current properties of the MgB 2 wires using the milled B powder were enhanced due to a smaller grain size and an increased volume of the superconducting phase. The solid-state reaction of a low temperature process for the samples using the milled B powder resulted in a poorer crystallinity with a smaller grain size, which improved superconducting properties. We established the system to measure the transport current properties of the MgB 2 wires. The field dependence of the transport Jc was evaluated for the MgB 2 wires heat-treated at different heat treatment conditions using ball-milled and glycerin-treated B powder. The MgB 2 magnet was developed and the AC loss of MgB 2 wire was also investigated. A conduction cooling device to cool the MgB 2 coil down to 4 K has been fabricated and the coil was tested up to 100 A

  5. SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications

    International Nuclear Information System (INIS)

    Kumar, Pragati; Saxena, Nupur; Chandra, Ramesh; Gao, Kun; Zhou, Shengqiang; Agarwal, Avinash; Singh, Fouran; Gupta, Vinay; Kanjilal, D.

    2014-01-01

    Intense green emission is reported from nanocrystalline CdS thin films grown by pulsed laser deposition. The effect of ion beam induced dense electronic excitation on luminescence property of CdS films is explored under irradiation using 70 MeV 58 Ni 6+ ions. It is found that swift heavy ion beam irradiation enhances the emission intensity by an order of 1 and broadens the emission range. This feature is extremely useful to enhance the performance of different photonic devices like light emitting diodes and lasers, as well as luminescence based sensors. To examine the role of energy relaxation process of swift heavy ions in creation/annihilation of different defect levels, multi-peaks are fitted in photoluminescence spectra using a Gaussian function. The variation of contribution of different emissions in green emission with ion fluence is studied. Origin of enhancement in green emission is supported by various characterization techniques like UV–visible absorption spectroscopy, glancing angle X-ray diffraction, micro-Raman spectroscopy and transmission electron microscopy. A possible mechanism of enhanced GE due to ion beam irradiation is proposed on the basis of existing models. -- Highlights: • Room temperature green luminescence nanocrystalline CdS thin films grown by pulsed laser deposition. • Enhanced green emission by means of swift heavy ion irradiation. • Multipeak fitting of photoluminescence spectra using a Gaussian function. • Variation of area contributed by different emissions in green emission is studied with respect to ion fluence. • Mechanism of enhanced green emission is discussed based on creation/annihilation of defects due to ion beam irradiation

  6. SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com [Department of Physics, Bareilly College, Shahmat Ganj Road, Bareilly 243005, Uttar Pradesh (India); Saxena, Nupur [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Chandra, Ramesh [Institute Instrumentation Centre, Indian Institute of Technology, Roorkee 247667 (India); Gao, Kun; Zhou, Shengqiang [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), P.O. Box 510119, 01314 Dresden (Germany); Agarwal, Avinash [Department of Physics, Bareilly College, Shahmat Ganj Road, Bareilly 243005, Uttar Pradesh (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Gupta, Vinay [Department of Physics and Astrophysics, Delhi University, Delhi 110007 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India)

    2014-03-15

    Intense green emission is reported from nanocrystalline CdS thin films grown by pulsed laser deposition. The effect of ion beam induced dense electronic excitation on luminescence property of CdS films is explored under irradiation using 70 MeV {sup 58}Ni{sup 6+} ions. It is found that swift heavy ion beam irradiation enhances the emission intensity by an order of 1 and broadens the emission range. This feature is extremely useful to enhance the performance of different photonic devices like light emitting diodes and lasers, as well as luminescence based sensors. To examine the role of energy relaxation process of swift heavy ions in creation/annihilation of different defect levels, multi-peaks are fitted in photoluminescence spectra using a Gaussian function. The variation of contribution of different emissions in green emission with ion fluence is studied. Origin of enhancement in green emission is supported by various characterization techniques like UV–visible absorption spectroscopy, glancing angle X-ray diffraction, micro-Raman spectroscopy and transmission electron microscopy. A possible mechanism of enhanced GE due to ion beam irradiation is proposed on the basis of existing models. -- Highlights: • Room temperature green luminescence nanocrystalline CdS thin films grown by pulsed laser deposition. • Enhanced green emission by means of swift heavy ion irradiation. • Multipeak fitting of photoluminescence spectra using a Gaussian function. • Variation of area contributed by different emissions in green emission is studied with respect to ion fluence. • Mechanism of enhanced green emission is discussed based on creation/annihilation of defects due to ion beam irradiation.

  7. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    Directory of Open Access Journals (Sweden)

    Sutichai Chaisitsak

    2011-07-01

    Full Text Available This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG sensors by doping with fluorine (F. Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer. The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.

  8. Design of MgB2 Superconducting coils for the Ignitor Experiment*

    Science.gov (United States)

    Grasso, G.; Penco, R.; Berta, S.; Coppi, B.; Giunchi, G.

    2009-11-01

    A feasibility study for the adoption of MgB2 superconducting cables for the largest (about 5 m in diameter) of the poloidal field coils of the Ignitor machine is being carried out. This initiative was prompted by the progress made in the fabrication of MgB2 long cables, and related superconducting magnets of relatively large dimensions. These magnets will be cryocooled at the operating temperature of 10-15 K that is compatible with the He-gas cryogenic cooling system of Ignitor as well as with the projected superconducting current density of the MgB2 material, at the magnetic field values (˜4-5 T) in which these coils are designed to operate. The optimal cable configuration has been identified that can provide an efficient cooling of the MgB2 conductors over times compatible with the machine duty cycles. MgB2 superconductors hold the promise of becoming suitable for high field magnets by appropriate doping of the material and of replacing gradually the normal conducting coils adopted, by necessity, in high field experiments. Therefore, an appropriate R&D program on the development of improved MgB2 material and related superconducting cabling options has been undertaken, involving different institutions.

  9. Flux pinning behaviors of Ti and C co-doped MgB2 superconductors

    International Nuclear Information System (INIS)

    Yang, Y.; Zhao, D.; Shen, T.M.; Li, G.; Zhang, Y.; Feng, Y.; Cheng, C.H.; Zhang, Y.P.; Zhao, Y.

    2008-01-01

    Flux pinning behavior of carbon and titanium concurrently doped MgB 2 alloys has been studied by ac susceptibility and dc magnetization measurements. It is found that critical current density and irreversibility field of MgB 2 have been significantly improved by doping C and Ti concurrently, sharply contrasted to the situation of C-only-doped or Ti-only-doped MgB 2 samples. AC susceptibility measurement reveals that the dependence of the pinning potential on the dc applied field of Mg 0.95 Ti 0.05 B 1.95 C 0.05 has been determined to be U(B dc )∝B dc -1 compared to that of MgB 2 U(B dc )∝B dc -1.5 . As to the U(J) behavior, a relationship of U(J) ∝ J -0.17 is found fitting well for Mg 0.95 Ti 0.05 B 1.95 C 0.05 with respect to U(J) ∝ J -0.21 for MgB 2 . All the results reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB 2

  10. Development of Ti-sheathed MgB2 wires with high critical current density

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Hanna, M; Yen, F; Lv, B; Alessandrini, M; Keith, S; Hoyt, C; Tang, Z; Salama, K

    2006-01-01

    Working towards developing lightweight superconducting magnets for future space and other applications, we have successfully fabricated mono-core Ti-sheathed MgB 2 wires by the powder-in-tube method. The wires were characterized by magnetization, electrical resistivity, x-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry measurements. The results indicate that the Ti sheath does not react with the magnesium and boron, and the present wire rolling process can produce MgB 2 wires with a superconducting volume fraction of at least 64% in the core. Using the Bean model, it was found that at 5 K, the magnetic critical current densities, J c , measured in magnetic fields of 0, 5, and 8 T are about 4.2 x 10 5 , 3.6 x 10 4 , and 1.4 x 10 4 A cm -2 , respectively. At 20 K and 0 T, the magnetic J c is about 2.4 x 10 5 A cm -2 . These results show that at zero and low fields, the values of the magnetic J c for Ti-sheathed MgB 2 wires are comparable with the best results available for the Fe-sheathed MgB 2 wires. At high fields, however, the J c for Ti-sheathed MgB 2 wires appears higher than that for the Fe-sheathed MgB 2 wires

  11. Structure and magnetic properties of highly textured nanocrystalline Mn–Zn ferrite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jaison, E-mail: jaisonjosephp@gmail.com [Department of Physics, Goverment College, Khandola, Goa 403107 India (India); Tangsali, R.B. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 India (India); Pillai, V.P. Mahadevan [Department of Optoelectronics, University of Kerala,Thiruvananthapuram, Kerala 695581 India (India); Choudhary, R.J.; Phase, D.M.; Ganeshan, V. [UGC-DAE-CSR Indore, Madhya Pradesh 452017 India. (India)

    2015-01-01

    Nanoparticles of Mn{sub 0.2}Zn{sub 0.8}Fe{sub 2}O{sub 4} were chemically synthesized by co-precipitating the metal ions in aqueous solutions in a suitable alkaline medium. The identified XRD peaks confirm single phase spinal formation. The nanoparticle size authentication is carried out from XRD data using Debye Scherrer equation. Thin film fabricated from this nanomaterial by pulse laser deposition technique on quartz substrate was characterized using XRD and Raman spectroscopic techniques. XRD results revealed the formation of high degree of texture in the film. AFM analysis confirms nanogranular morphology and preferred directional growth. A high deposition pressure and the use of a laser plume confined to a small area for transportation of the target species created certain level of porosity in the deposited thin film. Magnetic property measurement of this highly textured nanocrystalline Mn–Zn ferrite thin film revealed enhancement in properties, which are explained on the basis of texture and surface features originated from film growth mechanism.

  12. Nanocrystalline SnO2 thin films: Structural, morphological, electrical transport and optical studies

    International Nuclear Information System (INIS)

    Sakhare, R.D.; Khuspe, G.D.; Navale, S.T.; Mulik, R.N.; Chougule, M.A.; Pawar, R.C.; Lee, C.S.; Sen, Shashwati; Patil, V.B.

    2013-01-01

    Highlights: ► Novel chemical route of synthesis of SnO 2 films. ► Physical properties SnO 2 are influenced by process temperature. ► The room temperature electrical conductivity of SnO 2 is of 10 −7 –10 −5 (Ω cm) −1 . ► SnO 2 exhibit high absorption coefficient (10 4 cm −1 ). -- Abstract: Sol–gel spin coating method has been successfully employed for preparation of nanocrystalline tin oxide (SnO 2 ) thin films. The effect of processing temperature on the structure, morphology, electrical conductivity, thermoelectric power and band gap was studied using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction pattern, atomic force microscopy, two probe technique and UV–visible spectroscopy. X-ray diffraction (XRD) analysis showed that SnO 2 films are crystallized in the tetragonal phase and present a random orientation. Field emission scanning electron microscopy (FESEM) analysis revealed that surface morphology of the tin oxide film consists nanocrystalline grains with uniform coverage of the substrate surface. Transmission electron microscopy (TEM) of SnO 2 film showed nanocrystals having diameter ranging from 5 to 10 nm. Selected area electron diffraction (SAED) pattern confirms tetragonal phase evolution of SnO 2 . Atomic force microscopy (AFM) analysis showed surface morphology of SnO 2 film is smooth. The dc electrical conductivity showed the semiconducting nature with room temperature electrical conductivity increased from 10 −7 to 10 −5 (Ω cm) −1 as processing temperature increased from 400 to 700 °C. Thermo power measurement confirms n-type conduction. The band gap energy of SnO 2 film decreased from 3.88 to 3.60 eV as processing temperature increased from 400 to 700 °C

  13. Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S.S.; Shinde, P.S.; Sapkal, R.T.; Oh, Y.W.; Haranath, D.; Bhosale, C.H.; Rajpure, K.Y.

    2012-01-01

    Highlights: ► Influence of substrate temperature onto the physico-chemical properties. ► Photochemical, structural, luminescent, optoelectrical and thermal properties. ► The kinetics of oxalic acid degradation with reaction mechanism. ► Extent of mineralization by COD and TOC. - Abstract: The high quality nano-crystalline zinc oxide thin films are deposited onto corning glasses by spray pyrolysis technique. The influence of reaction temperature onto their photoelectrochemical, structural, morphological, optoelectronic, luminescence and thermal properties has been investigated. The structural characteristics studied by X-ray diffractometry has complemented by resistivity measurements and UV–Vis spectroscopy. The photoelectrochemical activity shows enhancement in short circuit current (I sc = 0.357 mA) and open circuit voltage (V oc = 0.48 V). Direct band gap calculated by considering R and T values of ZnO thin films increases from 3.14–3.21 eV exhibiting a slight blue shift in band edge. Three characteristic luminescence peaks having near band-edge, blue and green emission are observed in the photoluminescence spectra. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in films. Photocatalytic degradation of oxalic acid followed with reaction mechanism by using zinc oxide photoelectrode under solar illumination has been investigated.

  14. Assessment of liquid hydrogen cooled MgB2 conductors for magnetically confined fusion

    International Nuclear Information System (INIS)

    Glowacki, B A; Nuttall, W J

    2008-01-01

    Importantly environmental factors are not the only policy-driver for the hydrogen economy. Over the timescale of the development of fusion energy systems, energy security issues are likely to motivate a shift towards both hydrogen production and fusion as an energy source. These technologies combine local control of the system with the collaborative research interests of the major energy users in the global economy. A concept Fusion Island Reactor that might be used to generate H 2 (rather than electricity) is presented. Exploitation of produced hydrogen as a coolant and as a fuel is proposed in conjunction with MgB 2 conductors for the tokomak magnets windings, and electrotechnical devices for Fusion Island's infrastructure. The benefits of using MgB 2 over the Nb-based conductors during construction, operation and decommissioning of the Fusion Island Reactor are presented. The comparison of Nb 3 Sn strands for ITER fusion magnet with newly developed high field composite MgB 2 PIT conductors has shown that at 14 Tesla MgB 2 possesses better properties than any of the Nb 3 Sn conductors produced. In this paper the potential of MgB 2 conductors is examined for tokamaks of both the conventional ITER type and a Spherical Tokamak geometry. In each case MgB 2 is considered as a conductor for a range of field coil applications and the potential for operation at both liquid helium and liquid hydrogen temperatures is considered. Further research plans concerning the application of MgB 2 conductors for Fusion Island are also considered

  15. Enhancement of photovoltaic characteristics of nanocrystalline 2,3-naphthalocyanine thin film-based organic devices

    International Nuclear Information System (INIS)

    Farag, A.A.M.; Osiris, W.G.; Ammar, A.H.

    2012-01-01

    Graphical abstract: Scanning electron microscopy (SEM) image of NPC films: (a) cross section view, (b) surface morphology of the film at 300 K, (c) surface morphology of the annealed film at 350 K, (d) surface morphology of the annealed film at 400 K, (e) surface morphology of the annealed film at 450 K, and (f) surface morphology of the annealed film at 500 K. Highlights: ► The absorption edge shifts to the lower energy for the annealed NPC film. ► The device of Au/NPC/ITO exhibit rectifying characteristics. ► The devices show improvement in photovoltaic parameters. ► The power conversion efficiency of the devices show enhancement under annealing. - Abstract: In this work, nanocrystalline thin films of 2,3-naphthalocyanine (NPC) were successfully deposited by a thermal evaporation technique at room temperature under high vacuum (∼10 −4 Pa). The crystal structure and surface morphology were measured using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. A preferred orientation along the (0 0 1) direction was observed in all the studied films and the average crystallite size was calculated. Scanning electron miscroscopy (SEM) images of NPC films at different thermal treatment indicated significant changes on surface level patterns and gave clear evidence of agglomeration of nanocrystalline structures. The molecular structural properties of the thin films were characterized using Fourier transform infrared spectroscopy (FTIR), which revealed the stability of the chemical bonds of the compound under thermal treatment. The dark electrical conductivity of the films at various heat treatment stages showed that NPC films have a better conductivity than that of its earlier reported naphthalocyanine films and the activation energy was found to decrease with annealing temperature. The absorption edge shifted to the lower energy as a consequence of the thermal annealing of the film and the fundamental absorption edges correspond to a

  16. Enhancing the superconducting temperature of MgB2 by SWCNT dilution

    Science.gov (United States)

    Ma, Danhao; Jayasingha, Ruwantha; Hess, Dustin T.; Adu, Kofi W.; Sumanasekera, Gamini U.; Terrones, Mauricio

    2014-02-01

    We report, for the first time, an increase in the superconducting critical temperature, TC of commercial “dirty” MgB2 by a nonsubstitutional hole-doping of the MgB2 structure using minute, single-wall carbon nanotube (SWCNT) inclusions. We varied the SWCNTs concentration from 0.05 wt% to 5 wt% and investigated the temperature-dependent resistivity from 10 K to 300 K. We used micro-Raman spectroscopy, field-emission scanning electron microscopy, and X-ray diffraction to analyze the interfacial interactions between the SWCNTs and the MgB2 grains. We obtained an increase in TC from 33.0 to 37.8 K (ΔTC+=4.8 K), which is attributed to charge transfer from the MgB2 structure to the SWCNT structure. The charge transfer phenomenon is confirmed by micro-Raman analysis of the phonon states of the SWCNT tangential band frequency in the composites. We determined the charge transfer per carbon atom to be 0.0023/C, 0.0018/C and 0.0008/C for 0.05 wt%, 0.5 wt% and 5 wt% SWCNT inclusions, respectively, taking into account the contributions from the softening of the lattice constant and the nonadiabatic (dynamic) effects at the Fermi level. This report provides an experimental, alternative pathway to hole-doping of MgB2 without appealing to chemical substitution.

  17. MgB_{2} nonlinear properties investigated under localized high rf magnetic field excitation

    Directory of Open Access Journals (Sweden)

    Tamin Tai

    2012-12-01

    Full Text Available The high transition temperature and low surface resistance of MgB_{2} attracts interest in its potential application in superconducting radio frequency accelerating cavities. However, compared to traditional Nb cavities, the viability of MgB_{2} at high rf fields is still open to question. Our approach is to study the nonlinear electrodynamics of the material under localized rf magnetic fields. Because of the presence of the small superconducting gap in the π band, the nonlinear response of MgB_{2} at low temperature is potentially complicated compared to a single-gap s-wave superconductor such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB_{2}, as well as extrinsic sources of nonlinearity, is an urgent requirement. A localized and strong rf magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [T. Tai et al., IEEE Trans. Appl. Supercond. 21, 2615 (2011ITASE91051-822310.1109/TASC.2010.2096531]. MgB_{2} films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that several possible mechanisms are responsible for this nonlinear response.

  18. Evaluations of MgB2 Coatings on 2'' Copper Discs for Superconducting Radio Frequency Applications

    Science.gov (United States)

    Withanage, Wenura; Tan, Teng; Lee, Namhoon; Banjade, Huta; Eremeev, Grigory; Welander, Paul; Valente-Feliciano, Anne-Marie; Kustom, Robert; Wolak, Matthäus; Nassiri, Alireza; Xi, Xiaoxing

    We propose that coating the inner walls of copper RF cavities with superconducting MgB2 (Tc = 39 K) can result in a viable alternative to the already established niobium-based SRF technology. This approach improves the thermal conductivity, allows for operation at higher temperatures, and reduces the need for large helium refrigeration, thereby resulting in lower operational costs. For our studies, we grew MgB2 films via hybrid physical chemical vapor deposition (HPCVD) on 2'' Cu substrates. Since Mg and Cu readily form an alloy at higher temperatures, the HPCVD setup was modified in order to achieve lower deposition temperatures, minimize alloy formation, and provide high quality MgB2 films. This method yielded MgB2 coatings on 2'' Cu discs with transition temperatures around 38 K. The samples were characterized with regards to their RF attributes and showed similar performance in comparison to Nb reference samples. The presented results show that MgB2 coated copper can be a suitable alternative for use in SRF cavities.

  19. Energy gap in MgB2 superconductor: Andreev reflection studies

    International Nuclear Information System (INIS)

    Aswal, D.K.

    2003-01-01

    To investigate the nature of energy gap in MgB 2 superconductor, we have performed Andreev-reflection studies on MgB 2 / Ag planar junctions. The differential resistance (dV/dI) versus voltage (V) characteristics were recorded as a function of temperature, magnetic field and junction-type. The dV/dI vs V characteristic recorded at low temperature and zero-field for a clean MgB 2 / Ag planar junction exhibited several interesting features, such as, zero bias anomaly, a distinct double-minima, sharp resonance peaks near the energy gap etc. The data, however, could not be explained using Blonder-Tinkham-Klapwijk theory of isotropic superconductor, which indicated that energy gap in MgB 2 is not consistent with the weak-coupling BCS theory. This is further supported by unusual temperature and magnetic field dependence of the tunneling characteristics. The results indicate several possibilities for the energy gap in MgB 2 , such as, an anisotropic energy gap, two-energy or an unconventional gap scenario. (author)

  20. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.; Zangenberg, N.; Baurichter, A.

    2006-01-01

    for the collaborating company Danfysik A/S, which has a strongtradition in building resistive magnets for particle accelerators[4]. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European...... in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive magnets. Here the criticalcurrent density of primarily MgB2 will be compared with current density determined by specifications similar to the Tevatron...... accelerator, B = 4:4 Tesla and coil aperture D = 76 mm [6], which has been identified by Danfysik A/S as interesting. It isconcluded that MgB2 is useful for the dipole application and construction of a small test coil of one half of the magnet is planned in 2007....

  1. Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    Science.gov (United States)

    Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.

    2002-11-01

    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  2. Possible superlattice formation in high-temperature treated carbonaceous MgB2 at elevated pressure

    International Nuclear Information System (INIS)

    Tschauner, Oliver; Errandonea, Daniel; Serghiou, George

    2006-01-01

    We report indications of a phase transition in carbonaceous MgB 2 above 9 GPa at 300 K after stress relaxation by laser heating. The transition was detected using Raman spectroscopy and X-ray diffraction. The observed changes are consistent with a second-order structural transition involving a doubling of the unit cell along c and a reduction of the boron site symmetry. Moreover, the Raman spectra suggest a reduction in electron-phonon coupling in the slightly modified MgB 2 structure consistent with the previously proposed topological transition in MgB 2 . However, further attributes including deviatoric stress, lattice defects, and compositional variation may play an important role in the observed phenomena

  3. Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells

    International Nuclear Information System (INIS)

    Chowdhury, Amartya; Adhikary, Koel; Mukhopadhyay, Sumita; Ray, Swati

    2008-01-01

    The influence of the p-layer on the crystallinity of the absorber layer and nanocrystalline silicon thin film solar cells has been studied. Boron doped Si : H p-layers of different crystallinities have been prepared under different power pressure conditions using the plasma enhanced chemical vapour deposition method. The crystalline volume fraction of p-layers increases with the increase in deposition power. Optical absorption of the p-layer reduces as the crystalline volume fraction increases. Structural studies at the p/i interface have been done by Raman scattering studies. The crystalline volume fraction of the i-layer increases as that of the p-layer increases, the effect being more prominent near the p/i interface. Grain sizes of the absorber layer decrease from 9.2 to 7.2 nm and the density of crystallites increases as the crystalline volume fraction of the p-layer increases and its grain size decreases. With increasing crystalline volume fraction of the p-layer solar cell efficiency increases

  4. Hysteretic current-voltage characteristics in RF-sputtered nanocrystalline TiO2 thin films

    International Nuclear Information System (INIS)

    Villafuerte, Manuel; Juarez, Gabriel; Heluani, Silvia P. de; Comedi, David

    2007-01-01

    We have measured the current-voltage characteristics at room temperature of a nanocrystalline TiO 2 thin film fabricated by reactive RF-sputtering deposition and sandwiched between ITO (indium-tin-oxide)-buffered glass substrate and an indium top electrode. The I-V characteristics are ohmic for low voltages and become non-linear, hysteretic and asymmetric as the voltage is increased. The system is shown to be well represented by two distinct resistance states in the non-ohmic region. Current transient evolutions were also measured for constant voltage excitations. The resistance is stable in time for voltages in the ohmic regime. In contrast, for voltages in the non-ohmic regime, the resistance has a small variation for a short period of time (order of tens seconds) and then increases with time. For those transients, long characteristic times (on the order of tens of minutes up to hours) were found. The behavior of the system is discussed on the basis of experimental results reported in the literature for similar systems and existing models for electric-field induced resistive switching

  5. Spectroscopy and structural properties of amorphous and nanocrystalline silicon carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Halindintwali, Sylvain; Knoesen, D.; Julies, B.A.; Arendse, C.J.; Muller, T. [University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Gengler, Regis Y.N.; Rudolf, P.; Loosdrecht, P.H.M. van [Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen (Netherlands)

    2011-09-15

    Amorphous SiC:H thin films were grown by hot wire chemical vapour deposition from a SiH{sub 4}/CH{sub 4}/H{sub 2} mixture at a substrate temperature below 400 C. Thermal annealing in an argon environment up to 900 C shows that the films crystallize as {mu}c-Si:H and SiC with a porous microstructure that favours an oxidation process. By a combination of spectroscopic tools comprising Fourier transform infrared, Raman scattering and X-rays photoelectron spectroscopy we show that the films evolve from the amorphous SiH{sub x}/SiCH{sub 2} structure to nanocrystalline Si and SiC upon annealing at a temperature of 900 C. A strong RT photoluminescence peak of similar shape has been observed at around 420 nm in both as-deposited and annealed samples. Time-resolved luminescence measurements reveal that this peak is fast decaying with lifetimes ranging from 0.5 to {proportional_to}1.1 ns. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Optical properties of Ar ions irradiated nanocrystalline ZrC and ZrN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C. [Ramapo College of New Jersey, Mahwah, NJ 07430 (United States); Miller, K.H. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Makino, H. [Research Institute, Kochi University of Technology, Kami, Kochi, 782-8502 (Japan); Craciun, D. [National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele (Romania); Simeone, D. [CEA/DEN/DANS/DM2S/SERMA/LEPP-LRC CARMEN CEN Saclay France & CNRS/ SPMS UMR8785 LRC CARMEN, Ecole Centrale de Paris, F92292, Chatenay Malabry (United States); Craciun, V., E-mail: valentin.craciun@inflpr.ro [National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele (Romania)

    2017-05-15

    Employing wide spectral range (0.06–6 eV) optical reflectance measurements and high energy X-ray photoemission spectroscopy (HE-XPS), we studied the effect of 800 keV Ar ion irradiation on optical and electronic properties of nanocrystalline ZrC and ZrN thin films, which were obtain by the pulsed laser deposition technique. Both in ZrC and ZrN, we observed that irradiation affects the optical properties of the films mostly at low frequencies, which is dominated by the free carriers response. In both materials, we found a significant reduction in the free carriers scattering rate and an increase of the zero frequency conductivity, i.e. possible increase in mobility, at higher irradiation fluence. This is consistent with our previous findings that irradiation affects the crystallite size and the micro-strain, but it does not induce major changes in the chemical bonding. HE-XPS investigations further confirms the stability of the Zr-C and Zr-N bonds, despite a small increase in the surface region of the Zr-O bonds fraction with increasing irradiation fluence.

  7. Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering

    International Nuclear Information System (INIS)

    Singh, Preetam; Kaur, Davinder

    2010-01-01

    We report, the structural and optical properties of nanocrystalline anatase TiO 2 thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO 2 film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO 2 films for device applications with different refractive index, by changing the deposition parameters.

  8. Nanocrystalline CsPbBr3 thin films: a grain boundary opto-electronic study

    Science.gov (United States)

    Conte, G.; Somma, F.; Nikl, M.

    2005-01-01

    CsPbBr3 thin films with nanocrystalline morphology were studied by using optoelectronic techniques to infer the grain boundary region in respect of the crystallite's interior performance. Co-evaporation of puri-fied powders or crushed Bridgman single crystals were used to deposit materials and compare recombina-tion mechanism and dielectric relaxation processes within them. Nanosecond photoconduction decay was observed on both materials as well as activated hopping transport. An asymmetric Debye-like peak was evaluated from impedance spectroscopy with a FWHM value, which remains constant for 1.25 +/- 0.02 deca-des, addressing the presence of a tight conductivity relaxation times distribution. The evaluated activation energy, equal to 0.72 +/- 0.05 eV, similar to that estimated by DC measurements, is well smaller then that expected for an intrinsic material with exciton absorption at 2.36 eV. A simple model based on Voigt's elements was used to model the electronic characteristics of these nanostructured materials, to discuss observed results and define the role played by grain boundaries.

  9. Effect of helium gas pressure on dc conduction mechanism and EMI shielding properties of nanocrystalline carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Ishpal, E-mail: rawalishpal@gmail.com [Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Singh, Avanish Pratap; Dhawan, S.K. [Polymeric and Soft Materials Group, Physics Engineering of Carbon, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2015-05-05

    This paper reports the effect of helium partial pressures ∼1.2 × 10{sup −5} (base pressure), 1.4 × 10{sup −4}, 8.6 × 10{sup −3} and 0.1 mbar on the variable range hopping conduction in nanocrystalline carbon thin films deposited by filtered cathodic jet carbon arc technique. High resolution transmission electron microscopy studies suggest the random distribution of nanocrystallites (∼3–7 nm) in the amorphous matrix. The DC conduction behavior of the deposited nanocrystalline films has been studied in the light of Mott's variable range hopping (VRH) model and found to obey three dimensional VRH conduction. The randomly distributed nanocrystallites in amorphous matrix may lead to change in the distribution of density of states near Fermi level and hence, the conduction behavior. The enhanced electrical conductivity of the deposited films due to the helium environment makes them suitable for electromagnetic interference shielding applications. The sample deposited at a helium partial pressure of 0.1 mbar has a value of shielding effectiveness ∼7.84 dB at 18 GHz frequency. - Highlights: • Nanocrystalline carbon thin films (NCTF) has been deposited by FCJCA technique. • Effect of helium gas pressure has been studied on the properties of NCTF. • Investigation of EMI shielding properties of NCTF has been carried out.

  10. Crystallinity and flux pinning properties of MgB2 bulks

    International Nuclear Information System (INIS)

    Yamamoto, A.; Shimoyama, J.; Ueda, S.; Katsura, Y.; Iwayama, I.; Horii, S.; Kishio, K.

    2006-01-01

    The relationship between flux pinning properties and crystallinity of MgB 2 bulks was systematically studied. Improved flux pinning properties under high fields were observed for samples with low crystallinity. Increased impurity scattering due to strain and defects in lattice corresponding to the degraded crystallinity was considered to enhance flux pinning strength at grain boundaries. Low-temperature synthesis and carbon substitution were confirmed to be effective for degrading crystallinity of MgB 2 bulks, resulting in high critical current properties under high fields

  11. Properties of stabilized MgB2 composite wire with Ti barrier

    International Nuclear Information System (INIS)

    Kovac, P; Husek, I; Melisek, T; Holubek, T

    2007-01-01

    Stabilized four-filament in situ MgB 2 /Ti/Cu/Monel composite wire was produced by the rectangular wire-in-tube (RWIT) technique. 10 wt% of nanosize SiC was added into the Mg-B powder mixture, which was packed into the Ti/Cu and Monel tubes, respectively. The assembled composite was two-axially rolled into wire and/or tape form and sintered at temperatures of 650-850 deg. C/0.5 h. Stabilized MgB 2 wire with Ti barrier is studied in terms of field-dependent transport critical current density, effects of filament size reduction and thermal stability

  12. Preparation of MgB2 superconducting microbridges by focused ion beam direct milling

    Science.gov (United States)

    Zhang, Xuena; Li, Yanli; Xu, Zhuang; Kong, Xiangdong; Han, Li

    2017-01-01

    MgB2 superconducting microbridges were prepared by focused ion beam (FIB) direct milling on MgB2 films. The surface topography of the microbridges were observed using SEM and AFM and the superconductivity was measured in this paper. Lots of cracks and holes were found near the milled area. And the superconducting transition temperature was decreased a lot and the bridges prepared were not superconducting due to ion damage after milled with large dose. Through these works, we explored the effect regular of FIB milling and experimental parameters on the performance of microbridges.

  13. Superconducting and normal state properties of carbon doped and neutron irradiated MgB2

    International Nuclear Information System (INIS)

    Wilke, R.H.T.; Samuely, P.; Szabo, P.; Holanova, Z.; Bud'ko, S.L.; Canfield, P.C.; Finnemore, D.K.

    2007-01-01

    Current research in MgB 2 focuses on the effects various types of perturbations have on the superconducting properties of this novel two-gap superconductor. In this article we summarize the effects of carbon doping and neutron irradiation in bulk MgB 2 . Low levels of carbon doping and light neutron irradiation result in significant enhancements in H c2 . At high fluences, where superconductivity is nearly fully suppressed, superconductivity can be restored through post exposure annealing. However, this results in a change in the interdependencies of the normal state and superconducting properties (ρ 0 , T c , H c2 ), with little or no enhancement in H c2

  14. The preliminary study of the quench protection of an MgB2

    Science.gov (United States)

    Juster, F. P.; Berriaud, C.; Bonelli, A.; Pasquet, R.; Przybilski, H.; Schild, T.; Scola, L.

    2014-01-01

    In the framework of general studies currently carried out at CEA/Saclay in collaboration with Sigmaphi Company on dry MgB2 magnet operating at 10 K and medium range field, 1 T up to 4 T., we plan to build a prototype-coil with a commercial MgB2 wire. This coil, the nominal axial magnetic field of which is 1 tesla, will be placed in a 3 teslas background field generated by a classical NbTi coil. This paper deals with the preliminary quench protection studies including stability and quench propagation modeling.

  15. Evaluation of carbon incorporation and strain of doped MgB2 superconductor by Raman spectroscopy

    International Nuclear Information System (INIS)

    Yeoh, W.K.; Zheng, R.K.; Ringer, S.P.; Li, W.X.; Xu, X.; Dou, S.X.; Chen, S.K.; MacManus-Driscoll, J.L.

    2011-01-01

    Raman spectroscopy is employed to study both the strain and the carbon substitution level in SiC-doped MgB 2 bulk samples. Raman spectroscopy was demonstrated to be a better method to distinguish the individual influences of strain and carbon than standard X-ray diffraction. It is found that the lattice parameter correlation method for C content determination is invalid for highly strained samples. Our result also provides an alternative explanation for lattice variation in non-carbon-doped MgB 2 , which is basically due to lattice strain.

  16. Defect structures in MgB2 wires introduced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Liao, X Z; Serquis, A; Zhu, Y T; Civale, L; Hammon, D L; Peterson, D E; Mueller, F M; Nesterenko, V F; Gu, Y

    2003-01-01

    The microstructures of MgB 2 wires prepared by the powder-in-tube technique and subsequent hot isostatic pressing were investigated using transmission electron microscopy. A large amount of crystalline defects including small-angle twisting, tilting and bending boundaries, in which high densities of dislocations reside, was found forming sub-grains within MgB 2 grains. It is believed that these defects resulted from particle deformation during the hot isostatic pressing process and are effective flux pinning centres that contribute to the high critical current densities of the wires at high temperatures and at high fields

  17. Quantitative electron microscopy and spectroscopy of MgB2 wires and tapes

    International Nuclear Information System (INIS)

    Birajdar, B; Peranio, N; Eibl, O

    2008-01-01

    In MgB 2 the correlation of microstructure with superconducting properties, in particular the critical current density, requires powerful analytical tools. Critical current densities and electrical resistivities of different MgB 2 superconductors differ by orders of magnitudes and the current limiting mechanisms have not been fully understood. Granularity of MgB 2 is one significant reason for reduced critical current densities and is introduced intrinsically by the anisotropy of B c2 but also extrinsically by the microstructure of the material. B c2 enhancement by doping is another important challenge for chemical analysis and, at present, doping levels are not well controlled on the sub-μm scale. In this paper the quantitative electron microscopy and spectroscopy methods essential for the microstructural analysis of MgB 2 are described. By quantitative electron microscopy and spectroscopy we mean a combined SEM and TEM analysis that covers various length scales from μm to nm. Contamination-free sample preparation, chemical mapping including B, and advanced chemical quantification using x-ray microanalysis were essential elements of the applied methodology. The methodology was applied to in situ and ex situ MgB 2 wires and tapes with and without SiC additives. Quantitative B analysis by EDX spectroscopy was applied quantitatively in the SEM and TEM, which is a major achievement. Although MgB 2 is a binary system, the thermodynamics of phase formation is complex, and the complexity is dramatically increased if additives like SiC are used. The small, sub-μm grain sizes of the matrix and secondary phases require TEM methods. However, granularity on the μm scale was also identified and underlines the importance of the combined SEM and TEM studies. Significant differences in the microstructure were observed for in situ and ex situ samples. This holds particularly if SiC was added and yielded Mg 2 Si for in situ samples annealed at 600-650 deg. C and Mg-Si-O phases for ex situ samples annealed between 900-1050 deg. C. Only with such a systematic approach combining a large number of microscopy and spectroscopy methods, could a microstructure critical current density model be established that will be presented in another paper. Four microstructural parameters were identified as relevant for the critical current density of wires and tapes and these were: (1) MgB 2 grain size, (2) colony size (a colony is a dense arrangement of MgB 2 grains), (3) oxygen content and (4) volume fraction of B-rich secondary phases. MgB 2 grain size can only be determined by TEM, while colony size, oxygen content and volume fraction of B-rich secondary phases were determined by SEM methods. The formation of oxides was also studied in detail by TEM methods. The importance of electron microscopy methods in the understanding of the thermodynamics of phase formation in MgB 2 as well as in improving the synthesis technology and the superconducting properties of MgB 2 wires and tapes is described. (topical review)

  18. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    International Nuclear Information System (INIS)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok; Yoo, Suk Jae; Lee, Bonju; Hong, MunPyo

    2011-01-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  19. RAPID COMMUNICATION: Formation of MgB2 at ambient temperature with an electrochemical process: a plausible mechanism

    Science.gov (United States)

    Jadhav, A. B.; Subhedar, K. M.; Hyam, R. S.; Talaptra, A.; Sen, Pintu; Bandyopadhyay, S. K.; Pawar, S. H.

    2005-06-01

    The binary intermetallic MgB2 superconductor has been synthesized by many research groups. However, the mechanism of its formation is not clearly understood. In this communication, a comprehensive mechanism of the formation of MgB2 from Le Chatelier's principle of equilibrium reaction has been explained both for solid-state reaction and electrodeposition methods.

  20. An innovative technique to synthesize C-doped MgB2 by using chitosan as the carbon source

    International Nuclear Information System (INIS)

    Bovone, G; Kawale, S; Siri, A S; Vignolo, M; Bernini, C

    2014-01-01

    Here, we report a new technique to synthesize carbon-doped MgB 2 powder. Chitosan was innovatively used as the carbon source during the synthesis of boron from boron oxide. This allowed the introduction of local defects, which later on served as pinning centers in MgB 2 , in the boron lattice itself, avoiding the traditional and time consuming ways of ex situ MgB 2 doping (e.g. ball milling). Two volume percentages of C-doping have been tried and its effect on the superconducting properties, evaluated by magnetic and transport measurements, are discussed here. Morphological analysis by scanning electron microscopy revealed nano-metric grains’ distribution in the boron and MgB 2 powder. Mono-filamentary MgB 2 wires have been fabricated by an ex situ powder-in-tube technique by using the thus prepared carbon-doped MgB 2 and pure MgB 2 powders. Transport property measurements on these wires were made and compared with MgB 2 wire produced using commercial boron. (fast track communication)

  1. Development of magnesium diboride (MgB 2) wires and magnets using in situ strand fabrication method

    Science.gov (United States)

    Tomsic, Michael; Rindfleisch, Matthew; Yue, Jinji; McFadden, Kevin; Doll, David; Phillips, John; Sumption, Mike D.; Bhatia, Mohit; Bohnenstiehl, Scot; Collings, E. W.

    2007-06-01

    Since 2001 when magnesium diboride (MgB 2) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB 2 superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB 2 wire in superconducting devices now that the wire is available commercially. MgB 2 superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB 2 conductor and coil development in the last several years at Hyper Tech Research, Inc.

  2. Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method

    International Nuclear Information System (INIS)

    Tomsic, Michael; Rindfleisch, Matthew; Yue, Jinji; McFadden, Kevin; Doll, David; Phillips, John; Sumption, Mike D.; Bhatia, Mohit; Bohnenstiehl, Scot; Collings, E.W.

    2007-01-01

    Since 2001 when magnesium diboride (MgB 2 ) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB 2 superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB 2 wire in superconducting devices now that the wire is available commercially. MgB 2 superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB 2 conductor and coil development in the last several years at Hyper Tech Research, Inc

  3. Feasibility study on partial insulation winding technique for the development of self-protective MgB2 magnet

    Science.gov (United States)

    Kim, Y. G.; Kim, J. C.; Kim, J. M.; Yoo, B. H.; Hwang, D. Y.; Lee, H. G.

    2018-06-01

    This study investigates the feasibility of using the partial insulation winding technique for the development of a self-protective MgB2 MRI magnet with a fast charge-discharge rate. Charge-discharge and quench tests for a prototype PI MgB2 magnet confirmed that the magnet was successfully operated at full-field performance and exhibited self-protecting behavior in the event of a quench. Nonetheless, the required time to charge the 0.5-T/300-mm PI MgB2 magnet was almost five days, implying that the charge-discharge delay of the PI MgB2 magnet still needs to be ameliorated further to develop a real-scale MgB2 MRI magnet with a fast charge-discharge rate.

  4. Composite superconducting MgB2 wires made by continuous process

    NARCIS (Netherlands)

    Kutukcu, Mehmet; Atamert, Serdar; Scandella, Jean Louis; Hopstock, Ron; Blackwood, Alexander C.; Dhulst, Chris; Mestdagh, Jan; Nijhuis, Arend; Glowacki, Bartek A.

    Previously developed manufacturing technology of a low-cost composite single core MgB2 superconductive wires has been investigated in details using monel sheath and titanium diffusion barrier. In this process Mg and nano-sized B as well as SiC dopant powders were fed continuously to a "U" shaped

  5. Critical current and cryogenic stability modelling of filamentary MgB2 conductors

    DEFF Research Database (Denmark)

    Glowacki, B.A.; Majoros, M.; Tanaka, K.

    2006-01-01

    The modelling of a single filament, 6 filaments and 19 filaments MgB(2) conductors was performed for two limiting cases: a) isothermal conditions considering J(c)(B) dependence, b) considering heating effects but with J(c) magnetic field independent. As a starting point of the modelling in case a...

  6. Composite superconducting MgB2 wires made by continuous process

    NARCIS (Netherlands)

    Kutukcu, Mehmet; Atamert, Serdar; Scandella, Jean Louis; Hopstock, Ron; Blackwood, Alexander C.; Dhulst, Chris; Mestdagh, Jan; Nijhuis, Arend; Glowacki, Bartek A.

    2018-01-01

    Previously developed manufacturing technology of a low-cost composite single core MgB2 superconductive wires has been investigated in details using monel sheath and titanium diffusion barrier. In this process Mg and nano-sized B as well as SiC dopant powders were fed continuously to a "U" shaped

  7. Two ways to model voltage-current curves of adiabatic MgB2 wires

    International Nuclear Information System (INIS)

    Stenvall, A; Korpela, A; Lehtonen, J; Mikkonen, R

    2007-01-01

    Usually overheating of the sample destroys attempts to measure voltage-current curves of conduction cooled high critical current MgB 2 wires at low temperatures. Typically, when a quench occurs a wire burns out due to massive heat generation and negligible cooling. It has also been suggested that high n values measured with MgB 2 wires and coils are not an intrinsic property of the material but arise due to heating during the voltage-current measurement. In addition, quite recently low n values for MgB 2 wires have been reported. In order to find out the real properties of MgB 2 an efficient computational model is required to simulate the voltage-current measurement. In this paper we go back to basics and consider two models to couple electromagnetic and thermal phenomena. In the first model the magnetization losses are computed according to the critical state model and the flux creep losses are considered separately. In the second model the superconductor resistivity is described by the widely used power law. Then the coupled current diffusion and heat conduction equations are solved with the finite element method. In order to compare the models, example runs are carried out with an adiabatic slab. Both models produce a similar significant temperature rise near the critical current which leads to fictitiously high n values

  8. The Raman spectrum and lattice parameters of MgB2 as a function of temperature

    International Nuclear Information System (INIS)

    Shi Lei; Zhang Huarong; Chen Lin; Feng Yong

    2004-01-01

    The temperature dependences of the Raman spectrum and lattice parameters of polycrystalline MgB 2 have been investigated by means of Raman spectroscopy and x-ray diffraction. It is found that the lattice parameters show an approximately linear change with the temperature decrease, giving different thermal expansions along the a- and c-axes, which is caused by the comparatively weak metal-boron bonding in MgB 2 . The grain size of MgB 2 determined by means of x-ray diffraction is around 45 nm for both [100] and [001] directions. There is no evidence for any structural transition while the temperature changes from 300 K down to 12 K. An anomalous Raman band at 603 cm -1 is observed, which is consistent with the theoretical prediction for the E 2g in-plane boron stretching mode. The Raman frequency increases and the linewidth decreases as the temperature decreases. A possible origin of the temperature dependences of the Raman frequency and the linewidth is discussed. It is suggested that the grain size effect of MgB 2 on the nanometric scale will have a clear influence on the frequency and the linewidth of the Raman spectrum

  9. Design of an MgB2 race track coil for a wind generator pole demonstration

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2014-01-01

    An MgB2 race track coil intended for demonstrating a down scaled pole of a 10 MW direct drive wind turbine generator has been designed. The coil consists of 10 double pancake coils stacked into a race track coil with a cross section of 84 mm × 80 mm. The length of the straight section is 0.5 m...

  10. Electrical, Structural and Mechanical Properties of Superconducting MGB2/MG Composites

    International Nuclear Information System (INIS)

    Ulucan, S.

    2004-01-01

    The brittle nature of MgB 2 does not allow this material to be used as a stand-alone material for large scale applications based on wire production. MgB 2 /Mg composites were prepared using metal matrix composite fabrication technique. To obtain composites MgB 2 and Mg powders were mixed at different weight fractions and uniaxially pressed in a cylindrical dye under the pressure of 0.5 GPa and 1.0 GPa for two hours at various temperatures. XRD, SEM and EDX techniques were used for phase identification and microstructural studies. Resistivities of the composites were measured between 20 K and room temperature. The effect of temperature on the mechanical properties of MgB 2 /Mg composites was investigated. For this purpose, compressive mechanical testing was performed to measure elastic modulus and strain at failure values of the composites. It was found that the relative weight fraction of the powders and the temperature have same considerable effect on the electrical, microstructural and the mechanical properties of the composites

  11. Microwave Synthesis and Magnetic Properties of High Tc Superconductor MGB2

    International Nuclear Information System (INIS)

    Koeseoglu, Y.

    2004-01-01

    Polycrystalline powders of MgB 2 have been synthesized by microwave synthesis technique. Crystallographic information of the sample was investigated by powder X-ray diffraction (XRD). The main phase was determined as MgB2, and secondary phases as MgB4 and MgO. The temperature dependence of magnetic properties of polycrystalline MgB2, synthesized by using microwave heating of the constituents have been characterized by SQUID magnetometer and X-band EPR spectrometer. The transition temperature to the superconducting phase is observed as 39K for both measurements. An isotropic, strong and very narrow EPR signal corresponding to free electron g-value (ge=2.0023) is observed. The observed line broadening with decreasing temperature might arise from the dipolar interactions between the superparamagnetic nanoparticles. Normally, the internal magnetic field originating from magnetic entities is expected to be more uniform as a result of highly ordered magnetic moments at low temperatures; giving narrower ESR line in contrary in our case. While the ESR line is broadened, the signal intensity is drastically decreased just below T c =39 K corresponding to a transition temperature from normal to superconducting state. Some minor changes in both intensity and line width curves might be taken as signs for changes of local crystalline field symmetry around weakly localized conduction electrons or holes, which are the sources of ESR signal in MgB 2 compound

  12. Texture gradients in Fe-sheathed ex situ produced MgB2 tapes

    International Nuclear Information System (INIS)

    Lezza, P; Gladyshevskii, R; Abaecherli, V; Fluekiger, R

    2006-01-01

    Superconducting Fe-sheathed MgB 2 monofilamentary tapes have been fabricated by the powder-in-tube technique, varying the particle size of the starting MgB 2 powder and applying either cold or hot rolling during the last deformation process. Measurements of the critical current density J c with the magnetic field applied parallel or perpendicular to the tape surface revealed a pronounced anisotropy for the cold rolled tapes, which was found to increase with increasing particle size and magnetic field strength. The microstructural origin of the J c anisotropy was confirmed by means of x-ray diffraction performed on the filaments after mechanical removal of the sheath. The local texture was studied in a series of diffraction patterns collected at different distances from the filament centre, removing each time some 25 μm of the filament thickness. In the cold rolled tapes, the average orientation of the MgB 2 grains was found to approach a preferred orientation with the crystallographic c-axis perpendicular to the tape surface, near the interface with the sheath; however, the misalignment angle increased towards the centre of the tape. In the hot rolled tapes, for which no J c anisotropy was observed, the grains were found to be approximately randomly oriented. Roughness measurements performed on the side of the Fe sheath in contact with the MgB 2 filament are in agreement with the difference in texture observed for cold and hot rolled tapes

  13. Superconducting properties of MgB2 particle impregnated with Mg-based alloys

    International Nuclear Information System (INIS)

    Shimizu, Yusuke; Matsuda, Kenji; Mizutani, Manabu; Nishimura, Katsuhiko; Kawabata, Tokimasa; Ikeno, Susumu; Hishinuma, Yoshimitsu; Aoyama, Shigeki

    2011-01-01

    The three-dimensional penetration method combined with semi-solid casting (SS-3DPC) was utilized to prepare magnesium diboride (MgB 2 ) powder composite materials with various host materials of Mg, Mg-3%Al, Mg-3%Al-1%Zn, Mg-9%Al, and Mg-9%Al-1%Zn. X-ray diffraction measurements indicated predominant peak patterns of MgB 2 and a host alloy, implying that the host material tightly bonded MgB 2 grains without melting the MgB 2 powder. This was confirmed by SEM images. Measured electrical resistivity and magnetization versus temperature showed clear signals of superconducting transition temperature of 27-38 K for all the samples cut out from the billets. Magnetic hysteresis loop observed at 5 K enabled us to estimate a critical current density (J c ) based on the extended Bean model. Additions of aluminum and zinc elements to magnesium host-matrix were found to enhance J c and increase residual resistivity (ρ 0 ) suggesting that aluminum and zinc have an effect on pinning magnetic flux flow for J c enhancement, and scattering conduction electrons for increase of ρ 0 . (author)

  14. Low-temperature dependence of the optical conductivity in superconductor MgB2

    International Nuclear Information System (INIS)

    Shahzamanian, M.A.; Yavary, H.; Moarrefi, M.

    2005-01-01

    The real part of the optical conductivity is calculated by using the Kubo formula approach, and in the framework of the two-bands model. It is shown that a single-gap model is insufficient to describe the optical behavior of superconductor MgB 2 film, but the two-gap model with different symmetries is sufficient to explain the experimental results

  15. Doping effects of carbon and titanium on the critical current density of MgB2

    International Nuclear Information System (INIS)

    Shen, T M; Li, G; Cheng, C H; Zhao, Y

    2006-01-01

    MgB 2 bulks doped with Ti or/and C were prepared by an in situ solid state reaction method to determine the combined effect of C and Ti doping and to probe the detailed mechanism. The magnetization measurement shows that Mg 0.95 Ti 0.05 B 1.95 C 0.05 sample has significantly improved flux pinning compared to the MgB 1.95 C 0.05 sample at 20 K, indicating that C and Ti are largely cooperative in improving the J c (H) behaviour. No TiC phase was detected in the x-ray diffraction (XRD) patterns. Moreover, the overlap of the (100) peaks of MgB 1.95 C 0.05 and Mg 0.95 Ti 0.05 B 1.95 C 0.05 showed that Ti doping does not reduce the amount of C in MgB 2 . Microstructural analyses revealed that the addition of Ti eliminated the porosity present in the carbon-doped MgB 2 pellet, resulting in an improved intergrain connectivity and an increase of effective current pass. Further, MgB 2 doped with C and Ti, which mainly consists of spherical grains about 200-300 nm in size, shows an higher grain homogeneity than the C-doped sample, suggesting that the Ti doping in MgB 1-x C x has played an important role in obtaining uniform grains

  16. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhenfei, E-mail: zhfluo8@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Zhou, Xun, E-mail: zx_zky@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yan, Dawei [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Wang, Du; Li, Zeyu [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yang, Cunbang [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-01-01

    Nanocrystalline vanadium dioxide (VO{sub 2}) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO{sub 2} thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T{sub SMT}) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO{sub 2} grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T{sub SMT} was found to decrease as average VO{sub 2} grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO{sub 2} film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure.

  17. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    International Nuclear Information System (INIS)

    Luo, Zhenfei; Zhou, Xun; Yan, Dawei; Wang, Du; Li, Zeyu; Yang, Cunbang; Jiang, Yadong

    2014-01-01

    Nanocrystalline vanadium dioxide (VO 2 ) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO 2 thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T SMT ) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO 2 grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T SMT was found to decrease as average VO 2 grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO 2 film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure

  18. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    International Nuclear Information System (INIS)

    Mouro, J.; Gualdino, A.; Chu, V.; Conde, J. P.

    2013-01-01

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n + -type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force

  19. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  20. Enhancement of photo sensor properties of nanocrystalline ZnO thin film by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, S. V.; Upadhye, D. S.; Bagul, S. B. [Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (India); Shaikh, S. U.; Birajadar, R. B.; Siddiqui, F. Y.; Huse, N. P. [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (India); Sharma, R. B., E-mail: ramphalsharma@yahoo.com, E-mail: rps.phy@gmail.com [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (India)

    2015-06-24

    Nanocrystalline Zinc Oxide (ZnO) thin film prepared by Low cost Successive Ionic Layer Adsorption and Reaction (SILAR) method. This film was irradiated by 120 MeV Ni{sup 7+} ions with the fluence of 5x10{sup 12}ions/cm{sup 2}. The X-ray diffraction study was shows polycrystalline nature with wurtzite structure. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Photo Sensor nature was calculated by I-V characteristics with different sources of light 40W, 60W and 100W.

  1. Suppression of photo-leakage current in amorphous silicon thin-film transistors by n-doped nanocrystalline silicon

    International Nuclear Information System (INIS)

    Lin, Hung-Chien; Ho, King-Yuan; Hsu, Chih-Chieh; Yan, Jing-Yi; Ho, Jia-Chong

    2011-01-01

    The reduction of photo-leakage current of amorphous silicon thin-film transistors (a-Si TFTs) is investigated and is found to be successfully suppressed by the use of an n-doped nanocrystalline silicon layer (n+ nc-Si) as an ohmic contact layer. The shallow-level defects of n+ nc-Si can become trapping centres of photo-induced electrons as the a-Si TFT is operated under light illumination. A lower oxygen concentration during n+ nc-Si deposition can increase the creation of shallow-level defects and improve the contrast ratio of active matrix organic light-emitting diode panels.

  2. MgB2-Based Bolometer Array for Far Infra-Red Thermal Imaging and Fourier Transform Spectroscopy Applications

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Brasunas, J.

    2012-01-01

    The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].

  3. Multiple superconducting gaps in MgB2 single crystals from magnetic torque

    International Nuclear Information System (INIS)

    Atsumi, Toshiyuki; Xu, Mingxiang; Kitazawa, Hideaki; Ishida, Takekazu

    2004-01-01

    We have measured the magnetic torque of an MgB 2 single crystal in the various different fields below 10 kG by using a torque magnetometer and a 4 K closed cycle refrigerator. The MgB 2 single crystal was synthesized by the vapor transport method. The torque can be measured as an off-balance signal of the Wheatstone bridge of the four piezoresistors on a Si cantilever. The torque curves are analyzed by the Kogan model. The superconducting anisotropy γ is rather independent of temperature in 5 and 10 kG, but is dependent on field up to 60 kG. We consider that the field dependence of γ comes from the nature of the multiple superconducting gaps. The experimental results show that the π-band superconducting gaps have been deteriorated gradually up to a crossover field H * (π) ∼ 20 kG at 10 K when the magnetic field increases

  4. Influence of iridium doping in MgB2 superconducting wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2018-01-01

    MgB2 wires with iridium doping were manufactured using the in-situ technique in a composite Cu-Nb sheath. Reaction was performed at 700°C, 800°C or 900°C for 1h in argon atmosphere. A maximum of about 1.5 at.% Ir replaces Mg in MgB2. The superconducting transition temperature is slightly lowered...... by Ir doping. The formation of IrMg3 and IrMg4 secondary phase particles is evidenced, especially for a nominal stoichiometry with 2.0 at.% Ir doping. The critical current density and accommodation field of the wires are strongly dependent on the Ir content and are generally weakened in the presence...

  5. Mixed-state flux dynamics in bulk MgB2

    International Nuclear Information System (INIS)

    Li Shi; Taylor, B.J.; Frederick, N.A.; Maple, M.B.; Nesterenko, V.F.; Indrakanti, S.S.

    2002-01-01

    Electric field vs. current density (E-J) isotherms in the mixed-state of a bulk sample of the high-temperature superconductor MgB 2 (T c =38.5 K), synthesized under 200 MPa pressure by hot isostatic pressing (HIPing), have been measured and analyzed in terms of the critical scaling model. Magnetization data reveal distinctly different critical current density (J c ) behaviors in high and low magnetic field critical scaling regions. E-J isotherm sets at fields ranging from 2 to 90 kOe conform to the vortex-glass (VG) scaling anzatz. Scaling analysis, resistivity data and J c data suggest that a Bragg-glass state may exist for H c2 (T), the VG transition line H g (T), and the magnetic irreversibility line H irr (T) has been established for bulk MgB 2

  6. Effect of sheath material on critical current characteristics of MgB2 at high temperatures

    International Nuclear Information System (INIS)

    Kiuchi, M.; Yamauchi, K.; Kurokawa, T.; Otabe, E.S.; Matsushita, T.; Okada, M.; Tanaka, K.; Kumakura, H.; Kitaguchi, H.

    2004-01-01

    Critical current density and irreversibility field were measured at various temperatures and magnetic fields for MgB 2 PIT tape specimens with different sheaths materials. The experimental results were compared with theoretical estimations using the flux creep-flow model. It is found that the hardness of sheath material indirectly affects the pinning property only through the packing density of MgB 2 . It is considered that the critical current density is mainly determined by a low value of distributed local critical current density determined by grain connectivity. On the other hand, the irreversibility field which is approximately the same among the three tapes is mainly determined by the average pinning strength

  7. MgB2 superconducting particles in a strong electric field

    International Nuclear Information System (INIS)

    Tao, R.; Xu, X.; Amr, E.

    2003-01-01

    The electric-field induced ball formation has been observed with MgB 2 powder in a strong static or quasi-static electric field. The effect of temperature and magnetic field on the ball formation shows surprising features. For quite a wide range of temperature from T c =39 K and below, the ball size is proportional to (1-T/T c ). As the temperature further goes below 20 K, the ball size becomes almost a constant. If MgB 2 particles are in a strong electric field and a moderate magnetic field, the electric-field induced balls align in the magnetic-field direction to form ball chains

  8. Effects of disorder on the microwave properties of MgB2 polycrystalline films

    International Nuclear Information System (INIS)

    Ghigo, G.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Mezzetti, E.; Ummarino, G. A.

    2006-01-01

    The role of disorder in superconducting magnesium diboride (MgB 2 ) policrystalline films is investigated in the high frequency range by a coplanar microwave resonator technique. Two sources of disorder are considered, heavy-ion irradiation damage and sample ageing. Microwave measurements are analyzed in the framework of the two-gap model with strong interband scattering contribution. It turns out that disorder enhancement increases the interband scattering rate, resulting in a reduction of the surface resistance at low temperatures, due to a slight increase of the π gap. Moreover, increasing disorder at grain boundaries induces a nonmonotonic residual surface resistance, showing the features of a resistive behavior for the highest disorder level. Finally, the effects of the different kinds of disorder on the intrinsic and on the grain-boundary properties of the MgB 2 films are compared and discussed

  9. Raman spectra of MgB2 at high pressure and topological electronic transition

    International Nuclear Information System (INIS)

    Meletov, K.P.; Kulakov, M.P.; Kolesnikov, N.N.; Arvanitidis, J.; Kourouklis, G.A.

    2002-01-01

    Raman spectra of the MgB 2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ∼ 590 cm -1 related to the E 2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas beyond this region the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ∼ 5 GPa exhibits a change in the slope as well as a hysteresis effect in the frequency vs. pressure behavior. These singularities in the E 2g mode behavior under pressure support the suggestion that MgB 2 may undergo a pressure-induced topological electronic transition [ru

  10. Low-field vortex pinning model for undoped sintered MgB2 powders

    International Nuclear Information System (INIS)

    Agassi, Y D

    2011-01-01

    Sintered MgB 2 powders constitute a porous ensemble of irregularly shaped agglomerates of tightly packed grains. The low-field critical current density in such powders was experimentally observed to scale with the inverse of the average agglomerate size. Motivated by this observation we consider a flux pinning model which accounts for the MgB 2 powder porosity by focusing on a single finite-size agglomerate size. According to the model the observed critical current density dependence on the agglomerate size reflects the outward pull exerted on a vortex that is pinned in proximity to the agglomerate edges. The calculated critical current density replicates the observed scaling within agglomerate-size bounds. Implications of the model are discussed.

  11. Small Fermi energy, strong electron-phonon effects and anharmonicity in MgB2

    International Nuclear Information System (INIS)

    Cappelluti, E.; Pietronero, L.

    2007-01-01

    The investigation of the electron-phonon properties in MgB 2 has attracted a huge interest after the discovery of superconductivity with T c 39 K in this compound. Although superconductivity is often described in terms of the conventional Eliashberg theory, properly generalized in the multiband/multigap scenario, important features distinguish MgB 2 from other conventional strong-coupling superconductors. Most important it is the fact that a large part of the total electron-phonon strength seems to be concentrated here in only one phonon mode, the boron-boron E 2g stretching mode. Another interesting property is the small Fermi energy of the σ bands, which are strongly coupled with the E 2g mode. In this contribution, we discuss how the coexistence of both these features give rise to an unconventional phenomenology of the electron-phonon properties

  12. The MgB2 superconducting energy gaps measured by Raman spectroscopy

    International Nuclear Information System (INIS)

    Quilty, James William

    2003-01-01

    Understanding the nature of the superconducting energy gap in magnesium diboride is an essential part of understanding this unusual superconductor, and Raman scattering is a convenient and powerful technique which is able to directly measure the key physical properties of the gap. The Raman spectra of MgB 2 show clear superconductivity induced renormalisations and evidence is found for two superconducting gaps residing on the σ and π Fermi surfaces with maximum magnitudes of around 110 and 30 cm -1 . The larger gap appears as a sharp peak in the electronic Raman scattering continuum while the smaller gap manifests itself as a threshold in the low-frequency spectral intensity, indicating that the gaps form in different electronic environments. The physical properties of the gaps favour explanations of the extraordinarily high T c in MgB 2 within strong coupling theory

  13. Direct observation of superconducting gaps in MgB 2 by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J. C.; Sasaki, S.; Kadowaki, K.

    2004-08-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2. We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2.

  14. Direct observation of superconducting gaps in MgB2 by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J.C.; Sasaki, S.; Kadowaki, K.

    2004-01-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2 . We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2

  15. Nanocrystalline LiMn2O4 thin film cathode material prepared by polymer spray pyrolysis method for Li-ion battery

    International Nuclear Information System (INIS)

    Karthick, S.N.; Richard Prabhu Gnanakan, S.; Subramania, A.; Kim, Hee-Je

    2010-01-01

    Nanocrystalline cubic spinel lithium manganese oxide thin film was prepared by a polymer spray pyrolysis method using lithium acetate and manganese acetate precursor solution and polyethylene glycol-4000 as a polymeric binder. The substrate temperature was selected from the thermogravimetric analysis by finding the complete crystallization temperature of LiMn 2 O 4 precursor sample. The deposited LiMn 2 O 4 thin films were annealed at 450, 500 and 600 o C for 30 min. The thin film annealed at 600 o C was found to be the sufficient temperature to form high phase pure nanocrystalline LiMn 2 O 4 thin film. The formation of cubic spinel thin film was confirmed by X-ray diffraction study. Scanning electron microscopy and atomic force microscopy analysis revealed that the thin film annealed at 600 o C was found to be nanocrystalline in nature and the surface of the films were uniform without any crack. The electrochemical charge/discharge studies of the prepared LiMn 2 O 4 film was found to be better compared to the conventional spray pyrolysed thin film material.

  16. Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells

    Directory of Open Access Journals (Sweden)

    Osękowska Małgorzata

    2015-09-01

    Full Text Available In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro of thin films. Morphological changes of mouse fibroblasts (L929 cell line after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts.

  17. Transformation from amorphous to nano-crystalline SiC thin films ...

    Indian Academy of Sciences (India)

    Administrator

    phous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering ... Auger electron spectroscopy showed that the carbon incorporation in the .... with a 514 nm Ar+ laser excitation source and the laser.

  18. Superconductive B-doped nanocrystalline diamond thin films: Electrical transport and Raman spectra

    Czech Academy of Sciences Publication Activity Database

    Nesládek, M.; Tromson, D.; Mer, Ch.; Bergonzo, P.; Hubík, Pavel; Mareš, Jiří J.

    2006-01-01

    Roč. 88, č. 23 (2006), 232111/1-232111/3 ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * superconductivity * magnetoresistance * Raman spectroscopy * Fano resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.977, year: 2006

  19. Role of grain size in superconducting boron-doped nanocrystalline diamond thin films grown by CVD

    Czech Academy of Sciences Publication Activity Database

    Zhang, G.; Janssens, S.D.; Vanacken, J.; Timmermans, M.; Vacík, Jiří; Ataklti, G.W.; Decelle, W.; Gillijns, W.; Goderis, B.; Haenen, K.; Wagner, P.; Moshchalkov, V.V.

    2011-01-01

    Roč. 84, č. 21 (2011), 214517/1-214517/10 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10480505 Keywords : Nanocrystalline diamond * Superconducting transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  20. Transport properties and Raman spectra of impurity substituted MgB2

    International Nuclear Information System (INIS)

    Masui, T.

    2007-01-01

    Recent advances in the study of MgB 2 are reviewed, with focus on the transport properties and Raman scattering measurements for impurity substituted crystals. Carbon and Aluminium substitution change band filling, introduce intraband and interband scattering. These effects are seen in the temperature dependence of resistivity, Hall coefficients, and phonon peak of Raman spectra. Manganese substitution introduces magnetic scattering, that increases resistivity but gives little change in Raman spectra. The effect of disorder in neutron irradiated samples is also discussed

  1. Surface barrier and bulk pinning in MgB$_2$ superconductor

    OpenAIRE

    Pissas, M.; Moraitakis, E.; Stamopoulos, D.; Papavassiliou, G.; Psycharis, V.; Koutandos, S.

    2001-01-01

    We present a modified method of preparation of the new superconductor MgB$_2$. The polycrystalline samples were characterized using x-ray and magnetic measurements. The surface barriers control the isothermal magnetization loops in powder samples. In bulk as prepared samples we always observed symmetric magnetization loops indicative of the presence of a bulk pinning mechanism. Magnetic relaxation measurements in the bulk sample reveal a crossover of surface barrier to bulk pinning.

  2. Design study of a 10 MW MgB2 superconductor direct drive wind turbine generator

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Liu, Dong

    2014-01-01

    A design study of a 10 MW direct drive wind turbine generator based on MgB2 superconducting wires is presented and the cost of the active materials of the generator is estimated to be between 226 €/kW and 84 €/kw, which is lower than the threshold values of 300 €/kW of the INNWIND.EU project. A n...

  3. Tunneling Spectroscopy of the Energy Gap in MgB2 Under Magnetic Fields

    International Nuclear Information System (INIS)

    Ekino, T.; Takasaki, T.; Fujii, H.; Muranaka, T.; Akimitsu, J.

    2003-01-01

    Effects of magnetic field on the multiple-gap structure in the superconductor MgB 2 have been studied by break junctions. With increasing the field, the gap value decreases with filling up of the states inside of the gap. The gap-closing field B c correlates with the gap size. The extrapolated B c value for the larger gap is almost consistent with the upper critical field of this compound. (author)

  4. Intraband scattering studies in carbon- and aluminium-doped MgB2

    International Nuclear Information System (INIS)

    Samuely, P.; Szabo, P.; Hol'anova, Z.; Bud'ko, S.; Canfield, P.

    2006-01-01

    Magnetic field effect on the point-contact spectra of the Al- and C-substituted MgB 2 is presented. It is shown that suppression of the π-band contribution to the spectrum is different in the aluminium- and carbon-doped samples. The carbon substitution leads to a stronger enhancement of the π-band scattering while the Al-doping does not change the ratio between the π and σ scatterings

  5. The mechanism of Tc performance for Zn doped MgB2 sintered in magnetic field

    International Nuclear Information System (INIS)

    Li, W.X.; Li, Y.; Chen, R.H.; Zeng, R.; Dou, S.X.

    2010-01-01

    The mechanism of magnetic field sintering on the critical transition temperature, T c , for the Zn doped MgB 2 superconductor was investigated with the observation of Raman scattering measurement and the Raman spectra fit analysis. The broadened E 2g mode in Raman spectra shows the strengthening of the electron-phonon coupling (EPC) for the sample sintered in magnetic field. A synchronous fluctuation is observed between the Raman characters of the E 2g mode and the T c .

  6. Comparison between nano-diamond and carbon nanotube doping effects on critical current density and flux pinning in MgB2

    International Nuclear Information System (INIS)

    Cheng, C H; Yang, Y; Munroe, P; Zhao, Y

    2007-01-01

    Doping effects of nano-diamond and carbon nanotubes (CNTs) on critical current density of bulk MgB 2 have been studied. CNTs are found prone to be doped into the MgB 2 lattice whereas nano-diamond tends to form second-phase inclusions in the MgB 2 matrix, leading to a more significant improvement of J c (H) by doping by nano-diamond than by CNTs in MgB 2 . TEM reveals tightly packed MgB 2 nanograins (50-100 nm) with a dense distribution of diamond nanoparticles (10-20 nm) inside MgB 2 grains in nano-diamond-doped samples. Such a unique microstructure leads to a flux pinning behaviour different from that in CNTs-doped MgB 2

  7. World-record current in the MgB2 superconductor

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two 20-metre long cables made of Magnesium Diboride (MgB2) superconductor. This result makes the use of such technology a viable solution for long-distance power transportation.   The 20-metre long electrical transmission line containing the two 20 kA MgB2 cables. “The test is an important step in the development of cold electrical power transmission systems based on the use of MgB2,” says Amalia Ballarino, head of the Superconductors and Superconducting Devices section in the Magnet, Superconductors and Cryostat group of the Technology Department, and initiator of this project. “The cables and associated technologies were designed, developed and tested at CERN. The superconducting wire is the result of a long R&D effort that started ...

  8. Peak effect and vortex dynamics in superconducting MgB2 single crystals

    International Nuclear Information System (INIS)

    Lee, Hyun-Sook; Jang, Dong-Jin; Kim, Heon-Jung; Kang, Byeongwon; Lee, Sung-Ik

    2007-01-01

    The dynamic nature of the vortex state of MgB 2 single crystals near the peak effect (PE) region, which is very different either from that of conventional low-temperature superconductors or from that of high-temperature cuprate superconductors, is introduced in this article. Relaxation from a disordered, metastable field-cooled (FC) state to an ordered, stable zero-field-cooled (ZFC) state of the MgB 2 single crystals under an applied magnetic field and current is investigated. From an analysis of the noise properties in the ZFC state, a dynamic vortex phase diagram of the MgB 2 is obtained near the PE region. Between the onset and the peak region in the critical current vs. magnetic field diagram, crossovers from a high-noise state to a noise-free state are observed with increasing current. Above the peak, however, an opposite phenomenon, crossovers from a noise-free to a high-noise state, is observed which has not been observed in any other superconductors. The hysteresis in the I-V curves and the two-level random telegraph noise in the time evolution of the voltage response under an constant applied current at the ZFC state are also studied in detail

  9. Influence of Ni and Cu contamination on the superconducting properties of MgB2 filaments

    International Nuclear Information System (INIS)

    Jung, A; Schlachter, S I; Runtsch, B; Ringsdorf, B; Fillinger, H; Orschulko, H; Drechsler, A; Goldacker, W

    2010-01-01

    Technical MgB 2 wires usually have a sheath composite consisting of different metals. For the inner sheath with direct contact to the superconducting filament, chemically inert Nb may be used as a reaction barrier and thermal stabilization is provided by a highly conductive metal like Cu. A mechanical reinforcement can be achieved by the addition of stainless steel. In order to illuminate the influence of defects in the reaction barrier, monofilament in situ wires with direct contact between the MgB 2 filament and frequently applied reactive sheath metals like Cu, Ni or Monel are studied. Reactions of Mg and B with a Cu-containing sheath lead to Cu-based by-products penetrating the whole filament. Reactions with Ni-containing sheaths lead to Ni-based by-products which tend to remain at the filament-sheath interface. Cu and/or Ni contamination of the filament lowers the MgB 2 -forming temperature due to the eutectic reaction between Mg, Ni and Cu. Thus, for the samples heat-treated at low temperatures J C and (partly) T C are increased compared to stainless-steel-sheathed wires. At high heat treatment temperatures uncontaminated filaments lead to the highest J C values. From the point of view of broken reaction barriers in real wires, the contamination of the filament with Cu and/or Ni does not necessarily constrain the superconductivity; it may even improve the properties of the wire, depending on the desired application.

  10. Flux pinning properties of impurity doped MgB2 bulks synthesized by diffusion method

    International Nuclear Information System (INIS)

    Ueda, Shinya; Shimoyama, Jun-ichi; Yamamoto, Akiyasu; Katsura, Yukari; Iwayama, Isao; Horii, Shigeru; Kishio, Kohji

    2005-01-01

    Doping effects of carbon-containing impurities on the critical current properties and microstructure were systematically studied for highly dense MgB 2 bulks prepared by the diffusion method starting from magnesium and boron which are separately packed in sealed stainless tubes. Obtained samples exhibited improved critical current density, J c , simply by an increase of effective current pass. A non-doped MgB 2 recorded almost double high J c at 20 K compared with those of the conventional porous MgB 2 bulks having ∼50% of the theoretical density, while irreversibility field, H irr , did not largely change. J c under high magnetic fields were enhanced by doping of carbon-containing impurities, such as SiC and B 4 C. Optimal doping levels of SiC and B 4 C for high critical current properties at 20 K are found to be ∼2% and 5%, respectively, as nominal carbon concentration at boron site. Difference in the optimal doping levels is originated from the difference in their reactivity

  11. A trapped field of >3 T in bulk MgB2 fabricated by uniaxial hot pressing

    International Nuclear Information System (INIS)

    Durrell, J H; Dennis, A; Shi, Y; Xu, Z; Campbell, A M; Babu, N Hari; Cardwell, D A; Dancer, C E J; Todd, R I; Grovenor, C R M

    2012-01-01

    A trapped field of over 3 T has been measured at 17.5 K in a magnetized stack of two disc-shaped bulk MgB 2 superconductors of diameter 25 mm and thickness 5.4 mm. The bulk MgB 2 samples were fabricated by uniaxial hot pressing, which is a readily scalable, industrial technique, to 91% of their maximum theoretical density. The macroscopic critical current density derived from the trapped field data using the Biot–Savart law is consistent with the measured local critical current density. From this we conclude that critical current density, and therefore trapped field performance, is limited by the flux pinning available in MgB 2 , rather than by lack of connectivity. This suggests strongly that both increasing sample size and enhancing pinning through doping will allow further increases in trapped field performance of bulk MgB 2 . (rapid communication)

  12. Improved flux pinning behaviour in bulk MgB2 achieved by nano-SiO2 addition

    International Nuclear Information System (INIS)

    Rui, X F; Zhao, Y; Xu, Y Y; Zhang, L; Sun, X F; Wang, Y Z; Zhang, H

    2004-01-01

    Bulk MgB 2 with SiO 2 nanoparticles added has been synthesized using a simple solid-state reaction route. The lattice constant in the c direction increases with additive content due to a small amount of Si being doped into the lattice of the MgB 2 ; however, T c is almost fixed at 37.2 K. The addition of SiO 2 nanoparticles also improves the J c -H and H irr -T characteristics of MgB 2 when the additive content is lower than 7%. At 20 K and 1 T, J c for the sample with 7% additive content reaches 2.5 x 10 5 A cm -2 . Microstructural analysis reveals that a high density of MgSi 2 nanoparticles (10-50 nm) exists inside the MgB 2 grains, leading to the formation of a nanocomposite superconductor

  13. Microstructural and crystallographic imperfections of MgB2 superconducting wire and their correlation with the critical current density

    Science.gov (United States)

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-01

    A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.

  14. The effect of citric and oxalic acid doping on the superconducting properties of MgB2

    International Nuclear Information System (INIS)

    Ojha, N; Singla, Rashmi; Varma, G D; Malik, V K; Bernhard, C

    2009-01-01

    In this paper we report the effect of carbon doping on the structural and superconducting properties of MgB 2 using citric and oxalic acids as carbon sources. The bulk polycrystalline samples have been synthesized via a standard solid state reaction route with composition MgB 2 +x wt% of citric and oxalic acids (x = 0, 5 and 10). The x-ray diffraction results reveal the formation of dominantly MgB 2 with only a small amount of impurity phase MgO and substitution of C at the B site of MgB 2 for both dopants. Improvements in the upper critical field (H C2 ), irreversibility field (H irr ) and high field (>2.5 T) critical current density (J C ) have been observed on C doping in the samples. The correlations between superconducting properties and structural characteristics of the samples are described and discussed in this paper.

  15. Fabrication and radio frequency test of large-area MgB2 films on niobium substrates

    Science.gov (United States)

    Ni, Zhimao; Guo, Xin; Welander, Paul B.; Yang, Can; Franzi, Matthew; Tantawi, Sami; Feng, Qingrong; Liu, Kexin

    2017-04-01

    Magnesium diboride (MgB2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB2 films on metal substrates is needed. In this work, high quality MgB2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩ at 4 K and 11.4 GHz. The fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB2 films are presented.

  16. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    International Nuclear Information System (INIS)

    Kumar, Pragati; Agarwal, Avinash; Saxena, Nupur; Singh, Fouran; Gupta, Vinay

    2014-01-01

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ a /Γ b ) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  17. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com; Agarwal, Avinash [Department of Physics, Bareilly College, Bareilly 243 005, Uttar Pradesh (India); Saxena, Nupur; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2014-07-28

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ{sub a}/Γ{sub b}) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  18. Structural, nanomechanical and variable range hopping conduction behavior of nanocrystalline carbon thin films deposited by the ambient environment assisted filtered cathodic jet carbon arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Rawal, Ishpal; Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Kumar, Mahesh [Ultrafast Opto-Electronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India)

    2015-04-15

    Highlights: • Nanocrystalline carbon thin films are grown by filtered cathodic jet carbon arc process. • Effect of gaseous environment on the properties of carbon films has been studied. • The structural and nanomechanical properties of carbon thin films have been studied. • The VRH conduction behavior in nanocrystalline carbon thin films has been studied. - Abstract: This paper reports the deposition and characterization of nanocrystalline carbon thin films by filtered cathodic jet carbon arc technique assisted with three different gaseous environments of helium, nitrogen and hydrogen. All the films are nanocrystalline in nature as observed from the high resolution transmission electron microscopic (HRTEM) measurements, which suggests that the nanocrystallites of size ∼10–50 nm are embedded though out the amorphous matrix. X-ray photoelectron spectroscopic studies suggest that the film deposited under the nitrogen gaseous environment has the highest sp{sup 3}/sp{sup 2} ratio accompanied with the highest hardness of ∼18.34 GPa observed from the nanoindentation technique. The film deposited under the helium gaseous environment has the highest ratio of the area under the Raman D peak to G peak (A{sub D}/A{sub G}) and the highest conductivity (∼2.23 S/cm) at room temperature, whereas, the film deposited under the hydrogen environment has the lowest conductivity value (2.27 × 10{sup −7} S/cm). The temperature dependent dc conduction behavior of all the nanocrystalline carbon thin films has been analyzed in the light of Mott’s variable range hopping (VRH) conduction mechanism and observed that all the films obey three dimension VRH conduction mechanism for the charge transport.

  19. Metal ion analysis in contaminated water samples using anodic stripping voltammetry and a nanocrystalline diamond thin-film electrode

    International Nuclear Information System (INIS)

    Sonthalia, Prerna; McGaw, Elizabeth; Show, Yoshiyuki; Swain, Greg M.

    2004-01-01

    Boron-doped nanocrystalline diamond thin-film electrodes were employed for the detection and quantification of Ag (I), Cu (II), Pb (II), Cd (II), and Zn (II) in several contaminated water samples using anodic stripping voltammetric (ASV). Diamond is an alternate electrode that possesses many of the same attributes as Hg and, therefore, appears to be a viable material for this electroanalytical measurement. The nanocrystalline form has been found to perform slightly better than the more conventional microcrystalline form of diamond in this application. Differential pulse voltammetry (DPASV) was used to detect these metal ions in lake water, well water, tap water, wastewater treatment sludge, and soil. The electrochemical results were compared with data from inductively coupled plasma mass spectrometric (ICP-MS) and or atomic absorption spectrometric (AAS) measurements of the same samples. Diamond is shown to function well in this electroanalytical application, providing a wide linear dynamic range, a low limit of quantitation, excellent response precision, and good response accuracy. For the analysis of Pb (II), bare diamond provided a response nearly identical to that obtained with a Hg-coated glassy carbon electrode

  20. Nanocrystalline Sr{sub 2}CeO{sub 4} thin films grown on silicon by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perea, Nestor [Posgrado en Fisica de Materiales, CICESE-UNAM, Km. 107 Carretera Tijuana-Ensenada, Ensenada, B.C., 22860 (Mexico); Hirata, G.A. [Centro de Ciencias de la Materia Condensada-UNAM, Km. 107 Carretera Tijuana Ensenada, Ensenada, B.C. 22860 (Mexico)]. E-mail: hirata@ccmc.unam.mx

    2006-02-21

    Blue-white luminescent Sr{sub 2}CeO{sub 4} thin films were deposited by using pulsed laser ablation ({lambda} = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr{sub 2}CeO{sub 4} grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr{sub 2}CeO{sub 4} however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems.

  1. Ion-implantation of erbium into the nanocrystalline diamond thin films

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Babchenko, Oleg; Cajzl, J.; Kromka, Alexander; Macková, Anna; Malinský, Petr; Oswald, Jiří; Prajzler, Václav; Remeš, Zdeněk; Varga, Marián

    2016-01-01

    Roč. 18, 7-8 (2016), s. 679-684 ISSN 1454-4164 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LM2011019 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : nanocrystalline diamond * optical waveguides * erbium * luminescence * ion implantation * CVD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.449, year: 2016

  2. Growth of superconducting MgB2 films by pulsed-laser deposition using a Nd-YAG laser

    International Nuclear Information System (INIS)

    Badica, P; Togano, K; Awaji, S; Watanabe, K

    2006-01-01

    Thin films of MgB 2 on r-cut Al 2 O 3 substrates have been grown by pulsed-laser deposition (PLD) using a Nd-YAG laser (fourth harmonic-266 nm) instead of the popular KrF excimer laser. The growth window to obtain superconducting films is laser energy 350-450 mJ and vacuum pressure with Ar-buffer gas of 1-8/10 Pa (initial background vacuum 0.5-1 x 10 -3 Pa). Films were deposited at room temperature and post-annealed in situ and ex situ at temperatures of 500-780 0 C and up to 1 h. Films are randomly oriented with maximum critical temperature (offset of resistive transition) of 27 K. SEM/TEM/EDS investigations show that they are mainly composed of small sphere-like particles (≤20 nm), and contain oxygen and some carbon, uniformly distributed in the flat matrix, but the amount of Mg and/or oxygen is higher in the aggregates-droplets (100-1000 nm) observed on the surface of the film's matrix. Some aspects of the processing control and dependences on film characteristics are discussed. The technique is promising for future development of coated conductors

  3. Composition and properties of nanocrystalline Zn S thin films prepared by a new chemical bath deposition route

    International Nuclear Information System (INIS)

    Sahraei, R.; Goudarzi, A.; Ahmadpoor, H.; Motedayen Aval, Gh.

    2006-01-01

    Zinc sulfide nanocrystalline thin films were prepared by a new chemical bath deposition route on soda lime glass and quartz substrates using a weak acidic bath, in which disodium salt of ethylenediaminetetraacetic acid (EDTA) acts as a complexing agent and thioacetamide acts as a source of sulfide ions. The thickness of the films varied from a few nm to 500 nm. The chemical composition of films was studied by energy-dispersive X-ray analyzer and Fourier transform infrared spectroscopy. The films are very close to Zinc sulfide stoichiometry and we did not observed any organic compounds in the impurity form in them. X-ray diffraction indicates that the film and powder formed in the same reaction bath have cubic zinc blende structure. The films have high transmittance of about 75% in the visible region. The optical band-gap energy (E g ) was determined to be 3.75 eV from the absorption spectrophotometry measurements.

  4. Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films.

    Science.gov (United States)

    Kumar, Manjeet; Kumar, Akshay; Abhyankar, A C

    2015-02-18

    For the first time, a new facile approach based on simple and inexpensive chemical spray pyrolysis (CSP) technique is used to deposit Tungsten (W) doped nanocrystalline SnO2 thin films. The textural, optical, structural and sensing properties are investigated by GAXRD, UV spectroscopy, FESEM, AFM, and home-built sensing setup. The gas sensing results indicate that, as compared to pure SnO2, 1 wt % W-doping improves sensitivity along with better response (roughness values of 3.82 eV and 3.01 nm, respectively. Reduction in texture coefficient along highly dense (110) planes with concomitant increase along loosely packed (200) planes is found to have prominent effect on gas sensing properties of W-doped films.

  5. Preparation and characterization of nanocrystalline ITO thin films on glass and clay substrates by ion-beam sputter deposition method

    International Nuclear Information System (INIS)

    Venkatachalam, S.; Nanjo, H.; Kawasaki, K.; Wakui, Y.; Hayashi, H.; Ebina, T.

    2011-01-01

    Nanocrystalline indium tin oxide (ITO) thin films were prepared on clay-1 (Clay-TPP-LP-SA), clay-2 (Clay-TPP-SA) and glass substrates using ion-beam sputter deposition method. X-ray diffraction (XRD) patterns showed that the as-deposited ITO films on both clay-1 and clay-2 substrates were a mixture of amorphous and polycrystalline. But the as-deposited ITO films on glass substrates were polycrystalline. The surface morphologies of as-deposited ITO/glass has smooth surface; in contrast, ITO/clay-1 has rough surface. The surface roughnesses of ITO thin films on glass and clay-1 substrate were calculated as 4.3 and 83 nm, respectively. From the AFM and SEM analyses, the particle sizes of nanocrystalline ITO for a film thickness of 712 nm were calculated as 19.5 and 20 nm, respectively. Optical study showed that the optical transmittance of ITO/clay-2 was higher than that of ITO/clay-1. The sheet resistances of as-deposited ITO/clay-1 and ITO/clay-2 were calculated as 76.0 and 63.0 Ω/□, respectively. The figure of merit value for as-deposited ITO/clay-2 (12.70 x 10 -3 /Ω) was also higher than that of ITO/clay-1 (9.6 x 10 -3 /Ω), respectively. The flexibilities of ITO/clay-1 and ITO/clay-2 were evaluated as 13 and 12 mm, respectively. However, the ITO-coated clay-2 substrate showed much better optical and electrical properties as well as flexibility as compared to clay-1.

  6. Microstructure and optical studies of electron beam evaporated ZnSe1−xTex nanocrystalline thin films

    International Nuclear Information System (INIS)

    Emam-Ismail, M.; El-Hagary, M.; Shaaban, E.R.; Al-Hedeib, A.M.

    2012-01-01

    Highlights: ► The structural and optical properties of ZnSeTe thin films were studied. ► The micro structural parameters of the films have been determined. ► The room temperature reflectance and transmittance data are analyzed. ► The refractive index and energy gap are determined. ► The single oscillator parameters were calculated. - Abstract: Nanocrystalline thin films of ZnSe 1−x Te x (0.0 ≤ x ≤ 1.0) were deposited on glass substrate using electron beam deposition technique. The structure of the prepared films was examined using X-ray diffraction technique and revealed that the deposited films have polycrystalline zinc blend structure with lattice constant, a, increasing linearly from 0.55816 to 0.59989 nm as x varies from 0 to 1. The optical studies of the nanocrystalline ZnSe 1−x Te x films showed that the refractive index increases and fundamental band gap E g decreases from 2.58 to 2.21 eV as the tellurium concentration increases from 0 to 1. Furthermore, it was also found that the variation of E g with composition shows quadratic behavior with bowing parameter equal to 0.105. In addition, the thickness and annealing effects on the structure and optical properties of the deposited films were also investigated. The refractive index dispersion and its dependence on composition were discussed in terms of single oscillator model proposed by Wemple–DiDomenico.

  7. Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer

    Directory of Open Access Journals (Sweden)

    Chao-Chun Wang

    2012-01-01

    Full Text Available The nanocrystalline silicon-germanium (nc-SiGe thin films were deposited by high-frequency (27.12 MHz plasma-enhanced chemical vapor deposition (HF-PECVD. The films were used in a silicon-based thin film solar cell with graded-dead absorption layer. The characterization of the nc-SiGe films are analyzed by scanning electron microscopy, UV-visible spectroscopy, and Fourier transform infrared absorption spectroscopy. The band gap of SiGe alloy can be adjusted between 0.8 and 1.7 eV by varying the gas ratio. For thin film solar cell application, using double graded-dead i-SiGe layers mainly leads to an increase in short-circuit current and therefore cell conversion efficiency. An initial conversion efficiency of 5.06% and the stabilized efficiency of 4.63% for an nc-SiGe solar cell were achieved.

  8. Co+ -ion implantation induced doping of nanocrystalline CdS thin films: structural, optical, and vibrational properties

    International Nuclear Information System (INIS)

    Chandramohan, S.; Sarangi, S.N.; Majumder, S.; Som, T.; Kanjilal, A.; Sathyamoorthy, R.

    2009-01-01

    Full text: Transition metal (Mn, Fe, Co and Ni) doped CdS nanostructures and nanocrystalline thin films have attracted much attention due to their anticipated applications in magneto-optical, non-volatile memory and future spintronics devices. Introduction of impurities in substitutional positions is highly desirable for such applications. Ion implantation is known to provide many advantages over conventional methods for efficient doping and possibility of its seamless integration with device processing steps. It is not governed by equilibrium thermodynamics and offers the advantages of high spatial selectivity and to overcome the solubility limits. In this communication, we report on modifications of structural morphological, optical, and vibrational properties of 90 keV Co + -ion implanted CdS thin films grown by thermal evaporation. Co + -ion implantation was performed in the fluence range of 0.1-3.6x10 16 ions cm -2 These fluences correspond to Co concentration in the range of 0.34-10.8 at % at the peak position of profile. Implantation was done at an elevated temperature of 573 K in order to avoid amorphization and to enhance the solubility of Co ions in the CdS lattice. Films were characterized by glancing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM), optical absorption, and micro-Raman spectroscopy. Implantation does not lead to any secondary phase formation either in the form of impurity or the metallic clusters. However, implantation improves the crystalline quality of the samples and leads to supersaturation of Co ions in the CdS lattice. Thus, nanocrystalline CdS thin films can be considered as a good radiation- resistant material, which can be employed for prolonged use in solar cells for space applications. The optical band gap is found to decrease systematically with increasing ion fluence from 2.39 to 2.28 eV. Implantation leads to agglomeration of grains and a systematic increase in the surface roughness. Both GAXRD and micro

  9. Numerical investigations on the characteristics of thermomagnetic instability in MgB2 bulks

    Science.gov (United States)

    Xia, Jing; Li, Maosheng; Zhou, Youhe

    2017-07-01

    This paper presents the characteristics of thermomagnetic instability in MgB2 bulks by numerically solving the macroscopic dynamics of thermomagnetic interaction governed by the coupled magnetic and heat diffusion equations in association with a modified E-J power-law relationship. The finite element method is used to discretize the system of partial differential equations. The calculated magnetization loops with flux jumps are consistent with the experimental results for MgB2 slabs bathed in a wide range of ambient temperatures. We reveal the evolution process of the thermomagnetic instability and present the distributions of the magnetic field, temperature, and current density before and after flux jumps. A 2D axisymmetric model is used to study the thermomagnetic instability in cylindrical MgB2 bulks. It is found that the number of flux jumps monotonously reduces as the ambient temperature rises and no flux jump appears when the ambient temperature exceeds a certain value. Moreover, the flux-jump phenomenon exists in a wide range of the ramp rate of the applied external field, i.e. 10-2-102 T s-1. Furthermore, the dependences of the first flux-jump field on the ambient temperature, ramp rate, and bulk thickness are investigated. The critical bulk thicknesses for stability are obtained for different ambient temperatures and sample radii. In addition, the influence of the capability of the interfacial heat transfer on the temporal response of the bulk temperature is discussed. We also find that the prediction of thermomagnetic instability is sensitive to the employment of the flux creep exponent in the simulations.

  10. Stress-strain effects on powder-in-tube MgB2 tapes and wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Takaya, Ryuya; Kasaba, Koichi; Tachikawa, Kyoji; Yamada, Yutaka; Shimura, Satoshi; Koshizuka, Naoki; Watanabe, Kazuo

    2005-01-01

    The effects of stress-strain on the critical current, I c , of ex situ powder-in-tube (PIT)-processed Ni-sheathed MgB 2 tapes and round wires as well as in situ PIT-processed Cu-sheathed wires at 4.2 K in a magnetic field up to 5 T have been studied. The effect of In powder addition on the Ni-sheathed MgB 2 wire was not so clear compared with that in the tape, in which the irreversible strain, ε irr , for the I c degradation onset increases significantly by the addition. This is attributed to the difference in the microstructure of the core associated with cold workings. A peak and gradual degradation behaviour of I c with strain beyond ε irr was found in the wire, whereas no evident peak and a steep degradation behaviour was found in the tape. As a possible reason, the difference in the triaxial residual stress state at 4.2 K due to the difference in geometry of the cross-section is suspected. The transverse compression tests revealed that I c of the wire did not degrade up to 270 MPa. Again, the effect of In addition was minimal. The Young's modulus of MgB 2 , 31-41 GPa, at room temperature was estimated by a tensile test of Cu sheath wire using a high-accuracy extensometer and the law of mixtures. The tensile strain dependence of I c in the Cu sheath wire was similar to that in the Ni-sheathed wire, ε irr being 0.4%. However, the stress corresponding to ε irr , 50 MPa, was about 1/10 of that for the Ni-sheath wire and the irreversible transverse compressive stress, 150 MPa, was also lower. The effect of bending strain on the I c in Cu-sheathed wire was compared with that of the tensile strain

  11. Contribution to the development of dry R and W MgB2 superconducting magnets

    International Nuclear Information System (INIS)

    Pasquet, Raphael

    2015-01-01

    Currently, the majority of superconducting magnets, including MRI, are cooled by a bath of liquid helium at atmospheric pressure. Nevertheless, this type of cooling is expensive and imposes significant security constraints for large volumes. For these reasons, the cooling of superconducting magnets is desirable without liquid helium. Cryo-cooler provides dry cooling to 4 K without any liquid helium. However, the power available is low and dry cooling is difficult. In these conditions, it is complicate to use NbTi with dry cooling. But if we increase the operating temperature to 10 K, the power of cryo-cooler increases by a factor of ten. Nevertheless in this case, it is necessary to use of a high critical temperature superconductor. We choose to use MgB 2 R and W conductors because it is relatively low cost but it has the handicap to be sensible at mechanical stress. It is therefore necessary to be careful during their winding to not degrade their superconducting performance. As part of this thesis, we have developed a dry test facility to measure the critical current of MgB 2 R and W conductors as well as mock-ups. To do this, a new type of thermal contact based on aluminum nitride has been developed. In addition to this development, we designed two MgB 2 R and W magnet mock-ups: a solenoid and a double pancake. The double pancake was manufactured (with a new patented winding method) and it has been successfully tested. (author) [fr

  12. Function of thin film nanocrystalline diamond-protein SGFET independent of grain size

    Czech Academy of Sciences Publication Activity Database

    Krátká, Marie; Kromka, Alexander; Ukraintsev, Egor; Ledinský, Martin; Brož, A.; Kalbáčová, M.; Rezek, Bohuslav

    166-167, May (2012), s. 239-245 ISSN 0925-4005 R&D Projects: GA ČR GD202/09/H041; GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996; GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * solution-gated field-effect transistors (SGFETs) * fetal bovine serum * osteoblastic cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.535, year: 2012

  13. Polydopamine-modified nanocrystalline diamond thin films as a platform for bio-sensing applications

    Czech Academy of Sciences Publication Activity Database

    Pop-Georgievski, Ognen; Neykova, Neda; Proks, Vladimír; Houdková, Jana; Ukraintsev, Egor; Zemek, Josef; Kromka, Alexander; Rypáček, František

    2013-01-01

    Roč. 543, 30 September (2013), s. 180-186 ISSN 0040-6090. [International Conference on NANO-structures self-assembly - NANOSEA 2012 /4./. S. Margherita di Pula - Sardinie, 25.06.2012-29.06.2012] R&D Projects: GA ČR GAP108/11/1857; GA ČR(CZ) GBP108/12/G108 Grant - others:ČVUT(CZ) SGS10/297/OHK4/3T/14 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : nanocrystalline diamond films * NCD * polydopamine Subject RIV: CD - Macromolecular Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.867, year: 2013

  14. Vibrational spectroscopy of superconducting MgB2 by neutron inelastic scattering

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2001-01-01

    Neutron inelastic scattering measurements have been performed on superconducting MgB 2 above and below T c . The temperature dependence of the generalized phonon density-of-states showed clear anomalous behaviour near 24 meV in the acoustic phonon region, which may be interpreted as evidence of a substantial contribution to the total electron-phonon coupling strength deriving from these phonons. Weaker evidence for a corresponding response in the high-energy B bond stretching phonons was also encountered. (author)

  15. Correlated vortex pinning in Si-nanoparticle doped MgB2

    OpenAIRE

    Kusevic, I.; Babic, E.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.

    2003-01-01

    The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB$_{2}$ tapes have been measured at temperatures $T\\geq 28$ K in magnetic fields $B\\leq 0.9$ T. The irreversibility line $B_{irr}(T)$ for doped tape shows a stepwise variation with a kink around 0.3 T. Such $B_{irr}(T)$ variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field $% B_{\\phi}$) and is very different ...

  16. Enhanced superconducting properties of MgB2 by carbon substitution using carbon containing nano additives

    International Nuclear Information System (INIS)

    Devadas, K.M.; Varghese, Neson; Vinod, K.; Rahul, S.; Thomas, Syju; Anooja, J.B.; Syamaprasad, U.; Sundaresan, A.; Roy, S.B.

    2010-01-01

    A comparative study on the effect of doping of nano carbon, nano diamond and nano SiC in MgB 2 is carried out. The J c (H) is significantly enhanced for all doped samples compared to the pure sample among which MgB 1.9 C 0.1 (nano C) exhibits the best J c (H) performance. The enhanced performance is due to the effective substitution of C at B site which is confirmed by the systematic decrease in both α axis and T c . (author)

  17. Plasma Synthesized Doped Boron Nanopowder for MgB2 Superconductors

    International Nuclear Information System (INIS)

    Marzik, James V.

    2012-01-01

    Under this program, a process to synthesize nano-sized doped boron powder by a plasma synthesis process was developed and scaled up from 20 gram batches at program start to over 200 grams by program end. Over 75 batches of boron nanopowder were made by RF plasma synthesis. Particle sizes were typically in the 20-200 nm range. The powder was synthesized by the reductive pyrolysis of BCl 3 in hydrogen in an RF plasma. A wide range of process parameters were investigated including plasma power, torch geometry, gas flow rates, and process pressure. The powder-in-tube technique was used to make monofilament and multifilament superconducting wires. MgB 2 wire made with Specialty Materials plasma synthesized boron nanopowder exhibited superconducting properties that significantly exceeded the program goals. Superconducting critical currents, J c , in excess of 10 5 A cm -2 at magnetic fields of 8 tesla were reproducibly achieved. The upper critical magnetic field in wires fabricated with program boron powder were H c2 (0) = 37 tesla, demonstrating the potential of these materials for high field magnet applications. T c in carbon-doped MgB 2 powder showed a systematic decrease with increasing carbon precursor gas flows, indicating the plasma synthesis process can give precise control over dopant concentrations. Synthesis rates increased by a factor of 400% over the course of the program, demonstrating the scalability of the powder synthesis process. The plasma synthesis equipment at Specialty Materials has successfully and reproducibly made high quality boron nanopowder for MgB 2 superconductors. Research and development from this program enabled Specialty Materials to successfully scale up the powder synthesis process by a factor of ten and to double the size of its powder pilot plant. Thus far the program has been a technical success. It is anticipated that continued systematic development of plasma processing parameters, dopant chemistry and concentration, wire processing technology, and collection technology will lead to the commercialization of boron nanopowder as a precursor for MgB 2 superconductors. Potential commercial applications include magnets for magnetic resonance imaging (MRI), fault current limiters, wind turbine generators.

  18. Multifilamentary MgB2 wires fracture behavior during the drawing process

    International Nuclear Information System (INIS)

    Shan, D.; Yan, G.; Zhou, L.; Li, J.S.; Li, C.S.; Wang, Q.Y.; Xiong, X.M.; Jiao, G.F.

    2012-01-01

    The fracture behavior of 6 + 1 filamentary MgB 2 superconductive wires is presented here. The composite wires were fabricated by in situ Powder-in-Tube method using Nb as a barrier and copper as a stabilizer. The microstructure of the material has a great influence on its fracture behavior. The microstructural aspects of crack nucleation and propagation are discussed. It shows that there are complicated correlations between fracture behavior and the main influencing parameters, which contain specific drawing conditions (drawing velocity, reduction in area per pass), materials properties (strength, yield stress, microstructure) as well as the extent of bonding between the metal sheaths at their interface.

  19. Temperature dependence of the optical conductivity and penetration depth in superconductor MgB2 film

    International Nuclear Information System (INIS)

    Moarrefi, M.; Yavari, H.; Elahi, M.

    2010-01-01

    By using Green's function method the temperature dependence of the optical conductivity and penetration depth of high-quality MgB 2 film are calculated in the framework of the two-band model. We compare our results with experimental data and we argue that the single gap model is insufficient to describe the optical and penetration depth behavior, but the two-band model with different symmetries describes the data rather well. In the two gap model we consider that the both components of optical conductivity are a weighted sum of the contribution from σ and π bonds and hybridization between them is negligible.

  20. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    International Nuclear Information System (INIS)

    Abrahamsen, A.B.; Givel, J.C.; Andersen, N.H.; Zangenberg, N.; Baurichter, A.

    2006-11-01

    A comprehensive analysis of the innovation potential of superconductivity at Risoe was performed in February 2004 by the main author of this report. Several suggestions for new products and new markets were formulated by the superconductivity group and examined by the innovation staff at Risoe. The existing markets of superconducting technology is within highly specialized scientific areas such as magnetic confinement in fusion energy, sample environment in neutron scattering and large scale accelerators such as the Large Hadron Collider(LHC) at Cern, or in the nuclear magnetic resonance (NMR) community using MR-imaging scanners in medicine and phase identification in organic chemistry. Only the NMR applications can be categorized as a highly profitable and commercial market today. The superconductivity group of Risoe formulated and presented the gearless superconducting wind turbine multipole generator as the most promising new concept, but further initiatives were stopped due to unclear patent possibilities. The experience of the innovation review was used in the STVF framework program 'New superconductors: mechanisms, processes and products' to identify potential new product for the collaborating company Danfysik A/S, which has a strong tradition in building resistive magnets for particle accelerators. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European Framework Program 6 project HIPERMAG. It was presented at the Risoe innovation seminar January 2006, and recently a collaboration between Risoe and Danfysik A/S was initialized. The present report aims to outline a potential superconducting product within the STVF program. The use of the MgB 2 superconductors in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive magnets. Here the critical current density of primarily MgB 2 will be compared with current density determined by specifications similar to the Tevatron accelerator, B = 4:4 Tesla and coil aperture D = 76 mm, which has been identified by Danfysik A/S as interesting. It is concluded that MgB 2 is useful for the dipole application and construction of a small test coil of one half of the magnet is planned in 2007. (au)

  1. Characterisation of nano-grains in MgB2 superconductors by transmission Kikuchi diffraction

    International Nuclear Information System (INIS)

    Wong, D.C.K.; Yeoh, W.K.; Trimby, P.W.; De Silva, K.S.B.; Bao, P.; Li, W.X.; Xu, X.; Dou, S.X.; Ringer, S.P.; Zheng, R.K.

    2015-01-01

    We report the first application of the emerging transmission Kikuchi diffraction technique in the scanning electron microscope to investigate nano-grain structures in polycrystalline MgB 2 superconductors. Two sintering conditions were considered, and the resulting differences in superconducting properties are correlated to differences in grain structure. A brief comparison to X-ray diffraction results is presented and discussed. This work focusses more on the application of this technique to reveal grain structure, rather than on the detailed differences between the two sintering temperatures

  2. Raman study of electronic excitations in MgB2 with application of high magnetic field

    International Nuclear Information System (INIS)

    Machtoub, L.; Takano, Y.; Kito, H.

    2006-01-01

    We present the first results of Raman scattering with application of magnetic field on magnesium diboride (MgB 2 ). In this work, we have investigated the magnetic field dependence of the 72 meV (E 2g mode) and the pair-breaking peak around 100 cm -1 which corresponds to σ-band gap. Intensity enhancement of Raman features around 800 cm -1 accompanied with broadening in the line shape of E 2g mode has been observed in some polycrystalline samples at 0 GPa. Results are compared with previous Raman study under hydrostatic pressure

  3. Using Fast Hot Shock Wave Consolidation Technology to Produce Superconducting MgB2

    Directory of Open Access Journals (Sweden)

    T. Gegechkori

    2018-02-01

    Full Text Available The original hot shock wave assisted consolidation method combining high temperature was applied with the two-stage explosive process without any further sintering to produce superconducting materials with high density and integrity. The consolidation of MgB2 billets was performed at temperatures above the Mg melting point and up to 1000oC in partially liquid condition of Mg-2B blend powders. The influence of the type of boron (B isotope in the composition on critical temperature and superconductive properties was evaluated. An example of a hybrid Cu-MgB2–Cu superconducting tube is demonstrated and conclusions are discussed.

  4. Synthesis of nanocrystalline TiO2 thin films by liquid phase ...

    Indian Academy of Sciences (India)

    WINTEC

    goes degradation efficiently in presence of TiO2 thin films by exposing its aqueous solution to .... Figure 6. Photodegradation of IGOR organic dye by a. bare TiO2 thin film and b. ... Meng L-J and Dos Santos M P 1993 Thin Solid Films 226 22.

  5. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    International Nuclear Information System (INIS)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Graphical abstract: - Highlights: • The nanocrystalline diamond (NCD) surface is functionalized with F or O. • The cell adhesion and growth are evaluated on the functionalized NCD surface. • The cell adhesion and growth depend on the wettability of the surface. • Cell patterning was achieved by using of hydrophilic and hydrophobic surfaces. • Neuroblastoma cells were arrayed on the micro-patterned NCD surface. - Abstract: Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O_2 or C_3F_8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  6. Investigation of nanocrystalline thin cobalt films thermally evaporated on Si(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowski, W., E-mail: wkozl@std2.phys.uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Balcerski, J.; Szmaja, W. [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Piwoński, I. [Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163, 90-236 Łódź (Poland); Batory, D. [Institute of Materials Science and Engineering, Łódź University of Technology, Stefanowskiego 1/15, 90-924 Łódź (Poland); Miękoś, E. [Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź (Poland); and others

    2017-03-15

    We have made a quantitative study of the morphological and magnetic domain structures of 100 nm thick nanocrystalline cobalt films thermally evaporated on naturally oxidized Si(100) substrates. The morphological structure is composed of densely packed grains with the average grain size (35.6±0.8) nm. The grains exhibit no geometric alignment and no preferred elongation on the film surface. In the direction perpendicular to the film surface, the grains are aligned in columns. The films crystallize mainly in the hexagonal close-packed phase of cobalt and possess a crystallographic texture with the hexagonal axis perpendicular to the film surface. The magnetic domain structure consists of domains forming a maze stripe pattern with the average domain size (102±6) nm. The domains have their magnetizations oriented almost perpendicularly to the film surface. The domain wall energy, the domain wall thickness and the critical diameter for single-domain particle were determined. - Highlights: • 100 nm thick nanocrystalline cobalt films on Si(100) were studied quantitatively. • The grains are densely packed and possess the average size (35.6±0.8) nm. • The films have a texture with the hexagonal axis perpendicular to the film surface. • The magnetic domains form a maze stripe pattern with the average size (102±6) nm. • The domains are magnetized almost perpendicularly to the film surface.

  7. Characterization of Mechanical Properties of MgB$_2$ Conductor for the Superconducting Link Project at CERN

    CERN Document Server

    Sugano, M; Bartova, B; Bjoerstad, R; Scheuerlein, C; Grasso, G

    2015-01-01

    In the framework of high luminosity upgrade of Large Hadron Collider at CERN, superconducting links are being developed. MgB2 wire is a candidate conductor for use in high-current cables. Mechanical properties of this material are of key importance for the definition of the cable design and operating conditions. In this study, we evaluated the Young's modulus of MgB2 filaments extracted from ex situ processed composite wires. The wires were produced in unit lengths of about 1 km and used in high-current cables. Single fiber tensile test was carried out on filaments composed of MgB2, Nb barrier, and Nb-Ni reaction layer. From the unloading modulus of filament specimens measured with different gauge lengths, the Young's modulus of composite filaments extracted from two different strands was determined to be 114 and 122 GPa at room temperature, respectively. By using the rule-of-mixture, the Young's modulus of MgB2 was estimated to be lower than that reported for highly dense MgB2 bulks. The reason for such diff...

  8. S-I-N tunneling spectroscopy of MgB2 superconductor: evidence of two superconducting energy gaps

    International Nuclear Information System (INIS)

    Sen, Shashwati; Aswal, D.K.; Singh, Ajay; Gadkari, S.C.; Shah, K.; Gupta, S.K.; Sahni, V.C.

    2002-01-01

    The tunneling spectra of polycrystalline MgB 2 , have been recorded, at different temperatures between 29 K and T c , using planar superconductor- insulating-normal (S-I-N) tunneling spectroscopy. The planar S-I-N tunnel junctions have been fabricated by thermally evaporating Ag electrodes on MgB 2 surface. The naive layer, which forms at the surface of MgB 2 , due to atmospheric degradation, was employed as an insulating layer between Ag electrodes and MgB 2 . We have found presence of two clear superconducting energy gaps in MgB 2 . The magnitudes of these gaps at 29.5 K are 1.8 and 5.9 MeV, respectively. In the vicinity of T c , while larger energy gap obeyed BCS temperature dependence, the smaller energy gap deviated from BCS dependence. All the spectra exhibited zero-bias conductance, which decreased linearly with temperature and vanished at T c . (author)

  9. Magnetic microscopy for characterization of local critical current in iron-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Higashikawa, K.; Yamamoto, A.; Kiss, T.; Ye, S.; Matsumoto, A.; Kumakura, H.

    2014-01-01

    Highlights: • We developed a characterization method of local critical current in MgB 2 wires. • Local homogeneity was visualized by the scanning Hall-probe microscopy (SHPM). • Local critical current value was quantified with the aid of the finite element method (FEM). • MgB 2 wire still has inhomogeneous distribution in local critical current. • Higher potential than that estimated by the four-probe transport method was suggested. - Abstract: We have developed a characterization method of local critical current in iron-sheathed MgB 2 wires. Local homogeneity was visualized by the scanning Hall-probe microscopy (SHPM). The value of local critical current was quantified with the aid of the finite element method (FEM) considering the ferromagnetic properties of the iron sheath. The results suggested that MgB 2 wires fabricated by internal Mg diffusion processes still have large longitudinal inhomogeneity and much higher potential than that estimated by the four-probe transport method. This will be very important information for making a correct strategy for further development of MgB 2 wires

  10. Structural and optical properties of nanocrystalline CdSe and Al:CdSe thin films for photoelectrochemical application

    Energy Technology Data Exchange (ETDEWEB)

    Gawali, Sanjay A. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004 (India); Bhosale, C.H., E-mail: bhosale_ch@yahoo.com [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004 (India)

    2011-10-03

    Highlights: {yields} The CdSe and Al:CdSe thin films have been successfully deposited by SPT. {yields} Hexagonal cubic structured CdSe and Al: CdSe thin films are observed. {yields} Large number of fine grains, Uniform and compact growth morphology. {yields} Hydrophilic surface nature. {yields} Al:CdSe have better PEC performance than CdSe. - Abstract: Nanocrystalline CdSe and Al:CdSe semiconductor thin films have been successfully synthesized onto amorphous and FTO glass substrates by spray pyrolysis technique. Aqueous solutions containing precursors of Cd and Se have been used to obtain good quality films. The optimized films have been characterized for their structural, morphological, wettability and optical properties. X-ray diffraction (XRD) studies show that the films are polycrystalline in nature with hexagonal crystal structure. Scanning electron microscopy (SEM) studies show that the film surface is smooth, uniform and compact in nature. Water wettability study reveals that the films are hydrophilic behavior. The formation of CdSe and Al:CdSe thin film were confirmed with the help of FTIR spectroscopy. UV-vis spectrophotometric measurement showed a direct allowed band gap lying in the range 1.673-1.87 eV. Output characteristics were studied by using cell configuration n- CdSe/Al:CdSe |1 M (NaOH + Na{sub 2} + S)|C. An efficient solar cell having a power conversion efficiency of 0.38% at illumination 25 mW cm{sup -2} was fabricated.

  11. Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method

    International Nuclear Information System (INIS)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre

    2011-01-01

    Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl 3 , SnCl 4 and NH 3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ∼ 40-1160 nm. After calcination at 550 o C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.

  12. Flux pinning and inhomogeneity in magnetic nanoparticle doped MgB2/Fe wires

    Science.gov (United States)

    Novosel, Nikolina; Pajić, Damir; Mustapić, Mislav; Babić, Emil; Shcherbakov, Andrey; Horvat, Joseph; Skoko, Željko; Zadro, Krešo

    2010-06-01

    The effects of magnetic nanoparticle doping on superconductivity of MgB2/Fe wires have been investigated. Fe2B and SiO2-coated Fe2B particles with average diameters 80 and 150 nm, respectively, were used as dopands. MgB2 wires with different nanoparticle contents (0, 3, 7.5, 12 wt.%) were sintered at temperature 750°C. The magnetoresistivity and critical current density Jc of wires were measured in the temperature range 2-40 K in magnetic field B doped wires decreases quite rapidly with doping level (~ 0.5 K per wt.%). This results in the reduction of the irreversibility fields Birr(T) and critical current densities Jc(B,T) in doped samples (both at low (5 K) and high temperatures (20 K)). Common scaling of Jc(B,T) curves for doped and undoped wires indicates that the main mechanism of flux pinning is the same in both types of samples. Rather curved Kramer's plots for Jc of doped wires imply considerable inhomogeneity.

  13. Effect of malic acid doping on the structural and superconducting properties of MgB2

    International Nuclear Information System (INIS)

    Ojha, N.; Sudesh; Stuti Rani; Varma, G.D.

    2010-01-01

    The samples have been prepared via standard solid state reaction route with nominal compositions MgB 2 + x wt% malic acid (x = 0, 5 and 10) by sintering at two different temperatures: 800 and 850 deg C in argon atmosphere. Improvement in upper critical fields (H c2 ) and irreversibility field (H irr ) of doped samples as compared to undoped samples have been observed. At 10 K, critical current densities (J c ) of the 5 and 10 wt% malic acid doped MgB 2 samples sintered at 850 deg C have higher values as compared to undoped sample sintered at the same temperature in the fields greater than 3 T. However, J c values of 5 wt% malic acid doped sample are higher than 10 wt% doped sample in the entire applied field region (0 - 7 T). In case of the samples sintered at 800 deg C improvement in J c values of 5 wt% doped sample have been found in entire field region as compared to undoped sample. On the other hand we see deterioration in J c values of 10 wt% doped samples sintered at 800 deg C as compared to undoped samples sintered at same temperature. The correlations between structural and superconducting properties will be described and discussed in this paper. (author)

  14. MgB2 for Application to RF Cavities for Accelerators

    International Nuclear Information System (INIS)

    Tajima, T.; Canabal, A.; Zhao, Y.; Romanenko, A.; Moeckly, B.H.; Nantista, C.D.; Tantawi, S.; Phillips, L.; Iwashita, Y.; Campisi, I.E.

    2007-01-01

    Magnesium diboride (MgB 2 ) has a transition temperature (T c ) of ∼40 K, i.e., about 4 times as high as that of niobium (Nb).We have been evaluating MgB 2 as a candidate material for radio-frequency (RF) cavities for future particle accelerators. Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb at 4 K. A power dependence test using a 6 GHz TE011 mode cavity has shown little power dependence up to ∼12 mT (120 Oe), limited by available power, compared to other high-Tc materials such as YBCO. A recent study showed, however, that the power dependence of Rs is dependent on the coating method. A film made with on-axis pulsed laser deposition (PLD) has showed rapid increase in Rs compared to the film deposited by reactive evaporation method. This paper shows these results as well as future plans

  15. Theoretical analysis of thermoelectric power of nanocrystalline ReSi2 thin film

    International Nuclear Information System (INIS)

    Kchoudhary, K; Kaurav; Gupta, N; Varshney, D

    2007-01-01

    The formulation is developed for the predictive modeling of thermoelectric power (S) of nano-crystalline ReSi 2 . We have evaluated the phonon thermoelectric power by incorporating the scattering of phonons with impurities, grain boundaries, charge careers and phonons. It is noticed that at low temperatures (T < 400 K), S increases and show power temperature dependence because of the larger mean free path of phonon, S shows a broad peak at about 550 K, which is artefact of the competition among umklapp scattering and grain boundaries scattering. Further, by increasing temperature S decreases with change in slope. The anomalies are well accounted in terms of interaction among the phonons-impurity, phonon grain boundaries and the umklapp scattering. Under certain conditions grain boundary scattering is expected to be more effective on heat carrying phonons than on Umklapp scattering, causing an increased thermoelectric power. Numerical analysis of thermoelectric power from the present model shows similar results as those revealed from experiments

  16. Processing of nanocrystalline diamond thin films for thermal management of wide-bandgap semiconductor power electronics

    International Nuclear Information System (INIS)

    Govindaraju, N.; Singh, R.N.

    2011-01-01

    Highlights: → Studied effect of nanocrystalline diamond (NCD) deposition on device metallization. → Deposited NCD on to top of High Electron Mobility Transistors (HEMTs) and Si devices. → Temperatures below 290 deg. C for Si devices and 320 deg. C for HEMTs prevent metal damage. → Development of novel NCD-based thermal management for power electronics feasible. - Abstract: High current densities in wide-bandgap semiconductor electronics operating at high power levels results in significant self-heating of devices, which necessitates the development thermal management technologies to effectively dissipate the generated heat. This paper lays the foundation for the development of such technology by ascertaining process conditions for depositing nanocrystalline diamond (NCD) on AlGaN/GaN High Electron Mobility Transistors (HEMTs) with no visible damage to device metallization. NCD deposition is carried out on Si and GaN HEMTs with Au/Ni metallization. Raman spectroscopy, optical and scanning electron microscopy are used to evaluate the quality of the deposited NCD films. Si device metallization is used as a test bed for developing process conditions for NCD deposition on AlGaN/GaN HEMTs. Results indicate that no visible damage occurs to the device metallization for deposition conditions below 290 deg. C for Si devices and below 320 deg. C for the AlGaN/GaN HEMTs. Possible mechanisms for metallization damage above the deposition temperature are enumerated. Electrical testing of the AlGaN/GaN HEMTs indicates that it is indeed possible to deposit NCD on GaN-based devices with no significant degradation in device performance.

  17. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup, E-mail: kssong10@kumoh.ac.kr

    2016-01-15

    Graphical abstract: - Highlights: • The nanocrystalline diamond (NCD) surface is functionalized with F or O. • The cell adhesion and growth are evaluated on the functionalized NCD surface. • The cell adhesion and growth depend on the wettability of the surface. • Cell patterning was achieved by using of hydrophilic and hydrophobic surfaces. • Neuroblastoma cells were arrayed on the micro-patterned NCD surface. - Abstract: Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O{sub 2} or C{sub 3}F{sub 8} gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  18. Mechanically activated self-propagated high-temperature synthesis of nanometer-structured MgB2

    International Nuclear Information System (INIS)

    Radev, D.D.; Marinov, M.; Tumbalev, V.; Radev, I.; Konstantinov, L.

    2005-01-01

    Nanometer-sized MgB 2 was prepared via a two-step modification of the mechanically activated self-propagated high-temperature synthesis. The experimental conditions and some structural and phase characteristics of the synthesized product are reported. It is shown that a single-phase material can be prepared after 2 h of intense mechanical treatment of the starting magnesium and boron powders and a synthesis induced at a current-pulse density of 30 A cm -2 . The average size of MgB 2 particles synthesized in this way is 70-80 nm. It is also shown that using the same reagents and the 'classic' high-temperature interaction at 850 deg C with a protective atmosphere of pure Ar, mean particle size of the MgB 2 obtained is 50 μm

  19. Effects of TiC doping on the upper critical field of MgB2 superconductors

    International Nuclear Information System (INIS)

    Yan, S.C.; Zhou, L.; Yan, G.; Lu, Y.F.

    2008-01-01

    TiC doped MgB 2 bulks were fabricated by two-step reaction method. The sample with a nominal compositions of Mg(B 0.95 (TiC) 0.05 ) 4 was first sintered at 1000 deg. C for 0.5 h. An appropriate amount of Mg was added to reach the stoichiometry of Mg(B 0.95 (TiC) 0.05 ) 2 , which was sintered at 750 deg. C for 2 h. The H c2 for the micro-TiC doped MgB 2 reached 12 T at 20 K. And J c is 5.3 x 10 4 A/cm 2 at 20 K and 1 T. The results indicate that the two-step reaction method could effectively introduce the carbon in TiC into the MgB 2 crystalline lattice, and therefore improve the upper critical field

  20. NMR relaxation rates and Knight shifts in MgB2 and AlB2: theory versus experiments

    International Nuclear Information System (INIS)

    Pavarini, E; Baek, S H; Suh, B J; Borsa, F; Bud'ko, S L; Canfield, P C

    2003-01-01

    We have performed 11 B NMR measurements in 11 B enriched MgB 2 powder sample in the normal phase. The Knight shift was accurately determined by using the magic angle spinning technique. Results for 11 B and 27 Al Knight shifts (K) and relaxation rates (1/T 1 ) are also reported for AlB 2 . The data show a dramatic decrease of both K and 1/T 1 for 11 B in AlB 2 with respect to MgB 2 . We compare experimental results with ab initio calculated NMR relaxation rates and Knight shifts. The experimental values for 1/T 1 and K are in most cases in good agreement with the theoretical results. We show that the decrease of K and 1/T 1 for 11 B is consistent with a drastic drop of the density of states at the boron site in AlB 2 with respect to MgB 2

  1. Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN

    Science.gov (United States)

    Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.

    2016-08-01

    In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.

  2. Microscopic unravelling of nano-carbon doping in MgB2 superconductors fabricated by diffusion method

    International Nuclear Information System (INIS)

    Wong, D.C.K.; Yeoh, W.K.; De Silva, K.S.B.; Kondyurin, A.; Bao, P.; Li, W.X.; Xu, X.; Peleckis, G.; Dou, S.X.; Ringer, S.P.; Zheng, R.K.

    2015-01-01

    Highlights: • First report on nano-carbon doped MgB 2 superconductors synthesized by diffusion method. • Microstructure and superconducting properties of the superconductors are discussed. • B 4 C region blocks the Mg from reacting with B in the 10% nano-carbon doped sample. • MgB 2 with 2.5% nano-carbon doped showed the highest J c , ≈10 4 A/cm 2 for 20 K at 4 T. - Abstract: We investigated the effects of nano-carbon doping as the intrinsic (B-site nano-carbon substitution) and extrinsic (nano-carbon derivatives) pinning by diffusion method. The contraction of the in-plane lattice confirmed the presence of disorder in boron sublattice caused by carbon substitution. The increasing value in full width half maximum (FWHM) in the X-ray diffraction (XRD) patterns with each increment in the doping level reveal smaller grains and imperfect MgB 2 crystalline. The strain increased across the doping level due to the carbon substitution in the MgB 2 matrix. The broadening of the T c curves from low to high doping showed suppression of the connectivity of the bulk samples with progressive dirtying. At high doping, the presence of B 4 C region blocked the Mg from reacting with crystalline B thus hampering the formation of MgB 2 . Furthermore, the unreacted Mg acted as a current blocking phase in lowering down the grain connectivity hence depressing the J c of the 10% nano-carbon doped MgB 2 bulk superconductor

  3. Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors

    International Nuclear Information System (INIS)

    Taylan Koparan, E.; Savaskan, B.; Guner, S.B.; Celik, S.

    2016-01-01

    We present a detailed investigation of the effects of Bi 2 Sr 2 Ca 1 Cu 2 O 8+κ (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB 2 obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB 2 . Moreover, we present MgB 2 bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB 2 samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J c was calculated from the M-H loops for Bi-2212 added MgB 2 samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature (T c ) has slightly dropped from 37.8 K for the pure MgB 2 sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased. (orig.)

  4. Sugar as an optimal carbon source for the enhanced performance of MgB2 superconductors at high magnetic fields

    Science.gov (United States)

    Shcherbakova, O. V.; Pan, A. V.; Wang, J. L.; Shcherbakov, A. V.; Dou, S. X.; Wexler, D.; Babić, E.; Jerčinović, M.; Husnjak, O.

    2008-01-01

    In this paper we report the results of an extended study of the effect of sugar doping on the structural and electromagnetic properties of MgB2 superconductors. High values of the upper critical field (Bc2) of 36 T and the irreversibility field (Birr) of 27 T have been estimated at the temperature of 5 K in a bulk MgB2 sample with the addition of 10 wt% of sugar. The critical current density (Jc(Ba)) of sugar-doped samples has been significantly improved in the high field region. The value of transport Jc has reached as high as 108 A m-2 at 10 T and 5 K for Fe-sheathed sugar-doped MgB2 wire. The analysis of the pinning mechanism in the samples investigated indicated that dominant vortex pinning occurs on the surface type of pinning defects, such as grain boundaries, dislocations, stacking faults etc, for both pure and doped MgB2. In sugar-doped samples, pinning is governed by numerous crystal lattice defects, which appear in MgB2 grains as a result of crystal lattice distortion caused by carbon substitution for boron and nano-inclusions. The drastically improved superconducting properties of sugar-doped samples are also attributed to the highly homogeneous distribution and enhanced reactivity of this dopant with host Mg and B powders. The results of this work suggest that sugar is the optimal source of carbon for doping MgB2 superconductor, especially for application at high magnetic fields.

  5. Design, Modeling and Optimization of a Piezoelectric Pressure Sensor based on a Thin-Film PZT Membrane Containing Nanocrystalline Powders

    Directory of Open Access Journals (Sweden)

    Vahid MOHAMMADI

    2009-11-01

    Full Text Available In this paper fabrication of a 0-3 ceramic/ceramic composite lead zirconate titanate, Pb(Zr0.52Ti0.48O3 thin film has been presented and then a pressure sensor based on multilayer thin-film PZT diaphragm contain of Lead Zirconate Titanate nanocrystalline powders was designed, modeled and optimized. Dynamics characteristics of this multilayer diaphragm have been investigated by ANSYS® FE software. By this simulation the effective parameters of the multilayer PZT diaphragm for improving the performance of a pressure sensor in different ranges of pressure are optimized. The optimized thickness ratio of PZT layer to SiO2 was given in the paper to obtain the maximum deflection of the multilayer thin-film PZT diaphragm. A 0-3 ceramic/ceramic composite lead zirconate titanate, Pb(Zr0.52Ti0.48O3 film has been developed to fabricate the pressure sensor by a hybrid sol gel process. PZT nanopowders fabricated via conventional sol gel method and uniformly dispersed in PZT precursor solution by an attrition mill. XRD analysis shows that perovskite structure would be formed due to the presence of a significant amount of ceramic nanopowders. This texture has a good effect on piezoelectric properties of perovskite structure. The film forms a strongly bonded network and less shrinkage occurs, so the films do not crack during process. Also the aspect ratio through this process would be increased. SEM micrographs indicated that PZT films were uniform, crack free and have a composite microstructure and a piezoelectric coefficient d31 of -40 pC.N-1 and d33 ranged from 50pm.N-1 to 60pm.N-1.

  6. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-wahab, M.Sh [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni -Suef University, Beni-Suef (Egypt); Al-ghamdi, Attieh A. [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Dahlan, Ammar sadik [Department of architecture, faculty of environmental design, King Abdulaziz University, Jeddah (Saudi Arabia); Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt)

    2016-01-15

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ{sup (3)} was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  7. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    Science.gov (United States)

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  8. Physical properties in flux line lattice state in MgB2 probed by μSR

    International Nuclear Information System (INIS)

    Ohishi, Kazuki; Muranaka, Takahiro; Akimitsu, Jun; Koda, Akihiro; Higemoto, Wataru; Kadono, Ryosuke

    2002-01-01

    We have performed muon spin rotation (μSR) measurements to deduce the magnetic penetration depth λ in the flux line lattice state of MgB 2 microscopically. It is observed that λ shows a quadratic temperature dependence which is predicted for the case of superconducting gap with line nodes. Furthermore, it clearly exhibits a strong field dependence, where λ increases almost linearly with H. These results strongly suggest that the superconducting order parameter in MgB 2 is highly anisotropic. (author)

  9. Design, manufacturing and tests of first cryogen-free MgB2 prototype coils for offshore wind generators

    International Nuclear Information System (INIS)

    Sarmiento, G; Sanz, S; Pujana, A; Merino, J M; Apiñaniz, S; Marino, I; Iturbe, R; Nardelli, D

    2014-01-01

    Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB 2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB 2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.

  10. Wavelet-fractal approach to surface characterization of nanocrystalline ITO thin films

    International Nuclear Information System (INIS)

    Raoufi, Davood; Kalali, Zahra

    2012-01-01

    In this study, indium tin oxide (ITO) thin films were prepared by electron beam deposition method on glass substrates at room temperature (RT). Surface morphology characterization of ITO thin films, before and after annealing at 500 °C, were investigated by analyzing the surface profile of atomic force microscopy (AFM) images using wavelet transform formalism. The wavelet coefficients related to the thin film surface profiles have been calculated, and then roughness exponent (α) of the films has been estimated using the scalegram method. The results reveal that the surface profiles of the films before and after annealing process have self-affine nature.

  11. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    Science.gov (United States)

    Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita

    2016-10-01

    In this work, Pd:NiFe2O4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe2O4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost.

  12. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    International Nuclear Information System (INIS)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita

    2016-01-01

    In this work, Pd:NiFe 2 O 4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe 2 O 4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe 2 O 4 nanoparticle thin film were fabricated. • Pd incorporation in NiFe 2 O 4 matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe 2 O 4 thin film sensor displays excellent long–term stability.

  13. Structural, optical and electrical characterization of vacuum-evaporated nanocrystalline CdSe thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vipin; Sharma, D.K.; Sharma, Kapil [Krishna Institute of Engineering and Technology, Department of Physics, Ghaziabad (India); Dwivedi, D.K. [M.M.M University of Technology, Department of Physics, Gorakhpur (India)

    2016-11-15

    II-VI nanocrystalline semiconductors offer a wide range of applications in electronics, optoelectronics and photonics. Thin films of CdSe were deposited onto ultra-clean glass substrates by vacuum evaporation method. The as-deposited films were annealed in vacuum at 350 K. The structural, elemental, morphological, optical and electrical investigations of annealed films were carried out. The X-ray diffraction pattern of the films shows that films were polycrystalline in nature having hexagonal structure with preferential orientation of grains along (002) plane. SEM image indicates that the films were uniform and well covered to the glass substrate. EDAX analysis confirms the stoichiometric composition of the film. Raman spectra were used to observe the characteristic vibrational modes of CdSe. The energy band gap of these films was obtained by absorption spectra. The films were found to have a direct type of transition of band gap occurring at 1.75 eV. The dark electrical conductivity and photoconductivity reveals that the films were semiconducting in nature indicating the suitability of these films for photosensor applications. The Hall effect measurement reveals that the films have n-type electrical conductivity. (orig.)

  14. Structural and Optical Properties of Nanocrystalline 3,4,9,10-Perylene-Tetracarboxylic-Diimide Thin Film

    Directory of Open Access Journals (Sweden)

    M. M. El-Nahhas

    2012-01-01

    Full Text Available Thin films of nanocrystalline 3,4,9,10-perylene-tetracarboxylic-diimide (PTCDI were prepared on quartz substrates by thermal evaporation technique. The structural properties were identified by transmission electron microscopy (TEM and the X-ray diffraction (XRD. The optical properties for the films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The optical constants (refractive index n and absorption index k were calculated and found to be independent on the film thickness in the measured film thickness range 117–163 nm. The dispersion energy (Ed, the oscillator energy (Eo, and the high-frequency dielectric constant ε∞ were obtained. The energy band model was applied, and the types of the optical transitions responsible for optical absorption were found to be indirect allowed transition. The onset and optical energy gaps were calculated, and the obtained results were also discussed.

  15. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    International Nuclear Information System (INIS)

    Johansson, Malin B; Niklasson, Gunnar A; Österlund, Lars; Baldissera, Gustavo; Persson, Clas; Valyukh, Iryna; Arwin, Hans

    2013-01-01

    The optical and electronic properties of nanocrystalline WO 3 thin films prepared by reactive dc magnetron sputtering at different total pressures (P tot ) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low P tot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies E g ≈ 3.1 eV, which increase with increasing P tot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO 3 , and monoclinic γ- and ε-WO 3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO 3 and γ-WO 3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that E g in ε-WO 3 is higher than in the δ-WO 3 and γ-WO 3 phases, which provides an explanation for the P tot dependence of the optical data. (paper)

  16. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    Science.gov (United States)

    Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars

    2013-05-01

    The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.

  17. Room temperature growth of nanocrystalline anatase TiO{sub 2} thin films by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preetam, E-mail: preetamphy@gmail.co [Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kaur, Davinder [Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2010-03-01

    We report, the structural and optical properties of nanocrystalline anatase TiO{sub 2} thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO{sub 2} film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO{sub 2} films for device applications with different refractive index, by changing the deposition parameters.

  18. Investigations of the drift mobility of carriers and density of states in nanocrystalline CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Baljinder [Department of Physics, Kurukshetra University, Kurukshetra 136119 (India); Department of Physics, Panjab University, Chandigarh 160014 (India); Singh, Janpreet; Kaur, Jagdish [Department of Physics, Panjab University, Chandigarh 160014 (India); Moudgil, R.K. [Department of Physics, Kurukshetra University, Kurukshetra 136119 (India); Tripathi, S.K., E-mail: surya@pu.ac.in [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-06-01

    Nanocrystalline Cadmium Sulfide (nc-CdS) thin films have been prepared on well-cleaned glass substrate at room temperature (300 K) by thermal evaporation technique using inert gas condensation (IGC) method. X-ray diffraction (XRD) analysis reveals that the films crystallize in hexagonal structure with preferred orientation along [002] direction. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) studies reveal that grains are spherical in shape and uniformly distributed over the glass substrates. The optical band gap of the film is estimated from the transmittance spectra. Electrical parameters such as Hall coefficient, carrier type, carrier concentration, resistivity and mobility are determined using Hall measurements at 300 K. Transit time and mobility are estimated from Time of Flight (TOF) transient photocurrent technique in gap cell configuration. The measured values of electron drift mobility from TOF and Hall measurements are of the same order. Constant Photocurrent Method in ac-mode (ac-CPM) is used to measure the absorption spectra in low absorption region. By applying derivative method, we have converted the measured absorption data into a density of states (DOS) distribution in the lower part of the energy gap. The value of Urbach energy, steepness parameter and density of defect states have been calculated from the absorption and DOS spectra.

  19. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Science.gov (United States)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  20. Structural and critical current properties in Al-doped MgB2

    International Nuclear Information System (INIS)

    Zheng, D.N.; Xiang, J.Y.; Lang, P.L.; Li, J.Q.; Che, G.C.; Zhao, Z.W.; Wen, H.H.; Tian, H.Y.; Ni, Y.M.; Zhao, Z.X.

    2004-01-01

    A series of Al-doped Mg 1-x Al x B 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2 , measurements on the superconducting transition temperature T c , irreversible field B irr and critical current density J c were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration

  1. Structural and critical current properties in Al-doped MgB 2

    Science.gov (United States)

    Zheng, D. N.; Xiang, J. Y.; Lang, P. L.; Li, J. Q.; Che, G. C.; Zhao, Z. W.; Wen, H. H.; Tian, H. Y.; Ni, Y. M.; Zhao, Z. X.

    2004-08-01

    A series of Al-doped Mg 1- xAl xB 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2, measurements on the superconducting transition temperature Tc, irreversible field Birr and critical current density Jc were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration.

  2. Interplay of dendritic avalanches and gradual flux penetration in superconducting MgB2 films

    International Nuclear Information System (INIS)

    Shantsev, D V; Goa, P E; Barkov, F L; Johansen, T H; Kang, W N; Lee, S I

    2003-01-01

    Magneto-optical imaging was used to study a zero-field-cooled MgB 2 film at 9.6 K where in a slowly increasing field the flux penetrates by an abrupt formation of large dendritic structures. Simultaneously, a gradual flux penetration takes place, eventually covering the dendrites, and a detailed analysis of this process is reported. We find an anomalously high gradient of the flux density across a dendrite branch, and a peak value that decreases as the applied field increases. This unexpected behaviour is reproduced by flux creep simulations based on the non-local field-current relation in the perpendicular geometry. The simulations also provide indirect evidence that flux dendrites are formed at an elevated local temperature, consistent with a thermo-magnetic mechanism of the instability

  3. Microwave second-harmonic response of ceramic MgB2 samples

    International Nuclear Information System (INIS)

    Agliolo Gallitto, A.; Bonsignore, G.; Li Vigni, M.

    2005-01-01

    Nonlinear microwave response of different ceramic MgB 2 samples has been investigated by the technique of second-harmonic emission. The second-harmonic signal has been investigated as a function of temperature, DC magnetic field and input microwave power. The attention has mainly been devoted to the response at low magnetic fields, where nonlinear processes arising from motion of Abrikosov fluxons are ineffective. The results show that different mechanisms are responsible for the nonlinear response in the different ranges of temperature. At low temperatures, the nonlinear response is due to processes involving weak links. At temperatures close to T c , a further contribution to the harmonic emission is present; it can be ascribed to modulation of the order parameter by the microwave field and gives rise to a peak in the temperature dependence of the harmonic signal

  4. Progress in electrical and mechanical properties of rectangular MgB2 wires

    International Nuclear Information System (INIS)

    Kovac, P; Melisek, T; Kopera, L; Husek, I; Polak, M; Kulich, M

    2009-01-01

    Critical current densities and mechanical resistance of MgB 2 wires made by the rectangular wire-in-tube technique (RWIT) have been studied. Wires prepared from different precursor powders and variable sheath materials are compared. The best electrical performance (10 4 A cm -2 at 11.3 T) was measured for the wire with mechanically alloyed powder doped by SiC. While the critical current densities, J c , at 4.2 K are considerably influenced by the powder used, the differences at 20 K are much smaller. Flattened wires show different levels of critical current anisotropy influenced by the precursor powder used. Stress-strain characteristics and critical current degradation are strongly affected by the applied metallic materials and also by the filament's strength. The highest irreversible strain ε irr = 0.55% was measured for Ti/Cu/Monel sheathed wire with filaments from mechanically alloyed powder.

  5. The superconducting properties of co-doped polycrystalline MgB2

    International Nuclear Information System (INIS)

    Moore, J D; Perkins, G K; Branford, W; Yates, K A; Caplin, A D; Cohen, L F; Chen, Soo Kien; Rutter, N A; MacManus-Driscoll, Judith L

    2007-01-01

    In this study we compare the critical current density, the irreversibility line and the upper critical field of four MgB 2 polycrystalline samples, which are either undoped or have 5% carbon or 5% carbon plus either 1% aluminium or 2% zirconium. We discuss how care must be taken for the extraction of the irreversibility line in such samples. We also show how ac susceptibility and Hall probe imaging can be used to examine whether the samples remain fully connected to the highest available fields. Compared to simple 5% carbon doping we find that co-doping provides modest improvement in the pinning properties at intermediate fields in the carbon plus zirconium doped sample

  6. Comparative study of neutron irradiation and carbon doping in MgB2 single crystals

    International Nuclear Information System (INIS)

    Krutzler, C.; Zehetmayer, M.; Eisterer, M.; Weber, H. W.; Zhigadlo, N. D.; Karpinski, J.

    2007-01-01

    We compare the reversible and irreversible magnetic properties of superconducting carbon doped and undoped MgB 2 single crystals before and after neutron irradiation. A large number of samples with transition temperatures between 38.3 and 22.8 K allows us to study the effects of disorder systematically. Striking similarities are found in the modification of the reversible parameters by irradiation and doping, which are discussed in terms of impurity scattering and changes of the Fermi surface. The irreversible properties are influenced by two counteracting mechanisms: they are enhanced by the newly introduced pinning centers but degraded by changes in the thermodynamic properties. Accordingly, the large neutron induced defects and the small defects from carbon doping lead to significantly different effects on the irreversible properties. Finally, the fishtail effect caused by all kinds of disorder is discussed in terms of an order-disorder transition of the flux-line lattice

  7. Using specific heat to scan gaps and anisotropy of MgB2

    International Nuclear Information System (INIS)

    Bouquet, F.; Wang, Y.; Toulemonde, P.; Guritanu, V.; Junod, A.; Eisterer, M.; Weber, H.W.; Lee, S.; Tajima, S.

    2004-01-01

    We performed specific heat measurements to study the superconducting properties of the ∼40 K superconductor MgB 2 , up to 16 T, using polycrystal and single crystal samples. Our results establish the validity of the two-gap model. We tested the effect of disorder by irradiating our sample. This procedure decreased T c down to ∼26 K, but did not suppress completely the smaller gap, at variance with theoretical expectations. A positive effect of the irradiation was the increase of H c2 up to almost 30 T. Our results on the single crystal allow the anisotropy of each band to be determined independently, and show the existence of a cross-over field well below H c2 characterizing the physics of the small-gapped band. We also present preliminary results on Nb 3 Sn, showing similar, but weaker effects

  8. Phase dynamics of single long Josephson junction in MgB2 superconductor

    Science.gov (United States)

    Chimouriya, Shanker Pd.; Ghimire, Bal Ram; Kim, Ju H.

    2018-05-01

    A system of perturbed sine Gordon equations is derived to a superconductor-insulator-superconductor (SIS) long Joseph-son junction as an extension of the Ambegaokar-Baratoff relation, following the long route of path integral formalism. A computer simulation is performed by discretizing the equations using finite difference approximation and applied to the MgB2 superconductor with SiO2 as the junction material. The solution of unperturbed sG equation is taken as the initial profile for the simulation and observed how the perturbation terms play the role to modify it. It is found initial profile deformed as time goes on. The variation of total Josephson current has also been observed. It is found that, the perturbation terms play the role for phase frustration. The phase frustration achieves quicker for high tunneling current.

  9. Tests on MgB2 for Application to SRF Cavities

    International Nuclear Information System (INIS)

    Tajima, T.; Canabal, A.; Los Alamos; Zhao, Y.; Wollongong U.; Romanenko, A.; Cornell U., LNS; Nantista, C.; Tantawi, S.; SLAC; Phillips, L.; Jefferson Lab; Iwashita, Y.; Kyoto U., Inst. Chem. Res.; Campisi, I.; Oak Ridge; Moeckly, B.; Superconductor Tech., Santa Barbara

    2006-01-01

    Magnesium diboride (MgB 2 ) has a transition temperature (T c ) of ∼40 K, i.e., about 4 times higher than niobium (Nb). Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (R s ) than Nb at 4 K and seems to have much less power dependence than high-T c materials such as YBCO. However, it was also found that it will depend on the way you deposit the film. The result from on-axis pulsed laser deposition (PLD) showed rapid increase in R s with higher surface magnetic fields compared to the film deposited with reactive evaporation method

  10. The increase in Tc for MgB2 superconductor under high pressure

    International Nuclear Information System (INIS)

    Liu, Z-X; Jin, C-Q; You, J-Y; Li, S-C; Zhu, J-L; Yu, R-C; Li, F-Y; Su, S-K

    2002-01-01

    We report in situ high-pressure studies up to 1.0 GPa on MgB 2 superconductor which had been synthesized at high pressure. The as-prepared sample is of high quality as regards having a sharp superconducting transition (T c ) at 39 K. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with a mixed oil as the pressure-transmitting medium, which provides a quasi-hydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that T c increases with pressure in the initial pressure range, leading to a parabolic-like T c -P evolution

  11. Pinning enhancement in MgB 2 superconducting thin films by ...

    Indian Academy of Sciences (India)

    ... coated with different concentrations of Fe2O3 nanoparticles by spin coating process. ... Turkey; Ereğli Faculty of Education, Primary Education Department, Bülent Ecevit ... Manuscript received: 8 May 2012; Manuscript revised: 22 July 2012 ...

  12. Structural, mechanical and magnetic study on galvanostatic electroplated nanocrystalline NiFeP thin films

    Science.gov (United States)

    Kalaivani, A.; Senguttuvan, G.; Kannan, R.

    2018-03-01

    Nickel based alloys has a huge applications in microelectronics and micro electromechanical systems owing to its superior soft magnetic properties. With the advantages of simplicity, cost-effectiveness and controllable patterning, electroplating processes has been chosen to fabricate thin films in our work. The soft magnetic NiFeP thin film was successfully deposited over the surface of copper plate through galvanostatic electroplating method by applying constant current density of 10 mA cm-2 for a deposition rate for half an hour. The properties of the deposited NiFeP thin films were analyzed by subjecting it into different physio-chemical characterization such as XRD, SEM, EDAX, AFM and VSM. XRD pattern confirms the formation of NiFeP particles and the structural analysis reveals that the NiFeP particles were uniformly deposited over the surface of copper substrate. The surface roughness analysis of the NiFeP films was done using AFM analysis. The magnetic studies and the hardness of the thin film were evaluated from the VSM and hardness test. The NiFeP thin films possess lower coercivity with higher magnetization value of 69. 36 × 10-3 and 431.92 Gauss.

  13. Nano-crystalline Ag–PbTe thermoelectric thin films by a multi-target PLD system

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, E., E-mail: emilia.cappelli@ism.cnr.it [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Bellucci, A. [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Dip. Fisica, Un. Roma Sapienza, Piazzale Aldo Moro 2, 00185 Rome (Italy); Medici, L. [CNR-IMAA, Tito Scalo, 85050 Potenza (Italy); Mezzi, A.; Kaciulis, S. [CNR-ISMN, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Fumagalli, F.; Di Fonzo, F. [Center Nano Science Technology @Polimi, I.I.T., Via Pascoli 70/3, 20133 Milano (Italy); Trucchi, D.M. [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy)

    2015-05-01

    Highlights: • Thermoelectric PbTe thin films, with increasing Ag percentage, were deposited by PLD. • Almost stoichiometric PbTe (Ag doped) films were grown, as verified by XPS analysis. • GI-XRD established the formation of cubic PbTe, with nano-metric structure (∼35 nm). • Surface resistivity shows an increase in conductivity, with increasing Ag doping. • From Seebeck values and XPS depth analysis, 10% Ag seems to be the solubility limit. - Abstract: It has been evaluated the ability of ArF pulsed laser ablation to grow nano-crystalline thin films of high temperature PbTe thermoelectric material, and to obtain a uniform and controlled Ag blending, through the entire thickness of the film, using a multi-target system in vacuum. The substrate used was a mirror polished technical alumina slab. The increasing atomic percentage of Ag effect on physical–chemical and electronic properties was evaluated in the range 300–575 K. The stoichiometry and the distribution of the Ag component, over the whole thickness of the samples deposited, have been studied by XPS (X-ray photoelectron spectroscopy) and corresponding depth profiles. The crystallographic structure of the film was analyzed by grazing incidence X-ray diffraction (GI-XRD) system. Scherrer analysis for crystallite size shows the presence of nano-structures, of the order of 30–35 nm. Electrical resistivity of the samples, studied by the four point probe method, as a function of increasing Ag content, shows a typical semi-conductor behavior. From conductivity values, carrier concentration and Seebeck parameter determination, the power factor of deposited films was calculated. Both XPS, Hall mobility and Seebeck analysis seem to indicate a limit value to the Ag solubility of the order of 5%, for thin films of ∼200 nm thickness, deposited at 350 °C. These data resulted to be comparable to theoretical evaluation for thin films but order of magnitude lower than the corresponding bulk materials.

  14. A possibility of enhancing Jc in MgB2 film grown on metallic hastelloy tape with the use of SiC buffer layer

    International Nuclear Information System (INIS)

    Putri, W. B. K.; Kang, B.; Ranot, M.; Lee, J. H.; Kang, W. N.

    2014-01-01

    We have grown MgB 2 on SiC buffer layer by using metallic Hastelloy tape as the substrate. Hastelloy tape was chosen for its potential practical applications, mainly in the power cable industry. SiC buffer layers were deposited on Hastelloy tapes at 400, 500, and 600 degrees C by using a pulsed laser deposition method, and then by using a hybrid physical-chemical vapor deposition technique, MgB 2 films were grown on the three different SiC buffer layers. An enhancement of critical current density values were noticed in the MgB 2 films on SiC/Hastelloy deposited at 500 and 600 degrees C. From the surface analysis, smaller and denser grains of MgB 2 tapes are likely to cause this enhancement. This result infers that the addition of SiC buffer layers may contribute to the improvement of superconducting properties of MgB 2 tapes.

  15. EDX and ion beam treatment studies of filamentary in situ MgB2 wires with Ti barrier

    International Nuclear Information System (INIS)

    Rosova, A.; Kovac, P.; Husek, I.; Kopera, L.

    2011-01-01

    Highlights: → SiC-doped MgB 2 wires with Ti barrier showed good Jc in magnetic field. → Explanation why the Ti barrier fits to SiC-doped MgB 2 filaments. → Ti barrier getters Si from SiC-doped filaments and improve their properties. → Si accumulated in an inner layer of Ti barrier protects filaments from Cu diffusion. → Ion beam treatment helps to discover microstructure of complicated systems. - Abstract: In situ SiC-doped filamentary MgB 2 wires (with the diameter of 0.860 and 0.375 mm) with Cu stabilization separated by Ti barrier layers supported by outer SS sheath and annealed at 800 deg. C/0.5 h have been studied by combination of EDX analysis and ion beam selective etching. It was found that several Ti-Cu inter-metallic compounds were created by Cu-Ti interdiffusion and thus the barrier protection against Cu penetration into the superconducting filaments is limited. We showed an advantage of Ti use as the barrier material in our wires. Ti getters silicon out from the superconducting filament, what purges superconducting MgB 2 from Si and creates an additional Si-rich layer in inner part of Ti barrier which prevents Cu diffusion more effectively.

  16. Automatic development of normal zone in composite MgB2/CuNi wires with different diameters

    Science.gov (United States)

    Jokinen, A.; Kajikawa, K.; Takahashi, M.; Okada, M.

    2010-06-01

    One of the promising applications with superconducting technology for hydrogen utilization is a sensor with a magnesium-diboride (MgB2) superconductor to detect the position of boundary between the liquid hydrogen and the evaporated gas stored in a Dewar vessel. In our previous experiment for the level sensor, the normal zone has been automatically developed and therefore any energy input with the heater has not been required for normal operation. Although the physical mechanism for such a property of the MgB2 wire has not been clarified yet, the deliberate application might lead to the realization of a simpler superconducting level sensor without heater system. In the present study, the automatic development of normal zone with increasing a transport current is evaluated for samples consisting of three kinds of MgB2 wires with CuNi sheath and different diameters immersed in liquid helium. The influences of the repeats of current excitation and heat cycle on the normal zone development are discussed experimentally. The aim of this paper is to confirm the suitability of MgB2 wire in a heater free level sensor application. This could lead to even more optimized design of the liquid hydrogen level sensor and the removal of extra heater input.

  17. Magnetic properties and critical current density of bulk MgB2 polycrystalline with Bi-2212 addition

    International Nuclear Information System (INIS)

    Shen, T M; Li, G; Zhu, X T; Cheng, C H; Zhao, Y

    2005-01-01

    Bulk samples of MgB 2 were prepared with 0, 3, 5, and 10 wt% Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) particles, added using a simple solid-state reaction route in order to investigate the effect of inclusions of a material with higher T c than the superconducting matrix. The density, diamagnetic signal, and critical current density, J c , of the samples change significantly with the doping level. It is found that J c is significantly enhanced by the Bi-2212 addition. Microstructural analysis indicates that a small amount of Bi-2212 is decomposed into Cu 2 O and other impurity phases while a significant amount of unreacted Bi-2212 particles remains in MgB 2 matrix, and these act as effective pinning centres for vortices. The enhanced pinning force is mainly attributable to these highly dispersed inclusions inserted in the MgB 2 grains. Despite the effectiveness of the high-T c inclusions in increasing superconducting critical currents in our experiment, our results seem to demonstrate the superiority of attractive centres over repulsive ones. A pinning mechanism is proposed to account for the contribution of this type of pinning centre in MgB 2 superconductors. (rapid communication)

  18. Fabrication of extruded wire of MgB2/Al composite material and its superconducting property and microstructure

    Czech Academy of Sciences Publication Activity Database

    Matsuda, K.; Nishimura, K.; Ikeno, S.; Mori, K.; Aoyama, S.; Yabumoto, Y.; Hishinuma, Y.; Müllerová, Ilona; Frank, Luděk; Yurchenko, V. V.; Johansen, T. H.

    2008-01-01

    Roč. 97, - (2008), 012230:1-6 E-ISSN 1742-6596. [European Conference on Applied Superconductivity /8./ - EUCAS 2007. Brussels, 16.09.2007-20.09.2007] Institutional research plan: CEZ:AV0Z20650511 Keywords : MgB2/Al composite * superconductors * electron microscopy Subject RIV: JI - Composite Materials

  19. Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Amin-Ahmadi, B., E-mail: behnam.amin-ahmadi@ua.ac.be [Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Idrissi, H. [Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Galceran, M. [Université Libre de Bruxelles, Matters and Materials Department, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Colla, M.S. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve (Belgium); Raskin, J.P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Université catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Pardoen, T. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve (Belgium); Godet, S. [Université Libre de Bruxelles, Matters and Materials Department, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Schryvers, D. [Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2013-07-31

    The influence of the deposition rate on the formation of growth twins in nanocrystalline Pd films deposited by electron beam evaporation is investigated using transmission electron microscopy. Statistical measurements prove that twin boundary (TB) density and volume fraction of grains containing twins increase with increasing deposition rate. A clear increase of the dislocation density was observed for the highest deposition rate of 5 Å/s, caused by the increase of the internal stress building up during deposition. Based on crystallographic orientation indexation using transmission electron microscopy, it can be concluded that a {111} crystallographic texture increases with increasing deposition rate even though the {101} crystallographic texture remains dominant. Most of the TBs are fully coherent without any residual dislocations. However, for the highest deposition rate (5 Å/s), the coherency of the TBs decreases significantly as a result of the interaction of lattice dislocations emitted during deposition with the growth TBs. The analysis of the grain boundary character of different Pd films shows that an increasing fraction of high angle grain boundaries with misorientation angles around 55–65° leads to a higher potential for twin formation. - Highlights: • Fraction of twinned grains and twin boundary density increase with deposition rate. • Clear increase of dislocation density was observed for the highest deposition rate. • A moderate increase of the mean grain size with increase of deposition rate is found. • For the highest deposition rate, the twin boundaries lose their coherency. • Fraction of high angle grain boundary (55–65) increases with deposition rate.

  20. Nanocrystalline Pt-doped TiO2 thin films prepared by spray pyrolysis ...

    Indian Academy of Sciences (India)

    Administrator

    Spray pyrolysis techniques; TiO2 thin films; hydrogen gas response. 1. Introduction ... tion is necessary during the production, storage and use of hydrogen. It is also ..... ient, and 'green': it may be used to large scale industrial application for ...

  1. Preparation of Nanocrystalline Titania Thin Films by Using Pure and Water-modified Supercritical Carbon Dioxide.

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Cerhová, Marie; Dřínek, Vladislav; Daniš, S.; Matějová, L.

    2016-01-01

    Roč. 117, NOV 2016 (2016), s. 289-296 ISSN 0896-8446 R&D Projects: GA ČR GA14-23274S Institutional support: RVO:67985858 Keywords : titania thin films * supercritical carbon dioxide * crystallization Subject RIV: CA - Inorganic Chemistry Impact factor: 2.991, year: 2016

  2. Synthesis of nanocrystalline TiO 2 thin films by liquid phase ...

    Indian Academy of Sciences (India)

    A transparent, high purity titanium dioxide thin film composed of densely packed nanometer sized grains has been successfully deposited on a glass substrate at 30°C from an aqueous solution of TiO2–HF with the addition of boric acid as a scavenger by liquid phase deposition technique. From X-ray diffraction ...

  3. Annealing induced low coercivity, nanocrystalline Co–Fe–Si thin films exhibiting inverse cosine angular variation

    Energy Technology Data Exchange (ETDEWEB)

    Hysen, T., E-mail: hysenthomas@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Harthi, Salim; Al-Omari, I.A. [Department of Physics, Sultan Qaboos University, PC 123, Muscat, Sultanate of Oman (Oman); Geetha, P.; Lisha, R. [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Ramanujan, R.V. [School of Materials Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Sakthikumar, D. [Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama (Japan); Anantharaman, M.R., E-mail: mra@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India)

    2013-09-15

    Co–Fe–Si based films exhibit high magnetic moments and are highly sought after for applications like soft under layers in perpendicular recording media to magneto-electro-mechanical sensor applications. In this work the effect of annealing on structural, morphological and magnetic properties of Co–Fe–Si thin films was investigated. Compositional analysis using X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a native oxide surface layer consisting of oxides of Co, Fe and Si on the surface. The morphology of the as deposited films shows mound like structures conforming to the Volmer–Weber growth model. Nanocrystallisation of amorphous films upon annealing was observed by glancing angle X-ray diffraction and transmission electron microscopy. The evolution of magnetic properties with annealing is explained using the Herzer model. Vibrating sample magnetometry measurements carried out at various angles from 0° to 90° to the applied magnetic field were employed to study the angular variation of coercivity. The angular variation fits the modified Kondorsky model. Interestingly, the coercivity evolution with annealing deduced from magneto-optical Kerr effect studies indicates a reverse trend compared to magetisation observed in the bulk. This can be attributed to a domain wall pinning at native oxide layer on the surface of thin films. The evolution of surface magnetic properties is correlated with morphology evolution probed using atomic force microscopy. The morphology as well as the presence of the native oxide layer dictates the surface magnetic properties and this is corroborated by the apparent difference in the bulk and surface magnetic properties. - Highlights: • The relation between grain size and magnetic properties in Co–Fe–Si thin films obeys the Herzer model. • Angular variation of coercivity is found to obey the Kondorsky model. • The MOKE measurements provide further evidence for domain wall pinning.

  4. Nanocrystalline Cobalt-doped SnO2 Thin Film: A Sensitive Cigarette Smoke Sensor

    Directory of Open Access Journals (Sweden)

    Patil Shriram B.

    2011-11-01

    Full Text Available This article discusses a sensitive cigarette smoke sensor based on Cobalt doped Tin oxide (Co-SnO2 thin films deposited on glass substrate by a conventional Spray Pyrolysis technique. The Co-SnO2 thin films have been characterized by X-ray Diffraction (XRD, Scanning Electron Microscopy (SEM and Energy Dispersive X-ray Spectroscopy (EDAX. The XRD spectrum shows polycrystalline nature of the film with a mixed phase comprising of SnO2 and Co3O4. The SEM image depicts uniform granular morphology covering total substrate surface. The compositional analysis derived using EDAX confirmed presence of Co in addition to Sn and O in the film. Cigarette smoke sensing characteristics of the Co-SnO2 thin film have been studied under atmospheric condition at different temperatures and smoke concentration levels. The sensing parameters such as sensitivity, response time and recovery time are observed to be temperature dependent, exhibiting better results at 330 oC.

  5. Effect of different sol concentrations on the properties of nanocrystalline ZnO thin films grown on FTO substrates by sol-gel spin-coating

    International Nuclear Information System (INIS)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Kim, Dongwan; Park, Minju; Kim, Haeun; Lee, Wookbin; Leem, Jaeyoung; Kim, Jongsu; Kim, Jin Soo

    2014-01-01

    Nanocrystalline ZnO thin films grown on fluorine-doped tinoxide (FTO) substrates were fabricated using the spin-coating method. The structural and the optical properties of the ZnO thin films prepared using different sol concentrations were investigated by using field-emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), photoluminescence (PL) measurements, and ultraviolet-visible (UV-vis) spectrometry. The surface morphology of the ZnO thin films, as observed in the SEM images, exhibited a mountain-chain structure. XRD results indicated that the thin films were preferentially orientated along the direction of the c-axis and that the grain size of the ZnO thin films increased with increasing sol concentration. The PL spectra showed a strong ultraviolet emission peak at 3.22 eV and a broad orange emission peak at 2.0 eV. The intensities of deep-level emission (DLE) gradually increased with increasing sol concentration from 0.4 to 1.0 M. The transmittance spectra of the ZnO thin films showed that the ZnO thin films were transparent (∼85%) in the visible region and exhibited sharp absorption edges at 375 nm. Thus, The Urbach energy of ZnO thin films decreased with increasing sol concentration.

  6. Effects of magnetic flux densities on microstructure evolution and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe_3_0Ni_7_0 thin films

    International Nuclear Information System (INIS)

    Cao, Yongze; Wang, Qiang; Li, Guojian; Ma, Yonghui; Du, Jiaojiao; He, Jicheng

    2015-01-01

    Nanocrystalline Fe_3_0Ni_7_0 (in atomic %) thin films were prepared by molecular-beam-vapor deposition in magnetic fields with different magnetic flux densities. The microstructure evolution of these thin films was studied by atomic force microscopy, transmission electron microscopy, and high resolution transmission electron microscopy; the soft magnetic properties were examined by vibrating sample magnetometer at room temperature. The results show that all our Fe_3_0Ni_7_0 thin films feature an fcc single-phase structure. With increasing magnetic flux density, surface roughness, average particle size and grain size of the thin films decreased, and the short-range ordered clusters (embryos) of thin films increased. Additionally, the magnetic anisotropy in the in-plane and the coercive forces of the thin films gradually reduced with increasing magnetic flux density. - Highlights: • With increasing magnetic flux density, average particle size of films decreased. • With increasing magnetic flux density, surface roughness of thin films decreased. • With increasing magnetic flux density, short-range ordered clusters increased. • With increasing magnetic flux density, the coercive forces of thin films reduced. • With increasing magnetic flux density, soft magnetic properties are improved.

  7. Characteristics of RuO2-SnO2 nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    International Nuclear Information System (INIS)

    Kim, Han-Ki; Choi, Sun-Hee; Yoon, Young Soo; Chang, Sung-Yong; Ok, Young-Woo; Seong, Tae-Yeon

    2005-01-01

    The characteristics of RuO 2 -SnO 2 nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O 2 /Ar ambient have RuO 2 -SnO 2 nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film in 0.5 M H 2 SO 4 liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm 2 μm. This suggests that the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor

  8. Effects of graphite doping on critical current density and microstructure of MgB2 bulks by an improved Mg-diffusion method

    International Nuclear Information System (INIS)

    Pan, X.F.; Zhao, Y.; Feng, Y.; Yang, Y.; Cheng, C.H.

    2008-01-01

    abstract: A series of graphite-doped MgB 2 bulks with high density have been successfully prepared by an improved Mg-diffusion method in ambient pressure. The effects of graphite doping on lattice parameters, T c , J c and microstructure of MgB 2 have been investigated. The results show that compared to the nano-C-doped or CNTs-doped MgB 2 , C is not easy to substitute B in graphite-doped MgB 2 . However, at the same C content, the graphite-doped MgB 2 has a higher J c . At 10 K and self-field, the J c for MgB 1.985 C 0.015 reaches 0.58 MA/cm 2 . For the MgB 1.945 C 0.055 , at 5 K, 7 T and 10 K, 6 T the J c achieves 10,000 A/cm 2 which is two orders of magnitude higher than that for the undoped sample. In addition to improving electron scattering and intergranular connectivity, the unreacted graphite in the graphite-doped MgB 2 is proposed to be responsible to the excellent J c properties of MgB 2 in high fields, due to depressed grain growth and enhanced grain boundary flux pinning

  9. Development of nanocrystalline Indium Tin Oxide (ITO) thin films using RF-magnetron sputtering

    International Nuclear Information System (INIS)

    Tamilselvan, N.; Thilakan, Periyasamy

    2013-01-01

    ITO thin films have been deposited on glass substrate using RF Magnetron puttering Technique from the pre-synthesized ITO target. The sputtering parameters such as the deposition temperature, gas composition and the RF power densities were varied. X-ray diffraction studies revealed that the crystallization of the films is mostly depending on the RF power density and substrate temperature. Crystallized films exhibited a change in the preferred orientation from (111) plane to (100) plane at specific conditions such as high RF power density and high oxygen mixing to the plasma. Change in the film microstructure and a shift in the optical bandgap were recorded from the SEM and UV-Visible measurements respectively. (author)

  10. Influence of γ-irradiation on the optical properties of nanocrystalline tin phthalocyanine thin films

    International Nuclear Information System (INIS)

    El-Nahass, M.M.; Atta, A.A.; El-Shazly, E.A.A.; Faidah, A.S.; Hendi, A.A.

    2009-01-01

    SnPc in powder and thin film forms were found to be polycrystalline with monoclinic lattice. The morphological and structural properties of the obtained SnPc films were characterized from electron scanning micrographs and X-ray diffraction patterns. In the γ-irradiated film the formed agglomeration increased the crystallite size. The refractive index, n, and the absorption index, k, were obtained from spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range 200-2500 nm. γ-Irradiation films shifted the transmission edge toward lower wavelength and increase the optical energy gap value. According to the analysis of dispersion curves, the dielectric constants and dispersion parameters were obtained. The absorption analysis performed indicated indirect allowed electronic transitions and the optical energy band gap 2.84 and 2.63 eV for the as-deposited and the γ-irradiated films, respectively.

  11. Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces

    International Nuclear Information System (INIS)

    Biro, D.; Barna, P.B.; Szekely, L.; Geszti, O.; Hattori, T.; Devenyi, A.

    2008-01-01

    The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS 2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS 2 targets were used in the sputter sources. The depositions were performed in an Ar-N 2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on Si wafers covered by thermally grown SiO 2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS 2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS 2 multilayer system followed this waviness

  12. Multi-gap superconductivity in MgB2: Magneto-Raman spectroscopy

    International Nuclear Information System (INIS)

    Blumberg, G.; Mialitsin, A.; Dennis, B.S.; Zhigadlo, N.D.; Karpinski, J.

    2007-01-01

    Electronic Raman scattering studies on MgB 2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm -1 and two coherence peaks at 109 and 78 cm -1 which we identify as the superconducting gaps in π- and σ-bands and as the Leggett's collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E 2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E 2g mode. We observe ∼2.5% hardening of the E 2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization

  13. Transport relaxation measurements and glassy state effects in superconducting MgB2

    International Nuclear Information System (INIS)

    Olutas, M.; Yetis, H.; Altinkok, A.; Kilic, A.; Kilic, K.

    2008-01-01

    Time dependent effects in superconducting MgB 2 have been studied systematically for the first time by transport relaxation measurements (V-t curves) as a function of transport current (I), temperature (T) and external magnetic field (H). At very low dissipation levels (below ∼1 μV), it was observed that the sample voltage grows up smoothly in time by exhibiting the details of initial stage of relaxation process. At high dissipation levels, steady state corresponding to constant flow rate is maintained within a very short time and monitoring of details of flux dynamic evolving along sample becomes difficult on long time scales. Another interesting behavior is the appearance of voltage peak when the transport current was reduced to a finite value. After peak, it was observed that the sample voltage relaxes smoothly by leveling off within a very short time. The evolution of V-t curves suggests that formation of resistive flow channels along sample develops easily, which is quite similar to that of obtained for the superconducting ceramic samples whose grain boundaries are improved. Time dependent effects were also observed in magnetovoltage measurements (V-H curves) as the field sweep rate (dH/dt) varies. The observations were interpreted mainly in terms of flux trapping in grains

  14. Development of ex situ processed MgB2 wires and their applications to magnets

    International Nuclear Information System (INIS)

    Braccini, Valeria; Nardelli, Davide; Penco, Roberto; Grasso, Giovanni

    2007-01-01

    In spite of the relatively short time dedicated to the development of magnesium diboride conductors since its discovery in early 2001, a substantial improvement was soon achieved in their manufacture and use. Unlike many others HTS and LTS materials, the MgB 2 conductor processing is more open to a number of improvements and modifications that help in making it more attractive for several DC and AC applications. Many kilometres of conductors were already produced throughout the world and it is now possible to start seriously thinking about a systematic industrial production of this material, as it is already possible to purchase it in reasonable lengths on the free market. These remarkable lengths of conductor were also wound in coils and their performance continuously improved in the past years. Here we will present a review of the recent results and a perspective for the future development of this 'new' superconductor, starting from the optimisation of the precursor powders needed to improve the magnetic field behaviour of the tapes, to the conductor development, i.e. the production of multifilamentary Cu-stabilized tapes in lengths up to 1.78 km, to the realization of the first large-scale application devices such as MRI magnets and fault current limiters

  15. Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition.

    Science.gov (United States)

    Jiang, Xishun; Zhang, Miao; Shi, Shiwei; He, Gang; Song, Xueping; Sun, Zhaoqi

    2014-01-01

    Cuprous oxide (Cu2O) thin films were prepared by using electrodeposition technique at different applied potentials (-0.1, -0.3, -0.5, -0.7, and -0.9 V) and were annealed in vacuum at a temperature of 100°C for 1 h. Microstructure and optical properties of these films have been investigated by X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), UV-visible (vis) spectrophotometer, and fluorescence spectrophotometer. The morphology of these films varies obviously at different applied potentials. Analyses from these characterizations have confirmed that these films are composed of regular, well-faceted, polyhedral crystallites. UV-vis absorption spectra measurements have shown apparent shift in optical band gap from 1.69 to 2.03 eV as the applied potential becomes more cathodic. The emission of FL spectra at 603 nm may be assigned as the near band-edge emission.

  16. Synthesis of Nanocrystalline ZnS Thin Films via Spray Pyrolysis for Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    F. Rahman

    2013-02-01

    Full Text Available ZnS thin films were deposited on the glass substrates at a temperature of 350 °C by a low cost spray pyrolysis technique and annealed at 450 °C and 550 °C in a closed furnace. The as-deposited and annealed films were characterized by Energy Dispersive X-ray, X-ray Diffraction and UV-VIS spectrophotometer and dc conductivity by four probe van der Pauw method. The X-ray diffraction spectra of as-deposited films showed amorphous nature and after annealing at 450 °C and 550 °C the films were found polycrystalline nature with wurtzite hexagonal structure. The optical transmission spectra suggest that the fundamental absorption edge in the films is formed by the direct allowed transition. The optical band gap was decreased from 3.75 to 2.5 eV when the as-deposited films were annealed. The existing results of electrical conductivity and the activation energy reveal the semi-conducting behaviour of the samples.

  17. Development and fundamental study on a superconducting induction/synchronous motor incorporated with MgB2 cage windings

    International Nuclear Information System (INIS)

    Nakamura, T; Yamada, Y; Nishio, H; Sugano, M; Amemiya, N; Kajikawa, K; Wakuda, T; Takahashi, M; Okada, M

    2012-01-01

    In this paper, a fundamental study of the rotating characteristics of a induction/synchronous motor by use of superconducting MgB 2 cage windings is carried out based on analysis and experiment. Current transport properties of the produced monofilamentary MgB 2 wires are firstly characterized, and then utilized for the determination of the current carrying capacity of the rotor bars. Then, the motor model is designed and fabricated with the aid of conventional (copper) stator windings. We successfully observe the synchronous rotation of the fabricated motor at a rotation speed range from 300 to 1800 rpm. We can also realize an almost constant torque versus speed curve, and this characteristic is explained from the steep take-off of the electric field versus the current density curve, based on the nonlinear electrical equivalent circuit. These results are promising for the practical applications of a high efficiency motor for a liquid hydrogen circulation pump.

  18. Mechanical properties and bending strain effect on Cu-Ni sheathed MgB2 superconducting tape

    International Nuclear Information System (INIS)

    Fu, Minyi; Chen, Jiangxing; Jiao, Zhengkuan; Kumakura, H.; Togano, K.; Ding, Liren; Zhang, Yong; Chen, Zhiyou; Han, Hanmin; Chen, Jinglin

    2004-01-01

    The Young's modulus (E) of Cu-Ni sheathed MgB 2 monofilament tape was measured using electric method. It is about 8.05 x 10 10 Pa, the same order of Cu and its alloys. We found that the lower E value of the MgB 2 component seemed to relate to the lower filament density. The benefits of pre-compression in filaments were discussed in terms of improving stress distribution in the wires and tapes during winding and operation of superconducting magnets. The magnetic field dependence of J c was investigated on the sample subjected to various strain levels through bending with different radii at 4.2 K

  19. Critical current density improvements in MgB2 superconducting bulk samples by K2CO3 additions  

    DEFF Research Database (Denmark)

    Grivel, J.-C.

    2018-01-01

    MgB2 bulk samples with potassium carbonate doping were made by means of reaction of elemental Mg and B powders mixed with various amounts of K2CO3. The Tc of the superconducting phase as well as its a-axis parameter were decreased as a result of carbon doping. Potassium escaped the samples during...... reaction. The critical current density of MgB2 was improved both in self field and under applied magnetic field for T ≤ 30 K, with optimum results for 1 mol% K2CO3 addition. The normalized flux pinning force (f(b)) shows that the flux pinning mechanism at low field is similar for all samples, following...

  20. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    Science.gov (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  1. MgB2 and Mg1-xAlxB2 single crystals: high pressure growth and physical properties

    International Nuclear Information System (INIS)

    Karpinski, J.; Kazakov, S.M.; Jun, J.; Zhigadlo, N.D.; Angst, M.; Puzniak, R.; Wisniewski, A.

    2004-01-01

    Single crystals of MgB 2 have been grown with a high pressure cubic anvil technique. They grow via the peritectic decomposition of the MgNB 9 ternary nitride. The crystals are of a size up to 2 x 1 x 0.1 mm 3 with a weight up to 230 μg. Typically they have transition temperatures between 38 and 38.6 K with a width of 0.3-0.5 K. Investigations of the P-T phase diagram prove that the MgB 2 phase is stable at least up to 2190 deg. C at high hydrostatic pressure in the presence of Mg vapor under high pressure. Substitution of aluminum for magnesium in single crystals leads to stepwise decrease of T c . This indicates a possible appearance of superstructures or phases with different T c 's. The upper critical field decreases with Al doping

  2. First-principles study of the (0001)-MgB2 surface finished in Mg and B

    International Nuclear Information System (INIS)

    Segura, Sully; Martínez, Jairo Arbey Rodríguez; Moreno-Armenta, María Guadalupe

    2014-01-01

    We present a study based on Density Functional Theory (DFT) of the volume and two surfaces (0001) of MgB 2 , one of them terminated in Mg and the other one terminated in B. Each one of the surface was relaxed and their electronic properties were determined. From calculation of the enthalpy of formation we found that the Mg-terminated surface is energetically favored. The bands seem to present a formation similar to the Dirac's cone as that are presented in graphene, but in MgB 2 is above of the Fermi level. In the three cases, volume and the two surfaces, the behaviour is boron-metallic, because there are strong presence of B orbital's in the neighborhood of the Ferm level

  3. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-01-01

    Undoped and carbon-doped magnesium diboride (MgB 2 ) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB 2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp 3 -hybridized carbon radicals were detected. A strong reduction in the critical temperature T c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra

  4. Nanoparticles of the superconductor MgB2: structural characterization and in situ study of synthesis kinetics

    International Nuclear Information System (INIS)

    Cui Chunxiang; Liu Debao; Shen Yutian; Sun Jinbin; Meng Fanbin; Wang Ru; Liu Shuangjin; Greer, A.L.; Chen, S.K.; Glowacki, B.A.

    2004-01-01

    Single-crystal MgB 2 nanoparticles, with diameters in the range 20-100 nm, have been synthesized in situ in the sample chamber of an X-ray diffractometer. The reaction kinetics are analyzed and related to the atomic-level structure of the particles as observed by high-resolution electron microscopy. Synthesis conditions may have a significant influence on microstructure and superconducting properties

  5. Dynamic vortex-phase diagram of MgB2 single crystals near the peak-effect region

    International Nuclear Information System (INIS)

    Kim, Heon-Jung; Lee, Hyun-Sook; Kang, Byeongwon; Chowdhury, P.; Kim, Kyung-Hee; Park, Min-Seok; Lee, Sung-Ik

    2006-01-01

    The dynamic vortex-phase diagram of MgB 2 single crystals has been constructed by using voltage noise characteristics. Between the onset (H on ) and the peak (H p ) magnetic fields, crossovers from a state with large noises to a noise-free state were observed with increasing current while above H p , a reverse behavior was found. We will discuss the dynamic vortex phase diagram and the possible origins of the crossovers

  6. The effect of copper additions in the synthesis of in situ MgB2 Cu-sheathed wires

    International Nuclear Information System (INIS)

    Woźniak, M.; Hopkins, S.C.; Gajda, D.; Glowacki, B.A.

    2012-01-01

    The powder-in-tube (PIT) technique has been used to fabricate copper-sheathed magnesium diboride (MgB 2 ) wires using an insitu reaction method. The effect of copper powder additions, magnesium-boron molar ratio and heat treatment is studied by SEM, XRD, transport critical current I c (B) and resistivity ρ(T, B) measurements. The results show that addition of copper powder to the core of the wire accelerates the formation of MgB 2 and hence increases its amount and greatly decreases the amount of Mg-Cu intermetallic phases present in the core of the wire after heat treatment. Excess magnesium proved to be effective in compensating for Mg loss due to interdiffusion with the Cu of the wire sheath and resulted in less unreacted boron in the core for wires without added Cu, but seems to oppose the accelerated formation of MgB 2 in Cu added wires. The highest critical current density, 2.8 × 10 4 A cm -2 at 3 T and 4.2 K, was achieved for a wire with a stoichiometric Mg:B ratio and 3 at.% added copper powder heat treated at 700 °C for 5 min.

  7. In-situ synchrotron x-ray study of MgB2 formation when doped by SiC

    Science.gov (United States)

    Abrahamsen, A. B.; Grivel, J.-C.; Andersen, N. H.; Herrmann, M.; Häßler, W.; Birajdar, B.; Eibl, O.; Saksl, K.

    2008-02-01

    We have studied the evolution of the reaction xMg + 2B + ySiC → zMg1-p(B1-qCq)2 + yMg2Si in samples of 1, 2, 5 and 10 wt% SiC doping. We found a coincident formation of MgB2 and Mg2Si, whereas the crystalline part of the SiC nano particles is not reacting at all. Evidence for incorporation of carbon into the MgB2 phase was established from the decrease of the a-axis lattice parameter upon increasing SiC doping. An estimate of the MgB2 lower limit grain size was found to decrease from L100 = 795 Å and L002 = 337 Å at 1 wt% SiC to L100 = 227 Å and L002= 60 Å at 10 wt% SiC. Thus superconductivity might be suppressed at 10 wt% SiC doping due to the grain size approaching the coherence length.

  8. Fabrication and properties of multifilamentary MgB 2 wires by in-situ powder-in-tube process

    Science.gov (United States)

    Wang, Q. Y.; Jiao, G. F.; Liu, G. Q.; Xiong, X. M.; Yan, S. C.; Zhang, P. X.; Sulpice, A.; Mossang, E.; Feng, Y.; Yan, G.

    2010-11-01

    We have fabricated the long TiC-doped MgB2 wires with 6 filaments by in-situ powder-in-tube method using Nb as the barrier and copper as the stabilizer. To improve the strength of wires, the Nb-core was used as the central filament. The transport engineering critical current density (Jce) of the samples sintered at different temperature were measured, which reaches 2.5 × 104 A/cm2 at 4.2 K, 5 T. 100 m MgB2 wires with different diameter were wound into coils and the transport critical current (Ic) of the coil were measured at 30 K in self-field. The Jce value 100 m coil achieves 1.1 × 104 A/cm2 in 1.2 mm wire. The reasons leading to the enhancement of high field Jce were discussed. The results show a good potential to fabricate high performance MgB2 wires and tapes at ambient pressure on an industrial scale.

  9. The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2

    Science.gov (United States)

    Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph

    The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed

  10. Behaviour of filamentary MgB2 wires subjected to tensile stress at 4.2 K

    International Nuclear Information System (INIS)

    Kováč, P; Kopera, L; Melišek, T; Hušek, I; Rindfleisch, M; Haessler, W

    2013-01-01

    Different filamentary MgB 2 wires have been subjected to tensile stress at 4.2 K. Stress–strain and critical current versus stress and strain characteristics of wires differing by filament architecture, sheath materials, deformation and heat treatment were measured and compared. It was found that the linear increase of critical current due to the pre-compression effect (ranging from 5% up to ≈20%) is affected by thermal expansion and the strength of used metallic sheaths. The values of irreversible strain ε irr and stress σ irr depend dominantly on the applied outer sheath and its final heat treatment conditions. Consequently, the strain-tolerance of MgB 2 wires is influenced by several parameters and it is difficult to see a clear relation between I c (ε) and σ(ε) characteristics. The lowest ε irr was measured for Monel sheathed wires (0.3–0.6%), medium for GlidCop ® sheath (0.48–0.6%), and the highest ε irr = 0.6–0.9% were obtained for MgB 2 wires reinforced by the stainless steel 316L annealed at temperature between 600 and 800 ° C. The highest ε irr = 0.9% and σ irr = 900 MPa were measured for the work-hardened steel, which is not considerably softened by the heat treatment at 600 ° C/2.5 h. (paper)

  11. Refinement of Crystalline Boron and the Superconducting Properties of MgB2 by Attrition Ball Milling

    International Nuclear Information System (INIS)

    Lee, J. H.; Shin, S. Y.; Park, H. W.; Jun, B. H.; Kim, C. J.

    2008-01-01

    We report refinement of crystalline boron by an attrition ball milling system and the superconducting properties of the MgB 2 pellets prepared from the refined boron. In this work, we have conducted the ball milling with only crystalline boron powder, in order to improve homogeneity and control the grain size of the MgB 2 that is formed from it. We observed that the crystalline responses in the ball-milled boron became broader and weaker when the ball-milling time was further increased. On the other hand, the B 2 O 3 peak became stronger in the powders, resulting in an increase in the amount of MgO within the MgB 2 volume. The main reason for this is a greater oxygen uptake. From the perspective of the superconducting properties, however, the sample prepared from boron that was ball milled for 5 hours showed an improvement of critical current density (J c ), even with increased MgO phase, under an external magnetic field at 5 and 20 K.

  12. Superconductivity and thermal property of MgB2/aluminum matrix composite materials fabricated by 3-dimensional penetration casting method

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Saeki, Tomoaki; Nishimura, Katsuhiko; Ikeno, Susumu; Mori, Katsunori; Yabumoto, Yukinobu

    2006-01-01

    Superconductive MgB 2 /Al composite material with low and high volume fractions of particles were fabricated by our special pre-packing technique and 3-dimensional penetration casting method. The composite material showed homogeneous distribution of MgB 2 particles in the Al-matrix with neither any aggregation of particles nor defects such as cracks or cavities. The critical temperature of superconducting transition (T C ) was determined by electrical resistivity and magnetization to be about 37-39 K. Specific heat measurements further supported these T C findings. The Meissner effect was also verified in the liquid He, in which a piece of the composite floated above a permanent magnet. The thermal conductivity of the MgB 2 /Al composite material was about 25 W/K·m at 30K, a value much higher than those found for NbTi or Nb 3 Sn superconducting wires normally used in practice, which are 0.5 and 0.2 W/K·m at 10 K, respectively. A billet of the superconducting material was successfully hot-extruded, forming a rod. The same as the billet sample, the rod showed an onset T C of electrical resistivity of 39 K. (author)

  13. Pulsed laser-deposited nanocrystalline GdB{sub 6} thin films on W and Re as field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Suryawanshi, Sachin R.; More, Mahendra A. [Savitribai Phule Pune University, Department of Physics, Centre for Advanced Studies in Materials Science and Condensed Matter Physics, Pune (India); Singh, Anil K.; Sinha, Sucharita [Bhabha Atomic Research Centre, Laser and Plasma Technology Division, Trombay, Mumbai (India); Phase, Deodatta M. [UGC-DAE Consortium for Scientific Research Indore Centre, Indore (India); Late, Dattatray J. [CSIR-National Chemical Laboratory, Physical and Materials Chemistry Division, Pune (India)

    2016-10-15

    Gadolinium hexaboride (GdB{sub 6}) nanocrystalline thin films were grown on tungsten (W), rhenium (Re) tips and foil substrates using optimized pulsed laser deposition (PLD) technique. The X-ray diffraction analysis reveals formation of pure, crystalline cubic phase of GdB{sub 6} on W and Re substrates, under the prevailing PLD conditions. The field emission (FE) studies of GdB{sub 6}/W and GdB{sub 6}/Re emitters were performed in a planar diode configuration at the base pressure ∝10{sup -8} mbar. The GdB{sub 6}/W and GdB{sub 6}/Re tip emitters deliver high emission current densities of ∝1.4 and 0.811 mA/cm{sup 2} at an applied field of ∝6.0 and 7.0 V/μm, respectively. The Fowler-Nordheim (F-N) plots were found to be nearly linear showing metallic nature of the emitters. The noticeably high values of field enhancement factor (β) estimated using the slopes of the F-N plots indicate that the PLD GdB{sub 6} coating on W and Re substrates comprises of high-aspect-ratio nanostructures. Interestingly, the GdB{sub 6}/W and GdB{sub 6}/Re planar emitters exhibit excellent current stability at the preset values over a long-term operation, as compared to the tip emitters. Furthermore, the values of workfunction of the GdB{sub 6}/W and GdB6/Re emitters, experimentally measured using ultraviolet photoelectron spectroscopy, are found to be same, ∝1.6 ± 0.1 eV. Despite possessing same workfunction value, the FE characteristics of the GdB{sub 6}/W emitter are markedly different from that of GdB{sub 6}/Re emitter, which can be attributed to the growth of GdB{sub 6} films on W and Re substrates. (orig.)

  14. Atomic layer deposited nanocrystalline tungsten carbides thin films as a metal gate and diffusion barrier for Cu metallization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Beom; Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan-si 712-749 (Korea, Republic of); Han, Won Seok [UP Chemical 576, Chilgoedong, Pyeongtaek-si, Gyeonggi-do 459-050 (Korea, Republic of); Lee, Do-Joong [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2016-07-15

    Tungsten carbides (WC{sub x}) thin films were deposited on thermally grown SiO{sub 2} substrates by atomic layer deposition (ALD) using a fluorine- and nitrogen-free W metallorganic precursor, tungsten tris(3-hexyne) carbonyl [W(CO)(CH{sub 3}CH{sub 2}C ≡ CCH{sub 2}CH{sub 3}){sub 3}], and N{sub 2} + H{sub 2} plasma as the reactant at deposition temperatures between 150 and 350 °C. The present ALD-WC{sub x} system showed an ALD temperature window between 200 and 250 °C, where the growth rate was independent of the deposition temperature. Typical ALD characteristics, such as self-limited film growth and a linear dependency of the film grown on the number of ALD cycles, were observed, with a growth rate of 0.052 nm/cycle at a deposition temperature of 250 °C. The ALD-WC{sub x} films formed a nanocrystalline structure with grains, ∼2 nm in size, which consisted of hexagonal W{sub 2}C, WC, and nonstoichiometric cubic β-WC{sub 1−x} phase. Under typical deposition conditions at 250 °C, an ALD-WC{sub x} film with a resistivity of ∼510 μΩ cm was deposited and the resistivity of the ALD-WC{sub x} film could be reduced even further to ∼285 μΩ cm by further optimizing the reactant pulsing conditions, such as the plasma power. The step coverage of ALD-WC{sub x} film was ∼80% on very small sized and dual trenched structures (bottom width of 15 nm and aspect ratio of ∼6.3). From ultraviolet photoelectron spectroscopy, the work function of the ALD-WC{sub x} film was determined to be 4.63 eV. Finally, the ultrathin (∼5 nm) ALD-WC{sub x} film blocked the diffusion of Cu, even up to 600 °C, which makes it a promising a diffusion barrier material for Cu interconnects.

  15. Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    Science.gov (United States)

    Sugano, Michinaka; Ballarino, Amalia; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2016-02-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young’s modulus of MgB2 filaments in wires with a practical level of critical current. The Young’s moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young’s modulus of the few-micron-thick Nb-Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young’s moduli of the in situ and ex situ MgB2 wires were in the range of 76-97 GPa and no distinct difference depending on the fabrication process was found.

  16. submitter Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    CERN Document Server

    Sugano, Michinaka; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2015-01-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young's modulus of MgB2 filaments in wires with a practical level of critical current. The Young's moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young's modulus of the few-micron-thick Nb–Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young's moduli of the in situ and ex situ MgB2 wires were in the range of 76–97 GPa and no distinct difference depending on the fabrication process was found.

  17. Ex-situ manufacturing of SiC-doped MgB2 used for superconducting wire in medical device applications

    Science.gov (United States)

    Herbirowo, Satrio; Imaduddin, Agung; Sofyan, Nofrijon; Yuwono, Akhmad Herman

    2017-02-01

    Magnesium diboride (MgB2) is a superconductor material with a relatively high critical temperature. Due to its relatively high critical temperature, this material is promising and has the potential to replace Nb3Sn for wire superconducting used in many medical devices. In this work, nanoparticle SiC-doped MgB2 superconducting material has been fabricated through an ex-situ method. The doping of nanoparticle SiC by 10 and 15 wt% was conducted to analyze its effect on specific resistivity of MgB2. The experiment was started by weighing a stoichiometric amount of MgB2 and nanoparticles SiC. Both materials were mixed and grounded for 30 minutes by using an agate mortar. The specimens were then pressed into a 6 mm diameter stainless steel tube, which was then reduced until 3 mm through a wire drawing method. X-ray diffraction analysis was conducted to confirm the phase, whereas the superconductivity of the specimens was analyzed by using resistivity measurement under cryogenic magnetic system. The results indicated that the commercial MgB2 showed a critical temperature of 37.5 K whereas the SiC doped MgB2 has critical temperature of 38.3 K.

  18. Study of the potential of three different MgB2 tapes for application in cylindrical coils operating at 20 K

    International Nuclear Information System (INIS)

    Pitel, J; Kováč, P; Tropeano, M; Grasso, G

    2015-01-01

    The goal of this theoretical study is to illustrate the potential of three different MgB 2 tapes, developed by Columbus Superconductors, for application in cylindrical coils. First, the distribution of critical currents and electric fields of individual turns is compared when the winding of the model coil is made with tapes having different I c (B) and anisotropy values. Second, the influence of the winding geometry on basic parameters of cylindrical coils which consist of a set of pancake coils, such as critical current I cmin , central magnetic field B 0 and stored energy E, is analysed. The winding geometry of the coils, i.e. the outer winding radius and the coil length, with the same inner winding radius, was changed from a disc shape to a long thin solenoid in such a way that the overall tape length was held constant, and considered as a parameter. Finally, the winding cross-section of the coil is optimized with respect to the constant tape length in order to reach the maximum central field. The results of calculations show that for a given overall tape length and inner winding radius there exists only one winding geometry which generates the maximum central field. The overall tape length, as a parameter, is changed in a broad range from 500 m to 10 km. All calculations were performed using the experimental data measured at 20 K while the effect of the anisotropy in the I c (B) characteristic of the short samples is taken into account. (paper)

  19. Preparation of nanocrystalline Ni doped ZnS thin films by ammonia-free chemical bath deposition method and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahraei, Reza, E-mail: r.sahraei@ilam.ac.ir; Darafarin, Soraya

    2014-05-01

    Nanocrystalline Ni doped ZnS thin films were deposited on quartz, silicon, and glass substrates using chemical bath deposition method in a weak acidic solution containing ethylenediamine tetra acetic acid disodium salt (Na{sub 2}EDTA) as a complexing agent for zinc ions and thioacetamide (TAA) as a sulfide source at 80 °C. The films were characterized by energy-dispersive X-ray spectrometer (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible spectrophotometry, and photoluminescence (PL) spectroscopy. UV–vis transmission data showed that the films were transparent in the visible region. The X-ray diffraction analysis showed a cubic zinc blend structure. FE-SEM revealed a homogeneous morphology and dense nanostructures. The PL spectra of the ZnS:Ni films showed two characteristic bands, one broad band centered at 430 and another narrow band at 523 nm. Furthermore, concentration quenching effect on the photoluminescence intensity has been observed. - Highlights: • Nanocrystalline ZnS:Ni thin films were prepared by the chemical bath deposition method. • The size of ZnS:Ni nanocrystals was less than 10 nm showing quantum size effect. • SEM images demonstrated a dense and uniform surface that was free of pinholes. • The deposited films were highly transparent (>70%) in the visible region. • The PL spectra of ZnS:Ni thin films showed two emission peaks at 430 and 523 nm.

  20. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Yashika [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Department of Electronic Science, University of Delhi-South Campus, New Delhi 110021 (India); Arun, P., E-mail: arunp92@physics.du.ac.in [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Naudi, A.A.; Walz, M.V. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Instituto de Física del Litoral (CONICET-UNL), Guemes 3450, 3000 Santa Fe (Argentina)

    2016-08-01

    Tin sulphide nano-crystalline thin films were fabricated on glass and Indium Tin Oxide (ITO) substrates by thermal evaporation method. The crystal structure orientation of the films was found to be dependent on the substrate. Residual stress existed in the films due to these orientations. This stress led to variation in lattice parameter. The nano-crystalline grain size was also found to vary with film thickness. A plot of band-gap with grain size or with lattice parameter showed the existence of a family of curves. This implied that band-gap of SnS films in the preview of the present study depends on two parameters, lattice parameter and grain size. The band-gap relation with grain size is well known in the nano regime. Experimental data fitted well with this relation for the given lattice constants. The manuscript uses theoretical structure calculations for different lattice constants and shows that the experimental data follows the trend. Thus, confirming that the band gap has a two variable dependency. - Highlights: • Tin sulphide films are grown on glass and ITO substrates. • Both substrates give differently oriented films. • The band-gap is found to depend on grain size and lattice parameter. • Using data from literature, E{sub g} is shown to be two parameter function. • Theoretical structure calculations are used to verify results.

  1. Superior critical current density obtained in MgB_2 bulks via employing carbon-coated boron and minor Cu addition

    International Nuclear Information System (INIS)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-01-01

    Highlights: • Usage of carbon-coated boron leads to high level of homogeneous carbon doping. • Cu addition improves MgB_2 grain connectivity, leading to higher J_c at low fields. • Cu addition reduces MgO impurity, also contributing to the improvement of J_c. - Abstract: High performance Cu doped MgB_2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB_2 grains, as well as a high level of homogeneous carbon doping in the MgB_2 samples, which significantly enhance the J_c in both Cu doped and undoped bulks compared to MgB_2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB_2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (J_c) at self fields and low fields (the best values are 7 × 10"5 A/cm"2 at self fields, and 1 × 10"5 A/cm"2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of J_c at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB_2 bulks or wires with excellent J_c on an industrial scale.

  2. Co-current Doping Effect of Nanoscale Carbon and Aluminum Nitride on Critical Current Density and Flux Pinning Properties of Bulk MgB2 Superconductors

    Science.gov (United States)

    Tripathi, D.; Dey, T. K.

    2018-05-01

    The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.

  3. Effect of Various Catalysts on the Stability of Characteristics of Acetone Sensors Based on Thin Nanocrystalline SnO2 Films

    Science.gov (United States)

    Sevastyanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Khludkova, L. S.; Chernikov, E. V.; Davydova, T. A.

    2018-02-01

    The results of studies of electrical and gas sensitive characteristics of acetone sensors based on thin nanocrystalline SnO2 films with various catalysts deposited on the surface (Pt/Pd, Au) and introduced into the volume (Au, Ni, Co) are presented. Films containing impurities of gold and 3d-metals were obtained by the method of magnetron sputtering of mosaic targets. Particular attention was paid to the influence of the longterm tests and humidity level on the properties of sensors. It is shown that the sensors with the deposited dispersed gold layers with Au+Ni and, especially, Au+Co additives introduced into the volume are characterized by the increased stability in the process of testing under prolonged exposure to acetone and also under conditions of varying humidity.

  4. Very high upper critical fields in MgB2 produced by selective tuning of impurity scattering

    International Nuclear Information System (INIS)

    Gurevich, A; Patnaik, S; Braccini, V; Kim, K H; Mielke, C; Song, X; Cooley, L D; Bu, S D; Kim, D M; Choi, J H; Belenky, L J; Giencke, J; Lee, M K; Tian, W; Pan, X Q; Siri, A; Hellstrom, E E; Eom, C B; Larbalestier, D C

    2004-01-01

    We report a significant enhancement of the upper critical field H c2 of different MgB 2 samples alloyed with nonmagnetic impurities. By studying films and bulk polycrystals with different resistivities ρ, we show a clear trend of an increase in H c2 as ρ increases. One particular high resistivity film had a zero-temperature H c2 (0) well above the H c2 values of competing non-cuprate superconductors such as Nb 3 Sn and Nb-Ti. Our high-field transport measurements give record values H c2 perp (0) ∼ 34 T and H c2 par (0) ∼ 49 T for high resistivity films and H c2 (0) ∼ 29 T for untextured bulk polycrystals. The highest H c2 film also exhibits a significant upward curvature of H c2 (T) and a temperature dependence of the anisotropy parameter γ(T)=H c2 par / H c2 opposite to that of single crystals: γ(T) decreases as the temperature decreases, from γ(T c ) ∼ 2 γ(0) ∼ 1.5. This remarkable H c2 enhancement and its anomalous temperature dependence are a consequence of the two-gap superconductivity in MgB 2 , which offers special opportunities for further H c2 increases by tuning of the impurity scattering by selective alloying on Mg and B sites. Our experimental results can be explained by a theory of two-gap superconductivity in the dirty limit. The very high values of H c2 (T) observed suggest that MgB 2 can be made into a versatile, competitive high-field superconductor

  5. Effect of nano-carbon particle doping on the flux pinning properties of MgB2 superconductor

    OpenAIRE

    Soltanian, S.; Horvat, J.; Wang, X. L.; Munroe, P.; Dou, S. X.

    2003-01-01

    Polycrystalline MgB2-xCx samples with x=0.05, 0.1, 0.2, 0.3, 0.4 nano-particle carbon powder were prepared using an in-situ reaction method under well controlled conditions to limit the extent of C substitution. The phases, lattice parameters, microstructures, superconductivity and flux pinning were characterized by XRD, TEM, and magnetic measurements. It was found that both the a-axis lattice parameter and the Tc decreased monotonically with increasing doping level. For the sample doped with...

  6. Mapping flux avalanches in MgB2 films-equivalence between magneto-optical imaging and magnetic measurements

    International Nuclear Information System (INIS)

    Colauto, F; Choi, E M; Lee, J Y; Lee, S I; Yurchenko, V V; Johansen, T H; Ortiz, W A

    2007-01-01

    Vortex avalanches are known to occur in MgB 2 films within a certain range of temperatures and magnetic fields. These events, resulting from a thermomagnetic instability, were first revealed by real-time magneto-optical imaging, which exposed dendritic paths of abrupt flux propagation. This very powerful technique has, however, a practical limitation, since sensors that are currently available cannot be used at high magnetic fields. This letter shows that results obtained using dc magnetometry are in good correspondence with those furnished by magneto-optical imaging, demonstrating that the two techniques can be efficiently used as complementary tools to map vortex avalanches in superconducting films. (rapid communication)

  7. Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor

    Science.gov (United States)

    Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.

    2018-05-01

    The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.

  8. Optimization of the copper addition to the core of in situ Cu-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Woźniak, M; Juda, K L; Hopkins, S C; Glowacki, B A; Gajda, D

    2013-01-01

    Recent results on powder-in-tube in situ Cu-sheathed MgB 2 wires have shown that copper powder additions to the core can accelerate the formation of MgB 2 , increasing its volume fraction and greatly decreasing the amount of Mg–Cu intermetallic phases present in the core after heat treatment. The amount of added copper and heat treatment conditions strongly affect the critical current of the wire and require optimization. To identify the optimum parameters, eight wires with starting core compositions of Mg+2B+xCu with x = 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.12 and 0.15 were prepared with two heating ramp rates and their properties were investigated by SEM, XRD and J c and n-value measurements. The highest J c was found to be for x = 0.09, whereas x = 0.03 resulted in the highest n-value. The results are relatively independent of the heating ramp rate used for heat treatment. (paper)

  9. Large-scale high-resolution scanning Hall probe microscope used for MgB2 filament characterization

    International Nuclear Information System (INIS)

    Cambel, V; Fedor, J; Gregusova, D; Kovac, P; Husek, I

    2005-01-01

    The scanning Hall probe microscope (SHPM) is an important imaging tool used for detailed studies of superconductors in basic science as well as in the industrial sector. It can be used for the studies of losses, current distribution, and effects at grain boundaries. However, only a few SHPMs for magnetic field imaging at temperatures below 77 K have been proposed up to now, most of them designed for small-area (∼10x10 μm 2 ) scanning. We present a large-scale low-temperature SHPM developed for imaging the entire magnetic field in close proximity to magnetic and superconducting samples at 4.2-300 K. The microscope combines a large scanned area and high spatial and magnetic field resolution. The instrument is designed as an insert of standard helium flowing cryostats. The Hall sensor scans an area up to 7 x 25 mm 2 in the whole temperature interval with a spatial resolution better than 5 μm. The presented system is used for the study of ex situ prepared MgB 2 filament. We show that external magnetic field induces local supercurrents in the MgB 2 , from which the critical current can be estimated. Moreover, it indicates the microstructure and space homogeneity of the superconductor

  10. Field cooling of a MgB2 cylinder around a permanent magnet stack: prototype for superconductive magnetic bearing

    International Nuclear Information System (INIS)

    Perini, E; Giunchi, G

    2009-01-01

    The behaviour of bulk superconductors as levitators of permanent magnets (PMs) has been extensively studied for the textured YBCO high-temperature superconductor material, in the temperature range lower than 77 K, obtaining extremely high trapped fields but also experiencing limitations on the mechanical characteristics of the material and on the possibility to produce large objects. Alternatively, bulk MgB 2 , even if it is superconducting at lower temperatures, has fewer mechanical problems, when fully densified, and presents stable magnetization in the temperature range between 10 and 30 K. With the reactive Mg-liquid infiltration technique we have produced dense MgB 2 bulk cylinders of up to 65 mm diameter and 100 mm height. This kind of cylinder can be consider as a prototype of a passive magnetic bearing for flywheels or other rotating electrical machines. We have conductively cooled one of these superconducting cylinders inside a specially constructed cryostat, and the levitation forces and stiffness, with respect to axial movements of various arrangements of the PM, have been measured as a function of the temperature below T c . We verified the very stable characteristics of the induced magnetization after several cycles of relative movements of the PM and the superconducting cylinder.

  11. Effects of carbon concentration and filament number on advanced internal Mg infiltration-processed MgB2 strands

    International Nuclear Information System (INIS)

    Li, G Z; Sumption, M D; Zwayer, J B; Susner, M A; Collings, E W; Rindfleisch, M A; Thong, C J; Tomsic, M J

    2013-01-01

    In this paper we show that an advanced internal Mg infiltration method (AIMI) is effective in producing superconducting wires containing dense MgB 2 layers with high critical current densities. The in-field critical current densities of a series of AIMI-fabricated MgB 2 strands were investigated in terms of C doping levels, heat treatment (HT) time and filament numbers. The highest layer J c for our monofilamentary AIMI strands was 1.5 × 10 5 A cm −2 at 10 T, 4.2 K, when the C concentration was 3 mol% and the strand was heat-treated at 675 ° C for 4 h. Transport critical currents were also measured at 4.2 K on short samples and 1 m segments of 18-filament C doped AIMI strands. The layer J c s reached 4.3 × 10 5 A cm −2 at 5 T and 7.1 × 10 4 A cm −2 at 10 T, twice as high as those of the best powder-in-tube strands. The analysis of these results indicates that the AIMI strands, possessing both high layer J c s and engineering J e s after further optimization, have strong potential for commercial applications. (paper)

  12. Critical Current and Stability of MgB$_2$ Twisted-Pair DC Cable Assembly Cooled by Helium Gas

    CERN Document Server

    AUTHOR|(CDS)2069632; Ballarino, Amalia; Yang, Yifeng; Young, Edward Andrew; Bailey, Wendell; Beduz, Carlo

    2013-01-01

    Long length superconducting cables/bus-bars cooled by cryogenic gases such as helium operating over a wider temperature range are a challenging but exciting technical development prospects, with applications ranging from super-grid transmission to future accelerator systems. With limited existing knowledge and previous experiences, the cryogenic stability and quench protection of such cables are crucial research areas because the heat transfer is reduced and temperature gradient increased compared to liquid cryogen cooled cables. V-I measurements on gas-cooled cables over a significant length are an essential step towards a fully cryogenic stabilized cable with adequate quench protection. Prototype twisted-pair cables using high-temperature superconductor and MgB2 tapes have been under development at CERN within the FP7 EuCARD project. Experimental studies have been carried out on a 5-m-long multiple MgB$_2$ cable assembly at different temperatures between 20 and 30 K. The subcables of the assembly showed sim...

  13. Experimental testing and modelling of a resistive type superconducting fault current limiter using MgB2 wire

    International Nuclear Information System (INIS)

    Smith, A C; Pei, X; Oliver, A; Husband, M; Rindfleisch, M

    2012-01-01

    A prototype resistive superconducting fault current limiter (SFCL) was developed using single-strand round magnesium diboride (MgB 2 ) wire. The MgB 2 wire was wound with an interleaved arrangement to minimize coil inductance and provide adequate inter-turn voltage withstand capability. The temperature profile from 30 to 40 K and frequency profile from 10 to 100 Hz at 25 K were tested and reported. The quench properties of the prototype coil were tested using a high current test circuit. The fault current was limited by the prototype coil within the first quarter-cycle. The prototype coil demonstrated reliable and repeatable current limiting properties and was able to withstand a potential peak current of 372 A for one second without any degradation of performance. A three-strand SFCL coil was investigated and demonstrated scaled-up current capacity. An analytical model to predict the behaviour of the prototype single-strand SFCL coil was developed using an adiabatic boundary condition on the outer surface of the wire. The predicted fault current using the analytical model showed very good correlation with the experimental test results. The analytical model and a finite element thermal model were used to predict the temperature rise of the wire during a fault. (paper)

  14. The elastic properties, generalized stacking fault energy and dissociated dislocations in MgB2 under different pressure

    KAUST Repository

    Feng, Huifang

    2013-05-31

    The 〈112̄0〉 perfect dislocation in MgB2 is suggested to dissociate into two partial dislocations in an energy favorable way 〈112̄0〉 → 1/2 〈112̄0〉 + SF + 1/2 〈112̄0〉. This dissociation style is a correction of the previous dissociation 〈1000〉 → 1/3 〈11̄00〉 SF + 1/3 〈 2100〉proposed by Zhu et al. to model the partial dislocations and stacking fault observed by transmission electron microscopy. The latter dissociation results in a maximal stacking fault energy rather than a minimal one according to the generalized stacking fault energy calculated from first-principles methods. Furthermore, the elastic constants and anisotropy of MgB2 under different pressure are investigated. The core structures and mobilities of the 〈112̄0〉 dissociated dislocations are studied within the modified Peierls-Nabarro (P-N) dislocation theory. The variational method is used to solve the modified P-N dislocation equation and the Peierls stress is also determined under different pressure. High pressure effects on elastic anisotropy, core structure and Peierls stress are also presented. © 2013 Springer Science+Business Media New York.

  15. Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0T full body MRI systems

    Science.gov (United States)

    Baig, Tanvir; Al Amin, Abdullah; Deissler, Robert J; Sabri, Laith; Poole, Charles; Brown, Robert W; Tomsic, Michael; Doll, David; Rindfleisch, Matthew; Peng, Xuan; Mendris, Robert; Akkus, Ozan; Sumption, Michael; Martens, Michael

    2017-01-01

    Conceptual designs of 1.5 and 3.0 T full-body magnetic resonance imaging (MRI) magnets using conduction cooled MgB2 superconductor are presented. The sizes, locations, and number of turns in the eight coil bundles are determined using optimization methods that minimize the amount of superconducting wire and produce magnetic fields with an inhomogeneity of less than 10 ppm over a 45 cm diameter spherical volume. MgB2 superconducting wire is assessed in terms of the transport, thermal, and mechanical properties for these magnet designs. Careful calculations of the normal zone propagation velocity and minimum quench energies provide support for the necessity of active quench protection instead of passive protection for medium temperature superconductors such as MgB2. A new ‘active’ protection scheme for medium Tc based MRI magnets is presented and simulations demonstrate that the magnet can be protected. Recent progress on persistent joints for multifilamentary MgB2 wire is presented. Finite difference calculations of the quench propagation and temperature rise during a quench conclude that active intervention is needed to reduce the temperature rise in the coil bundles and prevent damage to the superconductor. Comprehensive multiphysics and multiscale analytical and finite element analysis of the mechanical stress and strain in the MgB2 wire and epoxy for these designs are presented for the first time. From mechanical and thermal analysis of our designs we conclude there would be no damage to such a magnet during the manufacturing or operating stages, and that the magnet would survive various quench scenarios. This comprehensive set of magnet design considerations and analyses demonstrate the overall viability of 1.5 and 3.0 T MgB2 magnet designs. PMID:29170604

  16. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    Science.gov (United States)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  17. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    Science.gov (United States)

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO{sub 2} structure

    Energy Technology Data Exchange (ETDEWEB)

    Poghossian, A. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany)], E-mail: a.poghossian@fz-juelich.de; Abouzar, M.H.; Razavi, A.; Baecker, M. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany); Bijnens, N. [Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Williams, O.A.; Haenen, K. [Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Division IMOMEC, IMEC vzw., Diepenbeek (Belgium); Moritz, W. [Humboldt University Berlin, Berlin (Germany); Wagner, P. [Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Schoening, M.J. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany)

    2009-10-30

    A capacitive field-effect EDIS (electrolyte-diamond-insulator-semiconductor) sensor with improved pH and penicillin sensitivity has been realised using a nanocrystalline-diamond (NCD) film as sensitive gate material. The NCD growth process on SiO{sub 2} as well as an additional surface treatment in oxidising medium have been optimised to provide high pH-sensitive, non-porous O-terminated films without damage of the underlying SiO{sub 2} layer. The surface morphology of O-terminated NCD thin films and the layer structure of EDIS sensors have been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. To establish the relative coverage of the surface functional groups generated by the oxidation of NCD surfaces, X-ray photoelectron spectroscopy analysis was carried out. The hydrophilicity of NCD thin films has been studied by water contact-angle measurements. A nearly Nernstian pH sensitivity of 54-57 mV/pH has been observed for O-terminated NCD films treated in an oxidising boiling mixture for 80 min and in oxygen plasma. The high pH-sensitive properties of O-terminated NCD have been used to develop an EDIS-based penicillin biosensor. A freshly prepared penicillin biosensor possesses a high sensitivity of 85 mV/decade in the concentration range of 0.1-2.5 mM penicillin G. The lower detection limit is 5 {mu}M.

  19. Synthesis of Nanocrystalline SnOx (x = 1–2 Thin Film Using a Chemical Bath Deposition Method with Improved Deposition Time, Temperature and pH

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2011-09-01

    Full Text Available Nanocrystalline SnOx (x = 1–2 thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light.

  20. Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure

    International Nuclear Information System (INIS)

    Poghossian, A.; Abouzar, M.H.; Razavi, A.; Baecker, M.; Bijnens, N.; Williams, O.A.; Haenen, K.; Moritz, W.; Wagner, P.; Schoening, M.J.

    2009-01-01

    A capacitive field-effect EDIS (electrolyte-diamond-insulator-semiconductor) sensor with improved pH and penicillin sensitivity has been realised using a nanocrystalline-diamond (NCD) film as sensitive gate material. The NCD growth process on SiO 2 as well as an additional surface treatment in oxidising medium have been optimised to provide high pH-sensitive, non-porous O-terminated films without damage of the underlying SiO 2 layer. The surface morphology of O-terminated NCD thin films and the layer structure of EDIS sensors have been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. To establish the relative coverage of the surface functional groups generated by the oxidation of NCD surfaces, X-ray photoelectron spectroscopy analysis was carried out. The hydrophilicity of NCD thin films has been studied by water contact-angle measurements. A nearly Nernstian pH sensitivity of 54-57 mV/pH has been observed for O-terminated NCD films treated in an oxidising boiling mixture for 80 min and in oxygen plasma. The high pH-sensitive properties of O-terminated NCD have been used to develop an EDIS-based penicillin biosensor. A freshly prepared penicillin biosensor possesses a high sensitivity of 85 mV/decade in the concentration range of 0.1-2.5 mM penicillin G. The lower detection limit is 5 μM.

  1. Growth of nanocrystalline silicon thin film with layer-by-layer technique for fast photo-detecting applications

    International Nuclear Information System (INIS)

    Lin, C.-Y.; Fang, Y.-K.; Chen, S.-F.; Lin, P.-C.; Lin, C.-S.; Chou, T.-H; Hwang, J.S.; Lin, K.I.

    2006-01-01

    High mobility nanocrystalline silicon (nc-Si) films with layer-by-layer technique for fast photo-detecting applications were studied. The structure and morphology of films were studied by means of XRD, micro-Raman scattering, SEM and AFM. The Hall mobility and absorption properties have been investigated and found they were seriously affected by the number of layers in growing, i.e., with increasing of layer number, Hall mobility increased but absorption coefficient decreased. The optimum layer number of nc-Si films for fast near-IR photo-detecting is 7 with film thickness of 1400 nm, while that for fast visible photo-detecting is 17 with film thickness of 3400 nm

  2. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  3. Effect of sorbic acid doping on flux pinning in bulk MgB2 with the percolation model

    International Nuclear Information System (INIS)

    Yang, Y.; Cheng, C.H.; Wang, L.; Sun, H.H.; Zhao, Y.

    2010-01-01

    In this paper, we study the doping effect of sorbic acid (C 6 H 8 O 2 ), from 0 to 20 wt.% of the total MgB 2 , on critical temperature (T c ), critical current density (J c ), irreversibility field (H irr ) and crystalline structure. The XRD patterns of samples show a slightly decrease in a-axis lattice parameter for doped samples, due to the partial substitution of carbon at boron site. On the other hand, we investigate the influence of doping on the behavior of flux pinning and J c (B) in the framework of percolation theory and it is found that the J c (B) behavior could be well fitted in high field region. The two key parameters, anisotropy and percolation threshold, play very important roles. It is believed that the enhancement of J c is due to the reduction of anisotropy in high field region.

  4. Ripple Field AC Losses in 10-MW Wind Turbine Generators With a MgB2 Superconducting Field Winding

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Magnusson, Niklas

    2016-01-01

    Superconducting (SC) synchronous generators are proposed as a promising candidate for 10-20-MW direct-drive wind turbines because they can have low weights and small sizes. A common way of designing an SC machine is to use SC wires with high current-carrying capability in the dc field winding...... and the ac armature winding is made with copper conductors. In such generators, the dc field winding is exposed to ac magnetic field ripples due to space harmonics from the armature. In generator design phases, the ac loss caused by these ripple fields needs to be evaluated to avoid local overheating...... and an excessive cooling budget. To determine the applicability of different design solutions in terms of ac losses, this paper estimates the ac loss level of 10-MW wind generator designs employing a MgB2 SC field winding. The effects on ac losses are compared between nonmagnetic and ferromagnetic teeth...

  5. Enhancement of the irreversibility field in bulk MgB2 by TiO2 nanoparticle addition

    DEFF Research Database (Denmark)

    Xu, G.J.; Grivel, Jean-Claude; Abrahamsen, A.B.

    2004-01-01

    MgB2 samples doped with TiO2 nanoparticles were prepared and the effect of TiO2 addition on the superconducting transition temperature (T-c), irreversibility field (H-irr) and critical current density (J(c)) were investigated. It is found that the hexagonal lattice parameters a and c decrease...... with TiO2 doping. Tc decreases gradually from 38.2 to 37.8 K as the TiO2 content increases from 0 to 15 wt%. The H-irr increases at 20 K from 4.3 to 4.9 T as the TiO2 content increases from 0 to 10 wt%, and at the same temperature J(c) increases from 450 to 4250 A/cm(2) at 4.2 T. (C) 2004 Published...

  6. The road to magnesium diboride thin films, Josephson junctions and SQUIDs

    International Nuclear Information System (INIS)

    Brinkman, Alexander; Mijatovic, Dragana; Hilgenkamp, Hans; Rijnders, Guus; Oomen, Ingrid; Veldhuis, Dick; Roesthuis, Frank; Rogalla, Horst; Blank, Dave H A

    2003-01-01

    The remarkably high critical temperature at which magnesium diboride (MgB 2 ) undergoes transition to the superconducting state, T c ∼ 40 K, has aroused great interest and has encouraged many groups to explore the properties and application potential of this novel superconductor. For many electronic applications and further basic studies, the availability of superconducting thin films is of great importance. Several groups have succeeded in fabricating superconducting MgB 2 films. An overview of the deposition techniques for MgB 2 thin film growth will be given, with a special focus on the in situ two-step process. Although, meanwhile, many problems to obtain suitable films have been solved, such as oxygen impurities and magnesium volatility, the question of how single-phase epitaxial films can be grown still remains. The possibility of growing single-crystalline epitaxial films will be discussed from the deposition conditions' point of view as well as substrate choice. Necessary conditions are discussed and possible routes are reviewed. The applicability of MgB 2 in superconducting electronic devices depends on the possibility of making well-controlled, i.e., reproducible and stable, Josephson junctions. The first attempts to make MgB 2 -MgO-MgB 2 ramp-type junctions and SQUIDs from MgB 2 nanobridges are discussed

  7. Stress/strain characteristics of Cu alloy sheath in situ processed MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Kasaba, Koichi; Shoji, Yoshitaka

    2005-01-01

    The mechanical properties of copper and copper alloy (Cu-Zr, Cu-Be and Cu-Cr) sheath in situ PIT-processed MgB 2 superconducting wires were studied at room temperature (RT) and 4.2 K. The effects of stress-strain on the critical current (I c ) of the wires have also been studied at 4.2 K and in magnetic fields up to 5 T. It has been clarified that alloying the Cu sheath significantly increases the yield and flow stresses of the wires at both RT and 4.2 K. The 0.5% flow stresses of the Cu alloy sheath wire were 147-237 MPa, whereas that of Cu was 55 MPa. At RT, serration corresponding to multiple cracking was observed around a strain of 0.4% and the stress-strain curves saturated beyond that point. The strain dependence of I c prior to the critical strain (ε irr ) was different depending on the magnetic field; being almost constant at 2 T and increasing with strain at 5 T. The I c decreased beyond ε irr , which is much larger for Cu alloy sheath wires as compared to Cu sheath wire. This is due to the difference in the residual compressive strain in the MgB 2 core during cooling from the heat-treatment temperature to 4.2 K, which is determined through relaxation by yielding in the sheath materials. The transverse compression tests revealed that the I c of the Cu alloy sheath wire did not degrade up to 314 MPa, which is also higher than that of Cu sheath wire. (author)

  8. Estimation of hysteretic losses for MgB2 tapes under the operating conditions of a generator

    International Nuclear Information System (INIS)

    Vargas-Llanos, Carlos Roberto; Zermeño, Víctor M R; Grilli, Francesco; Sanz, Santiago; Trillaud, Frederic

    2016-01-01

    Hysteretic losses in the MgB 2 wound superconducting coils of a 550 kW synchronous hybrid scaled generator were estimated as part of the European project SUPRAPOWER led by the Spanish Fundación Tecnalia Research and Innovation. Particular interest was given to the losses caused by the magnetic flux ripples in the rotor coils originating from the conventional stator during nominal operation. To compute these losses, a 2D finite element analysis was conducted and Maxwell’s equations written in the H-formulation were solved considering the nonlinear material properties of the conductor materials. The modeled tapes are made of multiple MgB 2 filaments embedded in a Ni matrix and soldered to a high purity copper strip and insulated with Dacron braid. Three geometrical models of single tape cross sections of decreasing complexity were studied: (1) the first model reproduced closely the actual cross section obtained from tape micrographs. (2) The second model was obtained from the computed elasto-plastic deformation of a round Ni wire. (3) The third model was based on a simplified cross section with the superconducting filaments bundled in a single elliptical bulky structure. The last geometry allowed the validation of the modeling technique by comparing numerical losses with results from well-established analytical expressions. Additionally, the following cases of filament transpositions of the multi-filamentary tape were studied: no transposition, partial and full transposition; thereby improving understanding of the relevance of the tape fabrication process on the magnitude of the determination of ac losses. Finally, choosing the right level of geometrical detail, the following operational regimes of the machine and its impact on individual superconducting tape losses in the rotor were studied: bias-dc current, ramping current under ramping background field and magnetic flux ripples under dc background current and field. (paper)

  9. Estimation of hysteretic losses for MgB2 tapes under the operating conditions of a generator

    Science.gov (United States)

    Vargas-Llanos, Carlos Roberto; Zermeño, Víctor M. R.; Sanz, Santiago; Trillaud, Frederic; Grilli, Francesco

    2016-03-01

    Hysteretic losses in the MgB2 wound superconducting coils of a 550 kW synchronous hybrid scaled generator were estimated as part of the European project SUPRAPOWER led by the Spanish Fundación Tecnalia Research & Innovation. Particular interest was given to the losses caused by the magnetic flux ripples in the rotor coils originating from the conventional stator during nominal operation. To compute these losses, a 2D finite element analysis was conducted and Maxwell’s equations written in the H-formulation were solved considering the nonlinear material properties of the conductor materials. The modeled tapes are made of multiple MgB2 filaments embedded in a Ni matrix and soldered to a high purity copper strip and insulated with Dacron braid. Three geometrical models of single tape cross sections of decreasing complexity were studied: (1) the first model reproduced closely the actual cross section obtained from tape micrographs. (2) The second model was obtained from the computed elasto-plastic deformation of a round Ni wire. (3) The third model was based on a simplified cross section with the superconducting filaments bundled in a single elliptical bulky structure. The last geometry allowed the validation of the modeling technique by comparing numerical losses with results from well-established analytical expressions. Additionally, the following cases of filament transpositions of the multi-filamentary tape were studied: no transposition, partial and full transposition; thereby improving understanding of the relevance of the tape fabrication process on the magnitude of the determination of ac losses. Finally, choosing the right level of geometrical detail, the following operational regimes of the machine and its impact on individual superconducting tape losses in the rotor were studied: bias-dc current, ramping current under ramping background field and magnetic flux ripples under dc background current and field.

  10. Influence of the cooling rate on the main factors affecting current-carrying ability in pure and SiC-doped MgB2 superconductors

    International Nuclear Information System (INIS)

    Shcherbakova, O V; Pan, A V; Soltanian, S; Dou, S X; Wexler, D

    2007-01-01

    We have systematically studied and compared the effect of cooling rate on microstructure, critical current density, upper critical field and irreversibility field in pure and 10 wt% SiC-added MgB 2 superconductors. The sintering process was carried out on the samples at a temperature of 750 deg. C for 1 h followed by quenching or cooling to room temperature in 0.3 h (2433 deg. C h -1 ), 14 h (52 deg. C h -1 ) and 25 h (30 deg. C h -1 ). Changes in the microstructure due to variations in cooling rate have been studied with the help of scanning and transmission electron microscopy. Correlations between microstructure and superconducting properties have been observed, identified and explained for both pure and SiC-added MgB 2 samples. Modifications to the pinning environment and grain boundary transparency are considered to be responsible for variations in the current-carrying ability. The dominant pinning on grain boundaries in the pure MgB 2 samples and on nano-inclusions (inducing accompanying defects) in the SiC-doped samples is clearly distinguished. On the basis of our experimental results, we have concluded that the cooling rate can be an important parameter influencing the superconducting properties of MgB 2 samples

  11. Numerical simulation of quench protection for a 1.5 T persistent mode MgB2 conduction-cooled MRI magnet

    Science.gov (United States)

    Deissler, Robert J.; Baig, Tanvir; Poole, Charles; Amin, Abdullah; Doll, David; Tomsic, Michael; Martens, Michael

    2017-02-01

    The active quench protection of a 1.5 T MgB2 conduction-cooled MRI magnet operating in persistent current mode is considered. An active quench protection system relies on the detection of the resistive voltage developed in the magnet, which is used to trigger the external energizing of quench heaters located on the surfaces of all ten coil bundles. A numerical integration of the heat equation is used to determine the development of the temperature profile and the maximum temperature in the coil at the origin, or ‘hot spot’, of the quench. Both n-value of the superconductor and magnetoresistance of the wire are included in the simulations. An MgB2 wire manufactured by Hyper Tech Research, Inc. was used as the basis to model the wire for the simulations. With the proposed active quench protection system, the maximum temperature was limited to 200 K or less, which is considered low enough to prevent damage to the magnet. By substituting Glidcop for the Monel in the wire sheath or by increasing the thermal conductivity of the insulation, the margin for safe operation was further increased, the maximum temperature decreasing by more than 40 K. The strain on the MgB2 filaments is calculated using ANSYS, verifying that the stress and strain limits in the MgB2 superconductor and epoxy insulation are not exceeded.

  12. Transport properties and exponential n-values of Fe/MgB2 tapes with various MgB2 particle sizes

    International Nuclear Information System (INIS)

    Lezza, P.; Abaecherli, V.; Clayton, N.; Senatore, C.; Uglietti, D.; Suo, H.L.; Fluekiger, R.

    2004-01-01

    Fe/MgB 2 tapes have been prepared starting with pre-reacted binary MgB 2 powders. As shown by resistive and inductive measurements, the reduction of particle size to a few microns by ball milling has little influence on B c2 , while the superconducting properties of the individual MgB 2 grains are essentially unchanged. Reducing the particle size causes an enhancement of B irr from 14 to 16 T, while J c has considerably increased at high fields, its slope J c (B) being reduced. At 4.2 K, values of 5.3 x 10 4 and 1.2 x 10 3 A/cm 2 were measured at 3.5 and 10 T, respectively, suggesting a dominant role of the conditions at the grain interfaces. A systematic variation of these conditions at the interfaces is undertaken in order to determine the limit of transport properties for Fe/MgB 2 tapes. The addition of 5% Mg to MgB 2 powder was found to affect neither J c nor B c2 . For the tapes with the highest J c values, very high exponential n factors were measured: n=148, 89 and 17 at 3.5, 5 and 10 T, respectively and measurements of critical current versus applied strain have been performed. The mechanism leading to high transport critical current densities of filamentary Fe/MgB 2 tapes based on MgB 2 particles is discussed

  13. Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques

    International Nuclear Information System (INIS)

    Chaki, Sunil H.; Deshpande, M.P.; Tailor, Jiten P.

    2014-01-01

    CuS thin films were synthesized by chemical bath deposition and dip coating techniques at ambient temperature. The energy dispersive analysis of X-rays of the thin films confirmed that both the as synthesized thin films are stoichiometric. The X-ray diffraction of the chemical bath deposited and dip coating deposited thin films showed that the films possess hexagonal structure having lattice parameters, a = b = 3.79 A and c = 16.34 A. The crystallite sizes determined from the X-ray diffraction data using Scherrer's formula for the chemical bath deposition and dip coating deposition thin films came out to be nearly 11 nm and 13 nm, respectively. The optical microscopy of the as deposited thin films surfaces showed that the substrates are well covered in both the deposited films. The scanning electron microscopy of the thin films clearly showed that in chemical bath deposited thin films the grain size varies from few μm to nm, while in dip coating deposited films the grain size ranges in nm. The optical bandgap determined from the optical absorbance spectrum analysis showed, chemical bath deposited thin films possess direct bandgap of 2.2 eV and indirect bandgap of 1.8 eV. In the case of dip coating deposited thin films, the direct bandgap is 2.5 eV and indirect bandgap is 1.9 eV. The d.c. electrical resistivity variation with temperature for both the deposited films showed that the resistivity decreases with temperature thus confirming the semiconducting nature. The thermoelectric power variations with temperature and the room temperature Hall Effect study of both the synthesized CuS thin films showed them to be of p-type conductivity. The obtained results are discussed in details. - Highlights: • CuS thin films were synthesized by chemical bath deposition and dip coating techniques. • The films possessed hexagonal structure. • The optical absorption showed that the films had direct and indirect bandgap. • Study of electrical transport properties

  14. Nanocrystalline Pd:NiFe{sub 2}O{sub 4} thin films: A selective ethanol gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita, E-mail: smb.agc@gmail.com

    2016-10-15

    In this work, Pd:NiFe{sub 2}O{sub 4} thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe{sub 2}O{sub 4} thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe{sub 2}O{sub 4} nanoparticle thin film were fabricated. • Pd incorporation in NiFe{sub 2}O{sub 4} matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe{sub 2}O{sub 4} thin film sensor displays excellent long–term stability.

  15. Influence of particle size of Mg powder on the microstructure and critical currents of in situ powder-in-tube processed MgB_2 wires

    International Nuclear Information System (INIS)

    Kumakura, Hiroaki; Ye, Shujun; Matsumoto, Akiyoshi; Nitta, Ryuji

    2016-01-01

    We fabricated in situ powder-in-tube(PIT) MgB_2 wires using three kinds of Mg powders with particle size of ∼45 μm, ∼150 μm and 212∼600 μm. Mg particles were elongated to filamentary structure in the wires during cold drawing process. Especially, long Mg filamentary structure was obtained for large Mg particle size of 212∼600 μm. Critical current density, J_c, increased with increasing Mg particle size for 1 mm diameter wires. This is due to the development of filamentary structure of high density MgB_2 superconducting layer along the wires. This MgB_2 structure is similar to that of the internal Mg diffusion (IMD) processed MgB_2 wires. However, J_c of the wires fabricated with 212∼600 μm Mg particle size decreased and the scattering of J_c increased with decreasing wire diameter, while the J_c of the wires with ∼45 μm Mg particle was almost independent of the wire diameter. The cross sectional area reduction of the Mg particles during the wire drawing is smaller than that of the wire. When using large size Mg particle, the number of Mg filaments in the wire cross section is small. These two facts statistically lead to the larger scattering of Mg areal fraction in the wire cross section with proceeding of wire drawing process, resulting in smaller volume fraction of MgB_2 in the wire and lower J_c with larger scattering along the wire. SiC nano powder addition is effective in increasing J_c for all Mg particle sizes. (author)

  16. Ball-milling and AlB2 addition effects on the hydrogen sorption properties of the CaH2 + MgB2 system

    International Nuclear Information System (INIS)

    Schiavo, B.; Girella, A.; Agresti, F.; Capurso, G.; Milanese, C.

    2011-01-01

    Research highlights: → Calcium hydride + magnesium-aluminum borides as candidates for hydrogen storage. → Long time ball milling improves hydrogen sorption kinetics of the CaH 2 +MgB 2 system. → Coexistence of MgB 2 and AlB 2 does not improve hydrogen sorption performances. → Total substitution of MgB 2 with AlB 2 improves the system kinetics and reversibility. → Below 400 deg. C almost the full hydrogen capacity of the CaH 2 + AlB 2 system is reached. - Abstract: Among the borohydrides proposed for solid state hydrogen storage, Ca(BH 4 ) 2 is particularly interesting because of its favourable thermodynamics and relatively cheap price. Composite systems, where other species are present in addition to the borohydride, show some advantages in hydrogen sorption properties with respect to the borohydrides alone, despite a reduction of the theoretical storage capacity. We have investigated the milling time influence on the sorption properties of the CaH 2 + MgB 2 system from which Ca(BH 4 ) 2 and MgH 2 can be synthesized by hydrogen absorption process. Manometric and calorimetric measurements showed better kinetics for long time milled samples. We found that the total substitution of MgB 2 with AlB 2 in the starting material can improve the sorption properties significantly, while the co-existence of both magnesium and aluminum borides in the starting mixture did not cause any improvement. Rietveld refinements of the X-ray powder diffraction spectra were used to confirm the hypothesized reactions.

  17. Critical current density in MgB2 bulk samples after co-doping with nano-SiC and poly zinc acrylate complexes

    International Nuclear Information System (INIS)

    Zhang, Z.; Suo, H.; Ma, L.; Zhang, T.; Liu, M.; Zhou, M.

    2011-01-01

    SiC and poly zinc acrylate complexes co-doped MgB 2 bulk has been synthesized. Co-doping can cause higher carbon substitutions and the second phase particles. Co-doping can further increase the Jc value of MgB 2 bulk on the base of the SiC doping. The co-doped MgB 2 bulk samples have been synthesized using an in situ reaction processing. The additives is 8 wt.% SiC nano powders and 10 wt.% [(CH 2 CHCOO) 2 Zn] n poly zinc acrylate complexes (PZA). A systematic study was performed on samples doped with SiC or PZA and samples co-doped with both of them. The effects of doping and co-doping on phase formation, microstructure, and the variation of lattice parameters were studied. The amount of substituted carbon, the critical temperature (T c ) and the critical current density (J c ) were determined. The calculated lattice parameters show the decrease of the a-axis, while no obvious change was detected for c-axis parameter in co-doped samples. This indicates that the carbon was substituted by boron in MgB 2 . The amount of substituted carbon for the co-doped sample shows an enhancement compared to that of the both single doped samples. The co-doped samples perform the highest J c values, which reaches 3.3 x 10 4 A/cm 2 at 5 K and 7 T. It is shown that co-doping with SiC and organic compound is an effective way to further improve the superconducting properties of MgB 2 .

  18. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gábor Y. Molnár

    2016-03-01

    Full Text Available Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd. It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself.

  19. An Investigation of Nanocrystalline and Electrochemically Grown Cu2ZnSnS4 Thin Film Using Redox Couples of Different Band Offset

    Directory of Open Access Journals (Sweden)

    Prashant K. Sarswat

    2013-01-01

    Full Text Available Alternative electrolytes were examined to evaluate photoelectrochemical response of Cu2ZnSnS4 films at different biasing potential. Selections of the electrolytes were made on the basis of relative Fermi level position and standard reduction potential. Our search was focused on some cost-effective electrolytes, which can produce good photocurrent during illumination. Thin films were grown on FTO substrate using ink of nanocrystalline Cu2ZnSnS4 particles as well as electrodeposition-elevated temperature sulfurization approach. Our investigations suggest that photoelectrochemical response is mostly due to conduction band-mediated process. Surface topography and phase purity were investigated after each electrochemical test, in order to evaluate film quality and reactivity of electrolytes. Raman examination of film and nanocrystals was conducted for comparison. The difference in photocurrent response was explained due to various parameters such as change in charge transfer rate constant, presence of dangling bond, difference in concentration of adsorbed species in electrode.

  20. Properties of Resistive Hydrogen Sensors as a Function of Additives of 3 D-Metals Introduced in the Volume of Thin Nanocrystalline SnO2 Films

    Science.gov (United States)

    Sevast'yanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Sergeichenko, N. V.; Chernikov, E. V.; Almaev, A. V.; Kushnarev, B. O.

    2017-11-01

    Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors' characteristics increases.

  1. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  2. The Effect of Polyvinylpyrrolidone on the Optical Properties of the Ni-Doped ZnS Nanocrystalline Thin Films Synthesized by Chemical Method

    Directory of Open Access Journals (Sweden)

    Tran Minh Thi

    2012-01-01

    Full Text Available We report the optical properties of polyvinyl-pyrrolidone (PVP and the influence of PVP concentration on the photoluminescence spectra of the PVP (PL coated ZnS : Ni nanocrystalline thin films synthesized by the wet chemical method and spin-coating. PL spectra of samples were clearly showed that the 520 nm luminescence peak position of samples remains unchanged, but their peak intensity changes with PVP concentration. The PVP polymer is emissive with peak maximum at 394 nm with the exciting wavelength of 325 nm. The photoluminescence exciting (PLE spectrum of PVP recorded at 394 nm emission shows peak maximum at 332 nm. This excitation band is attributed to the electronic transitions in PVP molecular orbitals. The absorption edges of the PVP-coated ZnS : Ni0.3% samples that were shifted towards shorter wavelength with increasing of PVP concentration can be explained by the absorption of PVP in range of 350 nm to 400 nm. While the PVP coating does not affect the microstructure of ZnS : Ni nanomaterial, the analyzed results of the PL, PLE, and time-resolved PL spectra and luminescence decay curves of the PVP and PVP-coated ZnS : Ni samples allow to explain the energy transition process from surface PVP molecules to the Ni2+ centers that occurs via hot ZnS.

  3. On X-ray diffraction study of microstructure of ZnO thin nanocrystalline films with strong preferred grain orientation

    Czech Academy of Sciences Publication Activity Database

    Kužel, R.; Čížek, J.; Novotný, Michal

    44A, č. 1 (2013), s. 45-57 ISSN 1073-5623 R&D Projects: GA ČR(CZ) GAP108/11/0958 Institutional support: RVO:68378271 Keywords : zinc oxide thin film * X-ray diffraction * Mg0 * fused silica Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.730, year: 2013

  4. The Effect of Type and Concentration of Modifier in Supercritical Carbon Dioxide on Crystallization of Nanocrystalline Titania Thin Films.

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Cerhová, Marie; Jandová, Věra; Dřínek, Vladislav; Daniš, E.; Matějová, L.

    2018-01-01

    Roč. 133, MAR 2018 (2018), s. 211-217 ISSN 0896-8446 R&D Projects: GA ČR GA14-23274S Institutional support: RVO:67985858 Keywords : titania thin film * supercritical carbon dioxide * crystallization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.991, year: 2016

  5. Effects of Post- Heat Treatment of Nanocrystalline ZnO Thin Films deposited on Zn-Deposited FTO Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of)

    2015-10-15

    The effects of heat-treatment temperature on the structural and optical properties of ZnO thin films were investigated with field-effect scanning electron microscopy (SEM), X-ray diffraction analysis, and photoluminescence (PL) measurements. The ZnO thin films were grown on Zn-deposited fluorine-doped tin oxide substrates by sol-gel spin coating. The SEM images of the samples showed that their surfaces had a mountain-chain-like structure. The film annealed at 400 ℃ had the highest degree of alignment along the c-axis, and its residual stress was close to zero. The PL spectra of the ZnO thin films consisted of sharp near-band-edge emissions (NBE) and broad deep-level emissions (DLE) in the visible range. The DLE peaks exhibited a green-to-red shift with an increase in the temperature. The highest INBE/IDLE ratio was observed in the film annealed at 400 ℃. Thus, the optimal temperature for growing high-quality ZnO thin films on Zn-deposited FTO substrates is 400 ℃.

  6. Structural, optical and magnetic properties of nanocrystalline Co-doped ZnO thin films grown by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Kayani, Zohra Nazir; Shah, Iqra; Zulfiqar, Bareera; Sabah, Aneeqa [Lahore College for Women Univ., Lahore (Pakistan); Riaz, Saira; Naseem, Shahzad [Univ. of the Punjab, Lahore (Pakistan). Centre of Excellence in Solid State Physics

    2018-04-01

    Cobalt-doped ZnO thin films have been deposited using a sol-gel route by changing the number of coats on the substrate from 6 to 18. This project deals with various film thicknesses by increasing the number of deposited coats. The effect of thickness on structural, magnetic, surface morphology and optical properties of Co-doped ZnO thin film was studied. The crystal structure of the Co-doped ZnO films was investigated by X-ray diffraction. The films have polycrystalline wurtzite hexagonal structures. A Co{sup 2+} ion takes the place of a Zn{sup 2+} ion in the lattice without creating any distortion in its hexagonal wurtzite structure. An examination of the optical transmission spectra showed that the energy band gap of the Co-doped ZnO films increased from 3.87 to 3.97 eV with an increase in the number of coatings on the substrate. Ferromagnetic behaviour was confirmed by measurements using a vibrating sample magnetometer. The surface morphology of thin films was assessed by scanning electron microscope. The grain size on the surface of thin films increased with an increase in the number of coats.

  7. Critical state instability in Nb-clad MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Beilin, V.; Felner, I.; Tsindlekht, M.I.; Dul'kin, E.; Mojaev, E.; Roth, M.

    2008-01-01

    Magnetization hysteresis loops of Cu/MgB 2 , Nb/MgB 2 , Cu/Nb/MgB 2 and Fe/Cu/MgB 2 wires in parallel magnetic fields of up to 5 T were studied in the temperature range from 5 to 35 K. All Nb-clad samples exhibited a thermomagnetic instability (TMI) in the form of magnetization jumps. In a thick wire (about 2 mm in core diameter), the TMI persisted up to the unexpectedly high temperature of 32 K. Thin wires showed low TMI which vanished at T > 10 K. Cu/MgB 2 wires which did not contain a Nb barrier, showed no signs of TMI. The TMI in thin wires exhibited good reproducibility and stability in the jump pattern (JP) (jump amplitudes and positions), while thick wires showed the worst time stability. We found that moderate flat rolling of the round unstable Cu/Nb/MgB 2 wire resulted in negligible TMI at 5 K in the processed flat tape. The TMI amplitudes of studied samples correlated with the adiabatic stability parameter, β -1

  8. Detecting spin polarization of nano-crystalline manganese doped zinc oxide thin film using circular polarized light

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, H.M., E-mail: h_m_elsaid@hotmail.com

    2016-02-01

    The presence of spin polarization in Mn-doped ZnO thin film is very important for spintronic applications. Spin polarization was detected using simple method. This method depends on measuring the optical transmittance using circular polarized light in visible and near infra-red region. It was found that, there is a difference in the optical energy gap of the film for circular left and circular polarized light. For temperatures > 310 K the difference in energy gap is vanished. This result is confirmed by measuring the magnetic hysteresis of the film. This work introduces a promising method for measuring the ferromagnetism in diluted magnetic semiconductors. - Highlights: • Highly oriented c-axis of Mn-ZnO thin film doped with nitrogen is prepared. • The optical energy gap depends on the state of circularly polarized light. • The presence of spin polarization is confirmed using simple optical method. • Magnetic measurements are consistent with the results of the optical method.

  9. Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaleji, Behzad Koozegar, E-mail: bkaleji@yahoo.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box:14115-143, Tehran (Iran, Islamic Republic of); Sarraf-Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box:14115-143, Tehran (Iran, Islamic Republic of); Fujishima, Akira [Photo-catalyst Group, Kanagawa Academy of Science and Technology, KSP East 412, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer We coated Nb-doped TiO{sub 2} films on glazed porcelain via sol-gel dip coating method. Black-Right-Pointing-Pointer We examined coatings by degradation of MB solution and optical light transmittance. Black-Right-Pointing-Pointer Coatings show enhanced photo-catalytic activity in 1 mol% Nb. Black-Right-Pointing-Pointer Nb doping inhibited the grain growth, and which are found to inhibit the anatase to rutile phase transformation. - Abstract: In this study, preparation of Nb-doped (0-20 mol% Nb) TiO{sub 2} dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of Nb on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films was examined by atomic force microscope and X-ray photoelectron spectroscopy. XRD and Raman study showed that the Nb doping inhibited the grain growth. The photo-catalytic activity of the film was tested on degradation of methylene blue. Best photo-catalytic activity of Nb-doped TiO{sub 2} thin films were measured in the TiO{sub 2}-1 mol% Nb sample. The average optical transmittance of about 47% in the visible range and the band gap of films became wider with increasing Nb doping concentration. The Nb{sup 5+} dopant presented substitutional Ti{sup 4+} into TiO{sub 2} lattice.

  10. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  11. Structure and optical properties of nanocrystalline NiO thin film synthesized by sol-gel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, A.A. [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia); Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.co [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Yaghmour, S.J.; Al-Marzouki, F.M. [King Abdulaziz University, Faculty of Science, Physics Department, Jeddah (Saudi Arabia)

    2009-11-03

    NiO thin film was prepared by sol-gel spin-coating method. This thin film annealed at T = 600 deg. C. The structure of NiO thin film was investigated by means of X-ray diffraction (XRD) technique and scanning electron microscopy (SEM). The optical properties of the deposited film were characterized from the analysis of the experimentally recorded transmittance and reflectance data in the spectral wavelength range of 300-800 nm. The values of some important parameters of the studied films are determined, such as refractive index (n), extinction coefficient (k), optical absorption coefficient (alpha) and band energy gap (E{sub g}). According to the analysis of dispersion curves, it has been found that the dispersion data obeyed the single oscillator of the Wemple-DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. In such work, from the transmission spectra, the dielectric constant (epsilon{sub i}nfinity), the third-order optical nonlinear susceptibility chi{sup (3)}, volume energy loss function (VELF) and surface energy loss function (SELF) were determined.

  12. Theoretical investigation of the vortex state in new superconductors: MgB2 and PrOs4Sb12

    International Nuclear Information System (INIS)

    Dao, V.H.

    2006-01-01

    As illustrated by the present thesis work, gap function anisotropy and crystal anisotropy are combined when influencing superconducting properties under a magnetic field. In order to study the mixed state of the recently discovered multiband superconductor MgB 2 , we first derive the Ginzburg-Landau functional for a two-gap superconductor from a weak coupling BCS model. The interaction between the two condensates is then described by a unique Josephson-type coupling. The two-gap theory then enables to explain the curvature and the anisotropy of the upper critical field, as well as the 30 degrees change of orientation for the vortex lattice which is observed when increasing the strength of the magnetic field applied along the c-tilde axis. Besides, we investigate the vortex lattice geometry in the superconducting heavy fermion PrOs 4 Sb 12 . When taking into account non local corrections for an s-wave T h -tetrahedral superconductor, we can explain the observed deformation of the lattice by the crystal symmetry of the compound. Ab initio results of the band structures confirm quantitatively our analysis. (author)

  13. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Jang, S. H.; Hwang, D. Y.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-09-15

    Carbon coating approach is used to prepare carbon-doped MgB{sub 2} bulk samples using low-cost naphthalene (C{sub 10}H{sub 8}) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at 120 degrees C and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with carbon. As compared to un-doped MgB{sub 2}, a systematic enhancement in Jc(H) properties with increasing carbon doping level was observed for naphthalene-derived C-doped MgB{sub 2} samples. The substantial enhancement in Jc is most likely due to the incorporation of C into MgB{sub 2} lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

  14. Photolithographic patterning of nanocrystalline europium-titanate Eu2Ti2O7 thin films on silicon substrates

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jan; Boháček, Jan; Vytykáčová, Soňa; Buršík, Jiří; Puchý, V.; Robert, D.; Kašík, Ivan

    2017-01-01

    Roč. 209, December (2017), s. 216-219 ISSN 0167-577X Grant - others:AV ČR(CZ) SAV-16-17 Program:Bilaterální spolupráce Institutional support: RVO:67985882 ; RVO:68081723 Keywords : Magnetic materials * Rare earth compounds * Thin films * Photolithography Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (UFM-A) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Condensed matter physics (including formerly solid state physics, supercond.) (UFM-A) Impact factor: 2.572, year: 2016

  15. Critical current density analysis of ex situ MgB2 wire by in-field and temperature Hall probe imaging

    International Nuclear Information System (INIS)

    Bartolome, E; Granados, X; Cambel, V; Fedor, J; Kovac, P; Husek, I

    2005-01-01

    The irreversible magnetic behaviour at different temperatures of an ex situ Fe-alloy/MgB 2 wire, exhibiting a granular compositional distribution, was studied using an in-field, high resolution Hall probe imaging system. Quantitative information about the local current density was obtained by solving the Biot-Savart inversion problem. The flux penetration and current distribution maps obtained can be attributed to a inhomogeneous compositional 'plum-cake-like' system, consisting of large, isolated MgB 2 agglomerations embedded in a matrix of finely distributed MgB 2 +MgO. The critical current densities within the grains and their evolution with the applied magnetic field and temperature have been obtained, and compared to the mean J c (H,T) in the matrix

  16. A Novel Method for Measurements of the Penetration Depth of MgB2 Superconductor Films by Using Sapphire Resonators with Short-Circuited Parallel Plates

    International Nuclear Information System (INIS)

    Jung, Ho Sang; Lee, J. H.; Cho, Y. H.; Lee, Sang Young; Seong, W. K.; Lee, N. H.; Kang, W. N.

    2009-01-01

    We introduce a measurement method that enables to measure the penetration depth(λ) of superconductor films by using a short-ended parallel plate sapphire resonator. Variations in the (λof MgB 2 films could be measured down to the lowest temperature using a sapphire resonator with a YBa 2 Cu 3 O 7-x film at the bottom. A model equation of λλ 0 [1-(T/T c ) τ ] -1/2 for MgB 2 films appeared to describe the observed variations of the resonant frequency of the sapphire resonator with temperature, with λ 0 , τ and T c used as the fitting parameters.

  17. de Haas-van Alphen effect investigations of the electronic structure of pure and aluminum-doped MgB2

    International Nuclear Information System (INIS)

    Carrington, A.; Yelland, E.A.; Fletcher, J.D.; Cooper, J.R.

    2007-01-01

    Our understanding of the superconducting properties of MgB 2 is strongly linked to our knowledge of its electronic structure. In this paper we review experimental measurements of the Fermi surface parameters of pure and Al-doped MgB 2 using the de Haas-van Alphen (dHvA) effect. In general, the measurements are in excellent agreement with the theoretical predictions of the electronic structure, including the strength of the electron-phonon coupling on each Fermi surface sheet. For the Al doped samples, we are able to measure how the band structure changes with doping. These results are in excellent agreement with calculations based on the virtual crystal approximation. We also review work on the dHvA effect in the superconducting state

  18. Enhancement of Critical Current Density and Flux Pinning in Acetone and La2O3 Codoped MgB2 Tapes

    International Nuclear Information System (INIS)

    Gao Zhao-Shun; Ma Yan-Wei; Wang Dong-Liang; Zhang Xian-Ping; Awaji Satoshi; Watanabe Kazuo

    2010-01-01

    MgB 2 tape samples with simultaneous additions of acetone and La 2 O 3 were prepared by an in-situ processed powder-in-tube method. Compared to the pure and single doped tapes, both transport J c and fluxing pinning are greatly improved by acetone and La 2 O 3 codoping. Acetone supplies carbon into the MgB 2 crystal lattice and increases the upper critical field, while the La 2 O 3 reacts with B to form LaB 6 nanoparticles as effective flux pining centers. The improvement of the superconducting properties in codoped tapes can be attributed to the combined effects of improvement in H c2 and flux pinning. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Fabrication of a Scaled MgB2 Racetrack Demonstrator Pole for a 10-MW Direct-Drive Wind Turbine Generator

    DEFF Research Database (Denmark)

    Magnusson, Niklas; Eliassen, Jan Christian; Abrahamsen, Asger Bech

    2018-01-01

    Field windings made of MgB2 wires or tapes are considered for their potential to reduce volume, weight, and cost of large offshore wind turbine generators. To gain experience of how to use this relatively new material in full-scale generators, tests of different winding methodologies and techniques...... are needed. In this paper, we describe in detail the steps used to wind a racetrack coil with a length of 1 m and a width of 0.5 m out of 4.5 km of MgB2 superconducting tape. The width corresponds to a full-scale pole of a 10-MW generator, whereas the length of the straight section is shorter than...... the corresponding full-scale pole. The coil was built up of ten double pancake coils. Each double pancake coil was wet wound using a semiautomatic winding process, where Stycast 2850 was applied directly to the MgB2 tape without any other dedicated electrical insulation. The strengths and weaknesses of the winding...

  20. Superconductivity, critical current density, and flux pinning in MgB2-x(SiC)x/2 superconductor after SiC nanoparticle doping

    Science.gov (United States)

    Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Wang, X. L.; Horvat, J.; Liu, H. K.; Munroe, P. R.

    2003-08-01

    We investigated the effect of SiC nanoparticle doping on the crystal lattice structure, critical temperature Tc, critical current density Jc, and flux pinning in MgB2 superconductor. A series of MgB2-x(SiC)x/2 samples with x=0-1.0 were fabricated using an in situ reaction process. The contraction of the lattice and depression of Tc with increasing SiC doping level remained rather small most likely due to the counterbalancing effect of Si and C co-doping. The high level Si and C co-doping allowed the creation of intragrain defects and highly dispersed nanoinclusions within the grains which can act as effective pinning centers for vortices, improving Jc behavior as a function of the applied magnetic field. The enhanced pinning is mainly attributable to the substitution-induced defects and local structure fluctuations within grains. A pinning mechanism is proposed to account for different contributions of different defects in MgB2-x(SiC)x/2 superconductors.

  1. Effects of MgO impurities and micro-cracks on the critical current density of Ti-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Liang, G.; Alessandrini, M.; Yen, F.; Hanna, M.; Fang, H.; Hoyt, C.; Lv, B.; Zeng, J.; Salama, K.

    2007-01-01

    Ti-sheathed monocore MgB 2 wires with improved magnetic critical current density (J c ) have been fabricated by in situ powder-in-tube (PIT) method and characterized by magnetization, X-ray diffraction, scanning electron microscopy and electrical resistivity measurements. For the best wire, the magnetic J c values at 5 K and fields of 2 T, 5 T, and 8 T are 4.1 x 10 5 A/cm 2 , 7.8 x 10 4 A/cm 2 , and 1.4 x 10 4 A/cm 2 , respectively. At 20 K and fields of 0.5 T and 3 T, the J c values are about 3.6 x 10 5 A/cm 2 and 3.1 x 10 4 A/cm 2 , respectively, which are much higher than those of the Fe-sheathed mono-core MgB 2 wires fabricated with the same in situ PIT process and under the same fabricating conditions. It appears that the overall J c for the average Ti-sheathed wires is comparable to that of the Fe-sheathed wires. Our X-ray diffraction and scanning electron microscopy analysis indicates that J c in the Ti-sheathed MgB 2 wires can be strongly suppressed by MgO impurities and micro-cracks

  2. Microstructure and optical properties of nanocrystalline ZnO and ZnO:(Li or Al) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oral, A. Yavuz [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze 41400 (Turkey)]. E-mail: aoral@gyte.edu.tr; Bahsi, Z. Banu [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze 41400 (Turkey); Aslan, M. Hasan [Department of Physics, Gebze Institute of Technology, Gebze 41400 (Turkey)

    2007-03-15

    Zinc oxide thin films (ZnO, ZnO:Li, ZnO:Al) were deposited on glass substrates by a sol-gel technique. Zinc acetate, lithium acetate, and aluminum chloride were used as metal ion sources in the precursor solutions. XRD analysis revealed that Li doped and undoped ZnO films formed single phase zincite structure in contrast to Al:ZnO films which did not fully crystallize at the annealing temperature of 550 deg. C. Crystallized films had a grain size under 50 nm and showed c-axis grain orientation. All films had a very smooth surface with RMS surface roughness values between 0.23 and 0.35 nm. Surface roughness and optical band tail values increased by Al doping. Compared to undoped ZnO films, Li doping slightly increased the optical band gap of the films.

  3. Texture of the nano-crystalline AlN thin films and the growth conditions in DC magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Shakil Khan

    2015-08-01

    Full Text Available DC reactive magnetron sputtering technique has been used for the preparation of AlN thin films. The deposition temperature and the flow ratio of N2/Ar were varied and subsequent dependency of the films crystallites orientation/texture has been addressed. In general, deposited films were found hexagonal polycrystalline with a (002 preferred orientation. The X-ray diffraction (XRD data revealed that the film crystallinity improves, with the increase of substrate temperature from 300 °C to 500 °C. The dropped in full width half maximum (FWHM of the XRD rocking curve value further confirmed it. However, increasing substrate temperature above 500 °C or reducing the nitrogen condition (from 60 to 30% in the environment induced the growth of crystallites with (102 and (103 orientations. The rise of rocking curve FWHM for the corresponding conditions depicted that the films texture quality deteriorated. A further confirmation of the variation in film texture/orentation with the growth conditions has been obtained from the variation in FWHM values of a dominant E1 (TO mode in the Fourier transform infrared (FTIR spectra and the E2 (high mode in Raman spectra. We have correlated the columnar structure in AFM surface analyses with the (002 or c-axis orientation as well. Spectroscopic ellipsometry of the samples have shown a higher refractive index at 500 °C growth temperature.

  4. Characteristics of RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Ki [Core Technology Laboratory, Samsung SDI, 575 Shin-dong, Youngtong-Gu, Suwon, Gyeonggi-Do 442-391 (Korea, Republic of)]. E-mail: hanki1031.kim@samsung.com; Choi, Sun-Hee [Nano Materials Research Center, Korea Institute of Science and Technology (KIST), PO Box 131 Choengryang, Seoul 130-650 (Korea, Republic of); Yoon, Young Soo [Department of Advanced Fusion Technology (DAFT), Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Chang, Sung-Yong [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of); Ok, Young-Woo [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of)

    2005-03-22

    The characteristics of RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O{sub 2}/Ar ambient have RuO{sub 2}-SnO{sub 2} nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous film in 0.5 M H{sub 2}SO{sub 4} liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm{sup 2} {mu}m. This suggests that the RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor.

  5. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  6. Recent achievements in MgB 2 physics and applications: A large-area SQUID magnetometer and point-contact spectroscopy measurements

    Science.gov (United States)

    Gonnelli, R. S.; Daghero, D.; Calzolari, A.; Ummarino, G. A.; Tortello, M.; Stepanov, V. A.; Zhigadlo, N. D.; Rogacki, K.; Karpinski, J.; Portesi, C.; Monticone, E.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.

    2006-03-01

    In the first part of the present paper we discuss the fabrication and the characterization of an MgB2-based SQUID magnetometer with a directly coupled large-area pick-up loop, made on an MgB2 film deposited by an all in situ technique. The coarse structure of the SQUID was defined by optical lithography and Ar-ion milling, while the two nanobridges acting as weak links in the superconducting loop were made by focused ion beam (FIB) milling. The device was characterized at different temperatures and showed Josephson quantum interference up to 20 K as well as a noise level already compatible with the recording of an adult magnetocardiogram. In the second part, concerning the fundamental physics of MgB2, we present the results of very recent point-contact measurements on Mg1-xMnxB2 single crystals with 34.1 ⩾ Tc ⩾ 13.3 K (i.e. 0.37% ⩽ x ⩽ 1.5%). The experimental conductance curves were fitted with the generalized two-band BTK model and their behaviour in magnetic fields was studied to check if both the order parameters (OPs) of the σ and π bands were present in the whole doping range. The dependence of the OPs (evaluated through the fit) on the Andreev critical temperature of the junctions is analyzed in the framework of the two-band Eliashberg theory by including the effects of magnetic impurities. The results give an evidence of a dominant effect of the magnetic impurities on the σ-band channel.

  7. Specific heat of MgB2 in a one- and a two-band model from first-principles calculations

    International Nuclear Information System (INIS)

    Golubov, A.A.; Dolgov, O.V.; Jepsen, O.; Kong, Y.; Andersen, O.K.; Gibson, B.J.; Ahn, K.; Kremer, R.K.; Kortus, J.

    2002-01-01

    The heat capacity anomaly at the transition to superconductivity of the layered superconductor MgB 2 is compared to first-principles calculations with the Coulomb repulsion, μ*, as the only parameter which is fixed to give the measured T c . We solve the Eliashberg equations for both an isotropic one-band model and a two-band model with different superconducting gaps on the π-band anσd-band Fermi surfaces. The agreement with experiments is considerably better for the two-band model than for the one-band model. (author)

  8. Specific heat of the 38-K superconductor MgB_2 in the normal and superconducting state: bulk evidence for a double gap

    OpenAIRE

    Junod, Alain; Wang, Yuxing; Bouquet, Frederic; Toulemonde, Pierre

    2001-01-01

    The specific heat of two polycrystalline samples of MgB_2 is presented and analyzed (2 - 300 K, 0 - 16 T), together with magnetic properties. The main characteristics are a low density of states at the Fermi level, high phonon frequencies, and an anomalous temperature- and field- dependence of the specific heat at T < T_c. A two-gap model with a gap ratio of 3:1 fits the specific heat in zero field. The smaller gap is washed out by a field of 0.5 T.

  9. Detection of nanocrystallinity by X-ray absorption spectroscopy in thin film transition metal/rare-earth atom, elemental and complex oxides

    International Nuclear Information System (INIS)

    Edge, L.F.; Schlom, D.G.; Stemmer, S.; Lucovsky, G.; Luning, J.

    2006-01-01

    Nanocrystallinity has been detected in the X-ray absorption spectra of transition metal and rare-earth oxides by (i) removal of d-state degeneracies in the (a) Ti and Sc L 3 spectra of TiO 2 and LaScO 3 , respectively, and (b) O K 1 spectra of Zr(Hf)O 2 , Y 2 O 3 , LaScO 3 and LaAlO 3 , and by the (ii) detection of the O-atom vacancy in the O K 1 edge ZrO 2 -Y 2 O 3 alloys. Spectroscopic detection is more sensitive than X-ray diffraction with a limit of ∼2 nm as compared to >5 mm. Other example includes detection of ZrO 2 nanocrystallinity in phase-separated Zr(Hf) silicate alloys

  10. The reduction of optimal heat treatment temperature and critical current density enhancement of ex situ processed MgB2 tapes using ball milled filling powder

    Science.gov (United States)

    Fujii, Hiroki; Iwanade, Akio; Kawada, Satoshi; Kitaguchi, Hitoshi

    2018-01-01

    The optimal heat treatment temperature (Topt) at which best performance in the critical current density (Jc) property at 4.2 K is obtained is influenced by the quality or reactivity of the filling powder in ex situ processed MgB2 tapes. Using a controlled fabrication process, the Topt decreases to 705-735 °C, which is lower than previously reported by more than 50 °C. The Topt decrease is effective to suppress both the decomposition of MgB2 and hence the formation of impurities such as MgB4, and the growth of crystallite size which decreases upper critical filed (Hc2). These bring about the Jc improvement and the Jc value at 4.2 K and 10 T reaches 250 A/mm2. The milling process also decreases the critical temperature (Tc) below 30 K. The milled powder is easily contaminated in air and thus, the Jc property of the contaminated tapes degrades severely. The contamination can raise the Topt by more than 50 °C, which is probably due to the increased sintering temperature required against contaminated surface layer around the grains acting as a barrier.

  11. Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition

    International Nuclear Information System (INIS)

    Goncharov, A.F.; Struzhkin, V.V.

    2003-01-01

    We overview recent high-pressure studies of high-temperature superconductor MgB 2 by Raman scattering technique combined with measurements of superconducting critical temperature T c and lattice parameters up to 57 GPa. An anomalously broadened Raman band at 620 cm -1 is observed and assigned to the in-plane boron stretching E 2g mode. It exhibits a large Grueneisen parameter indicating that the vibration is highly anharmonic. The pressure dependencies of the E 2g mode and T c reveal anomalies at 15-22 GPa (isotope dependent). The anharmonic character of the E 2g phonon mode, its anomalous pressure dependence, and also that for T c are interpreted as a result of a phonon-assisted Lifshitz electronic topological transition

  12. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    Science.gov (United States)

    2016-02-24

    film deposited just like the pick-up of a turn-table music player. The contact pads provide the electrical contacts to the starting and end point of...anisotropy using the geometry of the thin toroid. We have shown experimentally that the thin film toroid calculations may be applicable to up to millimeter...thin film as well as bulk devices. 15. SUBJECT TERMS Micromagnetic Calculations, Nanocrystalline cobalt-iron, Thin Film Toroids 16. SECURITY

  13. Thermally Stable Nanocrystalline Steel

    Science.gov (United States)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  14. Room Temperature Tunable Multiferroic Properties in Sol-Gel-Derived Nanocrystalline Sr(Ti1−xFexO3−δ Thin Films

    Directory of Open Access Journals (Sweden)

    Yi-Guang Wang

    2017-09-01

    Full Text Available Sr(Ti1−xFexO3−δ (0 ≤ x ≤ 0.2 thin films were grown on Si(100 substrates with LaNiO3 buffer-layer by a sol-gel process. Influence of Fe substitution concentration on the structural, ferroelectric, and magnetic properties, as well as the leakage current behaviors of the Sr(Ti1−xFexO3−δ thin films, were investigated by using the X-ray diffractometer (XRD, atomic force microscopy (AFM, the ferroelectric test system, and the vibrating sample magnetometer (VSM. After substituting a small amount of Ti ion with Fe, highly enhanced ferroelectric properties were obtained successfully in SrTi0.9Ti0.1O3−δ thin films, with a double remanent polarization (2Pr of 1.56, 1.95, and 9.14 μC·cm−2, respectively, for the samples were annealed in air, oxygen, and nitrogen atmospheres. The leakage current densities of the Fe-doped SrTiO3 thin films are about 10−6–10−5 A·cm−2 at an applied electric field of 100 kV·cm−1, and the conduction mechanism of the thin film capacitors with various Fe concentrations has been analyzed. The ferromagnetic properties of the Sr(Ti1−xFexO3−δ thin films have been investigated, which can be correlated to the mixed valence ions and the effects of the grain boundary. The present results revealed the multiferroic nature of the Sr(Ti1−xFexO3−δ thin films. The effect of the annealing environment on the room temperature magnetic and ferroelectric properties of Sr(Ti0.9Fe0.1O3−δ thin films were also discussed in detail.

  15. Ordered mesoporous MFe(2)O(4) (M = Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, uniform 16 nm diameter pores and high thermal stability: template-directed synthesis and characterization of redox active trevorite.

    Science.gov (United States)

    Haetge, Jan; Suchomski, Christian; Brezesinski, Torsten

    2010-12-20

    In this paper, we report on ordered mesoporous NiFe(2)O(4) thin films synthesized via co-assembly of hydrated ferric nitrate and nickel chloride with an amphiphilic diblock copolymer, referred to as KLE. We establish that the NiFe(2)O(4) samples are highly crystalline after calcination at 600 °C, and that the conversion of the amorphous inorganic framework comes at little cost to the ordering of the high quality cubic network of pores averaging 16 nm in diameter. We further show that the synthesis method employed in this work can be readily extended to other ferrites, such as CoFe(2)O(4), CuFe(2)O(4), MgFe(2)O(4), and ZnFe(2)O(4), which could pave the way for innovative device design. While this article focuses on the self-assembly and characterization of these materials using various state-of-the-art techniques, including electron microscopy, grazing incidence small-angle X-ray scattering (GISAXS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), as well as UV-vis and Raman spectroscopy, we also examine the electrochemical properties and show the benefits of combining a continuous mesoporosity with nanocrystalline films. KLE-templated NiFe(2)O(4) electrodes exhibit reasonable levels of lithium ion storage at short charging times which stem from facile pseudocapacitance.

  16. Novel development of nanocrystalline kesterite Cu2ZnSnS4 thin film with high photocatalytic activity under visible light illumination

    Science.gov (United States)

    Apostolopoulou, Andigoni; Mahajan, Sandip; Sharma, Ramphal; Stathatos, Elias

    2018-01-01

    Cu2ZnSnS4 (CZTS) represents a promising p-type direct band gap semiconductor with large absorption coefficient in the visible region of solar light. In the present study, a kesterite CZTS nanocrystalline film, with high purity, was successfully synthesized via the combination of successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) technique. The morphology and structural properties of the CZTS films were characterized by FE-SEM microscopy, porosimetry in terms of Brunauer-Emmett-Teller (BET) technique, X-ray diffraction and Raman spectroscopy. The as-prepared films under mild heat treatment at 250 °C in the presence of sulfur atmosphere exhibited fine nanostructure with 35 nm average particle size, high specific surface area of 53 m2/g and 9 nm pore diameter. The photocatalytic activity of the films was examined to the degradation of Basic Blue 41 (BB-41) and Acid Orange 8 (AO-8) organic azo dyes under visible light irradiation, demonstrating 97.5% and 70% discoloration for BB-41 and AO-8 respectively. Reusability of the CZTS films was also tested proving good stability over several repetitions. The reduction of photocatalyst's efficiency after three successive repetitions didn't exceed 5.6% and 8.5% for BB-41 and AO-8 respectively.

  17. Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor

    Science.gov (United States)

    Yadav, B. C.; Verma, Nidhi; Singh, Satyendra

    2012-09-01

    Present paper reports the synthesis of SnO2-TiO2 nanocomposite, its characterization and performance as opto-electronic humidity sensor. Nanocrystalline SnO2-TiO2 film was deposited on the base of an equilateral prism using a photo resist spinner and the as prepared film was annealed at 200 °C for 2 h. The crystal structure of the prepared film was investigated using X-ray diffraction (XRD). Minimum crystallite size of the material was found 7 nm. Surface morphology of the film was investigated by Scanning electron microscope (SEM LEO-0430, Cambridge). SEM image shows that the film is porous. Differential scanning calorimetry (DSC) of as synthesized material shows two exothermic peaks at about 40 and 110 °C, respectively which are due to the evaporation of chemical impurities and water. Further the prepared film was investigated through the exposure of humidity and relative humidity (%RH) was measured directly in terms of modulation in the intensity of light recorded on a digital power meter. The maximum sensitivity of sensor was found 4.14 μW/%RH, which is quite significant for sensor fabrication purposes.

  18. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.; Sengupta, D. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR), Durgapur, 713209 West Bengal (India); Kasinadhuni, U. [Department of Engineering Physics, Bengal College of Engineering and Technology, Durgapur, West Bengal (India); Mondal, B. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); Mukherjee, K., E-mail: kalisadhanm@yahoo.com [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India)

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  19. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    International Nuclear Information System (INIS)

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-01-01

    Highlights: • Thin TiO 2 layer is deposited on conducting substrate using sol–gel based dip coating. • TiO 2 nano-particles are synthesized using hydrothermal route. • Thick TiO 2 particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO 2 passivation layer is introduced between the mesoporous TiO 2 nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO 2 nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO 2 compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO 2 layer in between the mesoporous TiO 2 nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons

  20. Synthesis of nanocrystalline nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method

    International Nuclear Information System (INIS)

    Pawar, D.K.; Pawar, S.M.; Patil, P.S.; Kolekar, S.S.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → We have successfully synthesized nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films on stainless steel substrates using a low temperature chemical bath deposition method. → The surface morphological study showed the compact flakes like morphology. → The as-deposited thin films are hydrophilic (10 o o ) whereas the annealed thin films are super hydrophilic (θ o ) in nature. → Ni 0.8 Zn 0.2 Fe 2 O 4 thin films could be used in supercapacitor. - Abstract: The nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni 0.8 Zn 0.2 Fe 2 O 4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm -1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5 o .The electrochemical supercapacitor study of Ni 0.8 Zn 0.2 Fe 2 O 4 thin films has been carried out in 6 M KOH electrolyte. The values of interfacial and specific capacitances obtained were 0.0285 F cm -2 and 19 F g -1 , respectively.

  1. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering

    Science.gov (United States)

    Sarkar, S.; Das, N. S.; Chattopadhyay, K. K.

    2014-07-01

    BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV-Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.

  2. Correlation between microstructure and optical properties of nano-crystalline TiO{sub 2} thin films prepared by sol-gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria); Sedrine, N. Ben; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Bensaha, R. [Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria)

    2010-11-15

    Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO{sub 2} thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO{sub 2} thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO{sub 2} thin films. The results show that the TiO{sub 2} thin films crystallize in anatase phase between 400 and 800 deg. C, and into the anatase-rutile phase at 1000 deg. C, and further into the rutile phase at 1200 deg. C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO{sub 2} thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 deg. C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.

  3. The influence of the roll diameter in flat rolling of of superconducting in situ and ex situ MgB2 tape

    DEFF Research Database (Denmark)

    Hancock, Michael Halloway; Bay, Niels

    2007-01-01

    , 150 and 210 mm in each step. The investigation has shown that the in situ powder is more readily compacted than the ex situ powder, with an average increase of relative density after mechanical processing of 37% for in situ powder and 19% for ex situ powder. Statistical analysis showed that the choice......Applying the powder in tube (PIT) method, single-filament MgB2/Fe wire and tape has been manufactured applying both the ex situ and the in situ approach. The influence of the roll diameter in three-step flat rolling on the powder density and critical temperature has been examined using rolls of 70...... roll in the first and second reductions followed by the 150 mm or 210 mm roll in the last reduction was the optimum strategy for both powder types. AC susceptibility testing showed that for the in situ tapes there was no correlation between the powder density and the critical temperature. For ex situ...

  4. Negative effects of crystalline-SiC doping on the critical current density in Ti-sheathed MgB2(SiC)y superconducting wires

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Luo, Z P; Hoyt, C; Yen, F; Guchhait, S; Lv, B; Markert, J T

    2007-01-01

    Ti-sheathed MgB 2 wires doped with nanosize crystalline-SiC up to a concentration of 15 wt% SiC have been fabricated, and the effects of the SiC doping on the critical current density (J c ) and other superconducting properties studied. In contrast with the previously reported results that nano-SiC doping with a doping range below 16 wt% usually enhances J c , particularly at higher fields, our measurements show that SiC doping decreases J c over almost the whole field range from 0 to 7.3 T at all temperatures. Furthermore, it is found that the degradation of J c becomes stronger at higher SiC doping levels, which is also in sharp contrast with the reported results that J c is usually optimized at doping levels near 10 wt% SiC. Our results indicate that these negative effects on J c could be attributed to the absence of significant effective pinning centres (mainly Mg 2 Si) due to the high chemical stability of the crystalline-SiC particles

  5. Fabrication of seven-core multi-filamentary MgB2 wires with high critical current density by an internal Mg diffusion process

    International Nuclear Information System (INIS)

    Togano, K; Hur, J M; Matsumoto, A; Kumakura, H

    2009-01-01

    We found that the reaction between a Mg core and a B powder layer in an internal Mg diffusion (IMD)-processed multi-filamentary wire can proceed rapidly even at a furnace temperature lower than the melting point of Mg (650 deg. C), resulting in the formation of a reacted layer with a fine composite structure and, hence, excellent in-field critical current properties. The multi-filamentary wire is composed of an outermost Cu-Ni sheath and seven filaments with a Ta sheath, a Mg core, and B+SiC powder filled in the space between the Ta sheath and the Mg core. Heat treatment at 645 deg. C for 1 h produced a reacted layer with dense composite structure along the inner wall of the Ta sheath and a hole at the center of each core. This reaction probably initiated from the heat generation at the B/Mg interface, resulting in a temperature rise of the Mg core and the occurrence of liquid Mg infiltration. The J c value at 4.2 K for the reacted layer exceeds 10 5 cm -2 at 9 T, which is the highest reported so far for MgB 2 wire, including powder-in-tube (PIT)-processed wires. These results indicate that the IMD process can compete in terms of practical wire fabrication with the conventional PIT process.

  6. Influences of the iron ion (Fe3+)-doping on structural and optical properties of nanocrystalline TiO2 thin films prepared by sol-gel spin coating

    International Nuclear Information System (INIS)

    Ben Naceur, J.; Mechiakh, R.; Bousbih, F.; Chtourou, R.

    2011-01-01

    Titanium dioxide (TiO 2 ) thin films doping of various iron ion (Fe 3+ ) concentrations were deposited on silicon (Si) (100) and quartz substrates by sol-gel Spin Coating technique followed by a thermal treatment at 600 deg. C. The structure, surface morphology and optical properties, as a function of the doping, have been studied by X-ray diffractometer (XRD), Raman, ultraviolet-visible (UV-vis) and Spectroscopic Ellipsometry (SE). XRD and Raman analyzes of our thin films show that the crystalline phase of TiO 2 thin films comprised only the anatase TiO 2 , but the crystallinity decreased when the Fe 3+ content increased from 0% to 20%. During the Fe 3+ addition to 20%, the phase of TiO 2 thin film still maintained the amorphous state. The grain size calculated from XRD patterns varies from 29.3 to 22.6 nm. The complex index and the optical band gap (E g ) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreased with an increasing Fe 3+ content.

  7. Superconducting properties of in situ powder-in-tube-processed MgB2 tapes fabricated with sub-micrometre Mg powder prepared by an arc-plasma method

    International Nuclear Information System (INIS)

    Yamada, H; Uchiyama, N; Matsumoto, A; Kitaguchi, H; Kumakura, H

    2007-01-01

    We fabricated in situ powder-in-tube-processed MgB 2 /Fe tapes using sub-micrometre Mg powder prepared by applying an arc-plasma method. We found that the use of this sub-micrometre Mg powder was very effective in increasing the J c values. The transport J c value of 10 mol% SiC-added tapes fabricated with this sub-micrometre Mg powder reached 275 A mm -2 at 4.2 K and 10 T. This value was about six times that of 5 mol% SiC-added tapes fabricated with commercial Mg powder. Microstructure analyses suggest that this J c enhancement is primarily due to the smaller MgB 2 grain size

  8. Nanocrystalline Cu{sub 2}ZnSnSe{sub 4} thin films for solar cells application: Microdiffraction and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz, Heiddy P., E-mail: hpquirozg@unal.edu.co; Dussan, A., E-mail: adussanc@unal.edu.co [Departmento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 11001 (Colombia)

    2016-08-07

    This work presents a study of the structural characterization of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films by X-ray diffraction (XRD) and microdiffraction measurements. Samples were deposited varying both mass (M{sub X}) and substrate temperature (T{sub S}) at which the Cu and ZnSe composites were evaporated. CZTSe samples were deposited by co-evaporation method in three stages. From XRD measurements, it was possible to establish, with increased Ts, the presence of binary phases associated with the quaternary composite during the material's growth process. A stannite-type structure in Cu{sub 2}ZnSnSe{sub 4} thin films and sizes of the crystallites varying between 30 and 40 nm were obtained. X-ray microdiffraction was used to investigate interface orientations and strain distributions when deposition parameters were varied. It was found that around the main peak, 2ϴ = 27.1°, the Cu{sub 1.8}Se and ZnSe binary phases predominate, which are formed during the subsequent material selenization stage. A Raman spectroscopy study revealed Raman shifts associated with the binary composites observed via XRD.

  9. New route to the fabrication of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Varshney, Deepak; Morell, Gerardo; Palomino, Javier; Resto, Oscar; Gil, Jennifer; Weiner, Brad R.

    2014-01-01

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production

  10. The superconducting gaps of C-substituted and Al-substituted MgB2 single crystals by point-contact spectroscopy

    International Nuclear Information System (INIS)

    Daghero, D.; Gonnelli, R.S.; Ummarino, G.A.; Calzolari, A.; Dellarocca, Valeria; Stepanov, V.A.; Zhigadlo, N.; Kazakov, S.M.; Karpinski, J.

    2005-01-01

    We studied the effects of carbon and aluminum substitutions on the gaps of the two-band superconductor MgB 2 by means of point-contact measurements in Mg(B 1-x C x ) 2 and Mg 1-y Al y B 2 single crystals with 0≤x≤0.132 and 0≤y≤0.21. The gap amplitudes, Δ ω and Δ π , were determined by fitting the conductance curves of the point contacts with the standard Blonder-Tinkham-Klapwijk (BTK) model generalized to the two-band case. Whenever possible, their values were confirmed by the independent fit (with a single-band BTK model) of the partial contribution of the two bands to the conductance, separated by means of a suitable magnetic field B*. In C-substituted crystals, the two gaps remain clearly distinct up to x∝0.10, but at x=0.132 we observed for the first time their merging into a single gap Δ≅3 meV with a gap ratio 2Δ=k B T c close to the standard BCS value. In Al-substituted crystals, we found no evidence of this gap merging. Instead, Δ π reaches the value 0.4 meV at y=0.21, where Δ π saturates at about 4 meV. These results are compared with other recent experimental findings in polycrystals and with the predictions of the models for multiband superconductivity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Engineering of giant magnetoimpedance effect of amorphous and nanocrystalline microwires

    Directory of Open Access Journals (Sweden)

    V. Zhukova

    2016-12-01

    Full Text Available We present our studies of the factors affecting soft magnetic properties and giant magnetoimpedance effect in thin amorphous and nanocrystalline microwires. We showed that the magnetoelastic anisotropy is one of the most important parameters that determine magnetic softness and GMI effect of glass-coated microwires  and annealing can be very effective for manipulation the magnetic properties of amorphous ferromagnetic glass-coated microwires. Considerable magnetic softening and increasing of the GMI effect is observed in Fe-rich nanocrystalline FINEMET-type glass-coated microwires after the nanocrystallization.

  12. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  13. Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells

    NARCIS (Netherlands)

    van Dijk, L.; van de Groep, J.; Veldhuizen, L.W.; Di Vece, M.; Polman, A.; Schropp, R.E.I.

    2016-01-01

    Most types of thin film solar cells require light management to achieve sufficient light absorptance. We demonstrate a novel process for fabricating a scattering back reflector for flat, thin film hydrogenated nanocrystalline silicon (nc-Si:H) solar cells. This scattering back reflector consists of

  14. Size dependence of the optical spectrum in nanocrystalline silver

    International Nuclear Information System (INIS)

    Taneja, Praveen; Ayyub, Pushan; Chandra, Ramesh

    2002-01-01

    We report a detailed study of the optical reflectance in sputter-deposited, nanocrystalline silver thin films in order to understand the marked changes in color that occur with decreasing particle size. In particular, samples with an average particle size in the 20 to 35 nm range are golden yellow, while those with a size smaller than 15 nm are black. We simulate the size dependence of the observed reflection spectra by incorporating Mie's theory of scattering and absorption of light in small particles, into the bulk dielectric constant formalism given by Ehrenreich and Philipp [Phys. Rev. 128, 1622 (1962)]. This provides a general method for understanding the reflected color of a dense collection of nanoparticles, such as in a nanocrystalline thin film. A deviation from Mie's theory is observed due to strong interparticle interactions

  15. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  16. Combined addition of nano diamond and nano SiO2, an effective method to improve the in-field critical current density of MgB2 superconductor

    International Nuclear Information System (INIS)

    Rahul, S.; Varghese, Neson; Vinod, K.; Devadas, K.M.; Thomas, Syju; Anees, P.; Chattopadhyay, M.K.; Roy, S.B.; Syamaprasad, U.

    2011-01-01

    Highlights: → Both nano diamond and nano SiO 2 caused significant modifications in the structural properties of pure MgB 2 sample. → Reduction in T C for the best codoped sample was approximately 2 K. → The best codoped sample yielded a J C , an order of magnitude more than the undoped one at 5 K and 8 T. → The enhanced flux pinning capability provided by the additives is responsible for the improved in-field J C . -- Abstract: MgB 2 bulk samples added with nano SiO 2 and/or nano diamond were prepared by powder-in-sealed-tube (PIST) method and the effects of addition on structural and superconducting properties were studied. X-ray diffraction (XRD) analysis revealed that the addition caused systematic reduction in 'a' lattice parameter due to the substitution of C atoms at B sites and the strain caused by reacted intragrain nano particles of Mg 2 Si as evinced by transmission electron microscope image. Scanning electron microscopy images showed distinct microstructural variations with SiO 2 /diamond addition. It was evident from DC magnetization measurements that the in-field critical current density [J C (H)] of doped samples did not fall drastically like the undoped sample. Among the doped samples the J C (H) of co-doped samples were significantly higher and the best co-doped sample yielded a J C , an order of magnitude more than the undoped one at 5 K and 8 T.

  17. Stability of nanocrystalline electrochemically deposited layers

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2009-01-01

    have different microstructure and properties compared to bulk materials and the thermodynamic non-equilibrium state of as-deposited layers frequently results in changes of the microstructure as a function of time and/or temperature. The evolving microstructure affects the functionality and reliability......The technological demand for manufacturing components with complex geometries of micrometer or sub-micrometer dimensions and ambitions for ongoing miniaturization have attracted particular attention to electrochemical deposition methods. Thin layers of electrochemically deposited metals and alloys...... of electrodeposited components, which can be beneficial, as for the electrical conductivity of copper interconnect lines, or detrimental, as for reduced strength of nickel in MEMS applications. The present work reports on in-situ studies of the microstructure stability of as-deposited nanocrystalline Cu-, Ag- and Ni...

  18. Effect of power on the growth of nanocrystalline silicon films

    International Nuclear Information System (INIS)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma

    2008-01-01

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm -1 and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity

  19. Effect of power on the growth of nanocrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma [Plasma Processed Materials Group, National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110 012 (India)], E-mail: skumar@mail.nplindia.ernet.in

    2008-08-20

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm{sup -1} and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity.

  20. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    Energy Technology Data Exchange (ETDEWEB)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Tomašević-Ilić, Tijana D., E-mail: tommashev@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Zarubica, Aleksandra R., E-mail: zarubica2000@yahoo.com [Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš (Serbia); Dimitrijević, Suzana, E-mail: suzana@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Budimir, Milica D., E-mail: mickbudimir@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Vranješ, Mila R., E-mail: mila@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Šaponjić, Zoran V., E-mail: saponjic@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2014-12-15

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical and morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.

  1. Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide

    DEFF Research Database (Denmark)

    Sun, Jie; Lindvall, Niclas; Cole, Matthew T.

    2012-01-01

    Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes...

  2. Electrochromic devices based on wide band-gap nanocrystalline semiconductors functionalized with mononuclear charge transfer compounds

    DEFF Research Database (Denmark)

    Biancardo, M.; Argazzi, R.; Bignozzi, C.A.

    2006-01-01

    A series of ruthenium and iron mononuclear complexes were prepared and their spectroeletrochemical behavior characterized oil Optically Transparent Thin Layer Electrodes (OTTLE) and on Fluorine Doped SnO2 (FTO) conductive glasses coated with Sb-doped nanocrystalline SnO2. These systems display a ...

  3. Non-toxic novel route synthesis and characterization of nanocrystalline ZnS{sub x}Se{sub 1−x} thin films with tunable band gap characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Agawane, G.L., E-mail: agawaneganesh@gmail.com [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Shin, Seung Wook [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Vanalakar, S.A. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V. [Electrochemical Mat. Lab., Department of Physics, Shivaji University, Kolhapur 416-004 (India); Gurav, K.V.; Suryawanshi, M.P. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Lee, Jeong Yong [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Yun, Jae Ho, E-mail: yunjh92@kier.re.kr [Photovoltaic Research Group, KIER, Jang-Dong, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-07-01

    Highlights: • A simple, inexpensive, and non-toxic CBD route is used to deposit ZnS thin films. • The ZnS{sub x}Se{sub 1−x} thin films formation takes place via annealing of ZnS thin films in Se atmosphere. • S/(S + Se) ratio found to be temperature dependent and easy tuning of band gap has been done by Se atom deposition. - Abstract: An environmentally benign chemical bath deposition (CBD) route was employed to deposit zinc sulfide (ZnS) thin films. The CBD-ZnS thin films were further selenized in a furnace at various temperatures viz. 200, 300, 400, and 500 °C and the S/(S + Se) ratio was found to be dependent on the annealing temperature. The effects of S/(S + Se) ratio on the structural, compositional and optical properties of the ZnS{sub x}Se{sub 1−x} (ZnSSe) thin films were investigated. EDS analysis showed that the S/(S + Se) ratio decreased from 0.8 to 0.6 when the film annealing temperature increased from 200 to 500 °C. The field emission scanning electron microscopy and atomic force microscopy studies showed that all the films were uniform, pin hole free, smooth, and adhered well to the glass substrate. The X-ray diffraction study on the ZnSSe thin films showed the formation of the cubic phase, except for the unannealed ZnSSe thin film, which showed an amorphous phase. The X-ray photoelectron spectroscopy revealed Zn-S, Zn-Se, and insignificant Zn-OH bonds formation from the Zn 2p{sub 3/2}, S 2p, Se 3d{sub 5/2}, and O 1s atomic states, respectively. The ultraviolet–visible spectroscopy study showed ∼80% transmittance in the visible region for all the ZnSSe thin films having various absorption edges. The tuning of the band gap energy of the ZnSSe thin films was carried out by selenizing CBD-ZnS thin films, and as the S/(S + Se) ratio decreased from 0.8 to 0.6, the band gap energy decreased from 3.20 to 3.12 eV.

  4. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  5. Strength and structure of nanocrystalline titanium

    International Nuclear Information System (INIS)

    Noskova, N.I.; Pereturina, I.A.; Elkina, O.A.; Stolyarov, V.V.

    2004-01-01

    Investigation results on strength and plasticity of nanocrystalline titanium VT-1 are presented. Specific features of plastic deformation on tension of this material specimens in an electron microscope column are studied in situ. It is shown that nanocrystalline titanium strength and plasticity at room temperature are dependent on the structure and nanograin size. It is revealed that deformation processes in nanocrystalline titanium are characterized by activation of deformation rotational modes and microtwinning [ru

  6. Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Ghosh, B.; Pradhan, S.K.

    2010-01-01

    Nanocrystalline TiC is produced by mechanical milling the stoichiometric mixture of α-Ti and graphite powders at room temperature under argon atmosphere within 35 min of milling through a self-propagating combustion reaction. Microstructure characterization of the unmilled and ball-milled samples was done by both X-ray diffraction and electron microscopy. It reveals the fact that initially graphite layers were oriented along and in the course of milling, thin graphite layers were distributed evenly among the grain boundaries of α-Ti particles. Both α-Ti and TiC lattices contain stacking faults of different kinds. The grain size distribution obtained from the Rietveld's method and electron microscopy studies ensure that nanocrystalline TiC particles with almost uniform size (∼13 nm) can be prepared by mechanical alloying technique. The result obtained from X-ray analysis corroborates well with the microstructure characterization of nanocrystalline TiC by electron microscopy.

  7. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    Science.gov (United States)

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  8. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    Science.gov (United States)

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation.

  9. Nanocrystalline diamond coatings for machining

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany)

    2007-07-01

    This history of CVD diamond synthesis goes back to the fifties of the last century. However, the scientific and economical potential was only gradually recognized. In the eighties, intensive worldwide research on CVD diamond synthesis and applications was launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. This article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  10. Influences of the iron ion (Fe{sup 3+})-doping on structural and optical properties of nanocrystalline TiO{sub 2} thin films prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Ben Naceur, J. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Bousbih, F.; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia)

    2011-10-01

    Titanium dioxide (TiO{sub 2}) thin films doping of various iron ion (Fe{sup 3+}) concentrations were deposited on silicon (Si) (100) and quartz substrates by sol-gel Spin Coating technique followed by a thermal treatment at 600 deg. C. The structure, surface morphology and optical properties, as a function of the doping, have been studied by X-ray diffractometer (XRD), Raman, ultraviolet-visible (UV-vis) and Spectroscopic Ellipsometry (SE). XRD and Raman analyzes of our thin films show that the crystalline phase of TiO{sub 2} thin films comprised only the anatase TiO{sub 2}, but the crystallinity decreased when the Fe{sup 3+} content increased from 0% to 20%. During the Fe{sup 3+} addition to 20%, the phase of TiO{sub 2} thin film still maintained the amorphous state. The grain size calculated from XRD patterns varies from 29.3 to 22.6 nm. The complex index and the optical band gap (E{sub g}) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreased with an increasing Fe{sup 3+} content.

  11. Synthesis of nanocrystalline nickel-zinc ferrite (Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, D.K. [Department of Chemistry, Shivaji University, Kolhapur 416 004 (M.S.) (India); Pawar, S.M. [Department of Materials Science and Engineering, Chonnam National University, 500 757 (Korea, Republic of); Patil, P.S. [Department of Physics, Shivaji University, Kolhapur 416 004 (M.S.) (India); Kolekar, S.S., E-mail: kolekarss2003@yahoo.co.in [Department of Chemistry, Shivaji University, Kolhapur 416 004 (M.S.) (India)

    2011-02-24

    Graphical abstract: Display Omitted Research highlights: > We have successfully synthesized nickel-zinc ferrite (Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) thin films on stainless steel substrates using a low temperature chemical bath deposition method. > The surface morphological study showed the compact flakes like morphology. > The as-deposited thin films are hydrophilic (10{sup o} < {theta} < 90{sup o}) whereas the annealed thin films are super hydrophilic ({theta} < 10{sup o}) in nature. > Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} thin films could be used in supercapacitor. - Abstract: The nickel-zinc ferrite (Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm{sup -1} which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness {approx}1.8 {mu}m after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle ({theta}) of 5{sup o}.The electrochemical supercapacitor study of Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} thin films has been carried out in 6 M KOH electrolyte. The values of interfacial and specific capacitances obtained were 0.0285 F cm{sup -2} and 19 F g{sup -1}, respectively.

  12. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  13. Microstructured extremely thin absorber solar cells

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by press......In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed...

  14. Surface, interface and thin film characterization of nano-materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Kobayashi, Keisuke

    2005-01-01

    From the results of studies in the nanotechnology support project of the Ministry of Education, Culture, Sports, Science and Technology of Japan, several investigations on the surface, interface and thin film characterization of nano-materials are described; (1) the MgB 2 thin film by X-ray diffraction, (2) the magnetism of the Pt thin film on a Co film by X-ray magnetic circular dichroism measurement, (3) the structure and physical properties of oxygen molecules absorbed in a micro hole of the cheleted polymer crystal by the direct observation in X-ray powder diffraction, and (4) the thin film gate insulator with a large dielectric constant, thermally treated HfO 2 /SiO 2 /Si, by X-ray photoelectron spectroscopy. (M.H.)

  15. Mobility lifetime product in doped and undoped nanocrystalline CdSe

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Al-Kabbi, Alaa S.; Sharma, Kriti; Saini, G.S.S.

    2013-01-01

    This paper reports the effect of doping on the charge transport in nanocrystalline CdSe thin film. The X-ray study confirms that the doping is achieved and the physical properties are improved. The energy resolution of a semiconductor radiation detector depends on the charge transport properties of the semiconductor and the mobility-lifetime (μτ) product is a key figure of merit for the charge transport. μτ product in nanocrystalline CdSe, CdSe:In and CdSe:Zn thin films has been estimated from temperature dependence of the photoconductivity, which increases with increase in temperature and doping. Also, μτ product of electrons in pure and doped nanocrystalline CdSe thin films has been determined by spectral photoconductivity at different applied voltages. Both the μτ and photoconductivity increase linearly with the bias voltage but the wavelength dependence remains qualitatively similar in all samples. The μτ products increase at photon energies > energy gap, which indicates that the recombination process depends on the excitation energy. The doped CdSe thin films have higher drift length in comparison with undoped films which suggest that these thin films can be used in charge collecting devices. - Highlights: • The structure of thin films has been studied using X-ray diffraction. • Spectral dependence of μτ product in pure and doped nc-CdSe thin films is studied. • The mobility-lifetime product shows dependence on temperature and doping type. • The drift length increases linearly with increasing applied field and doping. • The transport properties of nc-CdSe thin films are enhanced with doping

  16. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  17. Dynamic recovery in nanocrystalline Ni

    International Nuclear Information System (INIS)

    Sun, Z.; Van Petegem, S.; Cervellino, A.; Durst, K.; Blum, W.; Van Swygenhoven, H.

    2015-01-01

    The constant flow stress reached during uniaxial deformation of electrodeposited nanocrystalline Ni reflects a quasi-stationary balance between dislocation slip and grain boundary (GB) accommodation mechanisms. Stress reduction tests allow to suppress dislocation slip and bring recovery mechanisms into the foreground. When combined with in situ X-ray diffraction it can be shown that grain boundary recovery mechanisms play an important role in producing plastic strain while hardening the microstructure. This result has a significant consequence for the parameters of thermally activated glide of dislocations, such as athermal stress and activation volume, which are traditionally derived from stress/strain rate change tests

  18. Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Amanda S.; Sternberg, Michael G.

    2006-10-05

    Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples.

  19. Charged micro-patterns on nanocrystalline diamond are well defined by electrical current application

    Czech Academy of Sciences Publication Activity Database

    Verveniotis, Elisseos; Kromka, Alexander; Rezek, Bohuslav

    2012-01-01

    Roč. 53, č. 2 (2012), s. 61-67 ISSN 0001-7140 R&D Projects: GA ČR GD202/09/H041; GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * thin films * electrostatic charging * AFM * KFM Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Nanocrystalline CdS{sub 1−x}Se{sub x} alloys as thin films prepared by chemical bath deposition: Effect of x on the structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ramirez, E.A. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Hernandez-Perez, M.A., E-mail: mhernandezp0606@ipn.mx [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Aguilar-Hernandez, J. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Rangel-Salinas, E. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico)

    2014-12-05

    Highlights: • CdS1−xSe{sub x} films with tunable structural and optical properties were grown by CBD. • Thin films are composed by a solid solution of the CdS{sub 1−x}Se{sub x} ternary alloy. • Crystal size, band gap and photoluminescence signal, decrease with the composition. • Ternary alloys show hexagonal phase with preferential orientation on (0 0 2) plane. • Films with x ⩾ 0.5 show semi-spherical grains composed by nanoworms structures. - Abstract: CdS{sub 1−x}Se{sub x} thin films were deposited on Corning glass substrates at 75 °C by chemical bath deposition (CBD) varying the composition “x” from 0 to 1 at a constant deposition time of 120 min. The composition of the films was adjusted by modifying the concentration as well as the ratio of the precursors. The morphological, compositional, structural and optical properties of the films were analyzed using several techniques such as Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), UV–Vis Spectroscopy (UV–Vis) and Photoluminescence (PL). The films grow as layers following the ion by ion mechanism, the density of the films decreases with x. Films are constituted by clusters (100–600 nm in diameter) of semispherical particles with sizes fluctuating from 10 to 20 nm. For x ⩾ 0.5 the particles are well-arranged in a “worm-like” structure. All the films are polycrystalline, to x = 0 (CdS) the cubic phase is present, the increase of composition promotes the formation of hexagonal phase or a mixture of both cubic and hexagonal phases. Preferential orientation in the (1 0 0) or (0 0 2) plane is observed. The crystal size decreases from 20 to 6 nm when x is increased. The optical properties can be easily tuned by adjusting the composition. Optical absorption analysis shows that the band gap (E{sub g}) value shifts to red in function of x (from 2.47 to 1.99 eV). Photoluminescence signal changes as “x” varies showing a regular behavior

  1. Bilirubin adsorption on nanocrystalline titania films

    International Nuclear Information System (INIS)

    Yang Zhengpeng; Si Shihui; Fung Yingsing

    2007-01-01

    Bilirubin produced from hemoglobin metabolism and normally conjugated with albumin is a kind of lipophilic endotoxin, and can cause various diseases when its concentration is high. Bilirubin adsorption on the nanocrystalline TiO 2 films was investigated using quartz crystal microbalance, UV-vis and IR techniques, and factors affecting its adsorption such as pH, bilirubin concentration, solution ionic strength, temperature and thickness of TiO 2 films were discussed. The amount of adsorption and parameters for the adsorption kinetics were estimated from the frequency measurements of quartz crystal microbalance. A fresh surface of the nanocrystalline TiO 2 films could be photochemically regenerated because holes and hydroxyl radicals were generated by irradiating the nanocrystalline TiO 2 films with UV light, which could oxidize and decompose organic materials, and the nanocrystalline TiO 2 films can be easily regenerated when it is used as adsorbent for the removal of bilirubin

  2. On the potential of Hg-Photo-CVD process for the low temperature growth of nano-crystalline silicon (Topical review)

    International Nuclear Information System (INIS)

    Barhdadi, A.

    2005-08-01

    Mercury-Sensitized Photo-Assisted Chemical Vapor Deposition (Hg-Photo-CVD) technique opens new possibilities for reducing thin film growth temperature and producing novel semiconductor materials suitable for the future generation of high efficiency thin film solar cells onto low cost flexible plastic substrates. This paper provides an overview of this technique, with the emphasis on its potential in low temperature elaboration of nano-crystalline silicon for the development of thin films photovoltaic technology. (author)

  3. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    Science.gov (United States)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  4. The influence of the surface topography on the magnetization dynamics in soft magnetic thin films

    NARCIS (Netherlands)

    Craus, CB; Palasantzas, G; Chezan, AR; De Hosson, JTM; Boerma, DO; Niesen, L

    2005-01-01

    In this work we study the influence of surface roughness on the magnetization dynamics of soft magnetic nanocrystalline Fe-Zr-N thin films deposited (under identical conditions) onto a Si oxide, a thin polymer layer, and a thin Cu layer. The substrate temperature during deposition was approximately

  5. Grain boundaries and mechanical properties of nanocrystalline diamond films.

    Energy Technology Data Exchange (ETDEWEB)

    Busmann, H.-G.; Pageler, A.; Gruen, D. M.

    1999-08-06

    Phase-pure nanocrystalline diamond thin films grown from plasmas of a hydrogen-poor carbon argon gas mixture have been analyzed regarding their hardness and elastic moduli by means of a microindentor and a scanning acoustic microscope.The films are superhard and the moduli rival single crystal diamond. In addition, Raman spectroscopy with an excitation wavelength of 1064 nm shows a peak at 1438 l/cm and no peak above 1500 l/cm, and X-ray photoelectron spectroscopy a shake-up loss at 4.2 eV. This gives strong evidence for the existence of solitary double bonds in the films. The hardness and elasticity of the films then are explained by the assumption, that the solitary double bonds interconnect the nanocrystals in the films, leading to an intergrain boundary adhesion of similar strength as the intragrain diamond cohesion. The results are in good agreement with recent simulations of high-energy grain boundaries.

  6. Mesoporous nanocrystalline film architecture for capacitive storage devices

    Science.gov (United States)

    Dunn, Bruce S.; Tolbert, Sarah H.; Wang, John; Brezesinski, Torsten; Gruner, George

    2017-05-16

    A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).

  7. Structural elucidation of nanocrystalline biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, S.

    2008-10-23

    Bone diseases, such as osteoporosis and osteoarthritis, are the second most prevalent health problem worldwide. In Germany approximately 5 millions people are affected by arthritis. Investigating biomineralization processes and bone molecular structure is of key importance for developing new drugs for preventing and healing bone diseases. Nuclear magnetic resonance (NMR) was the primary technique used due to its advantages in characterising poorly ordered and disordered materials. Compared to all the diffraction techniques that widely applied in structural investigations, the usefulness of NMR is independent of long range molecular order. This makes NMR an outstanding technique for studies of complex/amorphous materials. Conventional NMR experiments (single pulse, spin-echo, cross polarization (CP), etc.) as well as their modifications and high-end techniques (2D HETCOR, REDOR, etc.) were used in this work. Combining the contributions from different techniques enhances the information content of the investigations and can increase the precision of the overall conclusions. Also XRD, TEM and FTIR were applied to different extent in order to get a general idea of nanocrystalline hydroxyapatite crystallite structure. Results: - A new approach named 'Solid-state NMR spectroscopy using the lost I spin magnetization in polarization transfer experiments' has been developed for measuring the transferred I spin magnetization from abundant nuclei, which is normally lost when detecting the S spin magnetization. - A detailed investigation of nanocrystalline hydroxyapatite core was made to prove that proton environment of the phosphates units and phosphorus environment of hydroxyl units are the same as in highly crystalline hydroxyapatite sample. - Using XRD it was found that the surface of the hydroxyapatite nanocrystals is not completely disordered, as it was suggested before, but resembles the hydroxyapatite structure with HPO{sub 4}{sup 2-} (and some CO{sub 3}{sup

  8. Structural elucidation of nanocrystalline biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, S

    2008-10-23

    Bone diseases, such as osteoporosis and osteoarthritis, are the second most prevalent health problem worldwide. In Germany approximately 5 millions people are affected by arthritis. Investigating biomineralization processes and bone molecular structure is of key importance for developing new drugs for preventing and healing bone diseases. Nuclear magnetic resonance (NMR) was the primary technique used due to its advantages in characterising poorly ordered and disordered materials. Compared to all the diffraction techniques that widely applied in structural investigations, the usefulness of NMR is independent of long range molecular order. This makes NMR an outstanding technique for studies of complex/amorphous materials. Conventional NMR experiments (single pulse, spin-echo, cross polarization (CP), etc.) as well as their modifications and high-end techniques (2D HETCOR, REDOR, etc.) were used in this work. Combining the contributions from different techniques enhances the information content of the investigations and can increase the precision of the overall conclusions. Also XRD, TEM and FTIR were applied to different extent in order to get a general idea of nanocrystalline hydroxyapatite crystallite structure. Results: - A new approach named 'Solid-state NMR spectroscopy using the lost I spin magnetization in polarization transfer experiments' has been developed for measuring the transferred I spin magnetization from abundant nuclei, which is normally lost when detecting the S spin magnetization. - A detailed investigation of nanocrystalline hydroxyapatite core was made to prove that proton environment of the phosphates units and phosphorus environment of hydroxyl units are the same as in highly crystalline hydroxyapatite sample. - Using XRD it was found that the surface of the hydroxyapatite nanocrystals is not completely disordered, as it was suggested before, but resembles the hydroxyapatite structure with HPO{sub 4}{sup 2-} (and some CO{sub 3}{sup 2

  9. Nanocrystalline permanent magnets with enhanced properties

    International Nuclear Information System (INIS)

    Leonowicz, M.

    2002-01-01

    Parameters of permanent magnets result from the combination of intrinsic properties such as saturation magnetization, magnetic exchange, and magnetocrystalline energy, as well as microstructural parameters such as phase structure, grain size, and orientation. Reduction of grain size into nanocrystalline regime (∼ 50 nm) leads to the enhanced remanence which derives from ferromagnetic exchange coupling between highly refined grains. In this study the fundamental phenomena, quantities, and structure parameters, which define nanophase permanent magnets are presented and discussed. The theoretical considerations are confronted with experimental data for nanocrystalline Sm-Fe-N type permanent magnets. (author)

  10. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  11. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique

    NARCIS (Netherlands)

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    Hydrogen profiling, i.e., decreasing the H2 dilution during deposition, is a well-known technique to maintain a proper crystalline ratio of the nanocrystalline (nc-Si:H) absorber layers of plasma-enhanced chemical vapor-deposited (PECVD) thin film solar cells. With this technique a large increase in

  12. Gas sensing application of nanocrystalline zinc oxide thin films ...

    Indian Academy of Sciences (India)

    Experimental data revealed the sensors to be more selective to NO2 gas with satisfactory response and recovery time. .... energy-dispersive X-ray spectroscopy (EDS, JEOL Model ... nm line of argon ion laser was used for excitation. 3.

  13. Si-related color centers in nanocrystalline diamond thin films

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Holovský, Jakub; Remeš, Zdeněk; Müller, Martin; Kočka, Jan; Kromka, Alexander

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2603-2606 ISSN 0370-1972 R&D Projects: GA TA ČR TA01011740; GA ČR(CZ) GA14-04790S; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : chemical vapor deposition * color center * diamond * photoluminescence * plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.489, year: 2014

  14. Gas sensing application of nanocrystalline zinc oxide thin films ...

    Indian Academy of Sciences (India)

    ZnO is a material with a variety of potential applications such as electronics,7 photonics,8 acoustics,9 TCO layer in ..... change, as a response to surface chemical reactions with environmental gases. ..... Wang D, Chu X and Gong M 2007 Nanotechnology 18 185601. 79. Kim K M, Hyun-Mook Jeong, Hae-Ryong Kim, Kwon-Il ...

  15. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  16. Chemical vapor deposition of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  17. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  18. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  19. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  20. Characterization of nanocrystalline silicon germanium film and ...

    African Journals Online (AJOL)

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  1. Correlation between photoconductivity in nanocrystalline titania and short circuit current transients in MEH-PPV/titania solar cells

    International Nuclear Information System (INIS)

    Xie, Z B; Henry, B M; Kirov, K R; Barkhouse, D A R; Burlakov, V M; Smith, H E; Grovenor, C R M; Assender, H E; Briggs, G A D; Kano, M; Tsukahara, Y

    2007-01-01

    We report the first experimental observation of a direct relationship between electron transport in different nanocrystalline TiO 2 thin films and the photovoltaic performance of TiO 2 /MEH-PPV composite solar cells made using these same TiO 2 films. We show that the transient behaviour in the composite solar cells under illumination can be explained by the transient photoconductivity performance of the TiO 2 layer

  2. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    Science.gov (United States)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  3. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Visan, A. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Grossin, D. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Stefan, N.; Duta, L.; Miroiu, F.M. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Stan, G.E. [National Institute of Materials Physics, RO-077125, Magurele-Ilfov (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Freche, M.; Marsan, O.; Charvilat, C. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Ciuca, S. [Politehnica University of Bucharest, Faculty of Materials Science and Engineering, Bucharest (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania)

    2014-02-15

    Highlights: • We report the deposition by MAPLE of biomimetic apatite coatings on Ti substrates. • This is the first report of MAPLE deposition of hydrated biomimetic apatite films. • Biomimetic apatite powder was synthesized by double decomposition process. • Non-apatitic environments, of high surface reactivity, are preserved post-deposition. • We got the MAPLE complete transfer as thin film of a hydrated, delicate material. -- Abstract: We report the deposition by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique of biomimetic nanocrystalline apatite coatings on titanium substrates, with potential application in tissue engineering. The targets were prepared from metastable, nanometric, poorly crystalline apatite powders, analogous to mineral bone, synthesized through a biomimetic approach by double decomposition process. For the deposition of thin films, a KrF* excimer laser source was used (λ = 248 nm, τ{sub FWHM} ≤ 25 ns). The analyses revealed the existence, in synthesized powders, of labile non-apatitic mineral ions, associated with the formation of a hydrated layer at the surface of the nanocrystals. The thin film analyses showed that the structural and chemical nature of the nanocrystalline apatite was prevalently preserved. The perpetuation of the non-apatitic environments was also observed. The study indicated that MAPLE is a suitable technique for the congruent transfer of a delicate material, such as the biomimetic hydrated nanohydroxyapatite.

  4. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

    International Nuclear Information System (INIS)

    Visan, A.; Grossin, D.; Stefan, N.; Duta, L.; Miroiu, F.M.; Stan, G.E.; Sopronyi, M.; Luculescu, C.; Freche, M.; Marsan, O.; Charvilat, C.; Ciuca, S.; Mihailescu, I.N.

    2014-01-01

    Highlights: • We report the deposition by MAPLE of biomimetic apatite coatings on Ti substrates. • This is the first report of MAPLE deposition of hydrated biomimetic apatite films. • Biomimetic apatite powder was synthesized by double decomposition process. • Non-apatitic environments, of high surface reactivity, are preserved post-deposition. • We got the MAPLE complete transfer as thin film of a hydrated, delicate material. -- Abstract: We report the deposition by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique of biomimetic nanocrystalline apatite coatings on titanium substrates, with potential application in tissue engineering. The targets were prepared from metastable, nanometric, poorly crystalline apatite powders, analogous to mineral bone, synthesized through a biomimetic approach by double decomposition process. For the deposition of thin films, a KrF* excimer laser source was used (λ = 248 nm, τ FWHM ≤ 25 ns). The analyses revealed the existence, in synthesized powders, of labile non-apatitic mineral ions, associated with the formation of a hydrated layer at the surface of the nanocrystals. The thin film analyses showed that the structural and chemical nature of the nanocrystalline apatite was prevalently preserved. The perpetuation of the non-apatitic environments was also observed. The study indicated that MAPLE is a suitable technique for the congruent transfer of a delicate material, such as the biomimetic hydrated nanohydroxyapatite

  5. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    Science.gov (United States)

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-08

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  6. Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates

    International Nuclear Information System (INIS)

    Seydel, Johannes; Becker, Michael; Ivers-Tiffee, Ellen; Hahn, Horst

    2009-01-01

    Thin granular yttria-stabilized zirconia (YSZ) electrolyte layers were prepared by chemical vapor synthesis and deposition (CVD/CVS) on a porous substoichiometric lanthanum-strontium-manganite (ULSM) solid oxide fuel cell cathode substrate. The substrate porosity was optimized with a screen printed fine porous buffer layer. Structural analysis by scanning electron microscopy showed a homogeneous, granular nanocrystalline layer with a microstructure that was controlled via reactor settings. The CVD/CVS gas-phase process enabled the deposition of crack-free granular YSZ films on porous ULSM substrates. The electrolyte layers characterized with impedance spectroscopy exhibited enhanced grain boundary conductivity.

  7. Solution-processed nanocrystalline PbS on paper substrate with pencil traced electrodes as visible photodetector

    Science.gov (United States)

    Vankhade, Dhaval; Chaudhuri, Tapas K.

    2018-04-01

    Paper-based PbS photodetector sensitive in the visible spectrum is reported. Nanocrystalline PbS-on-paper devices are fabricated by a spin coating method on white paper (300 GSM) from a methanolic precursor solution. Photodetector cells of gap 0.2 cm and length 0.5 cm are prepared by drawing contacts by monolithic cretacolor 8B pencil. X-ray diffractometer confirmed the deposition of nanocrystalline PbS films with 14 nm crystallites. The SEM illustrated the uniform coating of nanocrystalline PbS thin films on cellulose fibres of papers having an average thickness of fibres are 10 µm. The linear J-V characteristics in dark and under illumination of light using graphite trace on nanocrystalline PbS-on-paper shows good ohmic contact. The resistivity of pencil trace is 30 Ω.cm. Spectral response measurements of photodetector reveal the excellent sensitivity from 400 to 700 nm with a peak at 550 nm. The best responsivity anddetectivity are 0.7 A/W and 1.4 × 1012 Jones respectively. These paper-based low-cost photodetectors devices have fast photoresponse and recovery without baseline deviation.

  8. Radiation influence on properties of nanocrystalline alloy

    International Nuclear Information System (INIS)

    Holkova, D.; Sitek, J.; Novak, P.; Dekan, J.

    2016-01-01

    Our work is focused on the studied of structural changes amorphous and nanocrystalline alloys after irradiation with electrons. For the analysis of these alloy we use two spectroscopic methods: Moessbauer spectroscopy and XRD. Measurements of nanocrystalline (Fe 3 Ni 1 ) 81 Nb 7 B 12 samples before and after electrons irradiation by means of Moessbauer spectroscopy and XRD showed that the electrons causes changes in magnetic structure which is reflected changes of direction of net magnetic moment. Structural changes occurs in the frame of error indicated by both spectroscopic methods. We can confirm that this kind alloys a resistive again electrons irradiation up to doses of 4 MGy. We observed in this frame only beginning of the radiation damage. (authors)

  9. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  10. Solubility of Carbon in Nanocrystalline -Iron

    OpenAIRE

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  11. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  12. Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes

    Science.gov (United States)

    Bogdanowicz, Robert; Sobaszek, Michał; Ficek, Mateusz; Kopiec, Daniel; Moczała, Magdalena; Orłowska, Karolina; Sawczak, Mirosław; Gotszalk, Teodor

    2016-04-01

    Fabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. B-NCD films were deposited using microwave plasma assisted chemical vapour deposition method. The variation in B-NCD morphology, structure and optical parameters was particularly investigated. The use of truncated cone-shaped substrate holder enabled to grow thin fully encapsulated nanocrystalline diamond film with a thickness of approx. 60 nm and RMS roughness of 17 nm. Raman spectra present the typical boron-doped nanocrystalline diamond line recorded at 1148 cm-1. Moreover, the change in mechanical parameters of silicon cantilevers over-coated with boron-doped diamond films was investigated with laser vibrometer. The increase of resonance to frequency of over-coated cantilever is attributed to the change in spring constant caused by B-NCD coating. Topography and electrical parameters of boron-doped diamond films were investigated by tapping mode AFM and electrical mode of AFM-Kelvin probe force microscopy (KPFM). The crystallite-grain size was recorded at 153 and 238 nm for boron-doped film and undoped, respectively. Based on the contact potential difference data from the KPFM measurements, the work function of diamond layers was estimated. For the undoped diamond films, average CPD of 650 mV and for boron-doped layer 155 mV were achieved. Based on CPD values, the values of work functions were calculated as 4.65 and 5.15 eV for doped and undoped diamond film, respectively. Boron doping increases the carrier density and the conductivity of the material and, consequently, the Fermi level.

  13. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  14. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.b [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Souza, S.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Biasi, R.S. de [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2011-04-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 {sup o}C the heat transfer is controlled by crystalline component.

  15. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    International Nuclear Information System (INIS)

    Poffo, C.M.; Lima, J.C. de; Souza, S.M.; Triches, D.M.; Grandi, T.A.; Biasi, R.S. de

    2011-01-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 o C the heat transfer is controlled by crystalline component.

  16. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Aaron Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sarobol, Pylin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diantonio, Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  17. Structural, electrical and optical properties of nanostructured ZrO2 thin film deposited by SILAR method

    Science.gov (United States)

    Salodkar, R. V.; Belkhedkar, M. R.; Nemade, S. D.

    2018-05-01

    Successive Ionic Layer Adsorption and Reaction (SILAR) method has been employed to deposit nanocrystalline ZrO2 thin film of thickness 91 nm onto glass substrates using ZrOCl2.8H2O and NaOH as cationic and anionic precursors respectively. The structural and surface morphological characterizations have been carried out by means of X-ray diffraction and field emission scanning electron microscopy confirms the nanocrystalline nature of ZrO2 thin film. The direct optical band gap and activation energy of the ZrO2 thin film are found to be 4.74 and 0.80eV respectively.

  18. Magnetic behavior of nanocrystalline nickel ferrite

    International Nuclear Information System (INIS)

    Nathani, H.; Gubbala, S.; Misra, R.D.K.

    2005-01-01

    In the previous papers [R.D.K. Misra, A. Kale, R.S. Srivatsava, O. Senkov, Mater. Sci. Technol. 19 (2003) 826; R.D.K. Misra, A. Kale, B. Hooi, J.Th. DeHosson, Mater. Sci. Technol. 19 (2003) 1617; A. Kale, S. Gubbala, R.D.K. Misra, J. Magn. Magn. Mater. 277 (2004) 350; S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Phys. B 348 (2004) 317; R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff, Mater. Sci. Eng. B. 111 (2004) 164], we reported the synthesis, structural characterization and magnetic behavior of nanocrystalline ferrites of inverse and mixed spinel structure made by reverse micelle technique that enabled a narrow particle size distribution to be obtained. In the present paper, the reverse micelle approach has been extended to synthesize nanocrystalline ferrites with varying surface roughness of 8-18 A (the surface roughness was measured by atomic force microscopy) and the magnetic behavior studied by SQUID magnetometer. Two different kinds of measurement were performed: (a) zero-field cooling (ZFC) and field cooling (FC) magnetization versus temperature measurements and (b) magnetization as a function of applied field. The analysis of magnetic measurement suggests significant influence of surface roughness of particles on the magnetic behavior. While the superparamagnetic behavior is retained by the nanocrystalline ferrites of different surface roughness at 300 K, the hysteresis loop at 2 K becomes non-squared and the coercivity increases with increase in surface roughness. This behavior is discussed in terms of broken bonds and degree of surface spin disorder

  19. Preparation and characterization of ZnTe thin films by SILAR method

    International Nuclear Information System (INIS)

    Kale, S.S.; Mane, R.S.; Pathan, H.M.; Shaikh, A.V.; Joo, Oh-Shim; Han, Sung-Hwan

    2007-01-01

    Nanocrystalline zinc telluride (ZnTe) thin films were prepared by using successive ionic layer adsorption and reaction (SILAR) method from aqueous solutions of zinc sulfate and sodium telluride. The films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The synthesized ZnTe thin films were nanocrystalline with densely aggregated particles in nanometer scale and were free from the voids or cracks. The optical band gap energy of the film was found to be thickness dependent. The elemental chemical compositional stoichiometric analysis revealed good Zn:Te elemental ratio of 53:47

  20. Transparent nanocrystalline diamond coatings and devices

    Science.gov (United States)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.