WorldWideScience

Sample records for nanocrystalline iron particles

  1. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron

    International Nuclear Information System (INIS)

    Nie, F L; Zheng, Y F; Wei, S C; Hu, C; Yang, G

    2010-01-01

    Bulk nanocrystalline pure iron rods were fabricated by the equal channel angular pressure (ECAP) technique up to eight passes. The microstructure and grain size distribution, natural immersion and electrochemical corrosion in simulated body fluid, cellular responses and hemocompatibility were investigated in this study. The results indicate that nanocrystalline pure iron after severe plastic deformation (SPD) would sustain durable span duration and exhibit much stronger corrosion resistance than that of the microcrystalline pure iron. The interaction of different cell lines reveals that the nanocrystalline pure iron stimulates better proliferation of fibroblast cells and preferable promotion of endothelialization, while inhibits effectively the viability of vascular smooth muscle cells (VSMCs). The burst of red cells and adhesion of the platelets were also substantially suppressed on contact with the nanocrystalline pure iron in blood circulation. A clear size-dependent behavior from the grain nature deduced by the gradual refinement microstructures was given and well-behaved in vitro biocompatibility of nanocrystalline pure iron was concluded.

  2. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... crystalline iron oxide, which crystallized as a partially oxidized magnetite during heating in argon. After further heat treatment in air, the nanocrystallites are fully converted to maghemite. The particles are superparamagnetic at high temperatures, but the magnetic properties are strongly influenced...

  3. Preparation of nanocrystalline iron-carbon materials as fillers for polymers

    International Nuclear Information System (INIS)

    Narkiewicz, U; Pelech, I; Roslaniec, Z; Kwiatkowska, M; Arabczyk, W

    2007-01-01

    This paper presents a method of preparing nanocrystalline iron-carbon materials which can be applied as fillers for polymers. Nanocrystalline iron samples were carburized either under ethylene/hydrogen mixture or under pure ethylene. Three kinds of samples were prepared: cementite/carbon (Fe 3 C/C), iron/cementite (Fe/Fe 3 C) and iron/carbon (Fe/C) ones. After carburization the samples were characterized using XRD and SEM methods. The obtained samples of iron-carbon nanoparticles were applied as fillers to polymer nanocomposites prepared in a polycondensation reaction (in situ) in a poly(ether-ester) matrix. The nanofillers were dispersed in monomers (diols) using a sonificator and a high-speed rotary stirrer. The obtained nanocomposites were characterized as regards their structure (SEM method) and mechanical behaviour

  4. Theoretical study on recoilless fractions of simple cubic monatomic nanocrystalline particles

    International Nuclear Information System (INIS)

    Huang Jianping; Wang Luya

    2002-01-01

    Recoilless fractions of simple cubic monatomic nanocrystalline particles are calculated by using displacement-displacement Green's function. The numerical results show that the recoilless fractions on the surface of monatomic nanocrystalline particles are smaller than those in the inner, and they decrease when the particle size increase, the recoilless fractions of whole monatomic nanocrystalline particles increase when the particle size increase. These effects are more evident when the temperature is higher

  5. Solubility of Carbon in Nanocrystalline -Iron

    OpenAIRE

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  6. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    Science.gov (United States)

    2016-02-24

    film deposited just like the pick-up of a turn-table music player. The contact pads provide the electrical contacts to the starting and end point of...anisotropy using the geometry of the thin toroid. We have shown experimentally that the thin film toroid calculations may be applicable to up to millimeter...thin film as well as bulk devices. 15. SUBJECT TERMS Micromagnetic Calculations, Nanocrystalline cobalt-iron, Thin Film Toroids 16. SECURITY

  7. Nanocrystalline iron nitride films with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Gupta, Ajay; Dubey, Ranu; Leitenberger, W.; Pietsch, U.

    2008-01-01

    Nanocrystalline α-iron nitride films have been prepared using reactive ion-beam sputtering. Films develop significant perpendicualr magnetic anisotropy (PMA) with increasing thickness. A comparison of x-ray diffraction patterns taken with scattering vectors in the film plane and out of the film plane provides a clear evidence for development of compressive strain in the film plane with thickness. Thermal annealing results in relaxation of the strain, which correlates very well with the relaxation of PMA. This suggests that the observed PMA is a consequence of the breaking of the symmetry of the crystal structure due to the compressive strain

  8. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K.

    Science.gov (United States)

    Wang, S G; Mei, Y; Long, K; Zhang, Z D

    2009-09-17

    The linear thermal expansions (LTE) of bulk nanocrystalline ingot iron (BNII) at six directions on rolling plane and conventional polycrystalline ingot iron (CPII) at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  9. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K

    Directory of Open Access Journals (Sweden)

    Mei Y

    2009-01-01

    Full Text Available Abstract The linear thermal expansions (LTE of bulk nanocrystalline ingot iron (BNII at six directions on rolling plane and conventional polycrystalline ingot iron (CPII at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  10. Optical properties and quantum confinement of nanocrystalline II-IV semiconductor particles

    NARCIS (Netherlands)

    Dijken, Albert van

    1999-01-01

    In this thesis, experiments are described that were performed on suspensions of nanocrystalline II-IV semiconductor particles.The object of this research is to study quantum size effects in relation to the luminescence properties of these particles. A pre-requisite for performing studies of

  11. Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide

    KAUST Repository

    Qamar, Mohd; Merzougui, Belabbes A.; Anjum, Dalaver H.; Hakeem, Abbas Saeed; Yamani, Zain Hassan; Bahnemann, Detlef W.

    2014-01-01

    Synthesis of mesoporous nanocrystalline iron-doped titania following the sol-gel method is presented in this work. Samples with various molar ratios (0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10 and 20%) of Fe to Ti were prepared. The particle size was found

  12. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    Energy Technology Data Exchange (ETDEWEB)

    Toparli, Cigdem [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf (Germany); Ebin, Burçak [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Nuclear Chemistry and Industrial Material Recycling, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, S-412 96 Gothenburg (Sweden); Gürmen, Sebahattin, E-mail: gurmen@itu.edu.tr [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey)

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size. - Highlights: • Ternary FeNiCo alloy nanocrystalline particles were synthesized in a single step. • Cubic crystalline structure and spherical morphology was observed by XRD, SEM and TEM investigations. • The analysis of magnetic properties indicates the soft magnetic features of particles.

  13. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon [Department of Materials Science and Engineering, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of); Song, Min-Jung, E-mail: dslim@korea.ac.kr [Center for Advanced Device Materials, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of)

    2010-12-17

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a {zeta}-potential and average particle size of - 60.5 mV and {approx} 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 {+-} 0.4 x 10{sup 11} cm{sup -2}) and smooth surface were consequently fabricated.

  14. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    International Nuclear Information System (INIS)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon; Song, Min-Jung

    2010-01-01

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a ζ-potential and average particle size of - 60.5 mV and ∼ 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 ± 0.4 x 10 11 cm -2 ) and smooth surface were consequently fabricated.

  15. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  16. In situ Transmission Electron Microscopy He{sup +} implantation and thermal aging of nanocrystalline iron

    Energy Technology Data Exchange (ETDEWEB)

    Muntifering, Brittany, E-mail: brmunti@sandia.gov [Sandia National Laboratories, Albuquerque, NM, 87185 (United States); Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208 (United States); Fang, Youwu [Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208 (United States); Leff, Asher C. [Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104 (United States); Dunn, Aaron [Sandia National Laboratories, Albuquerque, NM, 87185 (United States); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, UMI 2958 Georgia Tech CNRS, 57070, Metz (France); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208 (United States); School of Engineering, Tufts University, Medford, MA, 02155 (United States); Taheri, Mitra L. [Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104 (United States); Dingreville, Remi; Hattar, Khalid [Sandia National Laboratories, Albuquerque, NM, 87185 (United States)

    2016-12-15

    The high density of interfaces in nanostructured materials are hypothesized to improve radiation tolerance compared to coarse-grained materials. In order to investigate the roles of vacancies, self-interstitials, and helium, both room temperature in situ TEM He{sup +} implantation and annealing, as well as high temperature He{sup +} implantation was performed on nanocrystalline iron. Dislocation loops are formed by the accumulation of mobile point defects rather than by displacement cascades at intermediate temperatures. Around 600 °C, loops disappeared through gradual shrinking, which is hypothesized to correspond to the annihilation of self-interstitial atoms by mobile vacancies that also resulted in cavity formation. The room temperature implantation resulted in cavities evenly distributed throughout the grain after annealing, whereas cavities were predominately observed at grain boundaries for the elevated temperature implantation. This difference is associated with the formation of stable helium-vacancy complexes in the grains during room temperature implantation, which is not present during high temperature implantation. - Highlights: • In situ TEM He{sup +} implantation and annealing was performed on nanocrystalline iron. • Small grains limited loop size and resulted in complete disappearance of loops by 600 °C. • Implantation followed by annealing resulted in cavities evenly distributed through grain. • Cavities predominately observed at grain boundaries after He{sup +} implantation at 600 °C.

  17. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  18. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  19. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  20. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  1. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  2. Magnetic properties of nanocrystalline pyrrhotite prepared by high-energy milling

    DEFF Research Database (Denmark)

    Balaz, P.; Godocikova, E.; Alacova, A.

    2004-01-01

    The nanocrystalline pyrrhotite was prepared by high-energy milling of lead sulphide with elemental Fe acting as reducing element. X-ray diffractometry, Mossbauer spectroscopy and VSM magnetometry were used to determine the properties of nanocrystalline iron sulphide prepared by the corresponding...... mechanochemical reaction. Pyrrhotite Fe1-xS together with the residual Fe metal were identified by the X-ray diffractometry. The kinetic studies performed by Mossbauer spectroscopy and VSM magnetometry allowed us to follow in more details the progress of the nanocrystalline magnetic phase formation during...

  3. Study of the lithium insertion-deinsertion mechanism in nanocrystalline γ-Fe2O3 electrodes by means of electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Quintin, M.; Devos, O.; Delville, M.H.; Campet, G.

    2006-01-01

    Lithium intercalation hosts are a key point to the energy density of the largely used LiCoO 2 (even if of high cost and toxicity) as well as of manganese oxides which have been investigated most extensively. Iron oxides are attractive electrode materials for low-voltage rechargeable lithium batteries from both cost and environmental standpoints. However, search for iron oxides of conventional crystalline structures and micrometer particle sizes as lithium intercalation cathodes, has been greeted with disappointing results. Here we report on the synthesis, characterizations, electrochemical study and electrochemical impedance spectroscopy (EIS) of a nanocrystalline γ-Fe 2 O 3 that simultaneously exhibits high lithium insertion capacity and good capacity retention upon cycling. These properties reveal thermodynamics of the nanocrystalline material inherently different from those of its microcrystalline counterpart. Moreover, EIS showed that the intercalation process of the lithium ion occurs according to two processes involving first the reduction of the surface Fe 3+ with concomitant charge neutralization by Li + ions onto the surface defects of the nanoparticle followed by the reduction of the core Fe 3+ with insertion of the Li + deeper in the particle

  4. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  5. Ultrasmall iron particles prepared by use of sodium amalgam

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1990-01-01

    Ultrasmall magnetic particles containing iron have been prepared by reduction of iron ions by the use of sodium in mercury. Mössbauer studies at 12 K show that the magnetic hyperfine field is significantly larger than in bulk alpha-Fe, suggesting that an iron mercury alloy rather than alpha-Fe has...... been formed. The particles exhibit superparamagnetic relaxation above 120 K. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  6. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    Science.gov (United States)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  7. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  8. Magnetic properties of carbonyl iron particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Gorodkin, S R; James, R O; Kordonski, W I

    2009-01-01

    Knowledge of the magnetic properties of dispersed magnetic particles is a prerequisite to the design an MR fluid with desired performance. A term specific susceptibility is introduced for characterization of particle susceptibility. The study was performed with the Bartington MS2B magnetic susceptibility system on small samples volume. Specific magnetic susceptibility of iron particles was found to be a linear function of median particle size. Structural change in the fluid, including particle organization, led to susceptibility drift and may affect fluid performance. It was shown that susceptibility data can be used for evaluation of the concentration of carbonyl iron particles in MR fluids.

  9. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    Science.gov (United States)

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  10. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 ...

    Indian Academy of Sciences (India)

    Abstract. Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route .... is controlled by the iron oxide film in case of alloys with ..... the surface is covered, thus, producing effective protection of.

  11. Iron Mobilization from Particles as a Function of pH and Particle Source

    National Research Council Canada - National Science Library

    Rohrbough, James

    2000-01-01

    .... The work presented here shows the role pH can play in iron mobilization from particles. At low pH, bioavailability of iron can be greatly increased, and can be significantly decreased at higher pH...

  12. The magnetohydrodynamic force experienced by spherical iron particles in liquid metal

    International Nuclear Information System (INIS)

    Ščepanskis, Mihails; Jakovičs, Andris

    2016-01-01

    The paper contains a theoretical investigation of magnetohydrodynamic force experienced by iron particles (well-conducting and ferromagnetic) in well-conducting liquid. The investigation is performed by extending the Leenov and Kolin's theory to take into account the second-order effect. Therefore, the limits of the parent model are taken over to the present results. It is found that the effective conductivity of iron particles in liquid metal, which is important for practical application of the theoretically obtained force, is approximately equal to 1.5·10"6 S/m. The last result is obtained using a quasi-empirical approach – a comparison of experimental results with the results of the numerical simulation that was performed for various conductivities of the iron particles. - Highlights: • We found the expression of an MHD force experienced by a spherical iron particle in a liquid metal taking into account the second order effect additionally to Leenov & Kolin’s theoretical solution. • We found the effective conductivity of an iron particle in a liquid metal in quasi-empirical way equal to 1.5·10"6 S/m. • It is important to use the expression of an MHD force, which takes into account the second-order effect, as well as the correction for effective conductivity of a particle, to describe behaviour of iron particles in liquid metal flows, which are under influence or induced by the Lorentz force.

  13. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa [Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang (Indonesia)

    2016-04-19

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content in the spinach plants was increased when the magnetic nano particles was injected in the growing media.

  14. Enhancement of aspirin capsulation by porous particles including iron hydrous oxide

    International Nuclear Information System (INIS)

    Saito, Kenji; Koishi, Masumi; Hosoi, Fumio; Makuuchi, Keizo.

    1986-01-01

    Polymer-coated porous particles containing aspirin as a drug were prepared and the release of rate of aspirin was studied. The impregnation of aspirin was carried out by post-graft polymerization, where methyl methacrylate containing aspirin was treated with porous particles including iron oxide, pre-irradiated with γ-ray form Co-60. Release of aspirin from modified particles was examined with 50 % methanol solution. The amount of aspirin absorbed in porous particles increased by grafting of methyl methacrylate. The particles treated with iron hydrous oxide sols before irradiation led to the increment of aspirin absorption. Diffusion of aspirin through the polymer matrix and the gelled layer was the limiting process in the aspirin release from particles. The rate of aspirin released from modified particles including iron hydrous oxide wasn't affected by the grafting of methyl methacrylate. (author)

  15. A Study on Removal of Environmental Pollution Materials with Nano-scale Iron Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Ahn, Hong Ju

    2009-07-15

    In this study, a method of nano-sized iron particles with zero valent state was developed. Also, the optimum conditions for the synthesis of silica based micro-particles were obtained for micro particle analysis. Basic physical data for standard particles were obtained in various synthesis conditions for mass production. From the experiment of removal of Pb in the solution with iron particles with zero valent state, most of Pb was removed from the solution over pH 7, as a result of reaction of Pb with iron particles with zero valent state. Nano sized iron particles with zero valent state obtained from this study will be apply for removing heavy metals and radionuclides as well as waste treatment and remediation for contaminated materials in the environment.

  16. Vibrational thermodynamics of Fe90Zr7B3 nanocrystalline alloy from nuclear inelastic scattering

    DEFF Research Database (Denmark)

    Stankov, S.; Miglierini, M.; Chumakov, A. I.

    2010-01-01

    Recently we determined the iron-partial density of vibrational states (DOS) of nanocrystalline Fe(90)Zr(7)B(3) (Nanoperm), synthesized by crystallization of an amorphous precursor, for various stages of nanocrystallization separating the DOS of the nanograins from that of the interfaces [S. Stank......, vibrational entropy, and lattice specific heat as the material transforms from amorphous, through nanocrystalline, to fully crystallized state. The reported results shed new light on the previously observed anomalies in the vibrational thermodynamics of nanocrystalline materials....

  17. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    Energy Technology Data Exchange (ETDEWEB)

    Motozuka, S.; Hayashi, K. [Department of Mechanical Engineering, Gifu National College of Technology, 2236-2 Kamimakuwa, Motosu, Gifu 501-0495 (Japan); Tagaya, M. [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Morinaga, M. [Toyota Physical and Chemical Research Institute, 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2015-09-15

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method.

  18. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    International Nuclear Information System (INIS)

    Motozuka, S.; Hayashi, K.; Tagaya, M.; Morinaga, M.

    2015-01-01

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method

  19. Transformation of Goethite to Hematite Nanocrystallines by High Energy Ball Milling

    Directory of Open Access Journals (Sweden)

    O. M. Lemine

    2014-01-01

    Full Text Available α-Fe2O3 nanocrystallines were prepared by direct transformation via high energy ball milling treatment for α-FeOOH powder. X-ray diffraction, Rietveld analysis, TEM, and vibrating sample magnetometer (VSM are used to characterize the samples obtained after several milling times. Phase identification using Rietveld analysis showed that the goethite is transformed to hematite nanocrystalline after 40 hours of milling. HRTEM confirm that the obtained phase is mostly a single-crystal structure. This result suggested that the mechanochemical reaction is an efficient way to prepare some iron oxides nanocrystallines from raw materials which are abundant in the nature. The mechanism of the formation of hematite is discussed in text.

  20. The electrochemical corrosion of bulk nanocrystalline ingot iron in HCl solutions with different concentrations

    International Nuclear Information System (INIS)

    Wang, S.G.; Sun, M.; Cheng, P.C.; Long, K.

    2011-01-01

    Highlights: → The corrosion resistance of BNII was enhanced in comparison with CPII in 0.1-0.4 mol L -1 solution. → The function work of BNII is 0.47 eV larger that of CPII. → The energy state density of 4s electrons of BNII is 13.73% less than that of CPII. → BNII corrosion resistance was enhanced due to its larger work function and less 4s electrons weight. → The specific adsorption of Cl - on BNII was weaker than that of CPII due to its larger function work. - Abstract: We studied the corrosion properties of bulk nanocrystalline ingot iron (BNII) and conventional polycrystalline ingot iron (CPII) in HCl solutions from 0.1 mol L -1 to 0.4 mol L -1 at room temperature. The corrosion resistance of BNII was enhanced in comparison with CPII. We investigated the surface energy state densities of BNII and CPII with ultra-violet photoelectron spectroscopy. The energy state density of BNII 4s electrons was 13.73% less than that of CPII. The function work of BNII was 0.47 eV larger that of CPII. The corrosion resistance of BNII was enhanced in comparison with CPII due to its less energy state density of 4s electrons, larger work function and weaker Cl - specific adsorption.

  1. Wood smoke particle sequesters cell iron to impact a biological effect.

    Science.gov (United States)

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We te...

  2. Effect of particle size on iron nanoparticle oxidation state

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Lysaght, Andrew C.; Goberman, Daniel G.; Chiu, Wilson K.S.

    2012-01-01

    Selecting catalyst particles is a very important part of carbon nanotube growth, although the properties of these nanoscale particles are unclear. In this article iron nanoparticles are analyzed through the use of atomic force microscopy and x-ray photoelectron spectroscopy in order to understand how the size affects the chemical composition of nanoparticles and thus their physical structure. Initially, atomic force microscopy was used to confirm the presence of iron particles, and to determine the average size of the particles. Next an analytical model was developed to estimate particle size as a function of deposition time using inputs from atomic force microscopy measurement. X-ray photoelectron spectroscopy analysis was then performed with a focus on the spectra relating to the 2p Fe electrons to study the chemical state of the particles as a function of time. It was shown that as the size of nanoparticles decreased, the oxidation state of the particles changed due to a high proportion of atoms on the surface.

  3. Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Sabina Ziemian

    2018-03-01

    Full Text Available The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs. We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol gallic acid polymer and phase transferred to water (SC-SPIONs. Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

  4. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    Science.gov (United States)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  5. Electrochemical passivation behaviour of nanocrystalline Fe 80 Si ...

    Indian Academy of Sciences (India)

    Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route is studied and compared with that of the commercial pure iron and cast Fe80Si20 in sodium borate buffer solution at two different pH values (7.7 and 8.4). The coating reveals single passivation at a pH of 7.7 and ...

  6. Size dependence of the optical spectrum in nanocrystalline silver

    International Nuclear Information System (INIS)

    Taneja, Praveen; Ayyub, Pushan; Chandra, Ramesh

    2002-01-01

    We report a detailed study of the optical reflectance in sputter-deposited, nanocrystalline silver thin films in order to understand the marked changes in color that occur with decreasing particle size. In particular, samples with an average particle size in the 20 to 35 nm range are golden yellow, while those with a size smaller than 15 nm are black. We simulate the size dependence of the observed reflection spectra by incorporating Mie's theory of scattering and absorption of light in small particles, into the bulk dielectric constant formalism given by Ehrenreich and Philipp [Phys. Rev. 128, 1622 (1962)]. This provides a general method for understanding the reflected color of a dense collection of nanoparticles, such as in a nanocrystalline thin film. A deviation from Mie's theory is observed due to strong interparticle interactions

  7. Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Ghosh, B.; Pradhan, S.K.

    2010-01-01

    Nanocrystalline TiC is produced by mechanical milling the stoichiometric mixture of α-Ti and graphite powders at room temperature under argon atmosphere within 35 min of milling through a self-propagating combustion reaction. Microstructure characterization of the unmilled and ball-milled samples was done by both X-ray diffraction and electron microscopy. It reveals the fact that initially graphite layers were oriented along and in the course of milling, thin graphite layers were distributed evenly among the grain boundaries of α-Ti particles. Both α-Ti and TiC lattices contain stacking faults of different kinds. The grain size distribution obtained from the Rietveld's method and electron microscopy studies ensure that nanocrystalline TiC particles with almost uniform size (∼13 nm) can be prepared by mechanical alloying technique. The result obtained from X-ray analysis corroborates well with the microstructure characterization of nanocrystalline TiC by electron microscopy.

  8. Compaction simulation of nano-crystalline metals with molecular dynamics analysis

    Directory of Open Access Journals (Sweden)

    Khoei A.R.

    2016-01-01

    Full Text Available The molecular-dynamics analysis is presented for 3D compaction simulation of nano-crystalline metals under uniaxial compaction process. The nano-crystalline metals consist of nickel and aluminum nano-particles, which are mixed with specified proportions. The EAM pair-potential is employed to model the formation of nano-particles at different temperatures, number of nano-particles, and mixing ratio of Ni and Al nano-particles to form the component into the shape of a die. The die-walls are modeled using the Lennard-Jones inter-atomic potential between the atoms of nano-particles and die-walls. The forming process is model in uniaxial compression, which is simulated until the full-dense condition is attained at constant temperature. Numerical simulations are performed by presenting the densification of nano-particles at different deformations and distribution of dislocations. Finally, the evolutions of relative density with the pressure as well as the stress-strain curves are depicted during the compaction process.

  9. Effects of precursors on the crystal structure and photoluminescence of CdS nanocrystalline

    International Nuclear Information System (INIS)

    Fu Zuoling; Zhou Shihong; Shi Jinsheng; Zhang Siyuan

    2005-01-01

    A series of cadmium sulfide (CdS) nanocrystalline were synthesized by precipitation from a mixture of aqueous solutions of cadmium salts and sulfur salts without adding any surface-termination agent. Their crystal structures and particle sizes were determined by X-ray diffraction (XRD). The CdS nanocrystalline precipitated from different precursors exhibited three cases: cubic phase, hexagonal phase and a hybrid of cubic and hexagonal phases. The photoluminescence (PL) of cadmium salt precursors and CdS nanocrystalline is also analyzed. Similar spectral band structure of cadmium salt precursors and CdS nanocrystalline is found. The PL of 3.4, 2.4 and 2.0 nm sized CdS nanocrystalline with the same crystal structure indicated quantum confinement effect

  10. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-03-31

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.

  11. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  12. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    International Nuclear Information System (INIS)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok; Yoo, Suk Jae; Lee, Bonju; Hong, MunPyo

    2011-01-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  13. Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids

    OpenAIRE

    Sedlačík, M.; Pavlínek, V.; Lehocký, M.; Mráček, A.; Grulich, O.; Švrčinová, P. (Petra); Filip, P. (Petr); Vesel, A.

    2011-01-01

    The aim of this paper is to document suitability of plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids. Surface-modified carbonyl iron particles were prepared via their exposure to 50% argon and 50% octafluorocyclobutane plasma. The X-ray photoelectron spectroscopy was used for analysis of chemical bonding states in the surface layer. Plasma-treated particles were adopted for a dispersed phase in magnetorheological (MR) fluids, and the MR behaviour was in...

  14. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.

    Science.gov (United States)

    Park, Jeong-Ann; Kim, Song-Bae

    2015-10-01

    In this study, batch experiments were performed to examine the adhesion of bacteriophage MS2 to three iron oxide particles (IOP1, IOP2 and IOP3) with different particle properties. The characteristics of MS2 and iron oxides were analyzed using various techniques to construct the classical DLVO and XDLVO potential energy profiles between MS2 and iron oxides. X-ray diffractometry peaks indicated that IOP1 was mainly composed of maghemite (γ-Fe2O3), but also contained some goethite (α-FeOOH). IOP2 was composed of hematite (α-Fe2O3) and IOP3 was composed of iron (Fe), magnetite (Fe3O4) and iron oxide (FeO). Transmission electron microscope images showed that the primary particle size of IOP1 (γ-Fe2O3) was 12.3±4.1nm. IOP2 and IOP3 had primary particle sizes of 167±35nm and 484±192nm, respectively. A surface angle analyzer demonstrated that water contact angles of IOP1, IOP2, IOP3 and MS2 were 44.83, 64.00, 34.33 and 33.00°, respectively. A vibrating sample magnetometer showed that the magnetic saturations of IOP1, IOP2 and IOP3 were 176.87, 17.02 and 946.85kA/m, respectively. Surface potentials measured in artificial ground water (AGW; 0.075mM CaCl2, 0.082mM MgCl2, 0.051mM KCl, and 1.5mM NaHCO3; pH7.6) indicated that iron oxides and MS2 were negatively charged in AGW (IOP1=-0.0185V; IOP2=-0.0194V; IOP3=-0.0301V; MS2=-0.0245V). Batch experiments demonstrated that MS2 adhesion to iron oxides was favorable in the order of IOP1>IOP2>IOP3. This tendency was well predicted by the classical DLVO model. In the DLVO calculations, both the sphere-plate and sphere-sphere geometries predicted the same trend of MS2 adhesion to iron oxides. Additionally, noticeable differences were not found between the DLVO and XDLVO interaction energy profiles, indicating that hydrophobic interactions did not play a major role; electrostatic interactions, however, did influence MS2 adhesion to iron oxides. Furthermore, the aggregation of iron oxides was investigated with a modified XDLVO

  15. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  16. High-pressure structural behaviour of nanocrystalline Ge

    International Nuclear Information System (INIS)

    Wang, H; Liu, J F; He, Y; Wang, Y; Chen, W; Jiang, J Z; Olsen, J Staun; Gerward, L

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition pressure and the bulk modulus

  17. An investigation of the possible influence of particles on the corrosion of iron in a sodium loop

    International Nuclear Information System (INIS)

    Polley, M.V.

    1975-11-01

    At the present time it is not possible to explain why the observed corrosion of iron in sodium loop experiments is so small if currently recommended values of the solubility of iron in sodium are accepted. One possible explanation investigated is that the concentration of dissolved iron in the sodium may be held very close to saturation by the presence of a large number of particles in the sodium. A model for pipe wall and particle mass transfer is presented and a computer programme, which calculates mass transfer rates whilst following the sodium around an iron loop, is described. Dissolved iron is assumed to condense on and dissolve from foreign parent particles present in the sodium since it is shown that homogeneous nucleation of pure iron particles is most unlikely to occur. Mass transfer, to both particles and pipe walls, is assumed to be diffusion controlled. Computed corrosion rates are presented as a function of particle size and number density, showing that corrosion of iron cannot be sufficiently inhibited by the presence of particles to reconcile calculations of iron corrosion rates, based on recommended solubility values, with observed corrosion rates. Alternative explanations of observed iron corrosion phenomena are discussed. (author)

  18. Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brillet, P-Y.; Gazeau, F.; Luciani, A.; Bessoud, B.; Cuenod, C.-A.; Siauve, N.; Pons, J.-N.; Poupon, J.; Clement, O.

    2005-01-01

    This study was designed to compare tumor enhancement by superparamagnetic iron oxide particles, using anionic iron oxide nanoparticles (AP) and ferumoxtran. In vitro, relaxometry and media with increasing complexity were used to assess the changes in r2 relaxivity due to cellular internalization. In vivo, 26 mice with subcutaneously implanted tumors were imaged for 24 h after injection of particles to describe kinetics of enhancement using T1 spin echo, T2 spin echo, and T2 fast spin echo sequences. In vitro, the r2 relaxivity decreased over time (0-4 h) when AP were uptaken by cells. The loss of r2 relaxivity was less pronounced with long (Hahn Echo) than short (Carr-Purcell-Meiboom-Gill) echo time sequences. In vivo, our results with ferumoxtran showed an early T2 peak (1 h), suggesting intravascular particles and a second peak in T1 (12 h), suggesting intrainterstitial accumulation of particles. With AP, the late peak (24 h) suggested an intracellular accumulation of particles. In vitro, anionic iron oxide nanoparticles are suitable for cellular labeling due to a high cellular uptake. Conversely, in vivo, ferumoxtran is suitable for passive targeting of tumors due to a favorable biodistribution. (orig.)

  19. Graphitic encapsulation of MgO and Fe3C nanoparticles in the reaction of iron pentacarbonyl with magnesium

    International Nuclear Information System (INIS)

    Dyjak, Sławomir; Cudziło, Stanisław; Polański, Marek; Budner, Bogusław; Bystrzycki, Jerzy

    2013-01-01

    A simple method to produce highly ordered carbon nanostructures by combustion synthesis is presented. Graphite-encapsulated magnesium oxide, iron carbide nanoparticles and carbon nanobelts were synthesized by the one-step reduction of iron pentacarbonyl with magnesium. High-resolution transmission electron microscopy analysis of the products revealed nanocrystalline MgO and Fe 3 C particles surrounded by a well-crystallized, tight graphite film. The possible formation mechanism is presented and discussed. - Highlights: • We present a simple method to produce highly ordered carbon nanostructures by combustion synthesis. • The cubic MgO particles are completely coated by tight graphitic shells. • The mechanism of formation a distant carbon film on MgO surface has been discussed. • The presented method can be applied to synthesis of other core-shell structures

  20. Effect of carbonyl iron particles composition on the physical characteristics of MR grease

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Norzilawati, E-mail: mnorzilawati@gmail.com; Mazlan, Saiful Amri, E-mail: amri.kl@utm.my [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Ubaidillah, E-mail: ubaidillah@uns.ac.id [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta, 57126, Central Java, Surakarta (Indonesia)

    2016-03-29

    Magnetorheological (MR) grease is an extension of the study of magnetorheological materials. The MR grease can help to reduce the particles sedimentation problem occurred in the MR fluids. Within this study, an effort has been taken to investigate the effect of different weight compositions of carbonyl iron particles on the physical and chemical characteristics of the MR grease under off-state condition (no magnetic field). The MR grease is prepared by mixing carbonyl iron particles having a size range of 1 to 10 µm with commercial NPC Highrex HD-3 grease. Characterizations of MR grease are investigated using Vibrating Sample Magnetometer (VSM), Environmental Scanning Electron Microscopy (ESEM), Differential Scanning Calorimeter (DSC) and rheometer. The dependency of carbonyl iron particles weight towards the magnetic properties of MR grease and other characterizations are investigated.

  1. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    Science.gov (United States)

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  2. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  3. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites

    International Nuclear Information System (INIS)

    Taghvaei, A.H.; Shokrollahi, H.; Janghorban, K.; Abiri, H.

    2009-01-01

    This work investigates the magnetic properties of iron-phosphate-polyepoxy soft magnetic composite materials. FTIR spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. In this paper, a formula for calculating the eddy current loss and total loss components by loss separation method is presented and finally the different parts of power losses are calculated. The results show that, the contribution of eddy current in the bulk material for single coating layer (k b = 0.18) is higher in comparison with double coating layer (k b = 0.09). Moreover, iron-phosphate-polyepoxy composites (P = 0.000004f 2 ) have lower power loss in comparison with iron-phosphate composites (P = 0.00002f 2 ).

  4. The Formation of Lithiated Ti-Doped α-Fe2O3 Nanocrystalline Particles by Mechanical Milling of Ti-Doped Lithium Spinel Ferrite

    International Nuclear Information System (INIS)

    Widatallah, H. M.; Gismelseed, A. M.; Bouziane, K.; Berry, F. J.; Al Rawas, A. D.; Al-Omari, I. A.; Yousif, A. A.; Elzain, M. E.

    2004-01-01

    The milling of spinel-related Ti-doped Li 0.5 Fe 2.5 O 4 for different times is studied with XRD, Moessbauer spectroscopy and magnetic measurements. Milling converts the material to Li-Ti-doped α-Fe 2 O 3 nanocrystalline particles via an intermediate γ-LiFeO 2 -related phase. The role played by the dopant Ti-ion in the process is emphasized.

  5. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  6. High-pressure structural behavior of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, H.; Liu, J. F.; Yan, H.

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transi...

  7. Magnetic behavior of nanocrystalline nickel ferrite

    International Nuclear Information System (INIS)

    Nathani, H.; Gubbala, S.; Misra, R.D.K.

    2005-01-01

    In the previous papers [R.D.K. Misra, A. Kale, R.S. Srivatsava, O. Senkov, Mater. Sci. Technol. 19 (2003) 826; R.D.K. Misra, A. Kale, B. Hooi, J.Th. DeHosson, Mater. Sci. Technol. 19 (2003) 1617; A. Kale, S. Gubbala, R.D.K. Misra, J. Magn. Magn. Mater. 277 (2004) 350; S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Phys. B 348 (2004) 317; R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff, Mater. Sci. Eng. B. 111 (2004) 164], we reported the synthesis, structural characterization and magnetic behavior of nanocrystalline ferrites of inverse and mixed spinel structure made by reverse micelle technique that enabled a narrow particle size distribution to be obtained. In the present paper, the reverse micelle approach has been extended to synthesize nanocrystalline ferrites with varying surface roughness of 8-18 A (the surface roughness was measured by atomic force microscopy) and the magnetic behavior studied by SQUID magnetometer. Two different kinds of measurement were performed: (a) zero-field cooling (ZFC) and field cooling (FC) magnetization versus temperature measurements and (b) magnetization as a function of applied field. The analysis of magnetic measurement suggests significant influence of surface roughness of particles on the magnetic behavior. While the superparamagnetic behavior is retained by the nanocrystalline ferrites of different surface roughness at 300 K, the hysteresis loop at 2 K becomes non-squared and the coercivity increases with increase in surface roughness. This behavior is discussed in terms of broken bonds and degree of surface spin disorder

  8. Imaging pathobiology of carotid atherosclerosis with ultrasmall superparamagnetic particles of iron oxide: an update.

    Science.gov (United States)

    Sadat, Umar; Usman, Ammara; Gillard, Jonathan H

    2017-07-01

    To provide brief overview of the developments regarding use of ultrasmall superparamagnetic particles of iron oxide in imaging pathobiology of carotid atherosclerosis. MRI is a promising technique capable of providing morphological and functional information about atheromatous plaques. MRI using iron oxide particles, called ultrasmall superparamagnetic iron oxide (USPIO) particles, allows detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, which has an excellent safety profile. Based on the macrophage-selective properties of ferumoxytol, there is increasing number of recent reports suggesting its effectiveness to detect pathological inflammation. USPIO particles allow magnetic resonance detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, with an excellent safety profile. This has the potential to be used for MRI of the pathobiology of atherosclerosis.

  9. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  10. Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility

    OpenAIRE

    Oakes, M.; Weber, R. J.; Lai, B.; Russell, A.; Ingall, E. D.

    2012-01-01

    Soluble iron in fine atmospheric particles has been identified as a public health concern by participating in reactions that generate reactive oxygen species (ROS). The mineralogy and oxidation state (speciation) of iron have been shown to influence fractional iron solubility (soluble iron/total iron). In this study, iron speciation was determined in single particles at urban and rural sites in Georgia USA using synchrotron-based techniques, such as X-ray Absorption Near-Edge Structure (XANES...

  11. Magnetodielectric coupling in multiferroic holmium iron garnets

    International Nuclear Information System (INIS)

    Malar Selvi, M.; Chakraborty, Deepannita; Venkateswaran, C.

    2017-01-01

    Single phase magneto-electric multiferroics require a large magnetic or electric field for producing magneto-electric (ME) and magnetodielectric (MD) effects. For utilizing these effects in devices investigations on the room temperature and low field MD studies are necessary. Recently, efforts have been largely devoted to the investigation of rare earth iron garnets. In the physical method, the preparation of rare earth iron garnet requires high sintering temperature and processing time. To solve these problems, ball milling assisted microwave sintering technique is used to prepare nanocrystalline holmium iron garnets (Ho_3Fe_5O_1_2). Magnetic and dielectric properties of the prepared sample are investigated. These properties get enhanced in nanocrystalline form when compared to the bulk. The MD coupling of the prepared sample is evident from the anomaly in the temperature dependent dielectric constant plot and the ME coupling susceptibility is derived from the room temperature MD measurements. - Highlights: • Formation of single phase Holmium iron garnet reported. • Ball milling assisted microwave sintering reduces the sintering temperature and time. • Holmium iron garnet shows enhanced magnetic and dielectric properties. • Pyromagnetic and pyroelectric measurements confirm the magnetoelectric coupling. • Room temperature magnetodielectric measurements show the nonlinear behaviour.

  12. In vitro neurotoxic effects of 1 GeV/n iron particles assessed in retinal explants.

    Science.gov (United States)

    Vazquez, M E; Kirk, E

    2000-01-01

    The heavy ion component of the cosmic radiation remains problematic to the assessment of risk in manned space flight. The biological effectiveness of HZE particles has yet to be established, particularly with regard to nervous tissue. Using heavy ions accelerated at the AGS of Brookhaven National Laboratory, we study the neurotoxic effects of iron particles. We exposed retinal explants, taken from chick embryos, to determine the dose response relationships for neurite outgrowth. Morphometric techniques were used to evaluate the in vitro effects of 1 GeV/a iron particles (LET 148 keV/micrometer). Iron particles produced a dose-dependent reduction of neurite outgrowth with a maximal effect achieved with a dose of 100 cGy. Doses as low as 10-50 cGy were able to induce reductions of the neurite outgrowth as compared to the control group. Neurite generation is a more sensitive parameter than neurite elongation, suggesting different mechanism of radiation damage in our model. These results showed that low doses/fluences of iron particles could impair the retinal ganglion cells' capacity to generate neurites indicating the highly neurotoxic capability of this heavy charged particle.

  13. Electrochromic devices based on wide band-gap nanocrystalline semiconductors functionalized with mononuclear charge transfer compounds

    DEFF Research Database (Denmark)

    Biancardo, M.; Argazzi, R.; Bignozzi, C.A.

    2006-01-01

    A series of ruthenium and iron mononuclear complexes were prepared and their spectroeletrochemical behavior characterized oil Optically Transparent Thin Layer Electrodes (OTTLE) and on Fluorine Doped SnO2 (FTO) conductive glasses coated with Sb-doped nanocrystalline SnO2. These systems display a ...

  14. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  15. Characterization of nano-crystalline ZrO{sub 2} synthesized via reactive plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Ananthapadmanabhan, P.V. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020 India (India); Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Su, L.T.; Tok, A.I.Y.; Guo, J. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2011-07-25

    Highlights: > Direct conversion of micron-sized zirconium hydride powder to nanocrystalline ZrO{sub 2} powder. > The experimental approach uses reactive plasma processing technique. > The product has been characterized by various analytical tools to support the findings. - Abstract: Nano-crystalline ZrO{sub 2} powder has been synthesized via reactive plasma processing. The synthesized ZrO{sub 2} powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and FTIR spectroscopy. The synthesized powder consists of a mixture of tetragonal and monoclinic phases of zirconia. Average crystallite size calculated from the XRD pattern shows that particles with crystallite size 20 nm or less than 20 nm are in tetragonal phase, whereas particles greater than 20 nm are in the monoclinic phase. TEM results show that particles have spherical morphology with maximum percentage of particles distributed in a narrow size from about 15 nm to 30 nm.

  16. A study of the initiator concentration’s effect on styrene-divinylbenzene polymerization with iron particles

    Directory of Open Access Journals (Sweden)

    Bárbara M. da Conceição

    2011-01-01

    Full Text Available This paper describes the preparation of magnetic copolymer obtained from suspension polymerization of styrene (Sty and divinylbenzene (DVB in the presence of iron particles treated and not treated with oleic acid. The magnetic copolymers were characterized according to their morphology, particle size distribution and magnetic properties. The results show that incorporation of iron particles significantly changed the particles’ morphology. All samples presented higher saturation magnetization than the values reported in the literature and the particle size distribution was more monodisperse when the polymerization was conducted with 5%wt of benzoyl peroxide (BPO.

  17. Magnetic particles extracted from manganese nodules: Suggested origin from stony and iron meteorites

    Science.gov (United States)

    Finkelman, R.B.

    1970-01-01

    On the basis of x-ray diffraction and electron microprobe data, spherical and ellipsoidal particles extracted from manganese nodules were divided into three groups. Group I particles are believed to be derived from iron meteorites, and Group II particles from stony meteorites. Group III particles are believed to be volcanic in origin.

  18. Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Tan Weiwei; Yin Xiong; Zhou Xiaowen; Zhang Jingbo; Xiao Xurui; Lin Yuan

    2009-01-01

    Nanocrystalline TiO 2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 deg. C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO 2 , which plays an important role in improving the interconnection between TiO 2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO 2 films. The cell performance was further optimized by designing nanocrystalline TiO 2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm -2 (AM 1.5) simulated sunlight.

  19. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    Science.gov (United States)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  20. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, R.P.M.; van der Tol, P.; Hectors, S.J.C.G.; Starmans, L.W.E.; Nicolaij, K.; Strijkers, G.J.

    2015-01-01

    Purpose To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. Methods In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ. These comprise T1ρ and

  1. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, Rik P. M.; van der Tol, Pieternel; Hectors, Stefanie J. C. G.; Starmans, Lucas W. E.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ . These comprise T1ρ and T2 measurements

  2. Iron speciation of airborne subway particles by the combined use of energy dispersive electron probe X-ray microanalysis and Raman microspectrometry.

    Science.gov (United States)

    Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un

    2013-11-05

    Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.

  3. Effect of Iron-Containing Intermetallic Particles on the Corrosion Behaviour of Aluminium

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2006-01-01

    The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples...... with {100} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of "pure" 99.96% Al is thus dominated by the role of iron, which is the main impurity, and its electrochemical...... that had been subsequently annealed to promote precipitation of Al3Fe intermetallic particles, it was found that annealing increases both the cathodic and anodic reactivity. The increased cathodic reactivity is believed to be directly related to the increased available surface area of the iron...

  4. Synthesis and luminescence properties of nanocrystalline LiF:Mg,Cu,P phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sahare, P.D., E-mail: pdsahare@physics.du.ac.i [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Bakare, J.S. [SSGM College of Engineering, Amravati University, Shegaon 444 203, Maharashtra (India); Dhole, S.D. [Department of Physics, University of Pune, Ganeshkhind, Pune 411 007 (India); Ingale, N.B. [Department of Physics, Professor Ram Meghe Institute of Technology and Research, Badnera-Amravati 444 605, Maharashtra (India); Rupasov, A.A. [P. N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr-t 53, Moscow (Russian Federation)

    2010-02-15

    Nanocrystalline LiF:Mg,Cu,P phosphor material of different shapes and sizes (microcrystalline cubic shape, nanorod shape and nanocrystalline cubical shaped) have been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and other dosimetric characteristics of the phosphor are studied and presented here. The formation of the materials was confirmed by the X-ray diffraction (XRD). Its shapes and sizes were also observed using scanning electron microscope (SEM). The TL glow curve of the microcrystalline powder shows a prominent single peak at 408 K along with another peak of lesser intensity at around 638 K. On the contrary, the nanocrystalline rod shaped particles show a peak of low intensity at 401 K and a prominent peak around 700 K while the nanocrystalline particles in cubical shapes again show two peaks, one at around 407 K and the other at around 617 K, of which the lower temperature (407 K) peak is more prominent. The glow curve structure changes at very high doses (100 kRad) and some new peaks appear at around 525 and 637 K also the first peak appearing at around 401 K becomes prominent. The observed changes in TL due to the change in the shape and sizes of the nanophosphor have been reported. The PL has also been studied and various excitation and emission peaks observed due to the presence of various impurities are explained. The observed results have been explained in the light of asymmetrical crystal field effects due to asymmetrical shapes of the nanocrystalline phosphor. The comparison of these properties with the microcrystalline material prepared by the same co-precipitation method is also done.

  5. Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method

    International Nuclear Information System (INIS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-01-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn–Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol–gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn–Zn ferrites. Mn–Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn–Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn–Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability. - Highlights: ► Uniformly coated Mn–Zn ferrite powder increased the operating frequency of SMCs. ► Compared with epoxy coated, the permeability of SMCs increased by 33.5% at 10 kHz. ► 400 °C is the optimum annealing temperature to attain the desired permeability.

  6. The utilization of mechanochemistry in the extractive metallurgy and at the nanocrystalline materials preparation

    Directory of Open Access Journals (Sweden)

    Boldižárová Eva

    2002-03-01

    Full Text Available The possibility of the application of mechanochemistry in the extractive metallurgy and the nanocrystalline materials preparation is studied. The aim of the experiments is the chloride leaching of a complex sulphidic CuPbZn concentrate (Hodruša-Hámre, the modification of properties of CaCO3 (Yauli, Peru for zinc sorption from model solutions and the mechanochemical reduction of copper sulphide by elemental iron.The chloride leaching of mechanically activated complex sulphidic CuPbZn concentrate is a selective process. While the recoveries of copper, lead and zinc are 65-85 %, the recoveries of silver and gold are less than 7 % and 2 %, respectively.The positive influence of CaCO3 mechanical activation for zinc sorption from ZnSO4 solution was observed. While only 58 % of zinc sorption was determined after 30 minutes for a non-activated sample, 98 % of zinc sorption was determined after 3 minutes sorption for the sample mechanically activated for 15 minutes.By the mechanochemical reduction of copper sulphide with iron, nanocrystalline copper and iron sulphide are formed. This reaction is an example of the new “solid state technology“, where chemical processes in the gaseous and liquid states are excluded.The results can serve as a contribution to the optimization of copper, lead and zinc extraction from complex sulphidic concentrates, the increase of non-ferrous metals sorption efficiency on mineral sorbents as well as to the nanocrystalline copper preparation.The application of mechanical activation has grown in the laboratory research. The Institute of Geotechnics of SAS has also achieved significant theoretical results in study of mechanical activation of sulphides and their reactivity in the different solid-phase reactions with the effect on industrial applications. The Institute has developed the technology of mechanochemical leaching (process MELT which was successfully tested in a pilot plant unit.

  7. The Formation of Lithiated Ti-Doped {alpha}-Fe{sub 2}O{sub 3} Nanocrystalline Particles by Mechanical Milling of Ti-Doped Lithium Spinel Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hisham@ictp.trieste.it [Khartoum University, Department of Physics (Sudan); Gismelseed, A. M.; Bouziane, K. [Sultan Qaboos University, Department of Physics (Oman); Berry, F. J. [Open University, Department of Chemistry (United Kingdom); Al Rawas, A. D.; Al-Omari, I. A.; Yousif, A. A.; Elzain, M. E. [Sultan Qaboos University, Department of Physics (Oman)

    2004-12-15

    The milling of spinel-related Ti-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} for different times is studied with XRD, Moessbauer spectroscopy and magnetic measurements. Milling converts the material to Li-Ti-doped {alpha}-Fe{sub 2}O{sub 3} nanocrystalline particles via an intermediate {gamma}-LiFeO{sub 2}-related phase. The role played by the dopant Ti-ion in the process is emphasized.

  8. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    Energy Technology Data Exchange (ETDEWEB)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Tomašević-Ilić, Tijana D., E-mail: tommashev@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Zarubica, Aleksandra R., E-mail: zarubica2000@yahoo.com [Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš (Serbia); Dimitrijević, Suzana, E-mail: suzana@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Budimir, Milica D., E-mail: mickbudimir@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Vranješ, Mila R., E-mail: mila@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Šaponjić, Zoran V., E-mail: saponjic@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2014-12-15

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical and morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.

  9. MR imaging of abscess by use of lipid-coated iron oxide particles

    International Nuclear Information System (INIS)

    Chan, T.W.; Eley, C.G.S.; Kressel, H.Y.

    1990-01-01

    The authors of this paper investigate the potential application of lipid-coated iron oxide particles as an MR contrast agent for imaging inflammatory process by using a rat subcutaneous abscess model induced by turpentine. Ten male Sprague-Dawley rats received subcutaneous injections of 0.1 mL of turpentine in the flank. At 24-36 hours later, the rats developed a subcutaneous abscess of 1-1.8 cm. An intravenous injection of lipid-coated iron oxide particles, Ferrosome (Vestar) at doses of 25, 40, 100, 200 μg/kg was administered. The animals were imaged at 12-24 hours later on a 1.5-T magnet using a 3-inch (7.62-cm) surface coil. Two animals were also imaged 5 days later. T1-weighted, T2-weighted, and multiplanar gradient-recalled (MPGR) sequences were obtained. The abscess was then excised and examined with routine H-E and iron staining

  10. Study of self-diffusion of Fe in nanocrystalline FeNZr alloys using nuclear resonance reflectivity from isotopic multilayers

    International Nuclear Information System (INIS)

    Gupta, Ajay; Chakravarty, Sajoy; Gupta, Mukul; Horisberger, M.; Rueffer, Rudolf; Wille, Hans-Christian; Leupold, Olaf

    2005-01-01

    It is demonstrated that nuclear resonance reflectivity from isotopic multilayers can be used to do accurate measurements of self diffusion of iron in thin film samples. Diffusion lengths down to ∼ 1A 0 can be measured. The technique has been used to measure the self-diffusion of iron in FeNZr nanocrystalline alloys. The activation energy for self-diffusion of iron is found to be 0.8% ± 0.01 eV while the pre-exponential factor is 3.54 x 10 13 m 2 /s. (author)

  11. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  12. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    Science.gov (United States)

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  13. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo, E-mail: thilo.hofmann@univie.ac.at

    2016-09-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  14. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    International Nuclear Information System (INIS)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo

    2016-01-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  15. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  16. In Vitro Biocompatibility of Nanoscale Zerovalent Iron Particles (NZVI) Synthesized using tea-polyphenols.

    Science.gov (United States)

    A “green” protocol was used for the rapid generation of nanoscale zerovalent iron (NZVI) particles using tea polyphenols. The NZVI particles were subsequently examined for in vitro biocompatibility using the human keratinocyte cell (HaCaT) line as a skin exposure model. The cell...

  17. Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity.

    Science.gov (United States)

    Schneider, J J; Czap, N; Hagen, J; Engstler, J; Ensling, J; Gütlich, P; Reinoehl, U; Bertagnolli, H; Luis, F; de Jongh, L J; Wark, M; Grubert, G; Hornyak, G L; Zanoni, R

    2000-12-01

    Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. Mössbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the Mössbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From Mössbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active

  18. Nanocrystalline functional materials and nanocomposites synthesis through aerosol routes

    Directory of Open Access Journals (Sweden)

    Milošević Olivera B.

    2003-01-01

    Full Text Available This paper represents the results of the design of functional nanocrystalline powders and nanocomposites using chemical reactions in aerosols. The process involves ultrasonic aerosol formation (mist generators with the resonant frequencies of 800 kHz, 1.7 and 2.5 MHz from precursor salt solutions and control over the aerosol decomposition in a high-temperature tubular flow reactor. During decomposition, the aerosol droplets undergo evaporation/drying, precipitation and thermolysis in a single-step process. Consequently, spherical, solid, agglomerate-free submicronic particles are obtained. The particle morphology, revealed as a composite structure consisting of primary crystallites smaller than 20 nm was analysed by several methods (XRD, DSC/DTA, SEM, TEM and discussed in terms of precursor chemistry and process parameters. Following the initial attempts, a more detailed aspect of nanocrystalline particle synthesis was demonstrated for the case of nanocomposites based on ZnO-MeO (MeO=Bi Cr+, suitable for electronic applications, as well as an yttrium-aluminum base complex system, suitable for phosphorus applications. The results imply that parts of the material structure responsible for different functional behaviour appear through in situ aerosol synthesis by processes of intraparticle agglomeration, reaction and sintering in the last synthesis stage.

  19. NMR relaxation induced by iron oxide particles: testing theoretical models.

    Science.gov (United States)

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  20. Evaluation of iron oxide nanoparticle micelles for Magnetic Particle Imaging (MPI) of thrombosis

    NARCIS (Netherlands)

    Starmans, L.W.E.; Moonen, R.P.M.; Aussems-Custers, E.; Daemen, M.J.A.P.; Strijkers, G. J.; Nicolay, K.; Grüll, H.

    2015-01-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality that directly visualizes magnetic particles in a hot-spot like fashion. We recently developed an iron oxide nanoparticle-micelle (ION-Micelle) platform that allows highly sensitive MPI. The goal of this study was to assess the

  1. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  2. On preparation of nanocrystalline chromites by co-precipitation andautocombustion methods

    Czech Academy of Sciences Publication Activity Database

    Matulková, Irena; Holec, Petr; Pacáková, Barbara; Kubíčková, Simona; Mantlíková, Alice; Plocek, Jiří; Němec, I.; Nižňanský, D.; Vejpravová, Jana

    2015-01-01

    Roč. 195, May (2015), s. 66-73 ISSN 0921-5107 R&D Projects: GA ČR GAP108/10/1250 Institutional support: RVO:68378271 ; RVO:61388980 Keywords : transition metal chromites * nanocrystalline particles * microstructural analysis * vibrational spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.331, year: 2015

  3. Synthesis and electrical conductivity of nanocrystalline tetragonal FeS

    International Nuclear Information System (INIS)

    Zeng Shu-Lin; Wang Hui-Xian; Dong Cheng

    2014-01-01

    A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c = 0.5037 nm, as revealed by X-ray diffraction. The sample consists of flat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Influence of particle size of wear metal on the spectrometric oil analysis programme (SOAP), demonstrated by the determination of iron by AAS

    Energy Technology Data Exchange (ETDEWEB)

    Klaegler, S.H.; Jantzen, E.

    1982-02-01

    The possibility that there might be a relation between particle size of wear metal and spectrometric determination, (e.g. of the iron content in used lubricating oils) has been examined. In this connection it had to be clarified from which particle size of the iron wear the Fe content determined by direct AAS (solution of the oil sample) is in agreement with the true value in the used oil. The determination of the absolute iron content was performed by a colorimetric method preceded by an incineration of the used oil. Contrary to other publications, in which work is based on spherical iron particles as a simulated wear, the test described here relates to true wear particles. To obtain the total iron wear from a gear oil it was filtered off from the used oil and afterwards separated into defined particle size ranges by a procedure specially developed for this purpose. The different groups of scaly particles, which were collected in this way, were then mixed homogeneously into fresh luboil samples according to their sizes. The determination of the iron content from these newly mixed luboil samples was carried out 1. by direct AAS, 2. by AAS after incineration of the oil samples and 3. by a colorimetric method (to obtain the absolute value of the iron content). The results showed a recovery of the iron of only 50% if the wear particles were bigger than about 2 ..mu..m. That means that the true value of the iron content in a used lubricating oil is found by direct AAS only if the particle size is <=1 ..mu..m.

  5. Ecotoxicity of nanoscale zero-valent iron particles – a review

    Directory of Open Access Journals (Sweden)

    José Tomás Albergaria

    2013-11-01

    Full Text Available The use of nanoscale zero-valent iron particles (nZVIs in the environmental remediation of water and soil is increasing. This increase is related to the higher reactivity and mobility of nZVIs compared with that of macro- or micro-sized iron particles. The introduction of nZVIs into the environment raises concerns related to their fate and effect on aquatic and terrestrial biota. Knowledge of these issues will allow a better understanding not only of the remediation process but also of the long-term effects and impact of nZVIs on ecosystems, leading to a safer and more efficient application of these particles. This paper presents the current state of play concerning the toxic effects of nZVIs on organisms at different stages of the food chain. The majority of studies show that nZVIs have a negative impact on bacteria, aquatic invertebrates, such as Daphnia mag-na, terrestrial organisms, such as Eisenia fetida, and seed germination. However, the number of published studies related to this issue is clearly insufficient. This reinforces the need for further research in order to specify the toxic concentrations of nZVIs that affect the most important target organisms. Furthermore, an evaluation of the effects of the coating of nanoparticles should also be pursued

  6. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    International Nuclear Information System (INIS)

    Zhang Lijie; Webster, Thomas J; Rodriguez, Jose; Raez, Jose; Myles, Andrew J; Fenniri, Hicham

    2009-01-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml -1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  7. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, P; Mukherjee, P K; Kale, S P [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Roy, M; Mandal, B P; Tyagi, A K [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dey, G K [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ghatak, J [Institute of Physics, Bhubaneswar 751005 (India)], E-mail: sharadkale@gmail.com

    2008-02-20

    A controlled and up-scalable biosynthetic route to nanocrystalline silver particles with well-defined morphology using cell-free aqueous filtrate of a non-pathogenic and commercially viable biocontrol agent Trichoderma asperellum is being reported for the first time. A transparent solution of the cell-free filtrate of Trichoderma asperellum containing 1 mM AgNO{sub 3} turns progressively dark brown within 5 d of incubation at 25 deg. C. The kinetics of the reaction was studied using UV-vis spectroscopy. An intense surface plasmon resonance band at {approx}410 nm in the UV-vis spectrum clearly reveals the formation of silver nanoparticles. The size of the silver particles using TEM and XRD studies is found to be in the range 13-18 nm. These nanoparticles are found to be highly stable and even after prolonged storage for over 6 months they do not show significant aggregation. A plausible mechanism behind the formation of silver nanoparticles and their stabilization via capping has been investigated using FTIR and surface-enhanced resonance Raman spectroscopy.

  8. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum

    International Nuclear Information System (INIS)

    Mukherjee, P; Mukherjee, P K; Kale, S P; Roy, M; Mandal, B P; Tyagi, A K; Dey, G K; Ghatak, J

    2008-01-01

    A controlled and up-scalable biosynthetic route to nanocrystalline silver particles with well-defined morphology using cell-free aqueous filtrate of a non-pathogenic and commercially viable biocontrol agent Trichoderma asperellum is being reported for the first time. A transparent solution of the cell-free filtrate of Trichoderma asperellum containing 1 mM AgNO 3 turns progressively dark brown within 5 d of incubation at 25 deg. C. The kinetics of the reaction was studied using UV-vis spectroscopy. An intense surface plasmon resonance band at ∼410 nm in the UV-vis spectrum clearly reveals the formation of silver nanoparticles. The size of the silver particles using TEM and XRD studies is found to be in the range 13-18 nm. These nanoparticles are found to be highly stable and even after prolonged storage for over 6 months they do not show significant aggregation. A plausible mechanism behind the formation of silver nanoparticles and their stabilization via capping has been investigated using FTIR and surface-enhanced resonance Raman spectroscopy

  9. Evaluation of biological activities of nanocrystalline zirconia synthesis via combustion method

    International Nuclear Information System (INIS)

    Thakare, V.G.; Omanwar, S.K.; Bhatkar, V.B.; Wadegaokar, P.A.

    2016-01-01

    The objective of the following study was synthesis of nanocrystalline zirconia by modified solution combustion synthesis method and evaluation of its structural and biological properties. The sample was characterized by powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and evaluated for cytotoxicity study using 3T3 mouse fibroblast cells, the antibacterial property are investigated by spread plate method against E. coli bacterial pathogen and studied for degradation using phosphate buffered saline (PBS) solution. The XRD pattern shows that the monoclinic phase of nanocrystalline zirconia was obtained. The FESEM images showed that the prepared sample consists of particles in the range of 45 nm and homogenous particle size distribution. The sample of zirconia has excellent tissue biocompatibility and does not show any toxicity towards normal 3T3 mouse fibroblast cells. It also inhibited the bacterial growth. The sample shows stability at physiological condition and does not show degradation. (author)

  10. Critical currents and fields of disordered nanocrystalline superconductors

    International Nuclear Information System (INIS)

    Yavary, H.; Shahzamanian, M.A.; Rabbani, H.

    2007-01-01

    Full text: There is an enormous effort directed at increasing the upper critical field of the superconducting materials because this upper critical field provides a fundamental limit to the maximum field a magnet system can produce. High-energy particle accelerators and medical resonance imaging body scanners are limited by the for NbTi (10 T). Gigahertz class nuclear-magnetic-resonance and high field laboratory magnets are limited by for Nb 3 Sn (23 T) [1]. However, the values of critical current density are too low for industrial use, possibly because of degraded or nonsuperconducting phases, such as MoS 2 or Mo 2 S 3 , at the grain boundaries or because the pinning site density is not high enough. It has long been known that decreasing the grain size of low-temperature superconducting (LTS) materials, such as Nb 3 Sn, increases the density of flux pinning sites and hence. Nanocrystalline materials are characterized by ultrafine grains and a high density of grain boundaries [2]. Hence nanocrystalline materials can exhibit unusual physical, chemical, and mechanical properties with respect to conventional polycrystalline materials. The purpose of this paper is to investigate the structure of currents and fields in disordered nanocrystalline superconducting materials by the use of quasiclassical many body techniques. The Keldish Greens functions are used to calculate the current density of the system. Since the disorder and microstructure of these nanocrystalline materials are on a sufficiently short length scale as to increase both the density of pinning site and the upper critical field. (authors)

  11. Formation of ZnO Nanocrystalline via Facile Non-Hydrolytic Route

    International Nuclear Information System (INIS)

    Ooi, M. D. Johan; Aziz, A. Abdul; Abdullah, M. J.

    2011-01-01

    Zinc oxide (ZnO) nanocrystalline were synthesized via oxidizing Zn powder in non-aqueous solvent with addition of Diethanolamine (DEA) as a stabilizing agent. The influence of DEA on the structural, optical properties and the formation of ZnO nanocrystalline were studied. The synthesized ZnO were polycrystalline in structures where sample without the addition of DEA shows high intensity peak of (002) phase compared with sample in the presence of DEA which preferred to grow in (101) direction. SEM micrograph displays the morphology of ZnO nanocrystalline for both of the samples which shows micron size and non-uniform particles for sample without DEA whereas for sample with DEA exhibit smaller size (∼110 nm) and nearly spherical in shape despite of some agglomeration occurs at the interparticle separation. The photoluminescence (PL) spectra shows UV emission peak for both of the samples where sample with the absence of DEA possess lower intensity of UV emission peak compared to samples with DEA which demonstrate stronger intensity despite of having very weak visible secondary emission peak at 530 nm.

  12. Nanocrystallinity and magnetic property enhancement in melt-spun iron-rare earth-base hard magnetic alloys

    International Nuclear Information System (INIS)

    Davies, H.A.; Manaf, A.; Zhang, P.Z.

    1993-01-01

    Refinement of the grain size below ∼35 nm mean diameter in melt-spun FeNdB-base alloys leads to enhancement of remanent polarization, J r , above the level predicted by the Stoner-Wohlfarth theory for an aggregate of independent, randomly oriented, and uniaxial magnetic particles. This article summarizes the results of the recent systematic research on this phenomenon, including the influence of alloy composition and processing conditions on the crystallite size, degree of enhancement of J r , and maximum energy product (BH) max . It has been shown that the effect can also occur in ternary FeNdB alloys, without the addition of silicon or aluminum, which was originally thought necessary, providing the nanocrystallites are not magnetically decoupled by a paramagnetic second phase. Values of (BH) max above 160 kJ. m -3 have been achieved. The relationship between grain size, J r , intrinsic coercivity, J H c , and (BH) max are discussed in terms of magnetic exchange coupling, anisotropy, and other parameters. Recent extension of this work to the enhancement of properties in Fe-Mischmental-Boron-base alloys and to bonded magnets with a nanocrystalline structure is also described

  13. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Sun, S. J.; Varga, M.; Chou, H.; Hsu, H.S.; Kromka, A.; Horák, Pavel

    2015-01-01

    Roč. 394, Nov (2015), s. 477-480 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LD14011 EU Projects: European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:68378271 ; RVO:61389005 Keywords : diamond * nonmetallic ferromagnetic materials * fine-particle systems * nanocrystalline materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  14. Zero-valent iron particles embedded on the mesoporous silica–carbon for chromium (VI) removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kun, E-mail: kunxiong312@gmail.com; Gao, Yuan [Chongqing Technology and Business University, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Key Laboratory of Catalysis & Environmental New Materials (China); Zhou, Lin [Chengdu Radio and TV University (China); Zhang, Xianming [Chongqing Technology and Business University, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Key Laboratory of Catalysis & Environmental New Materials (China)

    2016-09-15

    Nanoscale zero-valent iron (nZVI) particles were embedded on the walls of mesoporous silica–carbon (MSC) under the conditions of high-temperature carbonization and reduction and used to remove chromium (VI) from aqueous solution. The structure and textural properties of nZVI–MSC were characterized by the powder X-ray diffraction, transmission electron microscopy and N{sub 2} adsorption and desorption. The results show that nZVI–MSC has highly ordered mesoporous structure and large surface area, indistinguishable with that of MSC. Compared with the support MSC and iron particles supported on the activated carbon (nZVI/AC), nZVI–MSC exhibited much higher Cr(VI) removal efficiency with about 98 %. The removal process obeys a pseudo first-order model. Such excellent performance of nZVI–MSC could be ascribed to the large surface and iron particles embedded on the walls of the MSC, forming an intimate contact with the MSC. It is proposed that this feature might create certain micro-electrode on the interface of iron particles and MSC, which prevented the formation of metal oxide on the surface and provided fresh Fe surface for Cr(VI) removal.

  15. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  16. Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide

    KAUST Repository

    Qamar, Mohd

    2014-07-01

    Synthesis of mesoporous nanocrystalline iron-doped titania following the sol-gel method is presented in this work. Samples with various molar ratios (0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10 and 20%) of Fe to Ti were prepared. The particle size was found to be in the range of ∼12 nm while mesopores were approximately near to ∼5.5 nm. The effect of Fe as doping element on titania properties, such as crystallite size, surface area, pore size, pore volume and d-spacing was investigated. Moreover, distribution of Fe in TiO2 matrix was determined by elemental mapping whereas change in absorption properties was evaluated by diffuse reflectance spectroscopy. It was observed that as the Fe content was increased, a partial phase transformation from anatase to rutile and pseudorutile took place. Effect of ultraviolet, ultraviolet-visible and visible radiations on the photocatalytic activity of these catalysts was studied by removal of Methyl Orange as model pollutant. As results, it was found that the photocatalytic activity of such catalysts depends strongly on Fe amount and type of radiation. © 2013 Elsevier B.V.

  17. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    Science.gov (United States)

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.

    Science.gov (United States)

    Li, Yujie; Wang, Wanyu; Zhou, Liqiang; Liu, Yuanyuan; Mirza, Zakaria A; Lin, Xiang

    2017-02-01

    Carboxymethyl cellulose (CMC) stabilized microscale iron sulfide (FeS) particles were synthesized and applied to remediate hexavalent chromium (Cr(VI)) spiked soil. The effects of parameters including dosage of FeS particles, soil moisture, and natural organic matter (NOM) in soil were investigated with comparison to iron sulfate (FeSO 4 ). The results show that the stabilized FeS particles can reduce Cr(VI) and immobilize Cr in soil quickly and efficiently. The soil moisture ranging from 40% to 70% and NOM in soil had no significant effects on Cr(VI) remediation by FeS particles. When molar ratio of FeS to Cr(VI) was 1.5:1, about 98% of Cr(VI) in soil was reduced by FeS particles in 3 d and Cr(VI) concentration decreased from 1407 mg kg -1 to 16 mg kg -1 . The total Cr and Cr(VI) in Toxicity Characteristic Leaching Procedure (TCLP) leachate were reduced by 98.4% and 99.4%, respectively. In FeS particles-treated soil, the exchangeable Cr fraction was mainly converted to Fe-Mn oxides bound fraction because of the precipitation of Cr(III)-Fe(III) hydroxides. The physiologically based extraction test (PBET) bioaccessibility of Cr was decreased from 58.67% to 6.98%. Compared to FeSO 4 , the high Cr(VI) removal and Cr immobilization efficiency makes prepared FeS particles a great potential in field application of Cr(VI) contaminated soil remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, Hua; Liu, J.F.; He, Yongqi

    2007-01-01

    In situ energy dispersive X-ray diffraction measurements with synchrotron radiation source have been performed on nanocrystalline Ge with particle sizes 13, 49 and 100 nm by using diamond anvil cell. Whereas the percentage volume collapse at the transition is almost constant, the values of the bu...

  20. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective

    Directory of Open Access Journals (Sweden)

    Hedberg Yolanda

    2010-09-01

    Full Text Available Abstract Background Production of ferrochromium alloys (FeCr, master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr, ferrosiliconchromium (FeSiCr, stainless steel (316L, iron (Fe, chromium (Cr, and chromium(IIIoxide (Cr2O3, in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549. Results The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death

  1. Characteristic lesions in mouse retina irradiated with accelerated iron particles

    International Nuclear Information System (INIS)

    Malachowski, M.J.; Philpott, D.E.; Corbett, R.L.; Tobias, C.A.

    1981-01-01

    A program is underway to determine the radiation hazards of HZE particles using the Bevalac, a heavy-ion accelerator at LBL. Our earlier work with helium, carbon, neon, and argon particles, and exposure to rats to HZE particles in space flight demonstrated some deleterious biological effects. TEM studies have shown that some visual cells were missing and dislocated; these were termed channel lesions. Recently obtained is evidence that a single iron HZE particle may affect a series of cells. Mice were irradiated with 0.1, 0.3, 1, 10, or 25 rad of 590 MeV/amu initial kinetic energy iron particles in groups of 10 animals per dose point. Irradiated and control animals were sacrificed at intervals from one week to two years postirradiation. The eye samples were dehydrated, critical points dried with freon, fractured, and Au-Pd coated for SEM, or plastic embedded, sectioned, and stained for TEM. Additionally, dry fractured samples viewed with the SEM were embedded in plastic, sectioned, and stained for the TEM. Characteristic tunnel shaped lesions were observed with the SEM. Stereo pairs showed tunnels of various lengths up to 100 μm. Light microscopy of serially cut sections from the same material had vacuoles (V) extending the same length. TEM of the same specimen and specimens prepared only for TEM exhibited large vacuoles, greater than or equal to 2 μm, in the inner segment (IS) and outer segment (OS) layers. Severe membrane disruption was found bordering the vacuoles and gross nuclear degeneration (ND) and loose tissue (LT) were seen in the outer nuclear layer (ONL). The number of lesions increased with increasing dose. Microscopy of the control retina failed to demonstrate similar lesions

  2. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    Science.gov (United States)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  3. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  4. Thermally Stable Nanocrystalline Steel

    Science.gov (United States)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  5. Obtaining of iron particles of nanometer size in a natural zeolite

    International Nuclear Information System (INIS)

    Xingu C, E. G.

    2013-01-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  6. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  7. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX

    Digital Repository Service at National Institute of Oceanography (India)

    Martin, P.; Loeff, M.M.R. van der.; Cassar, N.; Vandromme, P.; d'Ovidio, F.; Stemmann, L.; Rengarajan, R.; Soares, M.A.; Gonzalez, H.E.; Ebersbach, F.; Lampitt, R.S.; Sanders, R.; Barnett, B.A.; Smetacek, V.; Naqvi, S.W.A.

    A closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons of iron (as FeSO4), and the 300 km2 fertilized patch was studied for 39 days to test whether fertilization enhances downward particle flux...

  8. Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Amanda S.; Sternberg, Michael G.

    2006-10-05

    Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples.

  9. Preparation of high-quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder.

    Science.gov (United States)

    Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd

    2012-06-01

    This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.

  10. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (I): Pretreatment of cationic triphenylmethane dyes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Li, Zhaoyong; Kang, Juan; Wang, Xiaoyan; Zhang, Yukui; Fang, Jiande [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-02-11

    Graphical abstract: - Highlights: • Millimetric s-Fe{sup 0} particles effectively reduce BG, MG, CV, and EV dyes. • s-Fe{sup 0} displays similar contaminant removal efficiency compared to nZVI. • s-Fe{sup 0} shows greater economic advantages than nZVI, iron powder, and iron scurf. • The reductive mechanism of BG over s-Fe{sup 0} under US condition is elucidated. - Abstract: To investigate the removal capability of millimetric zero valent iron (mmZVI), sponge iron (s-Fe{sup 0}) particles were characterized with XRD, XPS, TEM, HRSEM and EDS techniques. Moreover, the roles of particle size, catalyst dosage, dye concentration, mixing conditions (e.g. ultrasound (US), stirring or shaking), and regeneration treatment were studied with the removal of cationic triphenylmethane dyes. Notably, the reduction process was also revealed as compared to nanoscale zero valent iron (nZVI), microscale iron power, and iron scurf. Furthermore, the reductive mechanism was exemplified with brilliant green. The results demonstrated that (1) the synergetic effect between US and s-Fe{sup 0} greatly enhanced the removal of dyes, (2) the dosage of preferred s-Fe{sup 0} (1–3 mm) particles was optimized as 30.0 g/L; (3) reuse cycles of s-Fe{sup 0} catalyst were enhanced with the assistance of diluted HCl solution; (4) the main degradation routes included the cleavage of conjugated structure reactions, N-de-ethylation reactions, hydroxylation reactions, the removal of benzene ring reactions, and opening ring reactions. Accordingly, the pretreatment of aqueous solution over s-Fe{sup 0} was hypothesized to achieve mainly through direct reduction reaction by electron transfer and indirect reductive reactions by the highly activated hydrogen atom. Additionally, decoration with noble metals was utilized to reveal the reaction mechanism.

  11. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  12. Effect of power on the growth of nanocrystalline silicon films

    International Nuclear Information System (INIS)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma

    2008-01-01

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm -1 and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity

  13. Effect of power on the growth of nanocrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma [Plasma Processed Materials Group, National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110 012 (India)], E-mail: skumar@mail.nplindia.ernet.in

    2008-08-20

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm{sup -1} and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity.

  14. Particle Surface Hydrophobicity and the Dechlorination of Chloro-Compounds by Iron Sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Won, E-mail: spark3@uncc.edu; Kim, Sung-Kuk; Kim, Jeong-Bae; Choi, Sung-Woo [Keimyung University, Department of Environmental Science and Engineering (Korea, Republic of); Inyang, Hilary I. [University of North Carolina at Charlotte, Global Institute for Energy and Environmental Systems (United States); Tokunaga, Shuzo [National Institute of Advanced Industrial Science and Technology (Japan)

    2006-02-15

    Halogenated aliphatic compounds (HACs) can be reduced by iron sulfides in aqueous systems. Generally, the thermodynamics and kinetics of dehalogenation reactions are controlled by the mineralogical and particle surface characteristics of the iron sulfide, the composition of the HAC and reaction conditions such as component concentrations, pH and Eh. In this theoretical and experimental investigation of CCl{sub 4} and C{sub 2}Cl{sub 6} reduction by FeS and FeS{sub 2}, the roles of hydrophobic and hydrophilic sites on the iron sulfides were analyzed. Experimental data obtained through zeta potential measurements, were used along with the Gouy-Chapman model and the simple two-layer surface complexation model to relate iron sulfide surface hydroxyl densities to the degree of HAC dehalogenation. The surface hydroxyl site densities of FeS and FeS{sub 2} were found to be 0.11 sites/nm{sup 2} and 0.21 sites/nm{sup 2}, respectively. During the dehalogenation reaction process, CCl{sub 4} was found to decrease to its first intermediate product CHCl{sub 3} within the first 20 hours followed by a slower process of conversion to CH{sub 2}Cl{sub 2}. The results also show that FeS is less hydrated (more hydrophobic) than FeS{sub 2}. For CCl{sub 4} and C{sub 2}Cl{sub 6}, FeS is a better dehalogenator than FeS{sub 2}. These results imply that particle surface hydrophobicity is a critical factor in surface-mediated dehalogenation of chlorinated compounds.

  15. Influence of particle size and mineral phase in the analysis of iron ore slurries by Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Michaud, Daniel; Leclerc, Remi; Proulx, Eric

    2007-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) was applied to the analysis of iron ore concentrates. The objective was to determine the influence of particle size and mineral phase on the LIBS signal. The LIBS spectra of hematite and magnetite ore concentrates were qualitatively indistinguishable from each other but magnetite yielded systematically less than hematite. This behavior could be set into an empirical equation to correct the iron peak intensities according to the level of magnetite in the analyzed sample. Similarly, an increase of the LIBS signal was observed as the particle size of the ore samples decreased. Again, an equation could be written down to correct the intensity of either iron or silicon in response to a variation of the average particle size of the ore concentrate. Using these corrections, proper response of the silicon signal against the concentration of silica in the samples was restored. The observed dependence of the strength of the iron signal upon the mineral phase is attributed to oxidation of magnetite into hematite

  16. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  17. Strength and structure of nanocrystalline titanium

    International Nuclear Information System (INIS)

    Noskova, N.I.; Pereturina, I.A.; Elkina, O.A.; Stolyarov, V.V.

    2004-01-01

    Investigation results on strength and plasticity of nanocrystalline titanium VT-1 are presented. Specific features of plastic deformation on tension of this material specimens in an electron microscope column are studied in situ. It is shown that nanocrystalline titanium strength and plasticity at room temperature are dependent on the structure and nanograin size. It is revealed that deformation processes in nanocrystalline titanium are characterized by activation of deformation rotational modes and microtwinning [ru

  18. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO{sub 2} based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaohua, E-mail: mksxh@163.com; Zhou, Xin; Xu, Yalong; Sun, Panpan; Huang, Niu; Sun, Yihua

    2015-05-15

    Graphical abstract: - Highlights: • Mixed P25 nanoparticles and large rutile particles were employed to form a top scattering layer. • The top scattering layer exhibits superior light scattering effect. • The bottom nanocrystalline TiO{sub 2} layer can make good use of the back-scattered light. • Bilayer TiO{sub 2} photoanode shows faster interfacial electron transfer and slower charge recombination process. • Bilayer photoanode enhances the DSSC efficiency by a factor of 25%. - Abstract: Herein, we report a bilayer TiO{sub 2} photoanode composed of nanocrystalline TiO{sub 2} (NCT) bottom layer and mixed P25 nanoparticles and large rutile particles (PR) top scattering layer. The present structure performs well in solar light harvesting which is mainly attributed to the fact that the top scattering layer exhibits superior light scattering effect and meanwhile the NCT bottom layer with large dye-loading capacity can make better use of the back-scattered light. Moreover, electrochemical impedance spectroscopy and open circuit voltage decay measurements demonstrate that DSSC based on bilayer photoanode shows faster interfacial electron transfer and slower charge recombination process than that based on NCT monolayer photoanode. These advantages render the DSSCs based on NCT-PR bilayer photoanode exhibiting superior performance under AM1.5G simulated solar irradiation. As an example, by tuning mass ratio between P25 nanoparticles and large rutile particles in the top scattering layer, the DSSC based on NCT-PR bilayer photoanode exhibits an optimum solar energy conversion efficiency of 9.0%, which is about 1.25 times higher than that of monolayer NCT device (7.2%) with the same film thickness.

  19. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    Directory of Open Access Journals (Sweden)

    Yuxin Wang

    2017-08-01

    Full Text Available In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM. The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at% Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  20. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret

    2015-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...

  1. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    Science.gov (United States)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  2. Preparation of porous ceramics from nanocrystalline zirconia and its microstructure

    International Nuclear Information System (INIS)

    Nikitin, D.S.; Zhukov, V.A.; Kul'kov, S.N.; Perkov, V.V.; Buyakova, S.P.

    2004-01-01

    The behaviour of ZrO 2 (Y) nanocrystalline powder under pressing, the effect of forming pressure, the temperature and the time of sintering on the structure of the sintered porous ceramics are under study. It is shown that on pressing the fracturing of powder particles and their agglomerates takes place even at low pressures (≅50 MPa). The change of densification mechanisms is revealed - from quasi-liquid displacement of powder particles at the beginning of mechanical action to fracture of coarse structural elements. It is established that a strong skeleton responsible for needed porosity is formed even at the initial stage of sintering [ru

  3. Arsenic removal by magnetic nanocrystalline barium hexaferrite

    International Nuclear Information System (INIS)

    Patel, Hasmukh A.; Byun, Jeehye; Yavuz, Cafer T.

    2012-01-01

    Nanoscale magnetite (Fe 3 O 4 ) ( 12 O 19 , BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 ± 0.52 nm synthesized by thermolysis method at 320 °C do not show hexagonal phase, however, subsequent annealing at 750 °C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

  4. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique

    Directory of Open Access Journals (Sweden)

    karina Donadel

    2009-06-01

    Full Text Available Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP were coated with hydroxyapatite (HAp by spray-drying using two IOMP/HAp ratios (0.7 and 3.2. The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction. The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.As partículas de óxido de ferro têm sido extensivamente usadas em diagnósticos médicos como agente de contraste para imagem por ressonância magnética e na terapia do câncer, dentre estas, liberação de fármacos em sitos alvos e hipertermia magnética. Neste estudo nós reportamos a preparação e caracterização de partículas magnéticas de óxido de ferro revestidas com a biocerâmica hidroxiapatita. As partículas magnéticasde óxido de ferro (PMOF foram revestidas com hidroxiapatita por spray-drying usando duas razões PMOF/HAp (0,7 e 3,2. As partículas magnéticas foram caracterizadas por microscopia eletrônica de varredura, energia dispersiva de raios X, difração de raios X, espectroscopia de absorção no infra

  5. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.

    Science.gov (United States)

    Ju, Yongming; Liu, Xiaowen; Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande; Dionysiou, Dionysios D

    2015-04-28

    To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe(0)), Cu(2+) ions were deposited on the surface of s-Fe(0) using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu(0) loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3∼5 millimeter s-Fe(0) particles (s-Fe(0)(3∼5mm)) with 5wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu(0)-s-Fe(0) showed excellent stability after five reuse cycles. Cu(0)-s-Fe(0) possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu(0) apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe2O3 and Fe3O4 played minor role for the removal of RhB. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    International Nuclear Information System (INIS)

    Qing Yuchang; Zhou Wancheng; Luo Fa; Zhu Dongmei

    2010-01-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  7. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    Science.gov (United States)

    Qing, Yuchang; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2010-02-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  8. The electrochemical characteristics of Mg2Ni nanocrystalline hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Ling; Zhou Xiaosong; Peng Shuming

    2008-06-01

    The nanocrystalline Mg 2 Ni materials were prepared by mechanical alloying. The cyclic voltametry results indicated that the potential of oxidation peak was shift as the scan rate increased and the absorption property of Mg 2 Ni prepared by mechanical alloying was increased even at ambient temperature. The absorption and desorption of hydrogen in Mg 2 Ni alloy were remarkably accelerated with the rising temperature. Small angel X-ray scattering results indicated that the Mg 2 Ni powder have 1-5 nm and 5-10 nm particle size distribution, which increased the acting sites of hydrogen absorption/desorption reaction and decreased the diffusion path of hydrogen desorption. It was induced to the enhanced performance of Mg 2 Ni nanocrystalline powder. The cycle life investigated results indicated that the activation property of Mg 2 Ni nanocrystal-line hydrogen storage alloy electrode was excellent, the capacitance maintenance ration was 66% after 200 cycles. The coating of epoxy resin on one side of the electrode had no effect on the activation property and the capacitance maintenance ration was better than the uncoating one. But the anode peak current value and the cathodic peak current value were decreased remarkably which indicated that the hydrogen absorption/desorption rate and the charge/discharge degree had decreased. (authors)

  9. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    Science.gov (United States)

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.

  10. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Aaron Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sarobol, Pylin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diantonio, Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  11. Internalization of annexin A5-functionalized iron oxide particles by apoptotic Jurkat cells

    NARCIS (Netherlands)

    van Tilborg, Geralda A. F.; Geelen, Tessa; Duimel, Hans; Bomans, Paul H. H.; Frederik, Peter M.; Sanders, Honorius M. H. F.; Deckers, Niko M.; Deckers, Roel; Reutelingsperger, Chris P. M.; Strijkers, Gustav J.; Nicolay, Klaas

    2009-01-01

    Apoptosis plays an important role in the etiology of various diseases. Several studies have reported on the use of annexin A5-functionalized iron oxide particles for the detection of apoptosis with MRI, both in vitro and in vivo. The protein annexin A5 binds with high affinity to the phospholipid

  12. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    Science.gov (United States)

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  13. Photochemical solar cells based on dye-sensitization of nanocrystalline TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Deb, S.K.; Ellingson, R.; Ferrere, S.; Frank, A.J.; Gregg, B.A.; Nozik, A.J.; Park, N.; Schlichthoerl, G. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    A photoelectrochemical solar cell that is based on the dye-sensitization of thin nanocrystalline films of TiO{sub 2} (anatase) nanoparticles in contact with a non-aqueous liquid electrolyte is described. The cell, fabricated at NREL, shows a conversion efficiency of {approximately} 9.2% at AM1.5, which approaches the best reported value of 10--11% by Graetzel at EPFL in Lausanne, Switzerland. The femtosecond (fs) pump-probe spectroscopy has been used to time resolve the injection of electrons into the conduction band of nanocrystalline TiO{sub 2} films under ambient conditions following photoexcitation of the adsorbed Ru(II)-complex dye. The measurement indicates an instrument-limited {minus}50 fs upper limit on the electron injection time. The authors also report the sensitization of nanocrystalline TiO{sub 2} by a novel iron-based dye, CIS-[Fe{sup II}(2,2{prime}-bipyridine-4,4,{prime}-dicarboxylic acid){sub 2}(CN){sub 2}], a chromophore with an extremely short-lived, nonemissive excited state. The dye also exhibits a unique band selective sensitization through one of its two absorption bands. The operational principle of the device has been studied through the measurement of electric field distribution within the device structure and studies on the pH dependence of dye-redox potential. The incorporation of WO{sub 3}-based electrochromic layer into this device has led to a novel photoelectrochromic device structure for smart window application.

  14. Iron oxide nanoparticle-based magnetic resonance method to monitor release kinetics from polymeric particles with high resolution.

    Science.gov (United States)

    Chan, Minnie; Schopf, Eric; Sankaranarayanan, Jagadis; Almutairi, Adah

    2012-09-18

    A new method to precisely monitor rapid release kinetics from polymeric particles using super paramagnetic iron oxide nanoparticles, specifically by measuring spin-spin relaxation time (T(2)), is reported. Previously, we have published the formulation of logic gate particles from an acid-sensitive poly-β-aminoester ketal-2 polymer. Here, a series of poly-β-aminoester ketal-2 polymers with varying hydrophobicities were synthesized and used to formulate particles. We attempted to measure fluorescence of released Nile red to determine whether the structural adjustments could finely tune the release kinetics in the range of minutes to hours; however, this standard technique did not differentiate each release rate of our series. Thus, a new method based on encapsulation of iron oxide nanoparticles was developed, which enabled us to resolve the release kinetics of our particles. Moreover, the kinetics matched the relative hydrophobicity order determined by octanol-water partition coefficients. To the best of our knowledge, this method provides the highest resolution of release kinetics to date.

  15. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    Science.gov (United States)

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al.

  16. Bilirubin adsorption on nanocrystalline titania films

    International Nuclear Information System (INIS)

    Yang Zhengpeng; Si Shihui; Fung Yingsing

    2007-01-01

    Bilirubin produced from hemoglobin metabolism and normally conjugated with albumin is a kind of lipophilic endotoxin, and can cause various diseases when its concentration is high. Bilirubin adsorption on the nanocrystalline TiO 2 films was investigated using quartz crystal microbalance, UV-vis and IR techniques, and factors affecting its adsorption such as pH, bilirubin concentration, solution ionic strength, temperature and thickness of TiO 2 films were discussed. The amount of adsorption and parameters for the adsorption kinetics were estimated from the frequency measurements of quartz crystal microbalance. A fresh surface of the nanocrystalline TiO 2 films could be photochemically regenerated because holes and hydroxyl radicals were generated by irradiating the nanocrystalline TiO 2 films with UV light, which could oxidize and decompose organic materials, and the nanocrystalline TiO 2 films can be easily regenerated when it is used as adsorbent for the removal of bilirubin

  17. Enhanced field emission from Si doped nanocrystalline AlN thin films

    International Nuclear Information System (INIS)

    Thapa, R.; Saha, B.; Chattopadhyay, K.K.

    2009-01-01

    Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 deg. C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (E to ) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm 2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.

  18. Synthesis of free standing nanocrystalline Cu by ball milling at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Barai, K. [Department of Metallurgy and Materials Engineering, Bengal Engineering College, Shibpur, Howrah 711103 (India); Tiwary, C.S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering College, Shibpur, Howrah 711103 (India); Chattopadhyay, K., E-mail: kamanio@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2012-12-15

    This paper reports for the first time synthesis of free standing nano-crystalline copper crystals of a {approx}30-40 nm by ball milling of copper powder at 150 K under Argon atmosphere in a specially designed cryomill. The detailed characterization of these particles using multiple techniques that includes transmission electron microscopy confirms our conclusion. Careful analysis of the chemistry of these particles indicates that these particles are essentially contamination free. Through the analysis of existing models of grain size refinements during ball milling and low temperature deformation, we argue that the suppression of thermal processes and low temperature leads to formation of free nanoparticles as the process of fracture dominates over possible cold welding at low temperatures.

  19. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement

    NARCIS (Netherlands)

    Vellinga, M.M.; Oude Engberink, R.D.; Seewann, A.; Pouwels, P.J.W.; Wattjes, M.P.; van der Pol, S.M.A.; Pering, C.; Polman, C.H.; de Vries, H.E.; Geurts, J.J.G.; Barkhof, F.

    2008-01-01

    Gadolinium-DTPA (Gd-DTPA) is routinely used as a marker for inflammation in MRI to visualize breakdown of the blood-brain barrier (BBB) in multiple sclerosis. Recent data suggest that ultra-small superparamagnetic particles of iron oxide (USPIO) can be used to visualize cellular infiltration,

  20. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  1. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  2. Structural, morphological and luminescence properties of nanocrystalline up-converting Y{sub 1.89}Yb{sub 0.1}Er{sub 0.01}O{sub 3} phosphor particles synthesized through aerosol route

    Energy Technology Data Exchange (ETDEWEB)

    Lojpur, V.; Mancic, L. [Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, K. Mihailova 35/IV, 11000 Belgrade (Serbia); Rabanal, M.E. [University Carlos III of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain); Dramicanin, M.D. [Vinca Institute of Nuclear Science, University of Belgrade, P.O. Box 522, Belgrade (Serbia); Tan, Z.; Hashishin, T.; Ohara, S. [JWRI, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Milosevic, O., E-mail: olivera.milosevic@itn.sanu.ac.rs [Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, K. Mihailova 35/IV, 11000 Belgrade (Serbia)

    2013-12-15

    Highlights: •The Y{sub 1.89}Yb{sub 0.1}Er{sub 0.01}O{sub 3} phosphor particles are synthesized via aerosol route. •We report influence of process parameters on the particle structure and morphology. •Spherical, submicronic size and nano-crystalline particle morphology are confirmed. •The particles show improved luminescence properties and decay time. •Synthesized powders exhibit the temperature dependant up-conversion emission. -- Abstract: Nanocrystalline up-converting Y{sub 2}O{sub 3}:Yb{sup 3+}, Er{sup 3+} phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm{sup 3}/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: {sup 2}H{sub 9/2} → {sup 4}I{sub 15/2} (blue: 407–420 nm), ({sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}) → {sup 4}I{sub 15/2} (green: 510–590 nm), and {sup 4}F{sub 9/2} → {sup 4}I{sub 15

  3. Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency.

    Science.gov (United States)

    Matuszewski, Lars; Persigehl, Thorsten; Wall, Alexander; Schwindt, Wolfram; Tombach, Bernd; Fobker, Manfred; Poremba, Christopher; Ebert, Wolfgang; Heindel, Walter; Bremer, Christoph

    2005-04-01

    To evaluate the effect of lipofection, particle size, and surface coating on labeling efficiency of mammalian cells with superparamagnetic iron oxides (SPIOs). Institutional Review Board approval was not required. Different human cell lines (lung and breast cancer, fibrosarcoma, leukocytes) were tagged by using carboxydextran-coated SPIOs of various hydrodynamic diameters (17-65 nm) and a dextran-coated iron oxide (150 nm). Cells were incubated with increasing concentrations of iron (0.01-1.00 mg of iron [Fe] per milliliter), including or excluding a transfection medium (TM). Cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic emission spectroscopy. Cell visibility was assessed with gradient- and spin-echo magnetic resonance (MR) imaging. Effects of iron concentration in the medium and of lipofection on cellular SPIO uptake were analyzed with analysis of variance and two-tailed Student t test, respectively. Iron oxide uptake increased in a dose-dependent manner with higher iron concentrations in the medium. The TM significantly increased the iron load of cells (up to 2.6-fold, P .05). As few as 10 000 cells could be detected with clinically available MR techniques by using this approach. Lipofection-based cell tagging is a simple method for efficient cell labeling with clinically approved iron oxide-based contrast agents. Large particle size and carboxydextran coating are preferable for cell tagging with endocytosis- and lipofection-based methods. (c) RSNA, 2005.

  4. Production of nanocrystalline cermet thermal spray powders for wear resistant coatings by high-energy milling

    International Nuclear Information System (INIS)

    Eigen, N.; Klassen, T.; Aust, E.; Bormann, R.; Gaertner, F.

    2003-01-01

    TiC-Ni based nanocrystalline cermet powders for thermal spraying were produced by high-energy milling. Milling experiments were performed in an attrition mill and a vibration mill in kilogram scale, and powder morphologies and microstructures were characterized using scanning electron microscopy, X-ray diffraction, and laser scattering for particle size analysis. Milling time and powder input were optimized with respect to the desired microstructure and particle sizes, and the results using both types of mill were compared. Powders with homogeneously dispersed hard phase particles below 300 nm could be produced in both mills. Additional processes for the refinement of powder morphology and particle size distribution are discussed

  5. Low-temperature synthesis of superconducting nanocrystalline MgB2

    International Nuclear Information System (INIS)

    Lu, J.; Xiao, Z.; Lin, Q.; Claus, H.; Fang, Z.Z.

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  6. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography.

    Science.gov (United States)

    Zheng, Changlin; Kirmse, Holm; Long, Jianguo; Laughlin, David E; McHenry, Michael E; Neumann, Wolfgang

    2015-04-01

    The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

  7. Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification

    International Nuclear Information System (INIS)

    Ai Zhihui; Lee Shuncheng; Huang Yu; Ho Wingkei; Zhang Lizhi

    2010-01-01

    Nanocrystalline Zn 2 SnO 4 microcubes were hydrothermally synthesized and systematically characterized by XRD, SEM, TEM, XPS, N 2 adsorption-desorption, and UV-vis DRS analysis. The resulting Zn 2 SnO 4 microcubes with the edge size ranging from 0.8 to 1.2 μm were composed of numerous nanoparticles with size of 10-20 nm, and their optical band gap energy was estimated to be 3.25 eV from the UV-vis diffuse reflectance spectra. On degradation of nitrogen monoxide (NO) and formaldehyde (HCHO) at typical concentrations for indoor air quality, these nanocrystalline Zn 2 SnO 4 microcubes exhibited superior photocatalytic activity to the hydrothermally synthesized ZnO, SnO 2 , and Degussa TiO 2 P25, as well as C doped TiO 2 under UV-vis light irradiation. This enhanced photocatalytic activity of the nanocrystalline Zn 2 SnO 4 microcubes was attributed to their bigger surface areas, smaller particle size, special porous structures, and special electronic configuration. The nanocrystalline Zn 2 SnO 4 microcubes were chemically stable as there was no obvious deactivation during the multiple photocatalytic reactions. This work presents a promising approach for scaling-up industrial production of Zn 2 SnO 4 nanostructures and suggests that the synthesized nanocrystalline Zn 2 SnO 4 microcubes are promising photocatalysts for indoor air purification.

  8. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  9. The effect of iron-ore particles on the metal content of the brown alga Padina gymnospora (Espirito Santo Bay, Brazil)

    International Nuclear Information System (INIS)

    Nassar, C.A.G.; Salgado, L.T.; Yoneshigue-Valentin, Y.; Amado Filho, G.M.

    2003-01-01

    Iron ore deposits mat be the source of metals found in the brown alga Padina gymnospora. - The iron-ore particles discharged by a pellet processing plant (Espirito Santo Bay, Brazil) cover the seabed of Camburi Beach and consequently, the epibenthic community. In order to determine the importance of the contribution of the iron-ore deposits to the metal concentration in macroalgae of Espirito Santo Bay, four methods of cleaning particulate material adhered to the surface of thalli were tested prior to metal tissue analysis (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) of Padina gymnospora. In addition, heavy metal concentrations were determined in individuals of P. gymnospora from a site (Frade Island) not affected by the iron-ore particles. The most efficient cleaning treatment, a combination of scraping and washing with an ethanol-seawater solution (NA+SC+ET) removed a number of particles on the surface of thalli 10 times higher than that observed in the control (C). Using this treatment, the total-metal concentrations were reduced by 78% for Fe and 50% for Al respect to the control. However, Fe, Al and Cu concentrations after treatment NA+SC+ET were significantly higher than those found at Frade Island. It is suggested that the iron-ore deposit might be a source for metal availability to macroalgae exposed to the dumped material at Espirito Santo Bay

  10. Grain size, morphometry and mineralogy of airborne input in the Canary basin: evidence of iron particle retention in the mixed layer

    Directory of Open Access Journals (Sweden)

    Alfredo Jaramillo-Vélez

    2016-09-01

    Full Text Available Aeolian dust plays an important role in climate and ocean processes. Particularly, Saharan dust deposition is of importance in the Canary Current due to its content of iron minerals, which are fertilizers of the ocean. In this work, dust particles are characterized mainly by granulometry, morphometry and mineralogy, using image processing and scanning northern Mauritania and the Western Sahara. The concentration of terrigenous material was measured in three environments: the atmosphere (300 m above sea level, the mixed layer at 10 m depth, and 150 m depth. Samples were collected before and during the dust events, thus allowing the effect of Saharan dust inputs in the water column to be assessed. The dominant grain size was coarse silt. Dominant minerals were iron oxy-hydroxides, silicates and Ca-Mg carbonates. A relative increase of iron mineral particles (hematite and goethite was detected in the mixed layer, reflecting a higher permanence of iron in the water column despite the greater relative density of these minerals in comparison with the other minerals. This higher iron particle permanence does not appear to be explained by physical processes. The retention of this metal by colloids or microorganisms is suggested to explain its long residence time in the mixed layer.

  11. Synthesis and characterization of iron nano particles for the arsenic removal in water

    International Nuclear Information System (INIS)

    Gutierrez M, O. E.

    2011-01-01

    The synthesis of iron nanoparticles for the removal of metallic ions in polluted waters has been during the last years study topic for different world organizations. This work presents a synthesis method of conditioned coal with iron nanoparticles starting from the use of leaves of pineapple crown, with the purpose of using it in arsenic removal processes in aqueous phase. For the synthesis of this material, the leaves of the pineapple crown were used like supports structure of the iron nanoparticles. First, the pyrolysis appropriate temperature was determined. For the preparation of the support material, this had contact with a ferric nitrate and hexamine solution, because the preparation of the material and the coal synthesis were realized during the pyrolysis process, where the hexamine molecules and the ferric nitrate react, causing the reduction of the iron particles and their dispersion on the support material, obtaining as product a conditioned coal with iron nanoparticles. For the characterization of the materials were used techniques as: Scanning electron microscopy, Transmission electron microscopy, X-Rays Diffraction), X-Ray photoelectron spectroscopy and Moessbauer spectroscopy; moreover was determined the isoelectric point and the density of surface sites. The arsenic sorption capacity of the materials was evaluated by means of the methodology type lots where was determined the sorption kinetics and isotherms in terms of arsenic concentration and mass. (Author)

  12. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Hsu, Cheng-Hsun, E-mail: chhsu@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Cheng, Yin-Hwa [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan 320, Taiwan (China); Lee, Sheng-Long [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al{sub 2}O{sub 3} particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection.

  13. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    International Nuclear Information System (INIS)

    Lin, Chung-Kwei; Hsu, Cheng-Hsun; Cheng, Yin-Hwa; Ou, Keng-Liang; Lee, Sheng-Long

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al 2 O 3 particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection

  14. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    Science.gov (United States)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  15. Study of the structural and magnetic properties of metallic iron-hematite particles for use in magnetorheological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio Ospina, Diana Marcela; Castro Navas, Irvin Jadway [Universidad del Valle, Escuela de Ingenieria de Materiales (Colombia); Perez Alcazar, German Antonio; Tabares, Jesus Anselmo, E-mail: jesus_tabares_8@hotmail.com [Universidad del Valle, Departamento de Fisica (Colombia)

    2012-03-15

    Magnetorheological (MR) fluids are new iron-based materials, whose applications include brakes, dampers, clutches, shock absorbers systems and polishing of optical surfaces (lens and mirrors). They are dependent on the size and shape of particles as the magnetic properties. Interested in the possibility of using iron-rich powders, commonly used in nondestructive testing, ranging in size from a few {mu}m to about 200 {mu}m and lower cost than those commercially used for MR fluids, a study of the structural and magnetic properties of iron-rich metallic particles by X-ray diffraction (XRD) and Moessbauer spectroscopy (MS) at room temperature has been done. Powders, as received, were separated into particle sizes smaller than 20 {mu}m (sample A) and in the range of 20-38 {mu}m (sample B) because these are the sizes generally required for applications in MR fluids. The particles whose sizes exceed the above values were ground in a high energy planetary mill for 3 h, using different values of rotational speed/time: 200 rpm for one hour, a pause of 10 s, 140 rpm for one hour, pause 10 s and then 175 rpm during the last hour. These powders were sieved to obtain particles smaller than 20 {mu}m (sample C). According XRD results, in all samples, only {alpha}-Fe (lattice parameter a = 2,867(2) Angstrom-Sign ) and Fe{sub 2}O{sub 3} (lattice parameter a 5,037(1) Angstrom-Sign and c = 13,755(8) Angstrom-Sign ) were present. The Moessbauer spectra were fitted with two sextets. The hyperfine parameters values allowed us to assign the highest relative area spectrum (sextet) corresponding to {alpha}-Fe and the second one to Fe{sub 2}O{sub 3} in accord to the XRD results. Thus, the preparation method using mechanical milling for diminishing the size of the metallic particles allowed us to get particles with size and magnetic properties that could lead to potentially MR fluids applications.

  16. Study of the structural and magnetic properties of metallic iron-hematite particles for use in magnetorheological fluids

    International Nuclear Information System (INIS)

    Osorio Ospina, Diana Marcela; Castro Navas, Irvin Jadway; Pérez Alcázar, German Antonio; Tabares, Jesus Anselmo

    2012-01-01

    Magnetorheological (MR) fluids are new iron-based materials, whose applications include brakes, dampers, clutches, shock absorbers systems and polishing of optical surfaces (lens and mirrors). They are dependent on the size and shape of particles as the magnetic properties. Interested in the possibility of using iron-rich powders, commonly used in nondestructive testing, ranging in size from a few μm to about 200 μm and lower cost than those commercially used for MR fluids, a study of the structural and magnetic properties of iron-rich metallic particles by X-ray diffraction (XRD) and Mössbauer spectroscopy (MS) at room temperature has been done. Powders, as received, were separated into particle sizes smaller than 20 μm (sample A) and in the range of 20–38 μm (sample B) because these are the sizes generally required for applications in MR fluids. The particles whose sizes exceed the above values were ground in a high energy planetary mill for 3 h, using different values of rotational speed/time: 200 rpm for one hour, a pause of 10 s, 140 rpm for one hour, pause 10 s and then 175 rpm during the last hour. These powders were sieved to obtain particles smaller than 20 μm (sample C). According XRD results, in all samples, only α-Fe (lattice parameter a = 2,867(2) Å) and Fe 2 O 3 (lattice parameter a 5,037(1) Å and c = 13,755(8) Å) were present. The Mössbauer spectra were fitted with two sextets. The hyperfine parameters values allowed us to assign the highest relative area spectrum (sextet) corresponding to α-Fe and the second one to Fe 2 O 3 in accord to the XRD results. Thus, the preparation method using mechanical milling for diminishing the size of the metallic particles allowed us to get particles with size and magnetic properties that could lead to potentially MR fluids applications.

  17. Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-CO mixtures obtained by high energy milling

    International Nuclear Information System (INIS)

    Salvador, M. D.; Bonache, V.; Amigo, V.; Busquets, D.

    2008-01-01

    In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well commercial nano powders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and micro structurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 180 HV. (Author) 46 refs

  18. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  19. Temperature dependence of the magnetostriction and the induced anisotropy in nanocrystalline FeCuNbSiB alloys, and their fluxgate properties

    DEFF Research Database (Denmark)

    Nielsen, Otto V; Petersen, Jan Raagaard

    1994-01-01

    Making use of the stress induced magnetic anisotropy in some iron-rich FeCuNbSiB nanocrystalline materials we studied the thermal dependence of their magnetostriction which becomes zero below the Curie temperature. The choice of a suitable composition and annealing temperature results in materials...... with zero magnetostriction at room temperature. Due to the low magnetostriction these materials have very promising fluxgate properties which were studied as well...

  20. Submicrometric Iron Particles for the Removal of Pharmaceuticals from Water: Application to b-Lactam Antibiotics

    International Nuclear Information System (INIS)

    Ghauch, A.; Baydoun, H.; Tuqan, M.; Ayoub, Gh.; Naim, S.

    2011-01-01

    Sub-micrometric iron particles (Fe0) and amended Fe0 (Cu0Fe0) were tested for the aqueous removal of b-lactam antibiotics. Comparative batch experiments were performed separately on aqueous solutions of dicloxacillin (DCX), cloxacillin (CLX) and oxacillin (OXA). Three different initial concentrations (1, 5 and 10 mg L-1) and four different iron loads (r = 10, 20, 40 and 53 g L-1) were tested. Furthermore, two different mixing regimes were tested: (i) non-disturbed conditions, and (ii) vortex mixing. This experimental design enabled the confirmation of the crucial role of in-situ formed iron corrosion products (Fe oxides) on the removal process. The dynamic process of Fe oxides formation induces adsorption and enmeshment (sequestration or co-precipitation) of dissolved antibiotics. Results clearly delineated the superiority of Cu0Fe0 bimetallics compared to Fe0. For example, after 4 h of contact with iron particles at r = 40 g L-1, OXA, CLX and DCX (10 mg L-1 each) disappeared to an extent of 31, 46 and 71%. However, quantitative antibiotic removal (∼ 90%) was noticed when Cu0Fe0 bimetallic was used at lesser load (r = 20 g L-1) under vortex mixing. On the other hand, non-disturbed systems showed partial removal (∼ 25%) of antibiotics over 7 h of reaction at r = 10 g L-1 (Fe0) while almost complete removals were noticed for the Cu0Fe0 bimetallic system for the same metal load and period e.g. 75, 79 and 86% removal for OXA, CLX and DCX respectively. (author)

  1. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    Science.gov (United States)

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  2. An investigation of the photosubstitution reaction between N719-dyed nanocrystalline TiO2 particles and 4-tert-butylpyridine

    DEFF Research Database (Denmark)

    Nour-Mohammadi, Farahnaz; Nguyen, Thai Hoang; Boschloo, Gerrit

    2007-01-01

    concentration. Based on this observation, a degradation mechanism was proposed, in which the reaction proceeds through the rate-determining formation of a common intermediate complex, I=[RuII(H2dcbpy)2(NCS)(NCS)]+. An average degradation rate of kdeg=6×10-3s-1 was obtained from the value of Φdeg and the back...... electron-transfer rate, kback of the reaction TiO2+e-|N719+→TiO2|N719, obtained by means of photo-induced absorption (PIA) measurements. The lifetime of the solar cell sensitizer N719 was estimated to be between 34 years, based on kdeg and an average literature value of the regeneration rate, kreg=2×106M-1...... simple model experiments. In these experiments, colloidal solutions of N719-dyed nanocrystalline TiO2 particles in acetonitrile were irradiated with 532-nm laser light in the presence of 0-1mol/l of 4-TBP. Five degradation products were identified using LC-ESI-MS: the 4-tert-butylpyridine substitution...

  3. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  4. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    International Nuclear Information System (INIS)

    Sarah C. Larson; Vicki H. Grassian

    2006-01-01

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO x ) and ammonia (NH 3 ) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO 2 was observed at room temperature in the presence of NH 3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO 2 reduction with NH 3 relative to nanocrystalline NaY

  5. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  6. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  7. Multi-scale three-dimensional characterization of iron particles in dusty olivine: Implications for paleomagnetism of chondritic meteorites

    DEFF Research Database (Denmark)

    Einsle, Joshua F.; Harrison, Richard J.; Kasama, Takeshi

    2016-01-01

    Dusty olivine (olivine containing multiple sub-micrometer inclusions of metallic iron) in chondritic meteorites is considered an ideal carrier of paleomagnetic remanence, capable of maintaining a faithful record of pre-accretionary magnetization acquired during chondrule formation. Here we show how......-dimensional (3D) volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including...... axes of the particles and the remanence vector imparted in different fields. Although the orientation of the vortex core is determined largely by the ellipsoidal geometry (i.e., parallel to the major axis for prolate ellipsoids and parallel to the minor axis for oblate ellipsoids), the core...

  8. Room temperature mechanosynthesis and microstructure characterization of nanocrystalline Si{sub 0.9}Al{sub 0.1}C

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, S. [Department of Physics, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal (India); Dutta, H. [Department of Physics, Vivekananda College, Burdwan, 713103, West Bengal (India); Kar, T. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Department of Physics, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal (India)

    2016-02-01

    This article reports the synthesis and microstructure characterization of nanocrystalline Si{sub 0.9}Al{sub 0.1}C powder obtained by mechanical milling the mixture of Si, Al and graphite powders at room temperature under inert atmosphere. XRD patterns of ball-milled powders clearly reveal the nucleation of Si{sub 0.9}Al{sub 0.1}C phase after 5 h of milling and the stoichiometric cubic Si{sub 0.9}Al{sub 0.1}C is formed after 10 h of milling with crystallite size of ∼3 nm. Microstructure of ball-milled powders in terms of different lattice imperfections is characterized by employing both Rietveld's method of structure refinement using XRD data and high resolution transmission electron microscope (HRTEM). HRTEM micrographs of 10 h milled powder substantiate the formation of nanocrystalline Si{sub 0.9}Al{sub 0.1}C compound without any contamination and confirm the findings of Rietveld analysis using XRD data. - Highlights: • Cubic Si{sub 0.9}Al{sub 0.1}C is formed after 5 h of milling of Si, Al and graphite powders. • Nanocrystalline Si{sub 0.9}Al{sub 0.1}C with particle size ∼3 nm is obtained after 10 h milling. • Average particle size of Si{sub 0.9}Al{sub 0.1}C from XRD analysis and HRTEM is very close.

  9. Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate

    International Nuclear Information System (INIS)

    Kurien, Siby; Mathew, Jose; Sebastian, Shajo; Potty, S.N.; George, K.C.

    2006-01-01

    Nanocrystalline nickel aluminate was prepared by chemical co-precipitation, and nanoparticles having different particle size were obtained by annealing the precursor at different temperatures. The TG/DTA measurements showed thermal decomposition was a three-step process with crystallisation of the spinel phase started at a temperature 420 deg. C. The X-ray diffraction analysis confirmed that the specimen began to crystallise on annealing above 420 deg. C and became almost crystalline at about 900 deg. C. The particle sizes were calculated from XRD. Dielectric properties of nickel aluminate were studied as a function of the frequency of the applied ac signal at different temperatures. It was seen the real dielectric constant ε', and dielectric loss tan δ decreased with frequency of applied field while the ac conductivity increased as the frequency of the applied field increased. The dielectric relaxation mechanism is explained by considering nanostructured NiAl 2 O 4 as a carrier-dominated dielectric with high density of hopping charge carriers. The variation of ε' with different particle size depends on several interfacial region parameters, which change with the average particle size

  10. Studies on the sensing behaviour of nanocrystalline CuGa(2)O(4) towards hydrogen, liquefied petroleum gas and ammonia.

    Science.gov (United States)

    Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan

    2010-06-15

    In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.

  11. Formation and transformation of a short range ordered iron carbonate precursor

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Frandsen, Cathrine; Bovet, Nicolas

    2015-01-01

    (II) with varying pH produced broad peaks in X-ray diffraction and contained dominantly Fe and CO3 when probed with X-ray photoelectron spectroscopy. Reduced pair distribution function (PDF) analysis shows only peaks corresponding to interatomic distances below 15Å, reflecting a material with no long range...... structural order. Moreover, PDF peak positions differ from those for known iron carbonates and hydroxides. Mössbauer spectra also deviate from those expected for known iron carbonates and suggest a less crystalline structure. These data show that a previously unidentified iron carbonate precursor phase...... formed. Its coherent scattering domains determined from PDF analysis are slightly larger than for amorphous calcium carbonate, suggesting that the precursor could be nanocrystalline. Replica exchange molecular dynamics simulations of Fe-carbonate polynuclear complexes yield PDF peak positions that agree...

  12. Nanocrystalline LaOx/NiO composite as high performance electrodes for supercapacitors.

    Science.gov (United States)

    Du, Guo; Zeng, Zifan; Xiao, Bangqing; Wang, Dengzhi; Yuan, Yuan; Zhu, Xiaohong; Zhu, Jiliang

    2017-12-21

    Nanocrystalline LaO x /NiO composite electrodes were synthesized via two types of facile cathodic electrodeposition methods onto nickel foam followed by thermal annealing without any binders. Scanning electron microscopy and transmission electron microscopy investigation revealed that LaO x nanocrystalline particles with an average diameter of 50 nm are uniformly distributed in the NiO layer or alternately deposited with the NiO layer onto the substrate. It is speculated that LaO x particles can participate in the faradaic reaction directly and offer more redox sites. Besides this, the unique Ni/La layered structure facilitates the diffusion of ions and retards the electrode polarization, thus leading to a better rate capability and cycling stability of NiO. As a result, the obtained electrodes display very competitive electrochemical performance (a specific capacitance of 1238 F g -1 at a current density of 0.5 A g -1 , excellent rate capability of 86% of the original capacitance at 10 A g -1 and excellent cycling stability of 93% capacitance after 10 000 cycles). In addition, asymmetric coin devices were assembled using LaO x /NiO as the positive electrode and active carbon as the negative electrode. The assembled asymmetric devices demonstrate a high energy density of 13.12 W h kg -1 at a power density of 90.72 W kg -1 .

  13. Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles.

    Science.gov (United States)

    Mitsumata, Tetsu; Honda, Atomu; Kanazawa, Hiroki; Kawai, Mika

    2012-10-11

    A new class of magnetoelastic gel that demonstrates drastic and reversible changes in storage modulus without using strong magnetic fields was obtained. The magnetic gel consists of carrageenan and carbonyl iron particles. The magnetic gel with a volume fraction of magnetic particles of 0.30 exhibited a reversible increase by a factor of 1400 of the storage modulus upon a magnetic field of 500 mT, which is the highest value in the past for magnetorheological soft materials. It is considered that the giant magnetoelastic behavior is caused by both high dispersibility and high mobility of magnetic particles in the carrageenan gel. The off-field storage modulus of the magnetic gel at volume fractions below 0.30 obeyed the Krieger-Dougherty equation, indicating random dispersion of magnetic particles. At 500 mT, the storage modulus was higher than 4.0 MPa, which is equal to that of magnetic fluids, indicating that the magnetic particles move and form a chain structure by magnetic fields. Morphological study revealed the evidence that the magnetic particles embedded in the gel were aligned in the direction of magnetic fields, accompanied by stretching of the gel network. We conclude that the giant magnetoelastic phenomenon originates from the chain structure consisting of magnetic particles similar to magnetic fluids.

  14. Synthesis of nanocrystalline Y2O3 in a specially designed atmospheric pressure radio frequency thermal plasma reactor

    International Nuclear Information System (INIS)

    Dhamale, G. D.; Mathe, V. L.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Ghorui, S.

    2015-01-01

    Synthesis of yttrium oxide nanoparticles in a specially designed radio frequency thermal plasma reactor is reported. Good crystallinity, narrow size distribution, low defect state concentration, high purity, good production rate, single-step synthesis, and simultaneous formation of nanocrystalline monoclinic and cubic phases are some of the interesting features observed. Synthesized particles are characterized through X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermo-luminescence (TL), and Brunauer–Emmett–Teller surface area analysis. Polymorphism of the nanocrystalline yttria is addressed in detail. Synthesis mechanism is explored through in-situ emission spectroscopy. Post-synthesis environmental effects and possible methods to eliminate the undesired phases are probed. Defect states are investigated through the study of TL spectra

  15. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    International Nuclear Information System (INIS)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an “R” value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U–O bond. - Highlights: • Bulk quantities of nanocrystalline urania were prepared for the first time using citrate gel combustion method. • Volume combustion was observed in mixtures with fuel to nitrate ratio (R) 0.25. • The value of R was found to significantly influence the characteristics of the final product. • Typical exfoliated microstructure and nanopores were observed. • Established correlation between particle size distribution and bulk density, X-ray crystallite size and lattice strain. • Relationship between fuel to nitrate (R) mole ratio and physical characteristics of powders were also established.

  16. Nanocrystalline CdSnO3 Based Room Temperature Methanol Sensor

    Directory of Open Access Journals (Sweden)

    Shanabhau BAGUL

    2017-04-01

    Full Text Available Synthesis of nanocrystalline CdSnO3 powder by ultrasonic atomizer assisted wet chemical method is reported in this paper. Synthesized CdSnO3 powder was characterized by X-Ray Diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM and Transmission Electron Microscopy (TEM to examine phase and microstructure. FESEM and TEM analysis reveals that the CdSnO3 powder prepared here is porous monodisperse nanocrystalline in nature, with average particle size of approximately 17 nm or smaller. The material is also characterized by UV-Visible and Photoluminescence (PL spectroscopy. Thick films of synthesized CdSnO3 powder fired at 850 0C are made by using screen printing method. The films surface is modified by using dipping method. CuCl2 (0.005 M dipped (for 2 min thick film shows high response (R= 477 to 100 ppm methanol at room temperature (35 0C. The sensor shows good selectivity and fast response recovery time to methanol. The excellent methanol sensing performance, particularly high response values is observed to be mainly due to porous CdSnO3 surface.

  17. Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vinodgopal, K [Department of Chemistry, Indiana University Northwest, Gary, Indiana (United States); Kamat, Prashant V [Notre Dame Radiation Laboratory, Notre Dame, Indiana (United States)

    1995-08-01

    The principle and usefulness of electrochemically assisted photocatalysis has been illustrated with the examples of 4-chlorophenol and Acid Orange 7 degradation in aqueous solutions. Thin nanocrystalline semiconductor films coated on a conducting glass surface when employed as a photoelectrode in an electrochemical cell are effective for degradation of organic contaminants. The degradation rate can be greatly improved even in the absence of oxygen by applying an anodic bias to the TiO{sub 2} film electrodes. A ten-fold enhancement in the degradation rate was observed when TiO{sub 2} particles were coupled with SnO{sub 2} nanocrystallites at an applied bias potential of 0.83 V versus SCE

  18. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-01-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties

  19. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  20. Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors

    International Nuclear Information System (INIS)

    Lopez, M.; Marin, P.; Agudo, P.; Carabias, I.; Venta, J. de la; Hernando, A.

    2007-01-01

    Nanocrystalline magnetic particles obtained by high energy ball milling of FeSiBNbCu alloy were prepared from rapidly quenched ribbons as a starting material. Structural characterization was made by using X-ray diffraction (XRD), differential scanning calorimetry (DSC), atomic force microscopy (AFM) and Moessbauer spectroscopy. The structural changes observed in this amorphous material suggest that nanocrystallization process takes place in a different way from the one induced by thermal treatments. Our different studies reveals that after short grinding times (up to 40 h) the material is composed by a two phase system of very fine nanocrystals embedded in a residual amorphous phase, while for largest periods of milling (from 140 h) the sample consists of a very fine nanocrystalline phase with a large fraction of grain boundary

  1. Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al-7.5Mg alloy

    International Nuclear Information System (INIS)

    Lee, Z.; Witkin, D.B.; Radmilovic, V.; Lavernia, E.J.; Nutt, S.R.

    2005-01-01

    The microstructure, mechanical properties and deformation response of bimodal structured nanocrystalline Al-7.5Mg alloy were investigated. Grain refinement was achieved by cryomilling of atomized Al-7.5Mg powders, and then cryomilled nanocrystalline powders blended with 15 and 30% unmilled coarse-grained powders were consolidated by hot isostatic pressing followed by extrusion to produce bulk nanocrystalline alloys. Bimodal bulk nanocrystalline Al-7.5Mg alloys, which were comprised of nanocrystalline grains separated by coarse-grain regions, show balanced mechanical properties of enhanced yield and ultimate strength and reasonable ductility and toughness compared to comparable conventional alloys and nanocrystalline metals. The investigation of tensile and hardness test suggests unusual deformation mechanisms and interactions between ductile coarse-grain bands and nanocrystalline regions

  2. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practically...... independent of temperature. Ms increases with decreasing temperature according to an effective Bloch law with an exponent larger than 1.5, as expected for fine magnetic particles. The model of magnetic particles with uniaxial anisotropy and the actual size distribution gives a consistent description...... of independent measurements of the temperature dependence of the hyperfine field and the isothermal magnetization versus field. From this an effective anisotropy constant of about 4.5x10 4 J m-3 is estimated for a particle with diameter 7.5 nm. The magnetic relaxation, as observed in zero...

  3. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  4. Synthesis of bulk nanocrystalline Pb-Sn-Te alloy under high pressure

    International Nuclear Information System (INIS)

    Zhu, P W; Chen, L X; Jia, X; Ma, H A; Ren, G Z; Guo, W L; Liu, H J; Zou, G T

    2002-01-01

    Pb-Sn-Te bulk nanocrystalline (NC) materials are prepared successfully by quenching melts under high pressure. The mean particle size is about 100 nm and the crystal structure is NaCl type. The mechanism of formation of the bulk NC alloy is explained: there is an increasing of the nucleation rate and a decrease in the growth rate of nuclei with increase of pressure during the solidification processes. The thermoelectric properties of Pb-Sn-Te bulk NC alloy are enhanced. This method is promising for producing thermoelectric materials with improved high-energy conversion efficiency

  5. Iron-rich (Fe1-x-yNixCoy)88Zr7B4Cu1 nanocrystalline magnetic materials for high temperature applications with minimal magnetostriction

    Science.gov (United States)

    Martone, Anthony; Dong, Bowen; Lan, Song; Willard, Matthew A.

    2018-05-01

    As inductor technology advances, greater efficiency and smaller components demand new core materials. With recent developments of nanocrystalline magnetic materials, soft magnetic properties of these cores can be greatly improved. FeCo-based nanocrystalline magnetic alloys have resulted in good soft magnetic properties and high Curie temperatures; however, magnetoelastic anisotropies persist as a main source of losses. This investigation focuses on the design of a new Fe-based (Fe,Ni,Co)88Zr7B4Cu1 alloy with reduced magnetostriction and potential for operation at elevated temperatures. The alloys have been processed by arc melting, melt spinning, and annealing in a protective atmosphere to produce nanocrystalline ribbons. These ribbons have been analyzed for structure, hysteresis, and magnetostriction using X-Ray diffraction, vibrating sample magnetometry (VSM), and a home-built magnetostriction system, respectively. In addition, Curie temperatures of the amorphous phase were analyzed to determine the best performing, high-temperature material. Our best result was found for a Fe77Ni8.25Co2.75Zr7B4Cu1 alloy with a 12 nm average crystallite size (determined from Scherrer broadening) and a 2.873 Å lattice parameter determined from the Nelson-Riley function. This nanocrystalline alloy possesses a coercivity of 10 A/m, magnetostrictive coefficient of 4.8 ppm, and amorphous phase Curie temperature of 218°C.

  6. Tailoring the wettability of nanocrystalline TiO 2 films

    Science.gov (United States)

    Liang, Qiyu; Chen, Yan; Fan, Yuzun; Hu, Yong; Wu, Yuedong; Zhao, Ziqiang; Meng, Qingbo

    2012-01-01

    The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.

  7. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  8. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    International Nuclear Information System (INIS)

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  9. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    International Nuclear Information System (INIS)

    Thorat, J. H.; Kanade, K. G.; Nikam, L. K.; Chaudhari, P. D.; Panmand, R. P.; Kale, B. B.

    2012-01-01

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 °C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 °C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 °C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50–60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25–50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  10. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, J. H. [Mahatma Phule College, Department of Chemistry (India); Kanade, K. G. [Annasaheb Awate College (India); Nikam, L. K. [B.G. College (India); Chaudhari, P. D.; Panmand, R. P.; Kale, B. B., E-mail: kbbb1@yahoo.com [Center for Materials for Electronics Technology (C-MET) (India)

    2012-02-15

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 Degree-Sign C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 Degree-Sign C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 Degree-Sign C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50-60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25-50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  11. Method for producing dysprosium-iron-boron alloy powder

    International Nuclear Information System (INIS)

    Camp, F.E.; Wooden, S.A.

    1989-01-01

    A method for producing a dysprosium-iron alloy adapted for use in the manufacture of rare-earth element containing, iron-boron permanent magnets, the method including providing a particle mixture comprising dysprosium oxide, iron and calcium, compacting the particle mixture to produce a consolidated article, heating the article for a time at temperature to form a metallic compound comprising dysprosium and iron and to form calcium oxide, producing a particle mass of -35 mesh from the compact, washing the particle mass with water at a temperature no greater than 10 0 C to react to the calcium and to the calcium oxide therewith to form a calcium hydroxide, while preventing oxidation of the particle mass, and removing the calcium hydroxide from the particle mass

  12. Iron free permanent magnet systems for charged particle beam optics

    International Nuclear Information System (INIS)

    Lund, S.M.; Halbach, K.

    1995-01-01

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability

  13. Arsenic removal by magnetic nanocrystalline barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Hasmukh A.; Byun, Jeehye; Yavuz, Cafer T., E-mail: yavuz@kaist.ac.kr [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST) (Korea, Republic of)

    2012-07-15

    Nanoscale magnetite (Fe{sub 3}O{sub 4}) (<15 nm) is known to remove arsenic efficiently but is very difficult to separate or require high magnetic fields to separate out from the waste water after treatment. Anisotropic hexagonal ferrite (BaFe{sub 12}O{sub 19}, BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 {+-} 0.52 nm synthesized by thermolysis method at 320 Degree-Sign C do not show hexagonal phase, however, subsequent annealing at 750 Degree-Sign C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

  14. Combustion synthesis and photoluminescence in novel red emitting yttrium gadolinium pyrosilicate nanocrystalline phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Hedaoo, V.P., E-mail: vraikwar@rediffmail.com [Department of Physics, R. J. College, Ghatkopar, Mumbai, MS 400086 (India); Bhatkar, V.B. [Department of Physics, Shri Shivaji Science College, Amravati, MS 444602 (India); Omanwar, S.K. [Department of Physics, SGB Amravati University, Amravati, MS 444602 (India)

    2016-07-05

    Yttrium Gadolinium Pyrosilicate Y{sub 2-x}Gd{sub x}Si{sub 2}O{sub 7}:Eu{sup 3+} (x = 0.05, 0.10, 0.15) phosphor powder was prepared by facile and time efficient modified combustion method for the first time. The phosphor was characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence excitation (PLE) and emission (PL) spectroscopy and color chromaticity coordinates. XRD revealed the monoclinic crystal structure with space group P1¯. The crystallite size was calculated by Williamson-Hall (W–H) analysis. Nanoplates-like morphology was observed in FESEM analysis with size in the range 50–80 nm. TEM images confirmed the particle size and shape. Upon excitation by 254 nm UV light, the phosphor showed the characteristic red emission peaks at 589 nm and 613 nm corresponding to {sup 5}D{sub 0} → {sup 7}F{sub 1} and {sup 5}D{sub 0} → {sup 7}F{sub 2} transitions respectively. It was observed that the nanocrystalline phosphor Y{sub 2-x}Gd{sub x}Si{sub 2}O{sub 7}:Eu{sup 3+}can be tuned to emit orange to red color by adjusting the ratio Y/Gd. This phosphor thus can be a potential candidate as orange to red color emitting tunable nanocrystalline phosphor for optical devices. - Highlights: • A novel Yttrium Gadolinium Pyrosilicate doped with Eu{sup 3+} is reported. • Facile and time efficient modified combustion method is used. • The nanocrystalline structure was shown by X-ray diffraction, W–H analysis. • FESEM and TEM images confirmed the nanocrystalline structure. • The reported phosphor can be tuned from orange to red by varying Y/Gd ratio.

  15. Iron oxides in human brain

    International Nuclear Information System (INIS)

    Cesnek, M.; Miglierini, M.; Lancok, A.

    2015-01-01

    It was confirmed that Moessbauer spectroscopy is an useful tool for measurement of biological tissues even if the concentration of iron in the samples is very low. Moessbauer spectra revealed a presence of particles with non-magnetic behaviour at room temperature. At temperature 4.2 K almost all particles exhibit magnetic behaviour. The rest of the particles still exhibits superparamagnetic behaviour what indicates that their blocking temperature is lower than 4.2 K. It was suggested that those might be very small haemosiderin particles. Parameters the sextet-like components suggest possible presence of goethite, akaganeit or ferrihydrite. Using synchrotron assisted XRD, it was not possible to reveal any iron relevant structural information due to very low concentration of iron atoms in samples. Atomic pairs with the highest contribution to PDF were revealed. All these atomic pairs are characteristic for biological materials. XRD measurement of extracted ferritin could reveal some helpful information about the iron structure. (authors)

  16. Magnetic properties of nanocrystalline KNbO3

    International Nuclear Information System (INIS)

    Golovina, I. S.; Shanina, B. D.; Kolesnik, S. P.; Geifman, I. N.; Andriiko, A. A.

    2013-01-01

    Newly synthesized undoped and iron-doped nanoscale powders of KNbO 3 are investigated using magnetic resonance and static magnetization methods in order to determine how the crystal size and doping affect the structure of magnetic defects and material properties. Although the bulk crystals of KNbO 3 are nonmagnetic, the undoped KNbO 3 powder with average particle size of 80 nm exhibits magnetic properties. The ferromagnetic resonance signal and the magnetization curve registered on the powder are thoroughly analyzed. It is concluded that the appearance of the defect driven ferromagnetism in the undoped powder is due to the nano-size of the particles. This effect disappears in the iron-doped KNbO 3 powder with particle sizes above 300 nm. In case of low doping ( eff  = 4.21 is found out in the KNbO 3 :Fe powder. Such a signal has not been observed in the bulk crystals of KNbO 3 :Fe. We suppose that this signal corresponds to individual paramagnetic Fe 3+ ions having rhombic symmetry

  17. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Science.gov (United States)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  18. Elimination of Iron Based Particles in Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2015-03-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by chrome. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases. By experimental work were used three different amounts of AlCr20 master alloy a three different temperature of chill mold. Our experimental work confirmed that chrome can be used as an iron corrector in Al-Si alloy, due to the change of intermetallic phases and shortening their length.

  19. Morphology and Phase Composition of Particles Produced by Electro-Discharge-Machining of Iron

    International Nuclear Information System (INIS)

    Cabanillas, E. D.; Pasqualini, E. E.; Lopez, M.; Cirilo, D.; Desimoni, J.; Mercader, R. C.

    2001-01-01

    Towards producing metallic particles of controlled size and spherical shape, which are of technological importance, we have collected in the filters of an electro-discharge-machine (EDM) the material ejected from the surface of EDM iron pieces. The conditions of machining were varied for kerosene and water as dielectrics, using a discharge current of 25 A and duration times of 16 and 3072 μs for kerosene and of 32, 384 and 768 μs for water, respectively. Scanning electron microscopy was used to assess the effect of the time of discharge on the size of the particles. Moessbauer spectroscopy and X-ray diffraction revealed that for kerosene EDM particles only cementite-like carbides of diverse stoichiometry were formed. While no oxide was found for kerosene spheres, the analyses showed that besides the main fraction of α-Fe, a small percentage of wuestite (and traces of hematite for the 384 μs sample) formed on the water EDM ones

  20. Morphology and Phase Composition of Particles Produced by Electro-Discharge-Machining of Iron

    Energy Technology Data Exchange (ETDEWEB)

    Cabanillas, E. D.; Pasqualini, E. E.; Lopez, M.; Cirilo, D. [Comision Nacional de Energia Atomica, Centro Atomico Constituyentes (Argentina); Desimoni, J.; Mercader, R. C. [Universidad Nacional de La Plata, Departamento de Fisica, IFLP, Facultad de Ciencias Exactas (Argentina)

    2001-05-15

    Towards producing metallic particles of controlled size and spherical shape, which are of technological importance, we have collected in the filters of an electro-discharge-machine (EDM) the material ejected from the surface of EDM iron pieces. The conditions of machining were varied for kerosene and water as dielectrics, using a discharge current of 25 A and duration times of 16 and 3072 {mu}s for kerosene and of 32, 384 and 768 {mu}s for water, respectively. Scanning electron microscopy was used to assess the effect of the time of discharge on the size of the particles. Moessbauer spectroscopy and X-ray diffraction revealed that for kerosene EDM particles only cementite-like carbides of diverse stoichiometry were formed. While no oxide was found for kerosene spheres, the analyses showed that besides the main fraction of {alpha}-Fe, a small percentage of wuestite (and traces of hematite for the 384 {mu}s sample) formed on the water EDM ones.

  1. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    Science.gov (United States)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  2. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-11-01

    Full Text Available Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  3. Rhometal interface in pseudo-core shell powders like Permalloy/Rhometal type

    Energy Technology Data Exchange (ETDEWEB)

    Chicinaş, I.; Marinca, T.F.; Popa, F.; Neamţu, B.V.

    2015-12-15

    Highlights: • Pseudo-core shell powders like Permalloy/Rhometal type obtained by microalloying. • During annealing, by interdiffusion, Rhometal phase is formed at the interface. • Both bcc and fcc structures of the Rhometal have been evidenced in interface. - Abstract: The nanocrystalline Ni{sub 3}Fe (around Permalloy composition) powders were prepared by dry mechanical alloying. The nanocrystalline Ni{sub 3}Fe and carbonyl Fe mixture powders and green compacts have been subjected to heat treatments in an argon atmosphere in order to obtain pseudo-core-shell like particles by micro-alloying in the temperature range of 400–900 °C. The large Permalloy particles are partially covered by very small Fe particles and at the interface a layer of Rhometal is formed by micro-alloying. The Permalloy particles remain in the nanocrystalline/nanostructured state after the annealing independent on the annealing temperature up to 900 °C. Structural, microstructural characterisation and local elemental chemical analysis have been performed by X-ray diffraction, scanning electron microscopy and X-ray microanalysis. The Rhometal interface was studied and evidenced by Fe and Ni concentration profile (EDX microanalysis) and X-ray diffraction. It was found that by a heat treatment up to 900 °C the interface is in the iron zone and at the heat treatment temperature of 900 °C the interface is in both Permalloy and iron zones. By XRD the bcc and fcc structures of the Rhometal have been evidenced. The interface length in iron zones is about 0.8 μm for the heat treatment at 400 °C and reaches 2.5 μm for heat treatment at 900 °C. The interface reaches 10 μm for a temperature of a heat treatment of 900 °C. The iron zones welded by Permalloy zones is evidenced the presence of the Ni atoms up to 4.7 at%. Also, in Permalloy particles are evidenced two zones with a different amount of Ni: one around Ni{sub 0.6}Fe{sub 0.4} composition close to the interface and the second in the

  4. Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites

    Energy Technology Data Exchange (ETDEWEB)

    Žvátora, Pavel [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Veverka, Miroslav; Veverka, Pavel; Knížek, Karel; Závěta, Karel; Pollert, Emil [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Král, Vladimír [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Zentiva Development (Part of Sanofi Group), U Kabelovny 130, 102 37 Prague (Czech Republic); Goglio, Graziella; Duguet, Etienne [CNRS, University of Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France); Kaman, Ondřej, E-mail: kamano@seznam.cz [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 40 Prague (Czech Republic)

    2013-08-15

    Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for the samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.

  5. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    International Nuclear Information System (INIS)

    Luo, Zhenfei; Zhou, Xun; Yan, Dawei; Wang, Du; Li, Zeyu; Yang, Cunbang; Jiang, Yadong

    2014-01-01

    Nanocrystalline vanadium dioxide (VO 2 ) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO 2 thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T SMT ) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO 2 grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T SMT was found to decrease as average VO 2 grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO 2 film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure

  6. Ferroxidase-Mediated Iron Oxide Biomineralization

    DEFF Research Database (Denmark)

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-01-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many......, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications....... identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron...

  7. Nanocrystalline permanent magnets with enhanced properties

    International Nuclear Information System (INIS)

    Leonowicz, M.

    2002-01-01

    Parameters of permanent magnets result from the combination of intrinsic properties such as saturation magnetization, magnetic exchange, and magnetocrystalline energy, as well as microstructural parameters such as phase structure, grain size, and orientation. Reduction of grain size into nanocrystalline regime (∼ 50 nm) leads to the enhanced remanence which derives from ferromagnetic exchange coupling between highly refined grains. In this study the fundamental phenomena, quantities, and structure parameters, which define nanophase permanent magnets are presented and discussed. The theoretical considerations are confronted with experimental data for nanocrystalline Sm-Fe-N type permanent magnets. (author)

  8. Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yingying; Zhou, Wancheng; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2015-01-15

    Microwave absorbing composites with thin thickness and wideband absorption were successfully prepared by a spraying method using carbonyl iron particles (CIPs) as absorbers and silicone resin as the matrix. The value of reflection loss (RL) below −5 dB can be obtained in the frequency range of 5.76–18 GHz for the composite with 0.8 mm thickness. The temperature dependence of electromagnetic properties and RL of the composites were investigated. The RL of the composite showed a slight variation when the temperature reached up to 200 °C while decreased at 300 °C. The room temperature RL of the composite did not display significant difference before and after the heat treatment at 300 °C for 10 h; the mechanism was also discussed. - Highlights: • Carbonyl iron particles/silicone resin composites are prepared by a spraying method. • Reflection loss values exceed −5 dB at 5.76–18 GHz for an absorber of 0.8 mm thickness. • The variation of reflection loss was studied from room temperature to 300 °C.

  9. Thermodynamic and experimental study on phase stability in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Xu Wenwu; Song Xiaoyan; Lu Nianduan; Huang Chuan

    2010-01-01

    Nanocrystalline alloys exhibit apparently different phase transformation characteristics in comparison to the conventional polycrystalline alloys. The special phase stability and phase transformation behavior, as well as the essential mechanisms of the nanocrystalline alloys, were described quantitatively in a nanothermodynamic point of view. By introducing the relationship between the excess volume at the grain boundary and the nanograin size, the Gibbs free energy was determined distinctly as a function of temperature and the nanograin size. Accordingly, the grain-size-dependence of the phase stability and phase transformation characteristics of the nanocrystalline alloy were calculated systematically, and the correlations between the phase constitution, the phase transformation temperature and the critical nanograin size were predicted. A series of experiments was performed to investigate the phase transformations at room temperature and high temperatures using the nanocrystalline Sm 2 Co 17 alloy as an example. The phase constitution and phase transformation sequence found in nanocrystalline Sm 2 Co 17 alloys with various grain-size levels agree well with the calculations by the nanothermodynamic model.

  10. Corrosion and magnetic properties of encapsulated carbonyl iron particles in aqueous suspension by inorganic thin films for magnetorheological finishing application

    Science.gov (United States)

    Esmaeilzare, Amir; Rezaei, Seyed Mehdi; Ramezanzadeh, Bahram

    2018-04-01

    Magnetorheological fluid is composed of micro-size carbonyl iron (CI) particles for polishing of optical substrates. In this paper, the corrosion resistance of carbonyl iron (CI) particles modified with three inorganic thin films based on rare earth elements, including cerium oxide (CeO2), lanthanum oxide (La2O3) and praseodymium oxide (Pr2O3), was investigated. The morphology and chemistry of the CI-Ce, CI-Pr and CI-La particles were examined by high resolution Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of CI particles in aquatic environment. In addition, the Vibrating Sample Magnetometer (VSM) technique was utilized for determination of magnetic saturation properties of the coated particles. Afterwards, gas pycnometry and contact angle measurement methods were implemented to evaluate the density and hydrophilic properties of these particles. The results showed that deposition of all thin films increased the hydrophilic nature of these particles. In addition, it was observed that the amount of magnetic saturation properties attenuation for Pr2O3 and La2O3 films is greater than the CeO2 film. The EIS and polarization tests results confirmed that the CI-Ce had the maximum corrosion resistant among other samples. In addition, the thermogravimetric analysis (TGA) showed that the ceria coating provided particles with enhanced surface oxidation resistance.

  11. Environmental application of millimeter-scale sponge iron (s-Fe{sup 0}) particles (II): The effect of surface copper

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, Ohio 45221-0012 (United States)

    2015-04-28

    Highlights: • Facile reduction reaction achieves decoration of Cu{sup 0} onto the surface of s-Fe{sup 0}. • The removal efficiency of RhB over Cu{sup 0}–s-Fe{sup 0} was similar to that of Cu{sup 0}–nZVI. • Cu{sup 0}–s-Fe{sup 0} can operate under mild condition with lower cost compared to nZVI. • The reductive mechanism over Cu{sup 0}–s-Fe{sup 0} under US condition is also elucidated. - Abstract: To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe{sup 0}), Cu{sup 2+} ions were deposited on the surface of s-Fe{sup 0} using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu{sup 0} loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3 ∼ 5 millimeter s-Fe{sup 0} particles (s-Fe{sup 0}(3 ∼ 5 mm)) with 5 wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu{sup 0}–s-Fe{sup 0} showed excellent stability after five reuse cycles. Cu{sup 0}–s-Fe{sup 0} possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu{sup 0} apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} played minor role for the removal of RhB.

  12. Tailoring and patterning the grain size of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  13. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  14. In-situ Lead Removal by Iron Nano Particles Coated with Nickel

    Directory of Open Access Journals (Sweden)

    Mohammadreza Fadaei-tehrani

    2016-01-01

    Full Text Available This study investigates the potential of nano-zero-valent iron particles coated with nickel in the removal of lead (Pb2+ from porous media. For this purpose, the nano-particles were initially synthesized and later stablilized using the strach biopolymer prior to conducting batch and continuous experiments. The results of the batch experiments revealed that the reaction kinetics fitted well with the pseudo-first-order adsorption model and that the reaction rate ranged from 0.001 to 0.035 g/mg/min depending on solution pH and the molar ratio of Fe/Pb. Continuous experiments showed that lead remediation was mostly influenced not only by seepage velocity but also by the quantity and freshness of nZVI as well as the grain type of the porous media. Maximum Pb2+ removal rates obtained in the batch and lab models were 95% and 80%, respectively. Based on the present study, S-nZVI may be suggested as an efficient agent for in-situ remediation of groundwater contaminated with lead.

  15. Industrial study of iron oxide reduction by injection of carbon particles into the electric arc furnace

    International Nuclear Information System (INIS)

    Conejo, A. N.; Torres, R.; Cuellar, E.

    1999-01-01

    An industrial study was conducted in electric arc furnaces (EAF) employing 100% direct reduced iron to evaluate the oxidation level of the slag-metal system. Energy consumption is decreased by injecting gaseous oxygen, however, slag oxidation also increases. In order to reduce the extent of oxidation while keeping a high volume of the oxygen injected , it is required: a) to optimize the carbon injection practice, b) to increase the carbon concentration of sponge iron, c) to operate with soluble carbon in both the metal and the slag beyond a critical level and d) to employ a low temperature profile, on average 1,650 degree centigrade. A method to define the proper amount of carbon in sponge iron which considers their metallization as well as the amount of oxygen injected is proposed. The position of the lance is critical in order to optimize the practice of carbon injection and assure a better residence time of the carbon particles within the furnace. (Author) 23 refs

  16. In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P. V.; Thiyagarajan, T. K.; Sreekumar, K. P.; Vijay, M.; Selvarajan, V.; Yu, Jiaguo; Liu, Shengwei

    2010-01-01

    Nanocrystalline titanium dioxide powder was synthesized by in-flight oxidation of titanium dihydride (TiH 2 ) powder in a thermal plasma jet. TiH 2 powder was injected into the thermal plasma jet and allowed to react with oxygen injected downstream the jet. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. It is suggested that the thermo-chemistry of the oxidation process contributes significantly to the formation of nano-sized titania. The large energy released during the oxidation process dissociates the TiO 2 particles into TiO (g) and titanium vapour, which recombine downstream with oxygen and form nano particles of TiO 2 .

  17. Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites

    International Nuclear Information System (INIS)

    Nathani, H.; Misra, R.D.K.

    2004-01-01

    The magnetization studies on nanocrystalline nickel ferrite as powder particles, and as diluted dispersion (10 wt.%) in polymer matrix (polymer nanocomposites) are presented. The two polymer-based nanocomposites were prepared via ball-milling and in situ polymerization, respectively. The magnetization measurements provide strong evidence of surface effects to magnetization, which explains the non-saturation of magnetization at high fields. The differences in the magnetization behavior of nickel ferrite as powder particles and in the ball-milled nanocomposite and the nanocomposite prepared via in situ polymerization are attributed to the different extent of interparticle interactions between the particles and the preparation route. The magnetization versus applied field behavior of the three ferrite systems show a similar jump in the initial part of the magnetization curve in all the cases which implies the existence of a core-shell like morphology of the particles over a large temperature range and its dominance over the interparticle interaction effects between the particles

  18. The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles

    Science.gov (United States)

    Mohamad, N.; Mazlan, S. A.; Ubaidillah; Choi, Seung-Bok; Nordin, M. F. M.

    2016-09-01

    This paper presents dynamic viscoelastic properties of magnetorheological (MR) grease under variation of magnetic fields and magnetic particle fractions. The tests to discern the field-dependent properties are undertaken using both rotational and oscillatory shear rheometers. As a first step, the MR grease is developed by dispersing the carbonyl iron (CI) particles into grease medium with a mechanical stirrer. Experimental data are obtained by changing the magnetic field from 0 to 0.7 T at room temperature of 25 °C. It is found that a strong Payne effect limits the linear viscoelastic region of MR grease at strains above 0.1%. The results exhibit a high dynamic yield stress which is equivalent to Bingham plastic rheological model, and show relatively good MR effect at high shear rate of 2000 s-1. In addition, high dispersion of the magnetic particles and good thermal properties are proven. The results presented in this work directly indicate that MR grease is a smart material candidate that could be widely applicable to various fields including vibration control.

  19. Antioxidant mechanism of milk mineral-high-affinity iron binding.

    Science.gov (United States)

    Allen, K; Cornforth, D

    2007-01-01

    Milk mineral (MM), a by-product of whey processing, is an effective antioxidant in meat systems, but the antioxidant mechanism has not been established. MM has been postulated to chelate iron and prevent iron-catalysis of lipid oxidation. The objective of this research was to examine this putative mechanism. MM was compared to sodium tripolyphosphate (STPP), calcium phosphate monobasic (CPM), and calcium pyrophosphate (CPP) to determine iron-binding capacity, sample solubility, and eluate soluble phosphorus after treating samples with a ferrous chloride standard. Scanning electron microscopy with energy-dispersive X-ray analysis was used to localize minerals on iron-treated MM particle surfaces. Histochemical staining for calcium was performed on raw and cooked ground beef samples with added MM. MM bound more iron per gram (P compounds, and was much less soluble (P iron across the MM particle surface, directly demonstrating iron binding to MM particles. Unlike other common chelating agents, such as STPP and citrate, histochemical staining demonstrated that MM remained insoluble in ground beef, even after cooking. The ability of MM to bind iron and remain insoluble may enhance its antioxidant effect by removing iron ions from solution. However, MM particles must be small and well distributed in order to adequately bind iron throughout the food system.

  20. Iron particle and anisotropic effects on mechanical properties of magneto-sensitive elastomers

    Science.gov (United States)

    Kumar, Vineet; Lee, Dong-Joo

    2017-11-01

    Rubber specimens were prepared by mixing micron-sized iron particles dispersed in room-temperature-vulcanized (RTV) silicone rubber by solution mixing. The possible correlations of the particle volume, size, and distribution with the mechanical properties of the specimens were examined. An isotropic mechanical test shows that at 60 phr, the elastic modulus was 3.29 MPa (electrolyte), 2.92 MPa (carbonyl), and 2.61 MPa (hybrid). The anisotropic effect was examined by curing the specimen under magnetic fields of 0.5-2.0 T at 90° relative to the applied strain. The measurements show anisotropic effects of 11% (carbonyl), 9% (electrolyte), and 6% (hybrid) at 40 phr and 1 T. At 80 phr, the polymer-filler compatibility factor (c-factor) was estimated using the Pythagorean theorem as 0.53 (regular) and 0.73 (anisotropic studies). The improved features could be useful in applications such as controlled damping, vibrational absorption, or automotive bushings.

  1. Synthesis of nanocrystalline hydroxyapatite by using precipitation method

    International Nuclear Information System (INIS)

    Mobasherpour, I.; Heshajin, M. Soulati; Kazemzadeh, A.; Zakeri, M.

    2007-01-01

    In this investigation, hydroxyapatite powder has been synthesized from the calcium nitrate hydrated and di-ammonium hydrogen phosphate solution by precipitation method and heat treatment of hydroxyapatite powders. In order to study the structural evolution, the Fourier transform infrared spectroscopy (FTIR), the X-ray diffraction (XRD) and simultaneous thermal analysis (STA) were used. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to estimate the particle size of the powder and observe the morphology and agglomeration state of the powder. Results show that hydroxyapatite nanocrystalline can successfully be produced by precipitation technique from raw materials. Hydroxyapatite grain gradually increased in size when temperature increased from 100 to 1200 o C, and the hydroxyapatite hexagonal-dipyramidal phase was not transformed to the other calcium phosphates phases up to 1200 o C

  2. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  3. The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal

    Science.gov (United States)

    Mayo, John Thomas

    Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized

  4. AC magnetic properties of the soft magnetic composites based on Supermalloy nanocrystalline powder prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamtu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France); Geoffroy, O. [Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France); Grenoble Electrical Engineering, University J. Fourier, BP 46, F-38402 Saint-Martin d' Heres Cedex (France); Chicinas, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Neel, CNRS/Universite J. Fourier, BP166, 38042 Grenoble, Cedex 9 (France)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Nanocrystalline soft magnetic composites were obtained. Black-Right-Pointing-Pointer The cutting frequency of the produced nanocrystalline SMC exceeds 100 kHz. Black-Right-Pointing-Pointer A long annealing at low temperature leads to an improvement of the permeability (12%). - Abstract: The preparation and characterization of the nanocrystalline soft magnetic composite core based on Supermalloy powder obtained via mechanical alloying route are presented. The AC magnetic properties of the compacts were determined in frequency range from 100 Hz to 100 kHz for flux densities of 0.05 and 0.1 T. Composite materials were obtained by covering the Supermalloy particles with a polymer binder, then compacted into toroidal shape and finally polymerized. It is found that an increase of the compacting pressure from 600 MPa to 800 MPa leads to an increase of the compacts permeability by more than 8%. Also, reducing the polymer content from 2 wt.% to 0.5 wt.% leads to an increase of the magnetic losses (at 100 kHz and 0.1 T) by 380%. The removal of the stresses induced during compaction has been accomplished by a heat treatment at 170 Degree-Sign C for 120 h. This leads to a significant increase (12%) of the relative initial permeability of the compacts.

  5. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Samar J. [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)]. E-mail: samar@mail.ucf.edu; Bhatt, Himesh A. [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)

    2007-05-16

    During recent years, there have been efforts in developing nanocrystalline bioceramics, to enhance their mechanical and biological properties for use in tissue engineering applications. In this research, we made an attempt to synthesize nanocrystalline bioactive hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp) ceramic powder in the lower-end of nano-range (2-10 nm), using a simple low-temperature sol-gel technique and studied its densification behavior. We further studied the effects of metal ion dopants during synthesis on powder morphology, and the properties of the sintered structures. Calcium nitrate and triethyl phosphite were used as precursors for calcium and phosphorous, respectively, for sol-gel synthesis. Calculated quantities of magnesium oxide and zinc oxide were incorporated as dopants into amorphous dried powder, prior to calcination at 250-550 {sup o}C. The synthesized powders were analyzed for their phases using X-ray diffraction technique and characterized for powder morphology and particle size using transmission electron microscopy (TEM). TEM analysis showed that the average particle size of the synthesized powders were in the range of 2-10 nm. The synthesized nano-powders were uniaxially compacted and then sintered at 1250 {sup o}C and 1300 {sup o}C for 6 h, separately, in air. A maximum average sintered density of 3.29 g/cm{sup 3} was achieved in structures sintered at 1300 {sup o}C, developed from nano-powder doped with magnesium. Vickers hardness testing was performed to determine the hardness of the sintered structures. Uniaxial compression tests were performed to evaluate the mechanical properties. Bioactivity and biodegradation behavior of the sintered structures were assessed in simulated body fluid (SBF) and maintained in a dynamic state.

  6. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (III): The effect of surface silver

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Yu, Yunjiang, E-mail: yuyunjiang@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Wang, Xiaoyan [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Zhang, Sukun [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Liu, Runlong [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Fu, Jianping; Han, Jinglei; Fang, Jiande [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-12-15

    Highlights: • Direct reductive deposition reaction achieves surfaced decoration of s-Fe{sup 0} particles. • Ag{sup 0}-s-Fe{sup 0} displays similar removal efficiency of PCP as compared to bimetal of nZVI. • Ag{sup 0}-s-Fe{sup 0} can be utilized under mild reaction condition compared to bimetal of nZVI. • The catalytic mechanism over Ag{sup 0}-s-Fe{sup 0} under US condition is elucidated. - Abstract: To enhance the dechlorination reactivity of millimetric sponge iron (s-Fe{sup 0}), a facile one-pot method was used to decorate s-Fe{sup 0} with Ag{sup +} ions under ambient conditions. The results recorded by X-ray diffraction patterns, X-ray photoelectron spectra and high-resolution transmission electron microscopy demonstrated that the growth of Ag{sup 0} was dominated primarily by (1 1 1) plane with a mean length of ∼20 nm. The roles of Ag{sup 0} loading, catalyst dosage, particle size, initial pH and contaminant concentration were assessed during the removal of pentachlorophenol (PCP). Catalyst recyclability was also studied. The results revealed that 3–5 mm s-Fe{sup 0} particles with 5 wt% Ag{sup 0} loading exhibited the best performance with a dose of 3.0 g per 60 mL PCP solution. In addition, the dechlorination of PCP followed two-step, pseudo-first-order reaction kinetics, and Ag{sup 0}-s-Fe{sup 0} was advantageous compared with bimetals of nanoscale zero-valent iron, iron power and iron flakes. The dechlorination mechanism of PCP over Ag{sup 0}-s-Fe{sup 0} was attributed to the surface Ag{sup 0} decoration, which catalyzed the formation of reactive hydrogen atoms for indirect reaction, and the direct electron transfer via Fe–Ag{sup 0} galvanic cells for direct reaction. This suggests that Ag-based bimetals of s-Fe{sup 0} have great potential in the pretreatment of organic halogen compounds in aqueous solution.

  7. Atherosclerotic imaging using 4 types of superparamagnetic iron oxides: New possibilities for mannan-coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Keiko, E-mail: keikot@belle.shiga-medac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Nitta, Norihisa, E-mail: r34nitta@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Sonoda, Akinaga, E-mail: akinagasonoda@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Otani, Hideji, E-mail: otani@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Takahashi, Masashi, E-mail: masashi@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Murata, Kiyoshi, E-mail: murata@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Shiomi, Masashi, E-mail: ieakusm@med.kobe-u.ac.jp [Institute for Experimental Animals, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Tyuoku, Kobe, Hyogo 650-0017 (Japan); Tabata, Yasuhiko, E-mail: yasuhiko@frontier.kyoto-u.ac.jp [Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Syogoin-Kawahara-cho, Sakyoku, Kyoto 606-8507 (Japan); Nohara, Satoshi, E-mail: s-nohara@meito-sangyo.co.jp [The Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Nishibiwajima-cho, Kiyosu, Aichi 452-0067 (Japan)

    2013-11-01

    Purpose: We used magnetic resonance imaging (MRI) and histologic techniques to compare the uptake by the rabbit atherosclerotic wall of 4 types of superparamagnetic iron oxide (SPIO) particles, i.e. SPIO, mannan-coated SPIO (M-SPIO), ultrasmall SPIO (USPIO), and mannan-coated USPIO (M-USPIO). Materials and methods: All experimental protocols were approved by our institutional animal experimentation committee. We intravenously injected 12 Watanabe heritable hyperlipidemic rabbits with one of the 4 types of SPIO (0.8 mmol Fe/kg). Two other rabbits served as the control. The rabbits underwent in vivo contrast-enhanced magnetic resonance angiography (MRA) before- and 5 days after these injections; excised aortae were subjected to in vitro MRI. In the in vivo and in vitro studies we assessed the signal intensity of the vessels at identical regions of interest (ROI) and calculated the signal-to-noise ratio (SNR). For histologic assessment we evaluated the iron-positive regions in Prussian blue-stained specimens. Results: There were significant differences in iron-positive regions where M-USPIO > USPIO, M-SPIO > SPIO, USPIO > SPIO (p < 0.05) but not between M-USPIO and M-SPIO. The difference between the pre- and post-injection SNR was significantly greater in rabbits treated with M-USPIO than USPIO and in rabbits injected with M-SPIO than SPIO (p < 0.05). On in vitro MRI scans SNR tended to be lower in M-USPIO- and M-SPIO- than USPIO- and SPIO-treated rabbits (p < 0.1). Conclusion: Histologic and imaging analysis showed that mannan-coated SPIO and USPIO particles were taken up more readily by the atherosclerotic rabbit wall than uncoated SPIO and USPIO.

  8. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    Science.gov (United States)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  9. Problems of Electromagnetic Filtration of Technological Liquid on the Basis of Iron-Containing Particle Deposition in High-Gradient Magnetic Field

    Directory of Open Access Journals (Sweden)

    R. A. Muradova

    2006-01-01

    Full Text Available Conventional methods for separation of liquid systems are out of use for cleaning liquid products of chemical technology from finely dispersed micro-quantity of iron-containing particles. Majority of these impurities is characterized by magneto-receptive behavior, in other words they exhibit a capability for magnetic precipitation; so application of magnetic precipitating filters shows promise for a removal of such particles.

  10. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhenfei, E-mail: zhfluo8@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Zhou, Xun, E-mail: zx_zky@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yan, Dawei [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Wang, Du; Li, Zeyu [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yang, Cunbang [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-01-01

    Nanocrystalline vanadium dioxide (VO{sub 2}) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO{sub 2} thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T{sub SMT}) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO{sub 2} grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T{sub SMT} was found to decrease as average VO{sub 2} grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO{sub 2} film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure.

  11. Zeolite Encapsulated Nanocrystalline CuO: A Redox Catalyst for the Oxidation of Secondary Alcohols

    Directory of Open Access Journals (Sweden)

    Sakthivel Vijaikumar

    2008-01-01

    Full Text Available Zeolite encapsulated nanocrystalline CuO is synthesized and characterized by powder XRD and HRTEM analyses which clearly show that the particles are less than 15 nm and the nanoparticles are highly dispersed. This nano CuO encapsulated CuY zeolite is used as catalyst in the oxidation of aromatic secondary alcohols. CuY zeolite acts as an efficient support for nano CuO, by stabilizing it and preventing its aggregation. Plausible mechanisms for the formation of the various products are also given.

  12. New route to the fabrication of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Varshney, Deepak; Morell, Gerardo; Palomino, Javier; Resto, Oscar; Gil, Jennifer; Weiner, Brad R.

    2014-01-01

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production

  13. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys

    International Nuclear Information System (INIS)

    Sriraman, K.R.; Ganesh Sundara Raman, S.; Seshadri, S.K.

    2007-01-01

    The present work deals with evaluation of corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys. Corrosion behaviour of the coatings deposited on steel substrates was studied using polarization and electrochemical impedance spectroscopy techniques in 3.5% NaCl solution while their passivation behaviour was studied in 1N sulphuric acid solution. The corrosion resistance of Ni-W alloys increased with tungsten content up to 7.54 at.% and then decreased. In case of Ni-Fe-W alloys it increased with tungsten content up to 9.20 at.% and then decreased. The ternary alloy coatings exhibited poor corrosion resistance compared to binary alloy coatings due to preferential dissolution of iron from the matrix. Regardless of composition all the alloys exhibited passivation behaviour over a wide range of potentials due to the formation of tungsten rich film on the surface

  14. Effect of particle size and lattice strain on Debye–Waller factors of ...

    Indian Academy of Sciences (India)

    Administrator

    refrigeration system and other biological applications and catalysis ... technique for fabrication of nanocrystalline structure with improved ... used to prepare the initial sample. ... but with preferred orientation of graphite particles along. [0 0 2].

  15. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    International Nuclear Information System (INIS)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  16. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.

    Science.gov (United States)

    Machemer, Steven D

    2004-01-15

    Characterization of airborne and bulk particulate material from iron and steel manufacturing facilities, commonly referred to as kish, indicated graphite flakes and graphite flakes associated with spherical iron oxide particles were unique particle characteristics useful in identifying particle emissions from iron and steel manufacturing. Characterization of airborne particulate material collected in receptor areas was consistent with multiple atmospheric release events of kish particles from the local iron and steel facilities into neighboring residential areas. Kish particles deposited in nearby residential areas included an abundance of graphite flakes, tens of micrometers to millimeters in size, and spherical iron oxide particles, submicrometer to tens of micrometers in size. Bulk kish from local iron and steel facilities contained an abundance of similar particles. Approximately 60% of blast furnace kish by volume consisted of spherical iron oxide particles in the respirable size range. Basic oxygen furnace kish contained percent levels of strongly alkaline components such as calcium hydroxide. In addition, concentrations of respirable Mn in airborne particulate in residential areas and at local iron and steel facilities were approximately 1.6 and 53 times the inhalation reference concentration of 0.05 microg/m3 for chronic inhalation exposure of Mn, respectively. Thus, airborne release of kish may pose potential respirable particulate, corrosive, or toxic hazards for human health and/or a corrosive hazard for property and the environment.

  17. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  18. Small Angle Neutron Scattering From Iron. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M; Abdel-Kawy, A; Naguib, K; Habib, N; Kilany, M [Reactor and Neutron Physics Dept., Nuclear Research Centre, AEA, Cairo, (Egypt); Wahba, M [Faculty of Engineering, ain Shams University, Cairo, (Egypt); Ashry, A [Faculty of Education, Ain Shams University, Cairo, (Egypt)

    1996-03-01

    The total neutron cross-section measurements have been carried out for iron in both metallic and powder forms in the wavelengths band 0.35 nm to 0.52 nm. The measurements were performed using the TOF spectrometer installed in front of one of the horizontal channels of the ET-RR-1 reactor. The observed behavior for the small-angle neutron scattering cross-section of iron powder was analyzed in terms of its particle diameter, incident neutron wavelength and beam divergence. It was found that for iron particles of diameter 25 {mu}m the small-angle neutron scattering is only due to refraction of neutron wave traversing the particles. A method was established to determine the particle size of iron powders within an accuracy of 8% which is higher than that obtained by mesh analysis. 4 figs., 1 tab.

  19. Magnetic properties of nanocrystalline KNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Golovina, I. S., E-mail: golovina@isp.kiev.ua; Shanina, B. D.; Kolesnik, S. P. [Institute of Semiconductor Physics of NAS of Ukraine, Pr. Nauky 41, 03028 Kyiv (Ukraine); Geifman, I. N. [Quality Engineering Education, Inc., Buffalo Grove, Illinois 60089 (United States); Andriiko, A. A. [National Technical University of Ukraine “KPI”, pr. Peremogy 37, 03056 Kyiv (Ukraine)

    2013-11-07

    Newly synthesized undoped and iron-doped nanoscale powders of KNbO{sub 3} are investigated using magnetic resonance and static magnetization methods in order to determine how the crystal size and doping affect the structure of magnetic defects and material properties. Although the bulk crystals of KNbO{sub 3} are nonmagnetic, the undoped KNbO{sub 3} powder with average particle size of 80 nm exhibits magnetic properties. The ferromagnetic resonance signal and the magnetization curve registered on the powder are thoroughly analyzed. It is concluded that the appearance of the defect driven ferromagnetism in the undoped powder is due to the nano-size of the particles. This effect disappears in the iron-doped KNbO{sub 3} powder with particle sizes above 300 nm. In case of low doping (<1 mol. % Fe), a new electron paramagnetic resonance signal with g{sub eff} = 4.21 is found out in the KNbO{sub 3}:Fe powder. Such a signal has not been observed in the bulk crystals of KNbO{sub 3}:Fe. We suppose that this signal corresponds to individual paramagnetic Fe{sup 3+} ions having rhombic symmetry.

  20. NATO Advanced Research Workshop on Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors

    CERN Document Server

    Idzikowski, Bogdan; Miglierini, Marcel

    2005-01-01

    Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the aver...

  1. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.b [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Souza, S.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Biasi, R.S. de [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2011-04-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 {sup o}C the heat transfer is controlled by crystalline component.

  2. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    International Nuclear Information System (INIS)

    Poffo, C.M.; Lima, J.C. de; Souza, S.M.; Triches, D.M.; Grandi, T.A.; Biasi, R.S. de

    2011-01-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 o C the heat transfer is controlled by crystalline component.

  3. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  4. A facile solvothermal synthesis of large-grain iron cubes and cuboids with enhanced performances

    International Nuclear Information System (INIS)

    Yang, Bai; Yang, Xueying; Li, Xiaopan; Cao, Ying; Yu, Ronghai

    2016-01-01

    The cubic and cuboid pure iron particles with particle size ranging from 500 nm to 2 μm have been fabricated using a solvothermal method in ethanol solution. The controlled morphology and size distribution can be easily tuned by adjusting the reaction temperatures. The morphologies of the as-synthesized iron particles can be transformed from cubes to cuboids with the reaction temperature increasing from 100 to 150 °C. Uniform particles with narrow size distribution and good dispersion can be obtained under 120 °C. These chemically synthesized Fe particles exhibit good air stability and very slight surface oxidation. High saturation magnetization of 208–211 A m 2 /kg and very low coercivity of 19–26 Oe can be achieved in these micron-level iron particles due to their high purity and small shape anisotropy. The relatively simple preparation process with low cost, good air stability and high saturation magnetization for these large-grain pure iron particles promise their great potential applications in complicated shape and miniaturized Fe-based composite magnetic components. - Highlights: • The micron-level cubic and cuboid pure iron particles have been prepared. • The morphologies of the large-grain iron particles can be tuned. • These iron particles show slight surface oxidation and good air stability. • These iron particles exhibit high saturation magnetization of 208–211 A m 2 kg −1 .

  5. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    Science.gov (United States)

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  6. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Zdenek [Institute of Physics ASCR v.v.i., Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Varga, Marian [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, Hsiung [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan (China); Kromka, Alexander [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Horak, Pavel [Nuclear Physics Institute, 250 68 Rez (Czech Republic)

    2015-11-15

    The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure. - Highlights: • Nitrogen implanted nanocrystalline diamond films exhibit ferromagnetism at room temperature. • Nitrogen implants made a Raman deviation from the typical nanocrystalline diamond films. • The ferromagnetism induced from the structure distortion is dominant at low temperature.

  7. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  8. Effect of the carbonyl iron particles on acoustic absorption properties of magnetic polyurethane foam

    Science.gov (United States)

    Geng, Jialu; Wang, Caiping; Zhu, Honglang; Wang, Xiaojie

    2018-03-01

    Elastomeric matrix embedded with magnetic micro-sized particles has magnetically controllable properties, which has been investigated extensively in the last decades. In this study we develop a new magnetically controllable elastomeric material for acoustic applications at lower frequencies. The soft polyurethane foam is used as matrix material due to its extraordinary elastic and acoustic absorption properties. One-step method is used to synthesize polyurethane foam, in which all components including polyether polyols 330N, MDI, deionized water, silicone oil, carbonyl iron particle (CIP) and catalyst are put into one container for curing. Changing any component can induce the change of polyurethane foam's properties, such as physical and acoustic properties. The effect of the content of MDI on acoustic absorption is studied. The CIPs are aligned under extra magnetic field during the foaming process. And the property of polyurethane foam with aligned CIPs is also investigated. Scanning electron microscope (SEM) is used to observe the structure of pore and particle-chain. The two-microphone impedance tube and the transfer function method are used to test acoustic absorption property of the magnetic foams.

  9. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    Science.gov (United States)

    Marvel, Christopher Jonathan

    diffusivity calculations conceptually suggested that increasing W alloying concentrations can decrease the grain growth rate. The strongest evidence of grain growth stagnation was via nanoscale oxide particle drag in highly contaminated electrodeposited alloys. Interestingly, W-segregation was also detected to the oxide phase boundaries and revealed a potential indirect mechanism of thermal stability. The phase stability of pure and contaminated Ni-W alloys was investigated with density functional theory. Primarily, the calculations suggested that the intermetallic phases NiW and NiW2 are thermodynamically unstable, meaning the binary phase diagram is incorrect, but the ternary carbides Ni 6W6C and Ni2W4C are stable. Several Ni-W binary and Ni-W-C ternary phase diagrams were constructed using a simplified CALPHAD approach to improve the understanding of Ni-W phase stability. Lastly, it was determined that the fabrication process greatly influences the impurity types and concentrations of the alloys, and therefore greatly dictate which thermal stability mechanisms are active. Mechanically alloyed samples were found to be the most resistant to grain growth. The findings of this research will hopefully guide future efforts to design more thermally stable nanocrystalline alloys. The link between phase stability and grain growth behavior of Ni-W was thoroughly discussed, as well as the dependence of bulk fabrication processing on the contamination found in the alloys. Ultimately, this research has greatly expanded the general understanding of nanocrystalline Ni-W microstructures, and it is likely that similar phenomena occur in other nanocrystalline systems.

  10. Syntheses of nanocrystalline BaTiO3 and their optical properties

    Science.gov (United States)

    Yu, J.; Chu, J.; Zhang, M.

    Stoichiometric and titanium-excess nanocrystalline barium titanates were synthesized using a hydrothermal process at various hydrothermal temperatures and with further heat treatment at 500 °C and 900 °C. Owing to the different process conditions, the excess titanium exists in different states and configurations within the nanocrystalline BaTiO3 matrix; this was demonstrated by X-ray diffraction, Raman scattering, and photoluminescence. In these nanocrystalline BaTiO3, the 590, 571, 543 and 694 nm light emission bands were observed; mechanisms leading to such emissions were also discussed.

  11. Growth of a brittle crack (001) in 3D bcc iron crystal with a Cu nano-particle

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr; Červená, Olga

    2014-01-01

    Roč. 83, February (2014), s. 229-234 ISSN 0927-0256 R&D Projects: GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : brittle crack extension * 3D * mode I * bcc iron * Cu nano-particle * molecular dynamics * acoustic emission Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927025613006575

  12. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2013-02-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  13. Electrochemistry of Inorganic Nanocrystalline Electrode Materials for Lithium Batteries

    Directory of Open Access Journals (Sweden)

    C. W. Kwon

    2003-01-01

    much different from that of traditional crystalline ones because of their significant ‘surface effects’. In connection with that, the nanocrystalline cathode materials are reported to have an enhanced electrochemical activity when the first significative electrochemical step is insertion of Li ions (discharge process. The “electrochemical grafting” concept will be given as a plausible explanation. As illustrative examples, electrochemical behaviors of nanocrystalline manganese oxydes are presented.

  14. Preparation and chemical stability of iron-nitride-coated iron microparticles

    International Nuclear Information System (INIS)

    Luo Xin; Liu Shixiong

    2007-01-01

    Iron-nitride-coated iron microparticles were prepared by nitridation of the surface of iron microparticles with ammonia gas at a temperature of 510 deg. C. The phases, composition, morphology, magnetic properties, and chemical stability of the particles were studied. The phases were α-Fe, ε-Fe 3 N, and γ-Fe 4 N. The composition varied from the core to the surface, with 99.8 wt% Fe in the core, and 93.8 wt% Fe and 6 wt% N in the iron-nitride coating. The thickness of the iron-nitride coating was about 0.28 μm. The chemical stability of the microparticles was greatly improved, especially the corrosion resistance in corrosive aqueous media. The saturation magnetization and the coercive force were 17.1x10 3 and 68 kA/m, respectively. It can be concluded that iron-nitride-coated iron microparticles will be very useful in many fields, such as water-based magnetorheological fluids and polishing fluids

  15. Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol-gel route

    International Nuclear Information System (INIS)

    Nallamuthu, N.; Prakash, I.; Satyanarayana, N.; Venkateswarlu, M.

    2011-01-01

    Research highlights: → Nanocrystalline La 10 Si 6 O 27 material was synthesized by sol-gel method. → TG/DTA curves predicted the thermal behavior of the material. → FTIR spectra confirmed the formation of SiO 4 and La-O network in the La 10 Si 6 O 27 . → XRD patterns confirmed the formation of pure crystalline La 10 Si 6 O 27 phase. → The grain interior and the grain boundary conductivities are evaluated. - Abstract: Nanocrystalline apatite type structured lanthanum silicate (La 10 Si 6 O 27 ) sample was synthesized by sol-gel process. Thermal behavior of the dried gel of lanthanum silicate sample was studied using TG/DTA. The structural coordination of the dried gel of lanthanum silicate, calcined at various temperatures, was identified from the observed FTIR spectral results. The observed XRD patterns of the calcined dried gel were compared with the ICDD data and confirmed the formation of crystalline lanthanum silicate phase. The average crystalline size of La 10 Si 6 O 27 was calculated using the Scherrer formula and it is found to be ∼80 nm. The observed SEM images of the lanthanum silicate indicate the formation of the spherical particles and the existence of O, Si and La in the lanthanum silicate are confirmed from the SEM-EDX spectrum. The grain and grain boundary conductivities are evaluated by analyzing the measured impedance data, using winfit software, obtained at different temperatures, of La 10 Si 6 O 27 sample. Also, the observed grain and grain boundary conductivity behaviors of the La 10 Si 6 O 27 sample are analysed using brick layer model. The electrical permittivity and electrical modulus were calculated from the measured impedance data and were analyzed by fitting through the Havriliak and Negami function to describe the dielectric relaxation behavior of the nanocrystalline lanthanum silicate.

  16. Plane shock loading on mono- and nano-crystalline silicon carbide

    Science.gov (United States)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-03-01

    The understanding of the nanoscale mechanisms of shock damage and failure in SiC is essential for its application in effective and damage tolerant coatings. We use molecular-dynamics simulations to investigate the shock properties of 3C-SiC along low-index crystallographic directions and in nanocrystalline samples with 5 nm and 10 nm grain sizes. The predicted Hugoniot in the particle velocity range of 0.1 km/s-6.0 km/s agrees well with experimental data. The shock response transitions from elastic to plastic, predominantly deformation twinning, to structural transformation to the rock-salt phase. The predicted strengths from 12.3 to 30.9 GPa, at the Hugoniot elastic limit, are in excellent agreement with experimental data.

  17. Effect of grain size on corrosion of nanocrystalline copper in NaOH solution

    International Nuclear Information System (INIS)

    Luo Wei; Xu Yimin; Wang Qiming; Shi Peizhen; Yan Mi

    2010-01-01

    Research highlights: → Coppers display an active-passive-transpassive behaviour with duplex passive film. → Grain size variation has little effect on the overall corrosion behaviour of Cu. → Little effect on corrosion may be due to duplex passivation in NaOH solution. → Bulk nanocrystalline Cu show bamboo-like flake corrosion structure. - Abstract: Effect of grain size on corrosion of bulk nanocrystalline copper was investigated using potentiodynamic polarization measurements in 0.1 M NaOH solution. Bulk nanocrystalline copper was prepared by inert gas condensation and in situ warm compress (IGCWC) method. The grain sizes of all bulk nanocrystalline samples were determined to be 48, 68 and 92 nm using X-ray diffraction (XRD). Results showed that bulk coppers displayed an active-passive-transpassive behaviour with duplex passive films. From polycrystalline to nanocrystalline, grain size variation showed little effect on the overall corrosion resistance of copper samples.

  18. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Inder Pal Singh; Srivastava, Pratibha; Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur (India)

    2009-08-15

    Nanocrystalline transition metal oxides (NTMOs) have been successfully prepared by three different methods: novel quick precipitation method (Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}); surfactant mediated method (CuO), and reduction of metal complexes with hydrazine as reducing agent (Mn{sub 2}O{sub 3}). The nano particles have been characterized by X-ray diffraction (XRD) which shows an average particle diameter of 35-54 nm. Their catalytic activity was measured in the thermal decomposition of ammonium perchlorate (AP). AP decomposition undergoes a two step process where the addition of metal oxide nanocrystals led to a shifting of the high temperature decomposition peak toward lower temperature. The kinetics of the thermal decomposition of AP and catalyzed AP has also been evaluated using model fitting and isoconversional method. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Nanocrystalline AL2 O2 powders produced by laser induced gas phase reactions

    International Nuclear Information System (INIS)

    Borsella, E.; Botti, S.; Martelli, S.; Zappa, G.; Giorgi, R.; Turt, S.

    1993-01-01

    Nanocrystalline Al 2 O 3 powders were successfully synthesized by a CO 2 laser-driven gas-phase reaction involving trimethylaluminium (Al(CH 3 ) 3 ) and nitrous-oxide (N 2 O). Ethylene (C 2 H 4 ) was added as gas sensitizer. The as-synthesized powder particles showed a considerable carbon contamination and an amorphous-like structure. After thermal treatment at 1200-1400 degrees C, the powder was transformed to hexagonal a-Al 2 O 3 with very low carbon contamination as confirmed by X-ray diffraction, X-ray photo-electron spectroscopy and chemical analysis. The calcinated powders resulted to be spherical single crystal nanoparticles with a mean size of 15-20 nm, as determined by X-ray diffraction, electron microscopy and B.E.T. specific surface measurements. The laser synthesized Al 2 O 3 particles are well suited dispersoids for intermetallic alloy technology

  20. Structural and Mössbauer studies of nanocrystalline Mn{sup 4+}-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} particles prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hishammw@squ.edu.om; Al-Mabsali, F. N.; Al-Hajri, F. S. [Sultan Qaboos University, Physics Department, College of Science (Oman); Khalifa, N. O. [University of Khartoum, Physics Department, Faculty of Science (Sudan); Gismelseed, A. M.; Al-Rawas, A. D.; Elzain, M.; Yousif, A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2016-12-15

    The structure and magnetic properties of spinel-related Mn{sup 4+}-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} nanocrystalline particles of the composition Li{sub 0.5}Fe{sub 2.25}Mn{sub 0.1875}O{sub 4}, prepared by milling a pristine sample for different times, were investigated. The average crystallite and particle size, respectively, decreased form ∼40 nm to ∼10 nm and ∼2.5 μm to ∼10 nm with increasing milling time from 0 h to 70 h. Rietveld refinement of the XRD data of the non-milled sample show the Mn{sup 4+} dopant ions to substitute for Fe{sup 3+} at the octahedral B-sites of the spinel-related structure. The Mössbauer spectra of the milled ferrites indicate that more particles turn superparamagnetic with increasing milling time. The Mössbauer data collected at 78 K suggest that while in the non-milled sample the Mn{sup 4+} ions substitute for Fe{sup 3+} at the octahedral B-sites, this is reversed as milling proceeds with doped Mn{sup 4+} ions, balancing Fe{sup 3+} vacancies and possibly Li{sup +} ions progressively migrate to the tetrahedral A-sites. This is supported by the slight increase observed in the magnetization of the milled samples relative to that of the non-milled one. The magnetic data suggest that in addition to the increasing superparamagentic component of the milled particles, thermal spin reversal and/or spin canting effects are possible at the surface layers of the nanoparticles.

  1. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    International Nuclear Information System (INIS)

    Mohammadi, Majid; Ghasemi, Ali; Tavoosi, Majid

    2016-01-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe_2O_3–B_2O_3 powder mixtures with sufficient amount of CaH_2 were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe_9_5B_5 and Fe_8_5B_1_5 alloys can be successfully synthesized by the reduction reaction of Fe_2O_3 and B_2O_3 with CaH_2 during mechanical alloying. The structure of produced Fe_9_5B_5 and Fe_8_5B_1_5 alloys was a combination of Fe and Fe_2B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–CaH_2 during milling. • We study the reduction reaction of Fe_2O_3–B_2O_3–CaH_2 during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  2. Nanocrystalline GaSbO{sub 4} with high surface area prepared via a facile hydrothermal method and its photocatalytic activity study

    Energy Technology Data Exchange (ETDEWEB)

    Fu Yanghe; Xue Hun; Qin Meng; Liu Ping; Fu Xianzhi [Research Institute of Photocatalysis, Fujian Provincial Key Laboratory of Photocatalysis - State Key Laboratory Breeding Base, Fuzhou University, Fuzhou 350002 (China); Li Zhaohui, E-mail: zhaohuili1969@yahoo.com [Research Institute of Photocatalysis, Fujian Provincial Key Laboratory of Photocatalysis - State Key Laboratory Breeding Base, Fuzhou University, Fuzhou 350002 (China)

    2012-05-05

    Graphical abstract: Nanocrystalline GaSbO{sub 4} prepared via a facile hydrothermal method possesses large specific surface area and exhibits photocatalytic activity for the degradations of salicylic acid and acetone. Highlights: Black-Right-Pointing-Pointer Facile hydrothermal method to nanocrystalline GaSbO{sub 4} with large surface area. Black-Right-Pointing-Pointer GaSbO{sub 4} shows photocatalytic activity for the degradations of salicylic acid and acetone. Black-Right-Pointing-Pointer The photocatalytic mechanism of GaSbO{sub 4} was proposed based on the ESR result. - Abstract: Nanocrystalline GaSbO{sub 4} with small particle size and large BET specific area was successfully prepared via a facile hydrothermal method from Sb{sub 2}O{sub 5}. The influence of the reaction pH on the formation of the final product was investigated. The obtained sample was characterized by X-ray diffraction (XRD), N{sub 2}-sorption BET surface area, UV-vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM). The photocatalytic activity for the degradations of salicylic acid and acetone over nanocrystalline GaSbO{sub 4} under UV irradiations was for the first time revealed. Based on the electron spin resonance (ESR) result, the reactive species involved in the photocatalytic reaction over nanocrytalline GaSbO{sub 4} are determined to be HO{center_dot} and O{sub 2}{sup -}{center_dot}. The photocatalytic mechanism of GaSbO{sub 4} was proposed.

  3. Interactions between goethite particles subjected to heat treatment

    DEFF Research Database (Denmark)

    Madsen, Daniel Esmarch; Hansen, Mikkel Fougt; Koch, C.B.

    2008-01-01

    We have studied the effect of heating on the magnetic properties of particles of nanocrystalline goethite by use of Mossbauer spectroscopy. Heating at 150 degrees C for 24 h leads to a change in the quadrupole shift in the low-temperature spectra, indicating a rotation of the sublattice...... magnetization directions. Fitting of quantiles, derived from the asymmetrically broadened spectra between 80 and 300 K, to the superferromagnetism model indicates that this change is due to a stronger magnetic coupling between the particles....

  4. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  5. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    Science.gov (United States)

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  6. Remediation of Chlorpyrifos-Contaminated Soils by Laboratory-Synthesized Zero-Valent Nano Iron Particles: Effect of pH and Aluminium Salts

    Directory of Open Access Journals (Sweden)

    A. Vijaya Bhaskar Reddy

    2013-01-01

    Full Text Available Degradation of the insecticide chlorpyrifos in contaminated soils was investigated using laboratory synthesized zero-valent nano iron (ZVNI particles. The synthesized ZVNI particles were characterized as nanoscale sized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The zero-valent state (Fe0 of iron was confirmed by EDAX analysis and the morphology of the ZVNI particles was studied by XRD. Batch experiments were conducted by treating the chlorpyrifos contaminated soil with ZVNI, our results indicate that 90% of chlorpyrifos was degraded after 10 days of incubation. Only 32% degradation was observed with micro zero-valent iron (mZVI and no considerable degradation was attained without ZVNI. The degradation of chlorpyrifos followed the first-order kinetics with a rate constant and a half-life of 0.245 day−1 and 2.82 days, respectively. Degradation was monitored at two different pH values, that is, pH 10 and pH 4. Chlorpyrifos degradation rate constant increased as the pH decreases from 10 to 4. The corresponding rate constant and half-lives were 0.43 day−1 and 1.57days for pH 4, 0.18 day−1 and 3.65 days for pH 10. In addition, an attempt was made by augmenting Al2(SO43 with ZVNI and it was found that the degradation rate of chlorpyrifos was greatly enhanced and the rate constant was rapidly increased from 0.245 day−1 to 0.60 day−1. Hydrolysis and stepwise dechlorination pathway of chlorpyrifos with ZVNI was the dominant reaction.

  7. Accumulation and recovery of defects in ion-irradiated nanocrystalline gold

    Energy Technology Data Exchange (ETDEWEB)

    Chimi, Y. E-mail: chimi@popsvr.tokai.jaeri.go.jp; Iwase, A.; Ishikawa, N.; Kobiyama, M.; Inami, T.; Okuda, S

    2001-09-01

    Effects of 60 MeV {sup 12}C ion irradiation on nanocrystalline gold (nano-Au) are studied. The experimental results show that the irradiation-produced defects in nano-Au are thermally unstable because of the existence of a large volume fraction of grain boundaries. This suggests a possibility of the use of nanocrystalline materials as irradiation-resistant materials.

  8. Growth of airway epithelial cells at an air-liquid interface changes both the response to particle exposure and iron homeostasis

    Science.gov (United States)

    We tested the hypothesis that 1) relative to submerged cells, airway epithelial cells grown at an air-liquid interface and allowed to differentiate would have an altered response to particle exposure and 2) that these differences would be associated with indices of iron homeostas...

  9. Sedimentary and mineral dust sources of dissolved iron to the world ocean

    Directory of Open Access Journals (Sweden)

    J. K. Moore

    2008-05-01

    Full Text Available Analysis of a global compilation of dissolved-iron observations provides insights into the processes controlling iron distributions and some constraints for ocean biogeochemical models. The distribution of dissolved iron appears consistent with the conceptual model developed for Th isotopes, whereby particle scavenging is a two-step process of scavenging mainly by colloidal and small particulates, followed by aggregation and removal on larger sinking particles. Much of the dissolved iron (<0.4 μm is present as small colloids (>~0.02 μm and, thus, is subject to aggregation and scavenging removal. This implies distinct scavenging regimes for dissolved iron consistent with the observations: 1 a high scavenging regime – where dissolved-iron concentrations exceed the concentrations of strongly binding organic ligands; and 2 a moderate scavenging regime – where dissolved iron is bound to both colloidal and soluble ligands. Within the moderate scavenging regime, biological uptake and particle scavenging decrease surface iron concentrations to low levels (<0.2 nM over a wide range of low to moderate iron input levels. Removal rates are also highly nonlinear in areas with higher iron inputs. Thus, observed surface-iron concentrations exhibit a bi-modal distribution and are a poor proxy for iron input rates. Our results suggest that there is substantial removal of dissolved iron from subsurface waters (where iron concentrations are often well below 0.6 nM, most likely due to aggregation and removal on sinking particles of Fe bound to organic colloids.

    We use the observational database to improve simulation of the iron cycle within a global-scale, Biogeochemical Elemental Cycling (BEC ocean model. Modifications to the model include: 1 an improved particle scavenging parameterization, based on the sinking mass flux of particulate organic material, biogenic silica, calcium carbonate, and mineral dust particles; 2 desorption of dissolved iron

  10. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    KAUST Repository

    Siddiq, A.; El Sayed, Tamer S.

    2013-01-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline

  11. Bioaccessibility of micron-sized powder particles of molybdenum metal, iron metal, molybdenum oxides and ferromolybdenum--Importance of surface oxides.

    Science.gov (United States)

    Mörsdorf, Alexander; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2015-08-01

    The European chemical framework REACH requires that hazards and risks posed by chemicals, including alloys and metals, that are manufactured, imported or used in different products (substances or articles) are identified and proven safe for humans and the environment. Metals and alloys need hence to be investigated on their extent of released metals (bioaccessibility) in biologically relevant environments. Read-across from available studies may be used for similar materials. This study investigates the release of molybdenum and iron from powder particles of molybdenum metal (Mo), a ferromolybdenum alloy (FeMo), an iron metal powder (Fe), MoO2, and MoO3 in different synthetic body fluids of pH ranging from 1.5 to 7.4 and of different composition. Spectroscopic tools and cyclic voltammetry have been employed to characterize surface oxides, microscopy, light scattering and nitrogen absorption for particle characterization, and atomic absorption spectroscopy to quantify released amounts of metals. The release of molybdenum from the Mo powder generally increased with pH and was influenced by the fluid composition. The mixed iron and molybdenum surface oxide of the FeMo powder acted as a barrier both at acidic and weakly alkaline conditions. These findings underline the importance of the surface oxide characteristics for the bioaccessibility of metal alloys. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Y.M., E-mail: ymabbas@live.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Mansour, S.A.; Ibrahim, M.H. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Ali, Shehab E., E-mail: shehab_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt)

    2011-11-15

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: > The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. > The transmission electronic microscope analysis confirmed the X-ray results. > The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  13. Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Nowosielski, R.; Konieczny, J.; PrzybyI, A.; WysIocki, J.

    2005-01-01

    The paper concerns investigation of nanocrystalline composites technology preparation. The composites in the form of rings with rectangular transverse section, and with polymer matrix and nanocrystalline metallic powders fulfillment were made, for obtaining good ferromagnetic properties. The nanocrystalline ferromagnetic powders were manufactured by high-energy ball milling of metallic glasses strips in an as-quenched state. Generally for investigation, Co matrix alloys with the silicon polymer were used. Magnetic properties in the form of hysteresis loop by rings method were measured. Generally composite cores showed lower soft ferromagnetic properties than winded cores of nanocrystalline strips, but composite cores showed interesting mechanical properties. Furthermore, the structure of strips and powders on properties of composites were investigated

  14. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Acuña, Melissa [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States); Maldonado-Camargo, Lorena [University of Florida, Department of Chemical Engineering (United States); Dobson, Jon; Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2016-09-15

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle–cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  15. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  16. Magnetostructural study of iron sucrose

    International Nuclear Information System (INIS)

    Gutierrez, Lucia; Puerto Morales, Maria del; Jose Lazaro, Francisco

    2005-01-01

    Magnetic and structural analyses have been performed on an iron sucrose complex used as a haematinic agent. The system contains two-line ferrihydrite particles of about 5 nm that are superparamagnetic above approximately 50 K. The observed low-temperature magnetic dynamics of this compound is closer to simple models than in the case of other iron-containing drugs for intravenous use like iron dextran

  17. Ultra-small superparamagnetic particles of iron oxide in magnetic resonance imaging of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Stirrat CG

    2014-10-01

    Full Text Available Colin G Stirrat,1 Alex T Vesey,1 Olivia MB McBride,1 Jennifer MJ Robson,1 Shirjel R Alam,1 William A Wallace,2 Scott I Semple,1,3 Peter A Henriksen,1 David E Newby1 1British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; 2Department of Pathology, University of Edinburgh, Edinburgh, UK; 3Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK Abstract: Ultra-small superparamagnetic particles of iron oxide (USPIO are iron-oxide based contrast agents that enhance and complement in vivo magnetic resonance imaging (MRI by shortening T1, T2, and T2* relaxation times. USPIO can be employed to provide immediate blood pool contrast, or to act as subsequent markers of cellular inflammation through uptake by inflammatory cells. They can also be targeted to specific cell-surface markers using antibody or ligand labeling. This review will discuss the application of USPIO contrast in MRI studies of cardiovascular disease. Keywords: cardiac, aortic, MRI, USPIO, carotid, vascular, molecular imaging

  18. Inter- and intra-agglomerate fracture in nanocrystalline nickel.

    Science.gov (United States)

    Shan, Zhiwei; Knapp, J A; Follstaedt, D M; Stach, E A; Wiezorek, J M K; Mao, S X

    2008-03-14

    In situ tensile straining transmission electron microscopy tests have been carried out on nanocrystalline Ni. Grain agglomerates (GAs) were found to form very frequently and rapidly ahead of an advancing crack with sizes much larger than the initial average grain size. High-resolution electron microscopy indicated that the GAs most probably consist of nanograins separated by low-angle grain boundaries. Furthermore, both inter- and intra-GA fractures were observed. The observations suggest that these newly formed GAs may play an important role in the formation of the dimpled fracture surfaces of nanocrystalline materials.

  19. Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals

    International Nuclear Information System (INIS)

    Song Xiaoyan; Zhang Jiuxing; Li Lingmei; Yang Keyong; Liu Guoquan

    2006-01-01

    We investigated the correlation of thermodynamics and grain growth kinetics of nanocrystalline metals both theoretically and experimentally. A model was developed to describe the thermodynamic properties of nanograin boundaries, which could give reliable predictions in the destabilization characteristics of nanograin structures and the slowing down of grain growth kinetics at a constant temperature. Both the temperature-varying and isothermal nanograin growth behaviors in pure nanocrystalline Co were studied to verify the thermodynamic predictions. The experimental results showing that discontinuous nanograin growth takes place at a certain temperature and grain growth rate decreases monotonically with time confirm our thermodynamics-based description of nanograin growth characteristics. Therefore, we propose a thermodynamic viewpoint to explain the deviation of grain growth kinetics in nanocrystalline metals from those of polycrystalline materials

  20. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    International Nuclear Information System (INIS)

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  1. EXAFS and XRD studies of nanocrystalline cerium oxide: the effect of preparation method on the microstructure

    International Nuclear Information System (INIS)

    Savin, S.L.P.; Chadwick, A.V.; Smith, M.E.; O'Dell, L.A.

    2007-01-01

    There is considerable interest in nanocrystalline materials due to their unusual properties, such as enhanced ionic conductivity in the case of nanocrystalline ionic solids. This has potential commercial applications, particularly for oxide ion conductors. However, a detailed knowledge of the microstructure is important in fully understanding the novel properties exhibited by nanocrystalline materials. The final microstructure of a material is dependent on the preparation method used, for example, sol-gel and ball-milling methods are commonly used in the preparation of nanocrystalline oxides. Additionally, there is a problem in maintaining the materials in nanocrystalline form when they are subjected to elevated temperatures. We have been exploring strategies to restrict the growth of nanocrystalline oxides and have found that adding a small amount of an inert material, e.g. SiO 2 or Al 2 O 3 , is particularly effective. We will report XRD and EXAFS studies of nanocrystalline ceria prepared by sol-gel, sol-gel pinned and ball-milling methods and the effect of preparation method on the final microstructure. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Temperature-dependent rigidity and magnetism of polyamide 6 nanocomposites based on nanocrystalline Fe-Ni alloy of various geometries

    Directory of Open Access Journals (Sweden)

    M. A. A. Mohamed

    2016-10-01

    Full Text Available The focus of this study is to explore the potential use of Polyamide 6 nanocomposite reinforced with nanocrystalline (nc Fe20Ni80 alloy (Fe20Ni80/PA6 PNC in electromagnetic applications and provide understanding of how the alloy particle geometry is controlling the nanocomposite’s physical properties. Thermomechanical rigidity, room-temperature soft magnetic performance and thermal soft magnetic stability of Fe20Ni80/PA6 PNCs based on spherical-sea urchin alloy particles (UMB2-SU and necklace-like alloy chains (UMB2-NC have been investigated. Both PNCs have considerably superior bulk properties compared to neat PA6 and UMB2-SU exhibits the most remarkable overall performance. Morphological observations disclose two relevant phenomena: i improved dispersion and distribution of the SU alloy particles than the NC ones within PA6 matrix, leading to stronger filler-matrix interfacial interactions within the UMB2-SU as compared to the UMB2-NC and ii presence of constraint polymer regions in between alloy segments within the UMB2-SU that provide secondary reinforcing and soft magnetic mechanisms. Such phenomena along with the lower alloy crystallite size and PA6 γ-crystal type content within the UMB2-SU than in the UMB2-NC, are considered the main responsible factors for the distinctive performance of UMB2-SU. Overall, compared to various ferromagnetic nanocrystalline metallic materials, the research proposes the SU nc Fe20Ni80 alloy as a valuable nanofiller in polymers for electromagnetic applications.

  3. Preparation of ultrafine iron particles by chemical vapor deposition of Fe(CO) sub 5. Fe(CO) sub 5 wo gebryo to suru kiso kagaku hanno ni yoru tetsuchobiryushi no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Y; Kageyama, Y. (Mitsubishi Petrochemical Co. Ltd., Tokyo (Japan)): Iwata, M. (Nagoya University, Nagoya (Japan). Faculty of Engineering)

    1991-11-10

    An ultrafine iron particle preparing process was developed, which wses gaseous phase pyrolysis in magnetic field of iron pentacarbonyl, Fe(CO){sub 5}, based on the fact that Fe(CO){sub 5} has peculiar characters that its boiling point is as low as 103{degree}C, and starts decomposing in a low temperature zone of 100{degree}C or lower. Vaporizing and introducing into a reactor an fe(CO){sub 5}, andPyrolyzing it at 200-600{degree}C while being diluted with nitrogen and applied with a magnetic field produced uitrafine iron particles of a necklace-like chain comprisinh primary particles having diameter of 15 to 25 nm with 10 to 40 of them linked in a straight chain. It was found that the specific surface area is 30-50 m{sup 2}/g, with the diameter converted from the specific surface area being relatively close to the average diameter obtained from TEM photograph, and that the particle has few pores. Magnetically the iron powder has a coercivity of 123-131 KA/m and a specific saturation magnetization of 120-140 Am{sup 2}/kg, and is expected to be applied as a high density magnetic recording medium. 5 refs.,8 figs., 3 tabs.

  4. Iron-57 and iridium-193 Moessbauer spectroscopic studies of supported iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1988-01-01

    57 Fe and 193 Ir Moessbauer spectroscopy shows that silica- and alumina-supported iron-iridium catalysts formed by calcination in air contain mixtures of small particle iron(III) oxide and iridium(IV) oxide. The iridium dioxide in both supported catalysts is reduced in hydrogen to metallic iridium. The α-Fe 2 O 3 in the silica supported materials is predominantly reduced in hydrogen to an iron-iridium alloy whilst in the alumina-supported catalyst the iron is stabilised by treatment in hydrogen as iron(II). Treatment of a hydrogen-reduced silica-supported iron catalyst in hydrogen and carbon monoxide is accompanied by the formation of iron carbides. Carbide formation is not observed when the iron-iridium catalysts are treated in similar atmospheres. The results from the bimetallic catalysts are discussed in terms of the hydrogenation of associatively adsorbed carbon monoxide and the selectivity of supported iron-iridium catalysts to methanol formation. (orig.)

  5. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    Science.gov (United States)

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation.

  6. Nanocrystalline and ultrafine grain copper obtained by mechanical attrition

    Directory of Open Access Journals (Sweden)

    Rodolfo Rodríguez Baracaldo

    2010-01-01

    Full Text Available This article presents a method for the sample preparation and characterisation of bulk copper having grain size lower than 1 μm (ultra-fine grain and lower than 100 nm grain size (nanocrystalline. Copper is initially manufactured by a milling/alloying me- chanical method thereby obtaining a powder having a nanocrystalline structure which is then consolidated through a process of warm compaction at high pressure. Microstructural characterisation of bulk copper samples showed the evolution of grain size during all stages involved in obtaining it. The results led to determining the necessary conditions for achieving a wide range of grain sizes. Mechanical characterisation indicated an increase in microhardness to values of around 3.40 GPa for unconsolida- ted nanocrystalline powder. Compressivee strength was increased by reducing the grain size, thereby obtaining an elastic limit of 650 MPa for consolidated copper having a ~ 62 nm grain size.

  7. Creep behavior of a nanocrystalline Fe-B-Si alloy

    International Nuclear Information System (INIS)

    Xiao, M.; Kong, Q.P.

    1997-01-01

    The research of nanocrystalline materials has attracted much attention in the world. In recent years, there have been several studies on their creep behavior. Among these, the authors have studied the tensile creep of a nanocrystalline Ni-P alloy (28 nm) at temperatures around 0.5 Tm (Tm is the melting point). The samples were prepared by the method of crystallization of amorphous ribbon. Based on the data of stress exponent and activation energy, they suggested that the creep was controlled by boundary diffusion; while the creep of the same alloy with a larger grain size (257 nm) was controlled by a different mechanism. In the present paper, the authors extend the research to the creep of a nanocrystalline Fe-B-Si alloy. The samples are also prepared by crystallization of amorphous ribbon. The samples such prepared have an advantage that the interfaces are naturally formed without artificial compaction and porosity

  8. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    International Nuclear Information System (INIS)

    Abbas, Y.M.; Mansour, S.A.; Ibrahim, M.H.; Ali, Shehab E.

    2011-01-01

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: → The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. → The transmission electronic microscope analysis confirmed the X-ray results. → The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  9. Super-iron Nanoparticles with Facile Cathodic Charge Transfer

    Energy Technology Data Exchange (ETDEWEB)

    M Farmand; D Jiang; B Wang; S Ghosh; D Ramaker; S Licht

    2011-12-31

    Super-irons contain the + 6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain.

  10. Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Varam, Sreedevi; Rajulapati, Koteswararao V., E-mail: kvrse@uohyd.ernet.in; Bhanu Sankara Rao, K.

    2014-02-05

    Nanocrystalline aluminium powder synthesized using high energy ball milling process was characterized by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The studies indicated the powder having an average grain size of ∼42 nm. The consolidation of the powder was carried out by high-pressure compaction using a uni-axial press at room temperature by applying a pressure of 1.5 GPa. The cold compacted bulk sample having a density of ∼98% was subjected to nanoindentation which showed an average hardness and elastic modulus values of 1.67 ± 0.09 GPa and 83 ± 8 GPa respectively at a peak force of 8000 μN and a strain rate of 10{sup −2} s{sup −1}. Achieving good strength along with good ductility is challenging in nanocrystalline metals. When enough sample sizes are not available to measure ductility and other mechanical properties as per ASTM standards, as is the case with nanocrystalline materials, nanoindentation is a very promising technique to evaluate strain rate sensitivity. Strain rate sensitivity is a good measure of ductility and in the present work it is measured by performing indentation at various loads with varying loading rates. Strain rate sensitivity values of 0.024–0.054 are obtained for nanocrystalline Al which are high over conventional coarse grained Al. In addition, Scanning Probe Microscopy (SPM) image of the indent shows that there is some plastically flown region around the indent suggesting that this nanocrystalline aluminium is ductile.

  11. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  12. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  13. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean.

    Science.gov (United States)

    von der Heyden, B P; Roychoudhury, A N; Mtshali, T N; Tyliszczak, T; Myneni, S C B

    2012-11-30

    Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation and mineralogy are challenging to characterize on a regional scale. We describe a diverse array of iron particles, ranging from 20 to 700 nanometers in diameter, in the waters of the Southern Ocean euphotic zone. Distinct variations in the oxidation state and composition of these iron particles exist between the coasts of South Africa and Antarctica, with different iron pools occurring in different frontal zones. These speciation variations can result in solubility differences that may affect the production of bioavailable dissolved iron.

  14. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumar Suranjit, E-mail: suranjit@gmail.com [Department of Environmental Studies, Faculty of Science, The M. S. University of Baroda, Vadodara, 390002, Gujarat (India); Gandhi, Pooja, E-mail: poojagandhi.3090@gmail.com [Department of Environmental Sciences, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, Gujarat, 388121 (India); Selvaraj, Kaliaperumal, E-mail: k.selvaraj@ncl.res.in [Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pune, 411008 (India)

    2014-10-30

    Graphical abstract: - Highlights: • Colloidal GnIP synthesised using extract of Mint leaves were entrapped in chitosan beads. • GnIP loaded beads were employed for removal of As ions, showed excellent removal efficiency. • Iron and chitosan are cost effective materials hence can be a good adsorbent for removal of arsenic. - Abstract: The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV–vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core–shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like -NH, -C=O, -C=N and -C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  15. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    International Nuclear Information System (INIS)

    Prasad, Kumar Suranjit; Gandhi, Pooja; Selvaraj, Kaliaperumal

    2014-01-01

    Graphical abstract: - Highlights: • Colloidal GnIP synthesised using extract of Mint leaves were entrapped in chitosan beads. • GnIP loaded beads were employed for removal of As ions, showed excellent removal efficiency. • Iron and chitosan are cost effective materials hence can be a good adsorbent for removal of arsenic. - Abstract: The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV–vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core–shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like -NH, -C=O, -C=N and -C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water

  16. The effect of nanocrystalline magnetite size on arsenic removal

    Directory of Open Access Journals (Sweden)

    J.T. Mayo et al

    2007-01-01

    Full Text Available Higher environmental standards have made the removal of arsenic from water an important problem for environmental engineering. Iron oxide is a particularly interesting sorbent to consider for this application. Its magnetic properties allow relatively routine dispersal and recovery of the adsorbent into and from groundwater or industrial processing facilities; in addition, iron oxide has strong and specific interactions with both As(III and As(V. Finally, this material can be produced with nanoscale dimensions, which enhance both its capacity and removal. The objective of this study is to evaluate the potential arsenic adsorption by nanoscale iron oxides, specifically magnetite (Fe3O4 nanoparticles. We focus on the effect of Fe3O4 particle size on the adsorption and desorption behavior of As(III and As(V. The results show that the nanoparticle size has a dramatic effect on the adsorption and desorption of arsenic. As particle size is decreased from 300 to 12 nm the adsorption capacities for both As(III and As(V increase nearly 200 times. Interestingly, such an increase is more than expected from simple considerations of surface area and suggests that nanoscale iron oxide materials sorb arsenic through different means than bulk systems. The desorption process, however, exhibits some hysteresis with the effect becoming more pronounced with small nanoparticles. This hysteresis most likely results from a higher arsenic affinity for Fe3O4 nanoparticles. This work suggests that Fe3O4 nanocrystals and magnetic separations offer a promising method for arsenic removal.

  17. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Majid; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid

    2016-12-01

    Mechanochemical synthesis and magnetic characterization of nanocrystalline Fe and Fe–B magnetic alloys was the goal of this study. In this regard, different Fe{sub 2}O{sub 3}–B{sub 2}O{sub 3} powder mixtures with sufficient amount of CaH{sub 2} were milled in a planetary ball mill in order to produce nanocrystalline Fe, Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys. The produced samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that, nanocrystalline Fe, Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys can be successfully synthesized by the reduction reaction of Fe{sub 2}O{sub 3} and B{sub 2}O{sub 3} with CaH{sub 2} during mechanical alloying. The structure of produced Fe{sub 95}B{sub 5} and Fe{sub 85}B{sub 15} alloys was a combination of Fe and Fe{sub 2}B phases with average crystallite sizes of about 15 and 10 nm, respectively. The produced nanocrystalline alloys exhibited soft magnetic properties with the coercivity and saturation of magnetization in the range of 170–240 Oe and 9–28 emu/g, respectively. Increasing the boron content has a destructive effect on soft magnetic properties of Fe–B alloys. - Highlights: • We study the mechanochemical synthesis of nanocrystalline boron, Fe and Fe–B alloys. • We study the reduction reaction of B{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the reduction reaction of Fe{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the reduction reaction of Fe{sub 2}O{sub 3}–B{sub 2}O{sub 3}–CaH{sub 2} during milling. • We study the effect of B on magnetic properties of nanocrystalline Fe–B alloys.

  18. Investigation of microstructure thermal evolution in nanocrystalline Cu

    International Nuclear Information System (INIS)

    Zhou Kai; Li Hui; Pang Jinbiao; Wang Zhu

    2011-01-01

    The microstructure of nanocrystalline Cu prepared by compacting nanoparticles (50-60 nm in diameter) under high pressures has been studied by means of positron lifetime spectroscopy and X-ray diffraction. These nanoparticles were produced by two different methods. We found that there are order regions interior to the grains and disorder regions at the grain boundaries with a wide distribution of interatomic distances. The mean grain sizes of the nanocrystalline Cu samples decrease after being annealed at 900 o C and increase during aging at 180 o C, which are observed by X-ray diffraction, revealing that the atoms exchange between the two regions. The positron lifetime results clearly indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder grain growth when the samples age at 180 o C, and the vacancy clusters inside the disorder regions, which are related to Cu 2 O, need longer aging time to decompose. The disorder regions remain after the heat treatment in this work, in spite of the grain growth, which will be good for the samples keeping the properties of nanocrystalline material. -- Research highlights: → We use a digital positron lifetime spectrometer correlated with XRD to study the microstructure evolution of nanocrystalline Cu during thermal treatment. → An atomic scale microstructure of grain boundary is characterized. Further, the surface oxidation of the nanoparticles is considered. → The disorder regions remain after the heat treatment in this work, in spite of grain growth.

  19. An investigation on the preparation of nanocrystalline hydrous zirconia from zirconium tungstate

    Science.gov (United States)

    Antunes, M.; Perottoni, C. A.; Gouvêa, D.; Machado, G.; Zorzi, J. E.

    2018-02-01

    Hydrous nanocrystalline zirconia was prepared from an unusual precursor—the bimetallic oxide zirconium tungstate (ZrW2O8)—in alkaline medium. Different experimental conditions (NaOH concentration, time and temperature) were used to investigate the effects on crystallographic, morphological, chemical and thermal characteristics of the products. The resulting materials are composed of particles with a crystal structure similar to that of cubic ZrO2 (or a mixture of tetragonal and cubic phases, depending on the synthesis conditions), with particle size around 5 nm and crystallites around 3 nm in diameter. These particles form high surface area agglomerates, exhibiting mesoporosity and capacity for adsorption of water and carbon dioxide. The synthesis mechanism appears to be constituted, first, by a chemical substitution reaction between the WO4 tetrahedra and hydroxyl ions, with subsequent solubilization of the structure. Indeed, excess hydroxyls in the medium form colloidal zirconium ions which polymerize/condense, generating crystalline nuclei in a process facilitated by heterogeneous nucleation and supersaturation. The presence of residual tungsten in all samples appears to be a key element for stabilizing the size and crystalline structure of the materials produced.

  20. Nanocomposites Based on Polyethylene and Nanocrystalline Silicon Films

    Directory of Open Access Journals (Sweden)

    Olkhov Anatoliy Aleksandrovich

    2014-12-01

    Full Text Available High-strength polyethylene films containing 0.5-1.0 wt. % of nanocrystalline silicon (nc-Si were synthesized. Samples of nc-Si with an average core diameter of 7-10 nm were produced by plasmochemical method and by laser-induced decomposition of monosilane. Spectral studies revealed almost complete (up to ~95 % absorption of UV radiation in 200- 400 nm spectral region by 85 micron thick film if the nc-Si content approaches to 1.0 wt. %. The density function of particle size in the starting powders and polymer films containing immobilized silicon nanocrystallites were obtained using the modeling a complete profile of X-ray diffraction patterns, assuming spherical grains and the lognormal distribution. The results of X-ray analysis shown that the crystallite size distribution function remains almost unchanged and the crystallinity of the original polymer increases to about 10 % with the implantation of the initial nc-Si samples in the polymer matrix.

  1. Anti frictional materials iron-pig iron-brass manufacture using shaving waste products of pig-iron

    International Nuclear Information System (INIS)

    Nasamov, S. N.; Krivij, N.; Gudenau, H. W.; Babich, A. I.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    Parts based on iron and steel powders are widely used in the manufacture of automobile and domestic equipment. This work was done to study the anti-friction properties of iron-pig iron-brass compositions of materials which were obtained by pressing and sintering from a mix of iron powders and industrial by products of cast-iron turnings, brass, talc and technical sulphur. Experiments were performed using cold pressure technology in the flowing matrix of the powder composite without solid lubricants. The subsequent sintering was carried out at 1200 degree centigree under isothermal conditions in a nitrogen atmosphere in the sintering zone during 1 h. The physical-mechanical and anti-friction properties were almost double by the active drainage of the gases from the compression mould. The study of the microstructure of the sintered materials showed that free cementite existed between the particle limits and around the pores. large agglomerations of dark inclusions could be observed, consisting of graphite, zinc and iron oxides, which were points of tension in the materials that reduce its durability and, therefore, its wear resistance to dry friction. (Author) 34 refs

  2. Investigation of nanocrystalline thin cobalt films thermally evaporated on Si(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowski, W., E-mail: wkozl@std2.phys.uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Balcerski, J.; Szmaja, W. [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Piwoński, I. [Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163, 90-236 Łódź (Poland); Batory, D. [Institute of Materials Science and Engineering, Łódź University of Technology, Stefanowskiego 1/15, 90-924 Łódź (Poland); Miękoś, E. [Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź (Poland); and others

    2017-03-15

    We have made a quantitative study of the morphological and magnetic domain structures of 100 nm thick nanocrystalline cobalt films thermally evaporated on naturally oxidized Si(100) substrates. The morphological structure is composed of densely packed grains with the average grain size (35.6±0.8) nm. The grains exhibit no geometric alignment and no preferred elongation on the film surface. In the direction perpendicular to the film surface, the grains are aligned in columns. The films crystallize mainly in the hexagonal close-packed phase of cobalt and possess a crystallographic texture with the hexagonal axis perpendicular to the film surface. The magnetic domain structure consists of domains forming a maze stripe pattern with the average domain size (102±6) nm. The domains have their magnetizations oriented almost perpendicularly to the film surface. The domain wall energy, the domain wall thickness and the critical diameter for single-domain particle were determined. - Highlights: • 100 nm thick nanocrystalline cobalt films on Si(100) were studied quantitatively. • The grains are densely packed and possess the average size (35.6±0.8) nm. • The films have a texture with the hexagonal axis perpendicular to the film surface. • The magnetic domains form a maze stripe pattern with the average size (102±6) nm. • The domains are magnetized almost perpendicularly to the film surface.

  3. Properties and in vivo investigation of nanocrystalline hydroxyapatite obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.C.; Pinheiro, A.G.; Oliveira, R.S. de; Goes, J.C.; Aranha, N.; Oliveira, L.R. de; Sombra, A.S.B

    2004-06-01

    Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P=1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 5/3 congruent with 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, had not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells.

  4. Properties and in vivo investigation of nanocrystalline hydroxyapatite obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, C.C.; Pinheiro, A.G.; Oliveira, R.S. de; Goes, J.C.; Aranha, N.; Oliveira, L.R. de; Sombra, A.S.B.

    2004-01-01

    Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P=1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 5/3 congruent with 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, had not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells

  5. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  6. Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time

    Energy Technology Data Exchange (ETDEWEB)

    Lala, S. [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal (India); Brahmachari, S.; Das, P.K. [Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032 (India); Das, D. [UGC-DAE Consortium for Scientific Research, Kolkata-700098 (India); Kar, T. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal (India)

    2014-09-01

    Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO{sub 3} and CaHPO{sub 4}.2H{sub 2}O powders in open air at room temperature within 2 h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite. - Graphical abstract: Biocompatible A-Type Carbonated Hydroxyapatite (A-cHAp) has been synthesized by mechanical alloying in polycrystalline form within 2 h of milling. The shape and position of CO channel have been shown. - Highlights: • A-cHAp phase is completed within 2 h of milling. • FTIR analysis confirms A-type carbonation in HAp. • Amorphization of a part of crystalline A-cHAp. • Particle size and strain are anaisotropic in nature. • High cell viability under MTT assay.

  7. Visible active nanocrystalline N-doped anatase TiO{sub 2} particles for photocatalytic mineralization studies

    Energy Technology Data Exchange (ETDEWEB)

    Barkul, R.P. [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Sub–campus Osmanabad, 413 501, MS (India); Koli, V.B.; Shewale, V.B. [Department of Chemistry, Shivaji University, Kolhapur, 416 004, MS (India); Patil, M.K. [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Sub–campus Osmanabad, 413 501, MS (India); Delekar, S.D., E-mail: sddelekar7@rediffmail.com [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Sub–campus Osmanabad, 413 501, MS (India); Department of Chemistry, Shivaji University, Kolhapur, 416 004, MS (India); Department of Chemistry and Biochemistry, Florida State University, Tallahassee, 30306-4390, FL (United States)

    2016-04-15

    Nitrogen-doped TiO{sub 2} nanoparticles (N–TiO{sub 2} NPs) with anatase phase were synthesized by sol–gel method using a single precursor containing titanium (IV) terbutoxide, glacial acetic acid, sodium dodecyl sulphate, ammonia, and urea. X-ray diffraction (XRD) reveals the nanocrystalline nature with anatase phase of all the samples. The particle size of all samples was found in the range of 5–12 nm using transmission electron microscopy (TEM). UV–visible absorption measurements examined that the optical band gap of the doped samples decrease with increase in dopant concentration from 0.0 to 7.0 mol%. Field-emission scanning electron microscopy (FESEM) with energy dispersive atomic X-ray (EDAX) spectroscopy was employed to analyse the morphology and chemical composition of these N–TiO{sub 2} NPs. The photocatalytic activity of bare/doped TiO{sub 2} samples was demonstrated for the degradation of Rhodamine B (RhB) dye under direct sunlight irradiation. The photocatalytic degradation was monitored by measuring the kinetic parameters based on UV–visible spectroscopy as well as the chemical oxygen demand (COD) during the course of the reaction. The effect of dye concentration and pH of the solution on the photocatalytic degradation reaction in the presence of colloidal bare/doped TiO{sub 2} were also studied. The N–TiO{sub 2} catalyst, with a nitrogen concentration of 7.0 mol%, showed the highest activity for photocatalytic mineralization of dye at acidic or alkaline medium than neutral condition under solar light irradiation directly. - Highlights: • Nitrogen doped TiO{sub 2} nanoparticles where synthesized by using simple sol–gel method at room temperature. • N–TiO{sub 2} nanoparticles shows red shift. • Hydroxylation on the surface of TiO{sub 2} increase with increasing nitrogen concentration. • In presence of sunlight N–TiO{sub 2} shows enhancement in degradation of RhB dye.

  8. Metal regeneration of iron chelates in nitric oxide scrubbing

    Science.gov (United States)

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  9. Wear behaviour of Armco iron after irradiation with neutrons and alpha particles

    International Nuclear Information System (INIS)

    Szatzschneider, K.

    1977-04-01

    The effects of neutron and alpha particle irradiation on the wear behaviour of Armco iron were studied. For the investigation, a pin-desk test facility was designed and built. From the experiments an influence upon wear of the type of irradiation, and the radiation dose was determined, which, however, cannot be explained - on the basis of existing wear theories - by the change in the macroscopic-mechanical properties of the material. It has again been shown that an indication of the hardness is not sufficient to describe wear. The influence of the history of the material (irradiation, annealing, deformation) is very strong and connot be predicted because of the multiplicity of interdependences. Wear in the low wear area was identified as being due to oxidation, in the high wear area as metallic. (orig./GSC) [de

  10. Iron ore particles on four seaweed species from Camburi Beach (Espírito Santo state, Brazil

    Directory of Open Access Journals (Sweden)

    Cristina Aparecida Gomes Nassar

    2006-09-01

    Full Text Available The present study estimated the iron-ore concentration found on four species of seaweed. The species tested grow on a site heavily contaminated by this ore, in the city of Vitória, state of Espírito Santo, Brazil. Under natural conditions, the iron ore reached a temperature 5.0ºC higher than the sand on a sunny day. All the species had iron ore adhered to their fronds. Udotea cyathiformis was the species with the highest iron-ore concentration varing from 0.07 to 0.90 g wet weight, followed by Lobophora variegata (from 0.07 to 0.62 g wet weight, Padina gymnospora (from 0.08 to 0.55 g wet weight and Ulva fasciata (from 0.05 to 0.25 g wet weight. Even after four changes of water over a 12-hour period, the fronds still had particles adhered to their outside cell wall. All the species showed similar tendencies to release the iron, with the highest percentage of particles (40 to 60% released in the first change of water.Minério de ferro particulado sobre quatro macroalgas da Praia de Camburi (Estado do Espírito Santo-Brasil. O presente trabalho determinou a concentração de minério de ferro presente em quatro macroalgas. As espécies testadas ocorrem em um local extremamente contaminado por este particulado, na cidade de Vitória, Estado do Espírito Santo, Brasil. Sob condições naturais, o minério de ferro alcançou um temperatura de até 5,0ºC acima da temperatura da areia em um dia ensolarado.Todas as espécies estudadas apresentavam minério em suas paredes externas. A espécie Udotea cyathiformis apresentou a maior concentração de minério em sua fronde variando de 0,07 a 0,90 g massa úmida, seguida por Lobophora variegata (de 0,07 a 0,62 g massa úmida, Padina gymnospora (de 0,08 a 0,55 g massa úmida e Ulva fasciata (de 0,05 a 0,25 g massa úmida. Mesmo após sucessivas trocas de água, as frondes ainda apresentavam partículas aderidas às suas paredes celulares externas. As espécies apresentaram a mesma tendência de libera

  11. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    Science.gov (United States)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  12. Texture-dependent twin formation in nanocrystalline thin Pd films

    International Nuclear Information System (INIS)

    Wang, B.; Idrissi, H.; Shi, H.; Colla, M.S.; Michotte, S.; Raskin, J.P.; Pardoen, T.; Schryvers, D.

    2012-01-01

    Nanocrystalline Pd films were produced by electron-beam evaporation and sputter deposition. The electron-beam-evaporated films reveal randomly oriented nanograins with a relatively high density of growth twins, unexpected in view of the high stacking fault energy of Pd. In contrast, sputter-deposited films show a clear 〈1 1 1〉 crystallographic textured nanostructure without twins. These results provide insightful information to guide the generation of microstructures with enhanced strength/ductility balance in high stacking fault energy nanocrystalline metallic thin films.

  13. Topological characterization of nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites

    Science.gov (United States)

    Bhat, A. H.; Dasan, Y. K.; Khan, Ihsan Ullah; Ahmad, Faiz; Ayoub, Muhammad

    2016-11-01

    This study was conducted to evaluate the morphological and barrier properties of nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites. Nanocrystalline cellulose was isolated from waste oil palm empty fruit bunch fiber using Sulphuric acid hydrolysis. Chemical modifications of nanocrystalline cellulose was performed to allow good compatibilization between fiber and the polymer matrices and also to improve dispersion of fillers. Bionanocomposite materials were produced from these nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) using solvent casting and evaporation techniques. The properties of extracted nanocrystalline cellulose were examined using FT-IR spectroscopy, X-ray diffractometer, TEM and AFM. Besides that, the properties of bionanocomposites were examined through FESEM and oxygen permeability properties analysis. Better barrier and morphological properties were obtained for nanocrystalline cellulose reinforced bionanocomposites than for neat polymer blend.

  14. Synthesis and characterization of β-phase iron silicide nano-particles by chemical reduction

    International Nuclear Information System (INIS)

    Sen, Sabyasachi; Gogurla, Narendar; Banerji, Pallab; Guha, Prasanta K.; Pramanik, Panchanan

    2015-01-01

    Graphical abstract: - Highlights: • β-FeSi 2 nano-particle was synthesized by reducing with Mg and by diluting with MgO. • XRD profile shows the iron di-silicide phase to be semiconducting β-FeSi 2 . • HRTEM and FESEM images indicate the β-FeSi 2 average particle size to be 60–70 nm. • Absorption, reflectance and PL spectroscopy show band gap to be direct 0.87 eV. • Nano-β-FeSi 2 is p-type with hole density of 4.38 × 10 18 cm −3 and mobility 8.9 cm 2 /V s. - Abstract: Nano-particles of β-FeSi 2 have been synthesized by chemical reduction of a glassy phase of [Fe 2 O 3 , 4SiO 2 ] by Mg-metal where MgO is used as diluent to prevent the agglomeration of nano crystallites into micro-particles and also act as a negative catalyst for the formation of other phases. The sample is characterized by XRD, FESEM, HRTEM, EDX, ultra-violet-visible-infrared and PL spectroscopy and electronic properties have been investigated by Hall measurement. XRD profile shows that the synthesized powder consists of purely β-FeSi 2 semiconducting phase. The average crystallite size of β-FeSi 2 is determined to be around 65.4 nm from XRD peaks as well as from FESEM also. The optical absorption and PL spectroscopy shows that synthesized β-FeSi 2 phase is a direct band gap semiconductor with a value of 0.87 eV. Hall measurements show that β-FeSi 2 nano-particles is p-type with hole concentration of 4.38 × 10 18 cm −3 and average hole mobility of 8.9 cm 2 /V s at 300 K

  15. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Science.gov (United States)

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  16. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  17. Microstructural evolution during the synthesis of bulk components from nanocrystalline ceramic powder, part II: microstructure and properties

    International Nuclear Information System (INIS)

    Ajaal, T. T.; Metak, A. M.

    2004-01-01

    Part I of this review, published in 5 /4th of Al-Nawah magazine, was devoted to the synthetic techniques used in the production processes of a bulk components of nanocrystalline materials. In this part, the microstructural evolution and its effect on the materials properties will be detailed. Minimizing grain growth and maximizing densification during the sintering stage of the ultrafine particles as well as the homogeneous densification in pressureless sintering, grain growth and rapid rate pressureless sintering will be discussed. Ceramics are well known for their high strength at elevated temperatures, as well as the extreme brittleness that prevents their application in many critical components. However, researchers have found that brittleness can be overcome by reducing particle sizes to nanometer levels. These fine grain structures are believed to provide improved ductility the individual grains can slide over one another without causing cracks. In addition, nanophase ceramics are more easily formed than their conventional counterparts, and easier to machine without cracking or breaking. Shrinkage during sintering is also greatly reduced in nanophase ceramics, and they can be sintered at lower temperatures than conventional ceramics. As a result, nanophase ceramics have the potential to deliver an ideal combination of ductility and high-temperature strength, allowing increased efficiency in applications ranging from automobile engines to jet aircraft. This part of the review covers the microstructural evolution during the synthetic process of nanocrystalline ceramic materials and its effects on the materials properties.(author)

  18. Electrodeposition and characterization of nanocrystalline CoNiFe films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Wang, Q.P. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cai, C. [School of Chemistry and chemical engineering, Ningxia University, Yinchuan 750021 (China); Yuan, Y.N. [Department of Materials and Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cao, F.H. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Z., E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, J.Q. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2012-02-29

    Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} films have been fabricated using cyclic voltammetry technique from the solutions containing sulfate, then characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer. Meanwhile, Electrochemical Impedance Spectroscopy technique has been employed to probe into the nucleation/growth behavior of Co{sub 45}Ni{sub 10}Fe{sub 24} films. The results show that, the obtained Co{sub 45}Ni{sub 10}Fe{sub 24} film possesses low coercivity of 973.3 A/m and high saturation magnetic flux density of 1.59 Multiplication-Sign 10{sup 5} A/m. Under the experimental conditions, the nucleation/growth process of Co{sub 45}Ni{sub 10}Fe{sub 24} films is mainly under activation control. With the increase of the applied cathodic potential bias, the charge transfer resistance for CoNiFe deposition decreases exponentially. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} film is obtained using cyclic voltammetry technique. Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} possesses low coercivity of 973.3 A/m. Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} possesses high saturation magnetic flux density. Black-Right-Pointing-Pointer The nucleation/growth process of CoNiFe films is mainly under activation control. Black-Right-Pointing-Pointer The charge transfer resistance for CoNiFe deposition decreases exponentially.

  19. Radiation influence on properties of nanocrystalline alloy

    International Nuclear Information System (INIS)

    Holkova, D.; Sitek, J.; Novak, P.; Dekan, J.

    2016-01-01

    Our work is focused on the studied of structural changes amorphous and nanocrystalline alloys after irradiation with electrons. For the analysis of these alloy we use two spectroscopic methods: Moessbauer spectroscopy and XRD. Measurements of nanocrystalline (Fe 3 Ni 1 ) 81 Nb 7 B 12 samples before and after electrons irradiation by means of Moessbauer spectroscopy and XRD showed that the electrons causes changes in magnetic structure which is reflected changes of direction of net magnetic moment. Structural changes occurs in the frame of error indicated by both spectroscopic methods. We can confirm that this kind alloys a resistive again electrons irradiation up to doses of 4 MGy. We observed in this frame only beginning of the radiation damage. (authors)

  20. A computation model for the corrosion resistance of nanocrystalline zirconium metal

    International Nuclear Information System (INIS)

    Zhang Xiyan; Shi Minghua; Liu Nianfu; Wei Yiming; Li Cong; Qiu Shaoyu; Zhang Qiang; Zhang Pengcheng

    2007-01-01

    In this paper a computation model of corrosion rate-grain size of nanocrystalline and ultra-fine zirconium has been presented. The model is based on the Wagner's theory and the electron theory of solids. The conductivity, electronic mean free path and grain size of metal were considered. By this model, the corrosion rate of zirconium metal under different temperature was computed. The results show that the corrosion weight gain and rate constant of nanocrystalline zirconium is lower than that of zirconium with coarse grain size. And the corrosion rate constant and weight gain of nanocrystalline zirconium metal decrease with the decrease of grain size. So the refinement of grain size can remarkably improve the corrosion resistance of zirconium metal. (authors)

  1. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...... the wurtzite phase was retained up to 60 GPa in the case of nanocrystalline GaN. The bulk moduli for the wurtzite phases were determined to be 187 ( 7) and 319 ( 10) GPa for the bulk- and nanocrystalline phases, respectively, while the respective NaCl phases were found to have very similar bulk moduli [ 208...

  2. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    Directory of Open Access Journals (Sweden)

    Junichiro Shiomi

    2016-10-01

    Full Text Available Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  3. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Science.gov (United States)

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  4. Thermal stability of grain boundaries in nanocrystalline Zn studied by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Zhou Kai; Li Hui; Pang Jinbiao; Wang Zhu

    2012-01-01

    Nanocrystalline Zn prepared by compacting nanoparticles with mean grain size about 55 nm at 15 MPa has been studied by positron lifetime spectroscopy. For the bulk Zn sample, the vacancy defect is annealed out at about 350 °C, but for the nanocrystalline Zn sample, the vacancy cluster in grain boundaries is quite difficult to be annealed out even at very high temperature (410 °C). In the grain boundaries of nanocrystalline Zn, the small free volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ 1 ). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τ av ), which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. This stabilization is very important for the nanocrystalline materials using as radiation resistant materials.

  5. Comparison of high pressure homogenization and stirred bead milling for the production of nano-crystalline suspensions.

    Science.gov (United States)

    Nakach, Mostafa; Authelin, Jean-René; Perrin, Marc-Antoine; Lakkireddy, Harivardhan Reddy

    2018-05-19

    Currently, the two technologies primarily used for the manufacturing of nano-crystalline suspensions using top down process (i.e. wet milling) are high pressure homogenization (HPH) and stirred bead milling (SBM). These two technologies are based upon different mechanisms, i.e., cavitation forces for HPH and shear forces for stirred bead milling. In this article, the HPH and SBM technologies are compared in terms of the impact of the suspension composition the process parameters and the technological configuration on milling performances and physical quality of the suspensions produced. The data suggested that both HPH and SBM are suitable for producing nano-crystalline suspensions, although SBM appeared more efficient than HPH, since the limit of milling (d 50 ) for SBM was found to be lower than that obtained with HPH (100 nm vs 200 nm). For both these technologies, regardless of the process parameters used for milling and the scale of manufacturing, the relationship of d 90 versus d 50 could be described by a unique master curve (technology signature of milling pathway) outlining that the HPH leads to more uniform particle size distribution as compared to SBM. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Comparative biogeochemical behaviors of iron-55 and stable iron in the marine environment

    International Nuclear Information System (INIS)

    Weimer, W.C.; Langford, J.C.; Jenkins, C.E.

    1978-01-01

    Studies of atmospheric aerosols have demonstrated that much of the 55 Fe associated with the aerosol input to the oceans is present as either an amorphous or hydrous iron oxide or as very small particulate species attached to the surfaces of the large aerosol particles. By comparison, nearly all of the stable iron is bound in the mineral phase of aerosol particles. This difference in the chemical and physical forms of the radioactive and stable iron isotopes results in the 55 Fe being more biologically available than is the stable iron. This difference in availability is responsible for the transfer of a much higher specific activity 55 Fe to certain ocean organisms and man relative to the specific activity of the total aerosol or of sea water. This differential biological uptake of the radioactive element and its stable element counterpart points out that natural levels of stable elements in the marine environment may not effectively dilute radioelements or other stable elements of anthropogenic sources. The effectiveness of dilution by natural sources depends on the chemical and physical forms of the materials in both the source terms and the receiving environments. The large difference in specific activities of 55 Fe in aerosols and sea water relative to ocean organisms reflects the independent behaviors of 55 Fe and stable iron

  7. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling.

    Science.gov (United States)

    Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd

    2016-12-01

    Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.

  8. Investigation of the structure of nanocrystalline refractory oxides by X-ray diffraction, electron microscopy, and atomic force microscopy

    International Nuclear Information System (INIS)

    Ulyanova, T. M.; Titova, L. V.; Medichenko, S. V.; Zonov, Yu. G.; Konstantinova, T. E.; Glazunova, V. A.; Doroshkevich, A. S.; Kuznetsova, T. A.

    2006-01-01

    The structures of nanocrystalline fibrous powders of refractory oxides have been investigated by different methods: determination of coherent-scattering regions, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic-force microscopy (AFM). The sizes of nanograins of different crystalline phases of refractory metal oxides have been determined during the formation of these nanograins and the dynamics of their growth during heat treatment in the temperature range 600-1600 deg. C has been studied. The data on the structure of nanocrystalline refractory oxide powders, obtained by different methods, are in good agreement. According to the data on coherent-scattering regions, the sizes of the ZrO 2 (Y 2 O 3 ) and Al 2 O 3 grains formed are in the range 4-6 nm, and the particle sizes determined according to the TEM and AFM data are in the ranges 5-7 and 2-10 nm, respectively. SEM analysis made it possible to investigate the dynamics of nanoparticle growth at temperatures above 1000 deg. C and establish the limiting temperatures of their consolidation in fibers

  9. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    Science.gov (United States)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  10. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    Science.gov (United States)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  11. XRD and HREM studies of nanocrystalline Cu and Pd

    International Nuclear Information System (INIS)

    Nieman, G.W.; Weertmen, J.R.; Siegel, R.W.

    1991-01-01

    Consolidated powders of nanocrystalline Cu and Pd have been studied by x-ray diffraction (XRD) and high resolution electron microscopy (HREM) as part of an investigation of the mechanical behavior of nanocrystalline pure metals. XRD line broadening measurements were made to estimate rain size, qualitative grain size distribution and average long range strains in a number of samples. Mean grain sized range from 4-60 nm and have qualitatively narrow grain size distributions. Long range lattice strains are of the order of 0.2-3% in consolidated samples. These strains apparently persist and even increase in Cu samples after annealing at 0.35 Tm (498K) for 2h, accompanied by an apparent increase in grain size of ≥2x. Grain size, grain size distribution width and internal strains vary somewhat among samples produced under apparently identical processing conditions. HREM studies show that twins, stacking faults and low-index facets are abundant in as-consolidated nanocrystalline Cu samples. In this paper methodology, results and analysis of XRD and HREM experiments are presented

  12. Formation of local nanocrystalline structure in a boron steel induced by electropulsing

    International Nuclear Information System (INIS)

    Ma, Bingdong; Zhao, Yuguang; Ma, Jun; Guo, Haichao; Yang, Qing

    2013-01-01

    Highlights: ► The local NC structures in the uniform size of ∼15 nm were obtained by electropulsing. ► The NC structures were made up of γ-Fe without any other phases coexisting. ► The reduction in nucleation barrier of the γ-Fe helped form the local γ-Fe NC structure. ► The steel consisting of the lath martensitic and the γ-Fe nanocrystalline structure exhibits high mechanical properties. - Abstract: Nanocrystalline γ-Fe was obtained locally in a cold-rolled boron steel as a result of transient high-energy electropulsing. The nano-grains of γ-Fe were uniformly about 15 nm in size. No phases other than γ-Fe have been found in the nanocrystalline structure. It is believed that the pulse current enhances the nucleation rate of γ-Fe phase during the phase transformation from α-Fe to γ-Fe, resulting in the formation of local nanostructure. Moreover, in this study the steel consisting of the lath martensitic and the γ-Fe nanocrystalline structure exhibits high mechanical properties.

  13. Direct separation of short range order in intermixed nanocrystalline and amorphous phases

    International Nuclear Information System (INIS)

    Frenkel, Anatoly I.; Kolobov, Alexander V.; Robinson, Ian K.; Cross, Julie O.; Maeda, Yoshihito; Bouldin, Charles E.

    2002-01-01

    Diffraction anomalous fine-structure (DAFS) and extended x-ray absorption fine-structure (EXAFS) measurements were combined to determine short range order (SRO) about a single atomic type in a sample of mixed amorphous and nanocrystalline phases of germanium. EXAFS yields information about the SRO of all Ge atoms in the sample, while DAFS determines the SRO of only the ordered fraction. We determine that the first-shell distance distribution is bimodal; the nanocrystalline distance is the same as the bulk crystal, to within 0.01(2) A ring , but the mean amorphous Ge-Ge bond length is expanded by 0.076(19) Angstrom. This approach can be applied to many systems of mixed amorphous and nanocrystalline phases

  14. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Brandy M.; Fakra, Sirine C.; Manganini, Steven J.; Santelli, Cara M.; Marcus, Matthew A.; Moffett, James W.; Rouxel, Olivier; German, Christopher R.; Edwards, Katrina J.

    2008-09-20

    Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread. This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff. For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated, and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals. Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans.

  15. Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.

    Science.gov (United States)

    Kim, Kitae; Choi, Wonyong; Hoffmann, Michael R; Yoon, Ho-Il; Park, Byong-Kwon

    2010-06-01

    The availability of iron has been thought to be a main limiting factor for the productivity of phytoplankton and related with the uptake of atmospheric CO(2) and algal blooms in fresh and sea waters. In this work, the formation of bioavailable iron (Fe(II)(aq)) from the dissolution of iron oxide particles was investigated in the ice phase under both UV and visible light irradiation. The photoreductive dissolution of iron oxides proceeded slowly in aqueous solution (pH 3.5) but was significantly accelerated in polycrystalline ice, subsequently releasing more bioavailable ferrous iron upon thawing. The enhanced photogeneration of Fe(II)(aq) in ice was confirmed regardless of the type of iron oxides [hematite, maghemite (gamma-Fe(2)O(3)), goethite (alpha-FeOOH)] and the kind of electron donors. The ice-enhanced dissolution of iron oxides was also observed under visible light irradiation, although the dissolution rate was much slower compared with the case of UV radiation. The iron oxide particles and organic electron donors (if any) in ice are concentrated and aggregated in the liquid-like grain boundary region (freeze concentration effect) where protons are also highly concentrated (lower pH). The enhanced photodissolution of iron oxides should occur in this confined boundary region. We hypothesized that electron hopping through the interconnected grain boundaries of iron oxide particles facilitates the separation of photoinduced charge pairs. The outdoor experiments carried out under ambient solar radiation of Ny-Alesund (Svalbard, 78 degrees 55'N) also showed that the generation of dissolved Fe(II)(aq) via photoreductive dissolution is enhanced when iron oxides are trapped in ice. Our results imply that the ice(snow)-covered surfaces and ice-cloud particles containing iron-rich mineral dusts in the polar and cold environments provide a source of bioavailable iron when they thaw.

  16. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    Science.gov (United States)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  17. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    International Nuclear Information System (INIS)

    Goodwill, Patrick; Konkle, Justin; Lu, Kuan; Zheng, Bo; Conolly, Steven

    2014-01-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  18. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodwill, Patrick [University of California, Dept. of Bioengineering, Berkeley, CA (United States); Konkle, Justin; Lu, Kuan; Zheng, Bo [UC Berkeley (UCSF), Joint Graduate Group in Bioengineering, CA (United States); Conolly, Steven [University of California, Berkeley Bioengineering, Electrical Engineering, and Computer Science, CA (United States)

    2014-07-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  19. Synthesis and characterization of iron based nanoparticles for novel applications

    Science.gov (United States)

    Khurshid, Hafsa

    The work in this thesis has been focused on the fabrication and characterization of iron based nanoparticles with controlled size and morphology with the aim: (i) to investigate their properties for potential applications in MICR toners and biomedical field and (ii) to study finite size effects on the magnetic properties of the nanoparticles. For the biomedical applications, core/shell structured iron/iron-oxide and hollow shell nanoparticles were synthesized by thermal decomposition of iron organometallic compounds [Fe(CO)5] at high temperature. Core/shell structured iron/iron-oxide nanoparticles have been prepared in the presence of oleic acid and oleylamine. Particle size and composition was controlled by varying the reaction parameters during synthesis. The as-made particles are hydrophobic and not dispersible in water. Water dispersibility was achieved by ligand exchange a with double hydrophilic diblock copolymer. Relaxometery measurements of the transverse relaxation time T2 of the nanoparticles solution at 3 Tesla confirm that the core/shell nanoparticles are an excellent MRI contrast agent using T2 weighted imaging sequences. In comparison to conventionally used iron oxide nanoparticles, iron/iron-oxide core/shell nanoparticles offer four times stronger T2 shortening effect at comparable core size due to their higher magnetization. The magnetic properties were studied as a function of particle size, composition and morphology. Hollow nanostructures are composed of randomly oriented grains arranged together to make a shell layer and make an interesting class of materials. The hollow morphology can be used as an extra degree of freedom to control the magnetic properties. Owing to their hollow morphology, they can be used for the targeted drug delivery applications by filling the drug inside their cavity. For the magnetic toners applications, particles were synthesized by chemically reducing iron salt using sodium borohydride and then coated with polyethylene

  20. Paramagnetic centers in nanocrystalline TiC/C system

    International Nuclear Information System (INIS)

    Guskos, N.; Bodziony, T.; Maryniak, M.; Typek, J.; Biedunkiewicz, A.

    2008-01-01

    Electron paramagnetic resonance is applied to study the defect centers in nanocrystalline titanium carbide dispersed in carbon matrix (TiC x /C) synthesized by the non-hydrolytic sol-gel process. The presence of Ti 3+ paramagnetic centers is identified below 120 K along with a minor contribution from localized defect spins coupled with the conduction electron system in the carbon matrix. The temperature dependence of the resonance intensity of the latter signal indicates weak antiferromagnetic interactions. The presence of paramagnetic centers connected with trivalent titanium is suggested to be the result of chemical disorder, which can be further related to the observed anomalous behavior of conductivity, hardness, and corrosion resistance of nanocrystalline TiC x /C

  1. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  2. Nanocrystalline Axially Bridged Iron Phthalocyanine Polymeric Conductor: (μ-Thiocyanato(phthalocyaninatoiron(III

    Directory of Open Access Journals (Sweden)

    Eiza Shimizu

    2016-01-01

    Full Text Available Skewered Iron(III phthalocyanine conducting polymer can be constructed with the utilization of axial thiocyanato ligands ((μ-thiocyanato(phthalocyaninatoiron(III; (FeIII(Pc(SCNn thereby creating additional avenues for electron transport through a linear SCN bridge, apart from the intermolecular π-π orbital overlap between the Pc molecules. In this paper, we report on the conversion of bulk FeIII(Pc(SCNn polymeric organic conductor into crystalline nanostructures through horizontal vapor phase growth process. The needle-like nanostructures are deemed to provide more ordered and, thus, more π-π interactive interskewer FeIII(Pc(SCNn polymer orientation, resulting in a twofold increase of its electrical conductivity per materials density unit.

  3. Formation, cationic site exchange and surface structure of mechanosynthesized EuCrO{sub 3} nanocrystalline particles

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H M; Al-Harthi, S H; Gismelseed, A M; Al-Rawas, A D [Department of Physics, Sultan Qaboos University, PO Box 36, 123, Muscat (Oman); Johnson, C; Moore, E A [School of Chemistry and Analytical Sciences, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Klencsar, Z [Chemical Research Center, Hungarian Academy of Sciences, 1025 Budapest (Hungary); Wynter, C I [Nassau Community College, Garden City, NY 11530-6793 (United States); Brown, D E, E-mail: hishammw@squ.edu.om, E-mail: hisham@ictp.it [Department of Physics, Northern Illinois University, De Kalb, IL 60115 (United States)

    2011-07-06

    Nanocrystalline EuCrO{sub 3} particles ({approx}25 nm) have been prepared by pre-milling a 1 : 1 molar mixture of Eu{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} for 60 h followed by sintering at 700 {sup 0}C (12 h). This temperature is {approx}500-600 {sup 0}C lower than those at which the material, in bulk form, is conventionally prepared. Rietveld analysis of the x-ray powder diffraction pattern of the EuCrO{sub 3} nanoparticles favours a structural model involving a slight degree of cationic exchange where {approx}11% of the Eu{sup 3+} and Cr{sup 3+} ions exchange their normal dodecahedral A- and octahedral B-sites, respectively, in the perovskite-related structure. This cationic site exchange, which is unusual in a perovskite structure, has been well supported by the corresponding room-temperature {sup 151}Eu Moessbauer spectrum of the nanoparticles that in addition to displaying a distribution in the principal component of the EFG tensor (V{sub zz}) at the usual A-sites of the {sup 151}Eu nuclei, also revealed the presence of a subcomponent with {approx}11% area fraction and a considerably increased |V{sub zz}| value that was associated with Eu{sup 3+} ions at octahedral B-sites. X-ray photoelectron and Auger electron spectroscopic techniques reveal a complex surface structure where extremely thin layers of un-reacted Eu{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} cover most of the EuCrO{sub 3} nanoparticles' surfaces together with some traces of elemental Cr. The binding energies associated with Eu{sup 3+} 3d{sub 5/2}, Eu{sup 3+} 4d{sub 3/2}, Cr{sup 3+} 2p{sub 3/2} and O{sup 2-} 1s core-level electrons in EuCrO{sub 3} are estimated from the x-ray photoelectron data for the first time.

  4. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  5. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor

  6. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Ambros J. [Technical University of Munich (TUM), Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J. [Technical University of Munich, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga [TUM, Munich, Department of Hematology/Oncology, Klinikum rechts der Isar, Munich (Germany); Piontek, Guido; Schlegel, Juergen [TUM, Munich, Division of Neuropathology, Institute of Pathology, Klinikum rechts der Isar, Munich (Germany)

    2008-06-15

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8{sup +} T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  7. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    International Nuclear Information System (INIS)

    Beer, Ambros J.; Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J.; Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga; Piontek, Guido; Schlegel, Juergen

    2008-01-01

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8 + T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  8. Nanocrystalline LiMn2O4 derived by HMTA-assisted solution combustion synthesis as a lithium-intercalating cathode material

    International Nuclear Information System (INIS)

    Fey, G.T.-K.; Cho, Y.-D.; Kumar, T. Prem

    2006-01-01

    Nanocrystalline LiMn 2 O 4 was synthesized by a self-sustaining solution combustion method with hexamethylenetetramine as a fuel. Ammonium nitrate was used as an additional oxidant-and-porogen. Thermal analytical studies showed the formation of LiMn 2 O 4 by a single-step decomposition process between 300 and 380 deg. C. The products were highly crystalline with an average crystallite size of ∼30 nm. Charge-discharge studies showed that the optimal heat treatment protocol was a 10 h calcination at 700 deg. C. A product obtained under these conditions from a precursor containing a 1:1 molar ratio of [LiNO 3 + Mn(NO 3 ) 2 ] and NH 4 NO 3 sustained 202 cycles between 3.0 and 4.3 V at a charge-discharge rate of 0.1 C before reaching an 80% charge retention cut-off value. Nanocrystalline particles provide small diffusion pathways that lead to an improvement in the lithium-ion intercalation kinetics and minimize surface distortions during cycling. These factors are believed to confer excellent electrochemical properties to the product

  9. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    Science.gov (United States)

    Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu

    2013-06-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  10. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    International Nuclear Information System (INIS)

    Zhou Kai; Li Hui; Pang Jinbiao; Wang Zhu

    2013-01-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu 2 O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ 1 ). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τ av ) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  11. Extending hydraulic lifetime of iron walls

    International Nuclear Information System (INIS)

    Mackenzie, P.D.; Sivavec, T.M.; Horney, D.P.

    1997-01-01

    Iron walls for control of groundwaters contaminated with chlorinated solvents and reducible metals are becoming much more widely used and field studies of this technology have proven successful to date. However, there is still much uncertainty in predicting long-term performance. This work focuses on two factors affecting the lifetime of the iron media: plugging at the treatment zone entrance and precipitation in the bulk iron media. Plugging at the system entrance is due principally to dissolved oxygen in the incoming water and is an issue in aerobic aquifers or in ex-situ canister tests. In an in-situ treatment system, plugging would result in a dramatic reduction in flow through the iron zone. Designs to minimize plugging in field applications include use of larger iron particles and admixing sand of comparable size with the iron particles. Mineral precipitation in the bulk iron media can lead to porosity losses in the media, again reducing flow through the treatment zone. Decreases in reactivity of the iron media may also occur. The nature of the mineral precipitation and the factors that affect extent of mineral precipitation are examined by a variety of tools, including tracer tests, aqueous inorganic profiles, and surface analysis techniques. At short treatment times, measured porosity losses are due mainly to entrapment of a film of H 2 gas on the iron surfaces and also to Fe(OH) 2 precipitation. Over longer treatment times precipitation of Fe(OH) 2 and FeCO 3 in low carbonate waters and of Fe(OH) 2 , FeCO 3 and CaCO 3 in higher carbonate waters will begin to dominate porosity losses. Preliminary results of an on-going study to control pH in an iron zone by admixing iron sulfide with iron show no difference in extent of carbonate precipitation versus a 100% iron system, suggesting that these systems are supersaturated with respect to carbonate precipitation

  12. Nanocrystalline magnetite thin films grown by dual ion-beam sputtering

    International Nuclear Information System (INIS)

    Prieto, Pilar; Ruiz, Patricia; Ferrer, Isabel J.; Figuera, Juan de la; Marco, José F.

    2015-01-01

    Highlights: • We have grown tensile and compressive strained nanocrystalline magnetite thin films by dual ion beam sputtering. • The magnetic and thermoelectric properties can be controlled by the deposition conditions. • The magnetic anisotropy depends on the crystalline grain size. • The thermoelectric properties depend on the type of strain induced in the films. • In plane uniaxial magnetic anisotropy develops in magnetite thin films with grain sizes ⩽20 nm. - Abstract: We have explored the influence of an ion-assisted beam in the thermoelectric and magnetic properties of nanocrystalline magnetite thin films grown by ion-beam sputtering. The microstructure has been investigated by XRD. Tensile and compressive strained thin films have been obtained as a function of the parameters of the ion-assisted beam. The evolution of the in-plane magnetic anisotropy was attributed to crystalline grain size. In some films, magneto-optical Kerr effect measurements reveal the existence of uniaxial magnetic anisotropy induced by the deposition process related with a small grain size (⩽20 nm). Isotropic magnetic properties have observed in nanocrystalline magnetite thin film having larger grain sizes. The largest power factor of all the films prepared (0.47 μW/K 2 cm), obtained from a Seebeck coefficient of −80 μV/K and an electrical resistivity of 13 mΩ cm, is obtained in a nanocrystalline magnetite thin film with an expanded out-of-plane lattice and with a grain size ≈30 nm

  13. Electromagnetic absorbing property of the flaky carbonyl iron particles by chemical corrosion process

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dianliang, E-mail: 272895980@qq.com [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Liu, Ting; Zhou, Li [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Yonggang [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China)

    2016-12-01

    The flaky carbonyl iron particles (CIPs) were prepared using a milling process at the first step, then the chemical corrosion process was done to optimize the particle shape. The particle morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz and the reflection loss (RL) was calculated. The results showed that the saturation magnetization value of the CIPs decreased as the CIPs was corroded to the small flakes in chemical corrosion process. The diffraction peaks of the single α-Fe existed in the XRD pattern of CIPs, and the characteristic peaks was more obvious and the intensity of the diffraction pattern was lower by corrosion. The permittivity and the permeability of the corroded milling CIPs was a little larger than the milling CIPs, it was due to the larger aspect ratio based on the fitting calculation process. At thickness 0.6 mm and 0.8 mm, the corroded milling CIPs composite had the better absorbing property than the other two samples. The frequency band (RL<−5 dB) could be widened to 8.96–18 GHz at 0.6 mm and 5.92–18 GHz at 0.8 mm, and RL less than −8 dB began to exist in 8.96–14.72 GHz at 0.8 mm. - Graphical abstract: The property of absorber using corrosion process could be enhanced. - Highlights: • The chemical corrosion process was done to optimize the particle shape. • The permittivity and permeability of corroded milling CIPs increased. • The aspect ratio of flaky CIPs increased in the corrosion process. • The corroded milling CIPs composite had the better absorbing property.

  14. Crystallographic and magnetic properties of nanocrystalline perovskite structure SmFeO3 orthoferrite

    Science.gov (United States)

    Kumar, Ashwini; Shen, Jingdong; Zhao, Huihui; Zhengjian, Qi; Li, Qi

    2018-05-01

    In this article, we present the structural and magnetic studies of pristine SmFeO3 nanocrystalline ceramic samples as sintered at temperature 850 °C and 1000 °C. X-ray powder diffraction data confirm the existence of single-phase nature with orthorhombic (Pbnm) structure of the samples. The SEM image reveals spherical particles with a size range of 60-130 nm for SFO-850 and SFO-1000 samples. X-ray absorption spectroscopy studies on Fe L3,2 and O K-edges of SmFeO3 sample revealed the homo-valence state of Fe in these materials. From magnetization studies it has been observed the materials exhibit ferromagnetic and antiferromagnetic (canted spin structure) sub-lattices, which results strong magnetic anisotropy in the system.

  15. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    International Nuclear Information System (INIS)

    Mallik, P K; Swain, P.K.; Patnaik, S.C

    2016-01-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles. (paper)

  16. Engineering of giant magnetoimpedance effect of amorphous and nanocrystalline microwires

    Directory of Open Access Journals (Sweden)

    V. Zhukova

    2016-12-01

    Full Text Available We present our studies of the factors affecting soft magnetic properties and giant magnetoimpedance effect in thin amorphous and nanocrystalline microwires. We showed that the magnetoelastic anisotropy is one of the most important parameters that determine magnetic softness and GMI effect of glass-coated microwires  and annealing can be very effective for manipulation the magnetic properties of amorphous ferromagnetic glass-coated microwires. Considerable magnetic softening and increasing of the GMI effect is observed in Fe-rich nanocrystalline FINEMET-type glass-coated microwires after the nanocrystallization.

  17. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob; Vegge, Tejs; Di Tolla, Francesco

    1999-01-01

    that the main deformation mode is sliding in the grain boundaries through a large number of uncorrelated events, where a few atoms (or a few tens of atoms) slide with respect to each other. Little dislocation activity is seen in the grain interiors. The localization of the deformation to the grain boundaries......Nanocrystalline metals, i.e., metals in which the grain size is in the nanometer range, have a range of technologically interesting properties including increased hardness and yield strength. We present atomic-scale simulations of the plastic behavior of nanocrystalline copper. The simulations show...

  18. Formation of nanocrystalline MgB sub 2 under high pressure

    CERN Document Server

    Sun, L; Kikegawa, T; Cao, L; Zhan, Z; Wu, Q; Wu, X; Wang, W

    2002-01-01

    The microstructural features of MgB sub 2 at ambient pressure and high pressure have been investigated by means of in situ synchrotron radiation x-ray diffraction and transmission electron microscopy (TEM). The x-ray diffraction measurements indicated that nanocrystalline MgB sub 2 formed in the pressure range of 26.3-30.2 GPa. TEM investigations reveal complex structure domains with evident lattice distortion in the relevant samples. The superconductivity of nanocrystalline MgB sub 2 was measured and compared with that of the starting sample of MgB sub 2.

  19. Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jun, E-mail: dingjun@wust.edu.cn; Guo, Ding; Deng, Chengji; Zhu, Hongxi; Yu, Chao

    2017-06-15

    Highlights: • Uniform ZrC coatings are prepared on flake graphite at 900 °C. • ZrC coatings are composed of nanosized (30–50 nm) particles. • The template growth mechanism is believed to be dominant in the molten salt synthesis process. - Abstract: A novel molten salt synthetic route has been developed to prepare nanocrystalline zirconium carbide (ZrC) coatings on flake graphite at 900 °C, using Zr powder and flake graphite as the source materials in a static argon atmosphere, along with molten salts as the media. The effects of different molten salt media, the sintered temperature, and the heat preservation time on the phase and microstructure of the synthetic materials were investigated. The ZrC coatings formed on the flake graphite were uniform and composed of nanosized particles (30–50 nm). With an increase in the reaction temperature, the ZrC nanosized particles were more denser, and the heat preservation time and thickness of the ZrC coating also increased accordingly. Electron microscopy was used to observe the ZrC coatings on the flake graphite, indicating that a “template mechanism” played an important role during the molten salt synthesis.

  20. The effect of oxide particles on the strength and ductility of bulk iron with a bimodal grain size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Casas, C.; Tejedor, R. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Rodríguez-baracaldo, R. [Department of Mechanical Engineering, Universidad Nacional de Colombia, Bogotá. Colombia (Colombia); Benito, J.A., E-mail: Josep.a.benito@upc.edu [Department of Materials Science and Metallurgical Engineering, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, 08036 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain); Cabrera, J.M. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain)

    2015-03-11

    The strength and ductility of bulk nanostructured and ultrafine-grained iron containing 0.39% oxygen by weight was determined by tensile tests. Samples were obtained by consolidation of milled iron powder at 500 °C. Heat treatments were designed to cover a wide range of grain sizes spanning from 100 to 2000 nm with different percentages of coarse and nanostructured grain areas, which was defined as a bimodal grain size distribution. Transmission electron microscopy was used to determine the diameter, volume fraction and location of oxides in the microstructure. The strength was analysed following two approaches. The first one was based on the strong effect of oxides and involved the use of a mixed particle-grain boundary strengthening model, and the second one was based on simple grain boundary strengthening. The mixed model underestimated the strength of nanostructured samples, whereas the simple grain boundary model worked better. However, for specimens with a bimodal grain size, the fitting of the mixed model was better. In this case, the more effective particle strengthening was related to the dispersion of oxides inside the large ferrite grains. In addition, the bimodal samples showed an acceptable combination of strength and ductility. Again, the ferrite grains containing oxides promoted strain hardening due to the increase in dislocation activity.

  1. The influence of oxygen contamination on the thermal stability and hardness of nanocrystalline Ni–W alloys

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, Christopher J., E-mail: cjm312@lehigh.edu [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Yin, Denise [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Cantwell, Patrick R. [Department of Mechanical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States); Harmer, Martin P. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States)

    2016-05-10

    Nanocrystalline Ni–W alloys are reported in the literature to be stabilized against high temperature grain growth by W-segregation at the grain boundaries. However, alternative thermal stability mechanisms have been insufficiently investigated, especially in the presence of impurities. This study explored the influence of oxygen impurities on the thermal stability and mechanical properties of electrodeposited Ni-23 at% W with aberration-corrected scanning transmission electron microscopy (STEM) and nanoindentation hardness testing. The primary finding of this study was that nanoscale oxides were of sufficient size and volume fraction to inhibit grain growth. The oxide particles were predominantly located on grain boundaries and triple points, which strongly suggests that a particle drag mechanism was active during annealing. In addition, W-segregation was observed at the oxide/Ni(W) interfaces rather than the presumed Ni(W) grain boundaries, further supporting the argument that alternative mechanisms are responsible for thermal stability in these alloys. Lastly, alloys with nanoscale oxides exhibited a higher hardness compared to similar alloys without oxides, suggesting that the particles are widely advantageous. Overall, this work demonstrates that impurity oxide particles can limit grain growth, and alternative mechanisms may be responsible for Ni–W thermal stability.

  2. Biological Properties of Iron Oxide Nanoparticles for Cellular and Molecular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Claus-Christian Glüer

    2010-12-01

    Full Text Available Superparamagnetic iron-oxide particles (SPIO are used in different ways as contrast agents for magnetic resonance imaging (MRI: Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite, different coatings (none, dextran, carboxydextran, polystyrene and different hydrodynamic diameters (20–850 nm for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC, which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe3O4 particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  3. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sasaki, T.; Meguro, S.; Asami, K.

    2004-01-01

    Tailoring active nickel alloy cathodes for hydrogen evolution in a hot concentrated hydroxide solution was attempted by electrodeposition. The carbon addition to Ni-Mo alloys decreased the nanocrystalline grain size and remarkably enhanced the activity for hydrogen evolution, changing the mechanism of hydrogen evolution. The Tafel slope of hydrogen evolution was about 35 mV per decade. This suggested that the rate-determining step is desorption of adsorbed hydrogen atoms by recombination. As was distinct from the binary Ni-Mo alloys, after open circuit immersion, the overpotential, that is, the activity of nanocrystalline Ni-Mo-C alloys for hydrogen evolution was not changed, indicating the sufficient durability in the practical electrolysis

  4. An investigation into the room temperature mechanical properties of nanocrystalline austenitic stainless steels

    International Nuclear Information System (INIS)

    Eskandari, Mostafa; Zarei-Hanzaki, Abbas; Abedi, Hamid Reza

    2013-01-01

    Highlights: ► Strength of nanocrystalline specimens follows a trend of a remarkable rise along with a small drop in ductility in comparison to the coarse-grained one. ► Universal correlation of linear type (UTS = mτ max ) between shear punch test data and the tensile strength may be unreliable for the nanocrystalline materials. ► Actual relation between the maximum shear and ultimate tensile strength follows an empirical formula of UTS=0.013τ max 2 -25.62τ max +13049. -- Abstract: The present work has been conducted to evaluate the mechanical properties of nanostructured 316L and 301 austenitic stainless steels. The nanocrystalline structures were produced through martensite treatment which includes cold rolling followed by annealing treatment. The effect of equivalent rolling strain and annealing parameters on the room temperature mechanical behavior of the experimental alloys have been studied using the shear punch testing technique. The standard uniaxial tension tests were also carried out to adapt the related correlation factors. The microstructures and the volume fraction of phases were characterized by transmission electron microscopy and feritscopy methods, respectively. The results indicate that the strength of nanocrystalline specimens remarkably increases, but the ductility in comparison to the coarse-grained one slightly decreases. In addition the strength of nanocrystalline specimens has been increased by decreasing the annealing temperature and increasing the equivalent rolling strain. The analysis of the load–displacement data has also disclosed that the universal correlation of linear type (UTS = mτ max ) between shear punch test data and the tensile strength is somehow unreliable for the nanocrystalline materials. The results suggest that the actual relation between the maximum shear strength and ultimate tensile strength follows a second order equation of type UTS=aτ max 2 -bτ max +c.

  5. Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, M., E-mail: michael.mertens@uni-ulm.de [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Mohr, M.; Brühne, K.; Fecht, H.J. [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Łojkowski, M.; Święszkowski, W. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Łojkowski, W. [Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw (Poland)

    2016-12-30

    Highlights: • Hydrophobic and hydrophilic properties on fluorine-, hydrogen- and oxygen- terminated ultra-nanocrystalline diamond films. • Micropatterned - multi-terminated layers with both hydrophobic and hydrophilic areas on one sample. • Visualization of multi-terminated surfaces by e.g. SEM and LFM. • Roughness and friction investigations on different terminated surfaces. • Smooth and biocompatible surfaces with same roughness regardless of hydrophobicity for microbiological investigations. - Abstract: In this work, we show that ultra nanocrystalline diamond (UNCD) surfaces have been modified to add them hydrophobic and hydrophilic properties. The nanocrystalline diamond films were deposited using the hot filament chemical vapor deposition (HFCVD) technique. This allows growing diamond on different substrates which can be even 3D or structured. Silicon and, for optical applications, transparent quartz glass are the preferred substrates for UNCD layers growth. Fluorine termination leads to strong hydrophobic properties as indicated by a high contact angle for water of more than 100°. Hydrogen termination shows lesser hydrophobic behavior. Hydrophilic characteristics has been realised with oxygen termination. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) measurements confirm the oxygen and fluorine- termination on the nanocrystalline diamond surface. Further, by micropatterning using photolithography, multi-terminated layers have been created with both hydrophobic and hydrophilic areas. In addition, we have shown that retermination is achieved, and the properties of the surface have been changed from hydrophobic to hydrophilic and vice versa. Micro- roughness and stress in the grown film influences slightly the wetting angle as well. The opportunity to realize local differences in hydrophobicity on nanocrystalline diamond layers, in any size or geometry, offers interesting applications for example in

  6. Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Mohr, Markus; Daccache, Layal; Horvat, Sebastian; Brühne, Kai; Jacob, Timo; Fecht, Hans-Jörg

    2017-01-01

    Diamond combines several outstanding material properties such as the highest thermal conductivity and highest elastic moduli of all materials. This makes diamond an interesting candidate for a multitude of applications. Nonetheless, nanocrystalline diamond films, layers and coatings, usually show properties different to those of single crystalline diamond. This is usually attributed to the larger volume fraction of the grain boundaries with atomic structure different from the single crystal. In this work we measured Young's modulus and thermal conductivity of nanocrystalline diamond films with average grain sizes ranging from 6 to 15 nm. The measured thermal conductivities are modeled considering the thermal boundary conductance between grains as well as a grain size effect on the phonon mean free path. We make a comparison between elastic modulus and thermal boundary conductance of the grain boundaries G_k for different nanocrystalline diamond films. We conclude that the grain boundaries thermal boundary conductance G_k is a measure of the cohesive energy of the grain boundaries and therefore also of the elastic modulus of the nanocrystalline diamond films.

  7. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    Science.gov (United States)

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  8. Studies on the synthesis of nanocrystalline Y{sub 2}O{sub 3} and ThO{sub 2} through volume combustion and their sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sanjay Kumar, D. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Ananthasivan, K., E-mail: asivan@igcar.gov.in [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Venkata Krishnan, R. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Amirthapandian, S. [Material Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Dasgupta, Arup [Microscopy and Thermo-Physical Property Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India)

    2016-10-15

    Volume combustion was observed in the auto-ignition of the citrate gels containing the nitrates of yttrium/thorium for the first time in mixture with a fuel (citric acid) to oxidant (Y{sup 3+} or Th{sup 4+} nitrate) ratio close to that demanded by the stoichiometry. These nanocrystalline powders were characterized for their bulk density, specific surface area, particle size distribution, carbon residue and X-ray crystallite size and were sintered by both the conventional and the two-step method. The maximum relative sintered density of Y{sub 2}O{sub 3} was 98.9% TD. The sintered density of thoria (97.8% TD) is the highest among the values reported so far, for nanocrystalline ThO{sub 2}. Characterization of the pellets and powders by using scanning electron microscopy and transmission electron microscopy reaffirmed nanocrystallinity and that the sintered pellets comprised faceted sintered grains. The two-step sintering was found to restrict “runaway” sintering. - Highlights: • Scaled-up synthesis of nanocrystalline Y{sub 2}O{sub 3} and ThO{sub 2} using citrate gel-combustion method. • VCR was observed at a fuel to nitrate ratio (R) of 0.125 and 0.17 in mixtures containing Th(NO{sub 3}){sub 4} and Y(NO{sub 3}){sub 3} respectively. • The calcined powders were compacted and sintered by using a novel two-step sintering method. • Sintered densities as high as 97.8% T.D. (ThO{sub 2}, T{sub H} = 0.48) and 98.9% T.D. (Y{sub 2}O{sub 3}, T{sub H} = 0.61) were obtained.

  9. Iron/iron oxide core-shell nanoclusters for biomedical applications

    International Nuclear Information System (INIS)

    Qiang You; Antony, Jiji; Sharma, Amit; Nutting, Joseph; Sikes, Daniel; Meyer, Daniel

    2006-01-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. Most magnetic particles or beads currently used in biomedical applications are based on ferromagnetic iron oxides with very low specific magnetic moments of about 20-30 emu/g. Here we report a new approach to synthesize monodispersed core-shell nanostructured clusters with high specific magnetic moments above 200 emu/g. Iron nanoclusters with monodispersive size of diameters from 2 nm to 100 nm are produced by our newly developed nanocluster source and go to a deposition chamber, where a chemical reaction starts, and the nanoclusters are coated with iron oxides. HRTEM Images show the coatings are very uniform and stable. The core-shell nanoclusters are superparamagnetic at room temperature for sizes less than 15 nm, and then become ferromagnetic when the cluster size increases. The specific magnetic moment of core-shell nanoclusters is size dependent, and increases rapidly from about 80 emu/g at the cluster size of around 3 nm to over 200 emu/g up to the size of 100 nm. The use of high magnetic moment nanoclusters for biomedical applications could dramatically enhance the contrast for MRI, reduce the concentration of magnetic particle needs for cell separation, or make drug delivery possible with much lower magnetic field gradients

  10. Removal of both dissolved and particulate iron from groundwater

    OpenAIRE

    H. van Dijk; H. Leijssen; L. Rietveld; A. Abrahamse; K. Teunissen

    2008-01-01

    Iron is the primary source for discolouration problems in the drinking water distribution system. The removal of iron from groundwater is a common treatment step in the production of drinking water. Even when clear water meets the drinking water standards, the water quality in the distribution system can deteriorate due to settling of iron (hydroxide) particles or post-treatment flocculation of dissolved iron. Therefore it is important to remove dissolved and particulate iron to a large exten...

  11. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    Science.gov (United States)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  12. Structural peculiarities in magnetic small particles

    International Nuclear Information System (INIS)

    Haneda, K.; Morrish, A.H.

    1993-01-01

    Nanostructured magnetic materials, consisting of nanometer-sized crystallites, are currently a developing subject. Evidence has been accumulating that they possess properties that can differ substantially from those of bulk materials. This paper illustrates how Moessbauer spectroscopy can yield useful information on the structural peculiarities associated with these small particles. As illustrations, metallic iron and iron-oxide systems are considered in detail. The subjects discussed include: (1) Phase stabilities in small particles, (2) deformed or nonsymmetric atomic arrangements in small particles, and (3) peculiar magnetic structures or non-collinear spin arrangements in small magnetic oxide particles that are correlated with lower specific magnetizations as compared to the bulk values. (orig.)

  13. Grain size dependent electrical studies on nanocrystalline SnO2

    International Nuclear Information System (INIS)

    Bose, A. Chandra; Thangadurai, P.; Ramasamy, S.

    2006-01-01

    Nanocrystalline tin oxide (n-SnO 2 ) with different grain sizes were synthesized by chemical precipitation method. Size variation was achieved by changing the hydrolysis processing time. Structural phases of the nanocrystalline SnO 2 were identified by X-ray diffraction (XRD). The grain sizes of the prepared n-SnO 2 were found to be in the range 5-20 nm which were estimated using the Scherrer formula and they were confirmed by transmission electron microscopy (TEM) measurements. The electrical properties of nanocrystalline SnO 2 were studied using impedance spectroscopy. The impedance spectroscopy results showed that, in the temperature range between 25 and 650 deg. C, the conductivity has contributions from two different mechanisms, which are attributed to different conduction mechanisms in the grain and the grain boundary regions. This is because of the different relaxation times available for the conduction species in those regions. However, for the temperatures above 300 deg. C, there is no much difference between these two different relaxation times. The Arrhenius plots gave the activation energies for the conduction process in all the samples

  14. Grain size refinement in nanocrystalline Hitperm-type glass-coated microwires

    International Nuclear Information System (INIS)

    Talaat, A.; Val, J.J. del; Zhukova, V.; Ipatov, M.; Klein, P.; Varga, R.; González, J.; Churyukanova, M.; Zhukov, A.

    2016-01-01

    We present a new-Fe 38.5 Co 38.5 B 18 Mo 4 Cu 1 Hitperm glass-coated microwires obtained by Taylor-Ulitovsky technique with nanocrystalline structure consisting of about 23 nm of BCC α-FeCo and an amorphous precursors in as-prepared samples. Annealing resulted in a considerable decrease of such nano-grains down to (11 nm). Obtained results are discussed in terms of the stress diffusion of limited crystalline growth and the chemical composition. Rectangular hysteresis loops have been observed on all annealed samples that are necessary conditions to obtain fast domain wall propagation. An enhancement of the domain wall velocity as well as mobility after annealing has been obtained due to the structural relaxation of such grains with positive magnetostriction. These structure benefits found in the nanocrystalline Hitperm glass-coated microwires are promising for developing optimal magnetic properties. - Highlights: • Grains size refinement upon annealing. • Enhancement of the domain wall velocity as well as mobility after annealing. • Nanocrystalline structure in as-prepared microwires.

  15. Investigation of mechanical properties and operative deformation mechanism in nano-crystalline Ni–Co/SiC electrodeposits

    International Nuclear Information System (INIS)

    Lari Baghal, S.M.; Amadeh, A.; Heydarzadeh Sohi, M.

    2012-01-01

    Highlights: ► The tensile properties of Ni–Co and Ni–Co/SiC deposits were investigated. ► The SiC particles enhanced tensile strength and ductility of nano-structured composites. ► The deformation mechanism at low and high strain rates were studied. - Abstract: Ni–Co/SiC nano-composites were prepared via electrodeposition from a modified Watts bath containing SiC particles with average particle size of 50 nm, SDS as surfactant and saccharin as grain refiner in appropriate amounts. The effect of nano-particle incorporation on microstructure, mechanical properties and deformation mechanism of electrodeposits were investigated. The mechanical properties of electrodeposits were investigated by Vickers microhardness and tensile tests. The results indicated that incorporation of SiC particles into a 15 nm Ni–Co matrix had no considerable effect on its microhardness and yield strength, that is, dispersion hardening did not operate in this range of grain size. However it was observed that co-deposition of uniform distributed SiC particles can significantly improve the ultimate tensile strength and elongation to failure of the deposits. Calculation of apparent activation volume from tensile test results at different strain rates proved that incorporation of SiC nano-particles are responsible for stress-assisted activation of GB atoms mechanism that can significantly increase the plasticity. Nano-crystalline Ni–Co matrix showed a mixed mod behavior of ductile and brittle fracture whereas incorporation of SiC particles and increasing the strain rate promoted ductile fracture mode.

  16. Light trapping of crystalline Si solar cells by use of nanocrystalline Si layer plus pyramidal texture

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Kentaro; Nonaka, Takaaki; Onitsuka, Yuya; Irishika, Daichi; Kobayashi, Hikaru, E-mail: h.kobayashi@sanken.osaka-u.ac.jp

    2017-02-15

    Highlights: • Ultralow reflectivity Si wafers with light trapping effect can be obtained by forming a nanocrystalline Si layer on pyramidal textured Si surfaces. • Surface passivation using phosphosilicate glass improved minority carrier lifetime of the nanocrystalline Si layer/Si structure. • A high photocurrent density of 40.1 mA/cm{sup 2}, and a high conversion efficiency of 18.5% were achieved. - Abstract: The surface structure chemical transfer (SSCT) method has been applied to fabrication of single crystalline Si solar cells with 170 μm thickness. The SSCT method, which simply involves immersion of Si wafers in H{sub 2}O{sub 2} plus HF solutions and contact of Pt catalyst with Si taking only ∼30 s for 6 in. wafers, can decrease the reflectivity to less than 3% by the formation of a nanocrystalline Si layer. However, the reflectivity of the nanocrystalline Si layer/flat Si surface/rear Ag electrode structure in the wavelength region longer than 1000 nm is high because of insufficient absorption of incident light. The reflectivity in the long wavelength region is greatly decreased by the formation of the nanocrystalline Si layer on pyramidal textured Si surfaces due to an increase in the optical path length. Deposition of phosphosilicate glass (PSG) on the nanocrystalline Si layer for formation of pn-junction does not change the ultralow reflectivity because the surface region of the nanocrystalline Si layer possesses a refractive index of 1.4 which is nearly the same as that of PSG of 1.4–1.5. The PSG layer is found to passivate the nanocrystalline Si layer, which is evident from an increase in the minority carrier lifetime from 12 to 44 μs. Hydrogen treatment at 450 °C further increases the minority carrier lifetime approximately to a doubled value. The solar cells with the nanocrystalline Si layer/pyramidal Si substrate/boron-diffused back surface field/Ag rear electrode> structure show a high conversion efficiency of 18

  17. Coal fly ash as a source of iron in atmospheric dust.

    Science.gov (United States)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A; Scherer, Michelle M; Grassian, Vicki H

    2012-02-21

    Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.

  18. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    Science.gov (United States)

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  19. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  20. Adsorption studies of iron(III) on chitin

    Indian Academy of Sciences (India)

    Unknown

    of particle size and dosage of the adsorbant, contact time, initial concentration of the adsorbate and tem- perature were experimentally ... Adsorption; chitin; variable parameters; fraction of adsorption; temperature effect. 1. Introduction. Iron is one of the ... about the presence of iron in drinking water is its ob- jectionable taste.

  1. HRTEM analysis on nanocrystalline BaTiO3 and PbTiO3: size effects on ferroelectric phase transition temperature

    International Nuclear Information System (INIS)

    Bursill, L.A.; Jiang, B.; Peng, J.L.; Zhong, W.L.; Zhang, P.L.

    1997-01-01

    High-Resolution Transmission Electron Microscopic studies of nanocrystaline particles of BaTiO 3 and PbTiO 3 are reported. There are characteristic differences observed for BaTiO 3 prepared using sol gel (SG) and steric acid gel (SAG) methods. The former exhibit a critical size below which there is no paraelectric/ferroelectric phase transition, whereas BaTiO 3 prepared via the SAG route remained cubic for all conditions. The SAG preparations always showed chemical intergrowth defects whereas the SG preparations were single phase. Atomic resolution images of both varieties showed interesting surface steps and surface relaxations/reconstructions of some facets. Nanocrystalline PbTiO 3 prepared by the SG route remains tetragonal, albeit with decreasing c/a ratio, down to 25nm diameter. HRTEM observations of nanocrystalline PbTiO 3 are also presented. X-ray diffraction, dielectric and Raman scattering measurements also demonstrate pronounced size effects. The relationship between the observed nanostructures and size effects on the physical properties is discussed. 6 refs., 1 tab., 6 figs

  2. The nanophase iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  3. Fabrication of boron-doped nanocrystalline diamond nanoflowers based on 3D Cu(OH)2 dendritic architectures

    International Nuclear Information System (INIS)

    Sim, Huijun; Hong, Sukin; Lee, Seungkoo; Lim, Daesoon; Jin, Juneon; Hwang, Sungwoo

    2012-01-01

    Hot-filament chemical vapor deposition (HFCVD) was used to prepare boron-doped nanocrystalline diamond (BDND) nanoflowers on a Cu substrate with a Cu(OH) 2 dendritic architecture that had been formed by using electrostatic self-assembly (ESA) method with nanodiamond particles. The formation of diamond nanoflowers is controlled by the reaction time between the Cu(OH) 2 nanoflowers and the polymeric linker for the electrostatic attachment of nanodiamonds and by the deposition time for CVD diamond growth with a high nucleation density. Through analysis by field emission scanning electron microscopy (FESEM) and Raman spectroscopy, the optimal conditions for the synthesis of BDND nanoflowers are determined, and a possible explanation is provided.

  4. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    Science.gov (United States)

    Gruen, Dieter M [Downers Grove, IL

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  5. Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields

    Directory of Open Access Journals (Sweden)

    B. Sim

    2015-08-01

    Full Text Available Polyaniline (PANI-coated iron oxide (Fe3O4 sphere particles were fabricated and applied to a dual stimuliresponsive material under electric and magnetic fields, respectively. Sphere Fe3O4 particles were synthesized by a solvothermal process and protonated after acidification. The aniline monomer tended to surround the surface of the Fe3O4 core due to the electrostatic and hydrogen bond interactions. A core-shell structured product was finally formed by the oxidation polymerization of PANI on the surface of Fe3O4. The formation of Fe3O4@PANI particles was examined by scanning electron microscope and transmission electron microscope. The bond between Fe3O4 and PANI was confirmed by Fourier transform-infrared spectroscope and magnetic properties were analyzed by vibration sample magnetometer. A hybrid of a conducting and magnetic particle-based suspension displayed dual stimuli-response under electric and magnetic fields. The suspension exhibited typical electrorheological and magnetorheological behaviors of the shear stress, shear viscosity and dynamic yield stress, as determined using a rotational rheometer. Sedimentation stability was also compared between Fe3O4 and Fe3O4@PANI suspension.

  6. Production of iron from metallurgical waste

    Science.gov (United States)

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  7. Investigation of behaviour of iron (3) microimpurity in ammonium tungstate solutions

    International Nuclear Information System (INIS)

    Vasil'ev, M.A.; Taushkanov, V.P.; Rumyantsev, V.K.; Andronov, E.A.

    1978-01-01

    To determine the purification optimum conditions of ammonium tungstate concentrated solutions from iron(3) microimpurities the behaviour of iron(3) with 10 -5 -10 -4 mol/l concentration in these solutions is studied. Concentration of hydrolyzed iron forms has been determined by spectrophotometric and radiometric methods. It is stated, that the processes of hydrolysis and aggregation of dispersed-colloid iron particles in tungstate solutions is generally over during the first 50 hours. It is shown, that a part of iron hydroxide particles of dimension less than 200 A increases with ammonium tungstate concentration increasing. Residual iron concentration also increases under the same conditions. The increasing of efficiency of solution purification is due to decreasing of carbon dispersion, applied for this purpose, and also modification of their surface by hydroxides of multivalent metas as zirconium for example

  8. Synthesis and characterization of nanocrystalline forsterite coated poly(L-lactide-co-β-malic acid) scaffolds for bone tissue engineering applications.

    Science.gov (United States)

    Mozafari, M; Gholipourmalekabadi, M; Chauhan, N P S; Jalali, N; Asgari, S; Caicedoa, J C; Hamlekhan, A; Urbanska, A M

    2015-05-01

    In this research, after synthesizing poly(L-lactide-co-β-malic acid) (PLMA) copolymer, hybrid particles of ice and nanocrystalline forsterite (NF) as coating carriers were used to prepare NF-coated PLMA scaffolds. The porous NF-coated scaffolds were directly fabricated by a combined technique using porogen leaching and freeze-drying methods. The obtained results indicate that the scaffolds were structurally porous with NF particles on their surfaces. When compared to the uncoated scaffolds, the NF coating improved both mechanical properties as well as enhanced bioactivity of the scaffolds. In addition, in vitro biological response of the rat bone marrow stromal cells indicated that NF significantly increased the biocompatibility of NF-coated scaffolds compared with PLMA. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Magnetic study of iron sorbitol

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, F.J. E-mail: osoro@posta.unizar.es; Larrea, A.; Abadia, A.R.; Romero, M.S

    2002-09-01

    A magnetic study of iron sorbitol, an iron-containing drug to treat the iron deficiency anemia is presented. Transmission electron microscopy reveals that the system contains nanometric particles with an average diameter of 3 nm whose composition is close to two-line ferrihydrite. The characterisation by magnetisation and AC susceptibility measurements indicates superparamagnetic behaviour with progressive magnetic blocking starting at 8 K. The quantitative analysis of the magnetic results indicates that the system consists of an assembly of very small magnetic moments, presumably originated by spin uncompensation of the antiferromagnetic nanoparticles, with Arrhenius type magnetic dynamics.

  10. Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Jia Haoling [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China); Zhang Zhonghua [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China)], E-mail: zh_zhang@sdu.edu.cn; Qi Zhen [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China); Liu Guodong [School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); Bian Xiufang [Key Lab of Liquid Structure and Heredity of Materials, Jingshi Road 73, Jinan 250061, Shandong (China)

    2009-03-20

    In this paper, the formation of nanocrystalline TiC from titanium powders and different carbon resources by mechanical alloying (MA) has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results show that nanocrystalline TiC can be synthesized from Ti powders and different carbon resources (activated carbon, carbon fibres or carbon nanotubes) by MA at room temperature. Titanium and different carbon resources have a significant effect on the Ti-C reaction and the formation of TiC during MA. Moreover, the formation of nanocrystalline TiC is governed by a gradual diffusion reaction mechanism during MA, regardless of different carbon resources.

  11. Nanoscale science and engineering forum (706c) design of solid lipid particles with iron oxide quantum dots for the delivery of therapeutic agents

    Science.gov (United States)

    Solid lipid particles provide a method to encapsulate and control the release of drugs in vivo but lack the imaging capability provided by CdS quantum dots. This shortcoming was addressed by combining these two technologies into a model system that uses iron oxide as a non-toxic imaging component in...

  12. Powder-based synthesis of nanocrystalline material components for structural application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ilyuschenko, A.F.; Ivashko, V.S.; Okovity, V.A. [Powder Metallurgy Research Inst., Minsk (Belarus)] [and others

    1998-12-01

    Hydroxiapate spray coatings and substrates for implant production as well as multilayered metal ceramic coatings from nanocrystalline materials are a subject of the investigation. The work aims at the improvement of quality of said objects. This study has investigated the processes of hydroxiapatite powder production. Sizes, shapes and relief of initial HA powder surface are analyzed using SEM and TEM. Modes of HA plasma spraying on a substrate from titanium and associated compositions of traditional and nanocrystalline structure are optimized. The quality of the sprayed samples are studied using X-ray phase analysis and metallographic analysis. The results of investigations of bioceramic coating spraying on titanium are theoretically generalized, taking into account obtained experimental data. The results of investigations of ion-beam technology are presented for spraying multilayered coatings consisting of alternating metal-ceramic layers of nanocrystalline structure.

  13. Obtaining of iron particles of nanometer size in a natural zeolite; Obtencion de particulas de hierro de tamano nanometrico en una zeolita natural

    Energy Technology Data Exchange (ETDEWEB)

    Xingu C, E. G.

    2013-07-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  14. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt); King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh (Saudi Arabia); Hanna, Adly [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt)

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  15. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    International Nuclear Information System (INIS)

    Mousa, Sahar; Hanna, Adly

    2013-01-01

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  16. Influence of the thermal history of a particle during atomization on the morphology of carbides in a hypereutectic iron based alloy

    International Nuclear Information System (INIS)

    Kusý, M.; Behúlová, M.; Grgač, P.

    2012-01-01

    Highlights: ► Identification of solidification microstructures in RS powder from iron based alloy. ► Microstructures affected and nonaffected during the post-recalescence period. ► Thermokinetic newtonian model of rapid solidification of a droplet in gas atomization. ► Droplet thermal history and conditions for the microstructure development. ► Parameters influencing development of different solidification microstructures. - Abstract: Basic principles and consequences of the rapid solidification processing of melts have been successfully exploited in several progressive technologies of material production. In the paper, the solidification microstructures developed in the hypereutectic iron based alloy with the chemical composition of 3% C–3% Cr–12% V (wt.%) prepared by nitrogen gas atomization are presented and analysed. Several main types of solidification microstructures were identified in the rapidly solidified powder particles. According to the morphological features of carbide phases and computed thermal history of rapidly solidified particles, the microstructures were divided into two groups – microstructures morphologically non-affected during the post-recalescence period of solidification, and microstructures with morphological transitions occurring during the quasi-isothermal period of structure development. Based on the thermokinetic newtonian model of rapid solidification of a spherical droplet in the process of atomization, the thermal history of droplets with diameter from 20 μm to 400 μm rapidly solidified from different nucleation temperatures was studied. The thermo-physical conditions necessary for the development of variable microstructures in single rapidly solidified powder particles are predicted and discussed. The nucleation temperature, recalescence temperature and duration of quasi-isothermal plateau are supposed to be the most important parameters influencing the microstructure development in the rapidly solidified

  17. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments.

    Science.gov (United States)

    El-Atwani, O; Hinks, J A; Greaves, G; Gonderman, S; Qiu, T; Efe, M; Allain, J P

    2014-05-06

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He(+) ion irradiation at 950 °C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60-100 nm) and ultrafine (100-500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials.

  18. Characterization of nanocrystalline silicon germanium film and ...

    African Journals Online (AJOL)

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  19. Luminescence of nanocrystalline ZnSe:Mn2+

    NARCIS (Netherlands)

    Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A.

    2000-01-01

    The luminescence properties of nanocrystalline ZnSe:Mn^(2+) prepared via an inorganic chemical synthesis are described. Photoluminescence spectra show distinct ZnSe and Mn^(2+) related emissions, both of which are excited via the ZnSe host lattice. The Mn^(2+) emission wavelength and the

  20. Metal exposure in cows grazing pasture contaminated by iron industry: Insights from magnetic particles used as tracers.

    Science.gov (United States)

    Ayrault, Sophie; Catinon, Mickaël; Boudouma, Omar; Bordier, Louise; Agnello, Gregory; Reynaud, Stéphane; Tissut, Michel

    2016-05-01

    Magnetic particles (MP) emitted by an iron smelter were used to investigate the exposure of cows grazing on a grassland polluted by these MP and by large amounts of potentially toxic elements (PTE). The morphology as well as the chemical composition of the MP separated from cow dung were studied. Large amounts of typical MP were found (1.1 g kg(-1) dry weight) in the cow dung sampled from the exposed site, whereas these particles were absent from the reference unpolluted site. The ingested MP were mainly technogenic magnetic particles (TMP) emitted by the smelter. Considering the MP concentration in the grazed grass on the exposed site, it was concluded that cows absorb the MP not only from the grass but also from the soil surface. The results of a mild acidic leaching of the MP suggested that the particles were possibly submitted to a superficial dissolution in the abomasum, pointing at a potential route of transfer of the PTE originating from the TMP and leading into food chains. TMP were only a small part of the anthropogenic contamination having affected the soil and the dung. However, due to their unequivocal signature, TMP are a powerful tracer of the distribution of PTE in the different compartments constituting the food chains and the ecosystems. Furthermore, the measurement of the particle sizes gave evidence that a noticeable proportion of the MP could enter the respiratory tract. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Influence of structure of iron nanoparticles in aggregates on their magnetic properties

    Directory of Open Access Journals (Sweden)

    Rosická Dana

    2011-01-01

    Full Text Available Abstract Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed.

  2. Nanocrystalline diamond coatings for machining

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany)

    2007-07-01

    This history of CVD diamond synthesis goes back to the fifties of the last century. However, the scientific and economical potential was only gradually recognized. In the eighties, intensive worldwide research on CVD diamond synthesis and applications was launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. This article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  3. Facile directing agent-free synthesis and magnetism of nanocrystalline Fe–Ni alloy with tunable shape

    International Nuclear Information System (INIS)

    Mohamed, Marwa A.A.

    2014-01-01

    Highlights: • Simple directing agent-free wet chemical method for high-yield synthesis of nc Fe-Ni particles with tunable shape. • The alloy morphology is controlled by varying synthesis conditions; concentration of metal ions and pH of reaction. • Synthesis conditions control the final shape of alloy particles via controlling their growth rate and capping with OH − ions. • The alloy magnetic behavior is driven away from soft magnetic toward hard one, by particles anisotropy and size reduction. • The branched wires morphology can be considered a new morphology of distinctive magnetic behavior, for nc Fe-Ni alloy. - Abstract: This article reports the synthesis of nanocrystalline (nc) Fe 20 Ni 80 particles with tunable shape, using a heterogeneous directing agent-free aqueous wet chemical method of mild synthesis conditions. The particle morphology has been controlled by varying synthesis conditions. The results demonstrate that the morphology of alloy particles changes from quasi-isotropic to anisotropic architecture by decreasing concentration of metal ions or increasing pH of reaction solution. Deep interpretations of such phenomena are reported. Magnetic behavior of the alloy is driven away from soft magnetic and toward hard magnetic behavior, by anisotropy and size reduction of alloy particles. This broadens practical applications of nc Fe 20 Ni 80 alloy. Overall, the study provides an effective economical way for high-yield synthesis of nc Fe–Ni particles with tailored shape and subsequently magnetic properties for a specific technological application. Additionally, it adds a new morphology, highly branched wires, of distinctive magnetic behavior to the known morphologies of nc Fe–Ni particles

  4. Synthesis of nanocrystalline Cu1-xTax composites using physical vapor deposition

    International Nuclear Information System (INIS)

    Savage, H.S.; Wang, H.; Rigsbee, J.M.

    1993-01-01

    Physical vapor deposition (PVD) processes provide the capability for creating new types of metallic, ceramic, and polymeric composites by allowing atomic-scale engineering of structure and chemistry. Because PVD processes provide the capacity for circumventing thermodynamic factors, such as solubility limits, it is possible to produce nonequilibrium alloys and materials with unique mixtures of phases. The ease by which PVD produces materials with nanocrystalline microstructures is an added benefit of these processes. This paper describes ion plating, a plasma-assisted PVD process, and its application for the development of a new class of nanoscale dispersion-strengthened Cu 1-x Ta x alloys. Copper-tantalum was selected as a model system because the extensive liquid miscibility gap and nearly zero mutual solid solubilities prevent creation of Cu-Ta alloys by conventional or rapid solidification processes. Microchemical analyses of the family of Cu 1-x Ta x alloys indicate that PVD can produce materials with any desired level of Ta. X-ray diffraction and transmission electron microscopy analyses show that the as-deposited microstructures consist generally of a Cu matrix supersaturated with Ta and containing a uniform dispersion of Ta particles with diameters below 10 nm. The Ta particles are face centered cubic (exceptionally large Ta particles, larger than ∼100 nm, are body centered cubic) and are oriented identically with the Cu matrix. Particle coarsening studies, at temperatures up to 900C and for times as long as 100 hours, indicate an extreme degree of microstructural stability. The Ta particles also appear highly effective at maintaining a submicron Cu matrix grain size even after annealing at 900C

  5. Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area.

    Science.gov (United States)

    Swain, James H; Newman, Samuel M; Hunt, Janet R

    2003-11-01

    Foods are fortified with elemental forms of iron to reduce iron deficiency. However, the nutritional efficacy of current, commercially produced elemental iron powders has not been verified. We determined the bioavailability of six commercial elemental iron powders and examined how physicochemistry influences bioavailability. Relative biological value (RBV) of the iron powders was determined using a hemoglobin repletion/slope ratio method, treating iron-deficient rats with repletion diets fortified with graded quantities of iron powders, bakery-grade ferrous sulfate or no added iron. Iron powders were assessed physicochemically by measuring iron solubility in hydrochloric acid at pH 1.0 and 1.7, surface area by nitrogen gas adsorption and surface microstructure by electron microscopy. Bioavailability from the iron powders, based on absolute iron intake, was significantly less than from FeSO4 (100%; P Electrolytic (54%; A-131, U.S.) > Electrolytic (46%; Electrolytic Iron, India) > H-Reduced (42%; AC-325, U.S.) > Reduced (24%; ATOMET 95SP, Canada) > CO-Reduced (21%; RSI-325, Sweden). Solubility testing of the iron powders resulted in different relative rankings and better RBV predictability with increasing time at pH 1.7 (R2 = 0.65 at 150 min). The prediction was improved with less time and lower pH (R2 = 0.82, pH 1.0 at 30 min). Surface area, ranging from 90 to 370 m2/kg, was also highly predictive of RBV (R2 = 0.80). Bioavailability of iron powders is less than bakery-grade ferrous sulfate and varies up to three times among different commercial forms. Solubility at pH 1.0 and surface area were predictive of iron bioavailability in rats.

  6. Rapid Polyol-Assisted Microwave Synthesis of Nanocrystalline LiFePO4/C Cathode for Lithium-Ion Batteries.

    Science.gov (United States)

    Paul, Baboo Joseph; Gim, Jihyeon; Baek, Sora; Kang, Jungwon; Song, Jinju; Kim, Sungjin; Kim, Jaekook

    2015-08-01

    Nanocrystalline LiFePO4/C has been synthesized under a very short period of time (90 sec) using a polyol-assisted microwave heating synthesis technique. The X-ray diffraction (XRD) data indicates that the rapidly synthesized materials correspond to phase pure olivine. Post-annealing of the as-prepared sample at 600 °C in argon atmosphere yields highly crystalline LiFePO4/C. The morphology of the samples studied using scanning electron microscopy (SEM) reveals the presence of secondary particles formed from aggregation of primary particles in the range of 30-50 nm. Transmission electron microscopy (TEM) images reveal a thin carbon layer coating on the surface of the primary particle. The charge/discharge studies indicate that the as-prepared and annealed LiFePO4/C samples delivered initial discharge capacities of 126 and 160 mA h g-1, respectively, with good capacity retentions at 0.05 mA cm-2 current densities. The post-annealing process indeed improves the crystallinity of the LiFePO4 nanocrystals, which enhances the electrode performance of LiFePO4/C.

  7. Preparation, characterization and luminescence of nanocrystalline Y2O3:Ho

    International Nuclear Information System (INIS)

    Biljan, Tomislav; Gajovic, Andreja; Meic, Zlatko; Mestrovic, Ernest

    2007-01-01

    Nanocrystalline Y 2 O 3 :Ho was synthesized by solution combustion method with ethylene glycol as fuel. Material was characterized using powder X-ray diffraction and transmission electron microscopy (TEM). X-ray diffraction and TEM showed that the material is nanostructured. Luminescence properties were studied using Raman spectrometers with excitation in near infrared (NIR) and visible regions. The visible and NIR luminescence spectra of nanocrystalline Y 2 O 3 :Ho show some important differences from those of bulk material. The convenience of using Raman instruments for studying luminescence of lanthanide ions is demonstrated

  8. Chemical vapor deposition of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  9. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  10. Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xiaofeng [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Li, Dan, E-mail: txf8378@163.com [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Yu, You [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China); You, Zhen Jiang [Australian School of Petroleum, University of Adelaide, SA 5005 (Australia); Li, Tongye [The National Key Laboratory of Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu (China); Ge, Liangquan [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China)

    2017-04-06

    Deformation twinning of nanocrystalline body-centered cubic Mo was studied using molecular dynamics simulations, and the effects of grain sizes and temperatures on the deformation were evaluated. With small grain size, grain rotation accompanying grain growth was found to play important role in nanocrystalline Mo during tensile deformation. Additionally, grain rotation and the deformation controlled by GB-mediated processes induce to the difficulty of creating crack. Twin was formed by successive emission of twinning partials from grain boundaries in small grain size systems. However, the twin mechanisms of GB splitting and overlapping of two extended dislocations were also found in larger size grain. Twin induced crack tips were observed in our simulation, and this confirmed the results of previous molecular dynamics simulations. At higher temperatures, GB activities can be thermally activated, resulting in suppression of twinning tendency and improvement of ductility of nanocrystalline Mo.

  11. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  12. Grain boundaries of nanocrystalline materials - their widths, compositions, and internal structures

    International Nuclear Information System (INIS)

    Fultz, B.; Frase, H.N.

    2000-01-01

    Nanocrystalline materials contain many atoms at and near grain boundaries. Sufficient numbers of Moessbauer probe atoms can be situated in grain boundary environments to make a clear contribution to the measured Moessbauer spectrum. Three types of measurements on nanocrystalline materials are reported here, all using Moessbauer spectrometry in conjunction with X-ray diffractometry, transmission electron microscopy, or small angle neutron scattering. By measuring the fraction of atoms contributing to the grain boundary component in a Moessbauer spectrum, and by knowing the grain size of the material, it is possible to deduce the average width of grain boundaries in metallic alloys. It is found that these widths are approximately 0.5 nm for fcc alloys and slightly larger than 1.0 nm for bcc alloys.Chemical segregation to grain boundaries can be measured by Moessbauer spectrometry, especially in conjunction with small angle neutron scattering. Such measurements on Fe-Cu and Fe 3 Si-Nb were used to study how nanocrystalline materials could be stabilized against grain growth by the segregation of Cu and Nb to grain boundaries. The segregation of Cu to grain boundaries did not stabilize the Fe-Cu alloys against grain growth, since the grain boundaries were found to widen and accept more Cu atoms during annealing. The Nb additions to Fe 3 Si did suppress grain growth, perhaps because of the low mobility of Nb atoms, but also perhaps because Nb atoms altered the chemical ordering in the alloy.The internal structure of grain boundaries in nanocrystalline materials prepared by high-energy ball milling is found to be unstable against internal relaxations at low temperatures. The Moessbauer spectra of the nanocrystalline samples showed changes in the hyperfine fields attributable to movements of grain boundary atoms. In conjunction with SANS measurements, the changes in grain boundary structure induced by cryogenic exposure and annealing at low temperature were found to be

  13. Characteristics of RuO2-SnO2 nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    International Nuclear Information System (INIS)

    Kim, Han-Ki; Choi, Sun-Hee; Yoon, Young Soo; Chang, Sung-Yong; Ok, Young-Woo; Seong, Tae-Yeon

    2005-01-01

    The characteristics of RuO 2 -SnO 2 nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O 2 /Ar ambient have RuO 2 -SnO 2 nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film in 0.5 M H 2 SO 4 liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm 2 μm. This suggests that the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor

  14. The inhalation of insoluble iron oxide particles in the sub-micron ranges. Part II - Plutonium-237 labelled aerosols

    International Nuclear Information System (INIS)

    Waite, D.A.; Ramsden, D.

    1971-10-01

    The results of a series of inhalation studies using iron oxide particles in the size range 0.1 to 0.3 um (count median diameter) are described. In this series the aerosols were labelled with plutonium 237. In vivo detection, excretion analysis and crude location studies were obtainable and the results compared to the earlier studies using chromium 51 labelled aerosols. Plutonium 237 can be considered as a simulator for plutonium 239 and attempts are made to extrapolate the results to the problem of the estimation of plutonium 239 in the human lung. (author)

  15. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Cathode materials in nano size improve the performance of batteries due to the increased reaction rate and short diffusion lengths. Lithium Iron Phosphate (LiFePO4 is a promising cathode material for Li-ion batteries. However, it has its own limitations such as low conductivity and low diffusion coefficient which lead to high impedance due to which its application is restricted in batteries. In the present work, increase of conductivity with decreasing particle size of LiFePO4/C is studied. Also, the dependence of conductivity and activation energy for hopping of small polaron in LiFePO4/C on variation of particle size is investigated. The micro sized cathode material is ball milled for different durations to reduce the particle size to nano level. The material is characterized for its structure and particle size. The resistivities/dc conductivities of the pellets are measured using four probe technique at different temperatures, up to 150 °C. The activation energies corresponding to different particle sizes are calculated using Arrhenius equation. CR2032 cells are fabricated and electrochemical characteristics, namely, ac impedance and diffusion coefficients, are studied.

  16. Magnetic and Mössbauer studies of pure and Ti-doped YFeO _3 nanocrystalline particles prepared by mechanical milling and subsequent sintering

    International Nuclear Information System (INIS)

    Khalifa, N. O.; Widatallah, H. M.; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S.; Pekala, M.

    2016-01-01

    Single-phased nanocrystalline particles of pure and 10 % Ti "4"+-doped perovskite-related YFeO _3were prepared via mechanosynthesis at 450"∘C. This temperature is ∼150–350 "∘C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti "4"+ ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe "3"+ ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti "4"+ lowers the Néel temperature of the YFeO _3 nanoparticles from ∼ 586 K to ∼ 521 K. The Ti "4"+-doped YFeO _3 nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The "5"7Fe Mössbauer spectra show ∼ 15 % of the YFeO _3 nanoparticles and ∼22 of Ti "4"+-doped YFeO _3 ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the "5"7Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the "5"7Fe nuclear sites and were associated with collective magnetic excitations. The "5"7Fe Mössbauer spectra show the local environments of the Fe "3"+ ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti "4"+ ions relative to those in the larger magnetic nanoparticles.

  17. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  18. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  19. Electrophoretic Nanocrystalline Graphene Film Electrode for Lithium Ion Battery

    International Nuclear Information System (INIS)

    Kaprans, Kaspars; Bajars, Gunars; Kucinskis, Gints; Dorondo, Anna; Mateuss, Janis; Gabrusenoks, Jevgenijs; Kleperis, Janis; Lusis, Andrejs

    2015-01-01

    Graphene sheets were fabricated by electrophoretic deposition method from water suspension of graphene oxide followed by thermal reduction. The formation of nanocrystalline graphene sheets has been confirmed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrochemical performance of graphene sheets as anode material for lithium ion batteries was evaluated by cycling voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. Fabricated graphene sheets exhibited high discharge capacity of about 1120 mAh·g −1 and demonstrated good reversibility of lithium intercalation and deintercalation in graphene sheet film with capacity retention over 85 % after 50 cycles. Results show that nanocrystalline graphene sheets prepared by EPD demonstrated a high potential for application as anode material in lithium ion batteries

  20. Plant cell nucleolus as a hot spot for iron.

    Science.gov (United States)

    Roschzttardtz, Hannetz; Grillet, Louis; Isaure, Marie-Pierre; Conéjéro, Geneviève; Ortega, Richard; Curie, Catherine; Mari, Stéphane

    2011-08-12

    Many central metabolic processes require iron as a cofactor and take place in specific subcellular compartments such as the mitochondrion or the chloroplast. Proper iron allocation in the different organelles is thus critical to maintain cell function and integrity. To study the dynamics of iron distribution in plant cells, we have sought to identify the different intracellular iron pools by combining three complementary imaging approaches, histochemistry, micro particle-induced x-ray emission, and synchrotron radiation micro X-ray fluorescence. Pea (Pisum sativum) embryo was used as a model in this study because of its large cell size and high iron content. Histochemical staining with ferrocyanide and diaminobenzidine (Perls/diaminobenzidine) strongly labeled a unique structure in each cell, which co-labeled with the DNA fluorescent stain DAPI, thus corresponding to the nucleus. The unexpected presence of iron in the nucleus was confirmed by elemental imaging using micro particle-induced x-ray emission. X-ray fluorescence on cryo-sectioned embryos further established that, quantitatively, the iron concentration found in the nucleus was higher than in the expected iron-rich organelles such as plastids or vacuoles. Moreover, within the nucleus, iron was particularly accumulated in a subcompartment that was identified as the nucleolus as it was shown to transiently disassemble during cell division. Taken together, our data uncover an as yet unidentified although abundant iron pool in the cell, which is located in the nuclei of healthy, actively dividing plant tissues. This result paves the way for the discovery of a novel cellular function for iron related to nucleus/nucleolus-associated processes.

  1. Mechanochemical preparation of nanocrystalline TiO2 powders and their behavior at high temperatures

    International Nuclear Information System (INIS)

    Gajovic, A.; Furic, K.; Tomasic, N.; Popovic, S.; Skoko, Z.; Music, S.

    2005-01-01

    Nanocrystalline TiO 2 powders were prepared by high-energy ball-milling using zirconia vial and balls. The changes of microstructure caused by material processing were studied using Raman spectroscopy, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The milling of the starting TiO 2 powder (anatase + rutile in traces) induced phase transitions to high-pressure polymorph, TiO 2 II, and rutile. We found that the phase transition to TiO 2 II was initiated at the surface of the small particles, while transition to rutile started in their center. Changes in crystallite size during milling process were obtained by the Scherrer method, while the particle size changes were monitored by TEM. The kinetics of phase changes, a decrease in crystallite/particle size, as well as zirconia contamination depended on the powder-to-ball weight ratio. The starting powder and some selected ball-milled samples were investigated in situ by Raman spectroscopy and XRD at high temperatures (up to 1300 deg. C) to examine their behavior during the sintering process. A difference in the results obtained by these two techniques was explained in frame of basic physical properties characterizing both methods. The morphology of the final sinters was monitored by scanning electron microscopy (SEM)

  2. Nanocrystalline sp{sup 2} and sp{sup 3} carbons: CVD synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, M. L. [Università degli Studi di Roma “Tor Vergata,” via Della Ricerca Scientifica, Dipartimento di Scienze e Tecnologie Chimiche—MinimaLab (Italy); Rossi, M. [Università degli Studi di Roma “Sapienza,” via A. Scarpa, Dipartimento di Scienze di Base e Applicate per l’Ingegneria and Centro di Ricerca per le Nanotecnologie Applicate all’Ingegneria (CNIS) (Italy); Tamburri, E., E-mail: emanuela.tamburri@uniroma2.it [Università degli Studi di Roma “Tor Vergata,” via Della Ricerca Scientifica, Dipartimento di Scienze e Tecnologie Chimiche—MinimaLab (Italy)

    2016-11-15

    The design and production of innovative materials based on nanocrystalline sp{sup 2}- and sp{sup 3}-coordinated carbons is presently a focus of the scientific community. We present a review of the nanostructures obtained in our labs using a series of synthetic routes, which make use of chemical vapor deposition (CVD) techniques for the selective production of non-planar graphitic nanostructures, nanocrystalline diamonds, and hybrid two-phase nanostructures.

  3. Electrodeposited nanocrystalline bronze alloys as replacement for Ni

    NARCIS (Netherlands)

    Hovestad, A.; Tacken, R.A.; Mannetje, H.H.'t

    2008-01-01

    Nanocrystalline white-bronze, CuSn, electroplating was investigated as alternative to Ni plating as undercoat for noble metals in jewellery applications. A strongly acidic plating bath was developed with an organic additive to suppress hydrogen evolution and obtain bright coatings. Polarization

  4. Synthesis of nanocrystalline CeO2 particles by different emulsion methods

    International Nuclear Information System (INIS)

    Supakanapitak, Sunisa; Boonamnuayvitaya, Virote; Jarudilokkul, Somnuk

    2012-01-01

    Cerium oxide nanoparticles were synthesized using three different methods of emulsion: (1) reversed micelle (RM); (2) emulsion liquid membrane (ELM); and (3) colloidal emulsion aphrons (CEAs). Ammonium cerium nitrate and polyoxyethylene-4-lauryl ether (PE4LE) were used as cerium and surfactant sources in this study. The powder was calcined at 500 °C to obtain CeO 2 . The effect of the preparation procedure on the particle size, surface area, and the morphology of the prepared powders were investigated. The obtained powders are highly crystalline, and nearly spherical in shape. The average particle size and the specific surface area of the powders from the three methods were in the range of 4–10 nm and 5.32–145.73 m 2 /g, respectively. The CeO 2 powders synthesized by the CEAs are the smallest average particle size, and the highest surface area. Finally, the CeO 2 prepared by the CEAs using different cerium sources and surfactant types were studied. It was found that the surface tensions of cerium solution and the type of surfactant affect the particle size of CeO 2 . - Graphical Abstract: The emulsion droplet size distribution and the TEM images of CeO 2 prepared by different methods: reversed micelle (RM), emulsion liquid membrane (ELM) and colloidal emulsion aphrons (CEAs). Highlights: ► Nano-sized CeO 2 was successfully prepared by three different emulsion methods. ► The colloidal emulsion aphrons method producing CeO 2 with the highest surface area. ► The surface tensions of a cerium solution have slightly effect on the particle size. ► The size control could be interpreted in terms of the adsorption of the surfactant.

  5. Study of AC Magnetic Properties and Core Losses of Fe/Fe3O4-epoxy Resin Soft Magnetic Composite

    Science.gov (United States)

    Laxminarayana, T. A.; Manna, Subhendu Kumar; Fernandes, B. G.; Venkataramani, N.

    Soft Magnetic Composites (SMC) were prepared by coating of nanocrystalline Fe3O4 particles, synthesized by co-precipitation method, on atomized iron powder of particle size less than 53 μm in size using epoxy resin as a binder between iron and Fe3O4. Fe3O4 was chosen, for its high electric resistivity and suitable magnetic properties, to keep the coating layer magnetic and seek improvement to the magnetic properties of SMC. SEM images and XRD patterns were recorded in order to investigate the coatings on the surface of iron powder. A toroid was prepared by cold compaction of coated iron powder at 1050 MPa and subsequently cured at 150˚C for 1 hr in argon atmosphere. For comparison of properties, a toroid of uncoated iron powder was also compacted at 1050 MPa and annealed at 600˚C for 2 hr in argon atmosphere. The coated iron powder composite has a resistivity of greater than 200 μΩm, measured by four probe method. A comparison of Magnetic Hysteresis loops and core losses using B-H Loop tracer in the frequency range 0 to 1500 Hz on the coated and uncoated iron powder is reported.

  6. Composition of MBE-grown iron oxide films

    NARCIS (Netherlands)

    Voogt, F.C; Hibma, T; Smulders, P.J M; Niesen, L

    A wide range of iron oxides have been grown epitaxially on MgO(100) substrates using a dual beam technique in which the deposited iron is oxidised by a beam of NO2 particles. At high fluxes magnetite (Fe3-deltaO4) phases with compositions between near-stoichiometric magnetite (Fe3O4, delta = 0) and

  7. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  8. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    Science.gov (United States)

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. © 2016 Cold Spring Harbor Laboratory Press.

  9. Preparation and characterization of polyindole - iron oxide nanocomposite electrolyte

    International Nuclear Information System (INIS)

    Rajasudha, G.; Stephen, A.; Narayanan, V.

    2009-01-01

    Full text: A novel polyindole-iron oxide containing LiClO 4 solid polymer electrolyte has been prepared. The diverse property of magnetic nanoparticle has elicited wide interest from the point of view of technological applications. Their properties are known to be strongly dependent on size, anisotropy and inter particle interactions. The proton conducting materials has received considerable attention as electrolyte materials in technological applications such as fuel cells, sensors and electrochromic display. In this work, polyindole-iron oxide nanocomposite containing LiClO 4 was prepared by in situ polymerization. The indole was polymerized in the presence of iron oxide, using ammonium peroxy disulphate as an oxidizing agent. The polyindole-iron oxide nanocomposite was characterized by XRD, IR, SEM, TGA and TEM. The iron oxide nano particles was incorporated into polyindole and was confirmed by XRD and Fourier transform infrared (FTIR) spectroscopy. The surface Morphology and thermal stability were studied by thermogravimetric analysis (TGA) and SEM respectively. The ionic conductivity of polyindole electrolyte was analyzed from impedance spectrum. The prepared polyindole-iron oxide nanocomposite could be used as solid electrolyte in lithium ion batteries

  10. Structure and properties of composite iron-based coatings obtained by the electromechanical technique

    Science.gov (United States)

    Dubinskii, N. A.

    2007-09-01

    The influence of the electrolyte temperature and current density on the content of inclusions of powder particles in composite coatings obtained by the electrochemical technique has been investigated. It has been found that the wear resistance of iron coatings with inclusions of powder particles of aluminum, kaolin, and calcium silicate increases from 5 to 10 times compared to coating without inclusions of disperse particles, and the friction coefficient therewith decreases from 0.097 to 0.026. It has been shown that the mechanical properties of iron obtained by the method of electrochemical deposition depend on their fine structure. The regimes of deposition of iron-based coatings have been optimized.

  11. Mössbauer study of iron carbide nanoparticles produced by laser ablation in alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Amagasa, S., E-mail: B115608@ed.tus.ac.jp; Nishida, N. [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Y. [The University of Electro-Communications, Graduate School of Informatics and Engineering (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan)

    2016-12-15

    Iron carbide nanoparticles were synthesized by laser ablation of iron in alcohols (methanol and ethanol). A new cell, designed to allow the ablation to be conducted in a flowing solvent, enabled separation and collection of the nanoparticles immediately after production, thus preventing further photochemical reactions of the colloids. The nanoparticles were investigated using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. In methanol, they consisted of α-iron, γ-iron, iron carbide, and amorphous paramagnetic iron carbides, whereas in ethanol they consisted of iron carbides and amorphous paramagnetic iron carbides. The difference in products depending on the alcohol was attributed to the different carbon supplies for methanol and ethanol. For both solvents, the average particle size was found to be 16 nm, and the nanoparticles were dispersed in amorphous carbon. We also examined the effect of further laser irradiation of the colloids using stagnant solvent, and the particle size was found to increase and a very small amount of carbonization was observed.

  12. Effect of Mo Ion Implantation on Stability of Nanocrystalline Copper Surface Layers

    Directory of Open Access Journals (Sweden)

    XI Yang

    2016-08-01

    Full Text Available The surface of pure copper was modified using the surface mechanical attrition treatment (SMAT method, and molybdenum ions were implanted in the nanosurface using a metal vapor vacuum arc (MEVVA. The results of the SMAT were observed by optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM. An obvious nanocrystalline layer and a deformation region exist on the surface. The size of the nanocrystalline layer was characterized using atomic force microscopy (AFM. The results indicate remarkable suppression on grain size, the nanocrystalline layer grows to 163nm after annealing and reduces to only 72nm due to the Mo ion implantation. In addition, the hardness of the topmost surface of the material is 3.5 times that of the SMATed copper, which is about 7 times of the value of the matrix. The above improvements most likely result from the dispersion of the Mo ions and the reactions of the crystal defects due to the SMAT and ion implantation.

  13. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    Science.gov (United States)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  14. Uncertainty propagation in a multiscale model of nanocrystalline plasticity

    International Nuclear Information System (INIS)

    Koslowski, M.; Strachan, Alejandro

    2011-01-01

    We characterize how uncertainties propagate across spatial and temporal scales in a physics-based model of nanocrystalline plasticity of fcc metals. Our model combines molecular dynamics (MD) simulations to characterize atomic-level processes that govern dislocation-based-plastic deformation with a phase field approach to dislocation dynamics (PFDD) that describes how an ensemble of dislocations evolve and interact to determine the mechanical response of the material. We apply this approach to a nanocrystalline Ni specimen of interest in micro-electromechanical (MEMS) switches. Our approach enables us to quantify how internal stresses that result from the fabrication process affect the properties of dislocations (using MD) and how these properties, in turn, affect the yield stress of the metallic membrane (using the PFMM model). Our predictions show that, for a nanocrystalline sample with small grain size (4 nm), a variation in residual stress of 20 MPa (typical in today's microfabrication techniques) would result in a variation on the critical resolved shear yield stress of approximately 15 MPa, a very small fraction of the nominal value of approximately 9 GPa. - Highlights: → Quantify how fabrication uncertainties affect yield stress in a microswitch component. → Propagate uncertainties in a multiscale model of single crystal plasticity. → Molecular dynamics quantifies how fabrication variations affect dislocations. → Dislocation dynamics relate variations in dislocation properties to yield stress.

  15. Induced anisotropy effect in nanocrystalline cores for GFCBs

    Energy Technology Data Exchange (ETDEWEB)

    Waeckerle, T. E-mail: thierry.waeckerle@imphy.usinor.com; Verin, Ph.; Cremer, P.; Gautard, D

    2000-06-02

    Nanocrystalline materials are very efficient for GFCB cores with flat hysteresis loop, especially if permeability may be raised in keeping low the remanent induction. This can be achieved with peculiar field annealing . A thermodynamic model is proposed to explain the experimental evidence.

  16. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    Science.gov (United States)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an "R" value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U-O bond.

  17. Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-CO mixtures obtained by high energy milling; Estudio del comportamiento durante la sinterizacion de mezclas WC-Co finas, ultrafinas y nanocristalinas obtenidas por molienda de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, M. D.; Bonache, V.; Amigo, V.; Busquets, D.

    2008-07-01

    In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well commercial nano powders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and micro structurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 180 HV. (Author) 46 refs.

  18. Review of iron oxides for water treatment

    International Nuclear Information System (INIS)

    Navratil, J. D.

    2001-01-01

    Many processes have utilized iron oxides for the treatment of liquid wastes containing radioactive and hazardous metals. These processes have included adsorption, precipitation and other chemical and physical techniques. For example, a radioactive wastewater precipitation process includes addition of a ferric hydroxide floc to scavenge radioactive contaminants, such as americium, plutonium and uranium. Some adsorption processes for wastewater treatment have utilized ferrites and a variety of iron containing minerals. Various ferrites and natural magnetite were used in batch modes for actinide and heavy metal removal from wastewater. Supported magnetite was also used in a column mode, and in the presence of an external magnetic field, enhanced capacity was found for removal of plutonium and americium from wastewater. These observations were explained by a nano-level high gradient magnetic separation effect, as americium, plutonium and other hydrolytic metals are known to form colloidal particles at elevated pHs. Recent modeling work supports this assumption and shows that the smaller the magnetite particle the larger the induced magnetic field around the particle from the external field. Other recent studies have demonstrated the magnetic enhanced removal of arsenic, cobalt and iron from simulated groundwater. (author)

  19. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix

    International Nuclear Information System (INIS)

    Qiao, Xiuying; Lu, Xiushou; Li, Wei; Sun, Kang; Li, Weihua; Chen, Jun; Gong, Xinglong; Yang, Tao; Chen, Xiaodong

    2012-01-01

    Novel isotropic and anisotropic thermoplastic magnetorheological elastomers (MRE) were prepared by melt blending titanated coupling agent modified carbonyl iron (CI) particles with poly(styrene-b-ethylene-ethylene–propylene-b-styrene) (SEEPS) matrix in the absence and presence of a magnetic field, and the microstructure and magnetorheological properties of these SEEPS-based MRE were investigated in detail. The particle surface modification improves the dispersion of the particles in the matrix and remarkably softens the CI/SEEPS composites, thus significantly enhancing the MR effect and improving the processability of these SEEPS-based MRE. A microstructural model was proposed to describe the interfacial compatibility mechanism that occurred in the CI/SEEPS composites after titanate coupling agent modification, and validity of this model was also demonstrated through adsorption tests of unmodified and surface-modified CI particles. (paper)

  20. Effect of Initial Iron Content in a Zinc Bath on the Dissolution Rate of Iron During a Hot Dip Galvanizing Process

    Science.gov (United States)

    Lee, Sang Myung; Lee, Suk Kyu; Paik, Doo-Jin; Park, Joo Hyun

    2017-04-01

    The mechanism of iron dissolution and the effect of initial Fe content in a Zn bath on the dissolution rate of iron were investigated using a finger rotating method (FRM). When the initial iron content, [Fe]°, in the zinc bath was less than the solubility limit, the iron content in the zinc bath showed a rapid increase, whereas a moderate increase was observed when [Fe]° was close to the solubility limit. Based on Eisenberg's kinetic model, the mass transfer coefficient of iron in the present experimental condition was calculated to be k M = 1.2 × 10-5 m/s, which was similar to the results derived by Giorgi et al. under industrial practice conditions. A dissolution of iron occurred even when the initial iron content in the zinc bath was greater than the solubility limit, which was explained by the interfacial thermodynamics in conjunction with the morphology of the surface coating layer. By analyzing the diffraction patterns using TEM, the outermost dendritic-structured coating layer was confirmed as FeZn13 ( ζ). In order to satisfy the local equilibrium based on the Gibbs-Thomson equation, iron in the dendrite-structured phase spontaneously dissolved into the zinc bath, resulting in the enrichment of iron in front of the dendrite tip. Through the diffusion boundary layer in front of the dendritic-structured layer, dissolved Fe atoms diffused out and reacted with Zn and small amounts of Al, resulting in the formation of dross particles such as FeZn10Al x ( δ). It was experimentally confirmed that the smaller the difference between the initial iron content in the zinc bath and the iron solubility limit at a given temperature, the lower the number of formed dross particles.

  1. Study of Phase Transformations on Nano-Crystalline (La,Sr)(Mn,Fe)O3 Systems by High-Pressure Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Chandra, Usha; Mudgal, Prerana; Kumar, Manoj

    2006-01-01

    We report pressure-dependent 57Fe Moessbauer studies on a nano-crystalline perovskite La0.8Sr0.2(Mn0.8Fe0.2) O3 system up to 10 GPa using diamond anvil cell. At ambient pressure, iron is present as Fe3+ and Fe4+ in two different environments. Pressure seems to affect the higher symmetry site of Fe4+, while the octahedral site containing Fe3+ remains almost unaffected. Phase transformations are observed at pressures 0.52 GPa and 3.7 GPa respectively. A sudden increase in the isomer shift at 0.52 GPa is related to the reduction of Fe4+ ions while at 3.7 GPa, a structural transition is observed with sudden drop in isomer shift indicating Fe3+ ions in identical environment. Quadrupole splittings increase continuously with pressures up to 10 GPa

  2. Nanocrystalline alloys of Fe-Cu-Nb-Si-B after neutron irradiation

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Degmova, J.; Uvacik, P.

    1997-01-01

    Transmission Moessbauer spectroscopy was used to study changes induced by irradiation of amorphous and nanocrystalline samples. In an as-cast sample, neutrons mostly affect the orientation of the net magnetic moment. The average hyperfine field decreases with increasing neutron fluencies. In the case of the nanocrystalline samples a new disordered structure is created in the amorphous remainder corresponding to boride phases as it is shown in the samples isothermally heated from 1 to 8 hours. The structural changes of the amorphous remainder depend on the stage of crystallization and total neutron fluencies. (author). 1 tab., 3 figs., 7 refs

  3. A study of the structure and crystallisation of nanocrystalline zirconia

    International Nuclear Information System (INIS)

    Tucker, M.

    1999-12-01

    Nanocrystalline zirconia, prepared via, calcination of the hydroxide, has been studied using a variety of experimental techniques. Two chemical routes, a precipitation and a sol-gel route, were used to prepare the hydroxide. Neutron and X-ray diffraction, EXAFS, NMR and SANS have been used to study the structure and crystallisation, during in-situ and ambient condition measurements. The structural information from the diffraction data has been complimented by the other techniques to provide information on the short, medium and longer range structure of nanocrystalline zirconia. Pure and yttrium doped samples were studied, this enabled the affects of doping and preparation routes to be investigated. The amorphous hydroxide was found to have a, monoclinic-like structure for all samples, independent of preparation route or yttrium content. The crystallisation temperature was lowest for the pure precipitation sample and was increased by the addition of yttrium or by preparation via, the sol-gel route. For the precipitation samples, in addition to the crystallisation temperature being raised, doping with yttrium also had an effect on the size of the crystallites obtained at high temperatures. Due to the different incorporation method of the yttrium into the sol-gel samples the effect on crystallite size and crystallisation temperature, as seen for the precipitation samples, were not evident for the sol-gel samples. The neutron and NMR data clearly show hydrogen remains in the samples well after crystallisation has become evident. The structural picture of nanocrystalline zirconia consisting of small crystallites surrounded by material containing, or terminated by, hydroxyl groups, is supported by all the results and methods used in this thesis. The in-situ and ambient conditions data is combined into a coherent growth picture of the nanocrystalline material from the hydroxide until at high enough temperatures the bulk or polycrystalline material is formed. (author)

  4. Structure characterization of nanocrystalline Ni–W alloys obtained by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Indyka, P., E-mail: paulina.indyka@uj.edu.pl [Jagiellonian University, Faculty of Chemistry, 3 Ingardena St., 30-059 Krakow (Poland); Beltowska-Lehman, E.; Tarkowski, L.; Bigos, A. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); García-Lecina, E. [Surface Finishing Department, CIDETEC-IK4 – Centre for Electrochemical Technologies, P° Miramón 196, 20009 Donostia-San Sebastián (Spain)

    2014-03-25

    Highlights: • Ni–W alloy coatings were electrodeposited from an aqueous electrolyte solutions. • The microstructure was studied with respect to electrodeposition process parameters. • We report optimal plating conditions for crack-free, nanocrystalline Ni–W coatings. • Crystalline Ni–W coatings exhibited the phase structure of an α-Ni(W) solid solution. • Coatings revealed tensile residual stresses and weakly pronounced 〈1 1 0〉 fiber texture. -- Abstract: Ni–W coatings of different tungsten content (2–50 wt%) were electrodeposited on a steel substrates from an aqueous complex sulfate–citrate galvanic baths, under controlled hydrodynamic conditions in a Rotating Disk Electrode (RDE) system. The optimum conditions for the electrodeposition of crack-free, homogeneous nanocrystalline Ni–W coatings were determined on the basis of the microstructure investigation results. The XRD structural characterizations of Ni–W alloy coatings obtained under different experimental conditions were complemented by SEM and TEM analysis. Results of the study revealed that the main factor influencing the microstructure formation of the Ni–W coatings is the chemical composition of an electrolyte solution. X-ray and electron diffraction patterns of all nanocrystalline Ni–W coatings revealed mainly the fcc phase structure of an α-Ni(W) solid solution with a lattice parameter increased along with tungsten content. The use of additives in the plating bath resulted in the formation of equiaxial/quasifibrous, nanocrystalline Ni–W grains of an average size of about 10 nm. The coatings were characterized by relatively high tensile residual stresses (500–1000 MPa), depending on the electrodeposition conditions. Ni–W coatings exhibited weakly pronounced fiber type 〈1 1 0〉 crystallographic texture, consistent with the symmetry of the plating process. Coatings of the highest tungsten content 50 wt% were found to be amorphous.

  5. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet

    International Nuclear Information System (INIS)

    Xu, Yonggang; Zhang, Deyuan; Cai, Jun; Yuan, Liming; Zhang, Wenqiang

    2013-01-01

    Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1–18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum −11.85 dB at 1.5 mm and −15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band. - Highlights: ► The added GP increased the permittivity and permeability of composites filled with CIPs. ► The enhancement was owing to interactions of the two absorbents and the fabrication process. ► The coating process decreased the effective eccentricity of the particles, and increased the conductivity of the composites. ► The composites to which CIPs/GP were added in coating process had excellent absorbing properties in the L-band.

  6. Synthesis, characterization and photoluminescence properties of Dy{sup 3+}-doped nano-crystalline SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sreejarani K.; Sikhwivhilu, Lucky M. [National Centre for Nano-Structured Materials, CSIR, PO Box 395, Pretoria 0001 (South Africa); Hillie, Thembela K., E-mail: thillie@csir.co.za [National Centre for Nano-Structured Materials, CSIR, PO Box 395, Pretoria 0001 (South Africa); Physics Department, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2010-04-15

    Nano-crystalline of tin oxide doped with varying wt% of Dy{sup 3+} was prepared using chemical co-precipitation method and characterised by various advanced techniques such as BET-surface area, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence measurements. Analytical results demonstrated that the nanocrystalline tin oxide is in tetragonal crystalline phase and doping with Dy{sup 3+} could inhibit the phase transformation, increases surface area and decreases the crystallite size. The experimental result on photoluminescence characteristics originating from Dy{sup 3+}-doping in nanocrystalline SnO{sub 2} reveals the dependence of the luminescent intensity on dopant concentration.

  7. Preparation of iron metal nano solution by anodic dissolution with high voltage

    International Nuclear Information System (INIS)

    Nguyen Duc Hung; Do Thanh Tuan

    2012-01-01

    Iron nano metal solution is prepared from anodic dissolution process with ultra- high Dc voltage. The size and shape of iron nanoparticles determined by Tem images and particle size distribution on the device LA-950 Laser Scattering Particle Distribution Analyzer V2. The concentration of nano-iron solution was determined by the analytical methods AAS atomic absorption spectrometry and Faraday's law. The difference in concentration of both methods demonstrated outside the anodic dissolution process has created the water electrolysis to form H 2 and O 2 gases and heating the solution. (author)

  8. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Science.gov (United States)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-03-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO4·7H2O or FeCl3), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  9. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  10. Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size.

    Science.gov (United States)

    Giannakis, Stefanos; Liu, Siting; Carratalà, Anna; Rtimi, Sami; Talebi Amiri, Masoud; Bensimon, Michaël; Pulgarin, César

    2017-10-05

    The photo-Fenton process is recognized as a promising technique towards microorganism disinfection in wastewater, but its efficiency is hampered at near-neutral pH operating values. In this work, we overcome these obstacles by using the heterogeneous photo-Fenton process as the default disinfecting technique, targeting MS2 coliphage in wastewater. The use of low concentrations of iron oxides in wastewater without H 2 O 2 (wüstite, maghemite, magnetite) has demonstrated limited semiconductor-mediated MS2 inactivation. Changing the operational pH and the size of the oxide particles indicated that the isoelectric point of the iron oxides and the active surface area are crucial in the success of the process, and the possible underlying mechanisms are investigated. Furthermore, the addition of low amounts of Fe-oxides (1mgL -1 ) and H 2 O 2 in the system (1, 5 and 10mgL -1 ) greatly enhanced the inactivation process, leading to heterogeneous photo-Fenton processes on the surface of the magnetically separable oxides used. Additionally, photo-dissolution of iron in the bulk, lead to homogeneous photo-Fenton, further aided by the complexation by the dissolved organic matter in the solution. Finally, we assess the impact of the presence of the bacterial host and the difference caused by the different iron sources (salts, oxides) and the Fe-oxide size (normal, nano-sized). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterisation of nanocrystalline CdS thin films deposited by CBD

    International Nuclear Information System (INIS)

    Devi, R.; Sarma, B.K.

    2006-01-01

    Nanocrystalline thin films of CdS are deposited on glass substrates by chemical bath deposition using polyvinyl alcohol (PVA) matrix solution. Crystallite sizes of the films are determined from X-ray diffraction and are found to vary from 5.4 nm to 7 nm. The band gaps of the nanocrystalline material is determined from the U-V spectrograph and are found to be within the range from 2.6 eV to 2.8 eV as grain size decreases. The band gaps are also determined from the dependence of electrical conductivity of the films with temperature. An increase of molarity decreases the grain size which in turn increases the band gap. (author)

  12. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  13. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  14. Modifications in the structural and optical properties of nanocrystalline CaWO4 induced by 8 MeV electron beam irradiation

    International Nuclear Information System (INIS)

    Aloysius Sabu, N.; Priyanka, K.P.; Ganesh, Sanjeev; Varghese, Thomas

    2016-01-01

    In this article we report the post irradiation effects in the structural and optical properties of nanocrystalline calcium tungstate synthesized by chemical precipitation and heat treatment. The samples were subjected to different doses of high-energy electron beam obtained from an 8 MeV Microton. Investigations using X-ray diffraction, scanning electron microscopy and Raman spectra confirmed changes in particle size and structural parameters. However, no phase change was detected for irradiated samples. The stretching/compressive strain caused by high energy electrons is responsible for the slight shift in the XRD peaks of irradiated samples. Modifications in the morphology of different samples were confirmed by scanning electron microscopy. Ultraviolet-visible absorption studies showed variations in the optical band gap (4.08–4.25 eV) upon electron-beam irradiation. New photoluminescence behaviour in electron beam irradiated nanocrystalline CaWO 4 was evidenced. A blue shift of the PL peak with increase in intensity was observed in all the irradiated samples. - Highlights: • Calcium tungstate nanocrystals are synthesized by simple chemical precipitation method. • Electron beam induced modifications in the structural and optical properties are investigated. • New photoluminescence behaviour is evidenced due to beam irradiation.

  15. Optimization of nanocrystalline γ-alumina coating for direct spray ...

    Indian Academy of Sciences (India)

    Modifications of the partial gas percentage influences the optical properties and composition ... O2 flow in the Ar ambient and substrate temperature on struc- ture and properties of ..... nism to explain mechanical behaviour of nanocrystalline.

  16. Fe-based nanocrystalline powder cores with ultra-low core loss

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangyue, E-mail: wangxiangyue1986@163.com [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Lu, Zhichao; Lu, Caowei; Li, Deren [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2013-12-15

    Melt-spun amorphous Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloy strip was crushed to make flake-shaped fine powders. The passivated powders by phosphoric acid were mixed with organic and inorganic binder, followed by cold compaction to form toroid-shaped bonded powder-metallurgical magnets. The powder cores were heat-treated to crystallize the amorphous structure and to control the nano-grain structure. Well-coated phosphate-oxide insulation layer on the powder surface decreased the the core loss with the insulation of each powder. FeCuNbSiB nanocrystalline alloy powder core prepared from the powder having phosphate-oxide layer exhibits a stable permeability up to high frequency range over 2 MHz. Especially, the core loss could be reduced remarkably. At the other hand, the softened inorganic binder in the annealing process could effectively improve the intensity of powder cores. - Highlights: • Fe-based nanocrystalline powder cores were prepared with low core loss. • Well-coated phosphate-oxide insulation layer on the powder surface decreased the core loss. • Fe-based nanocrystalline powder cores exhibited a stable permeability up to high frequency range over 2 MHz. • The softened inorganic binder in the annealing process could effectively improve the intensity of powder cores.

  17. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian

    2016-01-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our...... the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters....

  18. Microstructure and Properties of Nanocrystalline Copper Strengthened by a Low Amount of Al2O3 Nanoparticles

    Science.gov (United States)

    Ďurišinová, Katarína; Ďurišin, Juraj; Ďurišin, Martin

    2017-03-01

    Dispersion-strengthened Cu-Al2O3 materials have been studied over recent years to find an optimum processing route to obtain a high strength, thermal-stable copper alloy designed for modern applications in electrical engineering. The study analyses the influence of 1 vol.% of alumina content on strengthening the copper matrix. Microstructure of the Cu-Al2O3 composite was studied by x-ray diffraction as well as scanning and transmission electron microscopy. The composite shows a homogeneous, thermal-stable nanostructure up to 900 °C due to dispersed alumina nanoparticles. The particles effectively strengthen crystallite/grain boundaries in processes of powder consolidation and annealing of the compact. In contrast to monolithic Cu, the Cu-1 vol.% Al2O3 exhibits more than double strength and hardness. The nanocrystalline matrix and the low amount of alumina particles result in a yield strength of 288 MPa and a ductility of 15% which is a good combination for practical utilization of the material.

  19. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions.

    Science.gov (United States)

    Li, Jie; Chen, Changlun; Zhang, Rui; Wang, Xiangke

    2015-06-01

    Nanoscale zero-valent iron particles supported on reduced graphene oxides (NZVI/rGOs) from spent graphene oxide (GO)-bound iron ions were developed by using a hydrogen/argon plasma reduction method to improve the reactivity and stability of NZVI. The NZVI/rGOs exhibited excellent water treatment performance with excellent removal capacities of 187.16 and 396.37 mg g(-1) for chromium and lead, respectively. Moreover, the NZVI/rGOs could be regenerated by plasma treatment and maintained high removal ability after four cycles. X-ray photoelectron spectroscopy analysis results implied that the removal mechanisms could be attributed to adsorption/precipitation, reduction, or both. Such multiple removal mechanisms by the NZVI/rGOs were attributed to the reduction ability of the NZVI particles and the role of dispersing and stabilizing abilities of the rGOs. The results indicated that the NZVI/rGOs prepared by a hydrogen/argon plasma reduction method might be an effective composite for heavy-metal-ion removal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition

    International Nuclear Information System (INIS)

    Wang, Jinlong; Chen, Minghui; Yang, Lanlan; Liu, Li; Zhu, Shenglong; Wang, Fuhui; Meng, Guozhe

    2016-01-01

    Graphical abstract: - Highlights: • Effect of Y addition on oxidation of nanocrystalline coating is studied. • Y addition delays transformation of q-Al_2O_3 to a-Al_2O_3 during oxidation. • Y addition prevents scale rumpling. • Y segregates at grain boundaries of the nanocrystalline coating. • Y retards the transportation of Ta thus reduces its oxidation. - Abstract: The effect of yttrium addition on isothermal oxidation at 1050 °C of a sputtered nanocrystalline coating with moderate amount of tantalum in composition was investigated. Results indicate that yttrium addition delays transformation of metastable θ-Al_2O_3 to equilibrium α-Al_2O_3 grown on the nanocrystalline coatings. It prevents scale rumpling and promotes the formation of oxide pegs at interface between the oxide scale and the underlying coating. Besides, yttrium prefers to segregate at grain boundaries of the nanocrystalline coating and retards the outward transportation of tantalum from coating to oxide scale, thus reducing the excessive oxidation of tantalum.

  1. Effect of nanocrystalline surface of substrate on microstructure and ...

    Indian Academy of Sciences (India)

    surface layers or bulk nanocrystalline metals and alloys more effectively. ... severe plastic deformation on surface layers of bulk met- als at high strains and strain rates. .... scanning electron microscopy (SEM) (Zeiss, model: Sigma. VP), energy ...

  2. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Center for Welding, Joining, and Coatings Research; Burt, R.P. [Alumax Technical Center, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  3. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was used as a reductant or fuel and nitrate ions present in metal nitrate acts as an oxidizer. The phase purity of the wollastonite was ...

  4. Siderophore-mediated iron dissolution from nontronites is controlled by mineral cristallochemistry

    Directory of Open Access Journals (Sweden)

    Damien eParrello

    2016-03-01

    Full Text Available Bacteria living in oxic environments experience iron deficiency due to limited solubility and slow dissolution kinetics of iron-bearing minerals. To cope with iron deprivation, aerobic bacteria have evolved various strategies, including release of siderophores or other organic acids that scavenge external Fe(III and deliver it to the cells. This research investigated the role of siderophores produced by Pseudomonas aeruginosa in the acquisition of Fe(III from two iron-bearing colloidal nontronites (NAu-1 and NAu-2, comparing differences in bioavailability related with site occupancy and distribution of Fe(III in the two lattices. To avoid both the direct contact of the mineral colloids with the bacterial cells and the uncontrolled particle aggregation, nontronite suspensions were homogenously dispersed in a porous silica gel before the dissolution experiments. A multiparametric approach coupling UV-vis spectroscopy and spectral decomposition algorithm was implemented to monitor simultaneously the solubilisation of Fe and the production of pyoverdine in microplate-based batch experiments. Both nontronites released Fe in a particle concentration-dependent manner when incubated with the wild-type P. aeruginosa strain, however iron released from NAu-2 was substantially greater than from NAu-1. The profile of organic acids produced in both cases was similar and may not account for the difference in the iron dissolution efficiency. In contrast, a pyoverdine-deficient mutant was unable to mobilise Fe(III from either nontronite, whereas iron dissolution occurred in abiotic experiments conducted with purified pyoverdine. Overall, our data provide evidence that P. aeruginosa indirectly mobilise Fe from nontronites primarily through the production of pyoverdine. The structural Fe present on the edges of Nau-2 rather than Nau-1 particles appears to be more bio-accessible, indicating that the distribution of Fe, in the tetrahedron and/or in the octahedron

  5. Magnetic properties of iron nanoparticles prepared by exploding wire technique

    OpenAIRE

    Alqudami, Abdullah; Annapoorni, S.; Lamba, Subhalakshmi; Kothari, P C; Kotnala, R K

    2006-01-01

    Nanoparticles of iron were prepared in distilled water using very thin iron wires and sheets, by the electro-exploding wire technique. Transmission electron microscopy reveals the size of the nanoparticles to be in the range 10 to 50 nm. However, particles of different sizes can be segregated by using ultrahigh centrifuge. X-ray diffraction studies confirm the presence of the cubic phase of iron. These iron nanoparticles were found to exhibit fluorescence in the visible region in contrast to ...

  6. Single Particulate SEM-EDX Analysis of Iron-Containing Coarse Particulate Matter in an Urban Environment: Sources and Distribution of Iron within Cleveland, Ohio

    Science.gov (United States)

    The physicochemical properties of coarse-mode, iron-containing particles, and their temporal and spatial distributions are poorly understood. Single particle analysis combining x-ray elemental mapping and computer-controlled scanning electron microscopy (CCSEM-EDX) of passively ...

  7. Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance.

    Science.gov (United States)

    Ni, Youming; Sun, Aiming; Wu, Xiaoling; Hai, Guoliang; Hu, Jianglin; Li, Tao; Li, Guangxing

    2011-09-15

    Hierarchical nanocrystalline ZSM-5 zeolite (NZ5) was synthesized at 100 °C under atmospheric pressure using methylamine as a mineralizing agent. The crystallization process of NZ5 was characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and infrared spectroscopy (FTIR). The results of contrastive experiments showed that evaporation of the solvent promoted the aggregation of primary particles, and the addition of methylamine accelerated the crystallization process. The NZ5 aggregate consisted of 20 nm individual particles, as shown in scanning electron microscope (SEM). The lattice fringes in the transmission electron microscope (TEM) images and the XRD results indicated that individual particles of NZ5 were highly crystalline. N(2) adsorption-desorption isotherms showed that NZ5 had high BET surface areas with mesopores having a mean diameter of about 9 nm. NZ5 exhibited a long lifetime, a stable and high yield of liquid hydrocarbons, and a high anti-coking performance in methanol-to-hydrocarbons reaction. Catalytic testing and TGA results showed that the lifetime of NZ5 was about ten times longer than that of micro-sized ZSM-5 zeolite (MZ5), and the average coking rate with NZ5 was one fifth over that of MZ5. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Nanocrystalline zinc oxide for the decontamination of sarin

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, T.H. [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India); Prasad, G.K., E-mail: gkprasad@lycos.com [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India); Singh, Beer; Acharya, J.; Srivastava, A.R.; Vijayaraghavan, R. [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India)

    2009-06-15

    Nanocrystalline zinc oxide materials were prepared by sol-gel method and were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry, nitrogen adsorption and infrared spectroscopy techniques. The data confirmed the formation of zinc oxide materials of zincite phase with an average crystallite size of {approx}55 nm. Obtained material was tested as destructive adsorbent for the decontamination of sarin and the reaction was followed by GC-NPD and GC-MS techniques. The reaction products were characterized by GC-MS and the data explored the role of hydrolysis reaction in the detoxification of sarin. Sarin was hydrolyzed to form surface bound non-toxic phosphonate on the surface of nano-zinc oxide. The data also revealed the values of rate constant and half-life to be 4.12 h{sup -1} and 0.16 h in the initial stages of the reaction and 0.361 h{sup -1} and 1.9 h at the final stages of the reaction for the decontamination reaction on nanocrystalline ZnO.

  9. Nanocrystalline zinc oxide for the decontamination of sarin

    International Nuclear Information System (INIS)

    Mahato, T.H.; Prasad, G.K.; Singh, Beer; Acharya, J.; Srivastava, A.R.; Vijayaraghavan, R.

    2009-01-01

    Nanocrystalline zinc oxide materials were prepared by sol-gel method and were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry, nitrogen adsorption and infrared spectroscopy techniques. The data confirmed the formation of zinc oxide materials of zincite phase with an average crystallite size of ∼55 nm. Obtained material was tested as destructive adsorbent for the decontamination of sarin and the reaction was followed by GC-NPD and GC-MS techniques. The reaction products were characterized by GC-MS and the data explored the role of hydrolysis reaction in the detoxification of sarin. Sarin was hydrolyzed to form surface bound non-toxic phosphonate on the surface of nano-zinc oxide. The data also revealed the values of rate constant and half-life to be 4.12 h -1 and 0.16 h in the initial stages of the reaction and 0.361 h -1 and 1.9 h at the final stages of the reaction for the decontamination reaction on nanocrystalline ZnO.

  10. Investigation of nanocrystalline Gd films loaded with hydrogen

    KAUST Repository

    Hruška, Petr; Čí žek, Jakub; Dobroň, Patrik; Anwand, Wolfgang; Mü cklich, Arndt; Gemma, Ryota; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid

    2015-01-01

    The present work reports on microstructure studies of hydrogen-loaded nanocrystalline Gd films prepared by cold cathode beam sputtering on sapphire (112¯0) substrates. The Gd films were electrochemically step-by-step charged with hydrogen and the structural development with increasing concentration of absorbed hydrogen was studied by transmission electron microscopy and in-situ   X-ray diffraction using synchrotron radiation. The relaxation of hydrogen-induced stresses was examined by acoustic emission measurements. In the low concentration range absorbed hydrogen occupies preferentially vacancy-like defects at GBs typical for nanocrystalline films. With increasing hydrogen concentration hydrogen starts to occupy interstitial sites. At the solid solution limit the grains gradually transform into the ββ-phase (GdH2). Finally at high hydrogen concentrations xH>2.0xH>2.0 H/Gd, the film structure becomes almost completely amorphous. Contrary to bulk Gd specimens, the formation of the γγ-phase (GdH3) was not observed in this work.

  11. Magnetic induction heating of FeCr nanocrystalline alloys

    International Nuclear Information System (INIS)

    Gómez-Polo, C.; Larumbe, S.; Pérez-Landazábal, J.I.; Pastor, J.M.; Olivera, J.; Soto-Armañanzas, J.

    2012-01-01

    In this work the thermal effects of magnetic induction heating in (FeCr) 73.5 Si 13.5 Cu 1 B 9 Nb 3 amorphous and nanocrystalline wires were analyzed. A single piece of wire was immersed in a glass capillary filled with water and subjected to an ac magnetic field (frequency, 320 kHz). The initial temperature rise enabled the determination of the effective Specific Absorption Rate (SAR). Maximum SAR values are achieved for those samples displaying high magnetic susceptibility, where the eddy current losses dominate the induction heating behavior. Moreover, the amorphous sample with Curie temperature around room temperature displays characteristic features of self-regulated hyperthermia. - Highlights: ► Amorphous and nanocrystalline Fe based alloys with tailored Curie temperature of the amorphous phase. ► Induction heating effects under the action of a ac magnetic field. ► Self-regulated characteristics based on the control of the Curie temperature. ► Dominant role of the eddy-current losses in the self-heating phenomena.

  12. Transport of iron particles generated during milling operations in multilateral wells; Transporte de particulas de aco geradas pela abertura de janelas em pocos multilaterais

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Andre Leibsohn; Rezende, Carla Leonor Teixeira; Leal, Rafael Amorim Ferreira; Lourenco, Fabio Gustavo Fernandes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: aleibsohn@cenpes.petrobras.com.br; rezenc@hotmail.com; ramorim@cenpes.petrobras.com.br; fabiolou@urbi.com.br

    2000-07-01

    This paper presents a series of numerical simulations aimng the definition of requirements (flow rate and fluid properties) to remove iron particles both in the inclined sections and in the riser annulus. Additionally, experimental work was developed in a pilot scale flow loop in order tocompare the behavior of water and sinthetic oil baed fluids in milling operations. (author)

  13. Synthesis of micro-sized polystyrene magnetic particles

    International Nuclear Information System (INIS)

    Neves, Juliete S.; Suarez, Paulo A.Z.; Umpierre, Alexandre P.; Machado, Fabricio; Souza Junior, Fernando G. de

    2011-01-01

    The present work illustrates the synthesis of spherical and micro-sized polystyrene magnetic particles by using a water-based suspension polymerization process to incorporate in situ surface modified superparamagnetic Fe 3 O 4 nanoparticles. The crystallite size of Fe 3 O 4 was determined to be equal to 7.7 nm, based on Scherrer's equation and XRD measurement. According to EDX analyses, Fe 3 O 4 / polystyrene nanocomposites particles show strong characteristic peaks Kα and Kβ of iron at the interval from 6.38 KeV to 7.04 KeV with an amount of iron in the samples equal to 98 %, indicating that the inorganic material dispersed in the polystyrene matrix is essentially Fe in the form of iron oxide (Fe 3 O 4 ). The obtained polymeric materials presented good magnetic behavior, indicating that the modified Fe 3 O 4 nanoparticles were successfully dispersed in the polystyrene particles. (author)

  14. Fabrication of boron-doped nanocrystalline diamond nanoflowers based on 3D Cu(OH){sub 2} dendritic architectures

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Huijun; Hong, Sukin; Lee, Seungkoo; Lim, Daesoon; Jin, Juneon; Hwang, Sungwoo [Korea University, Seoul (Korea, Republic of)

    2012-03-15

    Hot-filament chemical vapor deposition (HFCVD) was used to prepare boron-doped nanocrystalline diamond (BDND) nanoflowers on a Cu substrate with a Cu(OH){sub 2} dendritic architecture that had been formed by using electrostatic self-assembly (ESA) method with nanodiamond particles. The formation of diamond nanoflowers is controlled by the reaction time between the Cu(OH){sub 2} nanoflowers and the polymeric linker for the electrostatic attachment of nanodiamonds and by the deposition time for CVD diamond growth with a high nucleation density. Through analysis by field emission scanning electron microscopy (FESEM) and Raman spectroscopy, the optimal conditions for the synthesis of BDND nanoflowers are determined, and a possible explanation is provided.

  15. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    Science.gov (United States)

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  16. Microhardness studies of nanocrystalline lead molybdate

    International Nuclear Information System (INIS)

    Anandakumar, V.M.; Abdul Khadar, M.

    2009-01-01

    Nanocrystalline lead molybdate (PbMoO 4 ) of four different grain sizes were synthesized through chemical precipitation technique and the grain sizes and crystal structure are determined using the broadening of X-ray diffraction patterns and transmission electron microscopy. The microhardness of nanocrystalline lead molybdate (PbMoO 4 ) with different grain sizes were measured using a Vicker's microhardness tester for various applied loads ranging from 0.049 to 1.96 N. The microhardness values showed significant indentation size effect at low indentation loads. The proportional specimen resistance model put forward by Li and Bradt and energy balance model put forward by Gong and Li were used to analyze the behaviour of measured microhardness values under different indentation loads. The microhardness data obtained for samples of different grain sizes showed grain size dependent strengthening obeying normal Hall-Petch relation. The dependence of compacting pressure and annealing temperature on microhardness of the nanostructured sample with grain size of ∼18 nm were also studied. The samples showed significant increase in microhardness values as the compacting pressure and annealing time were increased. The variation of microhardness of the material with pressure of pelletization and annealing time are discussed in the light of change of pore size distribution of the samples.

  17. Effects of iron content on microstructure and crevice corrosion of titanium Grade-2

    International Nuclear Information System (INIS)

    He, X.; Noel, J.J.; Shoesmith, D.W.

    2003-01-01

    The effects of iron content on microstructure and crevice corrosion of titanium Grade-2 (Ti-2) were studied using a galvanic coupling technique combined with optical microscopy and secondary ion mass spectrometry (SIMS) imaging. The study reveals that iron content has a significant effect on the microstructure and crevice corrosion behavior of Ti-2. The grain size decreases significantly with the increasing iron content. For Ti-2 material of medium iron content, crevice corrosion was readily initiated and exhibited extensive intergranular attack which could be associated with the more reactive iron-stabilized β-phase within the α-phase matrix as revealed by SIMS imaging. By contrast, Ti-2 materials with low and high iron content showed suppressed crevice attack. The small surface area of available grain boundaries in Ti-2 of low iron content accounted for this limited attack. For the material with high iron content, SIMS imaging suggest that some Ti x Fe intermetallic particles were formed. These particles may act as proton reduction catalysts and enhance crevice corrosion resistance. (author)

  18. Isolation of technogenic magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Catinon, Mickaël, E-mail: mickael.catinon@gmail.com [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France); Ayrault, Sophie, E-mail: sophie.ayrault@lsce.ispl.fr [Laboratoire des Sciences du Climat et de l' Environnement, UMR 8212, CEA-CNRS-UVSQ/IPSL, 91198 Gif-sur-Yvette (France); Boudouma, Omar, E-mail: boudouma@ccr.jussieu.fr [Service du MEB, UFR928, Université Pierre et Marie Curie, 75252 Paris VI (France); Bordier, Louise, E-mail: Louise.Bordier@lsce.ipsl.fr [Laboratoire des Sciences du Climat et de l' Environnement, UMR 8212, CEA-CNRS-UVSQ/IPSL, 91198 Gif-sur-Yvette (France); Agnello, Gregory, E-mail: contact@evinrude.fr [Evinrude, Espace St Germain, 38200 Vienne (France); Reynaud, Stéphane, E-mail: stephane.reynaud@ujf-grenoble.fr [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France); Tissut, Michel, E-mail: michel.tissut@ujf-grenoble.fr [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France)

    2014-03-01

    Technogenic magnetic particles (TMPs) emitted by various industrial sources, such as smelting plants, end up after atmospheric transfer on the soil surface. In the present study, we characterised the origin and composition of such particles emitted by a large iron smelting plant and deposited on particular substrates, namely tombstones, which act as a very interesting and appropriate matrix when compared to soil, tree bark, lichens or attic dust. The isolation and subsequent description of TMPs require a critical step of separation between different components of the sample and the magnetic particles; here, we described an efficient protocol that fulfils such a requirement: it resorts to water suspension, sonication, repeated magnetic extraction, sedimentation, sieving and organic matter destruction at 550 °C in some instances. The isolated TMPs displayed a noticeable crystalline shape with variable compositions: a) pure iron oxides, b) iron + Cr, Ni or Zn, and c) a complex structure containing Ca, Si, Mg, and Mn. Using Scanning Electron Microscope Energy Dispersive X-ray (SEM–EDX), we obtained profiles of various and distinct magnetic particles, which allowed us to identify the source of the TMPs. - Highlights: • The developed method offers a low-cost approach of large-scale dry deposition. • Tombstones are excellent supports for sampling these atmospheric deposits. • Smelted elements crystallise after cooling, giving typical technogenic magnetic particles (TMPs). • Coupling microscopic and bulk analyses allows identifying TMP origin. • Magnetic TMPs issued from steel industry were separated by a new technique.

  19. Grain boundary and triple junction diffusion in nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, M., E-mail: m.wegner@uni-muenster.de; Leuthold, J.; Peterlechner, M.; Divinski, S. V., E-mail: divin@uni-muenster.de [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Song, X., E-mail: xysong@bjut.edu.cn [College of Materials Science and Engineering, Beijing University of Technology, 100124 Beijing (China); Wilde, G. [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai (China)

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.

  20. Adhesion of osteoblasts on chemically patterned nanocrystalline diamonds

    Czech Academy of Sciences Publication Activity Database

    Kalbáčová, M.; Michalíková, Lenka; Barešová, V.; Kromka, Alexander; Rezek, Bohuslav; Kmoch, S.

    2008-01-01

    Roč. 245, č. 10 (2008), s. 2124-2127 ISSN 0370-1972 R&D Projects: GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : cell growth * nanocrystalline diamond * surface termination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.166, year: 2008