WorldWideScience

Sample records for nanocrystalline iron particles

  1. Combustion synthesis of bulk nanocrystalline iron alloys

    Directory of Open Access Journals (Sweden)

    Licai Fu

    2016-02-01

    Full Text Available The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on the synthesis of nanocrystalline metals and alloys prepared by combustion synthesis technique are reviewed. Then, the mechanical and tribological properties of these materials with microstructure control are discussed.

  2. Solubility of Carbon in Nanocrystalline -Iron

    OpenAIRE

    Kirchner, Alexander; Kieback, Bernd

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  3. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    Science.gov (United States)

    2016-02-24

    AFRL-AFOSR-VA-TR-2016-0263 Nanocrystalline Iron- Cobalt Alloys for High saturation Indutance Conrad Williams MORGAN STATE UNIVERSITY (INC) 1700 E...YYYY) 28-02-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 01 March 2013 -28 February 2016 4. TITLE AND SUBTITLE Nanocrystalline Iron- Cobalt ...driving the research at Morgan State University is “Can one achieve high magnetization (B > 1.7 T) at low fields (H < 1 mT) in iron- cobalt

  4. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... by magnetic interactions between the particles at lower temperatures. ©2006 American Institute of Physics...

  5. Structure and Properties of Nanocrystalline Iron Oxide Powder Prepared by the Method of Pulsed Laser Ablation

    Science.gov (United States)

    Svetlichnyi, V. A.; Shabalina, A. V.; Lapin, I. N.

    2017-04-01

    Colloidal solution of iron oxide nanoparticles is synthesized by nanosecond pulsed laser ablation (Nd:YAG laser, 1064 nm, 7 ns, and 180 mJ) of a metallic iron target in water, and nanocrystalline powder is prepared from this solution by vacuum drying. A composition and structure of the material obtained are investigated by methods of electron microscopy, x-ray diffraction, and optical spectroscopy. It is established that oxide particles with average size of about 5 nm and Fe3O4 magnetite structure are mainly formed during ablation. Preliminary investigation of magnetic properties of the prepared nanoparticle powders shows that they can be in ferromagnetic and/or superparamagnetic states.

  6. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron

    Energy Technology Data Exchange (ETDEWEB)

    Nie, F L; Zheng, Y F [State Key Laboratory for Turbulence and Complex System, Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Wei, S C [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100083 (China); Hu, C; Yang, G, E-mail: niefeilong@pku.edu.c, E-mail: yfzheng@pku.edu.c, E-mail: weishicheng99@163.co, E-mail: huchao511@gmail.co, E-mail: yanggang@nercast.co [Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2010-12-15

    Bulk nanocrystalline pure iron rods were fabricated by the equal channel angular pressure (ECAP) technique up to eight passes. The microstructure and grain size distribution, natural immersion and electrochemical corrosion in simulated body fluid, cellular responses and hemocompatibility were investigated in this study. The results indicate that nanocrystalline pure iron after severe plastic deformation (SPD) would sustain durable span duration and exhibit much stronger corrosion resistance than that of the microcrystalline pure iron. The interaction of different cell lines reveals that the nanocrystalline pure iron stimulates better proliferation of fibroblast cells and preferable promotion of endothelialization, while inhibits effectively the viability of vascular smooth muscle cells (VSMCs). The burst of red cells and adhesion of the platelets were also substantially suppressed on contact with the nanocrystalline pure iron in blood circulation. A clear size-dependent behavior from the grain nature deduced by the gradual refinement microstructures was given and well-behaved in vitro biocompatibility of nanocrystalline pure iron was concluded.

  7. Pressure-induced phase transition of nanocrystalline iron sulphide coated by polyvinyl alcohol

    CERN Document Server

    Gao Wei; Kan-Shihai; Pan Yue Wu; Wang Xin; Zou Guang Tian; LiuJing

    2002-01-01

    Nanocrystalline iron sulphide (FeS) coated with polyvinyl alcohol, with particle size ranging from several to several tens of nanometres, has been prepared by the chemical precipitation synthesis method. The phase transition of FeS has been investigated by using in situ high-pressure diffraction with synchrotron radiation at pressures up to 42.5 GPa. Most of the diffraction lines are broadened and weakened. At the pressure of 11.8 GPa, a new phase transition was observed. However, only eleven x-ray reflections were recorded under high pressure; the crystal structure is unknown.

  8. Magnetic coupling and spin structure in nanocrystalline iron powders

    International Nuclear Information System (INIS)

    Slawska-Waniewska, A; Grafoute, M; Greneche, J M

    2006-01-01

    Pure single-phase iron nanostructured particles with pseudo-cubic shape crystalline grains and linear dimensions of around 11 nm can be produced by the low energy ball milling of microcrystalline Fe under argon atmosphere. The long range ferromagnetic correlation of exchange coupled crystallites extending across grain boundaries leads to a reduction of the effective anisotropy, as expected from the generalized random anisotropy model. This ferromagnetic network of correlated grains is preserved at low temperatures. No spin-glass freezing process is detected. Slight oxidation of the particles with formation of an FeO phase is achieved with deliberately prolonged milling. This FeO phase leads to non-collinear spin structure at the interfaces that suppresses the intergrain correlations and enhances the role of long range dipolar interactions. The interface spin disorder and the complex state of the intergrain interactions are the sources of the spin-glass-like behaviour found in these Fe-FeO nanocomposites

  9. Effect of chromium and aluminum addition on anisotropic and microstructural characteristics of ball milled nanocrystalline iron

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajiv, E-mail: rajiv06484met@gmail.com [IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800 Australia (Australia); Joardar, Joydip [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad (India); Singh Raman, R.K. [Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800 Australia (Australia); Department of Chemical Engineering, Monash University, VIC 3800 Australia (Australia); Raja, V.S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Joshi, S.V. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad (India); Parida, S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-06-25

    Prior studies on synthesis of nanocrystalline elements have discussed the effect of ball milling on lattice parameter, crystallite size, and micro-strain. For elemental milled powders, the anisotropic peak broadening does not change with increasing milling time. However, the effect of alloying addition on the anisotropic behavior of ball milled nanocrystalline powders remains an unexplored area. Here we report the effect of chromium and aluminum addition on the anisotropic behavior of iron in nanocrystalline Fe–20Cr–5Al (wt%) alloy powders synthesized by ball milling. The experimental results show that the anisotropic behavior of iron changes towards isotropic with milling. This change was also correlated to the theoretically calculated anisotropic factor from the change in elastic constant of iron due to milling. Addition of alloying elements exhibited a monotonic rise in the lattice parameter with crystallite size, which was attributed to the excess grain boundary interfacial energy and excess free volume at grain boundaries. Transmission electron microscopy image confirmed the crystallite size and nature of dislocation obtained using modified Williamson-Hall method. - Highlights: • Structural evolution in Fe–20Cr–5Al alloy during ball milling is reported. • Effect of alloying addition on the anisotropic behavior of iron was studied. • Agreement in anisotropic factor calculated theoretically and experimentally.

  10. Relaxation and grain growth behavior of nanocrystalline iron

    International Nuclear Information System (INIS)

    Holzer, J.C.; Eckert, J.; Krill, C.E. III; Johnson, W.L.

    1992-01-01

    Nanocrystalline Fe has been prepared by inert gas condensation and ball milling. The kinetics of relaxation and grain growth are investigated by differential scanning calorimetry. The development of the microstructure is monitored by x-ray powder diffraction and transmission electron microscopy. Emphasis is placed on the differences observed for samples prepared by the two different techniques. In this paper, the authors find that the kinetics of relaxation and grain growth are very sensitive to the sample preparation method. Samples with the same initial average grain size, as determined by the peak broadening in x-ray diffraction, show very different recovery behavior. The differences are discussed in terms of the estimated grain boundary energies and the initial grain size distribution obtained by the two preparation techniques

  11. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K.

    Science.gov (United States)

    Wang, S G; Mei, Y; Long, K; Zhang, Z D

    2009-09-17

    The linear thermal expansions (LTE) of bulk nanocrystalline ingot iron (BNII) at six directions on rolling plane and conventional polycrystalline ingot iron (CPII) at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  12. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K

    Directory of Open Access Journals (Sweden)

    Mei Y

    2009-01-01

    Full Text Available Abstract The linear thermal expansions (LTE of bulk nanocrystalline ingot iron (BNII at six directions on rolling plane and conventional polycrystalline ingot iron (CPII at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  13. Quantification of void pinning effects during grain growth of nanocrystalline iron

    Energy Technology Data Exchange (ETDEWEB)

    Vetterick, G.A.; El-Atwani, O. [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States); Baldwin, J. Kevin [Center for Integrated Nanotechnologies, Los Alamos National Lab, Los Alamos, NM (United States); Tonks, M.R. [Mechanical and Nuclear Engineering Department, Pennsylvania State University, University Park, PA 16802 (United States); Taheri, M.L., E-mail: mtaheri@coe.drexel.edu [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States)

    2016-12-01

    In-situ transmission electron microscopy (TEM) annealing experiments, coupled with an analytical model, compared void pinning effects in nanocrystalline Fe films during grain growth. Voided grain boundaries were shown to have nearly four orders of magnitude less grain boundary mobility than void-free grain boundaries. However the coverage of the grain boundaries by pores was over three times that which would be required for static particles to completely halt grain boundary migration. Grain boundary migration continued because the pores were dragged by the grain boundaries and continued to evolve and coalesce. Thus, pores can slow grain boundary migration but are not an effective means of fully stabilizing nanocrystalline grain size at high temperatures. - Highlights: • The role of voids in the microstructural evolution of nanocrystalline metals was assessed using in situ TEM. • The mobility of void-free grain boundaries at 800 °C was found to be similar to that of voided grain boundaries at 900 °C. • Computational analysis was used to assess the ability of voids to stabilize a nanocrystalline microstructure.

  14. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  15. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  16. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  17. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    Energy Technology Data Exchange (ETDEWEB)

    Toparli, Cigdem [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf (Germany); Ebin, Burçak [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Nuclear Chemistry and Industrial Material Recycling, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, S-412 96 Gothenburg (Sweden); Gürmen, Sebahattin, E-mail: gurmen@itu.edu.tr [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey)

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size. - Highlights: • Ternary FeNiCo alloy nanocrystalline particles were synthesized in a single step. • Cubic crystalline structure and spherical morphology was observed by XRD, SEM and TEM investigations. • The analysis of magnetic properties indicates the soft magnetic features of particles.

  18. Solid Particle Erosion of Nanocrystalline Nickel Coatings: Influence of Grain Size and Adiabatic Shear Bands

    Science.gov (United States)

    Wasekar, Nitin P.; Haridoss, Prathap; Sundararajan, G.

    2018-02-01

    The primary objective of the present study is to investigate the influence of nanocrystalline grain size on the solid particle erosion behavior of nickel. For the above purpose, 450- μm-thick nanocrystalline Ni coatings having the average grain sizes of 21, 42, 70, and 195 nm were obtained using pulsed electrodeposition (PED). All these samples along with bulk annealed Ni samples (43 μm grain size) were subjected to solid particle erosion using SiO2 particles as an erodent at a constant impact velocity of 45 m/s and two impact angles (30 and 90 deg). Erosion results indicate that bulk Ni and PED Ni coatings of grain sizes 195 and 70 nm exhibit the same erosion rate, while PED Ni coatings of 42 and 21 nm grain size exhibit marginally higher erosion rates with a clear trend of increasing erosion rate with decreasing grain size. It was also observed that the higher erosion rates exhibited by 21- and 42-nm-grain size PED Ni samples were associated with the formation of adiabatic shear bands (ASBs) originating from the eroded surface and propagating into the eroded sample. The experimental observations have been understood on the basis of a transition from a localization model for erosion for coarse-grained Ni (> 70 nm) to an ASB-induced erosion model for grain sizes less than 70 nm.

  19. The important role of adipic acid on the synthesis of nanocrystalline lithium iron phosphate with high rate performance

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H.H.; Jang, I.C.; Lee, S.B.; Karthikeyan, K.; Aravindan, V. [Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbong-dong, Gwang-ju 500-757 (Korea, Republic of); Lee, Y.S., E-mail: leeys@chonnam.ac.k [Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbong-dong, Gwang-ju 500-757 (Korea, Republic of)

    2010-04-09

    A simple, low-cost, adipic acid-assisted, solid-state method was used to prepare carbon-coated, nanocrystalline LiFePO{sub 4} material. Scanning electron microscopy (SEM) images revealed that the majority of the particles lay between 200 and 400 nm for pure LiFePO{sub 4}, while the carbon-coated LiFePO{sub 4} particles were sized from 70 to 250 nm. Cycling studies indicated a high and stable discharge capacity of 150 mAh g{sup -1} for the Li/carbon-coated nanocrystalline LiFePO{sub 4} at room temperature. High rate capability studies from 0.5C to 20C demonstrated an excellent capacity retention efficiency of over 99.9%.

  20. Synthesis of Nanocrystalline MgO Particles by Combustion Followed by Annealing Method Using Hexamine as a Fuel

    Directory of Open Access Journals (Sweden)

    S. Balamurugan

    2014-01-01

    Full Text Available In this work, nanocrystalline MgO particles were prepared through combustion method using magnesium nitrate as oxidizer and hexamine as a fuel. The materials obtained by combustion method were subsequently annealed at 800°C for 3 h to improve the crystallinity and phase purity. The obtained MgO nanomaterials were characterized by powder X-ray diffraction analysis (XRD, infrared (IR spectroscopy, photoluminescence (PL, near-infrared (NIR spectroscopy, and scanning electron microscopy (SEM. The cubic crystal structure with lattice parameter, a = 0.4210(4 nm with average crystalline size of 22 nm, is obtained for the nano-MgO particles. The PL emission spectrum of nanocrystalline MgO materials exhibits three emission peaks at 432, 465, and 495 nm which are due to various structural defects. The SEM results expose the fact that the MgO nanomaterials are seemingly porous and highly agglomerated with fine particles. Owing to the higher reflectance of prepared nanocrystalline MgO, it can be used as NIR reflective pigments. The present results prove that the combustion technique using hexamine can produce the materials with high crystallinity. To the best of our knowledge, this is the first report on the synthesis of nanocrystalline MgO materials by combustion method using hexamine as a fuel.

  1. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon [Department of Materials Science and Engineering, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of); Song, Min-Jung, E-mail: dslim@korea.ac.kr [Center for Advanced Device Materials, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of)

    2010-12-17

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a {zeta}-potential and average particle size of - 60.5 mV and {approx} 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 {+-} 0.4 x 10{sup 11} cm{sup -2}) and smooth surface were consequently fabricated.

  2. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    International Nuclear Information System (INIS)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon; Song, Min-Jung

    2010-01-01

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a ζ-potential and average particle size of - 60.5 mV and ∼ 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 ± 0.4 x 10 11 cm -2 ) and smooth surface were consequently fabricated.

  3. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  4. Ultrasmall iron particles prepared by use of sodium amalgam

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1990-01-01

    Ultrasmall magnetic particles containing iron have been prepared by reduction of iron ions by the use of sodium in mercury. Mössbauer studies at 12 K show that the magnetic hyperfine field is significantly larger than in bulk alpha-Fe, suggesting that an iron mercury alloy rather than alpha-Fe ha...

  5. Structure and Property Investigation of Composite ZnO/SnO2 Nanocrystalline Particles after High-Pressure Treatment

    OpenAIRE

    Sun Zhenya; Deng Yundi; Zhang Weiying

    2008-01-01

    Composite ZnO/SnO2 nanocrystalline particles (ZnO/SnO2) were synthesized by sol-gel method and with treatment of high pressure at 6 GPa. The crystallinity and the particle size of the prepared samples were analyzed by X-ray diffraction (XRD) spectroscopy. The results indicated that all the samples had the good crystallinity, and the particle size of ZnO and ZnO/SnO2 decreased after high-pressure treatment. The infrared (IR) spectra showed that the distance of crystal lattice was shortened aft...

  6. Iron Mobilization from Particles as a Function of pH and Particle Source

    National Research Council Canada - National Science Library

    Rohrbough, James

    2000-01-01

    .... The work presented here shows the role pH can play in iron mobilization from particles. At low pH, bioavailability of iron can be greatly increased, and can be significantly decreased at higher pH...

  7. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  8. Determination of the iron atomic magnetic moments dynamics in the nanocrystalline ribbons Fe90Zr7B3 by Moessbauer magnetic scans

    International Nuclear Information System (INIS)

    Pasquevich, G.A.; Mendoza Zelis, P.; Sanchez, F.H.; Fernandez van Raap, M.B.; Veiga, A.L.; Martinez, N.

    2006-01-01

    We have applied the transmission Moessbauer effect at a constant Doppler velocity technique, under 75 Oe external oscillating magnetic field in the frequency range 0-200 Hz, to determine the dynamics of the iron magnetic moments in nanocrystalline ribbons Fe 90 Zr 7 B 3 . The experiment was performed at a fixed Doppler velocity coincident with an absorption line of the absorbent. Since the dependence of the absorption on the angle between the gamma ray directions and the magnetic field at the nuclear probe is known, the change in the orientation of the iron atomic magnetic moments with the external field can be inferred. Due to the fact that in this case the absorption lines from the nanocrystalline phase are resolved from the amorphous one, performing the experiment at distinct absorption lines, we were able to determine the dynamics of the atomic moments of each phase independently. These results are complemented with Moessbauer Spectroscopy

  9. EM-wave absorption properties of hollow spiral iron particles

    International Nuclear Information System (INIS)

    Zhang, Wenqiang; Zhang, Deyuan

    2015-01-01

    Hollow iron spiral particles were fabricated successfully by thermal decomposition method, and they were heat-treated at different temperatures in N 2 atmosphere. The electromagnetic wave absorption properties of hollow iron spiral particles were investigated ranging between 1 GHz and 18 GHz. The results indicated that the phase structures of the particles changed from amorphous to nanocrystal with the treating temperature rising, also causing the significant change in electromagnetic parameters and the reflection loss. The reflection loss could reach −33 dB at 16.2 GHz, indicating that the hollow iron spiral particles had the potential to be used in prepare the a high property EM-wave absorber. - Highlights: • Hollow iron spiral particles were fabricated by thermal decomposition method. • The particles changed from amorphous to nanocrystals with heat-treatment. • Particles’ EM-parameters have a great change after high temperature heat-treatment. • RL results show the particles have potential to be high property EM-wave absorber

  10. Iron oxide and iron carbide particles produced by the polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y., E-mail: yyasu@rs.kagu.tus.ac.jp; Shimizu, R. [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Y. [The University of Electro-Communications, Graduate School of Informatics and Engineering (Japan)

    2016-12-15

    Iron oxide (γ-Fe{sub 2}O{sub 3}) and iron carbide (Fe{sub 3}C) particles were produced by the polyol method. Ferrocene, which was employed as an iron source, was decomposed in a mixture of 1,2-hexadecandiol, oleylamine, and 1-octadecene. Particles were characterized using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. It was found that oleylamine acted as a capping reagent, leading to uniform-sized (12-16 nm) particles consisting of γ-Fe {sub 2}O{sub 3}. On the other hand, 1-octadecene acted as a non-coordinating solvent and a carbon source, which led to particles consisting of Fe{sub 3}C and α-Fe with various sizes.

  11. Iron oxide and iron carbide particles produced by the polyol method

    Science.gov (United States)

    Yamada, Y.; Shimizu, R.; Kobayashi, Y.

    2016-12-01

    Iron oxide ( γ-Fe2O3) and iron carbide (Fe3C) particles were produced by the polyol method. Ferrocene, which was employed as an iron source, was decomposed in a mixture of 1,2-hexadecandiol, oleylamine, and 1-octadecene. Particles were characterized using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. It was found that oleylamine acted as a capping reagent, leading to uniform-sized (12-16 nm) particles consisting of γ-Fe 2O3. On the other hand, 1-octadecene acted as a non-coordinating solvent and a carbon source, which led to particles consisting of Fe3C and α-Fe with various sizes.

  12. Electronic structures and excitonic transitions in nanocrystalline iron-doped tin dioxide diluted magnetic semiconductor films: an optical spectroscopic study.

    Science.gov (United States)

    Yu, Wenlei; Jiang, Kai; Wu, Jiada; Gan, Jie; Zhu, Min; Hu, Zhigao; Chu, Junhao

    2011-04-07

    Nanocrystalline iron-doped tin dioxide (Sn(1-x)Fe(x)O(2)) films with x from 0 to 0.2 were prepared on c-sapphire substrates by pulsed laser deposition. X-ray diffraction and Raman scattering analysis show that the films are of the rutile structure at low compositions and an impurity phase related to Fe(2)O(3) appears until the x is up to 0.2, suggesting the general change of lattice structure due to the Fe ion substitution. The dielectric functions are successfully determined from 0.0248 to 6.5 eV using the Lorentz multi-oscillator and Tauc-Lorentz dispersion models in the low and high photon energy regions, respectively. With increasing Fe composition, the highest-frequency transverse optical phonons E(u) shifts towards a lower energy side and can be well described by (608 - 178x) cm(-1). From the transmittance spectra, the fundamental absorption edge is found to be decreased with the Fe composition due to the joint contributions from SnO(2) and Fe(2)O(3). It can be observed that the doped films exhibit evident excitonic excitation features, which are strongly related to the Fe doping. Among them, the 6A(1g)→ 4T(2g) transition contributes to the onset of optical absorption. Moreover, the remarkable intensity reduction and a red-shift trend with the doping composition, except for the pure film, can be testified by the photoluminescence spectra. It can be concluded that the replacement of Sn with the Fe ion could induce the 2p-3d hybridization and result in the electronic band structure modification of the Sn(1-x)Fe(x)O(2) films.

  13. Surface engineering by thermal spraying nanocrystalline coatings: X-ray and TEM characterisation of As-deposited iron aluminide structure

    Science.gov (United States)

    Ji, G.; Morniroli, J. P.; Tidu, A.; Coddet, C.; Grosdidier, T.

    2002-07-01

    Iron Aluminide coatings were produced by thermal spraying atomized (microcrystalline) and milled (nanocrystalline) powders using the High Velocity Oxy-Fuel (HVOF) and the Atmospheric Plasma Spraying (APS) techniques. The as-sprayed coatings were investigated by X-ray diffraction. In particular, X-ray line shape broadening analysis was used to determine the size of the coherently diffracting domains and the internal microstrains. Significant peak broadening was observed whatever the thermal spraying technique and the starting feedstock powder. This surprising result is discussed, at the light of SEM and TEM observations, by considering chemical composition heterogeneities and the presence of structural defects in the coatings. Des revêtements d'aluminure de fer ont été projetés à l'aide des techniques HVOF et APS en utilisant comme précurseur de la poudre atomisée à structure microcristalline ou de la poudre à structure nanocristalline obtenue par broyage mécanique. La microstructure des revêtements a été analysée par diffraction des rayons X en utilisant, en particulier, des analyses de profils de raies. Des élargissements importants des raies de diffraction ont été mesurés quelque soit la technique de projection utilisée ou la nature des précurseurs. Ces résultats surprenants sont discutés, à l'aide d'observations effectuées en MEB et MET, en prenant en compte les gradients chimiques et la présence de défauts structuraux observés dans les revêtements.

  14. Synthesis of nanocrystalline magnetite by mechanical alloying of iron and hematite

    Czech Academy of Sciences Publication Activity Database

    Alcala, M. D.; Criado, J. M.; Real, C.; Grygar, Tomáš; Nejezchleba, Martin; Šubrt, Jan; Petrovský, Eduard

    2004-01-01

    Roč. 39, č. 7 (2004), s. 2365-2370 ISSN 0022-2461 Institutional research plan: CEZ:AV0Z4032918 Keywords : electrochemical dissolution * gamma-FE2O3 particles * thermal-stability Subject RIV: CA - Inorganic Chemistry Impact factor: 0.864, year: 2004

  15. Nanocrystalline Axially Bridged Iron Phthalocyanine Polymeric Conductor: (μ-Thiocyanato(phthalocyaninatoiron(III

    Directory of Open Access Journals (Sweden)

    Eiza Shimizu

    2016-01-01

    Full Text Available Skewered Iron(III phthalocyanine conducting polymer can be constructed with the utilization of axial thiocyanato ligands ((μ-thiocyanato(phthalocyaninatoiron(III; (FeIII(Pc(SCNn thereby creating additional avenues for electron transport through a linear SCN bridge, apart from the intermolecular π-π orbital overlap between the Pc molecules. In this paper, we report on the conversion of bulk FeIII(Pc(SCNn polymeric organic conductor into crystalline nanostructures through horizontal vapor phase growth process. The needle-like nanostructures are deemed to provide more ordered and, thus, more π-π interactive interskewer FeIII(Pc(SCNn polymer orientation, resulting in a twofold increase of its electrical conductivity per materials density unit.

  16. Impedance spectroscopy and dielectric studies of nanocrystalline iron doped barium strontium titanate ceramics

    Directory of Open Access Journals (Sweden)

    Reenu Jacob

    2015-06-01

    Full Text Available Barium titanate compounds have great research attention due to their good electric and in some case interesting magnetic properties. The synthesis and characterization of iron doped barium strontium titanate (BSFTO make an attempt to understand its structure and investigate electric/dielectric properties. The formation of a perovskite compound with tetragonal phase was confirmed through X-ray structural studies. Dielectric and electrical impedance properties of the sintered BSFTO ceramics were measured in the frequency range from 42 Hz to 2 MHz and at different temperatures (up to 600 °C. It was shown that the properties of this material are highly dependent on temperature and frequency. The nature of frequency dependence of AC conductivity confirms the Jonscher’s power law. The temperature dependence of DC conductivity obeys the Arrhenius behaviour.

  17. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, P; Mukherjee, P K; Kale, S P [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Roy, M; Mandal, B P; Tyagi, A K [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dey, G K [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ghatak, J [Institute of Physics, Bhubaneswar 751005 (India)], E-mail: sharadkale@gmail.com

    2008-02-20

    A controlled and up-scalable biosynthetic route to nanocrystalline silver particles with well-defined morphology using cell-free aqueous filtrate of a non-pathogenic and commercially viable biocontrol agent Trichoderma asperellum is being reported for the first time. A transparent solution of the cell-free filtrate of Trichoderma asperellum containing 1 mM AgNO{sub 3} turns progressively dark brown within 5 d of incubation at 25 deg. C. The kinetics of the reaction was studied using UV-vis spectroscopy. An intense surface plasmon resonance band at {approx}410 nm in the UV-vis spectrum clearly reveals the formation of silver nanoparticles. The size of the silver particles using TEM and XRD studies is found to be in the range 13-18 nm. These nanoparticles are found to be highly stable and even after prolonged storage for over 6 months they do not show significant aggregation. A plausible mechanism behind the formation of silver nanoparticles and their stabilization via capping has been investigated using FTIR and surface-enhanced resonance Raman spectroscopy.

  18. The Formation of Lithiated Ti-Doped {alpha}-Fe{sub 2}O{sub 3} Nanocrystalline Particles by Mechanical Milling of Ti-Doped Lithium Spinel Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hisham@ictp.trieste.it [Khartoum University, Department of Physics (Sudan); Gismelseed, A. M.; Bouziane, K. [Sultan Qaboos University, Department of Physics (Oman); Berry, F. J. [Open University, Department of Chemistry (United Kingdom); Al Rawas, A. D.; Al-Omari, I. A.; Yousif, A. A.; Elzain, M. E. [Sultan Qaboos University, Department of Physics (Oman)

    2004-12-15

    The milling of spinel-related Ti-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} for different times is studied with XRD, Moessbauer spectroscopy and magnetic measurements. Milling converts the material to Li-Ti-doped {alpha}-Fe{sub 2}O{sub 3} nanocrystalline particles via an intermediate {gamma}-LiFeO{sub 2}-related phase. The role played by the dopant Ti-ion in the process is emphasized.

  19. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    International Nuclear Information System (INIS)

    Motozuka, S.; Hayashi, K.; Tagaya, M.; Morinaga, M.

    2015-01-01

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method

  20. Characteristic lesions in mouse retina irradiated with accelerated iron particles

    International Nuclear Information System (INIS)

    Malachowski, M.J.; Philpott, D.E.; Corbett, R.L.; Tobias, C.A.

    1981-01-01

    A program is underway to determine the radiation hazards of HZE particles using the Bevalac, a heavy-ion accelerator at LBL. Our earlier work with helium, carbon, neon, and argon particles, and exposure to rats to HZE particles in space flight demonstrated some deleterious biological effects. TEM studies have shown that some visual cells were missing and dislocated; these were termed channel lesions. Recently obtained is evidence that a single iron HZE particle may affect a series of cells. Mice were irradiated with 0.1, 0.3, 1, 10, or 25 rad of 590 MeV/amu initial kinetic energy iron particles in groups of 10 animals per dose point. Irradiated and control animals were sacrificed at intervals from one week to two years postirradiation. The eye samples were dehydrated, critical points dried with freon, fractured, and Au-Pd coated for SEM, or plastic embedded, sectioned, and stained for TEM. Additionally, dry fractured samples viewed with the SEM were embedded in plastic, sectioned, and stained for the TEM. Characteristic tunnel shaped lesions were observed with the SEM. Stereo pairs showed tunnels of various lengths up to 100 μm. Light microscopy of serially cut sections from the same material had vacuoles (V) extending the same length. TEM of the same specimen and specimens prepared only for TEM exhibited large vacuoles, greater than or equal to 2 μm, in the inner segment (IS) and outer segment (OS) layers. Severe membrane disruption was found bordering the vacuoles and gross nuclear degeneration (ND) and loose tissue (LT) were seen in the outer nuclear layer (ONL). The number of lesions increased with increasing dose. Microscopy of the control retina failed to demonstrate similar lesions

  1. Liquid Plasma Synthesis of Carbon Coated Iron Oxide Particles

    Science.gov (United States)

    Uygun, Aysegul; Hershkowitz, Noah; Eren, Esin; Uygun, Emre; Celik Cogal, Gamze; Yurdabak Karaca, Gozde; Manolache, Sorin; Sundaram, Gunasekaran; Sadak, Omer; Oksuz, Lutfi

    2017-10-01

    Recently, magnetic metal or metal oxide nanoparticles encapsulated in carbon are important in biomedical applications. The relevant reason to study toxicity of the magnetic nanoparticles coated by carbon is that they have great potential to contribute to cancer treatment. In this work, the synthesis of iron oxide nano-particles coated by graphitic carbon shells using pulsed plasma in liquid method. Short duration of RF plasma discharge, low electrical energy and fast quenching of the surrounding media can let to synthesize various kinds of pure nanoparticles. Corresponding author: ayseguluygun@sdu.edu.tr, lutfioksuz@sdu.edu.tr.

  2. Iron (III) sulfide particles produced by a polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Ryo; Kubono, Ippei [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan); Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp [Tokyo University of Science (Japan)

    2015-04-15

    Iron(III) sulfide Fe{sub 2}S{sub 3} particles were produced using a polyol method. Although pyrrhotite Fe{sub 1−x}S appeared together with Fe{sub 2}S{sub 3}, the relative yield of Fe{sub 2}S{sub 3} changed when the concentration of reagents in the oleylamine changed. Mössbauer spectra of the particles showed superparamagnetic doublets due to Fe{sub 2}S{sub 3} at 293 K, along with a hyperfine magnetic splitting of H = 24.7 T at 6 K. XRD patterns of the Fe{sub 2}S{sub 3} suggested a structure similar to that of greigite Fe{sub 3}S{sub 4}.

  3. Mössbauer spectra of iron (III) sulfide particles

    Science.gov (United States)

    Kubono, I.; Nishida, N.; Kobayashi, Y.; Yamada, Y.

    2017-11-01

    Trivalent iron sulfide (Fe2 S 3) particles were synthesized using a modified polyol method. These particles exhibited a needle-like shape (diameter = 10-50 nm, length = 350-1000 nm) and generated a clear XRD pattern. Mössbauer spectra of the product showed a paramagnetic doublet at room temperature and distributed hyperfine magnetic splitting at low temperature. The Curie temperature of this material was determined to be approximately 60 K. The data suggest that the Fe2 S 3 had a structure similar to that of maghemite ( γ-Fe2 O 3) with a lattice constant of a = 10.6 Å. The XRD pattern calculated from this structure was in agreement with the experimental pattern and the calculated hyperfine magnetic field was also equivalent to that observed in the experimental Mössbauer spectrum.

  4. Nanocrystalline materials for the dosimetry of heavy charged particles: A review

    Science.gov (United States)

    Salah, Numan

    2011-01-01

    Thermally stimulated luminescence or better known as thermoluminescence (TL) is a powerful technique extensively used for dosimetry of ionizing radiations. TL dosimeter (TLD) materials presently in use are inorganic crystalline materials. They are in the form of chips, single crystals or microcrystalline size powder. The most popular are LiF:Mg,Ti, LiF:Mg,Cu,P, CaSO 4:Dy, CaF 2:Dy and Al 2O 3:C. However, these TLD materials are not capable of precisely detecting heavy charged particles (HCP) irradiations in their present forms. The saturation effect is the major problem, which occurs at relatively low fluences (doses). Moreover, there is a significant variation in the TL glow curves structure with increase in doses, which is undesirable for the use in dosimetry. However, with the use of very tiny particles such as nanoscale TLD materials, this problem is overcome to a major extent. The TL results of the recently reported nanomaterials have revealed very imperative characteristics such as high sensitivity and saturation at very high doses. Recent studies on different luminescent nanomaterials showed that they have a potential application in dosimetry of heavy charged particles using TL technique, where the conventional microcrystalline phosphors saturate. This paper is a review on the prepared TLD nanomaterials, studied for their TL response to HCP. These are CaSO 4:Dy, LiF:Mg,Cu,P, K 2Ca 2(SO 4) 3:Eu and Ba 0.97Ca 0.03SO 4:Eu nanomaterials. The important results obtained in these nanomaterials and the possibility of using them as HCP dosimeters are discussed.

  5. Wood smoke particle sequesters cell iron to impact a biological effect.

    Science.gov (United States)

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We te...

  6. Magnetic study of M-type Ru–Ti doped strontium hexaferrite nanocrystalline particles

    Energy Technology Data Exchange (ETDEWEB)

    Alsmadi, A. M.; Bsoul, I.; Mahmood, S. H.; Alnawashi, G.; Al-Dweri, F. M.; Maswadeh, Y.; Welp, U.

    2015-11-01

    We carried out a systematic study on the effect of the substitution of Ti2+ and Ru4+ ions for Fe3+ ions on the structural and magnetic properties of the strontium ferrite SrFe12-2xRuxTixO19 nanoparticles with (0 <= x <= 0: 3), using x-ray diffraction, Quantum Design PPMS-9 magnetometry, and electrical resistivity. A clear irreversibility between the zero-field-cooled and field-cooled curves was observed below room temperature and the zero-field-cooled magnetization curves displayed a broad peak at a temperature TM. These results were discussed within the framework of random particle assembly model and associated with the magnetic domain wall motion. The resistivity data showed some kind of a transition from insulator to perfect insulator around TM. The high-temperature magnetization measurements exhibited sharp peaks just below T-c indicating a superparamagnetic behavior. With Ru-Ti substitution, the saturation magnetization at 5 K showed small variations were it slightly increased with increasing x up to 0.2, and then decrease for x = 0.3, while the coercivity decreased monotonically, recording a reduction of about 78% at x = 0.3. These results were discussed in light of the cationic distributions based on the results of the structural refinements.

  7. A Study on Removal of Environmental Pollution Materials with Nano-scale Iron Particles

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Ahn, Hong Ju

    2009-07-01

    In this study, a method of nano-sized iron particles with zero valent state was developed. Also, the optimum conditions for the synthesis of silica based micro-particles were obtained for micro particle analysis. Basic physical data for standard particles were obtained in various synthesis conditions for mass production. From the experiment of removal of Pb in the solution with iron particles with zero valent state, most of Pb was removed from the solution over pH 7, as a result of reaction of Pb with iron particles with zero valent state. Nano sized iron particles with zero valent state obtained from this study will be apply for removing heavy metals and radionuclides as well as waste treatment and remediation for contaminated materials in the environment

  8. Magnetic properties of iron-based amorphous and nanocrystalline Fe-Zr-X-B (X: Cu, Al) alloy films

    International Nuclear Information System (INIS)

    Goscianska, I.; Tolinski, T.; Ratajczak, H.; Sovak, P.; Dlugos, R.; Konc, M.

    2000-01-01

    Thermal stability and magnetic properties of thin films, of a few Fe-based amorphous and nanocrystalline alloys, have been studied. The alloys belong to the class Fe-M-B, whose representatives are Fe 87 Zr 4 CuB 8 , Fe 87 Zr 7 B 6 , and Fe 87 Zr 7 AlB 5 and are of particular interest because of their wide variety of magnetic properties. The films were prepared by flash evaporation onto liquid nitrogen cooled substrates. Measurements of the Kerr effect, the Hall effect, and ferromagnetic resonance in the films were carried out as functions of the annealing temperature. It was found that the changes in the coercive field H c , resonance linewidth ΔH pp , effective magnetization M eff , Hall parameters, and resistance were correlated with the structural changes in the studied films. (author)

  9. Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids

    OpenAIRE

    Sedlačík, M.; Pavlínek, V.; Lehocký, M.; Mráček, A.; Grulich, O.; Švrčinová, P. (Petra); Filip, P. (Petr); Vesel, A.

    2011-01-01

    The aim of this paper is to document suitability of plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids. Surface-modified carbonyl iron particles were prepared via their exposure to 50% argon and 50% octafluorocyclobutane plasma. The X-ray photoelectron spectroscopy was used for analysis of chemical bonding states in the surface layer. Plasma-treated particles were adopted for a dispersed phase in magnetorheological (MR) fluids, and the MR behaviour was in...

  10. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  11. Nanocrystalline magnetic alloys and ceramics

    Indian Academy of Sciences (India)

    Ultrafine particles of both ferro- and ferrimagnetic systems show superparamagnetic behaviour at room temperature. Coercivity ( H c ) and maximum energy product ( B H ) max of the magnetic particles can be changed by controlling their sizes. The present paper reviews all these aspects in the case of nanocrystalline ...

  12. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  13. Enhancement of aspirin capsulation by porous particles including iron hydrous oxide

    International Nuclear Information System (INIS)

    Saito, Kenji; Koishi, Masumi; Hosoi, Fumio; Makuuchi, Keizo.

    1986-01-01

    Polymer-coated porous particles containing aspirin as a drug were prepared and the release of rate of aspirin was studied. The impregnation of aspirin was carried out by post-graft polymerization, where methyl methacrylate containing aspirin was treated with porous particles including iron oxide, pre-irradiated with γ-ray form Co-60. Release of aspirin from modified particles was examined with 50 % methanol solution. The amount of aspirin absorbed in porous particles increased by grafting of methyl methacrylate. The particles treated with iron hydrous oxide sols before irradiation led to the increment of aspirin absorption. Diffusion of aspirin through the polymer matrix and the gelled layer was the limiting process in the aspirin release from particles. The rate of aspirin released from modified particles including iron hydrous oxide wasn't affected by the grafting of methyl methacrylate. (author)

  14. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  15. Elimination of Iron Based Particles in Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2015-03-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by chrome. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases. By experimental work were used three different amounts of AlCr20 master alloy a three different temperature of chill mold. Our experimental work confirmed that chrome can be used as an iron corrector in Al-Si alloy, due to the change of intermetallic phases and shortening their length.

  16. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    Energy Technology Data Exchange (ETDEWEB)

    Amitava Sarkar; James K. Neathery; Burtron H. Davis

    2006-12-31

    A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of iron catalyst particles and the formation of ultra-fine particles.

  17. Phase transformation and particle growth in nanocrystalline anatase TiO 2 films analyzed by X-ray diffraction and Raman spectroscopy

    Science.gov (United States)

    Orendorz, A.; Brodyanski, A.; Lösch, J.; Bai, L. H.; Chen, Z. H.; Le, Y. K.; Ziegler, C.; Gnaser, H.

    2007-09-01

    Nanocrystalline anatase TiO 2 films were prepared from colloidal suspensions using particles with a nominal size of 12 nm. Their structure was examined by Raman spectroscopy and X-ray diffraction (XRD). The as-prepared specimens exhibit exclusively features due to the anatase phase of TiO 2 (e.g., the Eg, B1g and A1g vibration modes in Raman spectroscopy and the characteristic diffraction peaks in XRD). Isochronal annealing of the films in air at temperatures of up to 1320 K effected clear structural changes, observed both in Raman and XRD: the crystallite size increases from ˜13 nm to ˜125 nm between 470 K and 1220 K, with the crystallites remaining in the anatase phase. A phase transition to the rutile phase of TiO 2 occurs gradually in the temperature range 1220-1320 K and the average crystallite size increases to ˜160 nm.

  18. Nanocrystalline MgMnSiO4 and MgCoSiO4 particles for rechargeable Mg-ion batteries

    Science.gov (United States)

    Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Honma, Itaru

    2017-09-01

    Magnesium-ion batteries hold promise as next-generation secondary battery systems owing to its low cost, safety and high volumetric capacity. Magnesium metal silicates exhibit potential electrode materials with high specific capacities. However, the strong electrostatic interaction between Mg2+ and host lattice due to its divalency as well as antisite cation exchange, induces slow intercalation kinetics of Mg ions within the crystal lattices. Thus, nanocrystalline particles with shortened Mg ion diffusion distance enable the insertion/extraction of Mg ions and improve specific capacities of the batteries. Herein, we report the low-temperature production of crystalline MgMnSiO4 and MgCoSiO4 nanoparticles by a rapid supercritical fluid processing. The extraction of magnesium ions from the olivine framework has been confirmed by X-ray photoelectron spectroscopy, revealing its ability as active materials for magnesium-ion battery.

  19. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and shape-optimized nanocrystalline alloys.

    Science.gov (United States)

    Zhang, Jitao; Li, Ping; Wen, Yumei; He, Wei; Yang, Aichao; Lu, Caijiang

    2014-03-01

    An enhancement for magnetoelectric (ME) effects is studied in a three-phase ME architecture consisting of two magnetostrictive Terfenol-D (Tb(0.3)Dy(0.7)Fe(1.92)) plates, a piezoelectric PZT (Pb(Zr,Ti)O3) plate, and a pair of shape-optimized FeCuNbSiB nanocrystalline alloys. By modifying the conventional shape of the magnetic flux concentrator, the shape-optimized flux concentrator has an improved effective permeability (μ(eff)) due to the shape-induced demagnetizing effect at its end surface. The flux concentrator concentrates and amplifies the external magnetic flux into Terfenol-D plate by means of changing its internal flux concentrating manner. Consequently, more flux lines can be uniformly concentrated into Terfenol-D plates. The effective piezomagnetic coefficients (d(33m)) of Terfenol-D plate and the ME voltage coefficients (α(ME)) can be further improved under a lower magnetic bias field. The dynamic magneto-elastic properties and the effective magnetic induction of Terfenol-D are taken into account to derive the enhanced effective ME voltage coefficients (α(ME,eff)), the consistency of experimental results and theoretical analyses verifies this enhancement. The experimental results demonstrate that the maximum d(33m) in our proposed architecture achieves 22.48 nm/A under a bias of 114 Oe. The maximum α(ME) in the bias magnetic range 0-900 Oe reaches 84.73 mV/Oe under the low frequency of 1 kHz, and 2.996 V/Oe under the resonance frequency of 102.3 kHz, respectively. It exhibits a 1.43 times larger piezomagnetic coefficient and a 1.87 times higher ME voltage coefficient under a smaller magnetic bias of 82 Oe than those of a conventional Terfenol-D/PZT/Terfenol-D composite. These shape-induced magnetoelectric behaviors provide the possibility of using this ME architecture in ultra-sensitive magnetic sensors.

  20. Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brillet, P-Y.; Gazeau, F.; Luciani, A.; Bessoud, B.; Cuenod, C.-A.; Siauve, N.; Pons, J.-N.; Poupon, J.; Clement, O.

    2005-01-01

    This study was designed to compare tumor enhancement by superparamagnetic iron oxide particles, using anionic iron oxide nanoparticles (AP) and ferumoxtran. In vitro, relaxometry and media with increasing complexity were used to assess the changes in r2 relaxivity due to cellular internalization. In vivo, 26 mice with subcutaneously implanted tumors were imaged for 24 h after injection of particles to describe kinetics of enhancement using T1 spin echo, T2 spin echo, and T2 fast spin echo sequences. In vitro, the r2 relaxivity decreased over time (0-4 h) when AP were uptaken by cells. The loss of r2 relaxivity was less pronounced with long (Hahn Echo) than short (Carr-Purcell-Meiboom-Gill) echo time sequences. In vivo, our results with ferumoxtran showed an early T2 peak (1 h), suggesting intravascular particles and a second peak in T1 (12 h), suggesting intrainterstitial accumulation of particles. With AP, the late peak (24 h) suggested an intracellular accumulation of particles. In vitro, anionic iron oxide nanoparticles are suitable for cellular labeling due to a high cellular uptake. Conversely, in vivo, ferumoxtran is suitable for passive targeting of tumors due to a favorable biodistribution. (orig.)

  1. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practically...

  2. In Vitro Biocompatibility of Nanoscale Zerovalent Iron Particles (NZVI) Synthesized using tea-polyphenols.

    Science.gov (United States)

    A “green” protocol was used for the rapid generation of nanoscale zerovalent iron (NZVI) particles using tea polyphenols. The NZVI particles were subsequently examined for in vitro biocompatibility using the human keratinocyte cell (HaCaT) line as a skin exposure model. The cell...

  3. Synthesis of iron oxide/manganese oxide composite particles and their magnetic properties

    Science.gov (United States)

    Ullrich, Aladin; Hohenberger, Stefan; Özden, Ayberk; Horn, Siegfried

    2014-08-01

    We have investigated the synthesis and structural as well as magnetic properties of composite nanoparticles, including core-shell particles, consisting of iron and manganese oxides. The synthesis is based on thermal decomposition of suitable metal oleates in a high boiling solvent. Seed particles are used to avoid homogeneous nucleation and to initiate the formation of heterogeneous systems. The as-synthesized particles were characterized by energy filtered transmission electron microscopy (EFTEM) and SQUID magnetometry. The synthesized nanoparticles had diameters between 10 and 20 nm and consisted of manganese oxide and iron oxide.

  4. Effect of carbonyl iron particles composition on the physical characteristics of MR grease

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Norzilawati, E-mail: mnorzilawati@gmail.com; Mazlan, Saiful Amri, E-mail: amri.kl@utm.my [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Ubaidillah, E-mail: ubaidillah@uns.ac.id [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta, 57126, Central Java, Surakarta (Indonesia)

    2016-03-29

    Magnetorheological (MR) grease is an extension of the study of magnetorheological materials. The MR grease can help to reduce the particles sedimentation problem occurred in the MR fluids. Within this study, an effort has been taken to investigate the effect of different weight compositions of carbonyl iron particles on the physical and chemical characteristics of the MR grease under off-state condition (no magnetic field). The MR grease is prepared by mixing carbonyl iron particles having a size range of 1 to 10 µm with commercial NPC Highrex HD-3 grease. Characterizations of MR grease are investigated using Vibrating Sample Magnetometer (VSM), Environmental Scanning Electron Microscopy (ESEM), Differential Scanning Calorimeter (DSC) and rheometer. The dependency of carbonyl iron particles weight towards the magnetic properties of MR grease and other characterizations are investigated.

  5. Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality.

    Science.gov (United States)

    Rahman, M Safiur; Gagnon, Graham A

    2014-01-01

    Discoloration of water resulting from suspended iron particles is one of the main customer complaints received by water suppliers. However, understanding of the mechanisms of discoloration as well as role of materials involved in the process is limited. In this study, an array of bench scale experiments were conducted to evaluate the impact of the most common variables (pH, PO4, Cl2 and DOM) on the properties of iron particles and suspensions derived from the oxygenation of Fe(II) ions in NaHCO3 buffered synthetic water systems. The most important factors as well as their rank influencing iron suspension color and turbidity formation were identified for a range of water quality parameters. This was accomplished using a 2(4) full factorial design approach at a 95% confidence level. The statistical analysis revealed that phosphate was found to be the most significant factor to alter color (contribution: 37.9%) and turbidity (contribution: 45.5%) in an iron-water system. A comprehensive study revealed that phosphate and chlorine produced iron suspension with reduced color and turbidity, made ζ-potential more negative, reduced the average particle size, and increased iron suspension stability. In the presence of DOM, color was observed to increase but a reverse trend was observed to decrease the turbidity and to alter particle size distribution. HPSEC results suggest that higher molecular weight fractions of DOM tend to adsorb onto the surfaces of iron particles at early stages, resulting in alteration of the surface charge of iron particles. This in turn limits particles aggregation and makes iron colloids highly stable. In the presence of a phosphate based corrosion inhibitor, this study demonstrated that color and turbidity resulting from suspended iron were lower at a pH value of 6.5 (compared to pH of 8.5). The same trend was observed in presence of DOM. This study also suggested that iron colloid suspension color and turbidity in chlorinated drinking water

  6. Nanoscale lignin particles as sources of dissolved iron to the ocean

    Science.gov (United States)

    Krachler, Regina; von der Kammer, Frank; Jirsa, Franz; Süphandag, Altan; Krachler, Rudolf F.; Plessl, Christof; Vogt, Margret; Keppler, Bernhard K.; Hofmann, Thilo

    2012-09-01

    Primary production in large areas of the open ocean is limited by low iron concentrations. Rivers are potential sources of iron to the ocean, however, riverine iron is prone to intense flocculation and sedimentation in the estuarine mixing zone. Here we report the detection of iron-rich nanoparticles in a typical peatland-draining creek which are resistant against salt-induced flocculation i.e., their behavior is in sharp contrast to the well-known behavior of Fe colloids in river waters. Sample fractionation by AsFlFFF (Asymmetric Flow Field Flow Fractionation) revealed that these powerful iron carriers are in the size range of only 0.5-3.0 nm hydrodynamic diameter. They were isolated from the water phase using solid phase extraction/gel permeation chromatography, and analyzed by a CuO oxidation/GC-MS method. Our results suggest that the particles consist mainly of lignin catabolites and that gymnosperm as well as angiosperm tissues are contributors to the seawater-resistant iron-bearing DOM. Lignin phenols, which have no autochthonous source in the ocean, have been nevertheless found in low concentrations throughout the entire Arctic, Atlantic, and Pacific oceans. It is therefore tempting to speculate that peatland-derived iron-bearing lignin particles may have a sufficiently long half-life in ocean waters to sustain iron concentration in extended regions of the ocean.

  7. Effect of particle size on kinetics crystallization of an iron-rich glass

    OpenAIRE

    Romero, Maximina; Kovacova, Milota; Rincón López, Jesús María

    2008-01-01

    The effect of glass particle size on the crystallization kinetics of an iron-rich glass from a nickel leaching waste has been investigated by means of differential thermal analysis (DTA). The results show that the crystallization of a pyroxene phase occurs by bulk nucleation from a constant number of nuclei. The crystallization mode and the dimensionality of crystals are strongly dependent of the glass particle size, being 100µm the critical size. Glass fractions with particle size >100µm sho...

  8. Elemental compositions of suspended particles released from iron and steel works

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira; Kubota, Torahide

    1980-01-01

    Suspended particles released from iron and steel works were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry, and their characteristics in elemental composition were examined in detail. Elemental compositions of suspended particles from electric furnaces producing medium steel and special steel were rather similar with each other. The suspended particles from these electric steel furnaces were found to be enriched in the elements listed below. Fe (Geometric mean of measured concentrations: 16%), Zn (5.2%), Ca (4.5%), Cl (3.4%), Mn (2.2%), Na (1.4%), Pb (1.4%), K (1.3%), Al (1.0%), Cu (0.4%), Cr (0.3%), Ni (0.3%) and Ti (0.1%). elemental compositions of suspended particles from cupolas were found to be similar with those of the suspended particles from the electric steel furnaces, but, it was noticed that the cupola particles were condiderably higher in Si concentration (--25%). Suspended particles from heating furnaces for processing various iron and steel products, which are heated by oil combustion, were found to be quite similar in elemental composition with suspended particles released from heavy oil boilers, as was expected, being quite different from the particles from the electric steel furnaces and the cupolas. The electric steel furnace particles were 15 to 180 times more enriched in the elements, Cl, K, Ca, Sc, Cr, Mn, Fe, Zn, Br, Sb and Pb, and one 70th less enriched in the element V than oil boiler particles. The contributions of iron and steel works to aerosols over two big cities, Osaka and Kawasaki, in a particle size range below several micron, were roughly estimated under simple assumptions. High contributions of iron and steel works were found for various elements, being especially large for Cr, Mn, Ni, Zn, Cl, Fe and so on. (J.P.N.)

  9. Particle-Hole Transformation in Strongly-Doped Iron-Based Superconductors

    OpenAIRE

    Rodriguez, J. P.

    2016-01-01

    An exact particle-hole transformation is discovered in a local-moment description of a single layer in an iron-based superconductor. Application of the transformation to a surface layer of heavily electron-doped FeSe predicts a surface-layer high-temperature superconductor at strong hole doping. Comparison with existing low-T_c iron superconductors suggests that the critical temperature at heavy hole doping can be increased by increasing direct ferromagnetic exchange in between nearest neighb...

  10. In vitro neurotoxic effects of 1 GeV/n iron particles assessed in retinal explants.

    Science.gov (United States)

    Vazquez, M E; Kirk, E

    2000-01-01

    The heavy ion component of the cosmic radiation remains problematic to the assessment of risk in manned space flight. The biological effectiveness of HZE particles has yet to be established, particularly with regard to nervous tissue. Using heavy ions accelerated at the AGS of Brookhaven National Laboratory, we study the neurotoxic effects of iron particles. We exposed retinal explants, taken from chick embryos, to determine the dose response relationships for neurite outgrowth. Morphometric techniques were used to evaluate the in vitro effects of 1 GeV/a iron particles (LET 148 keV/micrometer). Iron particles produced a dose-dependent reduction of neurite outgrowth with a maximal effect achieved with a dose of 100 cGy. Doses as low as 10-50 cGy were able to induce reductions of the neurite outgrowth as compared to the control group. Neurite generation is a more sensitive parameter than neurite elongation, suggesting different mechanism of radiation damage in our model. These results showed that low doses/fluences of iron particles could impair the retinal ganglion cells' capacity to generate neurites indicating the highly neurotoxic capability of this heavy charged particle.

  11. Astrophysical detection of heavy-particle-induced spectral shifts in muonic iron

    International Nuclear Information System (INIS)

    Guffin, J.; Nixon, G.; Fischbach, E.; Javorsek, D. II; Colafrancesco, S.

    2002-01-01

    By significantly increasing the nuclear mass, a strongly interacting massive particle (SIMP) bound to an iron nucleus would cause a characteristic change in the spectrum of muonic iron. At temperatures high enough that such atoms are completely stripped of electrons, the effect is directly observable as a 0.2% shift in the energies of high angular momentum states. This phenomenon provides a new test for the existence of SIMPs, which have been proposed as dark matter candidates, and as candidates for the lightest supersymmetric particle

  12. Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter.

    Science.gov (United States)

    Heeb, Norbert V; Rey, Maria Dolores; Zennegg, Markus; Haag, Regula; Wichser, Adrian; Schmid, Peter; Seiler, Cornelia; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Bürki, Samuel; Zimmerli, Yan; Czerwinski, Jan; Mayer, Andreas

    2015-08-04

    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 μg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels.

  13. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  14. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo, E-mail: thilo.hofmann@univie.ac.at

    2016-09-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  15. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    International Nuclear Information System (INIS)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo

    2016-01-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  16. Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility

    OpenAIRE

    M. Oakes; R. J. Weber; B. Lai; A. Russell; E. D. Ingall

    2012-01-01

    Soluble iron in fine atmospheric particles has been identified as a public health concern by participating in reactions that generate reactive oxygen species (ROS). The mineralogy and oxidation state (speciation) of iron have been shown to influence fractional iron solubility (soluble iron/total iron). In this study, iron speciation was determined in single particles at urban and rural sites in Georgia USA using synchrotron-based techniques, such as X-ray Absorption Near-Edg...

  17. An investigation of the possible influence of particles on the corrosion of iron in a sodium loop

    International Nuclear Information System (INIS)

    Polley, M.V.

    1975-11-01

    At the present time it is not possible to explain why the observed corrosion of iron in sodium loop experiments is so small if currently recommended values of the solubility of iron in sodium are accepted. One possible explanation investigated is that the concentration of dissolved iron in the sodium may be held very close to saturation by the presence of a large number of particles in the sodium. A model for pipe wall and particle mass transfer is presented and a computer programme, which calculates mass transfer rates whilst following the sodium around an iron loop, is described. Dissolved iron is assumed to condense on and dissolve from foreign parent particles present in the sodium since it is shown that homogeneous nucleation of pure iron particles is most unlikely to occur. Mass transfer, to both particles and pipe walls, is assumed to be diffusion controlled. Computed corrosion rates are presented as a function of particle size and number density, showing that corrosion of iron cannot be sufficiently inhibited by the presence of particles to reconcile calculations of iron corrosion rates, based on recommended solubility values, with observed corrosion rates. Alternative explanations of observed iron corrosion phenomena are discussed. (author)

  18. Wear Behaviour of Iron Matrix Composite Reinforced by ZTA Particles in Impact Abrasion

    Science.gov (United States)

    Qiu, B.; Xing, S. M.; Dong, Q.

    2017-11-01

    Zirconia toughened alumina (ZTA) particles reinforced high chromium cast iron composites (ZTA/Iron composites) were prepared by a two-step processing method, i.e. mixing particles by the molten metal and cohering by high pressure, which based on the squeeze casting process. The impact wear resistance under different impact energies were investigated using dynamically loaded abrasive wear tester at room temperature. For comparison, the wear tests of high chromium cast iron were also carried out under the same conditions. Worn surfaces of the samples were observed under scanning electron microscopy equipped with an energy dispersive detector. The results showed that the composites have better impact wear resistance than that of high Cr cast iron regardless of impact energy level, and the wear resistance of the two materials all decrease with the increase of the impact energy. The main wear mechanisms of the high Cr cast iron were micro-cutting and fatigue peeling, while the wear of composites occurred through micro-cutting of the matrix (lower impact energy) and breaking and shedding of the reinforced particles (higher impact energy).

  19. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practical......-field-cooled magnetization and isothermal remanence decay, is influenced by interactions and strongly dependent on the applied magnetic field....

  20. Possible wave formation and martensitic transformation of iron particles in copper single crystals during argon ion bombardment

    DEFF Research Database (Denmark)

    Thölén, Anders Ragnar; Li, Chang-Hai; Easterling, K.E.

    1983-01-01

    Thin single crystal copper specimens (thickness ~250 nm) containing coherent iron particles (diameter 40–50 nm) have been bombarded with argon ions (5, 80, and 330 keV). During this process some of the iron particles transform to martensite. The transformation was observed near the exposed surface...

  1. Transformation of iron containing constituent intermetallic particles during hydrothermal treatment

    DEFF Research Database (Denmark)

    Borgaonkar, Shruti; Din, Rameez Ud; Kasama, Takeshi

    2018-01-01

    Aluminium alloys AA3102 and AA9108 were treated with high temperature steam, which resulted in the formation of an oxide layer of average thickness of 300–400 nm. Hydrothermal steam treatment resulted in the removal or oxidation of Al (Fe) Mn and Al (Fe-Si) Mn type intermetallic particles present...... in the alloys. Furthermore, electron energy loss spectroscopy analysis revealed that the during the steam treatment, the Fe enriched areas of the Al (Fe-Si) Mn type intermetallic particles were transformed into Fe2O3 and Fe3O4 phases, while energy-dispersive X-ray spectroscopy line profile measurements...

  2. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  3. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-01-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites

  4. Internalization of annexin A5-functionalized iron oxide particles by apoptotic Jurkat cells

    NARCIS (Netherlands)

    van Tilborg, Geralda A. F.; Geelen, Tessa; Duimel, Hans; Bomans, Paul H. H.; Frederik, Peter M.; Sanders, Honorius M. H. F.; Deckers, Niko M.; Deckers, Roel; Reutelingsperger, Chris P. M.; Strijkers, Gustav J.; Nicolay, Klaas

    2009-01-01

    Apoptosis plays an important role in the etiology of various diseases. Several studies have reported on the use of annexin A5-functionalized iron oxide particles for the detection of apoptosis with MRI, both in vitro and in vivo. The protein annexin A5 binds with high affinity to the phospholipid

  5. Iron Particle Size Effects for Direct Production of Lower Olefins from Synthesis Gas

    NARCIS (Netherlands)

    Torres Galvis, H.M.|info:eu-repo/dai/nl/314116249; Bitter, J.H.|info:eu-repo/dai/nl/160581435; Davidian, T.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2012-01-01

    The Fischer–Tropsch synthesis of lower olefins (FTO) is an alternative process for the production of key chemical building blocks from non-petroleum-based sources such as natural gas, coal, or biomass. The influence of the iron carbide particle size of promoted and unpromoted carbon nanofiber

  6. The effect of particle size on green pellet properties of iron ore fines

    Directory of Open Access Journals (Sweden)

    Satyananda Patra

    2017-01-01

    Full Text Available Recently, the grade of iron ore deposits has deteriorated and further development of low grade deposits is desired. Presently, the most effective and often followed route taken to utilize such deposits is the provision of beneficiation plants for upgrading iron ore and pelletizing plants for agglomerating. The iron ore fines cannot be directly used in the blast furnace as they severely reduce the permeability of the blast furnace bed and bring down the efficiency of the furnace. To overcome this, agglomeration of high grade iron ore fines is done to serve as blast furnace burden. Both the beneficiation and pelletization techniques are key process in utilization of low grade iron ores. This study deals with the beneficiation and agglomeration of the low grade iron ore; up to the extent such that it becomes an ideal blast furnace feed. Effect of particle size on pellet quality during pellet making has also been aimed and studied along with the development of flowsheet for beneficiation of low grade iron ore.

  7. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-09-30

    In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The shakedown phase of the pilot-scale filtration platform was completed at the end of the last reporting period. A study of various molecular weight waxes was initiated to determine the effect of wax physical properties on the permeation rate without catalyst present. As expected, the permeation flux was inversely proportional to the nominal average molecular weight of the polyethylene wax. Even without catalyst particles present in the filtrate, the filtration membranes experience fouling during an induction period on the order of days on-line. Another long-term filtration test was initiated using a batch of iron catalyst that was previously activated with CO to form iron carbide in a separate continuous stirred tank reactor (CSTR) system. The permeation flux stabilized more rapidly than that experienced with unactivated catalyst tests.

  8. A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging.

    Science.gov (United States)

    Chen, Chih-Lung; Zhang, Haosen; Ye, Qing; Hsieh, Wen-Yuan; Hitchens, T Kevin; Shen, Hsin-Hsin; Liu, Li; Wu, Yi-Jen; Foley, Lesley M; Wang, Shian-Jy; Ho, Chien

    2011-10-01

    In this study, we investigated the labeling efficiency and magnetic resonance imaging (MRI) signal sensitivity of a newly synthesized, nano-sized iron oxide particle (IOP) coated with polyethylene glycol (PEG), designed by Industrial Technology Research Institute (ITRI). Macrophages, bone-marrow-derived dendritic cells, and mesenchymal stem cells (MSCs) were isolated from rats and labeled by incubating with ITRI-IOP, along with three other iron oxide particles in different sizes and coatings as reference. These labeled cells were characterized with transmission electron microscopy (TEM), light and fluorescence microscopy, phantom MRI, and finally in vivo MRI and ex vivo magnetic resonance microscopy (MRM) of transplanted hearts in rats infused with labeled macrophages. The longitudinal (r (1)) and transverse (r (2)) relaxivities of ITRI-IOP are 22.71 and 319.2 s(-1) mM(-1), respectively. TEM and microscopic images indicate the uptake of multiple ITRI-IOP particles per cell for all cell types. ITRI-IOP provides sensitivity comparable or higher than the other three particles shown in phantom MRI. In vivo MRI and ex vivo MRM detect punctate spots of hypointensity in rejecting hearts, most likely caused by the accumulation of macrophages labeled by ITRI-IOP. ITRI-IOP, the nano-sized iron oxide particle, shows high efficiency in cell labeling, including both phagocytic and non-phagocytic cells. Furthermore, it provides excellent sensitivity in T(2)*-weighted MRI, and thus can serve as a promising contrast agent for in vivo cellular MRI.

  9. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  10. Hybrid Adsorptive and Oxidative Removal of Natural Organic Matter Using Iron Oxide-Coated Pumice Particles

    Directory of Open Access Journals (Sweden)

    Sehnaz Sule Kaplan Bekaroglu

    2016-01-01

    Full Text Available The aim of this work was to combine adsorptive and catalytic properties of iron oxide surfaces in a hybrid process using hydrogen peroxide and iron oxide-coated pumice particles to remove natural organic matter (NOM in water. Experiments were conducted in batch, completely mixed reactors using various original and coated pumice particles. The results showed that both adsorption and catalytic oxidation mechanisms played role in the removal of NOM. The hybrid process was found to be effective in removing NOM from water having a wide range of specific UV absorbance values. Iron oxide surfaces preferentially adsorbed UV280-absorbing NOM fractions. Furthermore, the strong oxidants produced from reactions among iron oxide surfaces and hydrogen peroxide also preferentially oxidized UV280-absorbing NOM fractions. Preloading of iron oxide surfaces with NOM slightly reduced the further NOM removal performance of the hybrid process. Overall, the results suggested that the tested hybrid process may be effective for removal of NOM and control disinfection by-product formation.

  11. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    Science.gov (United States)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  12. The field-dependent rheological properties of magnetorheological fluids featuring plate-like iron particles

    Directory of Open Access Journals (Sweden)

    Seung-Bok eChoi

    2014-10-01

    Full Text Available This study is concerned with an investigation of the plate-like iron particles based MR suspensions under the application of magnetic fields to ascertain the influence of particle size in the rheological performance. A novel synthesis route to prepare magnetorheological fluid (MRF using two different sizes of plate-like iron particles is described in detail. Two different kinds of MRF are then prepared and their rheological properties are presented and discussed extensively. Steady shear flow and small amplitude dynamic oscillatory measurements are carried out in the presence of magnetic field. This experimental study reveals and highlights the importance of exploiting some parameters such as magnetic field strength, effect of particle size, magneto-viscous and visco-elastic properties of the suspending fluid. The magnetization of the fluids is also performed to explain the effect of particle size in the magnetic field which is directly correlated with the yield stress. In the absence of magnetic field, the properties of fluid are isotropic and upon the application of magnetic field the magnetized particles form a strong-chain like structures in the field direction which promotes the appearance of yield stress. This material is known as smart material whose properties amend from liquid to solid immediately after applying the magnetic field. It is found from this work that the large size particle based MRF exhibits high yield stress and strong chain structuration under the applying magnetic field.

  13. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2005-09-30

    In this reporting period, a study of ultra-fine iron catalyst filtration was initiated to study the behavior of ultra-fine particles during the separation of Fischer-Tropsch Synthesis (FTS) liquids filtration. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The change of particle size during the slurry-phase FTS has monitored by withdrawing catalyst sample at different TOS. The measurement of dimension of the HRTEM images of samples showed a tremendous growth of the particles. Carbon rims of thickness 3-6 nm around the particles were observed. This growth in particle size was not due to carbon deposition on the catalyst. A conceptual design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. The system will utilize a primary inertial hydroclone followed by a Pall Accusep cross-flow membrane. Provisions for cleaned permeate back-pulsing will be included to as a flux maintenance measure.

  14. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  15. Effect of Iron-Containing Intermetallic Particles on the Corrosion Behaviour of Aluminium

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2006-01-01

    The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples...... with {100} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of "pure" 99.96% Al is thus dominated by the role of iron, which is the main impurity, and its electrochemical...

  16. Magnetic and Mössbauer studies of pure and Ti-doped YFeO {sub 3} nanocrystalline particles prepared by mechanical milling and subsequent sintering

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, N. O. [University of Khartoum, Physics Department, Faculty of Science (Sudan); Widatallah, H. M., E-mail: hishammw@squ.edu.om; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S. [Sultan Qaboos University, Physics Department, College of Science (Oman); Pekala, M. [University of Warsaw, Chemistry Department (Poland)

    2016-12-15

    Single-phased nanocrystalline particles of pure and 10 % Ti {sup 4+}-doped perovskite-related YFeO {sub 3}were prepared via mechanosynthesis at 450{sup ∘}C. This temperature is ∼150–350 {sup ∘}C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti {sup 4+} ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe {sup 3+} ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti {sup 4+} lowers the Néel temperature of the YFeO {sub 3} nanoparticles from ∼ 586 K to ∼ 521 K. The Ti {sup 4+}-doped YFeO {sub 3} nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The {sup 57}Fe Mössbauer spectra show ∼ 15 % of the YFeO {sub 3} nanoparticles and ∼22 of Ti {sup 4+}-doped YFeO {sub 3} ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the {sup 57}Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the {sup 57}Fe nuclear sites and were associated with collective magnetic excitations. The {sup 57}Fe Mössbauer spectra show the local environments of the Fe {sup 3+} ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti {sup 4+} ions relative to those in the larger magnetic nanoparticles.

  17. Trypsin purification using magnetic particles of azocasein-iron composite.

    Science.gov (United States)

    Alves, Maria Helena Menezes Estevam; Nascimento, Gabriela Ayres; Cabrera, Mariana Paola; Silvério, Sara Isabel da Cruz; Nobre, Clarisse; Teixeira, José António; de Carvalho, Luiz Bezerra

    2017-07-01

    This work presents an inexpensive, simple and fast procedure to purify trypsin based on affinity binding with ferromagnetic particles of azocasein composite (mAzo). Crude extract was obtained from intestines of fish Nile tilapia (Oreochromis niloticus) homogenized in buffer (01g tissue/ml). This extract was exposed to 100mg of mAzo and washed to remove unbound proteins by magnetic field. Trypsin was leached off under high ionic strength (3M NaCl). Preparation was achieved containing specific activity about 60 times higher than that of the crude extract. SDS-PAGE showed that the purified protein had molecular weight (24kDa) in concordance with the literature for the Nile tilapia trypsin. The mAzo composite can be reused and applied to purify trypsin from other sources. Copyright © 2016. Published by Elsevier Ltd.

  18. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  19. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  20. Effect of the Lifting Velocity and Container Shape on Angle of Repose of Iron Ore Particles

    Directory of Open Access Journals (Sweden)

    Tongqing Li

    2017-01-01

    Full Text Available To investigate the impact of lifting velocity and container shape on angle of repose, the fixed-base cylinder method was performed using three types of container shape. The container shape was lifted a series of lifting velocities. Six size fractions of iron ore particles ranging from coarser to fine particles were used as the test materials. And the sand-pile calibration method was then used to calibrate the contact parameters of iron ore particles. Results show angle of repose decreased exponentially with the lifting velocity, while it appeared approximately to be invariant to particle shape, for all size fractions. The sand pile highly depends on the container shape at a low lifting velocity but appears to be invariant to particle size for a high lifting velocity. And then a predictive equation is established and a very close agreement between the predicted and measured angle of repose is attained. Finally, a series of DEM simulations considering the irregular particle shape are conducted by means of sphere clump method to calibrate the contact parameters and are in good visual agreement with the experimental results, indicating the “tuned” contact parameters as well as the applicability of the predicted equation.

  1. Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact: characteristics and reactivity.

    Science.gov (United States)

    Kim, Hong-Seok; Ahn, Jun-Young; Hwang, Kyung-Yup; Kim, Il-Kyu; Hwang, Inseong

    2010-03-01

    Atmospherically stable NZVI (nanoscale zero-valent iron) particles were produced by modifying shell layers of Fe(H2) NZVI particles (RNIP-10DS) by using a controlled air contact method. Shell-modified NZVI particles were resistant to rapid aerial oxidation and were shown to have TCE degradation rate constants that were equivalent to 78% of those of pristine NZVI particles. Fe(H2) NZVI particles that were vigorously contacted with air (rapidly oxidized) showed a substantially compromised reactivity. Aging of shell-modified particles in water for one day resulted in a rate increase of 54%, implying that depassivation of the shell would play an important role in enhancing reactivity. Aging of shell-modified particles in air led to rate decreases by 14% and 46% in cases of one week and two months of aging, respectively. A series of instrumental analyses using transmission electron microscopy, X-ray diffractography, X-ray photoelectron spectroscopy, and X-ray absorption near-edge structure showed that the shells of modified NZVI particles primarily consisted of magnetite (Fe(3)O(4)). Analyses also implied that the new magnetite layer produced during shell modification was protective against shell passivation. Aging of shell-modified particles in water yielded another major mineral phase, goethite (alpha-FeOOH), whereas aging in air produced additional shell phases such as wustite (FeO), hematite (alpha-Fe(2)O(3)), and maghemite (gamma-Fe(2)O(3)).

  2. Impact of iron particles in groundwater on the UV inactivation of bacteriophages MS2 and T4.

    Science.gov (United States)

    Templeton, M R; Andrews, R C; Hofmann, R

    2006-09-01

    To investigate the impact of iron particles in groundwater on the inactivation of two model viruses, bacteriophages MS2 and T4, by 254-nm ultraviolet (UV) light. One-litre samples of groundwater with high iron content (from the Indianapolis Water Company, mean dissolved iron concentration 1.3 mg l(-1)) were stirred vigorously while exposed to air, which oxidized and precipitated the dissolved iron. In parallel samples, ethylenediaminetetra-acetic acid (EDTA) was added to chelate the iron and prevent formation of iron precipitate. The average turbidity in the samples without EDTA (called the 'raw' samples) after 210 min of stirring was 2.7 +/- 0.1 NTU while the average turbidity of the samples containing EDTA (called the 'preserved' samples) was 1.0 +/- 0.1 NTU. 'Raw' and 'preserved' samples containing bacteriophage MS2 were exposed to 254-nm UV light at doses of 20, 40, or 60 mJ (cm(2))(-1), while samples containing bacteriophage T4 were exposed to 2 or 5 mJ (cm(2))(-1), using a low pressure UV collimated beam. The UV inactivation of both phages in the 'raw' groundwater was lower than in the EDTA-'preserved' groundwater to a statistically significant degree (alpha = 0.05), due to the association of phage with the UV-absorbing iron precipitate particles. A phage elution technique confirmed that a large fraction of the phage that survived the UV exposures were particle-associated. Phages that are associated with iron oxide particles in groundwater are shielded from UV light to a measurable and statistically significant degree at a turbidity level of 2.7 NTU when the phage particle association is induced under experimental conditions. While the particle association of the phage in this study was induced experimentally, the findings provide further evidence that certain particles in natural waters and wastewaters (e.g. iron oxide particles) may have the potential to shield viruses from UV light.

  3. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils.

    Science.gov (United States)

    Katsenovich, Yelena P; Miralles-Wilhelm, Fernando R

    2009-09-01

    The longevity and reactivity of nanoscale zerovalent iron (nZVI) and palladized bimetallic particles (BNP) were evaluated in batch and column experiments for remediation of a trichloroethene (TCE)-contaminated plume within a clayey soil from Oak Ridge Reservation (ORR). Comparative studies assessing the viability of BNP and nZVI confirmed that particle behavior is severely affected by clay sediments. Surface morphology and composition analyses using SEM and SEM-energy-dispersive spectroscopy spectrum revealed particle agglomeration through the formation of clay-iron aggregates of greater mass during the early phase of the experiment. Batch study results suggest that TCE degradation in ORR clayey soil follows a pseudo-first-order kinetic model exhibiting reaction rate constants (k) of 0.05-0.24 day(-1) at varied iron-to-soil ratios. Despite high reactivity in water, BNP were less effective in the site-derived clay sediment with calculated TCE removal efficiencies of 98.7% and 19.59%, respectively. A column experiment was conducted to investigate particle longevity and indicator parameters of the TCE degradation process under flow conditions. It revealed that the TCE removal efficiency gradually declined over the course of the experiment from 86-93% to 51-52%, correlating to a progressive increase in oxidation-reduction potential (ORP) from -485 to -250 mV and pH drop from 8.2-8.6 to 7.4-7.5. The rate of nZVI deactivation reaction was found to be a first order with a k(d) value of 0.0058 day(-1). SEM images of residual nZVI revealed heavily agglomerated particles. However, despite widespread oxidation and agglomeration, particles managed to maintain some capacity for oxidation. A quantitative analysis of nZVI deactivation has the potential of predicting nZVI longevity in order to improve the design strategy of TCE remediation.

  4. Synthesis and characterization of iron nano particles for the arsenic removal in water

    International Nuclear Information System (INIS)

    Gutierrez M, O. E.

    2011-01-01

    The synthesis of iron nanoparticles for the removal of metallic ions in polluted waters has been during the last years study topic for different world organizations. This work presents a synthesis method of conditioned coal with iron nanoparticles starting from the use of leaves of pineapple crown, with the purpose of using it in arsenic removal processes in aqueous phase. For the synthesis of this material, the leaves of the pineapple crown were used like supports structure of the iron nanoparticles. First, the pyrolysis appropriate temperature was determined. For the preparation of the support material, this had contact with a ferric nitrate and hexamine solution, because the preparation of the material and the coal synthesis were realized during the pyrolysis process, where the hexamine molecules and the ferric nitrate react, causing the reduction of the iron particles and their dispersion on the support material, obtaining as product a conditioned coal with iron nanoparticles. For the characterization of the materials were used techniques as: Scanning electron microscopy, Transmission electron microscopy, X-Rays Diffraction), X-Ray photoelectron spectroscopy and Moessbauer spectroscopy; moreover was determined the isoelectric point and the density of surface sites. The arsenic sorption capacity of the materials was evaluated by means of the methodology type lots where was determined the sorption kinetics and isotherms in terms of arsenic concentration and mass. (Author)

  5. Ionic charge state distribution of helium, carbon, oxygen, and iron in an energetic storm particle enhancement

    Science.gov (United States)

    Hovestadt, D.; Klecker, B.; Hoefner, H.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1982-01-01

    An analysis is presented of the ionic charge state distribution of He, C, O and Fe in the energetic storm particle event of September 28-29, 1978. Data were obtained with the ULEZEQ electrostatic analyzer-proportional counter on board the ISEE 3 spacecraft. The He(+)/He(++) ratio between 0.4 and 1 MeV/n is shown to be significantly lower during the energetic storm particle event than during the preceding period of solar flare particle enhancement, with a temporal evolution similar to that of the Fe/He ratio as reported by Klecker et al. (1981). Increases in the mean charge state for oxygen by about 3% and for iron by about 16% are also noted. The temporal variations in charge states are accounted for in terms of first-order Fermi acceleration of the pre-existing solar flare particles by a propagating interplanetary shock wave.

  6. Internalization of annexin A5-functionalized iron oxide particles by apoptotic Jurkat cells.

    Science.gov (United States)

    van Tilborg, Geralda A F; Geelen, Tessa; Duimel, Hans; Bomans, Paul H H; Frederik, Peter M; Sanders, Honorius M H F; Deckers, Niko M; Deckers, Roel; Reutelingsperger, Chris P M; Strijkers, Gustav J; Nicolay, Klaas

    2009-01-01

    Apoptosis plays an important role in the etiology of various diseases. Several studies have reported on the use of annexin A5-functionalized iron oxide particles for the detection of apoptosis with MRI, both in vitro and in vivo. The protein annexin A5 binds with high affinity to the phospholipid phosphatidylserine, which is exposed in the outer leaflet of the apoptotic cell membrane. When co-exposed to apoptotic stimuli, this protein was shown to internalize into endocytic vesicles. Therefore in the present study we investigated the possible internalization of commercially available annexin A5-functionalized iron oxide particles (r1 = 34.0 +/- 2.1 and r2 = 205.0 +/- 10.4 mm(-1) s(-1) at 20 MHz), and the effects of their spatial distribution on relaxation rates R2*, R2 and R1. Two different incubation procedures were performed, where (1) Jurkat cells were either incubated with the contrast agent after induction of apoptosis or (2) Jurkat cells were simultaneously incubated with the apoptotic stimulus and the contrast agent. Transmission electron microscopy images and relaxation rates showed that the first incubation strategy mainly resulted in binding of the annexin A5-iron oxide particles to the cell membrane, whereas the second procedure allowed extensive membrane-association as well as a small amount of internalization. Owing to the small extent of internalization, only minor differences were observed between the DeltaR2*/DeltaR2 and DeltaR2/DeltaR1 ratios of cell pellets with membrane-associated or internalized annexin A5 particles. Only the increase in R1 (DeltaR1) appeared to be diminished by the internalization. Internalization of annexin A5-iron oxide particles is also expected to occur in vivo, where the apoptotic stimulus and the contrast agent are simultaneously present. Where the extent of internalization in vivo is similar to that observed in the present study, both T2- and T2*-weighted MR sequences are considered suitable for the detection of these

  7. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    Directory of Open Access Journals (Sweden)

    Yi Li

    2015-07-01

    Full Text Available The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  8. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  9. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective

    Directory of Open Access Journals (Sweden)

    Hedberg Yolanda

    2010-09-01

    Full Text Available Abstract Background Production of ferrochromium alloys (FeCr, master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr, ferrosiliconchromium (FeSiCr, stainless steel (316L, iron (Fe, chromium (Cr, and chromium(IIIoxide (Cr2O3, in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549. Results The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death

  10. Numerical study on iron particles behaviour injected in an argon plasma from an electric transferred arc

    Energy Technology Data Exchange (ETDEWEB)

    Douce, A.; Flour, I.

    1995-11-01

    In the scope of the Research and Development Project `Control of Plasma/Product Interaction`, the aim of this study is to analyze the behaviour of iron particles injected in an argon plasma flow from an electric transferred arc. It includes particle trajectories and, heat and mass transfer (as the particle undergoes smelting and evaporation), using a 3 dimensional Lagrangian simulation with the numerical code ESTET. The plasma flow is a result of a calculation done using Melodie, a 2 dimensional axisymmetrical software, in the scope of a modelling bath heating with plasma transferred arc. The first step consists of an analysis on the forces applied to a single particle. Simulations show that equation of motion would reduce, finally, to the sum of the drag force and the gravitational effects. In a second step, special attention is given to the effect of steep temperature gradients (across the boundary layer around the particle) on the evaluation of the plasma properties, the drag coefficient, and the heat and mass transfer coefficients. The comparison of several correlations show that the definition of the mean temperature mainly controls the calculation of plasma properties across the boundary layer around the particle.At least, several particle injection conditions are tested on four different sizes particles (50, 100, 150 et 200{mu}m), showing that the 200 {mu}m particle is the only one falling into the bath, without being completely evaporated. However, taking into account the `blow-up effect`, induced by evaporation, leads to a decrease of the heat transfer coefficient which slow down the evaporation, and then modify the conclusion made before. (authors). 18 refs., 41 figs., 5 tabs., 4 appends.

  11. Submicrometric Iron Particles for the Removal of Pharmaceuticals from Water: Application to b-Lactam Antibiotics

    International Nuclear Information System (INIS)

    Ghauch, A.; Baydoun, H.; Tuqan, M.; Ayoub, Gh.; Naim, S.

    2011-01-01

    Sub-micrometric iron particles (Fe0) and amended Fe0 (Cu0Fe0) were tested for the aqueous removal of b-lactam antibiotics. Comparative batch experiments were performed separately on aqueous solutions of dicloxacillin (DCX), cloxacillin (CLX) and oxacillin (OXA). Three different initial concentrations (1, 5 and 10 mg L-1) and four different iron loads (r = 10, 20, 40 and 53 g L-1) were tested. Furthermore, two different mixing regimes were tested: (i) non-disturbed conditions, and (ii) vortex mixing. This experimental design enabled the confirmation of the crucial role of in-situ formed iron corrosion products (Fe oxides) on the removal process. The dynamic process of Fe oxides formation induces adsorption and enmeshment (sequestration or co-precipitation) of dissolved antibiotics. Results clearly delineated the superiority of Cu0Fe0 bimetallics compared to Fe0. For example, after 4 h of contact with iron particles at r = 40 g L-1, OXA, CLX and DCX (10 mg L-1 each) disappeared to an extent of 31, 46 and 71%. However, quantitative antibiotic removal (∼ 90%) was noticed when Cu0Fe0 bimetallic was used at lesser load (r = 20 g L-1) under vortex mixing. On the other hand, non-disturbed systems showed partial removal (∼ 25%) of antibiotics over 7 h of reaction at r = 10 g L-1 (Fe0) while almost complete removals were noticed for the Cu0Fe0 bimetallic system for the same metal load and period e.g. 75, 79 and 86% removal for OXA, CLX and DCX respectively. (author)

  12. Structural, optical and photoluminescence study of nanocrystalline ...

    Indian Academy of Sciences (India)

    Undoped SnO2 thin films prepared by spray pyrolysis method reveal polycrystalline nature with prominent peaks along (110), (101) and (211) planes. All the films are nanocrystalline with particle size lying in the range of 3.14–8.6 nm calculated by DS formula. Orientation along plane (200) decreases continuously as molar ...

  13. Ecotoxicity of nanoscale zero-valent iron particles – a review

    Directory of Open Access Journals (Sweden)

    José Tomás Albergaria

    2013-11-01

    Full Text Available The use of nanoscale zero-valent iron particles (nZVIs in the environmental remediation of water and soil is increasing. This increase is related to the higher reactivity and mobility of nZVIs compared with that of macro- or micro-sized iron particles. The introduction of nZVIs into the environment raises concerns related to their fate and effect on aquatic and terrestrial biota. Knowledge of these issues will allow a better understanding not only of the remediation process but also of the long-term effects and impact of nZVIs on ecosystems, leading to a safer and more efficient application of these particles. This paper presents the current state of play concerning the toxic effects of nZVIs on organisms at different stages of the food chain. The majority of studies show that nZVIs have a negative impact on bacteria, aquatic invertebrates, such as Daphnia mag-na, terrestrial organisms, such as Eisenia fetida, and seed germination. However, the number of published studies related to this issue is clearly insufficient. This reinforces the need for further research in order to specify the toxic concentrations of nZVIs that affect the most important target organisms. Furthermore, an evaluation of the effects of the coating of nanoparticles should also be pursued

  14. Obtaining of iron particles of nanometer size in a natural zeolite

    International Nuclear Information System (INIS)

    Xingu C, E. G.

    2013-01-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  15. Oxidation and evaporation of sulfur species at atmospheric entry of iron sulfide fine particles

    Science.gov (United States)

    Isobe, H.; Murozono, K.

    2017-12-01

    Micrometeorites have the most abundant flux in current accumulation of planetary materials to the Earth. Micrometeorites are heated and reacted with upper atmosphere at atmospheric entry. Evaporation of meteoritic materials, especially sulfur species, may have environmental effect at upper atmosphere (e.g. Court and Sephton, 2011; Tomkins et al., 2016). Troilite is typical FeS phase in chondritic meteorites. In this study, quick heating and cooling experiments of FeS reagent particles were carried out with a fine particles free falling apparatus with controlled gas flow (Isobe and Gondo, 2013). Starting material reagent is inhomogeneous mixture of troilite, iron oxide and iron metal. Oxygen fugacity was controlled to FMQ +1.5 log unit. Maximum temperature of the particles was higher than 1400°C for approximately 0.5 seconds. Run products with rounded shape and smooth surface show the particles were completely melted. Chemical compositions of particles analyzed on cross sections are generally well homogenized from inhomogeneous starting materials by complete melting. Molar ratios of Fe in melted regions are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Distribution of compositions of melted regions in Fe-S-O system is plotted in liquidus compositions of FeO and FeS saturated melt. Troilite in micrometeorite is melted and oxidized by atmospheric entry. Compositions of FeS melt in fine spherules are following Fe-S-O phase relations even in a few seconds. Molar ratios of Fe in melt are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Evaporation of sulfur from meteoritic materials in atmospheric entry heating may depend on oxygen fugacity of the upper atmosphere. Sulfur supply from meteoritic materials to atmosphere may be limited on planets with oxygen

  16. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2006-03-31

    The morphological and chemical nature of ultrafine iron catalyst particles (3-5 nm diameters) during activation/FTS was studied by HRTEM, EELS, and Moessbauer spectroscopy. With the progress of FTS, the carbide re-oxidized to magnetite and catalyst activity gradually decreased. The growth of oxide phase continued and average particle size also increased simultaneously. The phase transformation occurred in a ''growing oxide core'' manner with different nano-zones. The nano-range carbide particles did not show fragmentation or attrition as generally observed in micrometer range particles. Nevertheless, when the dimension of particles reached the micrometer range, the crystalline carbide phase appeared to be sprouted on the surface of magnetite single crystal. In the previous reporting period, a design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. During the current reporting period, we have started construction of the new filtration system and began modifications to the 4 liter slurry bubble column reactor (SBCR) reactor. The system will utilize a primary wax separation device followed by a Pall Accusep or Membralox ceramic cross-flow membrane. As of this writing, the unit is nearly complete except for the modification of a moyno-type pump; the pump was shipped to the manufacturer to install a special leak-free, high pressure seal.

  17. Iron speciation of airborne subway particles by the combined use of energy dispersive electron probe X-ray microanalysis and Raman microspectrometry.

    Science.gov (United States)

    Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un

    2013-11-05

    Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.

  18. The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Khani, Omid, E-mail: omidkhani@mut-es.ac.ir [Department of Physics, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran (Iran, Islamic Republic of); Shoushtari, Morteza Zargar [Department of Physics, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran (Iran, Islamic Republic of); Ackland, Karl; Stamenov, Plamen [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland)

    2017-04-15

    An increase in microwave permeability is a prerequisite for reducing the thickness of radar absorber coatings. The aim of this paper is to increase the magnetic loss of commercial carbonyl iron particles for fabricating wideband microwave absorbers with a multilayer structure. For this purpose, carbonyl iron particles were milled and their static and dynamic magnetic properties were studied before and after milling. A distinct morphological change from spherical to flake-like particles is measured with increased milling time, whereas no distinct changes in magnetic properties are measured with increased milling time. The imaginary part of the permeability (µ'') of the milled carbonyl iron particles increased from 1.23 to 1.88 and showed a very broad peak over the entire frequency range 1–18 GHz. The experimental results were modeled using the Rousselle effective medium theory (EMT) in the Neo formulation. The theoretical predictions showed good agreement with the experimental results. Two layer absorbers were designed according to the measured microwave parameters and the multilayer design. The results revealed that a thin multilayer with a thickness of 1.75 mm can effectively absorb microwaves in both the entire X and Ku frequency bands. The results suggest that microwave absorbers with excellent absorption properties could be mass-produced, using commercial carbonyl iron particles. - Highlights: • The microwave properties of carbonyl iron particles can be controlled effectively by particles shape. • Milling process transforms the carbonyl iron particle morphology from spherical to flake-like. • No appreciable differences in the magnetic and chemical local environments were detected by means of Mossbauer spectroscopy. • The two layer design showed appropriate absorptions in a rather wide frequency range.

  19. Iron particle and anisotropic effects on mechanical properties of magneto-sensitive elastomers

    Science.gov (United States)

    Kumar, Vineet; Lee, Dong-Joo

    2017-11-01

    Rubber specimens were prepared by mixing micron-sized iron particles dispersed in room-temperature-vulcanized (RTV) silicone rubber by solution mixing. The possible correlations of the particle volume, size, and distribution with the mechanical properties of the specimens were examined. An isotropic mechanical test shows that at 60 phr, the elastic modulus was 3.29 MPa (electrolyte), 2.92 MPa (carbonyl), and 2.61 MPa (hybrid). The anisotropic effect was examined by curing the specimen under magnetic fields of 0.5-2.0 T at 90° relative to the applied strain. The measurements show anisotropic effects of 11% (carbonyl), 9% (electrolyte), and 6% (hybrid) at 40 phr and 1 T. At 80 phr, the polymer-filler compatibility factor (c-factor) was estimated using the Pythagorean theorem as 0.53 (regular) and 0.73 (anisotropic studies). The improved features could be useful in applications such as controlled damping, vibrational absorption, or automotive bushings.

  20. Identification of Mg2Cu particles in Cu-alloyed austempered ductile iron

    Science.gov (United States)

    Górny, Marcin; Tyrała, Edward; Sikora, Gabriela; Rogal, Łukasz

    2018-01-01

    In the present work, the Mg2Cu precipitates in copper-alloyed austempered ductile iron (ADI) were identified by analyzing techniques such as TEM and SEM with EDS. It was revealed that, in castings made of ADI-containing copper, highly dispersed particles of Mg2Cu are formed, whose size does not exceed TEM. In addition to this, the exhibited impact properties of castings with Cu, Ni, and Cu+Ni were also determined. This study casts a new light on the formation of the structure of Cu-alloyed ADI. The highly-dispersive and brittle Mg2Cu particles that are located in the vicinity of the graphite nodules have a negative effect on the impact properties of ADI. It has also been shown that impact strength decreases from levels of 160-180 J (for copper-free ADI) to 90-120 J (for copper-and copper-nickel-alloyed ADI).

  1. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO{sub 2} based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaohua, E-mail: mksxh@163.com; Zhou, Xin; Xu, Yalong; Sun, Panpan; Huang, Niu; Sun, Yihua

    2015-05-15

    Graphical abstract: - Highlights: • Mixed P25 nanoparticles and large rutile particles were employed to form a top scattering layer. • The top scattering layer exhibits superior light scattering effect. • The bottom nanocrystalline TiO{sub 2} layer can make good use of the back-scattered light. • Bilayer TiO{sub 2} photoanode shows faster interfacial electron transfer and slower charge recombination process. • Bilayer photoanode enhances the DSSC efficiency by a factor of 25%. - Abstract: Herein, we report a bilayer TiO{sub 2} photoanode composed of nanocrystalline TiO{sub 2} (NCT) bottom layer and mixed P25 nanoparticles and large rutile particles (PR) top scattering layer. The present structure performs well in solar light harvesting which is mainly attributed to the fact that the top scattering layer exhibits superior light scattering effect and meanwhile the NCT bottom layer with large dye-loading capacity can make better use of the back-scattered light. Moreover, electrochemical impedance spectroscopy and open circuit voltage decay measurements demonstrate that DSSC based on bilayer photoanode shows faster interfacial electron transfer and slower charge recombination process than that based on NCT monolayer photoanode. These advantages render the DSSCs based on NCT-PR bilayer photoanode exhibiting superior performance under AM1.5G simulated solar irradiation. As an example, by tuning mass ratio between P25 nanoparticles and large rutile particles in the top scattering layer, the DSSC based on NCT-PR bilayer photoanode exhibits an optimum solar energy conversion efficiency of 9.0%, which is about 1.25 times higher than that of monolayer NCT device (7.2%) with the same film thickness.

  2. Nanocrystalline titanium characteristics obtained through cryogenic and high energy milling

    International Nuclear Information System (INIS)

    Rojas, P; Zuniga, A; Lavernia, E.J

    2008-01-01

    The microstructure and changes in chemical composition of Ti powders produced by cryogenic milling (modified Atritor) and by high energy milling (Spex mill) were investigated. The effect of high energy milling and cryomilling parameters, such as milling time and ball to powder ratio (BPR), on the particle size, grain size, chemistry, and structure of Ti powders were investigated using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The experimental results show that Ti powders with a grain size of approximately 20 nm (nanocrystalline) can be produced using the cryomilling technique. The average particle size increased initially with milling time from the original 55 μm to a maximum value of 125 after milling for 2 hours, and then decreased to 44μm after milling for 8 hours. Both the average particle size and the grain size decreased as the BPR increased. The results using Spex mill show that the particle size and grain size both decreased as the milling time increased. The oxygen, nitrogen and iron content of the powders increased with the milling time (au)

  3. Synthesis, Characterization and Reactivity of Nanostructured Zero-Valent Iron Particles for Degradation of Azo Dyes

    Science.gov (United States)

    Mikhailov, Ivan; Levina, Vera; Leybo, Denis; Masov, Vsevolod; Tagirov, Marat; Kuznetsov, Denis

    Nanostructured zero-valent iron (NSZVI) particles were synthesized by the method of ferric ion reduction with sodium borohydride with subsequent drying and passivation at room temperature in technical grade nitrogen. The obtained sample was characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering studies. The prepared NSZVI particles represent 100-200nm aggregates, which consist of 20-30nm iron nanoparticles in zero-valent oxidation state covered by thin oxide shell. The reactivity of the NSZVI sample, as the removal efficiency of refractory azo dyes, was investigated in this study. Two azo dye compounds, namely, orange G and methyl orange, are commonly detected in waste water of textile production. Experimental variables such as NSZVI dosage, initial dye concentration and solution pH were investigated. The kinetic rates of degradation of both dyes by NSZVI increased with the decrease of solution pH from 10 to 3 and with the increase of NSZVI dosage, but decreased with the increase of initial dye concentration. The removal efficiencies achieved for both orange G and methyl orange were higher than 90% after 80min of treatment.

  4. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique

    Directory of Open Access Journals (Sweden)

    karina Donadel

    2009-06-01

    Full Text Available Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP were coated with hydroxyapatite (HAp by spray-drying using two IOMP/HAp ratios (0.7 and 3.2. The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction. The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.As partículas de óxido de ferro têm sido extensivamente usadas em diagnósticos médicos como agente de contraste para imagem por ressonância magnética e na terapia do câncer, dentre estas, liberação de fármacos em sitos alvos e hipertermia magnética. Neste estudo nós reportamos a preparação e caracterização de partículas magnéticas de óxido de ferro revestidas com a biocerâmica hidroxiapatita. As partículas magnéticasde óxido de ferro (PMOF foram revestidas com hidroxiapatita por spray-drying usando duas razões PMOF/HAp (0,7 e 3,2. As partículas magnéticas foram caracterizadas por microscopia eletrônica de varredura, energia dispersiva de raios X, difração de raios X, espectroscopia de absorção no infra

  5. Atherosclerotic imaging using 4 types of superparamagnetic iron oxides: New possibilities for mannan-coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Keiko, E-mail: keikot@belle.shiga-medac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Nitta, Norihisa, E-mail: r34nitta@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Sonoda, Akinaga, E-mail: akinagasonoda@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Otani, Hideji, E-mail: otani@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Takahashi, Masashi, E-mail: masashi@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Murata, Kiyoshi, E-mail: murata@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Shiomi, Masashi, E-mail: ieakusm@med.kobe-u.ac.jp [Institute for Experimental Animals, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Tyuoku, Kobe, Hyogo 650-0017 (Japan); Tabata, Yasuhiko, E-mail: yasuhiko@frontier.kyoto-u.ac.jp [Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Syogoin-Kawahara-cho, Sakyoku, Kyoto 606-8507 (Japan); Nohara, Satoshi, E-mail: s-nohara@meito-sangyo.co.jp [The Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Nishibiwajima-cho, Kiyosu, Aichi 452-0067 (Japan)

    2013-11-01

    Purpose: We used magnetic resonance imaging (MRI) and histologic techniques to compare the uptake by the rabbit atherosclerotic wall of 4 types of superparamagnetic iron oxide (SPIO) particles, i.e. SPIO, mannan-coated SPIO (M-SPIO), ultrasmall SPIO (USPIO), and mannan-coated USPIO (M-USPIO). Materials and methods: All experimental protocols were approved by our institutional animal experimentation committee. We intravenously injected 12 Watanabe heritable hyperlipidemic rabbits with one of the 4 types of SPIO (0.8 mmol Fe/kg). Two other rabbits served as the control. The rabbits underwent in vivo contrast-enhanced magnetic resonance angiography (MRA) before- and 5 days after these injections; excised aortae were subjected to in vitro MRI. In the in vivo and in vitro studies we assessed the signal intensity of the vessels at identical regions of interest (ROI) and calculated the signal-to-noise ratio (SNR). For histologic assessment we evaluated the iron-positive regions in Prussian blue-stained specimens. Results: There were significant differences in iron-positive regions where M-USPIO > USPIO, M-SPIO > SPIO, USPIO > SPIO (p < 0.05) but not between M-USPIO and M-SPIO. The difference between the pre- and post-injection SNR was significantly greater in rabbits treated with M-USPIO than USPIO and in rabbits injected with M-SPIO than SPIO (p < 0.05). On in vitro MRI scans SNR tended to be lower in M-USPIO- and M-SPIO- than USPIO- and SPIO-treated rabbits (p < 0.1). Conclusion: Histologic and imaging analysis showed that mannan-coated SPIO and USPIO particles were taken up more readily by the atherosclerotic rabbit wall than uncoated SPIO and USPIO.

  6. Pyrene Removal from Contaminated Soils by Modified Fenton Oxidation Using Iron Nano Particles

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2013-07-01

    Full Text Available Background:The problems related to conventional Fenton oxidation, including low pH required and production of considerable amounts of sludge have led researchers to investigate chelating agents which might improve the operating range of pH and the use of nano iron particle to reduce the excess sludge. The pyrene removal from contaminated soils by modified Fenton oxidation at neutral pH was defined as the main objective of the current study.Methods:Varying concentrations of H2O2 (0-500 mM and iron nano oxide (0-60 mM, reaction times of 0.5-24 hours and variety of chelating agents including sodium pyrophosphate, sodium citrate, ethylene diamine tetraacetic, fulvic and humic acid were all investigated at pyrene concentration levels of 100 – 500 mg/kg.Results:By applying the following conditions (H2O2 concentration of 300 mM, iron nano oxide of 30 mM, sodium pyrophosphate as chelating agent, pH 3 and reaction time of 6 hours the pyrene removal efficiency at an initial concentration of 100 mg/kg was found to be 99%. As a result, the pyrene concentration was reduced from 100 to 93 mg/kg once the above optimum conditions are met.Conclusions:In this research, the modified Fenton oxidation using iron nano oxide at optimum conditions is introduced as an efficient alternative method in lab scale for chemical remediation or pre-treatment of soils contaminated by pyrene at neutral pH.

  7. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    Science.gov (United States)

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.

  8. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  9. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  10. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Acuña, Melissa [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States); Maldonado-Camargo, Lorena [University of Florida, Department of Chemical Engineering (United States); Dobson, Jon; Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2016-09-15

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle–cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  11. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    International Nuclear Information System (INIS)

    Cruz-Acuña, Melissa; Maldonado-Camargo, Lorena; Dobson, Jon; Rinaldi, Carlos

    2016-01-01

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle–cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  12. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet

    International Nuclear Information System (INIS)

    Xu, Yonggang; Zhang, Deyuan; Cai, Jun; Yuan, Liming; Zhang, Wenqiang

    2013-01-01

    Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1–18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum −11.85 dB at 1.5 mm and −15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band. - Highlights: ► The added GP increased the permittivity and permeability of composites filled with CIPs. ► The enhancement was owing to interactions of the two absorbents and the fabrication process. ► The coating process decreased the effective eccentricity of the particles, and increased the conductivity of the composites. ► The composites to which CIPs/GP were added in coating process had excellent absorbing properties in the L-band.

  13. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  14. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor

  15. The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles

    Science.gov (United States)

    Mohamad, N.; Mazlan, S. A.; Ubaidillah; Choi, Seung-Bok; Nordin, M. F. M.

    2016-09-01

    This paper presents dynamic viscoelastic properties of magnetorheological (MR) grease under variation of magnetic fields and magnetic particle fractions. The tests to discern the field-dependent properties are undertaken using both rotational and oscillatory shear rheometers. As a first step, the MR grease is developed by dispersing the carbonyl iron (CI) particles into grease medium with a mechanical stirrer. Experimental data are obtained by changing the magnetic field from 0 to 0.7 T at room temperature of 25 °C. It is found that a strong Payne effect limits the linear viscoelastic region of MR grease at strains above 0.1%. The results exhibit a high dynamic yield stress which is equivalent to Bingham plastic rheological model, and show relatively good MR effect at high shear rate of 2000 s-1. In addition, high dispersion of the magnetic particles and good thermal properties are proven. The results presented in this work directly indicate that MR grease is a smart material candidate that could be widely applicable to various fields including vibration control.

  16. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M.W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  17. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  18. Experimental Study of MR Suspensions of Carbonyl Iron Powders with Different Particle Sizes

    Science.gov (United States)

    Bombard, A. J. F.; Alcântara, M. R.; Knobel, M.; Volpe, P. L. O.

    Magnetorheological suspensions (MRS) based on mixtures of two commercial carbonyl iron powders (BASF grades CL and SU) as magnetic phase and hydrocarbon oil as liquid phase were prepared. CL and SU are both soft magnetic powders, but CL is a coarse powder, while SU is a fine one. The total mass fraction of iron was 80% w/w each formulation. Hydrophilic fumed silica (5% w/w of Aerosil® 200) was used to reduce the settling. The mixing ratios were: CL 0%, CL 20%, CL 40%, CL 60%, CL 80% and CL 100%. A MRS, the mixture CL 80%, showed considerable reduction of the plastic viscosity without field, in the range of 100 - 500 s-1, when compared to the MRS with just one powder. The yield stress values under applied field H ~ 340 kA/m were: 18.1 kPa for the MRS CL 0%, 18.3 kPa for the MRS's CL 20% and CL 40%, 20.0 kPa for the MRS CL 60%, 22.3 kPa for the MRS CL 80% and 23.3 kPa for the MRS CL 100%, respectively. For comparison, a sample of commercial MRF-132LD (Lord Corp.) in the same conditions showed yield value of 21.2 ± 0.6 kPa. On the other hand, another MRS, CL 60%, showed an increment of ~ 33% on the normal force, with relation to the MRS prepared with just CL or just SU powders, above 150 kA/m. Therefore, mixing carbonyl iron powders with different particle sizes can improve the performance of MRS, decreasing the 'off' plastic viscosity, and increasing the MR effect.

  19. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Ambros J. [Technical University of Munich (TUM), Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J. [Technical University of Munich, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga [TUM, Munich, Department of Hematology/Oncology, Klinikum rechts der Isar, Munich (Germany); Piontek, Guido; Schlegel, Juergen [TUM, Munich, Division of Neuropathology, Institute of Pathology, Klinikum rechts der Isar, Munich (Germany)

    2008-06-15

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8{sup +} T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  20. Stabilization of Iron (MicroParticles with Polyhydroxybutyrate for In Situ Remediation Applications

    Directory of Open Access Journals (Sweden)

    Laura Chronopoulou

    2016-12-01

    Full Text Available Groundwater is an extremely important resource that may, however, contain a variety of toxic and bioaccumulative contaminants. Traditional “Pump and Treat” technologies for treating contaminated groundwater are no longer time- or cost-effective; therefore, new technologies are needed. In this work, we synthesized core–shell materials of micrometric dimensions based on the interaction of iron particles (the core and fermentable biopolymers such as polyhydroxybutyrate (PHB, the surrounding shell to be used in permeable reactive barriers for the removal of chlorinated pollutants from contaminated groundwater. The materials were prepared by precipitation techniques that allowed stable preparations to be obtained, whose chemico-physical properties were thoroughly characterized by scanning electron microscopy, porosimetry, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analyses, disc centrifuge analysis, and dynamic light scattering. The properties of the prepared materials are very promising, and may enhance the performance of permeable reactive barriers towards chlorinated compounds.

  1. The visible spectroscopy of iron oxide minerals in dust particles from ice cores on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Guangjian Wu

    2016-03-01

    Full Text Available Goethite (Gt and hematite (Hm are the most abundant forms of iron oxides in dust and the major light absorbers in the shortwave spectrum in air and snow. Diffuse reflectance spectrometry was performed to investigate the reflectance spectra of goethite and hematite in dust particles from ice cores, aerosol samples and glacier cryoconite on the northern and central Tibetan Plateau. The results showed that two peaks in the first derivative value of the spectra at 430 and 560 nm were determined to be goethite and hematite, respectively. The high iron content samples have a higher first derivative value, and prominent and much more distinct peaks for Hm and Gt. We propose that the strength of the Hm and Gt peaks may probe the iron content, and then in our samples hematite has a stronger correlation than goethite. However, when the iron content reaches a threshold, the iron oxides have little or no impact on the reflectance spectra. The fine fraction of glacier dust has a greater abundance of iron, and the first derivative values of hematite are higher than goethite, indicating that hematite might be concentrated in the fine fraction. The distinguishable differences in the Hm/Gt ratio among these ice core samples and other aerosol data indicate the regional to continental difference in composition, which can be used to simplify the iron oxides in snow radiation models.

  2. Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency.

    Science.gov (United States)

    Velimirovic, Milica; Auffan, Melanie; Carniato, Luca; Micić Batka, Vesna; Schmid, Doris; Wagner, Stephan; Borschneck, Daniel; Proux, Olivier; von der Kammer, Frank; Hofmann, Thilo

    2018-03-15

    Milled zerovalent iron (milled ZVI) particles have been recognized as a promising agent for groundwater remediation because of (1) their high reactivity with chlorinated aliphatic hydrocarbons, organochlorine pesticides, organic dyes, and a number of inorganic contaminants, and (2) a possible greater persistance than the more extensively investigated nanoscale zerovalent iron. We have used laboratory-scale batch degradation experiments to investigate the effect that hydrogeochemical conditions have on the corrosion of milled ZVI and on its ability to degrade trichloroethene (TCE). The observed pseudo first-order degradation rate constants indicated that the degradation of TCE by milled ZVI is affected by groundwater chemistry. The apparent corrosion rates of milled ZVI particles were of the same order of magnitude for hydrogeochemical conditions representative for two contaminated field sites (133-140mmolkg -1 day -1 , indicating a milled ZVI life-time of 128-135days). Sulfate enhances milled ZVI reactivity by removing passivating iron oxides and hydroxides from the Fe 0 surface, thus increasing the number of reactive sites available. The organic matter content of 1.69% in the aquifer material tends to suppress the formation of iron corrosion precipitates. Results from scanning electron microscopy, X-ray diffraction, and iron K-edge X-ray adsorption spectroscopy suggest that the corrosion mechanisms involve the partial dissolution of particles followed by the formation and surface precipitation of magnetite and/or maghemite. Numerical corrosion modeling revealed that fitting iron corrosion rates and hydrogen inhibitory terms to hydrogen and pH measurements in batch reactors can reduce the life-time of milled ZVI particles by a factor of 1.2 to 1.7. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Corrosion and magnetic properties of encapsulated carbonyl iron particles in aqueous suspension by inorganic thin films for magnetorheological finishing application

    Science.gov (United States)

    Esmaeilzare, Amir; Rezaei, Seyed Mehdi; Ramezanzadeh, Bahram

    2018-04-01

    Magnetorheological fluid is composed of micro-size carbonyl iron (CI) particles for polishing of optical substrates. In this paper, the corrosion resistance of carbonyl iron (CI) particles modified with three inorganic thin films based on rare earth elements, including cerium oxide (CeO2), lanthanum oxide (La2O3) and praseodymium oxide (Pr2O3), was investigated. The morphology and chemistry of the CI-Ce, CI-Pr and CI-La particles were examined by high resolution Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of CI particles in aquatic environment. In addition, the Vibrating Sample Magnetometer (VSM) technique was utilized for determination of magnetic saturation properties of the coated particles. Afterwards, gas pycnometry and contact angle measurement methods were implemented to evaluate the density and hydrophilic properties of these particles. The results showed that deposition of all thin films increased the hydrophilic nature of these particles. In addition, it was observed that the amount of magnetic saturation properties attenuation for Pr2O3 and La2O3 films is greater than the CeO2 film. The EIS and polarization tests results confirmed that the CI-Ce had the maximum corrosion resistant among other samples. In addition, the thermogravimetric analysis (TGA) showed that the ceria coating provided particles with enhanced surface oxidation resistance.

  4. In-situ Lead Removal by Iron Nano Particles Coated with Nickel

    Directory of Open Access Journals (Sweden)

    Mohammadreza Fadaei-tehrani

    2016-01-01

    Full Text Available This study investigates the potential of nano-zero-valent iron particles coated with nickel in the removal of lead (Pb2+ from porous media. For this purpose, the nano-particles were initially synthesized and later stablilized using the strach biopolymer prior to conducting batch and continuous experiments. The results of the batch experiments revealed that the reaction kinetics fitted well with the pseudo-first-order adsorption model and that the reaction rate ranged from 0.001 to 0.035 g/mg/min depending on solution pH and the molar ratio of Fe/Pb. Continuous experiments showed that lead remediation was mostly influenced not only by seepage velocity but also by the quantity and freshness of nZVI as well as the grain type of the porous media. Maximum Pb2+ removal rates obtained in the batch and lab models were 95% and 80%, respectively. Based on the present study, S-nZVI may be suggested as an efficient agent for in-situ remediation of groundwater contaminated with lead.

  5. Effects of plasma parameters and collection region on synthesis of iron and nickel aluminide composite particles during thermal plasma processing

    Science.gov (United States)

    Suresh, K.; Selvarajan, V.

    2010-02-01

    Iron and Nickel aluminide composite particles were synthesized by non-transferred DC plasma spray torch at atmospheric pressure. Irregular shaped ball milled, micron sized powders were fed in to the plasma flame using argon as carrier gas. The particles got molten and vaporized. The vapour condensed on the walls of the reaction chamber and nanoparticles were formed. The molten particles got spheroidized due to surface tension forces. Powders as formed were collected in the plasma reactor at three different sections (Section A, B and C). These powder particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size and morphology of the composite particles strongly varied depending on the processing parameters and collection region. The results were discussed.

  6. Soluble iron modulates iron oxide particle-induced inflammatory responses via prostaglandin E2 synthesis: In vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Mayer Paula

    2009-12-01

    Full Text Available Abstract Background Ambient particulate matter (PM-associated metals have been shown to play an important role in cardiopulmonary health outcomes. To study the modulation of PM-induced inflammation by leached off metals, we investigated intracellular solubility of radio-labeled iron oxide (59Fe2O3 particles of 0.5 and 1.5 μm geometric mean diameter. Fe2O3 particles were examined for the induction of the release of interleukin 6 (IL-6 as pro-inflammatory and prostaglandin E2 (PGE2 as anti-inflammatory markers in cultured alveolar macrophages (AM from Wistar Kyoto (WKY rats. In addition, we exposed male WKY rats to monodispersed Fe2O3 particles by intratracheal instillation (1.3 or 4.0 mg/kg body weight to examine in vivo inflammation. Results Particles of both sizes are insoluble extracellularly in the media but moderately soluble in AM with an intracellular dissolution rate of 0.0037 ± 0.0014 d-1 for 0.5 μm and 0.0016 ± 0.0012 d-1 for 1.5 μm 59Fe2O3 particles. AM exposed in vitro to 1.5 μm particles (10 μg/mL for 24 h increased IL-6 release (1.8-fold; p 2 synthesis (1.9-fold; p 2 synthesis (2.5-fold, p 2 synthesis by indomethacin caused a pro-inflammatory phenotype as noted by increased IL-6 release from AM exposed to 0.5 μm particles (up to 3-fold; p Conclusions Fe2O3 particle-induced neutrophilic inflammatory response in vivo and pro-inflammatory cytokine release in vitro might be modulated by intracellular soluble iron via PGE2 synthesis. The suppressive effect of intracellular released soluble iron on particle-induced inflammation has implications on how ambient PM-associated but soluble metals influence pulmonary toxicity of ambient PM.

  7. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodwill, Patrick [University of California, Dept. of Bioengineering, Berkeley, CA (United States); Konkle, Justin; Lu, Kuan; Zheng, Bo [UC Berkeley (UCSF), Joint Graduate Group in Bioengineering, CA (United States); Conolly, Steven [University of California, Berkeley Bioengineering, Electrical Engineering, and Computer Science, CA (United States)

    2014-07-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  8. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    International Nuclear Information System (INIS)

    Goodwill, Patrick; Konkle, Justin; Lu, Kuan; Zheng, Bo; Conolly, Steven

    2014-01-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  9. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  10. Structural and Mössbauer studies of nanocrystalline Mn{sup 4+}-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} particles prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hishammw@squ.edu.om; Al-Mabsali, F. N.; Al-Hajri, F. S. [Sultan Qaboos University, Physics Department, College of Science (Oman); Khalifa, N. O. [University of Khartoum, Physics Department, Faculty of Science (Sudan); Gismelseed, A. M.; Al-Rawas, A. D.; Elzain, M.; Yousif, A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2016-12-15

    The structure and magnetic properties of spinel-related Mn{sup 4+}-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} nanocrystalline particles of the composition Li{sub 0.5}Fe{sub 2.25}Mn{sub 0.1875}O{sub 4}, prepared by milling a pristine sample for different times, were investigated. The average crystallite and particle size, respectively, decreased form ∼40 nm to ∼10 nm and ∼2.5 μm to ∼10 nm with increasing milling time from 0 h to 70 h. Rietveld refinement of the XRD data of the non-milled sample show the Mn{sup 4+} dopant ions to substitute for Fe{sup 3+} at the octahedral B-sites of the spinel-related structure. The Mössbauer spectra of the milled ferrites indicate that more particles turn superparamagnetic with increasing milling time. The Mössbauer data collected at 78 K suggest that while in the non-milled sample the Mn{sup 4+} ions substitute for Fe{sup 3+} at the octahedral B-sites, this is reversed as milling proceeds with doped Mn{sup 4+} ions, balancing Fe{sup 3+} vacancies and possibly Li{sup +} ions progressively migrate to the tetrahedral A-sites. This is supported by the slight increase observed in the magnetization of the milled samples relative to that of the non-milled one. The magnetic data suggest that in addition to the increasing superparamagentic component of the milled particles, thermal spin reversal and/or spin canting effects are possible at the surface layers of the nanoparticles.

  11. Soluble Iron in Alveolar Macrophages Modulates Iron Oxide Particle-Induced Inflammatory Response via Prostaglandin E2 Synthesis

    Science.gov (United States)

    Ambient particulate matter (PM)-associated metals have been shown to play an important role in cardiopulmonary health outcomes. To study the modulation of inflammation by PM-associated soluble metal, we investigated intracellular solubility of radiolabelled iron oxide (59

  12. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    Science.gov (United States)

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles.

    Science.gov (United States)

    Boparai, Hardiljeet K; Joseph, Meera; O'Carroll, Denis M

    2011-02-15

    Nano zerovalent iron (nZVI) is an effective adsorbent for removing various organic and inorganic contaminants. In this study, nZVI particles were used to investigate the removal of Cd(2+) in the concentration range of 25-450 mg L(-1). The effect of temperature on kinetics and equilibrium of cadmium sorption on nZVI particles was thoroughly examined. Consistent with an endothermic reaction, an increase in the temperature resulted in increasing cadmium adsorption rate. The adsorption kinetics well fitted using a pseudo second-order kinetic model. The calculated activation energy for adsorption was 54.8 kJ mol(-1), indicating the adsorption process to be chemisorption. The intraparticle diffusion model described that the intraparticle diffusion was not the only rate-limiting step. The adsorption isotherm data could be well described by the Langmuir as well as Temkin equations. The maximum adsorption capacity of nZVI for Cd(2+) was found to be 769.2 mg g(-1) at 297 K. Thermodynamic parameters (i.e., change in the free energy (ΔG(o)), the enthalpy (ΔH(o)), and the entropy (ΔS(o))) were also evaluated. The overall adsorption process was endothermic and spontaneous in nature. EDX analysis indicated the presence of cadmium ions on the nZVI surface. These results suggest that nZVI could be employed as an efficient adsorbent for the removal of cadmium from contaminated water sources. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection

    International Nuclear Information System (INIS)

    Wu Yihang; Song Mengjie; Zhang Xiaoqing; Zhang Yu; Wang Chunyu; Gu Ning; Xin Zhuang; Li Suyi

    2011-01-01

    Dimercaptosuccinic acid (DMSA) modified ultra-small particles of iron oxide (USPIO) were synthesized through a two-step process. The first step: oleic acid (OA) capped Fe 3 O 4 (OA-USPIO) were synthesized by a novel oxidation coprecipitation method in H 2 O/DMSO mixing system, where DMSO acts as an oxidant simultaneously. The second step: OA was replaced by DMSA to obtain water-soluble nanoparticles. The as-synthesized nanoparticles were characterized by TEM, FTIR, TGA, VSM, DLS, EDS and UV-vis. Hydrodynamic sizes and Peroxidase-like catalytic activity of the nanoparticles were investigated. The hydrodynamic sizes of the nanoparticles (around 24.4 nm) were well suited to developing stable nanoprobes for bio-detection. The kinetic studies were performed to quantitatively evaluate the catalytic ability of the peroxidase-like nanoparticles. The calculated kinetic parameters indicated that the DMSA-USPIO possesses high catalytic activity. Based on the high activity, immunohistochemical experiments were established: using low-cost nanoparticles as the enzyme instead of expensive HRP, Nimotuzumab was conjugated onto the surface of the nanoparticles to construct a kind of ultra-small nanoprobe which was employed to detect epidermal growth factor receptor (EGFR) over-expressed on the membrane of esophageal cancer cell. The proper sizes of the probes and the result of membranous immunohistochemical staining suggest that the probes can be served as a useful diagnostic reagent for bio-detection.

  15. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation

    Directory of Open Access Journals (Sweden)

    Min-Hee Jang

    2014-12-01

    Full Text Available Objectives Nanoscale zero-valent iron (nZVI particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Methods Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. Results The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. Conclusions In this regard, the primary focus of future study should be on 1 the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2 assessing their potential environmental risks using in situ field scale applications.

  16. Synthesis and Characterization of Nanocrystalline Hydroxyapatite by Combustion Method

    International Nuclear Information System (INIS)

    Yin Thu Aye; Su Su Hlaing; Phyu Sin Khaing Oo; Khin Lay Thwe; Nwe Ni Khin

    2011-12-01

    Among various biocompatible materials hydroxyapatite (HAP) is widely used in medical applications.As nanocrystalline Hydroxyapatite is similar in composition and crystal structure of natural bone it can be used as temporary substitute materials for human bone. A simple combustion technique for synthesizing nanocrystalline hydroxyapatite powder from eggshell has been carried out. The resulting powder was characterized using XRD, SEM and FESEM measurements. The particle size was calculated by Debye-Scherrer equation using XRD data. The range of size of resultant HAP powder was between 23nm-75nm. The average particle size was 34 nm.

  17. Multi-scale three-dimensional characterization of iron particles in dusty olivine: Implications for paleomagnetism of chondritic meteorites

    DEFF Research Database (Denmark)

    Einsle, Joshua F.; Harrison, Richard J.; Kasama, Takeshi

    2016-01-01

    Dusty olivine (olivine containing multiple sub-micrometer inclusions of metallic iron) in chondritic meteorites is considered an ideal carrier of paleomagnetic remanence, capable of maintaining a faithful record of pre-accretionary magnetization acquired during chondrule formation. Here we show how......-dimensional (3D) volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including...... axes of the particles and the remanence vector imparted in different fields. Although the orientation of the vortex core is determined largely by the ellipsoidal geometry (i.e., parallel to the major axis for prolate ellipsoids and parallel to the minor axis for oblate ellipsoids), the core...

  18. Growth of a brittle crack (001) in 3D bcc iron crystal with a Cu nano-particle

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr; Červená, Olga

    2014-01-01

    Roč. 83, February (2014), s. 229-234 ISSN 0927-0256 R&D Projects: GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : brittle crack extension * 3D * mode I * bcc iron * Cu nano-particle * molecular dynamics * acoustic emission Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927025613006575

  19. Non-monotonic size dependence of the elastic modulus of nanocrystalline ZnO embedded in a nanocrystalline silver matrix

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Vinod; Ghosh, Shankar; Gohil, Smita; Kulkarni, Nilesh; Ayyub, Pushan [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai-400005 (India)

    2008-08-27

    We present the first high pressure Raman study of nanocrystalline ZnO with different average crystallite sizes. The problem of low Raman signals from nanometer-sized particles was overcome by forming a nanocomposite of Ag and ZnO nanoparticles. The presence of the nanodispersed Ag particles leads to a substantial surface enhancement of the Raman signal from ZnO. We find that the elastic modulus of nanocrystalline ZnO shows a non-monotonic dependence on the crystallite size and suggest that the non-monotonicity arises from an interplay between the elastic properties of the individual grains and the intergranular region.

  20. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  1. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret

    2015-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...... to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMWPAHs was highest in the Particulate fractions (particles N 0.7 μm). The highest concentration of PAHs in the Colloidal...... fraction was found in the sample with occurrence of small nano-sized particles (b10 nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. © 2015 Elsevier B.V. All...

  2. Magnetic properties of nanocrystalline pyrrhotite prepared by high-energy milling

    DEFF Research Database (Denmark)

    Balaz, P.; Godocikova, E.; Alacova, A.

    2004-01-01

    The nanocrystalline pyrrhotite was prepared by high-energy milling of lead sulphide with elemental Fe acting as reducing element. X-ray diffractometry, Mossbauer spectroscopy and VSM magnetometry were used to determine the properties of nanocrystalline iron sulphide prepared by the corresponding...... mechanochemical reaction. Pyrrhotite Fe1-xS together with the residual Fe metal were identified by the X-ray diffractometry. The kinetic studies performed by Mossbauer spectroscopy and VSM magnetometry allowed us to follow in more details the progress of the nanocrystalline magnetic phase formation during...

  3. Humic Acid Adsorption Onto Iron Oxide Magnetic Nano Particles in Aquious Solution

    Directory of Open Access Journals (Sweden)

    Maryam Foroghi

    2013-12-01

    Full Text Available Background & Objectives: Humic Acid (HA compounds affects water quality, such as color, taste and odor. The compounds not only react with disinfectants to produce disinfection by-products (DBPs harmful to human health. Iron oxide magnetic nanoparticles (MNPs have a high adsorption capacity to adsorb to organic matter. In this study HA removal by IOMNPs was surveyed in aqueous solutions. Methods:  The effects of pH value, agitation rate, adsorbent dose, contact time and the adsorbate concentration on the adsorption efficiency were studied as critical parameters. In addition, effect of ionic strength on the adsorption process and effluent turbidity was surveyed. The MNPs was characterized by X-ray diffraction. Results: Results revealed that at HA concentration of 10 mg/L, pH 4.5, adsorbent dose of 2.7 g/l, agitation rate of 250 rpm and contact time of 90 min at presence of 0.1 M NaCl as an ionic strength agent, the HA removal reached to about 98%. Also, the turbidity of treated samples was increased with increasing of HA loading. On the other hand, increases of ionic strength resulting in increase of removal efficiency and decrees of effluent turbidity. Conclusion: With increasing HA concentration, adsorption capacity of MNPs was increased and HA removal efficiency was decreased. Increasing of ionic strength leads to increase of removal efficiency and decrease of nano particles release. MNPs are easily attracted to the magnetic field application leads to easy separation from aquatic environment.

  4. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX

    Digital Repository Service at National Institute of Oceanography (India)

    Martin, P.; Loeff, M.M.R. van der.; Cassar, N.; Vandromme, P.; d'Ovidio, F.; Stemmann, L.; Rengarajan, R.; Soares, M.A.; Gonzalez, H.E.; Ebersbach, F.; Lampitt, R.S.; Sanders, R.; Barnett, B.A.; Smetacek, V.; Naqvi, S.W.A.

    for particulate 234Th is to total 238U in the water sample. [19] Since In- and Out-patch 234Th measurements did not differ, they were not affected by dilution. 2.5. Sediment Traps [20] Neutrally buoyant PELAGRA traps [Lampitt et al., 2008b] were deployed inside... on the conductivity- temperature-depth downcast [Picheral et al., 2010]. Custom software calculates equivalent spherical diameter (ESD) and volume of all particles ≥100 μm and classes particles ≥ 630 μm ESD as either aggregates, fecal sticks/pellets, or live...

  5. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    Science.gov (United States)

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  6. Abrasive wear behaviour of electrodeposited nanocrystalline materials

    Science.gov (United States)

    Jeong, Daehyun

    The effect of grain size refinement on the abrasive wear behaviour of nanocrystalline Ni, Ni-P and Co electrodeposits and the critical materials properties that influence the abrasive wear resistance were studied using the Taber wear test. As the grain size of Ni decreased from 90 mum to 13 nm, the dominant abrasive wear mode changed from ploughing to cutting and the Taber wear resistance was considerably improved by the increases in hardness and surface elastic properties. The abrasive wear behaviour of Ni with various grain sizes can be described using the attack angle model, which takes into consideration the randomly dispersed Al2O3 abrasive particles in the Taber wheel with various sizes, shapes and orientations. Depending on the phosphorus content, the nickel-phosphorus (Ni-P) alloys containing up to 6 wt.% P had nanocrystalline or mixed nanocrystalline-amorphous structures and both regular and inverse Hall-Petch behaviour were observed as a result of the microstructural changes with increasing P content/decreasing grain size. The wear resistance, like hardness, followed the Hall-Petch type behaviour, demonstrating that the smallest grain size does not necessarily provide the best wear resistance. For all Ni-P alloys, the wear resistance was improved by heat treatment due to Ni3P precipitates and, for materials with high P content, nanocrystallization of the amorphous phase. For heat-treated Ni-P alloys, however, the highest hardness did not give the best wear resistance. Despite the grain size reduction of Co from 10 mum to 17 nm, there was no significant change in the wear resistance due to the unusually high degree of plastic deformation of the nanocrystalline material. In addition to hardness and surface elastic properties which are usually considered important material properties that control the abrasive wear resistance, Taber wear ductility was introduced as a new material intrinsic property which can be applied to explain abrasive wear resistance for

  7. Study on dry friction and wear resistance of a WC-Co particle reinforced iron matrix composite material

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-05-01

    Full Text Available In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45 # steel > μHigh chromium cast iron/45 # steel > μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.

  8. Sintering and deformation of nanocrystalline ceramics

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hofler, H.J.; Logas, J.

    1991-01-01

    Nanocrystalline ceramics have been produced by the method of inert gas condensation of ultra-small particles and in situ consolidation. Sintering characteristics and microstructural parameter such as grain size, porosity and pore size distributions have been investigated by a variety of techniques, including: X-ray diffraction, gravimetry, nitrogen adsorption, scanning electron microscopy and small angle neutron scattering. In pure TiO 2 , the sintering temperatures are drastically lowered compared to conventional ceramics, however, extensive grain growth occurs before full densification is achieved. High density, nanocrystalline ceramics can be prepared by pressure assisted sintering, doping and additions of second phases. High temperature microhardness and creep deformation in compression were measured and it was found that creep processes occur at lower temperatures than in ceramics with larger grain sizes. Nanocrystalline TiO 2 with densities >99% can be deformed plastically without fracture at temperatures below half the melting point. The total strains exceed 0.6 at strain rates as high as 10 -3 s -l . The stress exponent of the strain rate, n, is approximately 3 and the grain size dependence is G -q with q in the range of 1-1.5. In this paper it is concluded that the creep deformation occurs by an interface reaction controlled mechanism

  9. Impact of surface coating and particle size on the uptake of small and ultrasmall superparamagnetic iron oxide nanoparticles by macrophages.

    Science.gov (United States)

    Saito, Shigeyoshi; Tsugeno, Mana; Koto, Daichi; Mori, Yuki; Yoshioka, Yoshichika; Nohara, Satoshi; Murase, Kenya

    2012-01-01

    Magnetic resonance imaging (MRI) using contrast agents like superparamagnetic iron oxide (SPIO) is an extremely versatile technique to diagnose diseases and to monitor treatment. This study tested the relative importance of particle size and surface coating for the optimization of MRI contrast and labeling efficiency of macrophages migrating to remote inflammation sites. We tested four SPIO and ultrasmall superparamagnetic iron oxide (USPIO), alkali-treated dextran magnetite (ATDM) with particle sizes of 28 and 74 nm, and carboxymethyl dextran magnetite (CMDM) with particle sizes of 28 and 72 nm. Mouse macrophage RAW264 cells were incubated with SPIOs and USPIOs, and the labeling efficiency of the cells was determined by the percentage of Berlin blue-stained cells and by measuring T(2) relaxation times with 11.7-T MRI. We used trypan blue staining to measure cell viability. Analysis of the properties of the nanoparticles revealed that ATDM-coated 74 nm particles have a lower T(2) relaxation time than the others, translating into a higher ability of MRI negative contrast agent. Among the other three candidates, CMDM-coated particles showed the highest T(2) relaxation time once internalized by macrophages. Regarding labeling efficiency, ATDM coating resulted in a cellular uptake higher than CMDM coating, independent of nanoparticle size. None of these particle formulations affected macrophage viability. This study suggests that coating is more critical than size to optimize the SPIO labeling of macrophages. Among the formulations tested in this study, the best MRI contrast and labeling efficiency are expected with ATDM-coated 74 nm nanoparticles.

  10. High-pressure structural behavior of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, H.; Liu, J. F.; Yan, H.

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse...

  11. Surface plasmon effect in nanocrystalline copper/DLC composite ...

    Indian Academy of Sciences (India)

    Composite films of nanocrystalline copper embedded in DLC matrix prepared by electrodeposition technique were studied for their optical properties. Particle size and metal volume fractions were tailored by varying the amount of copper containing salt in the electrolyte. Blue-shift of the surface plasmon resonance peak in ...

  12. Electromagnetic, magnetorheological and stability properties of polysiloxane elastomers based on silane-modified carbonyl iron particles with enhanced wettability

    Science.gov (United States)

    Cvek, Martin; Moucka, Robert; Sedlacik, Michal; Pavlinek, Vladimir

    2017-10-01

    Soft carbonyl iron (CI) particles were successfully modified with a thin layer of tetraethoxysilane (TEOS) to enhance the wettability of their surface in hydrophobic media. The contact angle investigations and tensiometric analysis revealed and helped quantify the significantly enhanced wettability and, thus, the better interfacial adhesion of the TEOS-coated CI particles (CI-TEOS) with the non-polar siloxane-based materials. Therefore, stable magnetorheological elastomers (MREs) based on CI-TEOS particles and polydimethyl siloxane matrix were fabricated. The prepared composites had different particle loadings and microstructural characteristics: isotropic and anisotropic. These structural differences were confirmed by scanning electron microscopy and were found to considerably affect dielectric properties of the MREs due to various charge transport mechanisms within the particle clusters. Furthermore, the magnetorheological (MR) performances of isotropic MRE variants were analysed before and after exposure to acidic environment. After the corrosion test, the MRE based on bare CI particles exhibited dramatically decreased relative MR effect and mechanical properties when compared with its analogue containing CI-TEOS.

  13. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 ...

    Indian Academy of Sciences (India)

    Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route is studied and compared with that of the commercial pure iron and cast Fe80Si20 in sodium borate buffer solution at two different pH values (7.7 and 8.4). The coating reveals single passivation at a pH of 7.7 and ...

  14. Determination of the light-induced degradation rate of the solar cell sensitizer N719 on TiO2 nanocrystalline particles

    DEFF Research Database (Denmark)

    Nour-Mohammadi, Farahnaz; Doan Nguyen, Sau; Boschloo, Gerrit

    2005-01-01

    The oxidative degradation rate, kdeg of the solar cell dye (Bu4N+)2 [Ru(dcbpyH)2(NCS)2]2–, referred to as N719 or [RuL2(NCS)2], was obtained by applying a simple model system. Colloidal solutions of N719-dyed TiO2 particles in acetonitrile were irradiated with 532-nm monochromatic light, and the ......The oxidative degradation rate, kdeg of the solar cell dye (Bu4N+)2 [Ru(dcbpyH)2(NCS)2]2–, referred to as N719 or [RuL2(NCS)2], was obtained by applying a simple model system. Colloidal solutions of N719-dyed TiO2 particles in acetonitrile were irradiated with 532-nm monochromatic light...... range. By using the relation kdeg = deg × kback and back electron transfer reaction rates, kback, obtained using photoinduced absorption spectroscopy, it was possible to calculate an average value for the oxidative degradation rate of N719 dye attached to TiO2 particles, kdeg = 4 × 10–2 s–1....... The stability of N719 dye during solar cell operation was discussed based on this number, and on values of the electron transfer rate between [Ru(III) L2(NCS) 2] and iodide that are available in the literature....

  15. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  16. Deposition and characterization of ZnSe nanocrystalline thin films

    Science.gov (United States)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  17. The inhalation of insoluble iron oxide particles in the sub-micron ranges. Part II - Plutonium-237 labelled aerosols

    International Nuclear Information System (INIS)

    Waite, D.A.; Ramsden, D.

    1971-10-01

    The results of a series of inhalation studies using iron oxide particles in the size range 0.1 to 0.3 um (count median diameter) are described. In this series the aerosols were labelled with plutonium 237. In vivo detection, excretion analysis and crude location studies were obtainable and the results compared to the earlier studies using chromium 51 labelled aerosols. Plutonium 237 can be considered as a simulator for plutonium 239 and attempts are made to extrapolate the results to the problem of the estimation of plutonium 239 in the human lung. (author)

  18. Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles

    Energy Technology Data Exchange (ETDEWEB)

    Ghauch, Antoine, E-mail: antoine.ghauch@aub.edu.l [American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh, 1107-2020 Beirut (Lebanon); Tuqan, Almuthanna; Assi, Hala Abou [American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh, 1107-2020 Beirut (Lebanon)

    2009-05-15

    Zerovalent iron powder (ZVI or Fe{sup 0}) and nanoparticulate ZVI (nZVI or nFe{sup 0}) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe{sup 0} and nFe{sup 0}. Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the beta-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L{sup -1}) undergo first-order decay with half-lives of about 60.3 +- 3.1 and 43.5 +- 2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t{sub 1/2} of about 11.5 +- 0.6 and 11.2 +- 0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe{sup 0} consumption, shortening the service life of Fe{sup 0} treatment systems. - Fe{sup 0} is efficient for the aqueous removal of the beta-lactam antibiotics and chlorides enhanced the removal rate by sustaining the process of iron corrosion.

  19. Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles

    International Nuclear Information System (INIS)

    Ghauch, Antoine; Tuqan, Almuthanna; Assi, Hala Abou

    2009-01-01

    Zerovalent iron powder (ZVI or Fe 0 ) and nanoparticulate ZVI (nZVI or nFe 0 ) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe 0 and nFe 0 . Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the β-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L -1 ) undergo first-order decay with half-lives of about 60.3 ± 3.1 and 43.5 ± 2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t 1/2 of about 11.5 ± 0.6 and 11.2 ± 0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe 0 consumption, shortening the service life of Fe 0 treatment systems. - Fe 0 is efficient for the aqueous removal of the β-lactam antibiotics and chlorides enhanced the removal rate by sustaining the process of iron corrosion.

  20. Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption

    Science.gov (United States)

    Thomas L. Eberhardt; Soo-Hong Min

    2008-01-01

    Biomass-based adsorbents have been widely studied as a cost-effective and environmentally-benign means to remove pollutants and nutrients from water. A two-stage treatment of aspen wood particles with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a biosorbent that was effective in removing phosphate from test solutions. FTIR spectroscopy of...

  1. Magnetism in nanocrystalline gold.

    Science.gov (United States)

    Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki

    2013-08-27

    While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.

  2. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (III): The effect of surface silver

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Yu, Yunjiang, E-mail: yuyunjiang@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Wang, Xiaoyan [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Zhang, Sukun [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Liu, Runlong [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Fu, Jianping; Han, Jinglei; Fang, Jiande [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-12-15

    Highlights: • Direct reductive deposition reaction achieves surfaced decoration of s-Fe{sup 0} particles. • Ag{sup 0}-s-Fe{sup 0} displays similar removal efficiency of PCP as compared to bimetal of nZVI. • Ag{sup 0}-s-Fe{sup 0} can be utilized under mild reaction condition compared to bimetal of nZVI. • The catalytic mechanism over Ag{sup 0}-s-Fe{sup 0} under US condition is elucidated. - Abstract: To enhance the dechlorination reactivity of millimetric sponge iron (s-Fe{sup 0}), a facile one-pot method was used to decorate s-Fe{sup 0} with Ag{sup +} ions under ambient conditions. The results recorded by X-ray diffraction patterns, X-ray photoelectron spectra and high-resolution transmission electron microscopy demonstrated that the growth of Ag{sup 0} was dominated primarily by (1 1 1) plane with a mean length of ∼20 nm. The roles of Ag{sup 0} loading, catalyst dosage, particle size, initial pH and contaminant concentration were assessed during the removal of pentachlorophenol (PCP). Catalyst recyclability was also studied. The results revealed that 3–5 mm s-Fe{sup 0} particles with 5 wt% Ag{sup 0} loading exhibited the best performance with a dose of 3.0 g per 60 mL PCP solution. In addition, the dechlorination of PCP followed two-step, pseudo-first-order reaction kinetics, and Ag{sup 0}-s-Fe{sup 0} was advantageous compared with bimetals of nanoscale zero-valent iron, iron power and iron flakes. The dechlorination mechanism of PCP over Ag{sup 0}-s-Fe{sup 0} was attributed to the surface Ag{sup 0} decoration, which catalyzed the formation of reactive hydrogen atoms for indirect reaction, and the direct electron transfer via Fe–Ag{sup 0} galvanic cells for direct reaction. This suggests that Ag-based bimetals of s-Fe{sup 0} have great potential in the pretreatment of organic halogen compounds in aqueous solution.

  3. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, E.; Pospíšková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, February (2017), s. 1342-1346 ISSN 0928-4931 Institutional support: RVO:60077344 Keywords : Leptothrix * magnetic modification * iron oxide * high aspect ratio material Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Material s engineering Impact factor: 4.164, year: 2016

  4. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian

    2016-01-01

    floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline...

  5. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater--Using humic acid and iron nano-sized colloids as test particles.

    Science.gov (United States)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret; Baun, Anders; Eriksson, Eva

    2015-11-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution of low-molecular weight PAHs (LMW PAHs), middle-molecular weight PAHs (MMW PAHs) and high-molecular weight PAHs (HMW PAHs) among the fractions was also evaluated. The results from the synthetic suspensions showed that the highest concentrations of the PAHs were found in the Filtrated fractions and, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples >50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMW PAHs was highest in the Particulate fractions (particles>0.7 μm). The highest concentration of PAHs in the Colloidal fraction was found in the sample with occurrence of small nano-sized particles (<10nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Ignition of steel alloys by impact of low-velocity iron/inert particles in gaseous oxygen

    Science.gov (United States)

    Benz, Frank J.; Mcilroy, Kenneth; Williams, Ralph E.

    1988-01-01

    The ignition of carbon steel and 316 and 304 stainless steels caused by the impact of low-velocity particles (a standard mixture consisting of 2 g of iron and 3 g of inert materials) in gaseous oxygen was investigated using NASA/White Sands Test Facility for the ignition test, and a subsonic particle impact chamber to accelerate the particles that were injected into flowing oxygen upstream of the target specimen. It was found that the oxygen velocities required to ignite the three alloys were the same as that required to ignite the particle mixture. Ignition occurred at oxygen velocities greater than 45 m/sec at 20 to 24 MPa and was found to be independent of pressure between 2 and 30 MPa. Comparison of the present results and the past results from Wegener (1964) with the Compressed Gas Association (CGA) oxygen velocity limits for safe operations indicates that the CGA limits may be excessively conservative at high pressures and too liberal at low pressures.

  7. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  8. Removal of polybrominated diphenyl ethers by biomass carbon-supported nanoscale zerovalent iron particles: influencing factors, kinetics, and mechanism.

    Science.gov (United States)

    Fu, Rongbing; Xu, Zhen; Peng, Lin; Bi, Dongsu

    2016-12-01

    In this study, nanoscale zerovalent iron (NZVI) immobilized on biomass carbon was used for the high efficient removal of BDE 209. NZVI supported on biomass carbon minimized the aggregation of NZVI particles resulting in the increased reaction performance. The proposed removal mechanism included the adsorption of BDE 209 on the surface or interior of the biomass carbon NZVI (BC-NZVI) particles and the subsequent debromination of BDE 209 by NZVI while biomass carbon served as an electron shuttle. BC-NZVI particles and the interaction between BC-NZVI particles and BDE 209 were characterized by TEM, XRD, and XPS. The removal reaction followed a pseudo-first-order rate expression under different reaction conditions, and the k obs was higher than that of other NZVI-supported materials. The debromination of BDE 209 by BC-NZVI was a stepwise process from nona-BDE to DE. A proposed pathway suggested that supporting NZVI on biomass carbon has potential as a promising technique for in situ organic-contaminated groundwater remediation.

  9. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis

    Science.gov (United States)

    Arunkumar, S.; Kumaravel, P.; Velmurugan, C.; Senthilkumar, V.

    2018-01-01

    The formulation of nanocrystalline NiTi shape memory alloys has potential effects in mechanical stimulation and medical implantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and microhardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fracturing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninterrupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to 93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline intermetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.

  10. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis

    Energy Technology Data Exchange (ETDEWEB)

    Binupriya, A.R. [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Sathishkumar, M., E-mail: cvemuthu@nus.edu.sg [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Vijayaraghavan, K. [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Yun, S.-I., E-mail: siyun@chonbuk.ac.kr [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2010-05-15

    Bioreduction efficacy of both active (AB) and inactive (IB) cells/biomass of Aspergillus oryzae var. viridis and their respective cell-free extracts (ACE and ICE) to convert trivalent aurum to gold nanoparticles were tested in the present study. Strong plasmon resonance of gold nanoparticles was observed between 540 and 560 nm in the samples obtained from AB, IB, ACE and ICE. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were performed to examine the formation of gold nanoparticles. Comparing all four forms of A. oryzae var. viridis, ICE showed high gold nanoparticle productivity. The nanoparticles formed were quite uniform in shape and ranged in size from 10 to 60 nm. In addition some triangle, pentagon and hexagon-shaped nanoplates with size range of 30-400 nm were also synthesized especially at lower pH. Organics from the inactive cells are believed to be responsible for reduction of trivalent aurum to nano-sized gold particles. Organic content of the ICE was found to be double the amount of ACE. High productivity of gold nanoparticles by metabolic-independent process opens up an interesting area of nanoparticle synthesis using waste fungal biomass from industries.

  11. Monitoring the injection of microscale zero-valent iron particles for groundwater remediation by means of complex electrical conductivity imaging

    Science.gov (United States)

    Flores Orozco, A.; Velimirovic, M.; Tosco, T.; Kemna, A.; Sapion, H.; Klaas, N.; Sethi, R.; Bastiaens, L.

    2015-12-01

    The injection of nano- and microscale zerovalent iron (ZVI) particles has emerged as a promising technique for groundwater remediation. In particular, ZVI injections offer a suitable alternative for the remediation of areas not accessible with other techniques, such as areas characterized by low hydraulic conductivity. In such cases, the injection is performed at high pressure in order to create preferential flow paths (i.e., fractures). Particle injection via fracturing demands an adequate monitoring of the ZVI delivery to track the migration path of the particles as well as to delineate the extension and distribution of the iron slurry. However, characterization of ZVI injections is to date based mainly on the analysis of groundwater and soil samples, thus, limiting the spatio-temporal resolution of the investigation and making it not suitable for real-time monitoring. To overcome this, here we present the application of the complex conductivity (CC) imaging method to characterize the delivery of guar gum stabilized microscale ZVI (GG-mZVI) particles during a field-scale injection by hydraulic fracturing. Our results demonstrated that CC images provide not only an improved characterization of the contaminant distribution, but also valuable information to identify the migration pathway of the injected GG-mZVI. The relatively short acquisition time of CC datasets permitted to obtain monitoring data with enhanced temporal resolution, i.e., after each injection (every ~15 minutes), while still covering an extended area of investigation in comparison to conventional geochemical monitoring by means of soil and water samples. As presented in Figure 1, the CC images revealed an increase (~20%) in the induced electrical polarization (Φ), upon delivery of ZVI into the targeted area, due to the accumulation of ZVI. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through

  12. Trends in the evolution of particle morphology with size in colluvial deposits overlying channel iron deposits

    Directory of Open Access Journals (Sweden)

    Linero Sandra

    2017-01-01

    Full Text Available Size limitations of testing equipment often impliy that samples of coarse granular materials must be scalped or scaled, to reduce the size of the constitutive particles, before they can be tested either by triaxial or direct shear in the laboratory. The objective of the investigation is to evaluate the particle shapes in a natural sample of colluvial sediments, to identify potential correlation(s between shape and size, that could impact shear strength of scaled samples. The material investigated is derived from eroded ancient sedimentary rocks from the Pilbara region of Australia. The fragments have a particle shape ranging from slabs to sub-equant blocks. The observation indicates that there is an increase in the tendency for slabshapes in larger particles. Therefore, scaling inevitably alters the characteristic shapes of the material particles as it implies substituting larger (slabs particles by smaller (sub-equant particles. Changes in particle shape distribution may induce changes in material fabric and shear strength and therefore may need to be considered when scaling samples.

  13. Trends in the evolution of particle morphology with size in colluvial deposits overlying channel iron deposits

    Science.gov (United States)

    Linero, Sandra; Fityus, Stephen; Simmons, John; Lizcano, Arcesio; Cassidy, Jessica

    2017-06-01

    Size limitations of testing equipment often impliy that samples of coarse granular materials must be scalped or scaled, to reduce the size of the constitutive particles, before they can be tested either by triaxial or direct shear in the laboratory. The objective of the investigation is to evaluate the particle shapes in a natural sample of colluvial sediments, to identify potential correlation(s) between shape and size, that could impact shear strength of scaled samples. The material investigated is derived from eroded ancient sedimentary rocks from the Pilbara region of Australia. The fragments have a particle shape ranging from slabs to sub-equant blocks. The observation indicates that there is an increase in the tendency for slabshapes in larger particles. Therefore, scaling inevitably alters the characteristic shapes of the material particles as it implies substituting larger (slabs) particles by smaller (sub-equant) particles. Changes in particle shape distribution may induce changes in material fabric and shear strength and therefore may need to be considered when scaling samples.

  14. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling.

    Science.gov (United States)

    Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd

    2016-12-01

    Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.

  15. Synthesis, microstructure and magnetic properties of nanocrystalline MgFe2O4 particles: Effect of mixture of fuels and sintering temperature

    Directory of Open Access Journals (Sweden)

    Osereme Ehi-Eromosele Cyril

    2016-01-01

    Full Text Available The present article reports the results of studies related to the synthesis of MgFe2O4 nanocomposite powder by solution combustion process using mixture of fuels containing urea (U and ammonium acetate (AA. The effect of mixture of fuel and sintering temperature on phase formation, structural, morphological and magnetic properties of MgFe2O4 particles were investigated by X-ray diffraction (XRD, thermogravimetric analysis (TGA, Raman spectroscopy, scanning electron microscopy (SEM, energy dispersive absorption x-ray (EDAX and vibrating sample magnetometer (VSM. Thermodynamic modeling of the combustion reaction shows that by using a mixture of urea and ammonium acetate fuels, the adiabatic flame temperature (Tad, exothermicity and amount of gases produced during the combustion process as well as product characteristics could be controlled. The use of mixture of fuels (U and AA in the synthesis of MgFe2O4 was found to produce ferrites with finer agglomerates, higher crystallinity, higher magnetic properties and smaller crystallite sizes than when only urea was used. It was found that only samples prepared with a mixture of fuels (0.5U + 0.5AA and sintered at 900oC for 2 h produced pure ferrite spinel phase while the auto-combusted and powders sintered at 600oC for 2 h had secondary phases. Apart from giving detailed information about the structural order of the samples, Raman spectroscopy also confirmed that MgFe2O4 is a mixed spinel ferrite.

  16. Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area.

    Science.gov (United States)

    Swain, James H; Newman, Samuel M; Hunt, Janet R

    2003-11-01

    Foods are fortified with elemental forms of iron to reduce iron deficiency. However, the nutritional efficacy of current, commercially produced elemental iron powders has not been verified. We determined the bioavailability of six commercial elemental iron powders and examined how physicochemistry influences bioavailability. Relative biological value (RBV) of the iron powders was determined using a hemoglobin repletion/slope ratio method, treating iron-deficient rats with repletion diets fortified with graded quantities of iron powders, bakery-grade ferrous sulfate or no added iron. Iron powders were assessed physicochemically by measuring iron solubility in hydrochloric acid at pH 1.0 and 1.7, surface area by nitrogen gas adsorption and surface microstructure by electron microscopy. Bioavailability from the iron powders, based on absolute iron intake, was significantly less than from FeSO4 (100%; P Electrolytic (54%; A-131, U.S.) > Electrolytic (46%; Electrolytic Iron, India) > H-Reduced (42%; AC-325, U.S.) > Reduced (24%; ATOMET 95SP, Canada) > CO-Reduced (21%; RSI-325, Sweden). Solubility testing of the iron powders resulted in different relative rankings and better RBV predictability with increasing time at pH 1.7 (R2 = 0.65 at 150 min). The prediction was improved with less time and lower pH (R2 = 0.82, pH 1.0 at 30 min). Surface area, ranging from 90 to 370 m2/kg, was also highly predictive of RBV (R2 = 0.80). Bioavailability of iron powders is less than bakery-grade ferrous sulfate and varies up to three times among different commercial forms. Solubility at pH 1.0 and surface area were predictive of iron bioavailability in rats.

  17. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, Eva; Pospišková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, FEB (2017), s. 1342-1346 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA14-11516S; GA MŠk(CZ) LD14075 Institutional support: RVO:67179843 Keywords : removal * Leptothrix * Magnetic modification * Iron oxide * High aspect ratio material Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Environmental science s (social aspects to be 5.7) Impact factor: 4.164, year: 2016

  18. Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids

    Czech Academy of Sciences Publication Activity Database

    Sedlačík, M.; Pavlínek, V.; Lehocký, M.; Mráček, A.; Grulich, O.; Švrčinová, Petra; Filip, Petr; Vesel, A.

    2011-01-01

    Roč. 387, 1-3 (2011), s. 99-103 ISSN 0927-7757 Grant - others:GA ČR(CZ) GD104/09/H080; OP VaVpI(XE) CZ.1.05/2.1.00/03.0111 Program:GD Institutional research plan: CEZ:AV0Z20600510 Keywords : carbonyl iron * magnetorheological fluid * plasma * viscoelasticity Subject RIV: BK - Fluid Dynamics Impact factor: 2.236, year: 2011

  19. ALTERED IRON HOMEOSTATIS AND THE MECHANISM OF BIOLOGIC EFFECT BY PARTICLES

    Science.gov (United States)

    Several features of the clinical presentation and changes in physiology and pathology following exposure to many diverse ambient air pollution particles are comparable, suggesting a common mechanism for their biological effect. We propose that a mechanism of biological effect com...

  20. Quantitative image analysis of laminin immunoreactivity in skin basement membrane irradiated with 1 GeV/nucleon iron particles.

    Science.gov (United States)

    Costes, S; Streuli, C H; Barcellos-Hoff, M H

    2000-10-01

    We previously reported that laminin immunoreactivity in mouse mammary epithelium is altered shortly after whole-body irradiation with 0.8 Gy from 600 MeV/nucleon iron ions but is unaffected after exposure to sparsely ionizing radiation. This observation led us to propose that the effect could be due to protein damage from the high ionization density of the ion tracks. If so, we predicted that it would be evident soon after radiation exposure in basement membranes of other tissues and would depend on ion fluence. To test this hypothesis, we used immunofluorescence, confocal laser scanning microscopy, and image segmentation techniques to quantify changes in the basement membrane of mouse skin epidermis. At 1 h after exposure to 1 GeV/nucleon iron ions with doses from 0.03 to 1.6 Gy, neither the visual appearance nor the mean pixel intensity of laminin in the basement membrane of mouse dorsal skin epidermis was altered compared to sham-irradiated tissue. This result does not support the hypothesis that particle traversal directly affects laminin protein integrity. However, the mean pixel intensity of laminin immunoreactivity was significantly decreased in epidermal basement membrane at 48 and 96 h after exposure to 0.8 Gy 1 GeV/nucleon iron ions. We confirmed this effect with two additional antibodies raised against affinity-purified laminin 1 and the E3 fragment of the long-arm of laminin 1. In contrast, collagen type IV, another component of the basement membrane, was unaffected. Our studies demonstrate quantitatively that densely ionizing radiation elicits changes in skin microenvironments distinct from those induced by sparsely ionizing radiation. Such effects may might contribute to the carcinogenic potential of densely ionizing radiation by altering cellular signaling cascades mediated by cell-extracellular matrix interactions.

  1. Vitality of pancreatic islets labeled for magnetic resonance imaging with iron particles.

    Science.gov (United States)

    Berkova, Z; Kriz, J; Girman, P; Zacharovova, K; Koblas, T; Dovolilova, E; Saudek, F

    2005-10-01

    We previously described an in vivo method for pancreatic islet visualization using magnetic resonance imaging with the aid of superparamagnetic nanoparticles of iron oxide (Resovist) or by magnetic beads precoated with antibodies (Dynabeads). The aim of this study was to investigate the in vitro effect of islet labeling on their quality. Isolated rat islets were cultivated for 48 hours with a contrast agent or, in the case of magnetic antibody-coated beads, for only 2 hours. The ability to secrete insulin was tested by a static insulin release assay and the results were expressed as a stimulation index. Staining with propidium iodide and acridine orange was performed to determine the ratio of live to dead cells. Stimulation indices in the Resovist islets (n = 23) vs controls (n = 14) were 15.3 and 15.0, respectively, and in the Dynabeads islets (n = 15) vs controls (n = 12) 21.3 and 19.9, respectively. The vitality of the Resovist islets vs controls determined by live/dead cells ratio was 90.8% and 91.1%, respectively (n = 20), and in the Dynabeads islets vs controls was 89.4% and 91.8%, respectively (n = 11). Islet labeling with the contrast agent as well as with specific antibodies with iron beads did not change the vitality and insulin-secreting capacity assessed in vitro (P > .05). Magnetic resonance using iron nanoparticles represents the only method for in-vivo visualization of transplanted islets so far. Our data represent an important contribution for its clinical use.

  2. Electrochromic devices based on wide band-gap nanocrystalline semiconductors functionalized with mononuclear charge transfer compounds

    DEFF Research Database (Denmark)

    Biancardo, M.; Argazzi, R.; Bignozzi, C.A.

    2006-01-01

    A series of ruthenium and iron mononuclear complexes were prepared and their spectroeletrochemical behavior characterized oil Optically Transparent Thin Layer Electrodes (OTTLE) and on Fluorine Doped SnO2 (FTO) conductive glasses coated with Sb-doped nanocrystalline SnO2. These systems display a ...

  3. Vibrational thermodynamics of Fe90Zr7B3 nanocrystalline alloy from nuclear inelastic scattering

    DEFF Research Database (Denmark)

    Stankov, S.; Miglierini, M.; Chumakov, A. I.

    2010-01-01

    Recently we determined the iron-partial density of vibrational states (DOS) of nanocrystalline Fe(90)Zr(7)B(3) (Nanoperm), synthesized by crystallization of an amorphous precursor, for various stages of nanocrystallization separating the DOS of the nanograins from that of the interfaces [S. Stank...

  4. Grain size, morphometry and mineralogy of airborne input in the Canary basin: evidence of iron particle retention in the mixed layer

    Directory of Open Access Journals (Sweden)

    Alfredo Jaramillo-Vélez

    2016-09-01

    Full Text Available Aeolian dust plays an important role in climate and ocean processes. Particularly, Saharan dust deposition is of importance in the Canary Current due to its content of iron minerals, which are fertilizers of the ocean. In this work, dust particles are characterized mainly by granulometry, morphometry and mineralogy, using image processing and scanning northern Mauritania and the Western Sahara. The concentration of terrigenous material was measured in three environments: the atmosphere (300 m above sea level, the mixed layer at 10 m depth, and 150 m depth. Samples were collected before and during the dust events, thus allowing the effect of Saharan dust inputs in the water column to be assessed. The dominant grain size was coarse silt. Dominant minerals were iron oxy-hydroxides, silicates and Ca-Mg carbonates. A relative increase of iron mineral particles (hematite and goethite was detected in the mixed layer, reflecting a higher permanence of iron in the water column despite the greater relative density of these minerals in comparison with the other minerals. This higher iron particle permanence does not appear to be explained by physical processes. The retention of this metal by colloids or microorganisms is suggested to explain its long residence time in the mixed layer.

  5. Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology.

    Science.gov (United States)

    Fang, Hongwei; Cui, Zhenghui; He, Guojian; Huang, Lei; Chen, Minghong

    2017-12-15

    Particle morphology plays an important role in solid-water interface adsorption, which affects the fate and behavior of phosphorus (P) in rivers and lakes and the resulting eutrophication. In this paper, three minerals including kaolinite, montmorillonite and hematite were considered to investigate the contributions of particle morphology to P adsorption using adsorption experiments and microscopic examinations. The Taylor expansion method is applied to quantitatively characterize the heterogeneity of surface morphology. The results reveal that local concave or convex micro-morphology characterized by the second order term of Taylor expansion F 2 , can affect the local adsorption capacity due to its effect on the distribution of surface charge and reactive sites. Moreover, the adsorbed P at different F 2 here fits to a Weibull distribution, which can further define the representative average adsorption onto individual particles. A weighted average morphology factor F 2a is derived to characterize the surface heterogeneity, and correlated with average P adsorption of particular mineral particles. In addition, the Sips model can successfully fit the experimental data of different minerals, and the heterogeneity parameters γ and adsorption capacity Q m in the model are proved to be functions with the basic mineral properties, including particle size, surface site density and morphology characterization as well. It is concluded that the complex surface morphology plays a significant role in particle adsorption and the morphological role need to be considered in the adsorption model in order to better describe the adsorption in system with heterogeneous solid surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Relative effectiveness of HZE iron-56 particles for the induction of cytogenetic damage in vivo

    Science.gov (United States)

    Brooks, A.; Bao, S.; Rithidech, K.; Couch, L. A.; Braby, L. A.

    2001-01-01

    One of the risks of prolonged manned space flight is the exposure of astronauts to radiation from galactic cosmic rays, which contain heavy ions such as (56)Fe. To study the effects of such exposures, experiments were conducted at the Brookhaven National Laboratory by exposing Wistar rats to high-mass, high-Z, high-energy (HZE) particles using the Alternating Gradient Synchrotron (AGS). The biological effectiveness of (56)Fe ions (1000 MeV/nucleon) relative to low-LET gamma rays and high-LET alpha particles for the induction of chromosome damage and micronuclei was determined. The mitotic index and the frequency of chromosome aberrations were evaluated in bone marrow cells, and the frequency of micronuclei was measured in cells isolated from the trachea and the deep lung. A marked delay in the entry of cells into mitosis was induced in the bone marrow cells that decreased as a function of time after the exposure. The frequencies of chromatid aberrations and micronuclei increased as linear functions of dose. The frequency of chromosome aberrations induced by HZE particles was about 3.2 times higher than that observed after exposure to (60)Co gamma rays. The frequency of micronuclei in rat lung fibroblasts, lung epithelial cells, and tracheal epithelial cells increased linearly, with slopes of 7 x 10(-4), 12 x 10(-4), and 11 x 10(-4) micronuclei/binucleated cell cGy(-1), respectively. When genetic damage induced by radiation from (56)Fe ions was compared to that from exposure to (60)Co gamma rays, (56)Fe-ion radiation was between 0.9 and 3.3 times more effective than (60)Co gamma rays. However, the HZE-particle exposures were only 10-20% as effective as radon in producing micronuclei in either deep lung or tracheal epithelial cells. Using microdosimetric techniques, we estimated that 32 cells were hit by delta rays for each cell that was traversed by the primary HZE (56)Fe particle. These calculations and the observed low relative effectiveness of the exposure to HZE

  7. Magnetic properties of iron catalyst particles in HiPco single wall carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Bittová, Barbara; Poltierová Vejpravová, Jana; Kalbáč, Martin; Burianová, Simona; Mantlíková, A.; Daniš, S.; Doyle, S.

    2011-01-01

    Roč. 115, č. 35 (2011), s. 17303-17309 ISSN 1932-7447 R&D Projects: GA ČR GAP204/10/1677 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40400503 Keywords : metal catalyst particles * carbon nanotubes * superparamagnet * core - shell model * inter-particle interactions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.805, year: 2011 http://pubs.acs.org/doi/abs/10.1021/jp203365g

  8. Characterisation of interfaces in nanocrystalline palladium

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Characterisation of interfaces in nanocrystalline palladium. 49. Interface structures in nanocrystalline materials have been the subject of research from the very beginning. The first indication that the structure of grain boundaries in nanocrystalline materials was different was from the X-ray diffraction (XRD) studies of Zhu et al ...

  9. Transport of iron particles generated during milling operations in multilateral wells; Transporte de particulas de aco geradas pela abertura de janelas em pocos multilaterais

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Andre Leibsohn; Rezende, Carla Leonor Teixeira; Leal, Rafael Amorim Ferreira; Lourenco, Fabio Gustavo Fernandes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: aleibsohn@cenpes.petrobras.com.br; rezenc@hotmail.com; ramorim@cenpes.petrobras.com.br; fabiolou@urbi.com.br

    2000-07-01

    This paper presents a series of numerical simulations aimng the definition of requirements (flow rate and fluid properties) to remove iron particles both in the inclined sections and in the riser annulus. Additionally, experimental work was developed in a pilot scale flow loop in order tocompare the behavior of water and sinthetic oil baed fluids in milling operations. (author)

  10. Growth of airway epithelial cells at an air-liquid interface changes both the response to particle exposure and iron homeostasis

    Science.gov (United States)

    We tested the hypothesis that 1) relative to submerged cells, airway epithelial cells grown at an air-liquid interface and allowed to differentiate would have an altered response to particle exposure and 2) that these differences would be associated with indices of iron homeostas...

  11. Investigation of washing and storage strategy on aging Of Mg-aminoclay (MgAC) coated nanoscale zero-valent iron (nZVI) particles

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    2014-01-01

    The tendency towards agglomeration and oxidation of nanoscale zero-valent iron (nZVI) particles limits its application for in situ groundwater and soil remediation. Although the effect of surface coatings on nanoparticle stabilization has been commonly practiced, the effect of preparation procedu...

  12. Nanoscale science and engineering forum (706c) design of solid lipid particles with iron oxide quantum dots for the delivery of therapeutic agents

    Science.gov (United States)

    Solid lipid particles provide a method to encapsulate and control the release of drugs in vivo but lack the imaging capability provided by CdS quantum dots. This shortcoming was addressed by combining these two technologies into a model system that uses iron oxide as a non-toxic imaging component in...

  13. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Monika; Hirt, Ann M., E-mail: ann.hirt@erdw.ethz.ch [Department of Earth Sciences, Institute of Geophysics, ETH-Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland); Widdrat, Marc; Faivre, Damien [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam (Germany); Tompa, Éva; Pósfai, Mihály [Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprém (Hungary); Uebe, Rene; Schüler, Dirk [Department Biologie I, LMU Munich, Großhaderner Str. 2, D-82152 Martinsried (Germany)

    2014-09-28

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  14. Iron ore particles on four seaweed species from Camburi Beach (Espírito Santo state, Brazil

    Directory of Open Access Journals (Sweden)

    Cristina Aparecida Gomes Nassar

    2006-09-01

    Full Text Available The present study estimated the iron-ore concentration found on four species of seaweed. The species tested grow on a site heavily contaminated by this ore, in the city of Vitória, state of Espírito Santo, Brazil. Under natural conditions, the iron ore reached a temperature 5.0ºC higher than the sand on a sunny day. All the species had iron ore adhered to their fronds. Udotea cyathiformis was the species with the highest iron-ore concentration varing from 0.07 to 0.90 g wet weight, followed by Lobophora variegata (from 0.07 to 0.62 g wet weight, Padina gymnospora (from 0.08 to 0.55 g wet weight and Ulva fasciata (from 0.05 to 0.25 g wet weight. Even after four changes of water over a 12-hour period, the fronds still had particles adhered to their outside cell wall. All the species showed similar tendencies to release the iron, with the highest percentage of particles (40 to 60% released in the first change of water.Minério de ferro particulado sobre quatro macroalgas da Praia de Camburi (Estado do Espírito Santo-Brasil. O presente trabalho determinou a concentração de minério de ferro presente em quatro macroalgas. As espécies testadas ocorrem em um local extremamente contaminado por este particulado, na cidade de Vitória, Estado do Espírito Santo, Brasil. Sob condições naturais, o minério de ferro alcançou um temperatura de até 5,0ºC acima da temperatura da areia em um dia ensolarado.Todas as espécies estudadas apresentavam minério em suas paredes externas. A espécie Udotea cyathiformis apresentou a maior concentração de minério em sua fronde variando de 0,07 a 0,90 g massa úmida, seguida por Lobophora variegata (de 0,07 a 0,62 g massa úmida, Padina gymnospora (de 0,08 a 0,55 g massa úmida e Ulva fasciata (de 0,05 a 0,25 g massa úmida. Mesmo após sucessivas trocas de água, as frondes ainda apresentavam partículas aderidas às suas paredes celulares externas. As espécies apresentaram a mesma tendência de libera

  15. Effect of rhodium traces on the reducibility of silica-supported iron particles

    KAUST Repository

    Bonnefille, Eric

    2012-06-19

    Fe/SiO 2 and Rh-Fe/SiO 2 catalysts with increasing Fe/Rh ratio have been prepared and characterized by TEM, XRD, oxygen adsorption and Mössbauer spectroscopy. It was confirmed that Fe/SiO 2 catalysts cannot be reduced under hydrogen flow, to more than 50 % whatever the temperature in the 200-500 °C range and shown that the presence of even a small amount of Rh (Fe/Rh ≤2,000) promoted the reduction of iron up to 85-95 %. This promoting effect also took place with a Fe/SiO 2 + Rh/SiO 2 physical mixture (Fe/Rh B2,000). Therefore, the occurrence of a hydrogen spillover effect may be involved in the observed process. © 2012 Springer Science+Business Media, LLC.

  16. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Roohi F

    2012-08-01

    Full Text Available Farnoosh Roohi, Jessica Lohrke, Andreas Ide, Gunnar Schütz, Katrin DasslerMR and CT Contrast Media Research, Bayer Pharma AG, Berlin, GermanyPurpose: Magnetic resonance imaging (MRI, one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs, the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs.Methods: Eleven different SPIOs were synthesized for this study. In the first set (a, seven carboxydextran (CDX-coated SPIOs of different sizes (19–86 nm were obtained by fractionating a broadly size-distributed CDX–SPIO. The second set (b contained three SPIOs of identical size (50 nm that were stabilized with different coating materials, polyacrylic acid (PAA, polyethylene glycol, and starch. Furthermore, small PAA–SPIOs (20 nm were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry.Results: By changing the particle size without modifying any other parameters, the relaxivity r2 increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the

  17. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Directory of Open Access Journals (Sweden)

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  18. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Sun, S. J.; Varga, M.; Chou, H.; Hsu, H.S.; Kromka, A.; Horák, Pavel

    2015-01-01

    Roč. 394, Nov (2015), s. 477-480 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LD14011 EU Projects: European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:68378271 ; RVO:61389005 Keywords : diamond * nonmetallic ferromagnetic materials * fine-particle systems * nanocrystalline materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  19. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.

    Science.gov (United States)

    Huang, Pengpeng; Ye, Zhengfang; Xie, Wuming; Chen, Qi; Li, Jing; Xu, Zhencheng; Yao, Maosheng

    2013-08-01

    Much work is devoted to heavy metal sorption, reduction and relevant mechanisms by nanoscale zero valent iron (nZVI) particle, but fewer studies utilize its magnetic properties in aqueous metal removals. Here, we have investigated the use of nZVI particles both electrosprayed (E-nZVI) and non-electrosprayed (NE-nZVI) with different concentration levels (0.186-1.86 mg/mL) in removing aqueous Cd(II), Cr(IV), and Pb(II) through the magnetic separation means. The effects of the reaction time (5-20 min) and magnetic treatment time (1-30 min) on relevant magnetic removal efficiencies were studied. Metal ion concentration was analyzed using inductively coupled plasma (ICP), and the magnetically obtained metal-nZVI mixtures were further analyzed using X-ray photoelectron spectroscopy (XPS). Results showed that the magnetic removal efficiencies of heavy metals varied with the metal species, nZVI loading, reaction and magnetic separation time. In most cases, use of 1.5 mg/mL E-nZVI or NE-nZVI resulted in removal efficiencies of more than 80% for Pb(II), Cd(II), and Cr(IV). Increasing the magnetic treatment time from 1 to 20 min was shown to lead to ≈ 20% increase in Pb(II) removal efficiency, but no improvements for Cd(II) and Cr(IV). In contrast, increasing the reaction time decreased the Pb(II) removal efficiency, yet no effects observed for Cd(II) and Cr(IV). In general, 1 min reaction and 5 min magnetic treatment were found sufficient to achieve considerable heavy metal removals. For comparable efficiencies, use of magnetic method could significantly reduce nZVI loading. XPS analysis results indicated that atomic percentages of O 1s, Fe 2p, Cd 3d, Pb 4f and Cr 2p varied with metal exposures. Different from Cd(II) and Cr(IV), aqueous iron ions might be possibly present when treating Pb(II). This study demonstrated a rapid heavy metal removal method using the magnetic property of nZVI particles, while contributing to understanding of the relevant removal mechanisms

  20. Charge state distributions of iron in gradual solar energetic particle events

    Science.gov (United States)

    Ostryakov, V. M.; Stovpyuk, M. F.

    1999-11-01

    The energy and charge spectra of Fe ions accelerated in gradual events are calculated numerically. Our results are compared with the available observations. Stripping of Fe ions by thermal electrons and protons during ion acceleration in the solar corona results in the dependence of mean charge \\barq_Fe on energy. We consider the influence of varying plasma parameters (temperature T, number density N, and spectral index of turbulence S) on the charge distribution of iron. Our calculations indicate T~10^6 K and N~(0.5-1)x10^10 cm^-3 at the accelerating site, provided the characteristic acceleration time is about 1 s. The calculated charge spectra for S>2 and S<2 turn out to be different, but some theoretical and experimental uncertainties do not yet allow this parameter to be extracted from observational data. The theoretically obtained charge distributions of Fe could be important in the light of ACE spacecraft data which are currently available for analysis.

  1. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries.

    Science.gov (United States)

    Moroni, Beatrice; Viti, Cecilia; Cappelletti, David

    2014-01-01

    Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked.

  2. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation

    Science.gov (United States)

    Shukitt-Hale, B.; Casadesus, G.; McEwen, J. J.; Rabin, B. M.; Joseph, J. A.

    2000-01-01

    It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  3. Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium

    Directory of Open Access Journals (Sweden)

    Huang Z

    2015-03-01

    Full Text Available Zheyong Huang,1,* Chenguang Li,1,* Shan Yang,2 Jianfeng Xu,1 Yunli Shen,3 Xinxing Xie,4 Yuxiang Dai,1 Hao Lu,1 Hui Gong,5 Aijun Sun,1 Juying Qian,1 Junbo Ge1 1Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 2Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 3Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, People’s Republic of China; 4Department of Cardiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, People’s Republic of China; 5Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: The long-lasting hypointensities in cardiac magnetic resonance (CMR were believed to originate from superparamagnetic iron oxide (SPIO-engulfed macrophages during long-term stem cell tracking. However, the iron clearance capacity of the ischemic heart was limited. Therefore, we speculated that the extracellular SPIO particles may also be involved in the generation of false-positive signals.Methods and results: Male swine mesenchymal stem cells (MSCs were incubated with SPIO for 24 hours, and SPIO labeling had no significant effects on either cell viability or differentiation. In vitro studies showed that magnetic resonance failed to distinguish SPIO from living SPIO-MSCs or dead SPIO-MSCs. Two hours after the establishment of the female swine acute myocardial infarction model, 2×107 male SPIO-labeled MSCs (n=5 or unlabeled MSCs (n=5 were transextracardially injected into the infarcted myocardium at ten distinct sites. In vivo CMR with T2 star weighted imaging-flash-2D sequence revealed a signal void corresponding to the initial SPIO-MSC injection sites. At 6 months after transplantation, CMR identified 32 (64% of the 50 injection sites, where massive Prussian blue-positive iron

  4. Particle size distribution of iron nanomaterials in biological medium by SR-SAXS method

    International Nuclear Information System (INIS)

    Jing Long; Feng Weiyue; Wang Bing; Wang Meng; Ouyang Hong; Zhao Yuliang; Chai Zhifang; Wang Yun; Wang Huajiang; Zhu Motao; Wu Zhonghua

    2009-01-01

    A better understanding of biological effects of nanomaterials in organisms requests knowledge of the physicochemical properties of nanomaterials in biological systems. Affected by high concentration salts and proteins in biological medium, nanoparticles are much easy to agglomerate,hence the difficulties in characterizing size distribution of the nanomaterials in biological medium.In this work, synchrotron radiation small angle X-ray scattering(SR-SAXS) was used to determine size distributions of Fe, Fe 2 O 3 and Fe 3 O 4 nanoparticles of various concentrations in PBS and DMEM culture medium. The results show that size distributions of the nanomaterials could perfectly analyzed by SR-SAXS. The SR-SAXS data were not affected by the particle content and types of the dispersion medium.It is concluded that SR-SAXS can be used for size measurement of nanomaterials in unstable dispersion systems. (authors)

  5. Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents.

    Science.gov (United States)

    Smolensky, Eric D; Park, Hee-Yun E; Zhou, Yue; Rolla, Gabriele A; Marjańska, Małgorzata; Botta, Mauro; Pierre, Valérie C

    2013-06-14

    The magnetic properties of iron oxide nanoparticles govern their relaxivities and efficacy as contrast agents for MRI. These properties are in turn determined by their composition, size and morphology. Herein we present a systematic study of the effect of particle size and shape of magnetite nanocrystals synthesized by thermal decompositions of iron salts on both their magnetism and their longitudinal and transverse relaxivities, r 1 and r 2 , respectively. Faceted nanoparticles demonstrate superior magnetism and relaxivities than spherical nanoparticles of similar size. For faceted nanoparticles, but not for spherical ones, r 1 and r 2 further increase with increasing particle size up to a size of 18 nm. This observation is in accordance with increasing saturation magnetization for nanoparticles increasing in size up to 12 nm, above which a plateau is observed. The NMRD (Nuclear Magnetic Resonance Dispersion) profiles of MIONs (Magnetic Iron Oxide Nanoparticles) display an increase in longitudinal relaxivity with decreasing magnetic field strength with a plateau below 1 MHz. The transverse relaxivity shows no dependence on the magnetic field strength between 20 MHz and 500 MHz. These observations translate to phantom MR images: in T 1 -weighted SWIFT (SWeep imaging with Fourier Transform) images MIONs have a positive contrast with little dependence on particle size, whereas in T 2 -weighted gradient-echo images MIONs create a negative contrast which increases in magnitude with increasing particle size. Altogether, these results will enable the development of particulate MRI contrast agents with enhanced efficacy for biomedical and clinical applications.

  6. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  7. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    Energy Technology Data Exchange (ETDEWEB)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Tomašević-Ilić, Tijana D., E-mail: tommashev@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Zarubica, Aleksandra R., E-mail: zarubica2000@yahoo.com [Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš (Serbia); Dimitrijević, Suzana, E-mail: suzana@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Budimir, Milica D., E-mail: mickbudimir@gmail.com [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Vranješ, Mila R., E-mail: mila@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Šaponjić, Zoran V., E-mail: saponjic@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2014-12-15

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical and morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.

  8. Transformation of Goethite to Hematite Nanocrystallines by High Energy Ball Milling

    Directory of Open Access Journals (Sweden)

    O. M. Lemine

    2014-01-01

    Full Text Available α-Fe2O3 nanocrystallines were prepared by direct transformation via high energy ball milling treatment for α-FeOOH powder. X-ray diffraction, Rietveld analysis, TEM, and vibrating sample magnetometer (VSM are used to characterize the samples obtained after several milling times. Phase identification using Rietveld analysis showed that the goethite is transformed to hematite nanocrystalline after 40 hours of milling. HRTEM confirm that the obtained phase is mostly a single-crystal structure. This result suggested that the mechanochemical reaction is an efficient way to prepare some iron oxides nanocrystallines from raw materials which are abundant in the nature. The mechanism of the formation of hematite is discussed in text.

  9. Macrophage Uptake of Ultra-Small Iron Oxide Particles for Magnetic Resonance Imaging in Experimental Acute Cardiac Transplant Rejection

    Energy Technology Data Exchange (ETDEWEB)

    Penno, E.; Johnsson, C.; Johansson, L.; Ahlstroem, H. [Uppsala Univ. Hospital (Sweden). Depts. of Diagnostic Radiology and of Transplantation Surgery

    2006-04-15

    Purpose: To discriminate between acutely rejecting and non-rejecting transplanted hearts using a blood pool contrast agent and T2 magnetic resonance imaging (MRI) in a clinical 1.5T scanner. Material and Methods: Allogeneic and syngeneic heterotopic heart transplantations were performed in rats. One allogeneic and one syngeneic group each received either the ultra-small iron oxide particle (USPIO), at two different doses, or no contrast agent at all. MRI was performed on postoperative day 6. Immediately after the MR scanning, contrast agent was injected and a further MRI was done 24 h later. Change in T2 was calculated. Results: No significant difference in change in T2 could be seen between rejecting and non-rejecting grafts in either of the doses, or in the control groups. There was a difference between the allogeneic group that received the higher contrast agent dose and the allogeneic group that did not receive any contrast agent at all. Conclusion: In our rat model, measurements of T2 after myocardial macrophage uptake of AMI-227 in a clinical 1.5T scanner were not useful for the diagnosis of acute rejection.

  10. A comparison of mutations induced by accelerated iron particles versus those induced by low earth orbit space radiation in the FEM-3 gene of Caenorhabditis elegans

    Science.gov (United States)

    Hartman, P. S.; Hlavacek, A.; Wilde, H.; Lewicki, D.; Schubert, W.; Kern, R. G.; Kazarians, G. A.; Benton, E. V.; Benton, E. R.; Nelson, G. A.

    2001-01-01

    The fem-3 gene of Caenorhabditis elegans was employed to determine the mutation frequency as well as the nature of mutations induced by low earth orbit space radiation ambient to Space Shuttle flight STS-76. Recovered mutations were compared to those induced by accelerated iron ions generated by the AGS synchrotron accelerator at Brookhaven National Laboratory. For logistical reasons, dauer larvae were prepared at TCU, transported to either Kennedy Space Center or Brookhaven National Laboratory, flown in space or irradiated, returned to TCU and screened for mutants. A total of 25 fem-3 mutants were recovered after the shuttle flight and yielded a mutation frequency of 2.1x10(-5), roughly 3.3-fold higher than the spontaneous rate of 6.3x10(-6). Four of the mutations were homozygous inviable, suggesting that they were large deletions encompassing fem-3 as well as neighboring, essential genes. Southern blot analyses revealed that one of the 25 contained a polymorphism in fem-3, further evidence that space radiation can induce deletions. While no polymorphisms were detected among the iron ion-induced mutations, three of the 15 mutants were homozygous inviable, which is in keeping with previous observations that high LET iron particles generate deficiencies. These data provide evidence, albeit indirect, that an important mutagenic component of ambient space radiation is high LET charged particles such as iron ions.

  11. Two strain-hardening mechanisms in nanocrystalline austenitic steel: An in situ synchrotron X-ray diffraction study

    International Nuclear Information System (INIS)

    Schloth, P.; Weisser, M.A.; Van Swygenhoven, H.; Van Petegem, S.; Susila, P.; Subramanya Sarma, V.; Murty, B.S.; Lauterbach, S.; Heilmaier, M.

    2012-01-01

    The mechanical behaviour of nanocrystalline austenitic steels with and without yttria particles was investigated using in situ synchrotron diffraction during tensile deformation. Two different strain-hardening regimes were found. The first regime can be assigned predominantly to a martensitic phase transformation, the second to deformation twinning in the fragmented retained austenite. The kinetics of martensitic phase transformation is remarkably enhanced in the nanocrystalline structure.

  12. Synthesis and characterization of iron nano particles for the arsenic removal in water; Sintesis y caracterizacion de nanoparticulas de hierro para la remocion de arsenico en agua

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez M, O. E.

    2011-07-01

    The synthesis of iron nanoparticles for the removal of metallic ions in polluted waters has been during the last years study topic for different world organizations. This work presents a synthesis method of conditioned coal with iron nanoparticles starting from the use of leaves of pineapple crown, with the purpose of using it in arsenic removal processes in aqueous phase. For the synthesis of this material, the leaves of the pineapple crown were used like supports structure of the iron nanoparticles. First, the pyrolysis appropriate temperature was determined. For the preparation of the support material, this had contact with a ferric nitrate and hexamine solution, because the preparation of the material and the coal synthesis were realized during the pyrolysis process, where the hexamine molecules and the ferric nitrate react, causing the reduction of the iron particles and their dispersion on the support material, obtaining as product a conditioned coal with iron nanoparticles. For the characterization of the materials were used techniques as: Scanning electron microscopy, Transmission electron microscopy, X-Rays Diffraction), X-Ray photoelectron spectroscopy and Moessbauer spectroscopy; moreover was determined the isoelectric point and the density of surface sites. The arsenic sorption capacity of the materials was evaluated by means of the methodology type lots where was determined the sorption kinetics and isotherms in terms of arsenic concentration and mass. (Author)

  13. Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Ghosh, B.; Pradhan, S.K.

    2010-01-01

    Nanocrystalline TiC is produced by mechanical milling the stoichiometric mixture of α-Ti and graphite powders at room temperature under argon atmosphere within 35 min of milling through a self-propagating combustion reaction. Microstructure characterization of the unmilled and ball-milled samples was done by both X-ray diffraction and electron microscopy. It reveals the fact that initially graphite layers were oriented along and in the course of milling, thin graphite layers were distributed evenly among the grain boundaries of α-Ti particles. Both α-Ti and TiC lattices contain stacking faults of different kinds. The grain size distribution obtained from the Rietveld's method and electron microscopy studies ensure that nanocrystalline TiC particles with almost uniform size (∼13 nm) can be prepared by mechanical alloying technique. The result obtained from X-ray analysis corroborates well with the microstructure characterization of nanocrystalline TiC by electron microscopy.

  14. Degradation of bisphenol-A by dielectric barrier discharge system: influence of polyethylene glycol stabilized nano zero valent iron particles

    Science.gov (United States)

    Tijani, Jimoh O.; Mouele, Massima E. S.; Fatoba, Ojo O.; Babajide, Omotola O.; Petrik, Leslie F.

    2017-09-01

    In this study we report the synthesis and catalytic properties of polyethylene glycol stabilized nano zero valent iron particles (PEG-nZVI) added to the dielectric barrier discharge (DBD) system to induce photo-Fenton process in the degradation of bisphenol A (BPA) in aqueous solution. The influence of operating parameters such as solution pH, initial concentration of the modelled pollutant and PEG-nZVI dosage on the extent of BPA degradation was investigated. The residual concentration of BPA and its intermediates were determined using high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LCMS). The high resolution scanning electron microscope (HRSEM), x-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, and x-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of filamentous, high surface area iron nanoparticles in the zero valent state. The BPA mineralization rate was monitored using total organic carbon (TOC) analyser. 100% BPA removal was achieved with DBD/PEG-nZVI system within 30 min compared to 67.9% (BPA) with DBD alone after 80 min. The complete BPA removal within a short reaction time was attributed to the existence of a synergetic effect in the combined DBD/PEG-nZVI system. Five new transformation products of BPA namely: 4-nitrophenol (C6H5NO3), 4-nitrosophenolate (C6H4NO2), 4-(prop-1-en-2-yl) cyclohexa-3,5-diene-1,2-dione, (C9H8O2), 4-(2-hydroxylpropan-2-yl)cyclohexane-3,5-diene-1,2-dione (C9H10O3), and 1,2-dimethyl-4-(2-nitropropan-2-yl)benzene (C9H10NO4) were identified. BPA degradation proceeded via ozonation, hydroxylation, dimerization, and decarboxylation and nitration step. The combined DBD/photo-Fenton-induced process was found to be the most efficient in the elimination of BPA in aqueous solutions and DBD alone.

  15. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Science.gov (United States)

    Prasad, Kumar Suranjit; Gandhi, Pooja; Selvaraj, Kaliaperumal

    2014-10-01

    The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV-vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core-shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like sbnd NH, sbnd Cdbnd O, sbnd Cdbnd N and sbnd Cdbnd C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  16. Incorporation of nanoscale zero-valent iron particles inside the channels of SBA-15 silica rods by a “two solvents” reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xia [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Chemistry and Chemical Engineering, Huaihai Institute of Technology, Lian yungang 222005 (China); Yu, Hongxia; Zheng, Da [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Xuesong [School of Chemistry and Chemical Engineering, Huaihai Institute of Technology, Lian yungang 222005 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2013-08-15

    A new reduction method named a “two solvents” reduction technique was developed for incorporation of nanoscale zero-valent iron particles (NZVIs) inside the channels of SBA-15 silica rods under mild conditions. The resulting NZVIs/SBA-15 composites were compared with the ones prepared by the conventional liquid phase reduction method in structure, morphology and reactivity. All the samples were characterized by X-ray diffraction (XRD), N{sub 2} adsorption–desorption isotherms, transmission electron microscopy (TEM) and all-direct-reading plasma atomic emission spectrometry (ICP-AES). Results showed that abundant ultrasmall zero-valent iron particles were synthesized and well dispersed in the mesopores of SBA-15 silica rods by the new reduction technique, whereas larger iron particles were supported and aggregated on the surface of the silica rods by conventional reduction method. Batch experiment demonstrated that NZVIs incorporated inside the silica channels had higher reactivity for the removal of Cr(VI) in aqueous solution than those supported on the surface.

  17. Processing of Nanocrystalline Nitrides and Oxide Composites

    National Research Council Canada - National Science Library

    Ying, Jackie

    1998-01-01

    We have recently begun to investigate the chemical composition, specifically oxygen contamination, and sintering behavior of the nanocrystalline aluminum nitride synthesized in the forced flow reactor...

  18. Strain rate sensitivity of bulk multi-phase nanocrystalline Al-W-based alloy

    Science.gov (United States)

    Varam, Sreedevi; Narayana, P. V. S. L.; Prasad, Muvva D.; Chakravarty, D.; Rajulapati, Koteswararao V.; Bhanu Sankara Rao, K.

    2014-09-01

    High-energy ball milling of conventional coarse-grained aluminium and nanocrystalline W in an Al-10 at.%W composition results in the formation of a two-phase mixture of Al and W with nanocrystalline features. Subsequent compaction of these powders using spark plasma sintering (SPS) at 748 K resulted in the formation of an Al12W phase in the nanocrystalline aluminium matrix. It is suggested that the mere attainment of nanocrystallinity was not enough to trigger a reaction between Al and W to form Al12W but that sufficient thermal activation was also required, as supplied during SPS. The second-phase particles (~175 nm in size) are uniformly distributed in the nanocrystalline Al matrix having a grain size of ~40 nm. The nanocomposite possessed a high hardness of 5.42 ± 0.33 GPa and an elastic modulus of 145 ± 5 GPa, both measured using depth-sensing nanoindentation. At room temperature, this novel nanocomposite exhibited a strain rate sensitivity (SRS) of 0.024 ± 0.001 and an activation volume in the range of 3.78-3.88 b3. Interfacial regions, viz. grain boundaries and triple junctions in the matrix and the reinforcement, matrix/particle boundaries, etc. could be influential factors in deciding the SRS and the activation volume. A scanning probe microscope image of the nanoindent shows a plastic flow region around the periphery of the indent.

  19. Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide

    KAUST Repository

    Qamar, Mohd

    2014-07-01

    Synthesis of mesoporous nanocrystalline iron-doped titania following the sol-gel method is presented in this work. Samples with various molar ratios (0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10 and 20%) of Fe to Ti were prepared. The particle size was found to be in the range of ∼12 nm while mesopores were approximately near to ∼5.5 nm. The effect of Fe as doping element on titania properties, such as crystallite size, surface area, pore size, pore volume and d-spacing was investigated. Moreover, distribution of Fe in TiO2 matrix was determined by elemental mapping whereas change in absorption properties was evaluated by diffuse reflectance spectroscopy. It was observed that as the Fe content was increased, a partial phase transformation from anatase to rutile and pseudorutile took place. Effect of ultraviolet, ultraviolet-visible and visible radiations on the photocatalytic activity of these catalysts was studied by removal of Methyl Orange as model pollutant. As results, it was found that the photocatalytic activity of such catalysts depends strongly on Fe amount and type of radiation. © 2013 Elsevier B.V.

  20. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  1. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    International Nuclear Information System (INIS)

    Feng Jianghua; Liu Huili; Zhang Limin; Bhakoo, Kishore; Lu Lehui

    2010-01-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  2. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Department of Physics, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005 (China); Liu Huili; Zhang Limin [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Bhakoo, Kishore [Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR) 138667 (Singapore); Lu Lehui, E-mail: jianghua.feng@hotmail.com, E-mail: jianghua.feng@wipm.ac.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary {alpha}-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary {alpha}-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies ({beta}-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of

  3. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles.

    Science.gov (United States)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-09-16

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10(-9) S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.

  4. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids.

    Science.gov (United States)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary alpha-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary alpha-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (beta-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  5. Nanocrystalline silicon in biological studies

    Czech Academy of Sciences Publication Activity Database

    Fučíková, A.; Valenta, J.; Pelant, Ivan; Kůsová, Kateřina; Březina, Vítězslav

    2011-01-01

    Roč. 8, č. 3 (2011), s. 1093-1096 ISSN 1862-6351 R&D Projects: GA AV ČR KAN400100701; GA AV ČR(CZ) IAA101120804; GA MŠk LC510; GA ČR GD202/09/H041 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z60870520 Keywords : nanocrystalline * silicon * biocompatibility * quantum dot * fluorescence label Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumar Suranjit, E-mail: suranjit@gmail.com [Department of Environmental Studies, Faculty of Science, The M. S. University of Baroda, Vadodara, 390002, Gujarat (India); Gandhi, Pooja, E-mail: poojagandhi.3090@gmail.com [Department of Environmental Sciences, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, Gujarat, 388121 (India); Selvaraj, Kaliaperumal, E-mail: k.selvaraj@ncl.res.in [Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pune, 411008 (India)

    2014-10-30

    Graphical abstract: - Highlights: • Colloidal GnIP synthesised using extract of Mint leaves were entrapped in chitosan beads. • GnIP loaded beads were employed for removal of As ions, showed excellent removal efficiency. • Iron and chitosan are cost effective materials hence can be a good adsorbent for removal of arsenic. - Abstract: The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV–vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core–shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like -NH, -C=O, -C=N and -C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  7. On preparation of nanocrystalline chromites by co-precipitation andautocombustion methods

    Czech Academy of Sciences Publication Activity Database

    Matulková, Irena; Holec, Petr; Pacáková, Barbara; Kubíčková, Simona; Mantlíková, Alice; Plocek, Jiří; Němec, I.; Nižňanský, D.; Vejpravová, Jana

    2015-01-01

    Roč. 195, May (2015), s. 66-73 ISSN 0921-5107 R&D Projects: GA ČR GAP108/10/1250 Institutional support: RVO:68378271 ; RVO:61388980 Keywords : transition metal chromites * nanocrystalline particles * microstructural analysis * vibrational spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.331, year: 2015

  8. Structural and microstructural characterizations of nanocrystalline hydroxyapatite synthesized by mechanical alloying.

    Science.gov (United States)

    Lala, S; Satpati, B; Kar, T; Pradhan, S K

    2013-07-01

    Single phase nanocrystalline hydroxyapatite (HAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4 powders in open air at room temperature, for the first time, within 2 h of milling. Nanocrystalline hexagonal single crystals are obtained by sintering of 2h milled sample at 500 °C. Structural and microstructural properties of as-milled and sintered powders are revealed from both the X-ray line profile analysis and transmission electron microscopy. Shape and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Particle size of HAp powder remains almost invariant up to 10h of milling and there is no significant growth of nanocrystalline HAp particles after sintering at 500 °C for 3 h. Changes in lattice volume and some primary bond lengths of as-milled and sintered are critically measured, which indicate that lattice imperfections introduced into the HAp lattice during ball milling have been reduced partially after sintering the powder at elevated temperatures. We could achieve ~96.7% of theoretical density of HAp within 3h by sintering the pellet of nanocrystalline powder at a lower temperature of 1000 °C. Vickers microhardness (VHN) of the uni-axially pressed (6.86 MPa) pellet of nanocrystalline HAp is 4.5 GPa at 100 gm load which is close to the VHN of bulk HAp sintered at higher temperature. The strain-hardening index (n) of the sintered pellet is found to be >2, indicating a further increase in microhardness value at higher load. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Equation of state of nanocrystalline forsterite

    Science.gov (United States)

    Couvy, H.; Chen, J.; Drozd, V.

    2008-12-01

    Grain size and grain shape are important parameters for physical properties of minerals as well as for geophysical processes like deformation. Even though the occurrences of nanominerals in the crust and the mantle are limited their presence might have an important influence. For instance, mechanical grinding of rocks associated to earthquake can generate nanoparticles and their presence is thought to control earthquake instability. In the context of subducting slab, experiments show presence of nanoparticle of ringwoodite which plays a important role in deep earthquakes. However, the influence of nano grain size on elastic properties of minerals is poorly studied. This work presents a study of equation of state of nano-forsterite. Nanocrystalline forsterite has been synthesized using a sol-gel method. A particle size of about 50 nm has been obtained. In-situ hydrostatic high pressure and high temperature experiments have been performed at X17B2 (NSLS) using the DIA-type multianvil press. Two samples of macron size and nano size particles of forsterite have been studied simultaneously up to 10 GPa and 1300°C for comparison. The bulk modulus of both samples and its derivative with pressure and temperature will presented and the consequences for geological processes will be discussed.

  10. Rheological properties of nanocrystalline cellulose suspensions.

    Science.gov (United States)

    Chen, Yang; Xu, Chunjiang; Huang, Jing; Wu, Defeng; Lv, Qiaolian

    2017-02-10

    Rheological behavior, including linear and nonlinear, as well as transient rheology of nanocrystalline cellulose (NCC) suspensions was studied in this work. Two kinds of polymer solutions, aqueous poly(vinyl alcohol) (PVA) with flexible chain structure and aqueous carboxymethyl cellulose (CMC) with semi-rigid chain structure, were used as the suspension media to further explore the role that the interactions among NCC and polymers played during shear flow. The results reveal that NCC has lower values of percolation threshold in the PVA solution than in the CMC one during small amplitude oscillatory shear (SAOS) flow because the flexible PVA chain has higher adsorbed level onto NCC particles than the negatively charged semi-rigid CMC chain, which is further confirmed by the Fourier transformed infrared (FT-IR) spectroscopy tests. As a result, the NCC suspension shows a weak strain overshoot in PVA solution during large amplitude oscillatory shear (LAOS) flow, which cannot be seen on the one in CMC solution. During startup shear flow, both of these two suspensions show evident stress overshoot behavior with the strain-scaling characteristics, indicating the formation of ordered long-term structure of rod-like NCC particles with self-similarity during flow. However, NCC suspension have far stronger stress overshoot response in CMC solution relative to the one in PVA solution. A possible synergy mechanism between NCC and CMC chain is hence proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment.

    Science.gov (United States)

    Velimirovic, Milica; Simons, Queenie; Bastiaens, Leen

    2015-09-01

    The release of fine zerovalent iron (ZVI) particles in the environment after being introduced for in-situ treatment of compounds like chlorinated aliphatic hydrocarbons (CAHs) may raise questions toward environmental safety, especially for nanoscale materials. Classical single-species ecotoxicity tests do focus on aerobic conditions and are only relevant for the scenario when ZVI-particles reach surface water. Herein, we present an alternative approach where a CAH-degrading mixed bacterial culture was used as test-organisms relevant for the anaerobic subsurface. The impact of different ZVI particles on the bacterial culture was evaluated mainly by quantifying ATP, a reporter molecule giving a general indication of the microbial activity. These lab-scale batch tests were performed in liquid medium, without protecting and buffering aquifer material, as such representing worst-case scenario. The activity of the bacterial culture was negatively influenced by nanoscale zerovalent iron at doses as low as 0.05 g L(-1). On the other hand, concentrations up to 2 g L(-1) of several different types of microscale zerovalent iron (mZVI) particles stimulated the activity. However, very high doses of 15-30 g L(-1) of mZVI showed an inhibiting effect on the bacterial community. Negative effects of ZVIs were confirmed by H2 accumulation in the batch reactors and the absence of lactate consumption. Observed inhibition also corresponded to a pH increase above 7.5, explicable by ZVI corrosion that was found to be dose-dependent. The obtained results suggest that low doses of mZVIs will not show severe inhibition effects on the microbial community once used for in-situ treatment of CAHs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy.

    Science.gov (United States)

    Poller, Wolfram C; Löwa, Norbert; Wiekhorst, Frank; Taupitz, Matthias; Wagner, Susanne; Möller, Konstantin; Baumann, Gert; Stangl, Verena; Trahms, Lutz; Ludwig, Antje

    2016-02-01

    In vivo tracking of nanoparticle-labeled cells by magnetic resonance imaging (MRI) crucially depends on accurate determination of cell-labeling efficacy prior to transplantation. Here, we analyzed the feasibility and accuracy of magnetic particle spectroscopy (MPS) for estimation of cell-labeling efficacy in living THP-1 cells incubated with very small superparamagnetic iron oxide nanoparticles (VSOP). Cell viability and proliferation capacity were not affected by the MPS measurement procedure. In VSOP samples without cell contact, MPS enabled highly accurate quantification. In contrast, MPS constantly overestimated the amount of cell associated and internalized VSOP. Analyses of the MPS spectrum shape expressed as harmonic ratio A₅/A₃ revealed distinct changes in the magnetic behavior of VSOP in response to cellular uptake. These changes were proportional to the deviation between MPS and actual iron amount, therefore allowing for adjusted iron quantification. Transmission electron microscopy provided visual evidence that changes in the magnetic properties correlated with cell surface interaction of VSOP as well as with alterations of particle structure and arrangement during the phagocytic process. Altogether, A₅/A₃-adjusted MPS enables highly accurate, cell-preserving VSOP quantification and furthermore provides information on the magnetic characteristics of internalized VSOP.

  13. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Taking a cubic unit cell or a regular polyhedron unit cell of nanocrystalline material, the volume fraction of each ... The present article reviews the present states of understanding in these aspects of nanocrystalline materials. ..... Calculations based on the equation of state show 37% reduction in tetragonal shear modulus of ...

  14. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  15. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  16. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  17. Electric arc furnace dust utilization in iron ore sintering: influence of particle size; Utilizacao da poeira de aciaria eletrica na sinterizacao de minerio de ferro: influencia da granulometria

    Energy Technology Data Exchange (ETDEWEB)

    Telles, V.B.; Junca, E.; Rodrigues, G.F.; Espinosa, D.C.R.; Tenorio, J.A.S., E-mail: victor_bridit@hotmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    The aim of this work was to study the utilization of electric arc furnace dust (EAFD) generated in steelmaking by electric arc furnace (EAF) as raw material in iron ore sintering. The waste was characterized by size, chemical composition and X-ray diffraction. The physical characterization showed that 90% of the particles have a size less then 1,78 {mu}m and the material have the tendency to agglomerate. The waste were submitted to a pre-agglomeration prior to its incorporation in the sinter. The influence on the addition of the waste with different granulometry in the iron or sinter production were analyzed by sinter characterization and sintering parameters. (author)

  18. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard

    2018-01-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component...... of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper....... First, a ma terial equivalent to the ductile cast iron matrix is manufactured and subjected to dilato- metric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between...

  19. Stability of tris-1,10-phenanthroline iron (II) complex in biomineral particles produced by Klebsiella oxytoca

    International Nuclear Information System (INIS)

    Anghel, L.V.; Balasoiu, M.; Lazar, D.M.; Ishchenko, L.A.

    2011-01-01

    The composition of composites has a huge impact on the stability of tris-1,10-phenanthroline iron (II) complex during the determination of total iron content. The subject of this work is the determination of the stability of tris-1,10-phenanthroline iron (II) complex in samples of biominerals produced by bacteria Klebsiella oxytoca. The stability of this complex was monitored in the time period of 0-60 min. The aim of this work is to determine the concentration of the biogenic ferrihydrite in the samples and the time interval in which the absorbance of the complex is highest. The UV-Vis spectrophotometric method was used for the determination. Obtained results indicate that for more exact estimations of the concentration of biogenic ferrihydrite, absorbance of tris-1,10-phenanthroline iron (II) complex should be measured within 25 min from the moment ortho-phenanthroline was added

  20. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    Science.gov (United States)

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  1. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  2. Obtaining of iron particles of nanometer size in a natural zeolite; Obtencion de particulas de hierro de tamano nanometrico en una zeolita natural

    Energy Technology Data Exchange (ETDEWEB)

    Xingu C, E. G.

    2013-07-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  3. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    International Nuclear Information System (INIS)

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  4. Tailoring the wettability of nanocrystalline TiO 2 films

    Science.gov (United States)

    Liang, Qiyu; Chen, Yan; Fan, Yuzun; Hu, Yong; Wu, Yuedong; Zhao, Ziqiang; Meng, Qingbo

    2012-01-01

    The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.

  5. Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders

    DEFF Research Database (Denmark)

    Skovgaard, Mette; Ahniyaz, Anwar; Sørensen, Bent F.

    2010-01-01

    For the first time, the effect of microscale shear stress induced by both mechanical compression and ball-milling on the phase stability of nanocrystalline tetragonal zirconia (t-ZrO2) powders was studied in water free, inert atmosphere. It was found that nanocrystalline t-ZrO2 powders are extrem......For the first time, the effect of microscale shear stress induced by both mechanical compression and ball-milling on the phase stability of nanocrystalline tetragonal zirconia (t-ZrO2) powders was studied in water free, inert atmosphere. It was found that nanocrystalline t-ZrO2 powders...... was observed. Ball-milling induced microscale stress has a similar effect on the t → m phase transformation. Furthermore, it was found that even very mild milling condition, such as 120 rpm, 1 h (0.5 mm balls) was enough to induce phase transformation. Surfactant assisted ball-milling was found to be very...... effective in de-agglomeration of our nanocrystalline porous ZrO2 particles into discrete nanocrystals. However, the t → m phase transformation could not be avoided totally even at very mild milling condition. This suggests that the metastable t-ZrO2 is extreme sensitive to microscale shear stress induced...

  6. Nanocrystalline functional materials and nanocomposites synthesis through aerosol routes

    Directory of Open Access Journals (Sweden)

    Milošević Olivera B.

    2003-01-01

    Full Text Available This paper represents the results of the design of functional nanocrystalline powders and nanocomposites using chemical reactions in aerosols. The process involves ultrasonic aerosol formation (mist generators with the resonant frequencies of 800 kHz, 1.7 and 2.5 MHz from precursor salt solutions and control over the aerosol decomposition in a high-temperature tubular flow reactor. During decomposition, the aerosol droplets undergo evaporation/drying, precipitation and thermolysis in a single-step process. Consequently, spherical, solid, agglomerate-free submicronic particles are obtained. The particle morphology, revealed as a composite structure consisting of primary crystallites smaller than 20 nm was analysed by several methods (XRD, DSC/DTA, SEM, TEM and discussed in terms of precursor chemistry and process parameters. Following the initial attempts, a more detailed aspect of nanocrystalline particle synthesis was demonstrated for the case of nanocomposites based on ZnO-MeO (MeO=Bi Cr+, suitable for electronic applications, as well as an yttrium-aluminum base complex system, suitable for phosphorus applications. The results imply that parts of the material structure responsible for different functional behaviour appear through in situ aerosol synthesis by processes of intraparticle agglomeration, reaction and sintering in the last synthesis stage.

  7. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  8. Remediation of Chlorpyrifos-Contaminated Soils by Laboratory-Synthesized Zero-Valent Nano Iron Particles: Effect of pH and Aluminium Salts

    Directory of Open Access Journals (Sweden)

    A. Vijaya Bhaskar Reddy

    2013-01-01

    Full Text Available Degradation of the insecticide chlorpyrifos in contaminated soils was investigated using laboratory synthesized zero-valent nano iron (ZVNI particles. The synthesized ZVNI particles were characterized as nanoscale sized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The zero-valent state (Fe0 of iron was confirmed by EDAX analysis and the morphology of the ZVNI particles was studied by XRD. Batch experiments were conducted by treating the chlorpyrifos contaminated soil with ZVNI, our results indicate that 90% of chlorpyrifos was degraded after 10 days of incubation. Only 32% degradation was observed with micro zero-valent iron (mZVI and no considerable degradation was attained without ZVNI. The degradation of chlorpyrifos followed the first-order kinetics with a rate constant and a half-life of 0.245 day−1 and 2.82 days, respectively. Degradation was monitored at two different pH values, that is, pH 10 and pH 4. Chlorpyrifos degradation rate constant increased as the pH decreases from 10 to 4. The corresponding rate constant and half-lives were 0.43 day−1 and 1.57days for pH 4, 0.18 day−1 and 3.65 days for pH 10. In addition, an attempt was made by augmenting Al2(SO43 with ZVNI and it was found that the degradation rate of chlorpyrifos was greatly enhanced and the rate constant was rapidly increased from 0.245 day−1 to 0.60 day−1. Hydrolysis and stepwise dechlorination pathway of chlorpyrifos with ZVNI was the dominant reaction.

  9. Dynamic recovery in nanocrystalline Ni

    International Nuclear Information System (INIS)

    Sun, Z.; Van Petegem, S.; Cervellino, A.; Durst, K.; Blum, W.; Van Swygenhoven, H.

    2015-01-01

    The constant flow stress reached during uniaxial deformation of electrodeposited nanocrystalline Ni reflects a quasi-stationary balance between dislocation slip and grain boundary (GB) accommodation mechanisms. Stress reduction tests allow to suppress dislocation slip and bring recovery mechanisms into the foreground. When combined with in situ X-ray diffraction it can be shown that grain boundary recovery mechanisms play an important role in producing plastic strain while hardening the microstructure. This result has a significant consequence for the parameters of thermally activated glide of dislocations, such as athermal stress and activation volume, which are traditionally derived from stress/strain rate change tests

  10. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Cathode materials in nano size improve the performance of batteries due to the increased reaction rate and short diffusion lengths. Lithium Iron Phosphate (LiFePO4 is a promising cathode material for Li-ion batteries. However, it has its own limitations such as low conductivity and low diffusion coefficient which lead to high impedance due to which its application is restricted in batteries. In the present work, increase of conductivity with decreasing particle size of LiFePO4/C is studied. Also, the dependence of conductivity and activation energy for hopping of small polaron in LiFePO4/C on variation of particle size is investigated. The micro sized cathode material is ball milled for different durations to reduce the particle size to nano level. The material is characterized for its structure and particle size. The resistivities/dc conductivities of the pellets are measured using four probe technique at different temperatures, up to 150 °C. The activation energies corresponding to different particle sizes are calculated using Arrhenius equation. CR2032 cells are fabricated and electrochemical characteristics, namely, ac impedance and diffusion coefficients, are studied.

  11. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature

    OpenAIRE

    Sedlačík, Michal; Pavlínek, Vladimír; Peer, Petra; Filip, Petr

    2014-01-01

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating...

  12. Particle size dependence of chemical compositions of metal-containing ultrafine particles synthesized from a gaseous mixture of iron pentacarbonyl and carbon disulfide

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Takeyasu, Y.; Šubrt, Jan

    2008-01-01

    Roč. 197, č. 1 (2008), s. 88-93 ISSN 1010-6030 R&D Projects: GA MŠk LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : ultraline particles * gas phase photochemical reaction * particle size Subject RIV: CA - Inorganic Chemistry Impact factor: 2.362, year: 2008

  13. Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Tan Weiwei; Yin Xiong; Zhou Xiaowen; Zhang Jingbo; Xiao Xurui; Lin Yuan

    2009-01-01

    Nanocrystalline TiO 2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 deg. C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO 2 , which plays an important role in improving the interconnection between TiO 2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO 2 films. The cell performance was further optimized by designing nanocrystalline TiO 2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm -2 (AM 1.5) simulated sunlight.

  14. Influences of the iron ion (Fe{sup 3+})-doping on structural and optical properties of nanocrystalline TiO{sub 2} thin films prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Ben Naceur, J. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Bousbih, F.; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia)

    2011-10-01

    Titanium dioxide (TiO{sub 2}) thin films doping of various iron ion (Fe{sup 3+}) concentrations were deposited on silicon (Si) (100) and quartz substrates by sol-gel Spin Coating technique followed by a thermal treatment at 600 deg. C. The structure, surface morphology and optical properties, as a function of the doping, have been studied by X-ray diffractometer (XRD), Raman, ultraviolet-visible (UV-vis) and Spectroscopic Ellipsometry (SE). XRD and Raman analyzes of our thin films show that the crystalline phase of TiO{sub 2} thin films comprised only the anatase TiO{sub 2}, but the crystallinity decreased when the Fe{sup 3+} content increased from 0% to 20%. During the Fe{sup 3+} addition to 20%, the phase of TiO{sub 2} thin film still maintained the amorphous state. The grain size calculated from XRD patterns varies from 29.3 to 22.6 nm. The complex index and the optical band gap (E{sub g}) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreased with an increasing Fe{sup 3+} content.

  15. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    Science.gov (United States)

    Mallik, P. K.; Swain, P. K.; Patnaik, S. C.

    2016-02-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.

  16. Synthesis of Nanocrystalline Cellulose Stabilized Copper Nanoparticles

    Directory of Open Access Journals (Sweden)

    Aminu Musa

    2016-01-01

    Full Text Available A chemical reduction method was employed for the synthesis of copper nanoparticles stabilized by nanocrystalline cellulose (NCC using different concentrations of copper salt in aqueous solution under atmospheric air. CuSO4·5H2O salt and hydrazine were used as metal ion precursor and reducing agent, respectively. Ascorbic acid and aqueous NaOH were also used as an antioxidant and a pH moderator, respectively. The number of CuNPs increased with increasing concentration of the precursor salt. The formation of copper nanoparticles stabilized by NCC (CuNPs@NCC was investigated by UV-visible spectroscopy (UV-vis, where the surface absorption maximum was observed at 590 nm. X-ray diffraction (XRD analysis showed that the CuNPs@NCC are of a face-centered cubic structure. Moreover, the morphology of the CuNPs@NCC was investigated using transmission electron microscope (TEM and field emission scanning electron microscope (FESEM, which showed well-dispersed CuNPs with an average particle size less than 4 nm and the shape of CuNPs was found to be spherical. Energy dispersive X-ray spectroscope (EDS also confirmed the presence of CuNPs on the NCC. The results demonstrate that the stability of CuNPs decreases with an increasing concentration of the copper ions.

  17. Magnetic and dielectric properties of perovskite type nanocrystalline SrFeO3-δ

    International Nuclear Information System (INIS)

    Manimuthu, P.; Ashok Kumar, K.; Ezhilarasi, V.S.; Venkateswaran, C.

    2012-01-01

    SrFeO 3δ belongs to the Ruddelson-Popper class of system exhibiting technologically interesting electronic and magnetic properties. Stoichiometric SrFeO 3 is metallic and helical antiferromagnet with a Neel temperature (T N ) of 134 K. In particular, SrFeO 3 with Fe in the 4+ state receives greatest attention. The unusual valence state of Fe 4+ in the octahedral site is unstable during the high temperature annealing process and gradually reduces to stable Fe 3+ . Due to this charge conversion, oxygen vacancies are formed for charge compensation. Depending on the oxygen content, the material possesses different structural and electronic properties. For δ= 0, 0.13, 0.27 and 0.5, it takes cubic-SrFeO 3 , tetragonal-SrFeO 2 . 87 (Sr 8 Fe 8 O 23 ), orthorhombic-SrFeO 2.73 , (Sr 4 Fe 4 O 11 ) and brownmilletrate-orthorhombic-SrFeO 2.5 (Sr 2 Fe 2 O 5 ) phases, respectively. Any intermediate composition results in a mixture of two neighbouring phases. So, SrFeO 3-δ has gained interest not only because of iron in 4+ state but also due to its oxygen deficiency. The perovskite type nanocrystalline SrFeO 3δ has been prepared by thermal decomposition method. X-ray diffraction (XRD) shows that the prepared sample is in cubic perovskite phase. HRSEM image shows nanocrystalline sized particles of irregular shape with large agglomerations. Room temperature magnetization and Mösbauer measurements reveal paramagnetic behavior. Thermo-magnetization curve clearly shows a Neel transition temperature around 106 K which is lower than that of the stoichiometric SrFeO 3 (T N = 134 K). From the Mössbauer result, three charge states of Fe ions (i.e., Fe 4+ , Fe 3.5+ and Fe 3+ ) are evident. The corresponding oxygen deficient phase has been identified from the relative areas of three Fe ions in the sample and is found to be δ ∼ 0.19. Electrical and dielectric behaviors of the sample have been analyzed using an impedance analyzer from 303 K to 473 K. The results will be discussed

  18. Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Tang, Jing [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Guide; Xie, Xia; Zhou, Yaoyu [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Pang, Ya [Department of Biological Engineering and Environmental Science, Changsha College, Changsha 410003 (China); Fang, Yan; Wang, Jiajia [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Xiong, Weiping [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2015-04-01

    Highlights: • Nanoscale zero-valent iron (nZVI) was doped in mesoporous silica (SBA-15). • High capacity and fast rate for the removal of p-nitrophenol. • Better antioxidant ability of nZVI/SBA-15 than nZVI. • p-Nitrophenol removal depended heavily on immobilized nZVI amount. • Mechanism of PNP removal by nZVI/SBA-15 was proposed. - Abstract: In this study, nanoscale zero-valent iron particles immobilized on mesoporous silica (nZVI/SBA-15) were successfully prepared for effective degradation of p-nitrophenol (PNP). The nZVI/SBA-15 composites were characterized by N{sub 2} adsorption/desorption, transmission electron microscopy (TEM), UV–vis spectrum and X-ray photoelectron spectroscopy (XPS). Results showed that abundant ultrasmall nanoscale zero-valent iron particles were formed and well dispersed on mesoporous silica (SBA-15). Batch experiments revealed that PNP removal declined from 96.70% to 16.14% as solution pH increased from 3.0 to 9.0. Besides, degradation equilibrium was reached within 5 min, which was independent of initial PNP concentration. Furthermore, only a little PNP elimination on SBA-15 indicated that nZVI immobilized on mesoporous silica was mainly responsible for the target contaminant removal. The UV–vis spectrum and XPS measurement confirmed that the PNP removal was a reductive degradation process, which was further proved by the detected intermediates using gas chromatography–mass spectrometry (GC/MS). The excellent antioxidation ability had been discovered with more than 80% of PNP being removed by nZVI/SBA-15 treated with 30 days’ exposure to air. These results demonstrated the feasible and potential application of nZVI/SBA-15 composites in organic wastewater treatment.

  19. Effects of surface chemistry on coagulation of submicron iron oxide particles (α-Fe_2O_3) in water

    OpenAIRE

    Liang, Liyuan

    1988-01-01

    Particles in the colloidal size range, i.e. smaller than 10^(-6) meter, are of interest in environmental science and many other fields of science and engineering. Since aqueous oxide particles have high specific surface areas they adsorb ions and molecules from water, and may remain stable in the aqueous phase with respect to coagulation. Submicron particles collide as a result of their thermal energy, and the effective collision rate is slowed by electric repulsion forces. A key to understan...

  20. Flame synthesis and characterization of nanocrystalline titania powders

    Directory of Open Access Journals (Sweden)

    Bhaskaran Manjith Kumar

    2012-09-01

    Full Text Available Flame reactors are considered to be one of the most promising and versatile synthesis routes for the largescale production of submicron and nanosized particles. An annular co-flow type oxy-gas diffusion burner was designed for its application in a modular flame reactor for the synthesis of nanocrystalline oxide ceramics. The burner consisted of multiple ports for the individually regulated flow of a precursor vapour, inert gas, fuel gas and oxidizer. The nanopowders formed during flame synthesis in the reaction chamber were collected by a suitable set of filters. In the present study, TTIP was used as the precursor for the synthesis of nanocrystalline TiO2 and helium was used to carry the precursor vapour to the burner head. Methane and oxygen were used as fuel and oxidizer respectively. The operating conditions were varied by systematically changing the flow rates of the gases involved. The synthesized powders were characterized using standard techniques such as XRD, SEM, TEM, BET etc., in order to determine the crystallite size, phase content, morphology, particle size and degree of agglomeration. The influences of gas flow rates on the powder characteristics are discussed.

  1. Prefilming twin-fluid nozzle assisted precipitation method for preparing nanocrystalline HNS and its characterization.

    Science.gov (United States)

    Wang, Jingyu; Huang, Hao; Xu, Wen Zheng; Zhang, Yu Ruo; Lu, Bin; Xie, Rui Zheng; Wang, Peiyong; Yun, Ni

    2009-03-15

    The ultra-fine HNS (2,2',4,4',6,6'-hexanitrostilbene) with desired properties is needed for military and civilian applications because of its reliable threshold energy to short impulse shock waves and its excellent thermal and shock stability. This paper reports on prefilming twin-fluid nozzle assisted precipitation (PTFN-P) to obtain ultra-fine HNS explosive with high specific surface area (SSA), high purity, and narrow particle size distribution. The properties of ultra-fine HNS have been confirmed by SEM, BET, HPLC, XRD, DSC and TGA-SDTA. SEM photograph revealed that the PTFN-P process offers ellipsoid crystalline morphology with particle size of 90-150 nm. The BET and Langmuir SSA of nanocrystalline HNS with purity of 99.44 wt.% were determined to be 19.28 m(2)/g and 29.26 m(2)/g, respectively. The XRD peaks of nanocrystalline HNS seemed to have similar diffraction angles as those of synthesized HNS, and the weakening of peak strength was observed apparently. DSC results of the nanocrystalline HNS showed that the exothermic decomposing at the temperature range of 323-398 degrees C. Furthermore, HNS samples were submitted to impact and small scale gap test and the results indicated that nanocrystalline HNS is less sensitive than synthesized HNS (50 microm) to impact and shock stimuli.

  2. Iron or iron oxide grains in the interstellar medium?

    International Nuclear Information System (INIS)

    Jones, A.P.

    1990-01-01

    Iron grains have often been proposed as a component of circumstellar and interstellar grains. It is apparent that 'cosmic abundance' circumstellar shells should condense iron-rich particles such as metallic iron, iron/nickel alloys and iron carbides. It is not, however, clear that these grains can survive in this state in the interstellar medium. In this paper the chemistry of iron particles in the diffuse interstellar medium is examined and it is concluded that these grains cannot survive as pristine metallic iron-rich entities. The reactivity of iron, and in particular its reaction with interstellar gas-phase oxygen and sulphur species, will result in the rapid degradation of the metal to an oxide, sulphide or even sulphate. The lack of metallic phases in the mineralogy of primitive interplanetary dust particles is consistent with the absence of metallic particles in the interstellar medium. (author)

  3. Synthesis and Processing of Nanocrystalline Aluminum Nitride

    OpenAIRE

    Duarte, Matthew Albert

    2016-01-01

    Synthesis, processing and characterization of nanocrystalline aluminum nitride has been systematically studied. Non-carbon based gas nitridation was used to reduce nanocrystalline γ-alumina, having a grain size of ~80 nm. Single phase aluminum nitride powder was obtained at firing temperatures of 1200°C. Further processing of AlN powders was performed by CAPAD (Current Activated Pressure Assisted Densification) to obtain dense single phase aluminum nitride. Dense bulk aluminum nitride was ob...

  4. Screening of oxygen-carrier particles based on iron-, manganese-, copper- and nickel oxides for use in chemical-looping technologies

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Marcus

    2007-07-01

    Capture and storage of carbon dioxide from combustion will likely be used in the future as a method of reducing emissions of greenhouse gases and thus be part of the overall strategy to stabilize the atmospheric levels of CO{sub 2}. Chemical-looping combustion is a method of combustion where CO{sub 2} is inherently separated from the non-condensable components in the flue gas without the need for an energy intensive air separation unit. This is because nitrogen from the combustion air is never mixed with the fuel. Instead, oxygen carriers, in the form of metal oxide particles, circulate between two interconnected fluidized reactors and transfer oxygen from the air to the fuel through heterogeneous gas-solid redox reactions. The technology could also be adapted for the production of hydrogen from fossil fuels with CO{sub 2} separation, i.e. chemical-looping reforming. 108 different oxygen-carriers based on iron-, manganese-, copper- and nickel oxides have been investigated. These carriers are prepared with inert material to increase the lifetime and performance of the particles. All particles but one have been produced by a freeze-granulation method. In order to optimize the performance of the particles, the sintering temperature of the particles was varied between 950 deg C and 1600 deg C. Normally particles of the size range of 125-180 squarem have been used for the reactivity investigations. Screening tests were performed in a laboratory fluidized-bed reactor of quartz placed in a furnace. The particles were exposed to an environment simulating a real chemical looping combustor, by alternating between reducing (50% CH{sub 4} - 50 % H{sub 2}O) and oxidizing conditions (5% O{sub 2} in N{sub 2}). The temperature was varied in the range 600 - 950 deg C with most experiments conducted at 950 deg C. In addition the particles were characterized with respect to strength, physical appearance and chemical structure before and after the experiments. Some suitable oxygen

  5. Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Ilčíková, M.; Pavlínek, V.; Mosnáček, J.; Peer, Petra; Filip, Petr

    2013-01-01

    Roč. 396, april (2013), s. 146-151 ISSN 0021-9797 R&D Projects: GA ČR GA202/09/1626 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : covalent coating * carbonyl iron * cholesteryl chloroformate * thermooxidation * Magnetorheology Subject RIV: BK - Fluid Dynamics Impact factor: 3.552, year: 2013

  6. Cholesteryl-coated carbonyl iron particles with improved anti-corrosion stability and their viscoelastic behaviour under magnetic field

    Czech Academy of Sciences Publication Activity Database

    Mrlik, M.; Ilčíková, M.; Sedlačík, M.; Mosnáček, J.; Peer, Petra; Filip, Petr

    2014-01-01

    Roč. 292, č. 9 (2014), s. 2137-2143 ISSN 0303-402X R&D Projects: GA ČR(CZ) GP14-32114P Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : carbonyl iron * cholesteryl chloroformate * silicone oil suspensions * viscoelasticity * magnetorheology Subject RIV: BK - Fluid Dynamics Impact factor: 1.865, year: 2014

  7. Characterization and Application of Colloidal Nanocrystalline Materials for Advanced Photovoltaics

    Science.gov (United States)

    Bhandari, Khagendra P.

    Solar energy is Earth's primary source of renewable energy and photovoltaic solar cells enable the direct conversion of sunlight into electricity. Crystalline silicon solar cells and modules have dominated photovoltaic technology from the beginning and they now constitute more than 90% of the PV market. Thin film (CdTe and CIGS) solar cells and modules come in second position in market share. Some organic, dye-sensitized and perovskite solar cells are emerging in the market but are not yet in full commercial scale. Solar cells made from colloidal nanocrystalline materials may eventually provide both low cost and high efficiency because of their promising properties such as high absorption coefficient, size tunable band gap, and quantum confinement effect. It is also expected that the greenhouse gas emission and energy payback time from nanocrystalline solar PV systems will also be least compared to all other types of PV systems mainly due to the least embodied energy throughout their life time. The two well-known junction architectures for the fabrication of quantum dot based photovoltaic devices are the Schottky junction and heterojunction. In Schottky junction cells, a heteropartner semiconducting material is not required. A low work function metal is used as the back contact, a transparent conducting layer is used as the front contact, and the layer of electronically-coupled quantum dots is placed between these two materials. Schottky junction solar cells explain the usefulness of nanocrystalline materials for high efficiency heterojunction solar cells. For heterojunction devices, n-type semiconducting materials such as ZnO , CdS or TiO2 have been used as suitable heteropartners. Here, PbS quantum dot solar cells were fabricated using ZnO and CdS semiconductor films as window layers. Both of the heteropartners are sputter-deposited onto TCO coated glass substrates; ZnO was deposited with the substrate held at room temperature and for CdS the substrate was at 250

  8. Nanocrystalline metal-superconductor powders produced by aerosol decomposition

    International Nuclear Information System (INIS)

    Carim, A.H.; Doherty, P.; Kodas, T.T.

    1990-01-01

    This paper reports on composite silver---YBa 2 Cu 3 O 7-δ powders with nanocrystalline and larger sizes produced by aerosol techniques at 1000 degrees C and 930 degrees C. Silver is incorporated primarily in the elemental form, although particles of hexagonal Ag 2 O are also observed when the reactor is operated below the Ag-O eutectic temperature (939 degree C). Longer reactor residence times (>35 s, as opposed to c > 90K) can still be obtained in the composite powders. Aerosol decomposition of Y-Ba-Cu nitrate precursors with Pt additions did not produce superconductive material; instead, most of the resultant particles were Pt-Y-Ba-Cu-O compounds

  9. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    Science.gov (United States)

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  10. Respiratory Effects of Inhaled Single-Walled Carbon Nanotubes: The Role of Particle Morphology and Iron Content

    Science.gov (United States)

    Madl, Amy Kathleen

    Nanotechnology provides promise for significant advancements in a number of different fields including imaging, electronics, and therapeutics. With worldwide production of carbon nanotubes (CNTs) exceeding over 500 metric tons annually and industry growth expecting to double over the next 5 yr, there are concerns our understanding of the hazards of these nanomaterials may not be keeping pace with market demand. The physicochemical properties of CNTs may delineate the key features that determine either toxicity or biocompatibility and assist in evaluating the potential health risks posed in industrial and consumer product settings. We hypothesized that the iron content and morphology of inhaled single-walled carbon nanotubes (SWCNTs) influences the extent of cellular injury and alters homeostasis in the lung. To address this hypothesis, (1) an aerosol system was developed to deliver carbon-based nanomaterials in a manner of exposure that is physiologically and environmentally relevant (e.g., inhalation), (2) acute (1 d) and subacute (10 d) nose-only inhalation studies to a well-characterized aerosol of iron-containing (FeSWCNT) versus cleaned (iron removed, cSWCNTs) SWCNTs were conducted to evaluate the time-course patterns of possible injury through measurement of markers of cytotoxicity, inflammation, and cellular remodeling/homeostasis, and (3) the effects of SWCNTs were compared to other well-studied materials (e.g. non-fibrous, low-iron content ultrafine carbon black and fibrous, high-iron content, highly persistent, durable and potent carcinogen crocidolite) to offer insights into the relative toxicity of these nanomaterials as well as the possible mechanisms by which the effects occur. Rats (SD) were exposed to either aerosolized SWCNTs (raw FeSWCNT or purified cSWCNT), carbon black (CB), crocidolite, or fresh air via nose-only inhalation. Markers of inflammation and cytotoxicity in lung lavage, mucin in different airway generations, and collagen in the

  11. Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.

    Science.gov (United States)

    Yan, Yuanwei; Sart, Sébastien; Calixto Bejarano, Fabian; Muroski, Megan E; Strouse, Geoffrey F; Grant, Samuel C; Li, Yan

    2015-01-01

    Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre-labeled neural cells, especially in three-dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC-derived multicellular NPC aggregates labeled with micron-sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70-80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post-cryopreservation. MRI analysis showed comparable detectability for the MPIO-labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO-labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers.

  12. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  13. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    Science.gov (United States)

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-03

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  14. Evaluation of biological activities of nanocrystalline zirconia synthesis via combustion method

    International Nuclear Information System (INIS)

    Thakare, V.G.; Omanwar, S.K.; Bhatkar, V.B.; Wadegaokar, P.A.

    2016-01-01

    The objective of the following study was synthesis of nanocrystalline zirconia by modified solution combustion synthesis method and evaluation of its structural and biological properties. The sample was characterized by powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and evaluated for cytotoxicity study using 3T3 mouse fibroblast cells, the antibacterial property are investigated by spread plate method against E. coli bacterial pathogen and studied for degradation using phosphate buffered saline (PBS) solution. The XRD pattern shows that the monoclinic phase of nanocrystalline zirconia was obtained. The FESEM images showed that the prepared sample consists of particles in the range of 45 nm and homogenous particle size distribution. The sample of zirconia has excellent tissue biocompatibility and does not show any toxicity towards normal 3T3 mouse fibroblast cells. It also inhibited the bacterial growth. The sample shows stability at physiological condition and does not show degradation. (author)

  15. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    Directory of Open Access Journals (Sweden)

    Yuxin Wang

    2017-08-01

    Full Text Available In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM. The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at% Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  16. Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis

    Directory of Open Access Journals (Sweden)

    H. Padma Kumar

    2015-03-01

    Full Text Available The optical properties of nanocrystalline HfO2 synthesized using a single-step auto-igniting combustion technique is reported. Nanocrystalline hafnium oxide having particle size of the order 10–15 nm were obtained in the present method. The nanopowder was characterized using X-ray diffraction, Fourier transform infrared and Fourier transform Raman spectroscopic studies. All these studies confirm that the phase formation is complete in the combustion synthesis and monoclinic phase [P21/c(14] of HfO2 is obtained without the presence of any impurities or additional phases. The powder morphology of the as-prepared sample was studied using transmission electron microscopy and the results were in good agreement with that of the X-ray diffraction studies. The optical constants such as refractive index, extinction coefficient, optical conductivity and the band gap were estimated from UV–vis spectroscopic techniques. The band gap of nanocrystalline HfO2 was found to be 5.1 eV and the sample shows a broad PL emission at 628 nm. It is concluded that the transitions between intermediate energy levels in the band gap are responsible for the interesting photoluminescent properties of nanocrystalline HfO2.

  17. Effects on suspensions dispersed particles & water purification produced by Cardon Dato mucilage, Iron Chloride, alum, and their combinations

    OpenAIRE

    Henríquez-Rodríguez, Manuel; Gascó Montes, José María; Pérez Arias, Juana; Rodríguez Rodríguez, Orlando

    2008-01-01

    Pressure to use dispersive soils has increased worldwide, soil conservation against erosion is crucial and water contamination by eroded materials is a relevant problem. Organic and inorganic conditioners reduce soils’ particles dispersion, improve soils´ structure and permeability, and reduce water sources contamination. The effects of a Cardon Dato (Stenocereus griseus (Haw.) F. Buxb) mucilage (CD), FeCl3.6H2O and AlCl3.6H2O, on flocculating suspensions and arrangement of suspended particle...

  18. Iron Chelation

    Science.gov (United States)

    Skip to main content Menu Donate Treatments Therapies Iron Chelation Iron chelation therapy is the main treatment ... have iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you ...

  19. Structural elucidation of nanocrystalline biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, S.

    2008-10-23

    Bone diseases, such as osteoporosis and osteoarthritis, are the second most prevalent health problem worldwide. In Germany approximately 5 millions people are affected by arthritis. Investigating biomineralization processes and bone molecular structure is of key importance for developing new drugs for preventing and healing bone diseases. Nuclear magnetic resonance (NMR) was the primary technique used due to its advantages in characterising poorly ordered and disordered materials. Compared to all the diffraction techniques that widely applied in structural investigations, the usefulness of NMR is independent of long range molecular order. This makes NMR an outstanding technique for studies of complex/amorphous materials. Conventional NMR experiments (single pulse, spin-echo, cross polarization (CP), etc.) as well as their modifications and high-end techniques (2D HETCOR, REDOR, etc.) were used in this work. Combining the contributions from different techniques enhances the information content of the investigations and can increase the precision of the overall conclusions. Also XRD, TEM and FTIR were applied to different extent in order to get a general idea of nanocrystalline hydroxyapatite crystallite structure. Results: - A new approach named 'Solid-state NMR spectroscopy using the lost I spin magnetization in polarization transfer experiments' has been developed for measuring the transferred I spin magnetization from abundant nuclei, which is normally lost when detecting the S spin magnetization. - A detailed investigation of nanocrystalline hydroxyapatite core was made to prove that proton environment of the phosphates units and phosphorus environment of hydroxyl units are the same as in highly crystalline hydroxyapatite sample. - Using XRD it was found that the surface of the hydroxyapatite nanocrystals is not completely disordered, as it was suggested before, but resembles the hydroxyapatite structure with HPO{sub 4}{sup 2-} (and some CO{sub 3}{sup

  20. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  1. Pressure influenced combustion synthesis of γ- and α-Al2O3 nanocrystalline powders

    International Nuclear Information System (INIS)

    Ozuna, O; Hirata, G A; McKittrick, J

    2004-01-01

    Aluminium oxide nanocrystals have been prepared via a straightforward reaction, initiated at low temperatures ( 2 O 3 ) of these powders. The fibre-like morphology obtained for the as-synthesized γ-Al 2 O 3 permits the synthesis of nanocrystalline α-Al 2 O 3 (∼ 55 nm) even after a high temperature treatment at 1200 deg. C. The findings suggest a promising approach for controlling the size and crystal phase of the particles

  2. Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

    KAUST Repository

    Sinha, Shahnawaz

    2011-09-30

    The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated mic - rosand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of C eq = 10 μg/L were 500 mg/L for AA and GFH, 520–1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60–95 % .

  3. Rapid phase synthesis of nanocrystalline cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugavel, T., E-mail: shanmugavelnano@gmail.com [Department of Physics, Paavai Engineering College, Namakkal -637018 (India); Raj, S. Gokul [Department of Physics, Vel Tech University, Avadi, Chennai - 600 062 (India); Rajarajan, G. [Department of Physics, Mahendra Engineering College, Mallasamudram -637503 (India); Kumar, G. Ramesh [Department of Physics, University College of Engineering, Anna University Chennai, Arni- 632317 (India)

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  4. Using particle counters for pretreatment optimization, iron transport monitoring, condenser leak detection, and carryover monitoring - a synopsis of experiences

    International Nuclear Information System (INIS)

    Bryant, R.L.

    2008-01-01

    Steam generating systems all require clean water. The effects of particulate material in the steam/water cycle on metal corrosion, erosion, cracking, and deposition are frequently observed. However, the physical/chemical mechanisms are often difficult to correlate with a specific plant event, since the periodic ''grab'' samples from various areas of the water/steam process which are generally conducted do not allow real time continuous on-line particulate monitoring and data collection. This paper introduces the concept of using particulate measuring instruments to monitor the steam generation cycle, and presents case histories of real world plant situations where on-line particulate measurement using particle counters and particle monitors has defined the source of a problem, quantified the severity of a problem, and provided a solution to a problem. (orig.)

  5. Hydrothermal synthesis of siderite nano-particles and characterizations

    Science.gov (United States)

    Oza, Mahatta; Joshi, M. J.

    2017-05-01

    Siderite is an iron ore in the form of ferrous carbonate (FeCO3). It finds applications in ceramics, in pig iron production, pigments in paints and in petroleum drilling fluids as a scavenger for H2S. An attempt was made to synthesize FeCO3 nano-particles by hydrothermal treatment of aqueous solution of iron sulphate, ascorbic acid, and ammonium carbonate with a molar ratio of 1:1:3, respectively, at 140˚C for 1.5 h. The synthesized powder was further characterized by different characterization techniques like powder XRD, FT-IR and TGA. The powder XRD analysis suggested the nano-crystalline nature of the sample with Hexagonal crystal system having unit cell parameters as: a = 4.691Ǻ, b = 4.691 Ǻ and c = 15.37Ǻ. The average crystallite size was found to be ̴ 10.70 nm from Scherrer's formula. FT-IR spectrum confirmed the presence of O-H, and C-O functional groups. The TGA results suggested that the material started decomposing from the beginning and showed weight loss of 32.4% at 358°C temperature. Thereafter, the sample very slowly decomposed and at the end of process sample showed weight loss of 39.5% at 900°C after giving up carbon dioxide.

  6. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    Science.gov (United States)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-01-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  7. Magnetization loss of nanocrystalline soft magnets

    International Nuclear Information System (INIS)

    Flohrer, Sybille; Herzer, Giselher

    2009-01-01

    FeCuNbSiB-ribbons with optimized nanocrystalline microstructure possess a unique combination of near-zero magnetostriction, high saturation induction and low magnetization losses. Due to the absence of distinct intrinsic anisotropies, the magnetization curve can be adjusted by field-annealing to square or flat shape. It is well known that excess losses are an important loss component of soft magnets with square hysteresis loop. Yet, even cores of flat type loop can show significant excess losses. The paper reviews the loss mechanisms for excess losses in nanocrystalline soft magnets on the basis of Kerr-microscopy observation and loss theory and compares it to amorphous materials.

  8. The utilization of mechanochemistry in the extractive metallurgy and at the nanocrystalline materials preparation

    Directory of Open Access Journals (Sweden)

    Boldižárová Eva

    2002-03-01

    Full Text Available The possibility of the application of mechanochemistry in the extractive metallurgy and the nanocrystalline materials preparation is studied. The aim of the experiments is the chloride leaching of a complex sulphidic CuPbZn concentrate (Hodruša-Hámre, the modification of properties of CaCO3 (Yauli, Peru for zinc sorption from model solutions and the mechanochemical reduction of copper sulphide by elemental iron.The chloride leaching of mechanically activated complex sulphidic CuPbZn concentrate is a selective process. While the recoveries of copper, lead and zinc are 65-85 %, the recoveries of silver and gold are less than 7 % and 2 %, respectively.The positive influence of CaCO3 mechanical activation for zinc sorption from ZnSO4 solution was observed. While only 58 % of zinc sorption was determined after 30 minutes for a non-activated sample, 98 % of zinc sorption was determined after 3 minutes sorption for the sample mechanically activated for 15 minutes.By the mechanochemical reduction of copper sulphide with iron, nanocrystalline copper and iron sulphide are formed. This reaction is an example of the new “solid state technology“, where chemical processes in the gaseous and liquid states are excluded.The results can serve as a contribution to the optimization of copper, lead and zinc extraction from complex sulphidic concentrates, the increase of non-ferrous metals sorption efficiency on mineral sorbents as well as to the nanocrystalline copper preparation.The application of mechanical activation has grown in the laboratory research. The Institute of Geotechnics of SAS has also achieved significant theoretical results in study of mechanical activation of sulphides and their reactivity in the different solid-phase reactions with the effect on industrial applications. The Institute has developed the technology of mechanochemical leaching (process MELT which was successfully tested in a pilot plant unit.

  9. Magnetic properties of nanocrystalline ε-Fe{sub 3}N and Co{sub 4}N phases synthesized by newer precursor route

    Energy Technology Data Exchange (ETDEWEB)

    Theerthagiri, J.; Dalavi, Shankar B. [Department of Chemistry, Birla Institute of Technology and Science, Pilani, K.K. Birla, Goa Campus, Zuari Nagar, Goa 403726 (India); Manivel Raja, M. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Panda, R.N., E-mail: rnp@goa.bits-pilani.ac.in [Department of Chemistry, Birla Institute of Technology and Science, Pilani, K.K. Birla, Goa Campus, Zuari Nagar, Goa 403726 (India)

    2013-11-15

    Graphical abstract: Nanocrystalline ε-Fe{sub 3}N and Co{sub 4}N nitride phases are synthesized first time by newer chemical routes. The ε-Fe{sub 3}N phase crystallizes in hexagonal structure with unit cell parameters, a = 4.76 Å and c = 4.41 Å. The Co{sub 4}N phase crystallizes in face centred cubic (fcc) structure with unit cell parameters, a = 3.55 Å. The estimated crystallite size for ε-Fe{sub 3}N and Co{sub 4}N phases are 29 nm and 22 nm, respectively. The values of saturation magnetization for ε-Fe{sub 3}N and Co{sub 4}N phases are found to be 28.1 emu/g and 123.6 emu/g respectively. The reduction of magnetic moments in ultrafine materials compared to bulk materials has been explained by fine particle size and surface effects. We have synthesized the high moment ε-Fe{sub 3}N and Co{sub 4}N nitride with reduced coercivity which may find applications as soft magnetic materials. - Highlights: • Nanocrystalline ε-Fe{sub 3}N and Co{sub 4}N nitride phases are synthesized. • The ε-Fe{sub 3}N and Co{sub 4}N crystallizes in hexagonal and fcc structure respectively. • The observed magnetic parameters indicate soft magnetic properties. • The magnetic properties have been explained on the basis of fine particle magnetism. - Abstract: Nanocrystalline ε-Fe{sub 3}N and Co{sub 4}N nitride phases are synthesized first time by using tris(1,2-diaminoethane)iron(II) chloride and tris(1,2-diaminoethane)cobalt(III) chloride precursors, respectively. To prepare ε-Fe{sub 3}N and Co{sub 4}N nitride phases, the synthesized precursors were mixed with urea in 1:12 ratio and heat treated at various temperatures in the range of 450–900 °C under the ultrapure nitrogen gas atmosphere. The precursors are confirmed by FT-IR study. The ε-Fe{sub 3}N phase crystallizes in hexagonal structure with unit cell parameters, a = 4.76 Å and c = 4.41 Å. The Co{sub 4}N phase crystallizes in face centred cubic (fcc) structure with unit cell parameters, a = 3.55 Å. The

  10. Raman Studies of Nanocrystalline CdS:O Film

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Wu, X.; Dhere, R.; Zhou, J.; Yan, Y.; Mascarenhas, A.

    2005-01-01

    Oxygenated nanocrystalline CdS films show improved solar cell performance, but the physics and mechanism underlying this are not yet clearly understood. Raman study provides complementary information to the understanding obtained from other experimental investigations. A comprehensive analysis of the existing experimental data (including x-ray diffraction, transmission, transmission electron microscopy, and Raman) has led to the following conclusions: (1) The O-incorporation forms CdS1-xOx alloy nano-particles. (2) The observed evolution of the electronic structure is the result of the interplay between the alloy and quantum confinement effect. (3) The blue-shift of the LO phonon Raman peak is primarily due to the alloying effect. (4) Some oxygen atoms have taken the interstitial sites.

  11. Investigation of Pb(II Removal from Aqueous Solutions Using Modified Nano Zero-Valent Iron Particles

    Directory of Open Access Journals (Sweden)

    Amirhossein Ramezanpoor

    2014-05-01

    Full Text Available This research was conducted in experimental scale with the aim of investigation effect of polyacrylic acid-stabilized zero-valent iron nanoparticles (PAA-nZVI on lead removal from aqueous solution. In this regards, NZVI was synthesized with polyacrylic acid and their size and morphological characteristics were examined via X-ray diffraction (XRD, Scanning Electron Microscopy (SEM and Fourier Transmission Infrared Spectroscopy (FTIR. To study the effect of PAA-nZVI on lead removal, pH of aqueous solution, contact time, PAA-NZVI concentration  and initial Pb(II concentration were considered as variables. Furthermore, the experimental data of Pb(II  removal were fitted using three kinetic models, namely Zero-order, First-order and Second-order.The results of experiments showed that maximum Pb(II removal efficiency was observed at pH=5, 15 min contact time and 5 g/L PAA-nZVI concentration. Moreover, the results of kinetic studies indicated that among all applied kinetic models, First-order kinetic model had more better prediction than other kinetic models ofPb(II removal. Based on the results of present research, PAA-NZVI is an efficient agent to remove Pb(II from aqueous solutions.

  12. Nano-sized iron particles may induce multiple pathways of cell death following generation of mistranscripted RNA in human corneal epithelial cells.

    Science.gov (United States)

    Park, Eun-Jung; Chae, Jae-Byoung; Kang, Seuyoung; Lyu, Jungmook; Jeong, Uiseok; Yeom, Changjoo; Kim, Younghun; Chang, Jaerak

    2017-08-01

    Iron is closely associated with an ambient particulate matters-induced inflammatory response, and the cornea that covers the front of the eye, is among tissues exposed directly to ambient particulate matters. Prior to this study, we confirmed that nano-sized iron particles (FeNPs) can penetrate the cornea. Thus, we identified the toxic mechanism of FeNPs using human corneal epithelial cells. At 24h after exposure, FeNPs located inside autophagosome-like vacuoles or freely within human corneal epithelial cells. Level of inflammatory mediators including nitric oxide, cytokines, and a chemokine was notably elevated accompanied by the increased generation of reactive oxygen species. Additionally, cell proliferation dose-dependently decreased, and level of multiple pathways of cell death-related indicators was clearly altered following exposure to FeNPs. Furthermore, expression of gene encoding DNA binding protein inhibitor (1, 2, and 3), which are correlated to inhibition of the binding of mistranscripted RNA, was significantly down-regulated. More importantly, expression of p-Akt and caspase-3 and conversion to LC3B-II from LC3B-I was enhanced by pretreatment with a caspase-1 inhibitor. Taken together, we suggest that FeNPs may induce multiple pathways of cell death via generation of mistranscripted RNA, and these cell death pathways may influence by cross-talk. Furthermore, we propose the need of further study for the possibility of tumorigenesis following exposure to FeNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization

    International Nuclear Information System (INIS)

    Kalita, Samar J.; Bhatt, Himesh A.

    2007-01-01

    During recent years, there have been efforts in developing nanocrystalline bioceramics, to enhance their mechanical and biological properties for use in tissue engineering applications. In this research, we made an attempt to synthesize nanocrystalline bioactive hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) ceramic powder in the lower-end of nano-range (2-10 nm), using a simple low-temperature sol-gel technique and studied its densification behavior. We further studied the effects of metal ion dopants during synthesis on powder morphology, and the properties of the sintered structures. Calcium nitrate and triethyl phosphite were used as precursors for calcium and phosphorous, respectively, for sol-gel synthesis. Calculated quantities of magnesium oxide and zinc oxide were incorporated as dopants into amorphous dried powder, prior to calcination at 250-550 o C. The synthesized powders were analyzed for their phases using X-ray diffraction technique and characterized for powder morphology and particle size using transmission electron microscopy (TEM). TEM analysis showed that the average particle size of the synthesized powders were in the range of 2-10 nm. The synthesized nano-powders were uniaxially compacted and then sintered at 1250 o C and 1300 o C for 6 h, separately, in air. A maximum average sintered density of 3.29 g/cm 3 was achieved in structures sintered at 1300 o C, developed from nano-powder doped with magnesium. Vickers hardness testing was performed to determine the hardness of the sintered structures. Uniaxial compression tests were performed to evaluate the mechanical properties. Bioactivity and biodegradation behavior of the sintered structures were assessed in simulated body fluid (SBF) and maintained in a dynamic state

  14. New approach to the synthesis of nanocrystalline boron carbide.

    Science.gov (United States)

    Herth, Simone; Joost, William J; Doremus, Robert H; Siegel, Richard W

    2006-04-01

    The use of nanoparticles in ceramic matrix composites provides lower sintering temperatures and higher densities at a given temperature than common coarse-grained materials. Nanocrystalline B4C was synthesized by an inexpensive carbothermal reduction method using carbon black and B2O3 as precursor. Full conversion was achieved at 1623 K for annealing times of 480 minutes or with a large excess of B2O3 and oxidation of the remaining carbon after 30 minutes of annealing. The average particle size of the synthesized B4C powder was 260 nm, which was reduced to 70 nm after separation of the small particle fraction from the larger particles by sedimentation. A mixture of the as-prepared powder and commercial coarse-grained B4C yielded an increase of the density of low temperature hot pressed samples by 25% in comparison to pure commercial B4C. Possible chemical reactions and mechanisms in the synthesis of B4C were examined with the Gibbs free energies of reactions. The most likely reaction was the reduction of B2O3 vapor at the surfaces of the carbon particles after its vapor transport from the liquid B2O3. An observed reduction of B4C yield above 1623 K was probably caused by loss of B2O3 vapor from the reaction mixture.

  15. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Hsu, Cheng-Hsun, E-mail: chhsu@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Cheng, Yin-Hwa [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan 320, Taiwan (China); Lee, Sheng-Long [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al{sub 2}O{sub 3} particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection.

  16. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    International Nuclear Information System (INIS)

    Lin, Chung-Kwei; Hsu, Cheng-Hsun; Cheng, Yin-Hwa; Ou, Keng-Liang; Lee, Sheng-Long

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al 2 O 3 particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection

  17. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  18. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  19. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  20. Chemical vapor deposition of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  1. Synthesis of nanocrystalline fluorinated hydroxyapatite by ...

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite, (FHA, Ca10(PO4)6(OH)2-F), possesses higher corrosion resistance in biofluids than pure HA and reduces the risk of dental caries. The present work deals with the synthesis of nanocrystalline FHAs by microwave processing. The crystal size and morphology of the nanopowders were ...

  2. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  3. Characterisation of interfaces in nanocrystalline palladium

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Alternatively, it is possible to calculate power spectrum from each of the nanocrystalline grains in images scanned or recorded online using a framestore. Peak detection algorithms can then be applied to detect peak positions corresponding to the lattice periodicity in the grain. Advantages are that the process can be made ...

  4. Phonon density of states in nanocrystalline Fe

    Indian Academy of Sciences (India)

    Abstract. The Born–von Karman model is used to calculate phonon density of states (DOS) of nanocrystalline bcc Fe. It is found that there is an anisotropic stiffening in the interatomic force constants and hence there is shrinking in the nearest-neighbour distances in the nanophase. This leads to additional vibrational modes ...

  5. Characterization of nanocrystalline silicon germanium film and ...

    African Journals Online (AJOL)

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  6. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 2. Characterization of nanocrystalline ... Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposition method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, ...

  7. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    Science.gov (United States)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-06-01

    This paper is dedicated to investigate the effect of Co2+ ions in magnetite Fe3O4 nano-particles with stoichiometric formula CoxFe3-xO4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV-Vis Spectrometer (UV-Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of CoxFe3-xO4 nanoparticles with the major band at 887 cm-1, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co2+ content. The decrease in enthalpy with increase in Co2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co2+ content in B-site of Fe3O4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of CoxFe3-xO4 nanoparticles are significantly increased. From UV-Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  8. The progress of nanocrystalline hydride electrode materials

    International Nuclear Information System (INIS)

    Jurczyk, M.

    2004-01-01

    This paper reviews research at the Institute of Materials Science and Engineering, Poznan University of Technology, on the synthesis of nanocrystalline hydride electrode materials. Nanocrystalline materials have been synthesized by mechanical alloying (MA) followed by annealing. Examples of the materials include TiFe - , ZrV 2- , LaNi 5 and Mg 2 Ni-type phases. Details on the process used and the enhancement of properties due to the nanoscale structures are presented. The synthesized alloys were used as negative electrode materials for Ni-MH battery. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. For example, it was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo improved not only the discharge capacity but also the cycle life of these electrodes. The hydrogen storage properties of nanocrystalline ZrV 2 - and LaNi 5 -type powders prepared by mechanical alloying and annealing show no big difference with those of melt casting (polycrystalline) alloys. On the other hand, a partial substitution of Mg by Mn or Al in Mg 2 Ni alloy leads to an increase in discharge capacity, at room temperature. Furthermore, the effect of the nickel and graphite coating on the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. In the case of Mg 2 Ni-type alloy mechanical coating with graphite effectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline TiFe - , ZrV 2 - and LaNi 5 -type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, has been successful. (authors)

  9. Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Amanda S.; Sternberg, Michael G.

    2006-10-05

    Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples.

  10. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Safia, E-mail: safia_anjum@hotmail.com [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Tufail, Rabia [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Rashid, Khalid [PCSIR Laboratories Lahore (Pakistan); Zia, Rehana [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Riaz, S. [Centre for Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2017-06-15

    Highlights: • The stability of Co{sub x}Fe{sub (2-x)}O{sub 3} nanoparticles enhances. • Energy losses increases. • Anisotropy of NP is high. - Abstract: This paper is dedicated to investigate the effect of Co{sup 2+} ions in magnetite Fe{sub 3}O{sub 4} nano-particles with stoichiometric formula Co{sub x}Fe{sub 3-x}O{sub 4} where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co{sup 2+} doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV–Vis Spectrometer (UV–Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles with the major band at 887 cm{sup −1}, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co{sup 2+} content. The decrease in enthalpy with increase in Co{sup 2+} concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co{sup 2+} content in B-site of Fe{sub 3}O{sub 4} structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles are significantly increased. From UV–Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  11. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri.

    Science.gov (United States)

    Saccà, Maria Ludovica; Fajardo, Carmen; Martinez-Gomariz, Montserrat; Costa, Gonzalo; Nande, Mar; Martin, Margarita

    2014-01-01

    Nanotoxicological studies were performed in vitro using the common soil bacterium Pseudomonas stutzeri to assess the potentially toxic impact of commercial nano-sized zero-valent iron (nZVI) particles, which are currently used for environmental remediation projects. The phenotypic response of P. stutzeri to nZVI toxicity includes an initial insult to the cell wall, as evidenced by TEM micrographs. Transcriptional analyses using genes of particular relevance in cellular activity revealed that no significant changes occurred among the relative expression ratios of narG, nirS, pykA or gyrA following nZVI exposure; however, a significant increase in katB expression was indicative of nZVI-induced oxidative stress in P. stutzeri. A proteomic approach identified two major defence mechanisms that occurred in response to nZVI exposure: a downregulation of membrane proteins and an upregulation of proteins involved in reducing intracellular oxidative stress. These biomarkers served as early indicators of nZVI response in this soil bacterium, and may provide relevant information for environmental hazard assessment.

  12. Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale.

    Science.gov (United States)

    Roose, Dimitri; Leroux, Frederic; De Vocht, Nathalie; Guglielmetti, Caroline; Pintelon, Isabel; Adriaensen, Dirk; Ponsaerts, Peter; Van der Linden, Annemie; Bals, Sara

    2014-01-01

    In this study, the interaction between cells and micron-sized paramagnetic iron oxide (MPIO) particles was investigated by characterizing MPIO in their original state, and after cellular uptake in vitro as well as in vivo. Moreover, MPIO in the olfactory bulb were studied 9 months after injection. Using various imaging techniques, cell-MPIO interactions were investigated with increasing spatial resolution. Live cell confocal microscopy demonstrated that MPIO co-localize with lysosomes after in vitro cellular uptake. In more detail, a membrane surrounding the MPIO was observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Following MPIO uptake in vivo, the same cell-MPIO interaction was observed by HAADF-STEM in the subventricular zone at 1 week and in the olfactory bulb at 9 months after MPIO injection. These findings provide proof for the current hypothesis that MPIO are internalized by the cell through endocytosis. The results also show MPIO are not biodegradable, even after 9 months in the brain. Moreover, they show the possibility of HAADF-STEM generating information on the labeled cell as well as on the MPIO. In summary, the methodology presented here provides a systematic route to investigate the interaction between cells and nanoparticles from the micrometer level down to the nanometer level and beyond. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Magnetic and structural properties of iron phosphate-phenolic soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei, A.H. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Shokrollahi, H. [Materials Science and Engineering Department, Shiraz University of Technology, 71555-313 Shiraz (Iran, Islamic Republic of)], E-mail: shokrollahi@sutech.ac.ir; Janghorban, K. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2009-12-15

    This work focuses on the effect of phosphate modification on the magnetic and surface properties of iron-phenolic soft magnetic composite materials. Fourier transform infrared (FTIR) spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. Magnetic measurements show that phosphating treatment decreases the loss factor, imaginary part of permeability, increases the electrical resistivity and operating frequencies by decreasing the effective particle size. The operating frequency increases from 200 kHz for uncoated-powders samples to 1 MHz for phosphated-powders samples at optimum concentration. Phosphated iron powders that are covered by 0.7 wt% of phenolic resin exhibits lower magnetic loss and higher frequency stability. The minimum loss factor and maximum permeability at each frequency can be obtained for 0.01 g/ml orthophosphoric acid concentration in comparison with other concentrations including 0.005 and 0.04 g/ml.

  14. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...... by a classical Drude–Smith model, suitable for disorder-driven metal–insulator transitions. In this work, we explore the time evolution of the frequency dependent complex conductivity after optical injection of carriers on a picosecond time scale. Furthermore, we show the lifetime of photoconductivity...

  15. X-ray interference by nanocrystalline domains.

    Science.gov (United States)

    Gelisio, Luca; Scardi, Paolo

    2012-11-01

    Regular arrangement of nanocrystalline domains can introduce interference effects which alter considerably the powder diffraction pattern. Role of nanocrystal alignment (local texture) and mutual positioning are different, with the latter much more effective in controlling the interference effect. While it is demonstrated that these effects are unlikely to be observed on a conventional laboratory instrument, coherence conditions available at modern synchrotron radiation beamlines might support further investigations of interference in systems made of very fine nanocrystals.

  16. Nanocrystalline diamond growth on different substrates

    Czech Academy of Sciences Publication Activity Database

    Kulisch, W.; Popov, C.; Vorlíček, Vladimír; Gibson, P. N.; Favaro, G.

    2006-01-01

    Roč. 515, - (2006), s. 1005-1010 ISSN 0040-6090 Grant - others:EC Framework(XE) MEIF-CT-2004-500038; NATO(XE) CBP.EAP.CLG 981519 Institutional research plan: CEZ:AV0Z10100520 Keywords : nanocrystalline diamond * growth mechanisms * nucleation mechanisms * mechanical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.666, year: 2006

  17. Magnetic properties of Nanocrystalline Co and Ni synthesized via superhydride reduction route

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in

    2015-01-15

    Nanocrystalline and surface functionalized Co and Ni were successfully synthesized via superhydride reduction route by using oleic acid and oleylamine as capping agents. Fourier transform infrared (FTIR) study of as-prepared materials confirms the presence of organic capping layer on the surface of nanoparticles. Phase purity and crystallite sizes of the materials were ascertained from X-ray diffraction (XRD) patterns. Co crystallizes in the mixture of hexagonal close packed (hcp) and face centered cubic (fcc) phases with crystallite size of 15 nm whereas Ni crystallizes in face centered cubic (fcc) phase with crystallite size of 35 nm. Transmission electron microscopy (TEM) studies confirm the fine particle nature of the materials and spherical shape morphologies with TEM particle sizes equal to 20 nm and 25 nm for Co and Ni, respectively. Room temperature magnetic studies show ferromagnetic behavior of the materials. The values of saturation magnetization, coercivity and magnetic particle size for Co are 64 emu/g, 436 Oe and 10 nm, respectively whereas those for Ni are 29 emu/g, 148 Oe and 20 nm, respectively. Dipolar interactions among the particles at lower temperatures have been studied from field cooled (FC) and zero field cooled (ZFC) curves. Low temperature magnetic study shows ferromagnetism with dipolar interactions in the materials up to 300 K and some sort of magnetic phase transitions below 20 K. - Highlights: • Nanocrystalline surface functionalized Co and Ni were successfully synthesized. • Co crystallizes in hcp and fcc phases while Ni crystallizes in fcc structure. • The XRD and TEM study indicates nanocrystalline nature of the materials. • The magnetic dipolar interactions have been investigated by FC and ZFC characteristics.

  18. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  19. Formation of ZnO Nanocrystalline via Facile Non-Hydrolytic Route

    International Nuclear Information System (INIS)

    Ooi, M. D. Johan; Aziz, A. Abdul; Abdullah, M. J.

    2011-01-01

    Zinc oxide (ZnO) nanocrystalline were synthesized via oxidizing Zn powder in non-aqueous solvent with addition of Diethanolamine (DEA) as a stabilizing agent. The influence of DEA on the structural, optical properties and the formation of ZnO nanocrystalline were studied. The synthesized ZnO were polycrystalline in structures where sample without the addition of DEA shows high intensity peak of (002) phase compared with sample in the presence of DEA which preferred to grow in (101) direction. SEM micrograph displays the morphology of ZnO nanocrystalline for both of the samples which shows micron size and non-uniform particles for sample without DEA whereas for sample with DEA exhibit smaller size (∼110 nm) and nearly spherical in shape despite of some agglomeration occurs at the interparticle separation. The photoluminescence (PL) spectra shows UV emission peak for both of the samples where sample with the absence of DEA possess lower intensity of UV emission peak compared to samples with DEA which demonstrate stronger intensity despite of having very weak visible secondary emission peak at 530 nm.

  20. Fabrication of Cu2O nanocrystalline thin films photosensor prepared by RF sputtering technique

    Science.gov (United States)

    Selman, Abbas M.; Mahdi, M. A.; Hassan, Z.

    2017-10-01

    Cuprous oxide (Cu2O) nanocrystalline thin films were prepared on two types of substrates known as crystalline silicon and amorphous glass, by radio frequency reactive magnetron sputtering method. Scanning electron microscopy images confirmed that Cu2O particles covered the entire surface of both substrates with smoothing distribution. The root mean square surface roughness for the prepared Cu2O thin films on glass and Si (111) substrates is 4.16, and 3.36 nm, respectively. Meanwhile, X-ray diffraction results demonstrated that the two phases of Cu2O and CuO were produced on Si (111) and glass substrates. The optical bandgap of Cu2O thin films synthesised on glass substrate is 2.42 eV. Furthermore, the prepared Cu2O nanocrystalline thin films have showed low reflectance value in the visible spectrum. Metal-Semiconductor-Metal photodetector based Cu2O nanocrystalline thin films deposited onto Si (111) was fabricated using aluminium and platinum, with the current-voltage and photoresponse characteristic investigated under various applied bias voltages. The fabricated Metal-Semiconductor-Metal (M-S-M) photodetector had shown 126% sensitivity in the presence of 10 mW/cm2 of 490 nm light with 1.0 V bias, displaying 90 and 100 ms response and recovery times, respectively. These findings have demonstrated the suitability of M-S-M Cu2O photodetector as an affordable photosensor in the future.

  1. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-11-01

    Full Text Available Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  2. Pressure influenced combustion synthesis of {gamma}- and {alpha}-Al{sub 2}O{sub 3} nanocrystalline powders

    Energy Technology Data Exchange (ETDEWEB)

    Ozuna, O [Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, BC, Mexico, CP 22800 (Mexico); Hirata, G A [Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, BC, Mexico, CP 22800 (Mexico); McKittrick, J [Department of Mechanical Aerospace Engineering and Materials Science and Engineering Program, University of California at San Diego, La Jolla, CA 92093-0411 (United States)

    2004-04-21

    Aluminium oxide nanocrystals have been prepared via a straightforward reaction, initiated at low temperatures (<300 deg. C), between aluminium nitrate and hydrazine. The initial pressure parameter is found to be responsible for the variations of the particle size (ranging from nanocrystalline to sub-microcrystalline) and for the resulting crystalline phase ({gamma}- or {alpha}-Al{sub 2}O{sub 3}) of these powders. The fibre-like morphology obtained for the as-synthesized {gamma}-Al{sub 2}O{sub 3} permits the synthesis of nanocrystalline {alpha}-Al{sub 2}O{sub 3} ({approx} 55 nm) even after a high temperature treatment at 1200 deg. C. The findings suggest a promising approach for controlling the size and crystal phase of the particles.

  3. Photoelectrochemical Characterization of Nanocrystalline ZnS :Mn^(2+) Layers

    NARCIS (Netherlands)

    Suyver, J.F.; Bakker, R.; Meijerink, A.; Kelly, J.J.

    2000-01-01

    Measurements of the photoelectrochemical properties of nanocrystalline ZnS electrodes doped with Mn^(2+) are presented and discussed. The observation of both anodic and cathodic photocurrent is direct evidence for the nanocrystalline nature of the system. In-situ photoluminescence

  4. Nanocrystalline silicon prepared at high growth rate using helium ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Growth and optimization of the nanocrystalline silicon (nc-Si:H) films have been studied by varying the electrical power applied to the helium diluted silane plasma in RF glow discharge. Wide optical gap and conducting intrinsic nanocrystalline silicon network of controlled crystalline volume fraction and oriented.

  5. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Aaron Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sarobol, Pylin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diantonio, Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  6. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    International Nuclear Information System (INIS)

    Poffo, C.M.; Lima, J.C. de; Souza, S.M.; Triches, D.M.; Grandi, T.A.; Biasi, R.S. de

    2011-01-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 o C the heat transfer is controlled by crystalline component.

  7. Iron nanoparticles grown in a carbon arc discharge

    NARCIS (Netherlands)

    Zhang, G.L.; du Marchie van Voorthuysen, E.H.; Szymanski, K.; Boom, G; Verwerft, M.G M; Jonkman, H.T.; Niesen, L

    1996-01-01

    Iron particles, encapsulated by graphite layers, were produced by means of the Kratschmer are discharge method in an iron pentacarbonyl atmosphere. The Mossbauer effect is dominated by the vibration of the particles as a whole. Superparamagnetism is dominant for iron oxide particles. No endohedral

  8. Effect of Flake Thickness on Coercivity of Nanocrystalline SmCo5 Bulk Prepared from Anisotropic Nanoflake Powder (Postprint)

    Science.gov (United States)

    2016-08-23

    enabling higher coercivity. As the heat treatment takes place these defects reduce in concentration allowing easier domain wall movement and therefore...1,2 Intensive milling and subsequent annealing have been used to pro- duce nanocrystalline Sm-Co magnets.3–5 However, the magnets are usually obtained...grinded down to the designated particle size. The starting powder was milled in a stainless steel vial on a SPEX 8000 mill. Milling balls with

  9. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography.

    Science.gov (United States)

    Zheng, Changlin; Kirmse, Holm; Long, Jianguo; Laughlin, David E; McHenry, Michael E; Neumann, Wolfgang

    2015-04-01

    The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

  10. Hot Corrosion Behavior of Sputtered Nanocrystalline Coating with Yttrium Addition at 900 °C

    Science.gov (United States)

    Jiang, Wei; Yu, Ping; Wang, Wen; Zhu, Shenglong; Wang, Fuhui

    2014-01-01

    The high temperature corrosion behavior of sputtered nanocrystalline K38 coating with and without yttrium addition under mixed molten salt film in air was investigated. Accelerated corrosion occurred on the coating without yttrium (Y) addition locally after 60 h exposure at 900°C, which resulted in negative weight gain in kinetics. A uniform and protective alumina scale formed on surface of the coating containing yttrium in comparison. Y enriched particle as corrosion product was observed on the top of alumina scale. The results indicated the beneficial influence of Y on the chemical stability of the protective scale in the presence of chloride. The mechanism was discussed. PMID:28788597

  11. Hydrazine-Assisted Low-Temperature Hydrothermal Preparation of Nanocrystalline Jaipurite

    Science.gov (United States)

    Zhan, J. H.; Xie, Y.; Yang, X. G.; Zhang, W. X.; Qian, Y. T.

    1999-08-01

    Nanocrystalline Jaipurite has been successfully prepared from amorphous cobalt sulfide in hydrazine solution at 120°C for 24 h using a hydrothermal process. The additive hydrazine is a critical factor for mineralization of amorphous CoS to Jaipurite. X-ray powder diffraction analysis indicated that the product was single-phase Jaipurite. Transmission electron microscopy images showed that as-formed Jaipurite particles were of laminar morphology. The composition of the product with the atomic ratio of 1.009 for Co/S is approximately stoichiometric, determined by chemical analysis. IR analysis suggested that the product was not contaminated in the hydrothermal process.

  12. The Structure and Bond Strength of Composite Carbide Coatings (WC-Co + Ni) Deposited on Ductile Cast Iron by Thermal Spraying

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-02-01

    An investigation was conducted to determine the role of Ni particles in the WC-Co coating produced with the supersonic method on microstructure, mechanical, and wear properties in a system of type: WC-Co coating/ductile cast iron. The microstructure of the thermal-sprayed WC-Co + Ni coating was characterized by scanning electron and transmission electron microscopes as well as the analysis of chemical and phase composition in microareas (EDS, XRD). The microstructure of the WC-Co + Ni coating consisted of large, partially molten Ni particles and very fine grains of WC embedded in cobalt matrix, coming to the size of nanocrystalline. Moreover, the results were discussed in reference to examination of bending strength considering cracking and delamination in the system of (WC-Co + Ni)/ductile cast iron as well as hardness and wear resistance of the coating. It was found that the addition of Ni particles was significantly increase resistance to cracking and wear behavior in the studied system.

  13. LIGHT-WEIGHT NANOCRYSTALLINE HYDROGEN STORAGE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; B. Zande; R.T. Obermyer; S. Simizu

    2005-11-21

    During Phase I of this SBIR Program, Advanced Materials Corporation has addressed two key issues concerning hydrogen storage: 1. We have conducted preliminary studies on the effect of certain catalysts in modifying the hydrogen absorption characteristics of nanocrystalline magnesium. 2. We have also conducted proof-of-concept design and construction of a prototype instrument that would rapidly screen materials for hydrogen storage employing chemical combinatorial technique in combination with a Pressure-Composition Isotherm Measurement (PCI) instrument. 3. Preliminary results obtained in this study approach are described in this report.

  14. Iron nanoparticles from blood coated with collagen as a matrix for ...

    Indian Academy of Sciences (India)

    Keywords. Collagen; iron nanoparticle; nanohydroxyapatite; MTT assay; wet precipitation method. 1. Introduction. Bone is a type of connective tissue mainly composed of an organic component, collagen and an inorganic component, nanocrystalline carbonate hydroxyapatite. This type of bio- logical hybrid material finds ...

  15. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  16. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    the computations that follow have been made by assuming that a stellar core, existing just prior to core collapse, consists primarily of highly compressed and very hot iron nuclei and electrons. Although nuclei near iron in atomic number, as well as smaller concentrations of other subatomic particles, may also exist in a stellar ...

  17. Chemical synthesis, characterizations and magnetic properties of nanocrystalline Fe50Co50 alloy

    Science.gov (United States)

    Dalavi, Shankar B.; Raja, M. Manivel; Panda, Rabi Narayan

    2014-04-01

    Nanocrystalline Fe50Co50 alloy has been synthesized successfully by chemical reduction route using superhydride as reducing agent and oleic acid and oleylamine as capping agents. Phase purity, crystallite size and lattice parameters of the synthesized NPs are determined by X-ray powder diffraction method. FeCo alloy crystallizes in body centered cubic (bcc) structure having crystallite size equal to 29 nm and lattice parameters equal to 2.8546 Å. The size and shape morphologies of the material were studied by SEM analysis. SEM micrograph study shows the average particle size to be 60 nm and indicates the appearance of agglomerates of the nano-particles consisting of several crystallites. The room temperature magnetic hysteresis studies indicate ferromagnetic behavior of the materials. The values of saturation magnetization and coercivity were 65 emu/g and 460 Oe, respectively. Magnetic properties of the material were interpreted on the basis of fine particle magnetism.

  18. Synthesis of free standing nanocrystalline Cu by ball milling at cryogenic temperature

    International Nuclear Information System (INIS)

    Barai, K.; Tiwary, C.S.; Chattopadhyay, P.P.; Chattopadhyay, K.

    2012-01-01

    This paper reports for the first time synthesis of free standing nano-crystalline copper crystals of a ∼30–40 nm by ball milling of copper powder at 150 K under Argon atmosphere in a specially designed cryomill. The detailed characterization of these particles using multiple techniques that includes transmission electron microscopy confirms our conclusion. Careful analysis of the chemistry of these particles indicates that these particles are essentially contamination free. Through the analysis of existing models of grain size refinements during ball milling and low temperature deformation, we argue that the suppression of thermal processes and low temperature leads to formation of free nanoparticles as the process of fracture dominates over possible cold welding at low temperatures.

  19. Enhanced magnetostrictive properties of nanocrystalline Dy3+ substituted Fe-rich Co0.8Fe2.2O4 for sensor applications

    Science.gov (United States)

    Kharat, Shahaji P.; Swadipta, Roy; Kambale, R. C.; Kolekar, Y. D.; Ramana, C. V.

    2017-10-01

    We report on the enhanced magnetostrictive properties of nanocrystalline Dysprosium (Dy3+) substituted iron-rich cobalt ferrites (Co0.8Fe(2.2-x)DyxO4, referred to as CFDO). The CFDO samples with a variable Dy concentration (x = 0.000-0.075) were synthesized by the sol-gel auto-combustion method. The phase purity and crystal structure were confirmed from X-ray diffraction analyses coupled with Rietveld refinement. Surface morphology analysis using scanning electron microscopy imaging indicates the agglomerated magnetic particles with a non-uniform particle size distribution, which is desirable to transfer the strain. The magnetostriction coefficient (λ11) measurements indicate that the CFDO with Dy concentration x = 0.025 exhibits the highest strain sensitivity, (dλ/dH) ˜1.432 nm/A (for H ≤ 1000 Oe). On the other hand, the magnetostriction coefficient (λ12) measurements indicate that the Dy concentration x = 0.075 exhibits the larger (dλ/dH) ˜ 0.615 nm/A (for H ≤ 1000 Oe). The maximum λ11value of 166 ppm (at H = 3300 Oe) was observed for a compound with Dy concentration x = 0.050. Magnetization measurements indicate that the saturation magnetization and coercivity of CFDO samples are dependent on the Dy3+content; the highest value of squareness ratio of 0.424 was observed for x = 0.050. The interplay between strain sensitivity (dλ/dH) and instantaneous susceptibility (dM/dH), as derived from magnetostriction and magnetization results, demonstrates that these CFDO materials may be useful for developing torque/stress sensors, as a constituent magnetostrictive phase for making the magnetoelectric composite materials and thus suitable for magnetoelectric sensor applications.

  20. Characterization of Plastic Deformation Evolution in Single Crystal and Nanocrystalline Cu During Shock by Atomistic Simulations

    Science.gov (United States)

    Mirzaei Sichani, Mehrdad

    The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, , , and , and dislocation density behind the shock wave front generally increases with increasing particle velocity for all shock orientations. Plastic relaxation for shock in the , and directions is primarily due to a reduction in the Shockley partial dislocation density. In contrast, plastic relaxation is limited for shock in the orientation. This is partially due to the emergence of sessile stair-rod dislocations with Burgers vectors of 1/3 and 1/6 due to the reaction of Shockley partial dislocations with twin boundaries and stacking fault intersections. For shock, FCC Cu is uniaxially compressed towards the BCC structure behind the shock wave front; this process is more favorable at higher shock pressures and temperatures. For particle velocities above 0.9 km/s, regions of HCP crystal structure nucleate from uniaxially compressed Cu. Free energy calculations proves that the nucleation and growth of these HCP clusters are an artifact of the embedded-atom interatomic potential. In addition, simulated x-ray diffraction line profiles are created for shock models of single crystal Cu at the Hugoniot state. Generally, peak broadening in the x-ray diffraction line profiles increases with increasing particle velocity. For nanocrystalline models, the compression of the FCC lattice towards the BCC structure is more apparent at particle velocity of 2.4 km/s, and at this particle velocity, the atomic percentage of BCC

  1. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Science.gov (United States)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  2. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  3. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mongia [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Farhat, Samir, E-mail: farhat@lspm.cnrs.fr [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Viana, Bruno [LCMCP Chimie-Paristech, UPMC, Collège de France, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mgaidi, Arbi [Laboratoire de chimie minérale industrielle université Tunis el Manar (Tunisia)

    2014-12-05

    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation.

  4. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    International Nuclear Information System (INIS)

    Hosni, Mongia; Farhat, Samir; Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine; Viana, Bruno; Mgaidi, Arbi

    2014-01-01

    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation

  5. Random and uniform anisotropy in soft magnetic nanocrystalline alloys (invited)

    International Nuclear Information System (INIS)

    Flohrer, Sybille; Herzer, Giselher

    2010-01-01

    In amorphous and nanocrystalline transition metal based alloys with low magnetostriction, the soft magnetic properties are mainly determined by magneto-elastic and annealing-induced anisotropies which are uniform on a scale much larger than the exchange correlation length. Though, in the nanocrystalline case, there are situations where the random magneto-crystalline anisotropy of the grains becomes relevant. The present paper surveys the interplay between the random magneto-crystalline and the uniform field-induced anisotropy in nanocrystalline FeCuNbSiB soft magnets. Typical examples where the contribution of the random anisotropy becomes particularly visible in the magnetic domain structure will be reviewed.

  6. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-08-01

    The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.

  7. Nanocrystalline magnetic materials obtained by flash annealing

    Directory of Open Access Journals (Sweden)

    Murakami R.K.

    1999-01-01

    Full Text Available The aim of the present work was to produce enhanced-remanence nanocrystalline magnetic material by crystallizing amorphous or partially amorphous Pr4.5Fe77B18.5 alloys by the flash annealing process, also known as the dc-Joule heating process, and to determine the optimal conditions for obtaining good magnetic coupling between the magnetic phases present in this material. Ribbons of Pr4.5Fe77B18.5 were produced by melt spinning and then annealed for 10-30 s at temperatures 500 - 640 °C by passing current through the sample to develop the enhanced-remanence nanocrystalline magnetic material. These materials were studied by X-ray diffraction, differential thermal analysis and magnetic measurements. Coercivity increases of up to 15% were systematically observed in relation to furnace-annealed material. Two different samples were carefully examined: (i a sample annealed at 600 °C which showed the highest coercive field Hc and remanence ratio Mr/Ms and (ii a sample annealed at 520 °C which showed phase separation in the second quadrant demagnetization curve. Our results are in agreement with other studies which show that flash annealing improves the magnetic properties of some amorphous ferromagnetic ribbons.

  8. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results

  9. Accelerated dissolution of iron oxides in ice

    OpenAIRE

    D. Jeong; K. Kim; W. Choi

    2012-01-01

    Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a~new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4), the dissolution of iron oxides was greatly enhanced in the ice phas...

  10. Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors

    International Nuclear Information System (INIS)

    Lopez, M.; Marin, P.; Agudo, P.; Carabias, I.; Venta, J. de la; Hernando, A.

    2007-01-01

    Nanocrystalline magnetic particles obtained by high energy ball milling of FeSiBNbCu alloy were prepared from rapidly quenched ribbons as a starting material. Structural characterization was made by using X-ray diffraction (XRD), differential scanning calorimetry (DSC), atomic force microscopy (AFM) and Moessbauer spectroscopy. The structural changes observed in this amorphous material suggest that nanocrystallization process takes place in a different way from the one induced by thermal treatments. Our different studies reveals that after short grinding times (up to 40 h) the material is composed by a two phase system of very fine nanocrystals embedded in a residual amorphous phase, while for largest periods of milling (from 140 h) the sample consists of a very fine nanocrystalline phase with a large fraction of grain boundary

  11. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  12. SANS/USANS investigations of nanocrystalline MgH{sub 2} for reversible storage of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P.K. [Institute of Materials Research, GKSS Forschungszentrum, Max-Planck-Str. 1, 21502 Geesthacht (Germany)]. E-mail: pranzas@gkss.de; Dornheim, M. [Institute of Materials Research, GKSS Forschungszentrum, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Bellmann, D. [Institute of Materials Research, GKSS Forschungszentrum, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Aguey-Zinsou, K.-F. [Institute of Materials Research, GKSS Forschungszentrum, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Klassen, T. [Institute of Materials Research, GKSS Forschungszentrum, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Schreyer, A. [Institute of Materials Research, GKSS Forschungszentrum, Max-Planck-Str. 1, 21502 Geesthacht (Germany)

    2006-11-15

    Nanocrystalline magnesium hydride is considered to be one of the most promising alternatives for the reversible storage of hydrogen. In this work structural changes of high-energy ball-milled MgH {sub x} and MgH{sub 2}/Cr{sub 2}O{sub 3} with varying hydrogen content were investigated with small and ultra small-angle neutron scattering (SANS/USANS) using different milling parameters, e.g., milling time, vial and ball material, to obtain information about hydrogen sorption and desorption mechanisms. In a first attempt size distributions of spheres with radii from 1 nm up to 20 {mu}m were calculated in order to characterize the influence of cycling history on the microstructure. Apparent changes of crystallite and particle structures due to hydrogen loading and unloading were found. The use of Cr{sub 2}O{sub 3} nanoparticle additives result in distinct differences of the obtained scattering curves, which indicate that Cr{sub 2}O{sub 3} not only has a catalytic function for the hydrogen sorption properties of MgH{sub 2} but also serves as an agent to breakup particles during the milling process. The results demonstrate the potential of the combination of SANS and USANS for structural characterization of nanocrystalline light-metal hydrides over the large size range of 1 nm up to 20 {mu}m.

  13. SANS/USANS investigations of nanocrystalline MgH2 for reversible storage of hydrogen

    International Nuclear Information System (INIS)

    Pranzas, P.K.; Dornheim, M.; Bellmann, D.; Aguey-Zinsou, K.-F.; Klassen, T.; Schreyer, A.

    2006-01-01

    Nanocrystalline magnesium hydride is considered to be one of the most promising alternatives for the reversible storage of hydrogen. In this work structural changes of high-energy ball-milled MgH x and MgH 2 /Cr 2 O 3 with varying hydrogen content were investigated with small and ultra small-angle neutron scattering (SANS/USANS) using different milling parameters, e.g., milling time, vial and ball material, to obtain information about hydrogen sorption and desorption mechanisms. In a first attempt size distributions of spheres with radii from 1 nm up to 20 μm were calculated in order to characterize the influence of cycling history on the microstructure. Apparent changes of crystallite and particle structures due to hydrogen loading and unloading were found. The use of Cr 2 O 3 nanoparticle additives result in distinct differences of the obtained scattering curves, which indicate that Cr 2 O 3 not only has a catalytic function for the hydrogen sorption properties of MgH 2 but also serves as an agent to breakup particles during the milling process. The results demonstrate the potential of the combination of SANS and USANS for structural characterization of nanocrystalline light-metal hydrides over the large size range of 1 nm up to 20 μm

  14. Room temperature hydrogen gas sensitivity of nanocrystalline pure tin oxide.

    Science.gov (United States)

    Shukla, S; Seal, S

    2004-01-01

    Nanocrystalline (6-8 nm) tin oxide (SnO2) thin film (100-150 nm) sensor is synthesized via sol-gel dip-coating process. The thin film is characterized using focused ion-beam microscopy (FIB) and high-resolution transmission electron microscopy (HRTEM) techniques to determine the film thickness and the nanocrystallite size. The utilization of nanocrystalline pure-SnO2 thin film to sense a typical reducing gas such as hydrogen, at room temperature, is demonstrated in this investigation. The grain growth behavior of nanocrystalline pure-SnO2 is analyzed, which shows very low activation energy (9 kJ/mol) for the grain growth within the nanocrystallite size range of 3-20 nm. This low activation energy value is correlated, via excess oxygen-ion vacancy concentration, with the room temperature hydrogen gas sensitivity of the nanocrystalline pure-SnO2 thin film sensor.

  15. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  16. Pulsed nanocrystalline plasma electrolytic boriding as a novel ...

    Indian Academy of Sciences (India)

    WINTEC

    ; pulsed plasma electrolytic boriding; corrosion; nanocrystalline. 1. Introduction. Titanium possesses low density, high strength-to-weight ratio, high stiffness and strength (Donachie 2000; Lutjer- ing and Albrecht 2004). Commercially pure ...

  17. Rose bengal-sensitized nanocrystalline ceria photoanode for dye ...

    Indian Academy of Sciences (India)

    Rose bengal-sensitized nanocrystalline ceria photoanode for dye-sensitized solar cell application ... injection and transportation, wide bandgap nanostructured metal oxide semiconductors with dye adsorption surface and higher electron mobility are essential properties for photoanode in dyesensitizedsolar cells (DSSCs).

  18. Tailoring and patterning the grain size of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  19. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    Science.gov (United States)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  20. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  1. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  2. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    , a situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost...... unique examples of iron metal, otherwise called 'native iron' or 'telluric iron', occur naturally....

  3. Thermal Conductivity in Nanocrystalline Ceria Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

    2014-02-01

    The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

  4. Reinforced plastics and aerogels by nanocrystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T., E-mail: john.luong@cnrc-nrc.gc.ca [National Research Council Canada (Canada)

    2013-05-15

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  5. Nanocrystalline Steels’ Resistance to Hydrogen Embrittlement

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of this study is to determine the susceptibility to hydrogen embrittlement in X37CrMoV5-1 steel with two different microstructures: a nanocrystalline carbide-free bainite and tempered martensite. The nanobainitic structure was obtained by austempering at the bainitic transformation zone. It was found, that after hydrogen charging, both kinds of microstructure exhibit increased yield strength and strong decrease in ductility. It has been however shown that the resistance to hydrogen embrittlement of X37CrMoV5-1 steel with nanobainitic structure is higher as compared to the tempered martensite. After hydrogen charging the ductility of austempered steel is slightly higher than in case of quenched and tempered (Q&T steel. This effect was interpreted as a result of phase composition formed after different heat treatments.

  6. Nanocrystalline diamond coatings for mechanical seals applications.

    Science.gov (United States)

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM).

  7. Toughness and strength of nanocrystalline graphene

    Science.gov (United States)

    Shekhawat, Ashivni; Ritchie, Robert O.

    2016-01-01

    Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nanoscale line and point defects—grain boundaries and grain-boundary triple junctions—that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modelling to show that the statistical variation in toughness and strength can be understood with ‘weakest-link' statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidate the nanoscale origins of the grain-size dependence of its strength and toughness. Our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of two-dimensional materials. PMID:26817712

  8. Magnetic field effect on chemical compositions of spherical Fe/Co fine particles synthesized from a gaseous mixture of iron pentacarbonyl and cobalt tricarbonyl nitrosyl

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Kasai, A.; Šubrt, Jan; Bastl, Zdeněk

    2009-01-01

    Roč. 206, 2-3 (2009), s. 205-212 ISSN 1010-6030 R&D Projects: GA MŠk LC523 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : gas phase photochemical reaction * aerosol particle * particle wire Subject RIV: CA - Inorganic Chemistry Impact factor: 2.553, year: 2009

  9. Estimate of the particle size in nanoparticles of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Paresque, M.C.; Castro, J.A.; Campos, M.F.; Oliveira, E.M.; Liuzzi, M.A.S.C. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2016-07-01

    Full Text: Nanocrystalline particles of Fe3O4 were produced by co-precipitation in aquous mean. The particle size of magnetite is a very important parameter, because for particle size around 30 nm there is a transition superparamagnetic for ferromagnetic. This transition profoundly affects the properties of the nanofluid. The Langevin model allows an estimate of the particle size, directly from measured hysteresis curves. In this study, the particle size was also determined by x-ray diffraction with Rietveld analysis and by a Laser Particle Size Analyzer equipment. These two methods pointed out particle size around 20 nm. (author)

  10. Synthesis of nanocrystalline CdS thin films in PVA matrix

    Indian Academy of Sciences (India)

    TECS

    The band gap of the nanocrystalline material is determined from the UV spectrograph. The absorption edge is shifted towards the lower wave length side (i.e. blue ... In recent years nanocrystalline thin films of different II–VI compound semiconductors have been widely synthesized and studied. Nanocrystalline thin films are ...

  11. Structure, microstructure and photoluminescence of nanocrystalline Ti-doped gahnite

    Energy Technology Data Exchange (ETDEWEB)

    Vrankic, M., E-mail: mvrankic@irb.hr [Ruder Boskovic Institute, Division of Materials Physics, Bijenicka cesta 54, P.O. Box 180, HR-10002 Zagreb (Croatia); Grzeta, B. [Ruder Boskovic Institute, Division of Materials Physics, Bijenicka cesta 54, P.O. Box 180, HR-10002 Zagreb (Croatia); Mandic, V.; Tkalcec, E. [University of Zagreb, Faculty of Chemical Engineering and Technology, Marulicev trg 19, HR-10000 Zagreb (Croatia); Milosevic, S. [Institute of Physics, Bijenicka cesta 46, P.O. Box 304, HR-10002 Zagreb (Croatia); Ceh, M. [Jozef Stefan Institute, Department for Nanostructured Materials, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Rakvin, B. [Ruder Boskovic Institute, Division of Physical Chemistry, Bijenicka cesta 54, P.O. Box 180, HR-10002 Zagreb (Croatia)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer Ti-doped gahnite samples with 0-11.6 at.% Ti were synthesized for the first time. Black-Right-Pointing-Pointer The samples had crystallite size of 16.6-20.5 nm and lattice strain of 0.07-0.26%. Black-Right-Pointing-Pointer Titanium entered the gahnite structure as Ti{sup 4+}, substituting for octahedral Al{sup 3+}. Black-Right-Pointing-Pointer Ti-doped gahnite showed the UV absorption and blue emission under UV excitation. - Abstract: A series of Ti-doped ZnAl{sub 2}O{sub 4} (gahnite) samples with doping levels of 0, 1.8, 3.8, 5.4 and 11.6 at.% Ti in relation to Al were prepared by a sol-gel technique. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), EPR spectroscopy, UV-vis reflectance spectroscopy and photoluminescence (PL) studies. Diffraction patterns indicated that all samples were nanocrystalline, with a spinel-type structure, space group Fd3{sup Macron }m. Titanium doping of gahnite caused an increase of unit-cell parameter and diffraction line broadening. The structure of samples was refined by the Rietveld method, simultaneously with the analysis of diffraction line broadening. TEM investigations confirmed that samples had spinel-type structure, and showed that samples contained evenly shaped particles of about 20 nm in size. Ti-doped samples exhibited strong absorption at wavelength <400 nm, and blue photoluminescence under excitation with {lambda}{sub exc} = 308 nm.

  12. Dielectric properties of nanocrystalline Co-Mg ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti, E-mail: jyotijoshi.phy2008@gmail.com [Department of Physics, University of Rajasthan, Jaipur (India); Sharma, Neha [Department of Physics, VEC Lakhanpur, Sarguja University, Ambikapur (C.G.) (India); Parashar, Jyoti; Saxena, V.K.; Bhatnagar, D. [Department of Physics, University of Rajasthan, Jaipur (India); Sharma, K.B. [Department of Physics, S. S. Jain Subodh P. G. College, Jaipur (India)

    2015-11-15

    Nanocrystalline powder samples with chemical formula Co{sub x}Mg{sub 1−x}Fe{sub 2}O{sub 4} (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) have been synthesized by sol–gel auto combustion method using citric acid as fuel agent. The rietveld refinement study of x-ray diffraction patterns confirmed the spinel single phase formation for all samples. Dielectric constant (ε′), dielectric loss tangent (tan δ) and AC conductivity of Co{sub x}Mg{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles have been measured at room temperature in the frequency range from 1000 Hz to 120 MHz. The dielectric dispersion observed at lower frequency region is attributed to Maxwell–Wagner two layer model, which is in agreement with Koops phenomenological theory. The observed results have been explained by polarization which is attributed to the electron exchange between Fe{sup 2+} and Fe{sup 3+} ions. The temperature variation of ε′ and tanδ for some particular frequencies were studied. The rapid increase in ε′ and tan δ has been explained using thermally activated electron exchange between Fe{sup 2+} ↔ Fe{sup 3+} and Co{sup 2+} ↔ Co{sup 3+} ions at adjacent octahedral sites. The role of interfacial polarization has been focused to explain the high dispersion in ε′ and tanδ with temperature observed at low frequencies. - Graphical abstract: (a) TEM image of Co{sub 0.4}Mg{sub 0.6}Fe{sub 2}O{sub 4} shows the nano size of the synthesized ferrite particles and (b) Dielectric constant behavior with frequency of Co{sub x}Mg{sub 1−x}Fe{sub 2}O{sub 4} ferrite.

  13. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    Science.gov (United States)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  14. Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time.

    Science.gov (United States)

    Lala, S; Brahmachari, S; Das, P K; Das, D; Kar, T; Pradhan, S K

    2014-09-01

    Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4.2H2O powders in open air at room temperature within 2h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Highly enhanced luminescence of nanocrystalline TiO 2:Eu 3+ phosphors

    Science.gov (United States)

    Yi, Soung-soo; Bae, Jong Seong; Moon, Byung Kee; Jeong, Jung Hyun; Kim, Jung Hwan

    2006-05-01

    Narrow-dispersed nanocrystalline TiO 2:Eu 3+ phosphors have been synthesized by reverse micelles and solvothermal synthetic method in toluene solutions. Different concentrations of europium nitrate pentahydrate (5.0, 10.0, 20.0 and 25.0 mol%) were dissolved in water. After the solution was thermally treated at 250 °C for 20 h in an autoclave, low-dispersed TiO 2:Eu 3+ nanocrystalline particles with average size of <5 nm were synthesized. The nanocomposites were composed nominally of TiO 2 shell with Eu 2O 3 core. The crystalline phase and microstructure of the nanoparticles were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. Also, luminescent spectra and composition ratio were measured using luminescent spectrometer and energy dispersive X-ray spectrometer. The radiation was dominated by the red emission peak at 616 nm and the highest emission intensity was observed with TiO 2:Eu 0.2, whose brightness was increased by a factor of 1.9 in comparison with that of TiO 2:Eu 0.05. The photoluminescence and excitation spectra show similar behavior as a function of Eu concentration.

  16. Nanocrystalline CdSnO3 Based Room Temperature Methanol Sensor

    Directory of Open Access Journals (Sweden)

    Shanabhau BAGUL

    2017-04-01

    Full Text Available Synthesis of nanocrystalline CdSnO3 powder by ultrasonic atomizer assisted wet chemical method is reported in this paper. Synthesized CdSnO3 powder was characterized by X-Ray Diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM and Transmission Electron Microscopy (TEM to examine phase and microstructure. FESEM and TEM analysis reveals that the CdSnO3 powder prepared here is porous monodisperse nanocrystalline in nature, with average particle size of approximately 17 nm or smaller. The material is also characterized by UV-Visible and Photoluminescence (PL spectroscopy. Thick films of synthesized CdSnO3 powder fired at 850 0C are made by using screen printing method. The films surface is modified by using dipping method. CuCl2 (0.005 M dipped (for 2 min thick film shows high response (R= 477 to 100 ppm methanol at room temperature (35 0C. The sensor shows good selectivity and fast response recovery time to methanol. The excellent methanol sensing performance, particularly high response values is observed to be mainly due to porous CdSnO3 surface.

  17. Magneto-structural studies of sol–gel synthesized nanocrystalline manganese substituted nickel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Pandav, R.S. [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India); Patil, R.P. [Department of Chemistry, M.H. Shinde Mahavidyalaya, Tisangi 416206, MH (India); Chavan, S.S. [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India); Mulla, I.S. [Centre for Materials for Electronics and Technology (C-MET), Panchavati, Pune 411008 (India); Hankare, P.P., E-mail: p_hankare@rediffmail.com [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India)

    2016-11-01

    Nanocrystalline NiFe{sub 2−x}Mn{sub x}O{sub 4} (2≥x≥0) ferrites were prepared by sol–gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels. - Highlights: • NiFe{sub 2−x}Mn{sub x}O{sub 4} system was synthesized by a chemical combustion route. • All samples shows cubic phase. • All the synthesized ferrospinels are in nanocrystalline form. • The saturation magnetization decreases with increase in Mn content.

  18. Study on solid-state reactions of nanocrystalline TiAl synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Forouzanmehr, N. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Karimzadeh, F. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: Karimzadeh_f@cc.iut.ac.ir; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-03-05

    The nanocrystalline TiAl intermetallic compound was synthesized by mechanical alloying of the Ti-50 at.% Al powder mixture and subsequent heat treatment. The powder particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA) and microhardness measurements. It was found that a Ti(Al) solid solution was formed at the early stage of milling, followed by the formation of an amorphous phase at longer milling times. On further milling, the amorphous structure transformed to a supersaturated Ti(Al) solid solution. Annealing of amorphous as well as supersaturated Ti(Al) solid solution structure separately resulted in the formation of nanocrystalline TiAl intermetallic compounds with a grain size of about 50 nm and high microhardness value of about 1190 HV. Phase transformation during heating of amorphous structure could be represented as amorphous {yields} metastable hcp {yields} disorder fcc TiAl {yields} TiAl(L1{sub 0}). The transition of the supersaturated Ti(Al) solid solution into the equilibrium TiAl intermetallic during annealing proceeds through an intermediate stage in which a metastable fcc phase forms.

  19. Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, T. [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of); Karimzadeh, F. [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: karimzadeh_f@cc.iut.ac.ir; Abbasi, M.H. [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)

    2008-07-25

    Mechanical alloying (MA) has been used to produce NiTi intermetallic with nanocrystalline structure from the elemental powders. The product was characterized using X-ray diffraction, scanning electron microscopy and microhardness measurements. The results showed that disordered B2-NiTi phase can be obtained with grain size of 25 nm, particle size of 15 {mu}m, lattice distortion and high microhardness of 1.2% and 922 HV, respectively. The mechanism of NiTi formation was investigated. In the early stages of MA, a composite lamellar structure of components is formed with the dissolution of Ti in Ni at the same time. The resulting solid solution finally leads to the formation of nanocrystalline disordered B2-NiTi phase. Annealing of the milled powder at 1173 K leads to grain growth, decrease of microhardness and transformation of disordered structure to ordered NiTi, with long-range order of 0.94. A small amount of NiTi{sub 2} and Ni{sub 3}Ti phases was also detected.

  20. Investigation of nanocrystalline thin cobalt films thermally evaporated on Si(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowski, W., E-mail: wkozl@std2.phys.uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Balcerski, J.; Szmaja, W. [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Piwoński, I. [Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163, 90-236 Łódź (Poland); Batory, D. [Institute of Materials Science and Engineering, Łódź University of Technology, Stefanowskiego 1/15, 90-924 Łódź (Poland); Miękoś, E. [Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź (Poland); and others

    2017-03-15

    We have made a quantitative study of the morphological and magnetic domain structures of 100 nm thick nanocrystalline cobalt films thermally evaporated on naturally oxidized Si(100) substrates. The morphological structure is composed of densely packed grains with the average grain size (35.6±0.8) nm. The grains exhibit no geometric alignment and no preferred elongation on the film surface. In the direction perpendicular to the film surface, the grains are aligned in columns. The films crystallize mainly in the hexagonal close-packed phase of cobalt and possess a crystallographic texture with the hexagonal axis perpendicular to the film surface. The magnetic domain structure consists of domains forming a maze stripe pattern with the average domain size (102±6) nm. The domains have their magnetizations oriented almost perpendicularly to the film surface. The domain wall energy, the domain wall thickness and the critical diameter for single-domain particle were determined. - Highlights: • 100 nm thick nanocrystalline cobalt films on Si(100) were studied quantitatively. • The grains are densely packed and possess the average size (35.6±0.8) nm. • The films have a texture with the hexagonal axis perpendicular to the film surface. • The magnetic domains form a maze stripe pattern with the average size (102±6) nm. • The domains are magnetized almost perpendicularly to the film surface.

  1. CEMS and XRD studies on changing shape of iron nano-particles by irradiation of Au ions of Fe-implanted Al2O3 granular layer

    International Nuclear Information System (INIS)

    Kato, T.; Wakabayashi, H.; Hashimoto, M.; Toriyama, T.; Taniguchi, S.; Hayashi, N.; Sakamoto, I.

    2007-01-01

    In order to observe an inverse Ostwald ripening of Fe nano-particles in Fe-implanted Al 2 O 3 granular layers, 3 MeV Au ions were irradiated to Fe nano-particles in these layers with doses of 0.5x and 1.5x10 16 ions/cm 2 . It was found by Conversion Electron Mossbauer Spectroscopy (CEMS) that the inverse Ostwald ripening occurred by fractions of percentages and the magnetic anisotropy of Fe nano-particles was induced to the direction of Au ion beam, i.e. perpendicular to the granular plane. The average crystallite diameters of Fe nano-particles for Au ions unirradiated and irradiated samples were measured using Scherrer's formula from FWHM of Fe (110) X-ray Diffraction (XRD) patterns obtained by 2θ and 2θ/θ methods. It was confirmed that the average crystallite diameters of Fe nano-particles in Fe-implanted Al 2 O 3 granular layers were extended by Au ions irradiation. (author)

  2. Effect of mechanical milling on particle size, magnetic susceptibility and dielectric of synthetic toner colorant magnetite extracted from Indonesian iron sand

    Science.gov (United States)

    Zulaikah, S.; Mufti, N.; Fuad, A.; Dwi, L. D.

    2014-09-01

    As a colorant and additive substance for toner, magnetite (Fe3O4) has become main mineral that can produce electrical charge on printing process. In this research, we reports the effect of mechanical milling time to magnetic susceptibility, morphology and dielectric properties of synthetic toner The standard of the grain size of toner including of magnetite dissolved, are ranged from 2 to 10 micron or less, depending on the kind of toner. The results of this research show that the average of particle size decreases from 15μm to 5 μm by milling time between 6 hour to 9 hour and almost constant up to 12 hour. The magnetic susceptibility of the sample decreases as decreasing particle size, while the dielectric constant increases as decreasing particle size.

  3. Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites

    Energy Technology Data Exchange (ETDEWEB)

    Žvátora, Pavel [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Veverka, Miroslav; Veverka, Pavel; Knížek, Karel; Závěta, Karel; Pollert, Emil [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Král, Vladimír [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Zentiva Development (Part of Sanofi Group), U Kabelovny 130, 102 37 Prague (Czech Republic); Goglio, Graziella; Duguet, Etienne [CNRS, University of Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France); Kaman, Ondřej, E-mail: kamano@seznam.cz [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 40 Prague (Czech Republic)

    2013-08-15

    Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for the samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.

  4. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Science.gov (United States)

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  5. Removal of both dissolved and particulate iron from groundwater

    OpenAIRE

    H. van Dijk; H. Leijssen; L. Rietveld; A. Abrahamse; K. Teunissen

    2008-01-01

    Iron is the primary source for discolouration problems in the drinking water distribution system. The removal of iron from groundwater is a common treatment step in the production of drinking water. Even when clear water meets the drinking water standards, the water quality in the distribution system can deteriorate due to settling of iron (hydroxide) particles or post-treatment flocculation of dissolved iron. Therefore it is important to remove dissolved and particulate iron to a large exten...

  6. Thermally Stimulated Currents in Nanocrystalline Titania

    Directory of Open Access Journals (Sweden)

    Mara Bruzzi

    2018-01-01

    Full Text Available A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K, in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.

  7. Films prepared from electrosterically stabilized nanocrystalline cellulose.

    Science.gov (United States)

    Yang, Han; Tejado, Alvaro; Alam, Nur; Antal, Miro; van de Ven, Theo G M

    2012-05-22

    Electrosterically stabilized nanocrystalline cellulose (ENCC) was modified in three ways: (1) the hydroxyl groups on C2 and C3 of glucose repeat units of ENCC were converted to aldehyde groups by periodate oxidation to various extents; (2) the carboxyl groups in the sodium form on ENCC were converted to the acid form by treating them with an acid-type ion-exchange resin; and (3) ENCC was cross-linked in two different ways by employing adipic dihydrazide as a cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide as a carboxyl-activating agent. Films were prepared from these modified ENCC suspensions by vacuum filtration. The effects of these three modifications on the properties of films were investigated by a variety of techniques, including UV-visible spectroscopy, a tensile test, thermogravimetric analysis (TGA), the water vapor transmission rate (WVTR), and contact angle (CA) studies. On the basis of the results from UV spectra, the transmittance of these films was as high as 87%, which shows them to be highly transparent. The tensile strength of these films was increased with increasing aldehyde content. From TGA and WVTR experiments, cross-linked films showed much higher thermal stability and lower water permeability. Furthermore, although the original cellulose is hydrophilic, these films also exhibited a certain hydrophobic behavior. Films treated by trichloromethylsilane become superhydrophobic. The unique characteristics of these transparent films are very promising for potential applications in flexible packaging and other high-technology products.

  8. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  9. Plasticity-induced restructuring of a nanocrystalline grain boundary network

    International Nuclear Information System (INIS)

    Panzarino, Jason F.; Pan, Zhiliang; Rupert, Timothy J.

    2016-01-01

    The grain boundary-mediated mechanisms that control plastic deformation of nanocrystalline metals should cause evolution of the grain boundary network, since they directly alter misorientation relationships between crystals. Unfortunately, current experimental techniques are unable to track such evolution, due to limits on both spatial and temporal resolution. In this work, molecular dynamics simulations are used to study grain boundary restructuring in nanocrystalline Al during both monotonic tension and cyclic loading. This task is enabled by the creation of new analysis tools for atomistic datasets that allow for a complete characterization and tracking of microstructural descriptors of the grain boundary network. Quantitative measurements of grain boundary character distribution, triple junction type, grain boundary plane normal, and other interfacial network characteristics are extracted and analyzed. The results presented here show that nanocrystalline plasticity leads to an increase in special boundary fraction and disruption of two-dimensional boundary connectivity, with the most dramatic evolution occurring in the smallest grain sizes.

  10. Creep behavior of a nanocrystalline Fe-B-Si alloy

    International Nuclear Information System (INIS)

    Xiao, M.; Kong, Q.P.

    1997-01-01

    The research of nanocrystalline materials has attracted much attention in the world. In recent years, there have been several studies on their creep behavior. Among these, the authors have studied the tensile creep of a nanocrystalline Ni-P alloy (28 nm) at temperatures around 0.5 Tm (Tm is the melting point). The samples were prepared by the method of crystallization of amorphous ribbon. Based on the data of stress exponent and activation energy, they suggested that the creep was controlled by boundary diffusion; while the creep of the same alloy with a larger grain size (257 nm) was controlled by a different mechanism. In the present paper, the authors extend the research to the creep of a nanocrystalline Fe-B-Si alloy. The samples are also prepared by crystallization of amorphous ribbon. The samples such prepared have an advantage that the interfaces are naturally formed without artificial compaction and porosity

  11. Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-CO mixtures obtained by high energy milling; Estudio del comportamiento durante la sinterizacion de mezclas WC-Co finas, ultrafinas y nanocristalinas obtenidas por molienda de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, M. D.; Bonache, V.; Amigo, V.; Busquets, D.

    2008-07-01

    In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well commercial nano powders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and micro structurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 180 HV. (Author) 46 refs.

  12. Adsorption of surfactants and polymers on iron oxides:implications for flotation and agglomeration of iron ore

    OpenAIRE

    Potapova, Elisaveta

    2011-01-01

    Iron ore pellets are an important refined product used as a raw material in the production of steel. In order to meet the requirements of the processes for iron production, the iron ore is upgraded in a number of steps including, among others, reverse flotation. Under certain circumstances the flotation collector may inadvertently adsorb on the iron ore particles increasing the hydrophobicity of the iron ore concentrate, which in turn has been shown to have an adverse effect on pellet strengt...

  13. Iron refractory iron deficiency anemia

    Science.gov (United States)

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  14. Verification and Validation of Monte Carlo n-Particle Code 6 (MCNP6) with Neutron Protection Factor Measurements of an Iron Box

    Science.gov (United States)

    2014-03-27

    records the count rate of particles emitted by the source during each measurement. In 1984, a boron -lined proportional counter reportedly served as...of only 6 Li and 127 I. This was based upon the MCNP4 input used by Mares and Schraube [29] and provides a set of isotopes with cross sections

  15. Nanocrystalline silver dressings in wound management: a review

    Science.gov (United States)

    Fong, Joy; Wood, Fiona

    2006-01-01

    This paper describes the properties of nanocrystalline silver products (Acticoat™) and their applications and examines available evidence supporting their use in wound management. Acticoat utilizes nanotechnology to release nanocrystalline silver crystals. Acticoat releases 30 times less silver cations than silversulfadiazine cream or 0.5% silver nitrate solution but more of the silver released (by Acticoat). Silver-impregnated slow-release dressings release minute concentrations of silver which are quickly bound up by the chloride in the wound exudate. While extrapolations from in vitro and animal studies are cautious, evidence from these studies suggests Acticoat is: effective against most common strains of wound pathogens; can be used as a protective covering over skin grafts; has a broader antibiotic spectrum activity; and is toxic to keratinocytes and fibroblasts. Animal studies suggest a role for nanocrystalline silver in altering wound inflammatory events and facilitation of the early phase of wound healing. Quality human clinical trials into nanocrystalline silver are few. However, evidence suggests using Acticoat in wound management is cost effective, reduces wound infection, decreases the frequency of dressing changes and pain levels, decreases matrix metalloproteinase activity, wound exudate and bioburden levels, and promotes wound healing in chronic wounds. Although there is no in vivo evidence to suggest nanocrystalline silver is toxic to human keratinocytes and fibroblasts, there is in vitro evidence to suggest so; thus these dressings should be used cautiously over epithelializing and proliferating wounds. Future clinical research, preferably randomized controlled trials into nanocrystalline silver technology, may provide clinicians a better understanding of its applications in wound management. PMID:17722278

  16. Magnetic study of iron sorbitol

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, F.J. E-mail: osoro@posta.unizar.es; Larrea, A.; Abadia, A.R.; Romero, M.S

    2002-09-01

    A magnetic study of iron sorbitol, an iron-containing drug to treat the iron deficiency anemia is presented. Transmission electron microscopy reveals that the system contains nanometric particles with an average diameter of 3 nm whose composition is close to two-line ferrihydrite. The characterisation by magnetisation and AC susceptibility measurements indicates superparamagnetic behaviour with progressive magnetic blocking starting at 8 K. The quantitative analysis of the magnetic results indicates that the system consists of an assembly of very small magnetic moments, presumably originated by spin uncompensation of the antiferromagnetic nanoparticles, with Arrhenius type magnetic dynamics.

  17. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  18. Texture-dependent twin formation in nanocrystalline thin Pd films

    International Nuclear Information System (INIS)

    Wang, B.; Idrissi, H.; Shi, H.; Colla, M.S.; Michotte, S.; Raskin, J.P.; Pardoen, T.; Schryvers, D.

    2012-01-01

    Nanocrystalline Pd films were produced by electron-beam evaporation and sputter deposition. The electron-beam-evaporated films reveal randomly oriented nanograins with a relatively high density of growth twins, unexpected in view of the high stacking fault energy of Pd. In contrast, sputter-deposited films show a clear 〈1 1 1〉 crystallographic textured nanostructure without twins. These results provide insightful information to guide the generation of microstructures with enhanced strength/ductility balance in high stacking fault energy nanocrystalline metallic thin films.

  19. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    OpenAIRE

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surfac...

  20. Construction, application and biosafety of silver nanocrystalline chitosan wound dressing.

    Science.gov (United States)

    Lu, Shuangyun; Gao, Wenjuan; Gu, Hai Ying

    2008-08-01

    A novel wound dressing composed of nano-silver and chitosan was fabricated using a nanometer and self-assembly technology. Sterility and pyrogen testing assessed biosafety, and efficacy was evaluated using Sprague-Dawley rats with deep partial-thickness wounds. Silver sulfadiazine and chitosan film dressings were used as controls. At intervals wound areas were measured, wound tissues biopsied and blood samples taken. Compared with the controls, the silver nanocrystalline chitosan dressing significantly (psilver levels in blood and tissues lower than levels associated with the silver sulfadiazine dressing (psilver nanocrystalline chitosan dressing were negative. Thus this dressing should have wide application in clinical settings.

  1. Inter- and intra-agglomerate fracture in nanocrystalline nickel.

    Science.gov (United States)

    Shan, Zhiwei; Knapp, J A; Follstaedt, D M; Stach, E A; Wiezorek, J M K; Mao, S X

    2008-03-14

    In situ tensile straining transmission electron microscopy tests have been carried out on nanocrystalline Ni. Grain agglomerates (GAs) were found to form very frequently and rapidly ahead of an advancing crack with sizes much larger than the initial average grain size. High-resolution electron microscopy indicated that the GAs most probably consist of nanograins separated by low-angle grain boundaries. Furthermore, both inter- and intra-GA fractures were observed. The observations suggest that these newly formed GAs may play an important role in the formation of the dimpled fracture surfaces of nanocrystalline materials.

  2. A maximum in the strength of nanocrystalline copper

    DEFF Research Database (Denmark)

    Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2003-01-01

    We used molecular dynamics simulations with system sizes up to 100 million atoms to simulate plastic deformation of nanocrystalline copper. By varying the grain size between 5 and 50 nanometers, we show that the flow stress and thus the strength exhibit a maximum at a grain size of 10 to 15...... nanometers. This maximum is because of a shift in the microscopic deformation mechanism from dislocation-mediated plasticity in the coarse-grained material to grain boundary sliding in the nanocrystalline region. The simulations allow us to observe the mechanisms behind the grain-size dependence...

  3. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  4. Electromagnetic properties of nanocrystalline Al substituted ...

    Indian Academy of Sciences (India)

    The applicability of present samples for microwave devices has been tested by the measurement of ferromagnetic resonance linewidth at Ka band. ... A is a divalent metal ion (e.g., magnesium, zinc, nickel and cobalt) and B usually iron ... water and absolute ethyl alcohol followed by drying over- night at 80. ◦. C. Then the ...

  5. The local strength of individual alumina particles

    Science.gov (United States)

    Pejchal, Václav; Fornabaio, Marta; Žagar, Goran; Mortensen, Andreas

    2017-12-01

    We implement the C-shaped sample test method and micro-cantilever beam testing to measure the local strength of microscopic, low-aspect-ratio ceramic particles, namely high-purity vapor grown α-alumina Sumicorundum® particles 15-30 μm in diameter, known to be attractive reinforcing particles for aluminum. Individual particles are shaped by focused ion beam micromachining so as to probe in tension a portion of the particle surface that is left unaffected by ion-milling. Mechanical testing of C-shaped specimens is done ex-situ using a nanoindentation apparatus, and in the SEM using an in-situ nanomechanical testing system for micro-cantilever beams. The strength is evaluated for each individual specimen using bespoke finite element simulation. Results show that, provided the particle surface is free of readily observable defects such as pores, twins or grain boundaries and their associated grooves, the particles can achieve local strength values that approach those of high-perfection single-crystal alumina whiskers, on the order of 10 GPa, outperforming high-strength nanocrystalline alumina fibers and nano-thick alumina platelets used in bio-inspired composites. It is also shown that by far the most harmful defects are grain boundaries, leading to the general conclusion that alumina particles must be single-crystalline or alternatively nanocrystalline to fully develop their potential as a strong reinforcing phase in composite materials.

  6. Effect of preparation method on the physical and catalytic property of nanocrystalline Fe2O3

    International Nuclear Information System (INIS)

    Wu, Gang; Tan, Xiaoyan; Li, Guiying; Hu, Changwei

    2010-01-01

    Nanocrystalline Fe 2 O 3 was prepared by five different methods. The samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is found that pure single-phase of α-Fe 2 O 3 crystal could be gained via thermal decomposition and ultrasonic-precipitation method, while both α-Fe 2 O 3 and γ-Fe 2 O 3 are obtained by the other methods. The morphologies and particle sizes of the samples obtained are approximate except that by thermal decomposition. Compared to α-Fe 2 O 3 , γ-Fe 2 O 3 possesses more surface oxygen species 'O - '. The activity test indicates that surface oxygen species 'O - ' plays a crucial role in the hydroxylation of benzene to phenol with hydrogen peroxide as oxidant.

  7. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    Science.gov (United States)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an "R" value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U-O bond.

  8. Hydrogenation of Styrene Oxide to 2-Phenylethanol over Nanocrystalline Ni Prepared by Ethylene Glycol Reduction Method

    Directory of Open Access Journals (Sweden)

    Sunil K. Kanojiya

    2014-01-01

    Full Text Available Nanocrystalline nickel prepared by glycol reduction method and characterized by XRD and magnetic measurements has been used as a catalyst for hydrogenation of styrene oxide to 2-phenylethanol. Effect of process variables such as particle size of the catalyst, temperature, and pressure have been optimized to achieve a maximum conversion of 98% of styrene oxide with 99% selectivity towards 2-phenylethanol. The structure of the transition state has been computed employing density functional theory and using Gaussian 09 suite. The enthalpy of reaction (ΔH and activation energy (Ea are calculated to be 85.3 kcal·mol−1 and 123.03 kcal·mol−1, respectively. A tentative mechanism for the reaction is proposed according to which atomized hydrogen and styrene oxide react together over the catalyst surface to produce 2-phenylethanol.

  9. Magnetization and Magnetocaloric Effect in Sol-Gel Derived Nanocrystalline Copper-Zinc Ferrite.

    Science.gov (United States)

    Anwar, M S; Ahmed, Faheem; Koo, Bon Heun

    2015-02-01

    We report the sol-gel synthesis and magnetocaloric effect in nanocrystalline copper-zinc ferrite (Cu0.5Zn0.5Fe2O4). The synthesized powder was characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and magnetization measurements. The XRD results confirm the formation of single phase spinel structure. The average particle size was found to be ~58 nm. FE-SEM results suggested that the nanoparticles are agglomerated and spherical in shape. Magnetization measurement reveals that Cu0.5Zn0.5Fe2O4 nanoparticles exhibit transition temperature (Tc) above room temperature. The maximum magnetic entropy change (ΔSM)max shows interesting behaviour and was found to vary with the applied magnetic field. This nanopowder can be considered as potential material for magnetic refrigeration above room temperature.

  10. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt); King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh (Saudi Arabia); Hanna, Adly [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt)

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  11. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    International Nuclear Information System (INIS)

    Mousa, Sahar; Hanna, Adly

    2013-01-01

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  12. Chemical synthesis, characterizations and magnetic properties of nanocrystalline Fe{sub 50}Co{sub 50} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Panda, Rabi Narayan, E-mail: rnp@goa.bits-pilani.ac.in [Department of Chemistry, BITS-Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa-403726 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2014-04-24

    Nanocrystalline Fe{sub 50}Co{sub 50} alloy has been synthesized successfully by chemical reduction route using superhydride as reducing agent and oleic acid and oleylamine as capping agents. Phase purity, crystallite size and lattice parameters of the synthesized NPs are determined by X-ray powder diffraction method. FeCo alloy crystallizes in body centered cubic (bcc) structure having crystallite size equal to 29 nm and lattice parameters equal to 2.8546 Å. The size and shape morphologies of the material were studied by SEM analysis. SEM micrograph study shows the average particle size to be 60 nm and indicates the appearance of agglomerates of the nano-particles consisting of several crystallites. The room temperature magnetic hysteresis studies indicate ferromagnetic behavior of the materials. The values of saturation magnetization and coercivity were 65 emu/g and 460 Oe, respectively. Magnetic properties of the material were interpreted on the basis of fine particle magnetism.

  13. In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P. V.; Thiyagarajan, T. K.; Sreekumar, K. P.; Vijay, M.; Selvarajan, V.; Yu, Jiaguo; Liu, Shengwei

    2010-01-01

    Nanocrystalline titanium dioxide powder was synthesized by in-flight oxidation of titanium dihydride (TiH 2 ) powder in a thermal plasma jet. TiH 2 powder was injected into the thermal plasma jet and allowed to react with oxygen injected downstream the jet. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. It is suggested that the thermo-chemistry of the oxidation process contributes significantly to the formation of nano-sized titania. The large energy released during the oxidation process dissociates the TiO 2 particles into TiO (g) and titanium vapour, which recombine downstream with oxygen and form nano particles of TiO 2 .

  14. Phase transformation during mechano-synthesis of nanocrystalline/amorphous Fe–32Mn–6Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Rasool, E-mail: ramini2002@gmail.com [Department of Materials Science and Engineering, Shiraz University of Technology, 71555-313 Shiraz (Iran, Islamic Republic of); Shamsipoor, Ali [Department of Materials Science and Engineering, Shiraz University of Technology, 71555-313 Shiraz (Iran, Islamic Republic of); Ghaffari, Mohammad [Department of Electrical and Electronics Engineering, UNAM-National Institute of Materials Science and Nanotechnology Bilkent University, Ankara 06800 (Turkey); Alizadeh, Morteza [Department of Materials Science and Engineering, Shiraz University of Technology, 71555-313 Shiraz (Iran, Islamic Republic of); Okyay, Ali Kemal [Department of Electrical and Electronics Engineering, UNAM-National Institute of Materials Science and Nanotechnology Bilkent University, Ankara 06800 (Turkey)

    2013-10-15

    Mechano-synthesis of Fe–32Mn–6Si alloy by mechanical alloying of the elemental powder mixtures was evaluated by running the ball milling process under an inert argon gas atmosphere. In order to characterize the as-milled powders, powder sampling was performed at predetermined intervals from 0.5 to 192 h. X-ray florescence analyzer, X-ray diffraction, scanning electron microscope, and high resolution transmission electron microscope were utilized to investigate the chemical composition, structural evolution, morphological changes, and microstructure of the as-milled powders, respectively. According to the results, the nanocrystalline Fe–Mn–Si alloys were completely synthesized after 48 h of milling. Moreover, the formation of a considerable amount of amorphous phase during the milling process was indicated by quantitative X-ray diffraction analysis as well as high resolution transmission electron microscopy image and its selected area diffraction pattern. It was found that the α-to-γ and subsequently the amorphous-to-crystalline (especially martensite) phase transformation occurred by milling development. - Graphical abstract: Mechano-synthesis of nanocrystalline/amorphous Fe–32Mn–6Si shape memory alloys in the powder form: amorphous phase formation, α-to-γ phase transformation, mechano-crystallization of the amorphous, and martensite phase formation during the process. Highlights: • During MA, the α-to-γ phase transformation and amorphization occurred. • Mechano-crystallization of the amorphous phase occurred at sufficient milling time. • The formation of high amount of ε-martensite was evidenced at high milling times. • The platelet, spherical, and then irregular particle shapes was extended by MA. • By MA, the particles size was increased, then reduced, and afterward re-increased.

  15. Ferromagnetic resonance in bulk nanocrystalline Ni

    Science.gov (United States)

    Prakash Madduri, P. V.; Mathew, S. P.; Kaul, S. N.

    2018-03-01

    A detailed lineshape analysis of the ferromagnetic resonance (FMR) spectra taken on pulse electrodeposited nanocrystalline (nc-) Ni sheets (with the average crystallite size, d, varying from 10 nm to 40 nm) at temperatures ranging from 113 K to 325 K yield accurate values for saturation magnetization, Ms (T), Landé splitting factor, g, anisotropy field, Hk (T) , resonance field, Hres , and FMR linewidth, ΔHpp (T) . Thermally-excited spin-wave (SW) excitations completely account for Ms (T) and the SW description of Ms (T) gives the values for the saturation magnetization and spin-wave stiffness at absolute zero of temperature, i.e., Ms (0) and D0 , for nc-Ni samples of different d that are in excellent agreement with the corresponding values deduced previously from an elaborate SW analysis of the bulk magnetization data. While Ms (0) varies with d as Ms (0) d - 3 / 2,D0 follows the power law D0 ∼d 4 / 3 . The angular variations of Hres in the 'in-plane' as well as 'out-of-plane' sample configurations, demonstrate that the main contribution to Hk (T) comes from the cubic magnetocrystalline anisotropy. The exchange-conductivity mechanism describes the observed thermal decline of ΔHpp reasonably well but fails to explain the very large magnitude of ΔHpp at any given temperature. By comparison, the Landau-Lifshitz-Gilbert (LLG) damping gives a much greater contribution to ΔHpp but the LLG contribution is relatively insensitive to temperature.

  16. Magnetic properties of Nanocrystalline Co and Ni synthesized via superhydride reduction route

    Science.gov (United States)

    Dalavi, Shankar B.; Panda, Rabi N.

    2015-01-01

    Nanocrystalline and surface functionalized Co and Ni were successfully synthesized via superhydride reduction route by using oleic acid and oleylamine as capping agents. Fourier transform infrared (FTIR) study of as-prepared materials confirms the presence of organic capping layer on the surface of nanoparticles. Phase purity and crystallite sizes of the materials were ascertained from X-ray diffraction (XRD) patterns. Co crystallizes in the mixture of hexagonal close packed (hcp) and face centered cubic (fcc) phases with crystallite size of 15 nm whereas Ni crystallizes in face centered cubic (fcc) phase with crystallite size of 35 nm. Transmission electron microscopy (TEM) studies confirm the fine particle nature of the materials and spherical shape morphologies with TEM particle sizes equal to 20 nm and 25 nm for Co and Ni, respectively. Room temperature magnetic studies show ferromagnetic behavior of the materials. The values of saturation magnetization, coercivity and magnetic particle size for Co are 64 emu/g, 436 Oe and 10 nm, respectively whereas those for Ni are 29 emu/g, 148 Oe and 20 nm, respectively. Dipolar interactions among the particles at lower temperatures have been studied from field cooled (FC) and zero field cooled (ZFC) curves. Low temperature magnetic study shows ferromagnetism with dipolar interactions in the materials up to 300 K and some sort of magnetic phase transitions below 20 K.

  17. A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sarah; Khodadadi, Abasali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: mortazav@ut.ac.ir [Nanoelectronics Centre of Excellence, University of Tehran, POB 11365-4563, Tehran (Iran, Islamic Republic of)

    2010-02-15

    A novel continuous process is used for production of carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CVD) of methane on iron floating catalyst in situ deposited on MgO in a fluidized bed reactor. In the hot zone of the reactor, sublimed ferrocene vapors were contacted with MgO powder fluidized by methane feed to produce Fe/MgO catalyst in situ. An annular tube was used to enhance the ferrocene and MgO contacting efficiency. Multi-wall as well as single-wall CNTs was grown on the Fe/MgO catalyst while falling down the reactor. The CNTs were continuously collected at the bottom of the reactor, only when MgO powder was used. The annular tube enhanced the contacting efficiency and improved both the quality and quantity of CNTs. The SEM and TEM micrographs of the products reveal that the CNTs are mostly entangled bundles with diameters of about 10-20 nm. Raman spectra show that the CNTs have low amount of amorphous/defected carbon with I{sub G}/I{sub D} ratios as high as 10.2 for synthesis at 900 deg. C. The RBM Raman peaks indicate formation of single-walled carbon nanotubes (SWNTs) of 1.0-1.2 nm diameter.

  18. Measurements of activation reaction rates in transverse shielding concrete exposed to the secondary particle field produced by intermediate energy heavy ions on an iron target

    International Nuclear Information System (INIS)

    Ogawa, T.; Morev, M.N.; Iimoto, T.; Kosako, T.

    2012-01-01

    Reaction rate distributions were measured inside a 60-cm thick concrete pile placed at the lateral position of a thick (stopping length) iron target that was bombarded with heavy ions, 400 MeV/u C and 800 MeV/u Si. Foils of aluminum and gold, as well as gold, tungsten and manganese covered with cadmium were inserted at various locations in the concrete pile to serve as activation detectors. Features of reaction rate distribution, such as the shape of the reaction rate profile, contribution of the neutrons from intra-nuclear cascade and that from evaporation to the activation reactions are determined by the analysis of measured reaction rates. The measured reaction rates were compared with those calculated with radiation transport simulation codes, FLUKA and PHITS, to verify their capability to predict induced activity. The simulated reaction rates agree with the experimental results within a factor of three in general. However, systematic discrepancies between simulated reaction rates and measured reaction rates attributed to the neutron source terms are observed.

  19. Low power optical limiting studies on nanocrystalline benzimidazole ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3. Low power optical limiting studies on nanocrystalline benzimidazole thin films prepared by modified liquid phase growth technique. P A Praveen S P Prabhakaran R Ramesh Babu K Sethuraman K Ramamurthi. Volume 38 Issue 3 June 2015 pp 645-651 ...

  20. Adhesion of osteoblasts on chemically patterned nanocrystalline diamonds

    Czech Academy of Sciences Publication Activity Database

    Kalbáčová, M.; Michalíková, Lenka; Barešová, V.; Kromka, Alexander; Rezek, Bohuslav; Kmoch, S.

    2008-01-01

    Roč. 245, č. 10 (2008), s. 2124-2127 ISSN 0370-1972 R&D Projects: GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : cell growth * nanocrystalline diamond * surface termination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.166, year: 2008

  1. High temperature magnetic properties of nanocrystalline Sn0 ...

    Indian Academy of Sciences (India)

    Administrator

    National School of Applied Sciences, Safi, Morocco. 5Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9, France. MS received 17 October 2012; revised 17 December 2012. Abstract. Structural and magnetic properties of Sn0⋅95Co0⋅05O2 nanocrystalline and diluted magnetic semicon-.

  2. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was used as a reductant or fuel and nitrate ions present in metal nitrate acts as an oxidizer. The phase purity of the wollastonite was ...

  3. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 ...

    Indian Academy of Sciences (India)

    Both beneficial as well as detrimental effects of the nanocrystalline coatings have been reported and the pro- perties of coating can be influenced by many factors such as grain size and its distribution, surface condition, adhe- rence to the substrate, reactivity with the medium and its pre- paration routes, etc (Szewieczek et al ...

  4. A Low Temperature Synthetic Route to Nanocrystalline TiN

    African Journals Online (AJOL)

    NICO

    A simple chemical synthetic route has been developed to prepare nanocrystalline titanium nitride (TiN) in an autoclave, by the reaction of metallic Ti with NaNH2 at low temperature of 500–600 °C. The samples were characterized by X-ray powder diffraction, transmission electron microscopy, and X-ray photoelectron ...

  5. Nanocrystalline nickel as a material with high hydrogen storage capacity

    Czech Academy of Sciences Publication Activity Database

    Vojtěch, D.; Michalcová, A.; Klementová, Mariana; Šerák, J.; Morťaniková, M.

    2009-01-01

    Roč. 63, č. 12 (2009), s. 1074-1076 ISSN 0167-577X Institutional research plan: CEZ:AV0Z40320502 Keywords : electron microscopy * nanomaterials * nano-crystalline nickel Subject RIV: CA - Inorganic Chemistry Impact factor: 1.940, year: 2009

  6. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  7. Quartz crystal microbalance gas sensor with nanocrystalline diamond sensitive layer

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Laposa, A.; Kulha, Pavel; Kroutil, J.; Husák, M.; Kromka, Alexander

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2591-2597 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : gas sensor * nanocrystalline diamond * quartz resonator * thickness shear mode Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.522, year: 2015

  8. Transparent nanocrystalline ZnO films prepared by spin coating

    International Nuclear Information System (INIS)

    Berber, M.; Bulto, V.; Kliss, R.; Hahn, H.

    2005-01-01

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents

  9. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    Directory of Open Access Journals (Sweden)

    Amel Bendali

    Full Text Available Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  10. Low power optical limiting studies on nanocrystalline benzimidazole ...

    Indian Academy of Sciences (India)

    Low power optical limiting studies on nanocrystalline benzimidazole thin films prepared by modified liquid phase growth technique. P A PRAVEEN1, S P PRABHAKARAN1, R RAMESH BABU1,∗, K SETHURAMAN2 and K RAMAMURTHI3. 1Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan ...

  11. Synthesis of nanocrystalline mixed metal fluorides in nonaqueous ...

    Indian Academy of Sciences (India)

    Administrator

    Synthesis of nanocrystalline mixed metal fluorides in nonaqueous medium. NEETU TYAGI, EPSITA GHANTI, NIKESH GUPTA, N P LALLA. † and. RAJAMANI NAGARAJAN*. Department of Chemistry, University of Delhi, Delhi 110 007, India. †. Inter University Consortium for DAE Facilities, University Campus, Indore 452 ...

  12. Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn^(2+)

    NARCIS (Netherlands)

    Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A.

    2001-01-01

    The influence of the synthesis conditions on the properties of nanocrystalline ZnS:Mn2+ is discussed. Different Mn2+ precursors and different ratios of the precursor concentrations [S2-]/[Zn2+] were used. The type of Mn2+ precursor does not have an effect on the luminescence properties in the

  13. Pulsed nanocrystalline plasma electrolytic boriding as a novel ...

    Indian Academy of Sciences (India)

    The effect of frequency and duty cycle of pulsed current was investigated. It was found that pulse frequency and duty cycle affect the size and porosity of nanocrystalline borides and by controlling these effective parameters, surface modification can render the CP-Ti material extremely corrosion resistant as a biomaterial.

  14. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  15. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 129, May (2015), 95-99 ISSN 0927-7765 R&D Projects: GA ČR GAP108/12/0996 Grant - others:AVČR(CZ) M100101209 Institutional support: RVO:68378271 Keywords : field-effect transistors * nanocrystalline diamond * osteoblastic cells * leakage currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.902, year: 2015

  16. Nanocrystalline diamond surface functionalization in radio frequency plasma

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Choukourov, A.; Stuchlík, Jiří; Potměšil, Jiří; Vaněček, Milan

    2006-01-01

    Roč. 15, - (2006), s. 745-748 ISSN 0925-9635 R&D Projects: GA ČR(CZ) GA202/05/2233; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond film * nanocrystalline * coatings * biomedical applications Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.935, year: 2006

  17. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanoparticles of different grain size.

  18. Fast response time alcohol gas sensor using nanocrystalline F ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol–gel method. Sarbani Basu Yeong-Her Wang C Ghanshyam Pawan Kapur. Volume 36 Issue 4 August 2013 pp 521-533 ...

  19. High temperature magnetic properties of nanocrystalline Sn0 ...

    Indian Academy of Sciences (India)

    Administrator

    High temperature magnetic properties of nanocrystalline Sn0⋅95Co0⋅05O2. O MOUNKACHI1, E SALMANI2, ... exchange interaction between the magnetic ions and the band electrons. Tin dioxide (SnO2) is an n-type ... rate must be well controlled for the chemical homogene- ity. The reactants were constantly stirred using ...

  20. Light emission, light detection and strain sensing with nanocrystalline graphene

    International Nuclear Information System (INIS)

    Riaz, Adnan; Pyatkov, Feliks; Alam, Asiful; Dehm, Simone; Chakravadhanula, Venkata S K; Flavel, Benjamin S; Kübel, Christian; Krupke, Ralph; Felten, Alexandre; Lemmer, Uli

    2015-01-01

    Graphene is of increasing interest for optoelectronic applications exploiting light detection, light emission and light modulation. Intrinsically, the light–matter interaction in graphene is of a broadband type. However, by integrating graphene into optical micro-cavities narrow-band light emitters and detectors have also been demonstrated. These devices benefit from the transparency, conductivity and processability of the atomically thin material. To this end, we explore in this work the feasibility of replacing graphene with nanocrystalline graphene, a material which can be grown on dielectric surfaces without catalyst by graphitization of polymeric films. We have studied the formation of nanocrystalline graphene on various substrates and under different graphitization conditions. The samples were characterized by resistance, optical transmission, Raman and x-ray photoelectron spectroscopy, atomic force microscopy and electron microscopy measurements. The conducting and transparent wafer-scale material with nanometer grain size was also patterned and integrated into devices for studying light–matter interaction. The measurements show that nanocrystalline graphene can be exploited as an incandescent emitter and bolometric detector similar to crystalline graphene. Moreover the material exhibits piezoresistive behavior which makes nanocrystalline graphene interesting for transparent strain sensors. (paper)

  1. Oxygen reduction on nanocrystalline ruthenia-local structure effects

    DEFF Research Database (Denmark)

    Abbott, Daniel F.; Mukerjee, Sanjeev; Petrykin, Valery

    2015-01-01

    Nanocrystalline ruthenium dioxide and doped ruthenia of the composition Ru1-xMxO2 (M = Co, Ni, Zn) with 0 ≤ x ≤ 0.2 were prepared by the spray-freezing freeze-drying technique. The oxygen reduction activity and selectivity of the prepared materials were evaluated in alkaline media using the RRDE ...

  2. Burstein Moss effect in nanocrystalline CaS: Ce

    Indian Academy of Sciences (India)

    Administrator

    Burstein Moss effect in nanocrystalline CaS: Ce. GEETA SHARMA*, PUJA CHAWLA, S P LOCHAB. † and NAFA SINGH. Department of Physics, Kurukshetra University, Kurukshetra 136 119, India. †. Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067, India. MS received 27 July 2009; revised 16 ...

  3. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    Science.gov (United States)

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  4. Optimization of nanocrystalline γ-alumina coating for direct spray ...

    Indian Academy of Sciences (India)

    7, December 2014, pp. 1583–1588. c Indian Academy of Sciences. Optimization of nanocrystalline γ-alumina coating for direct spray water-cooling of optical devices. S N ALAM1,2,∗. , M ANARAKY3, Z SHAFEIZADEH3 and P J PARBROOK1. 1Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, ...

  5. Fast response time alcohol gas sensor using nanocrystalline F

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol–gel method. Sarbani Basu Yeong-Her Wang C Ghanshyam Pawan Kapur. Volume 36 Issue 4 August 2013 pp 521-533 ...

  6. Fast response time alcohol gas sensor using nanocrystalline F ...

    Indian Academy of Sciences (India)

    Fast response time alcohol gas sensor using nanocrystalline F-doped. SnO2 films derived via sol–gel method. SARBANI BASU, YEONG-HER WANG†, C GHANSHYAM. ∗ and PAWAN KAPUR. CSIR-Central Scientific Instruments Organisation, Sector-30, Chandigarh 160 030, India. †Department of Electrical Engineering, ...

  7. Surface-modified nanocrystalline ceramics for drug delivery applications.

    Science.gov (United States)

    Kossovsky, N; Gelman, A; Sponsler, E E; Hnatyszyn, H J; Rajguru, S; Torres, M; Pham, M; Crowder, J; Zemanovich, J; Chung, A

    1994-12-01

    Drug delivery systems comprised of various types of carriers have long been the object of pharmacological investigation. The search has been stimulated by the belief that carriers will lead to reduced drug toxicity, dosage requirements, enhanced cellular targeting and improved shelf-life. Among the carriers investigated are complex polymeric carbohydrates, synthetic proteins and liposomal structures. For the past four years, we have been experimenting with a radically new class of carriers comprised of surface-modified nanocrystalline ceramics. While the ceramics provide the structural stability of a largely immutable solid, the surface modification creates a glassy molecular stabilization film to which pharmacological agents may be bound non-covalently from an aqueous phase with minimal structural denaturation. As a consequence of maintained structural integrity and owing to concentration effects afforded by the surfaces of the nanocrystalline materials, drug activity following surface immobilization is preserved. We have used successfully surface-modified nanocrystalline ceramics to deliver viral antigens for the purpose of evoking an immune response, oxygenated haemoglobin for cell respiration and insulin for carbohydrate metabolism. The theoretical principles, technical details and experimental results are reviewed. Surface-modified nanocrystalline materials offer an exciting new approach to the well-recognized challenges of drug delivery.

  8. Synthesis and visible light photocatalytic activity of nanocrystalline ...

    Indian Academy of Sciences (India)

    The synthesized materials were characterized by XRD, BET-SA, SEM, HRTEM, XPS, FTIR and UV-DRS techniques to understand their physico-chemical properties. Characterization data reveal the formation of nanocrystalline PrFeO3 perovskite composition with improved physical properties, possibly due to lower ...

  9. Gas sensing properties of nanocrystalline diamond at room temperature

    Czech Academy of Sciences Publication Activity Database

    Davydova, Marina; Kulha, P.; Laposa, A.; Hruška, Karel; Demo, Pavel; Kromka, Alexander

    2014-01-01

    Roč. 5, Dec (2014), s. 2339-2345 ISSN 2190-4286 R&D Projects: GA ČR(CZ) GP14-06054P Institutional support: RVO:68378271 Keywords : gas sensor * integrator * interdigitated electrodes * nanocrystalline diamond * response Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.670, year: 2014

  10. Luminescence of nanocrystalline ZnSe:Mn2+

    NARCIS (Netherlands)

    Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A.

    2000-01-01

    The luminescence properties of nanocrystalline ZnSe:Mn^(2+) prepared via an inorganic chemical synthesis are described. Photoluminescence spectra show distinct ZnSe and Mn^(2+) related emissions, both of which are excited via the ZnSe host lattice. The Mn^(2+) emission wavelength and the

  11. Renal hemodynamics and oxygenation in transient renal artery occluded rats evaluated with iron-oxide particles and oxygenation-sensitive imaging

    International Nuclear Information System (INIS)

    Pedersen, Michael; Aarhus Univ.; Univ. Victor Segalen Bordeaux 2; Laustsen, Christoffer; Perot, Vincent; Grenier, Nicolas; Basseau, Fabrice; Moonen, Chrit

    2010-01-01

    Mild or severe renal arterial occlusion is a phenomenon occasionally observed in daily clinical practice, potentially leading to renal ischemia and a general impairment of renal function. Secondly, closing the blood flow to the kidneys can also occur during kidney transplantation procedures. However, the exact physiological effects of these conditions on renal blood perfusion as well as the renal oxygen handling are poorly understood. The objectives of this study were therefore to measure the lateral changes of renal blood perfusion in rats subjected to transient unilateral arterial occlusion (RAS), and in addition, to measure the consequences on the intrarenal oxygenation. Experimental studies were performed using sixteen adolescent rats. The left renal artery was exposed through a flank incision and acute RAS for 45 min was achieved by placing a ligature around the renal artery. MRI was performed 3 days after the surgical procedure, where a blood oxygenation sensitive sequence (BOLD MRI) was performed, followed by a perfusion-weighted imaging sequence using a single bolus of the iron-oxide nanoparticle Sinerem. The renal oxygenation of blood was indirectly measured by the BOLD-parameter R2 * , and perfusion measures include relative renal blood flow, relative renal blood volume and mean transit time. Histopathologic changes through the outer stripe of the outer medulla showing typical histopathologic findings of ischemia. This study demonstrated that rats with transient renal arterial stenosis (for 45 min) showed a reduction in intrarenal oxygenation and intrarenal blood flow three days after the surgical procedure. A decreased R2 * was measured within the ipsilateral medulla in parallel with a decreased medullary blood flow, is probably related to a lower reabsorption load within the ipsilateral kidney. MRI may therefore be a promising tool in long-term evaluation of RAS. (orig.)

  12. The synthesis, microstructure, hardness and thermal properties of bulk nanocrystalline Al produced by in situ consolidation with low-energy ball milling

    International Nuclear Information System (INIS)

    Zhao, K.Y.; LI, C.J.; Tao, J.M.; Ng, Dickon H.L.; Zhu, X.K.

    2010-01-01

    Bulk nanocrystalline (nc) Al was produced by in situ consolidation of Al powder with low-energy ball milling at room temperature. Microstructure and thermal properties of Al subjected to ball milling were investigated by means of differential scanning calorimeter (DSC), differential thermal analyzer (DTA), transmission electron microscope (TEM), X-ray diffraction (XRD), and scanning electron microscope (SEM). As a result of long time milling, considerable energy has been stored in the powder particles which suffered a repetitive cold welding and fracture mechanism. It was found that the microhardness of Al was increased with the increasing of ball milling time. The highest microhardness (1372 MPa) was observed at room temperature in nanocrystalline Al in the experiment.

  13. Sedimentary particulate iron: the missing micronutrients ?

    Science.gov (United States)

    Beghoura, Houda; Gorgues, Thomas; Aumont, Olivier; Planquette, Hélène

    2017-04-01

    Iron is known to regulate the marine primary production and to impact the structure of ecosystems. Indeed, iron is the limiting nutrient for the phytoplankton growth over about 30% of the global ocean. However, the nature of the external sources of iron to the ocean and their quantification remain uncertain. Among these external sources, the sediment sources have been recently shown to be underestimated. Besides, since the operationally defined dissolved iron (which is the sum of truly dissolved and colloidal iron) was traditionally assumed to be the only form available to phytoplankton and bacteria, most studies have focused on the supply of dissolved iron to the ocean, the role of the particulate fraction of iron being largely ignored. This traditional view has been recently challenged, noticeably, by observational evidences. Indeed, in situ observations have shown that large amounts of particulate iron are being resuspended from continental margins to the open ocean thanks to fine grained particles' transport over long distances. A fraction of this particulate iron may dissolve and thereby fuel the phytoplankton growth. The magnitude of the sedimentary sources of particulate iron and the releasing processes affecting this iron phase are not yet well constrained or quantified. As a consequence, the role of sedimentary particulate iron in the biogeochemical cycles is still unclear despite its potentially major widespread importance. Here, we propose a modeling exercise to assess the first order impacts of this newly considered particulate sedimentary iron on global ocean biogeochemistry. We designed global experiments with a coupled dynamical-biogeochemical model (NEMO-PISCES). First, a control simulation that includes only a sediment source of iron in the dissolved phase has been run. Then, this control simulation is being compared with simulations, in which we include a sediment source of iron in both phases (dissolved as well as particulate). Those latter

  14. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Prilliman, Stephen Gerald [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe2O3) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the γ to the α structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the α structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced α phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the α phase which would increase the thermodynamic offset and thereby increase the kinetic barrier to transition

  15. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    International Nuclear Information System (INIS)

    Prilliman, Gerald Stephen

    2003-01-01

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe 2 O 3 ) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the γ to the α structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the α structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced α phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the α phase which would increase the thermodynamic offset and thereby increase the kinetic barrier to transition that must be overridden with pressure

  16. Sorption of PAHs to humic acid- and iron(III)carbon ate particles by using passive dosing vials for investigating the transport of organic contamination in stormwater runoff

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Mikkelsen, Peter Steen; Baun, Anders

    2013-01-01

    During the last decades, the growing urbanisation a nd increasing anthropogenic activities in urban areas have turned urban stormwater runoff int o a surface water quality contamination problem. The concerns of urban stormwater runoff as a source of contamination in the receiving surface water...... (lakes, rivers or sea) have been raised by researchers throughout the world (e.g. Broman et. al., 1987, and Xanthopoulos et. al., 1990), and have in Europe gained increased interest in relation to the implementatio n of the Water Framework Directive (WFD, 2000/60/EC). Particles (often defined as >0.45 μm...... abundance, and knowledge about their facilitated transport of persistent organic polluti on in natural waters, they are likely to diminish the efficiency of engineered treatment sys tems unless appropriately accounted for. In this work organic and inorganic nanosized partic les were investigated...

  17. The effect of post annealing treatment on the citrate sol-gel derived nanocrystalline BaFe12O19 powder: structural, morphological, optical and magnetic properties

    Science.gov (United States)

    Brightlin, B. C.; Balamurugan, S.

    2016-11-01

    The nanocrystalline BaFe12O19 powders were obtained from citrate sol-gel combustion-derived powder upon annealing at 800-1100 °C, and explored their structural, micro-structural, optical and magnetic properties. The thermal decomposition of citrate sol-gel combustion product was verified by means of thermogravimetric and differential thermal analysis. Structural identification of the citrate sol-gel combustion powder and annealed samples were investigated by powder X-ray diffraction. Though the combustion product exhibits cubic spinel phase material, the annealed powder yields good quality nanocrystalline hexagonal BaFe12O19 phase materials. The thin plate-like flakes morphology with random particle sizes of 100-200 nm with slightly agglomerated particles of BaFe12O19 phase is analyzed by high resolution scanning electron microscopy for the good quality annealed sample. Photoluminescence emission spectrum of BaFe12O19 material reveals broad emission peak at 360 nm under the excitation wavelength of 270 nm. Interestingly, the near infrared relative reflectivity of the nanocrystalline BaFe12O19 materials obtained by citrate sol-gel synthesis method is higher than the nanocrystalline BaFe12O19 materials obtained by mechano-thermal and co-precipitation method. The present dark brown colored BaFe12O19 materials can be applied as a ceramic color pigment which includes several applications. The room temperature magnetic hysteresis loop of the annealed BaFe12O19 sample exhibits a ferromagnetic saturation magnetization, M s of 55.774 emu/g at 15 kOe.

  18. The effect of post annealing treatment on the citrate sol–gel derived nanocrystalline BaFe12O19 powder: structural, morphological, optical and magnetic properties

    Directory of Open Access Journals (Sweden)

    B. C. Brightlin

    2016-05-01

    Full Text Available Abstract The nanocrystalline BaFe12O19 powders were obtained from citrate sol–gel combustion-derived powder upon annealing at 800–1100 °C, and explored their structural, micro-structural, optical and magnetic properties. The thermal decomposition of citrate sol–gel combustion product was verified by means of thermogravimetric and differential thermal analysis. Structural identification of the citrate sol–gel combustion powder and annealed samples were investigated by powder X-ray diffraction. Though the combustion product exhibits cubic spinel phase material, the annealed powder yields good quality nanocrystalline hexagonal BaFe12O19 phase materials. The thin plate-like flakes morphology with random particle sizes of ~100–200 nm with slightly agglomerated particles of BaFe12O19 phase is analyzed by high resolution scanning electron microscopy for the good quality annealed sample. Photoluminescence emission spectrum of BaFe12O19 material reveals broad emission peak at ~360 nm under the excitation wavelength of 270 nm. Interestingly, the near infrared relative reflectivity of the nanocrystalline BaFe12O19 materials obtained by citrate sol-gel synthesis method is higher than the nanocrystalline BaFe12O19 materials obtained by mechano-thermal and co-precipitation method. The present dark brown colored BaFe12O19 materials can be applied as a ceramic color pigment which includes several applications. The room temperature magnetic hysteresis loop of the annealed BaFe12O19 sample exhibits a ferromagnetic saturation magnetization, M s of 55.774 emu/g at 15 kOe.

  19. NATO Advanced Research Workshop on Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors

    CERN Document Server

    Idzikowski, Bogdan; Miglierini, Marcel

    2005-01-01

    Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the aver...

  20. The role of nanocrystalline binder metallic coating into WC after additive manufacturing

    Science.gov (United States)

    Cavaleiro, A. J.; Fernandes, C. M.; Farinha, A. R.; Gestel, C. V.; Jhabvala, J.; Boillat, E.; Senos, A. M. R.; Vieira, M. T.

    2018-01-01

    Tungsten carbide with microsized particle powders are commonly used embedded in a tough binder metal. The application of these composites is not limited to cutting tools, WC based material has been increasingly used in gaskets and other mechanical parts with complex geometries. Consequently, additive manufacturing processes as Selective Laser Sintering (SLS) might be the solution to overcome some of the manufacturing problems. However, the use of SLS leads to resolve the problems resulting from difference of physical properties between tungsten carbide and the metallic binder, such as laser absorbance and thermal conductivity. In this work, an original approach of powder surface modification was considered to prepare WC-metal composite powders and overcome these constraints, consisting on the sputter-coating of the WC particle surfaces with a nanocrystalline thin film of metallic binder material (stainless steel). The coating improves the thermal behavior and rheology of the WC particles and, at the same time, ensures a binder homogenous distribution. The feasibility of the SLS technology as manufacturing process for WC powder sputter-coated with 13 wt% stainless steel AISI 304L was explored with different laser power and scanning speed parameters. The SLS layers were characterized regarding elemental distribution, phase composition and morphology, and the results are discussed emphasizing the role of the coating on the consolidation process.

  1. Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance.

    Science.gov (United States)

    Ni, Youming; Sun, Aiming; Wu, Xiaoling; Hai, Guoliang; Hu, Jianglin; Li, Tao; Li, Guangxing

    2011-09-15

    Hierarchical nanocrystalline ZSM-5 zeolite (NZ5) was synthesized at 100 °C under atmospheric pressure using methylamine as a mineralizing agent. The crystallization process of NZ5 was characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and infrared spectroscopy (FTIR). The results of contrastive experiments showed that evaporation of the solvent promoted the aggregation of primary particles, and the addition of methylamine accelerated the crystallization process. The NZ5 aggregate consisted of 20 nm individual particles, as shown in scanning electron microscope (SEM). The lattice fringes in the transmission electron microscope (TEM) images and the XRD results indicated that individual particles of NZ5 were highly crystalline. N(2) adsorption-desorption isotherms showed that NZ5 had high BET surface areas with mesopores having a mean diameter of about 9 nm. NZ5 exhibited a long lifetime, a stable and high yield of liquid hydrocarbons, and a high anti-coking performance in methanol-to-hydrocarbons reaction. Catalytic testing and TGA results showed that the lifetime of NZ5 was about ten times longer than that of micro-sized ZSM-5 zeolite (MZ5), and the average coking rate with NZ5 was one fifth over that of MZ5. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    Science.gov (United States)

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo; Setlur, Anant Achyut; Srivastava, Alok Mani

    2013-04-16

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  3. Effect of WC/Co coherency phase boundaries on Fracture toughness of the nanocrystalline cemented carbides

    OpenAIRE

    Hongxian Xie; Xiaoyan Song; Fuxing Yin; Yongguang Zhang

    2016-01-01

    The effect of coherency WC/Co phase boundaries on the fracture toughness of the nanocrystalline WC-Co cemented carbides is studied by MD simulation method. The simulation results show that the nanocrystalline WC-Co cemented carbides with coherency WC/Co phase boundaries has higher fracture toughness than that without coherency WC/Co phase boundaries. Moreover, the mechanism of why coherency WC/Co phase boundaries can improve the fracture toughness of the nanocrystalline cemented carbides is a...

  4. Catalytic and surface properties of nanocrystalline gold water gas shift catalysts

    Science.gov (United States)

    Kim, Chang Hwan

    A series of CeO2 supported gold catalysts were prepared and found to possess a high activities for the water gas shift reaction (WGS), a critical step in the production of H2 for use in petroleum refining, chemicals synthesis, and proton exchange membrane fuel cells. The deposition-precipitation method was employed in synthesizing these highly active, nanocrystalline gold catalysts. X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and dynamic sorption analyses were performed to characterize the gold catalysts. While some of these catalysts were initially four times more active than a commercial Cu-based catalyst, they were susceptible to deactivation. Characterization using techniques including temperature programmed oxidation, XPS, and FT-IR indicated that the deactivation was caused primarily by blockage of the active sites by carbonates and/or formates. Formation of these carbonaceous species appeared to be facilitated by oxygen deficient sites on the ceria surface and may have been associated with hydroxyl groups formed on the nanocrystalline gold particles under the H2 rich conditions. The deactivation could be managed by conditioning the CeO2 surface or adding constituents to minimize oxygen deficiency. The catalytic activity was fully recovered by calcining the deactivated materials in flowing air at elevated temperatures. The gold catalyst was washcoated onto microporous Fe-Al alloy foams for use in a micro-channel WGS reactor. The performance of these coated foams was inferior to that of the powder catalyst; however, a two stage micro-channel WGS reactor employing the gold catalyst was sufficient for a 100 W fuel processor system.

  5. Optimized nanocrystalline strontium hexaferrite prepared by applying a methane GTR process on a conventionally synthesized powder

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, R.; Seyyed Ebrahimi, S.A., E-mail: saseyyed@ut.ac.ir

    2014-11-15

    Optimization of the effective re-calcination parameters in a gaseous heat treatment and re-calcination (GTR) process for producing nanocrystalline Sr-hexaferrite powder using CH{sub 4} has been investigated for the first time in this research. The initial Sr-hexaferrite powder was prepared by a conventional route with calcination of the mixture of SrCO{sub 3} and α-Fe{sub 2}O{sub 3} at 1100 °C for 1 h. Then the resultant powder was isothermally heat treated in CH{sub 4} dynamic atmosphere at 950 °C with a gas flow of 15 cc/min for 30 min. Finally the resultant powder was re-calcined at various temperatures for different times. The rate of heating and cooling was 10 °C/min. Due to the gas heat treatment, the hard magnetic nature of the material changed from hard to soft with changes in the phase composition, particle size and morphology. In the second step of the process, the soft magnetic nature of the intermediate material returned from soft to hard again by re-calcination. However, the resultant nanocrystalline Sr-hexaferrite powder had a higher coercivity compared to that of the initial powder. The results showed significant changes in morphology and crystallite size of the initial powder during re-calcination process which made a great increase of about 17% in its coercivity. The crystallite size of the resultant Sr-hexaferrite was measured lower than 50 nm. - Highlights: • Optimized re-calcination in GTR using CH{sub 4} has been investigated for the first time. • The results showed a great increase of 17% in initial powder coercivity. • The crystallite size of the resultant Sr-hexaferrite was lower than 50 nm. • Applying this process can make it suitable for a wide range of magnetic properties.

  6. Extending hydraulic lifetime of iron walls

    International Nuclear Information System (INIS)

    Mackenzie, P.D.; Sivavec, T.M.; Horney, D.P.

    1997-01-01

    Iron walls for control of groundwaters contaminated with chlorinated solvents and reducible metals are becoming much more widely used and field studies of this technology have proven successful to date. However, there is still much uncertainty in predicting long-term performance. This work focuses on two factors affecting the lifetime of the iron media: plugging at the treatment zone entrance and precipitation in the bulk iron media. Plugging at the system entrance is due principally to dissolved oxygen in the incoming water and is an issue in aerobic aquifers or in ex-situ canister tests. In an in-situ treatment system, plugging would result in a dramatic reduction in flow through the iron zone. Designs to minimize plugging in field applications include use of larger iron particles and admixing sand of comparable size with the iron particles. Mineral precipitation in the bulk iron media can lead to porosity losses in the media, again reducing flow through the treatment zone. Decreases in reactivity of the iron media may also occur. The nature of the mineral precipitation and the factors that affect extent of mineral precipitation are examined by a variety of tools, including tracer tests, aqueous inorganic profiles, and surface analysis techniques. At short treatment times, measured porosity losses are due mainly to entrapment of a film of H 2 gas on the iron surfaces and also to Fe(OH) 2 precipitation. Over longer treatment times precipitation of Fe(OH) 2 and FeCO 3 in low carbonate waters and of Fe(OH) 2 , FeCO 3 and CaCO 3 in higher carbonate waters will begin to dominate porosity losses. Preliminary results of an on-going study to control pH in an iron zone by admixing iron sulfide with iron show no difference in extent of carbonate precipitation versus a 100% iron system, suggesting that these systems are supersaturated with respect to carbonate precipitation

  7. Ferroxidase-Mediated Iron Oxide Biomineralization

    DEFF Research Database (Denmark)

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-01-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many...... identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron......, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications....

  8. Characterization and formation mechanism of nanocrystalline (Fe,Ti){sub 3}Al intermetallic compound prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Rafiei, M. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: ena78@cc.iut.ac.ir; Karimzadeh, F. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-07-08

    The nanocrystalline (Fe,Ti){sub 3}Al intermetallic compound was synthesized by mechanical alloying (MA) of elemental powder with composition Fe{sub 50}Al{sub 25}Ti{sub 25}. The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry and microhardness measurements. Morphology and cross-sectional microstructure of powder particles were characterized by scanning electron microscopy. It was found that a Fe/Al/Ti layered structure was formed at the early stages of milling followed by the formation of Fe(Ti,Al) solid solution. This structure transformed to (Fe,Ti){sub 3}Al intermetallic compound at longer milling times. Upon heat treatment of (Fe,Ti){sub 3}Al phase the degree of DO{sub 3} ordering was increased. The (Fe,Ti){sub 3}Al compound exhibited high microhardness value of about 1050 Hv.

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body causes iron-deficiency anemia. Lack of iron usually is due to blood loss, ... can help prevent overdosing in children. Because recent research supports concerns that iron deficiency during infancy and ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ... is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you lose iron. ... other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ... of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  13. Iron-Deficiency Anemia

    Science.gov (United States)

    ... Home / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drawings also can cause iron-deficiency anemia. Poor Diet The best sources of iron are meat, poultry, ... more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat the ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... The best sources of iron are meat, poultry, fish, and iron-fortified foods (foods that have iron ... you: Follow a diet that excludes meat and fish, which are the best sources of iron. However, ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ... good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... re more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ... which are the best sources of iron. However, vegetarian diets can provide enough iron if you eat ...