WorldWideScience

Sample records for nanocrystalline cubic silicon

  1. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    Cheng Qijin; Xu, S.

    2007-01-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X≤33%) in the gas mixture employed in our experiments

  2. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Waman, Vaishali [Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411 005 (India); Parmar, Jayesh [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhattacharyya, Somnath [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Ma, Yuan‐Ron [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Devan, Rupesh; Pathan, Habib [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, Sandesh, E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  3. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  4. Characterization of nanocrystalline silicon germanium film and ...

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  5. Theoretical study on recoilless fractions of simple cubic monatomic nanocrystalline particles

    Huang Jianping; Wang Luya

    2002-01-01

    Recoilless fractions of simple cubic monatomic nanocrystalline particles are calculated by using displacement-displacement Green's function. The numerical results show that the recoilless fractions on the surface of monatomic nanocrystalline particles are smaller than those in the inner, and they decrease when the particle size increase, the recoilless fractions of whole monatomic nanocrystalline particles increase when the particle size increase. These effects are more evident when the temperature is higher

  6. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    Poffo, C.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.b [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Souza, S.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Biasi, R.S. de [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2011-04-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 {sup o}C the heat transfer is controlled by crystalline component.

  7. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    Poffo, C.M.; Lima, J.C. de; Souza, S.M.; Triches, D.M.; Grandi, T.A.; Biasi, R.S. de

    2011-01-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 o C the heat transfer is controlled by crystalline component.

  8. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  9. Optical characterisation of cubic silicon carbide

    Jackson, S.M.

    1998-09-01

    The varied properties of Silicon Carbide (SiC) are helping to launch the material into many new applications, particularly in the field of novel semiconductor devices. In this work, the cubic form of SiC is of interest as a basis for developing integrated optical components. Here, the formation of a suitable SiO 2 buried cladding layer has been achieved by high dose oxygen ion implantation. This layer is necessary for the optical confinement of propagating light, and hence optical waveguide fabrication. Results have shown that optical propagation losses of the order of 20 dB/cm are obtainable. Much of this loss can be attributed to mode leakage and volume scattering. Mode leakage is a function of the effective oxide thickness, and volume scattering related to the surface layer damage. These parameters have been shown to be controllable and so suggests that further reduction in the waveguide loss is feasible. Analysis of the layer growth mechanism by RBS, XTEM and XPS proves that SiO 2 is formed, and that the extent, of formation depends on implant dose and temperature. The excess carbon generated is believed to exit the oxide layer by a number of varying mechanisms. The result of this appears to be a number of stable Si-C-O intermediaries that, form regions to either depth extreme of the SiO 2 layer. Early furnace tests suggest a need to anneal at, temperatures approaching the melting point of the silicon substrate, and that the quality of the virgin material is crucial in controlling the resulting oxide growth. (author)

  10. Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo

    Tian, Xiaofeng [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Li, Dan, E-mail: txf8378@163.com [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Yu, You [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China); You, Zhen Jiang [Australian School of Petroleum, University of Adelaide, SA 5005 (Australia); Li, Tongye [The National Key Laboratory of Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu (China); Ge, Liangquan [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China)

    2017-04-06

    Deformation twinning of nanocrystalline body-centered cubic Mo was studied using molecular dynamics simulations, and the effects of grain sizes and temperatures on the deformation were evaluated. With small grain size, grain rotation accompanying grain growth was found to play important role in nanocrystalline Mo during tensile deformation. Additionally, grain rotation and the deformation controlled by GB-mediated processes induce to the difficulty of creating crack. Twin was formed by successive emission of twinning partials from grain boundaries in small grain size systems. However, the twin mechanisms of GB splitting and overlapping of two extended dislocations were also found in larger size grain. Twin induced crack tips were observed in our simulation, and this confirmed the results of previous molecular dynamics simulations. At higher temperatures, GB activities can be thermally activated, resulting in suppression of twinning tendency and improvement of ductility of nanocrystalline Mo.

  11. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells

    Seif, J.; Descoeudres, A.; Nogay, G.; Hänni, S.; de Nicolas, S.M.; Holm, N.; Geissbühler, J.; Hessler-Wyser, A.; Duchamp, M.; Dunin-Borkowski, R.E.; Ledinský, Martin; De Wolf, S.; Ballif, C.

    2016-01-01

    Roč. 6, č. 5 (2016), s. 1132-1140 ISSN 2156-3381 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : microcrystalline silicon * nanocrystalline silicon * silicon heterojunctions (SHJs) * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.712, year: 2016

  12. Hardness and thermal stability of cubic silicon nitride

    Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.

    2001-01-01

    The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...

  13. Effect of power on the growth of nanocrystalline silicon films

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma

    2008-01-01

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm -1 and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity

  14. Effect of power on the growth of nanocrystalline silicon films

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma [Plasma Processed Materials Group, National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110 012 (India)], E-mail: skumar@mail.nplindia.ernet.in

    2008-08-20

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm{sup -1} and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity.

  15. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    Junichiro Shiomi

    2016-10-01

    Full Text Available Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  16. THz generation from a nanocrystalline silicon-based photoconductive device

    Daghestani, N S; Persheyev, S; Cataluna, M A; Rose, M J; Ross, G

    2011-01-01

    Terahertz generation has been achieved from a photoconductive switch based on hydrogenated nanocrystalline silicon (nc-Si:H), gated by a femtosecond laser. The nc-Si:H samples were produced by a hot wire chemical vapour deposition process, a process with low production costs owing to its higher growth rate and manufacturing simplicity. Although promising ultrafast carrier dynamics of nc-Si have been previously demonstrated, this is the first report on THz generation from a nc-Si:H material

  17. Compressibility and thermal expansion of cubic silicon nitride

    Jiang, Jianzhong; Lindelov, H.; Gerward, Leif

    2002-01-01

    The compressibility and thermal expansion of the cubic silicon nitride (c-Si3N4) phase have been investigated by performing in situ x-ray powder-diffraction measurements using synchrotron radiation, complemented with computer simulations by means of first-principles calculations. The bulk...... compressibility of the c-Si3N4 phase originates from the average of both Si-N tetrahedral and octahedral compressibilities where the octahedral polyhedra are less compressible than the tetrahedral ones. The origin of the unit cell expansion is revealed to be due to the increase of the octahedral Si-N and N-N bond...

  18. Linear electro-optic effect in cubic silicon carbide

    Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.

    1991-01-01

    The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.

  19. Atomistic simulations of diffusional creep in a nanocrystalline body-centered cubic material

    Millett, Paul C.; Desai, Tapan; Yamakov, Vesselin; Wolf, Dieter

    2008-01-01

    Molecular dynamics (MD) simulations are used to study diffusion-accommodated creep deformation in nanocrystalline molybdenum, a body-centered cubic metal. In our simulations, the microstructures are subjected to constant-stress loading at levels below the dislocation nucleation threshold and at high temperatures (i.e., T > 0.75T melt ), thereby ensuring that the overall deformation is indeed attributable to atomic self-diffusion. The initial microstructures were designed to consist of hexagonally shaped columnar grains bounded by high-energy asymmetric tilt grain boundaries (GBs). Remarkably the creep rates, which exhibit a double-exponential dependence on temperature and a double power-law dependence on grain size, indicate that both GB diffusion in the form of Coble creep and lattice diffusion in the form of Nabarro-Herring creep contribute to the overall deformation. For the first time in an MD simulation, we observe the formation and emission of vacancies from high-angle GBs into the grain interiors, thus enabling bulk diffusion

  20. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    Sahli, Florent

    2017-10-09

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  1. Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

    Sahli, Florent; Kamino, Brett A.; Werner, Jé ré mie; Brä uninger, Matthias; Paviet-Salomon, Bertrand; Barraud, Loris; Monnard, Raphaë l; Seif, Johannes Peter; Tomasi, Andrea; Jeangros, Quentin; Hessler-Wyser, Aï cha; De Wolf, Stefaan; Despeisse, Matthieu; Nicolay, Sylvain; Niesen, Bjoern; Ballif, Christophe

    2017-01-01

    Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.

  2. Nanocomposites Based on Polyethylene and Nanocrystalline Silicon Films

    Olkhov Anatoliy Aleksandrovich

    2014-12-01

    Full Text Available High-strength polyethylene films containing 0.5-1.0 wt. % of nanocrystalline silicon (nc-Si were synthesized. Samples of nc-Si with an average core diameter of 7-10 nm were produced by plasmochemical method and by laser-induced decomposition of monosilane. Spectral studies revealed almost complete (up to ~95 % absorption of UV radiation in 200- 400 nm spectral region by 85 micron thick film if the nc-Si content approaches to 1.0 wt. %. The density function of particle size in the starting powders and polymer films containing immobilized silicon nanocrystallites were obtained using the modeling a complete profile of X-ray diffraction patterns, assuming spherical grains and the lognormal distribution. The results of X-ray analysis shown that the crystallite size distribution function remains almost unchanged and the crystallinity of the original polymer increases to about 10 % with the implantation of the initial nc-Si samples in the polymer matrix.

  3. Size modulation of nanocrystalline silicon embedded in amorphous silicon oxide by Cat-CVD

    Matsumoto, Y.; Godavarthi, S.; Ortega, M.; Sanchez, V.; Velumani, S.; Mallick, P.S.

    2011-01-01

    Different issues related to controlling size of nanocrystalline silicon (nc-Si) embedded in hydrogenated amorphous silicon oxide (a-SiO x :H) deposited by catalytic chemical vapor deposition (Cat-CVD) have been reported. Films were deposited using tantalum (Ta) and tungsten (W) filaments and it is observed that films deposited using tantalum filament resulted in good control on the properties. The parameters which can affect the size of nc-Si domains have been studied which include hydrogen flow rate, catalyst and substrate temperatures. The deposited samples are characterized by X-ray diffraction, HRTEM and micro-Raman spectroscopy, for determining the size of the deposited nc-Si. The crystallite formation starts for Ta-catalyst around the temperature of 1700 o C.

  4. Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix

    Dobrzanski, L.A.; Nowosielski, R.; Konieczny, J.; PrzybyI, A.; WysIocki, J.

    2005-01-01

    The paper concerns investigation of nanocrystalline composites technology preparation. The composites in the form of rings with rectangular transverse section, and with polymer matrix and nanocrystalline metallic powders fulfillment were made, for obtaining good ferromagnetic properties. The nanocrystalline ferromagnetic powders were manufactured by high-energy ball milling of metallic glasses strips in an as-quenched state. Generally for investigation, Co matrix alloys with the silicon polymer were used. Magnetic properties in the form of hysteresis loop by rings method were measured. Generally composite cores showed lower soft ferromagnetic properties than winded cores of nanocrystalline strips, but composite cores showed interesting mechanical properties. Furthermore, the structure of strips and powders on properties of composites were investigated

  5. Hexagonal close packed to face centered cubic polymorphic transformation in nanocrystalline titanium-zirconium system by mechanical alloying

    Bera, S.; Manna, I.

    2006-01-01

    The present study reports a reversible hexagonal close packed (hcp) to face centered cubic (fcc) polymorphic phase transformation in four different nanocrystalline titanium-zirconium binary alloys in the course of mechanical alloying in a planetary ball mill. This transformation is monitored at appropriate stages by X-ray diffraction and high-resolution transmission electron microscopy. Lattice parameter of the nanocrystalline fcc phase is a function of the alloy composition. For a given alloy, the lattice parameter and hence volume per atom increase with increase in milling time under comparable conditions. On the other hand, crystallite size, measured from X-ray peak broadening, significantly decreases with the progress of milling. It is suggested that structural instability due to plastic strain, increasing lattice expansion, and negative (from core to boundary) hydrostatic pressure is responsible for this hcp → fcc polymorphic transformation. The said transformation seems reversible as isothermal annealing at 1000 deg. C for 1 h or melting the powder mass leads to partial or complete transformation of the milled product from single phase fcc to hcp

  6. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal.

    Meraj, Md; Pal, Snehanshu

    2017-10-11

    In this paper, the creep behavior of nanocrystalline Ni having bimodal grain structure is investigated using molecular dynamics simulation. Analysis of structural evolution during the creep process has also been performed. It is observed that an increase in size of coarse grain causes improvement in creep properties of bimodal nanocrystalline Ni. Influence of bimodality (i.e., size difference between coarse and fine grains) on creep properties are found to be reduced with increasing creep temperature. The dislocation density is observed to decrease exponentially with progress of creep deformation. Grain boundary diffusion controlled creep mechanism is found to be dominant at the primary creep region and the initial part of the secondary creep region. After that shear diffusion transformation mechanism is found to be significantly responsible for deformation as bimodal nanocrystalline Ni transforms to amorphous structure with further progress of the creep process. The presence of , , and  distorted icosahedra has a significant influence on creep rate in the tertiary creep regime according to Voronoi cluster analysis.

  7. Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics

    Nogay, Gizem

    2016-09-26

    Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.

  8. Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics

    Nogay, Gizem; Seif, Johannes Peter; Riesen, Yannick; Tomasi, Andrea; Jeangros, Quentin; Wyrsch, Nicolas; Haug, Franz-Josef; De Wolf, Stefaan; Ballif, Christophe

    2016-01-01

    Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.

  9. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  10. Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells

    van Dijk, L.; van de Groep, J.; Veldhuizen, L.W.; Di Vece, M.; Polman, A.; Schropp, R.E.I.

    2016-01-01

    Most types of thin film solar cells require light management to achieve sufficient light absorptance. We demonstrate a novel process for fabricating a scattering back reflector for flat, thin film hydrogenated nanocrystalline silicon (nc-Si:H) solar cells. This scattering back reflector consists of

  11. Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide

    Sun, Jie; Lindvall, Niclas; Cole, Matthew T.

    2012-01-01

    Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes...

  12. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  13. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  14. Plasma synthesis and HPHT consolidation of BN nanoparticles, nanospheres, and nanotubes to produce nanocrystalline cubic boron nitride

    Stout, Christopher

    Plasma methods offer a variety of advantages to nanomaterials synthesis. The process is robust, allowing varying particle sizes and phases to be generated simply by modifying key parameters. The work here demonstrates a novel approach to nanopowder synthesis using inductively-coupled plasma to decompose precursor, which are then quenched to produce a variety of boron nitride (BN)-phase nanoparticles, including cubic phase, along with short-range-order nanospheres (e.g., nano-onions) and BN nanotubes. Cubic BN (c-BN) powders can be generated through direct deposition onto a chilled substrate. The extremely-high pyrolysis temperatures afforded by the equilibrium plasma offer a unique particle growth environment, accommodating long deposition times while exposing resulting powders to temperatures in excess of 5000K without any additional particle nucleation and growth. Such conditions can yield short-range ordered amorphous BN structures in the form of 20nm diameter nanospheres. Finally, when introducing a rapid-quenching counter-flow gas against the plasma jet, high aspect ratio nanotubes are synthesized, which are collected on substrate situated radially. The benefits of these morphologies are also evident in high-pressure/high-temperature consolidation experiments, where nanoparticle phases can offer a favorable conversion route to super-hard c-BN while maintaining nanocrystallinity. Experiments using these morphologies are shown to begin to yield c-BN conversion at conditions as low as 2.0 GPa and 1500°C when using micron sized c-BN seeding to create localized regions of high pressures due to Hertzian forces acting on the nanoparticles.

  15. Double stabilization of nanocrystalline silicon: a bonus from solvent

    Kolyagin, Y. G.; Zakharov, V. N.; Yatsenko, A. V.; Paseshnichenko, K. A.; Savilov, S. V.; Aslanov, L. A., E-mail: aslanov.38@mail.ru [Lomonosov Moscow State University (Russian Federation)

    2016-01-15

    Double stabilization of the silicon nanocrystals was observed for the first time by {sup 29}Si and {sup 13}C MAS NMR spectroscopy. The role of solvent, 1,2-dimethoxyethane (glyme), in formation and stabilization of silicon nanocrystals as well as mechanism of modification of the surface of silicon nanocrystals by nitrogen-heterocyclic carbene (NHC) was studied in this research. It was shown that silicon nanocrystals were stabilized by the products of cleavage of the C–O bonds in ethers and similar compounds. The fact of stabilization of silicon nanoparticles with NHC ligands in glyme was experimentally detected. It was demonstrated that MAS NMR spectroscopy is rather informative for study of the surface of silicon nanoparticles but it needs very pure samples.

  16. Suppression of photo-leakage current in amorphous silicon thin-film transistors by n-doped nanocrystalline silicon

    Lin, Hung-Chien; Ho, King-Yuan; Hsu, Chih-Chieh; Yan, Jing-Yi; Ho, Jia-Chong

    2011-01-01

    The reduction of photo-leakage current of amorphous silicon thin-film transistors (a-Si TFTs) is investigated and is found to be successfully suppressed by the use of an n-doped nanocrystalline silicon layer (n+ nc-Si) as an ohmic contact layer. The shallow-level defects of n+ nc-Si can become trapping centres of photo-induced electrons as the a-Si TFT is operated under light illumination. A lower oxygen concentration during n+ nc-Si deposition can increase the creation of shallow-level defects and improve the contrast ratio of active matrix organic light-emitting diode panels.

  17. High performance multilayered nano-crystalline silicon/silicon-oxide light-emitting diodes on glass substrates

    Darbari, S; Shahmohammadi, M; Mortazavi, M; Mohajerzadeh, S [Thin Film and Nano-Electronic Laboratory, School of ECE, University of Tehran, Tehran (Iran, Islamic Republic of); Abdi, Y [Nano-Physics Research Laboratory, Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Robertson, M; Morrison, T, E-mail: mohajer@ut.ac.ir [Department of Physics, Acadia University, Wolfville, NS (Canada)

    2011-09-16

    A low-temperature hydrogenation-assisted sequential deposition and crystallization technique is reported for the preparation of nano-scale silicon quantum dots suitable for light-emitting applications. Radio-frequency plasma-enhanced deposition was used to realize multiple layers of nano-crystalline silicon while reactive ion etching was employed to create nano-scale features. The physical characteristics of the films prepared using different plasma conditions were investigated using scanning electron microscopy, transmission electron microscopy, room temperature photoluminescence and infrared spectroscopy. The formation of multilayered structures improved the photon-emission properties as observed by photoluminescence and a thin layer of silicon oxy-nitride was then used for electrical isolation between adjacent silicon layers. The preparation of light-emitting diodes directly on glass substrates has been demonstrated and the electroluminescence spectrum has been measured.

  18. Stable electroluminescence from passivated nano-crystalline porous silicon using undecylenic acid

    Gelloz, B.; Sano, H.; Boukherroub, R.; Wayner, D. D. M.; Lockwood, D. J.; Koshida, N.

    2005-06-01

    Stabilization of electroluminescence from nanocrystalline porous silicon diodes has been achieved by replacing silicon-hydrogen bonds terminating the surface of nanocrystalline silicon with more stable silicon-carbon (Si-C) bonds. Hydrosilylation of the surface of partially and anodically oxidized porous silicon samples was thermally induced at about 90 °C using various different organic molecules. Devices whose surface have been modified with stable covalent bonds shows no degradation in the EL efficiency and EL output intensity under DC operation for several hours. The enhanced stability can be attributed to the high chemical resistance of Si-C bonds against current-induced surface oxidation associated with the generation of nonradiative defects. Although devices treated with 1-decene exhibit reduced EL efficiency and brightness compared to untreatred devices, other molecules, such as ethyl-undecylenate and particularly undecylenic acid provide stable and more efficient visible electroluminescence at room temperature. Undecylenic acid provides EL brightness as high as that of an untreated device.

  19. Stable electroluminescence from passivated nano-crystalline porous silicon using undecylenic acid

    Gelloz, B.; Sano, H.; Koshida, N. [Dept. Elec. and Elec. Eng., Tokyo Univ. of A and T, Koganei, Tokyo 184-8588 (Japan); Boukherroub, R. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau (France); Wayner, D.D.M.; Lockwood, D.J. [National Research Council, Ottawa (Canada)

    2005-06-01

    Stabilization of electroluminescence from nanocrystalline porous silicon diodes has been achieved by replacing silicon-hydrogen bonds terminating the surface of nanocrystalline silicon with more stable silicon-carbon (Si-C) bonds. Hydrosilylation of the surface of partially and anodically oxidized porous silicon samples was thermally induced at about 90 C using various different organic molecules. Devices whose surface have been modified with stable covalent bonds shows no degradation in the EL efficiency and EL output intensity under DC operation for several hours. The enhanced stability can be attributed to the high chemical resistance of Si-C bonds against current-induced surface oxidation associated with the generation of nonradiative defects. Although devices treated with 1-decene exhibit reduced EL efficiency and brightness compared to untreated devices, other molecules, such as ethyl-undecylenate and particularly undecylenic acid provide stable and more efficient visible electroluminescence at room temperature. Undecylenic acid provides EL brightness as high as that of an untreated device. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  2. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  3. Nanocrystalline Sr2CeO4 thin films grown on silicon by laser ablation

    Perea, Nestor; Hirata, G.A.

    2006-01-01

    Blue-white luminescent Sr 2 CeO 4 thin films were deposited by using pulsed laser ablation (λ = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr 2 CeO 4 grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr 2 CeO 4 however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems

  4. Enhancement of the power factor in two-phase silicon-boron nanocrystalline alloys

    Narducci, Dario; Lorenzi, Bruno [Department of Materials Science, University of Milano Bicocca, Milan (Italy); Zianni, Xanthippe [Department of Aircraft Technologies, Technological Educational Institution of Sterea Ellada, Psachna (Greece); Department of Microelectronics, IAMPPNM, NCSR Demokritos, Athens (Greece); Neophytou, Neophytos [Institute for Microelectronics, TUV, Vienna (Austria); School of Engineering, University of Warwick, Coventry (United Kingdom); Frabboni, Stefano [Department of FIM, University of Modena and Reggio Emilia, Modena (Italy); CNR-Institute of Nanoscience-S3, Modena (Italy); Gazzadi, Gian Carlo [CNR-Institute of Nanoscience-S3, Modena (Italy); Roncaglia, Alberto; Suriano, Francesco [IMM-CNR, Bologna (Italy)

    2014-06-15

    In previous publications it was shown that the precipitation of silicon boride around grain boundaries may lead to an increase of the power factor in nanocrystalline silicon. Such an effect was further explained by computational analyses showing that the formation of an interphase at the grain boundaries along with high boron densities can actually lead to a concurrent increase of the electrical conductivity σ and of the Seebeck coefficient S. In this communication we report recent evidence of the key elements ruling such an unexpected effect. Nanocrystalline silicon films deposited onto a variety of substrates were doped to nominal boron densities in excess of 10{sup 20} cm{sup -3} and were annealed up to 1000 C to promote boride precipitation. Thermoelectric properties were measured and compared with their microstructure. A concurrent increase of σ and S with the carrier density was found only upon formation of an interphase. Its dependency on the film microstructure and on the deposition and processing conditions will be discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  6. Tetragonal-cubic phase boundary in nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions synthesized by gel-combustion

    Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)

    2011-04-21

    Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid

  7. Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter

    Kihara, Takashi; Harada, Toshihiro; Kato, Masahiro; Nakano, Kiyoshi; Murakami, Osamu; Kikusui, Takefumi; Koshida, Nobuyoshi

    2006-01-01

    As one of the functional properties of ultrasound generator based on efficient thermal transfer at the nanocrystalline silicon (nc-Si) layer surface, its potential as an ultrasonic simulator of vocalization signals is demonstrated by using the acoustic data of mouse-pup calls. The device composed of a surface-heating thin-film electrode, an nc-Si layer, and a single-crystalline silicon (c-Si) wafer, exhibits an almost completely flat frequency response over a wide range without any mechanical surface vibration systems. It is shown that the fabricated emitter can reproduce digitally recorded ultrasonic mouse-pups vocalizations very accurately in terms of the call duration, frequency dispersion, and sound pressure level. The thermoacoustic nc-Si device provides a powerful physical means for the understanding of ultrasonic communication mechanisms in various living animals.

  8. Stochastic quantum confinement in nanocrystalline silicon layers: The role of quantum dots, quantum wires and localized states

    Ramírez-Porras, A.; García, O.; Vargas, C.; Corrales, A.; Solís, J.D.

    2015-01-01

    Highlights: • PL spectra of porous silicon samples have been studied using a stochastic model. • This model can deconvolute PL spectra into three components. • Quantum dots, quantum wires and localized states have been identified. • Nanostructure diameters are in the range from 2.2 nm to 4.0 nm. • Contributions from quantum wires are small compared to the others. - Abstract: Nanocrystallites of Silicon have been produced by electrochemical etching of crystal wafers. The obtained samples show photoluminescence in the red band of the visible spectrum when illuminated by ultraviolet light. The photoluminescence spectra can be deconvolved into three components according to a stochastic quantum confinement model: one band coming from Nanocrystalline dots, or quantum dots, one from Nanocrystalline wires, or quantum wires, and one from the presence of localized surface states related to silicon oxide. The results fit well within other published models

  9. Stochastic quantum confinement in nanocrystalline silicon layers: The role of quantum dots, quantum wires and localized states

    Ramírez-Porras, A., E-mail: aramirez@fisica.ucr.ac.cr [Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); García, O. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Vargas, C. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Corrales, A. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Solís, J.D. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica)

    2015-08-30

    Highlights: • PL spectra of porous silicon samples have been studied using a stochastic model. • This model can deconvolute PL spectra into three components. • Quantum dots, quantum wires and localized states have been identified. • Nanostructure diameters are in the range from 2.2 nm to 4.0 nm. • Contributions from quantum wires are small compared to the others. - Abstract: Nanocrystallites of Silicon have been produced by electrochemical etching of crystal wafers. The obtained samples show photoluminescence in the red band of the visible spectrum when illuminated by ultraviolet light. The photoluminescence spectra can be deconvolved into three components according to a stochastic quantum confinement model: one band coming from Nanocrystalline dots, or quantum dots, one from Nanocrystalline wires, or quantum wires, and one from the presence of localized surface states related to silicon oxide. The results fit well within other published models.

  10. Influence of argon dilution on growth and properties of hydrogenated nanocrystalline silicon films

    Parashar, A. [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India); Kumar, Sushil; Gope, Jhuma; Rauthan, C.M.S.; Dixit, P.N. [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Hashmi, S.A. [Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India)

    2010-05-15

    The effect of argon concentration (66-87%) in total gaseous mixture (SiH{sub 4}+H{sub 2}+Ar) on growth and properties of hydrogenated nanocrystalline silicon films deposited by RF (13.56 MHz) PECVD technique was investigated. Raman and XRD measurements revealed increasing argon fraction favored enhancement of crystallinity, enlargement of crystallites and relaxation of strained bonds. Photoluminescence spectra of nc-Si:H films exhibited two radiative transitions in the photon energy ranges of 2.8-3.1 eV and 1.6-2.1 eV. The high energy PL peaks are attributed to surface effect of the films whereas peaks in the range of 1.6-2.1 eV are due to nanocrystallinity in the films. Argon dilution also helped enhancement of deposition rate and conductivity of the films. A film deposited at 81% of argon fraction possesses high crystallinity (75%), conductivity in the order of 10{sup -5} ({omega} cm){sup -1}, size of the crystallite (Raman=12 nm, XRD=18 nm), and low residual stress (125 MPa). (author)

  11. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths.

    Wang, Zhaojie; Alaniz, Joseph E; Jang, Wanyoung; Garay, Javier E; Dames, Chris

    2011-06-08

    The thermal conductivity reduction due to grain boundary scattering is widely interpreted using a scattering length assumed equal to the grain size and independent of the phonon frequency (gray). To assess these assumptions and decouple the contributions of porosity and grain size, five samples of undoped nanocrystalline silicon have been measured with average grain sizes ranging from 550 to 64 nm and porosities from 17% to less than 1%, at temperatures from 310 to 16 K. The samples were prepared using current activated, pressure assisted densification (CAPAD). At low temperature the thermal conductivities of all samples show a T(2) dependence which cannot be explained by any traditional gray model. The measurements are explained over the entire temperature range by a new frequency-dependent model in which the mean free path for grain boundary scattering is inversely proportional to the phonon frequency, which is shown to be consistent with asymptotic analysis of atomistic simulations from the literature. In all cases the recommended boundary scattering length is smaller than the average grain size. These results should prove useful for the integration of nanocrystalline materials in devices such as advanced thermoelectrics.

  12. Effects of Er3+ concentration on UV/blue upconverted luminescence and a three-photon process in the cubic nanocrystalline Y2O3:Er3+

    Wang Xin; Shan Guiye; Chao Kefu; Zhang Youlin; Liu Ruilin; Feng Liyun; Zeng Qinghui; Sun Yajuan; Liu Yichun; Kong Xianggui

    2006-01-01

    Ultraviolet (UV)/blue upconverted luminescent properties of the cubic Y 2 O 3 :Er 3+ nanocrystals as a function of the erbium concentration were investigated upon 488 nm Ar + laser excitation. The remarkable decrease of upconverted emission intensity and the quenching of the 2 P 3/2 → 4 I 11/2 / 4 I 13/2 transitions were observed in the Y 2 O 3 nanocrystals with high erbium concentration. The emission spectra and the exciting power dependence of upconverted luminescent intensities reveal that the possible upconversion mechanisms are excited-state absorption (ESA) and energy transfer (ET). Moreover, a UV/violet upconverted emission spectrum of nanocrystalline Y 2 O 3 :Er 3+ upon 980 nm light excitation was also observed and a three-photon process made a contribution to this upconverted emission

  13. Steady-state solution growth of microcrystalline silicon on nanocrystalline seed layers on glass

    Bansen, R.; Ehlers, C.; Teubner, Th.; Boeck, T.

    2016-09-01

    The growth of polycrystalline silicon layers on glass from tin solutions at low temperatures is presented. This approach is based on the steady-state solution growth of Si crystallites on nanocrystalline seed layers, which are prepared in a preceding process step. Scanning electron microscopy and atomic force microscopy investigations reveal details about the seed layer surfaces, which consist of small hillocks, as well as about Sn inclusions and gaps along the glass substrate after solution growth. The successful growth of continuous microcrystalline Si layers with grain sizes up to several ten micrometers shows the feasibility of the process and makes it interesting for photovoltaics. Project supported by the German Research Foundation (DFG) (No. BO 1129/5-1).

  14. Transient Photoinduced Absorption in Ultrathin As-grown Nanocrystalline Silicon Films

    Lioutas Ch

    2007-01-01

    Full Text Available AbstractWe have studied ultrafast carrier dynamics in nanocrystalline silicon films with thickness of a few nanometers where boundary-related states and quantum confinement play an important role. Transient non-degenerated photoinduced absorption measurements have been employed to investigate the effects of grain boundaries and quantum confinement on the relaxation dynamics of photogenerated carriers. An observed long initial rise of the photoinduced absorption for the thicker films agrees well with the existence of boundary-related states acting as fast traps. With decreasing the thickness of material, the relaxation dynamics become faster since the density of boundary-related states increases. Furthermore, probing with longer wavelengths we are able to time-resolve optical paths with faster relaxations. This fact is strongly correlated with probing in different points of the first Brillouin zone of the band structure of these materials.

  15. Relationship of microstructure properties to oxygen impurities in nanocrystalline silicon photovoltaic materials

    Xu, H.; Wen, C.; Liu, H.; Li, Z. P.; Shen, W. Z.

    2013-03-01

    We have fully investigated the correlation of microstructure properties and oxygen impurities in hydrogenated nanocrystalline silicon photovoltaic films. The achievement has been realized through a series of different hydrogen dilution ratio treatment by plasma enhanced chemical vapor deposition system. Raman scattering, x-ray diffraction, and ultraviolet-visible transmission techniques have been employed to characterize the physical structural characterization and to elucidate the structure evolution. The bonding configuration of the oxygen impurities was investigated by x-ray photoelectron spectroscopy and the Si-O stretching mode of infrared-transmission, indicating that the films were well oxidized in SiO2 form. Based on the consistence between the proposed structure factor and the oxygen content, we have demonstrated that there are two dominant disordered structure regions closely related to the post-oxidation contamination: plate-like configuration and clustered microvoids.

  16. Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting.

    Goel, Saurav; Luo, Xichun; Reuben, Robert L; Rashid, Waleed Bin

    2011-11-11

    Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.

  17. Silicon heterojunction solar cell passivation in combination with nanocrystalline silicon oxide emitters

    Gatz, H.A.; Rath, J.K.; Verheijen, M.A.; Kessels, W.M.M.; Schropp, R.E.I.

    2016-01-01

    Silicon heterojunction solar cells (SHJ) are well known for their high efficiencies, enabled by their remarkably high open-circuit voltages (VOC). A key factor in achieving these values is a good passivation of the crystalline wafer interface. One of the restrictions during SHJ solar cell production

  18. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    Mouro, J.; Gualdino, A.; Chu, V.; Conde, J. P.

    2013-01-01

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n + -type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force

  19. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  20. Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells

    Chowdhury, Amartya; Adhikary, Koel; Mukhopadhyay, Sumita; Ray, Swati

    2008-01-01

    The influence of the p-layer on the crystallinity of the absorber layer and nanocrystalline silicon thin film solar cells has been studied. Boron doped Si : H p-layers of different crystallinities have been prepared under different power pressure conditions using the plasma enhanced chemical vapour deposition method. The crystalline volume fraction of p-layers increases with the increase in deposition power. Optical absorption of the p-layer reduces as the crystalline volume fraction increases. Structural studies at the p/i interface have been done by Raman scattering studies. The crystalline volume fraction of the i-layer increases as that of the p-layer increases, the effect being more prominent near the p/i interface. Grain sizes of the absorber layer decrease from 9.2 to 7.2 nm and the density of crystallites increases as the crystalline volume fraction of the p-layer increases and its grain size decreases. With increasing crystalline volume fraction of the p-layer solar cell efficiency increases

  1. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.

    Stehlik, Stepan; Varga, Marian; Stenclova, Pavla; Ondic, Lukas; Ledinsky, Martin; Pangrac, Jiri; Vanek, Ondrej; Lipov, Jan; Kromka, Alexander; Rezek, Bohuslav

    2017-11-08

    Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 10 13 cm -2 ), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiO x substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.

  2. Improved luminescence properties of nanocrystalline silicon based electroluminescent device by annealing

    Sato, Keisuke; Hirakuri, Kenji

    2006-01-01

    We report an annealing effect on electrical and luminescence properties of a red electroluminescent device consisting of nanocrystalline silicon (nc-Si). The red luminescence was generated by flowing the forward current into the device at a low threshold direct current (DC) forward voltage with a rise of annealing temperature up to 500 deg. C. Moreover, the luminescence of the device annealed at 500 deg. C was more intense than that of the device annealed at 200 deg. C or less under the same forward current density, because of the injection of a large quantity of carriers to the radiative recombination centers at the nc-Si surface vicinity. These were attained by a low resistivity of indium tin oxide (ITO) electrode and good contact at the ITO electrode/luminous layer interface region by the annealing treatment. The above results indicated that the annealing treatment of the device is effective for the realization of high luminance due to the improvement in the injection efficiency of carriers to the radiative recombination centers

  3. Role of chlorine in the nanocrystalline silicon film formation by rf plasma-enhanced chemical vapor deposition of chlorinated materials

    Shirai, Hajime

    2004-01-01

    We demonstrate the disorder-induced low-temperature crystallization in the nanocrystalline silicon film growth by rf plasma-enhanced chemical vapor deposition of H 2 -diluted SiH 2 Cl 2 and SiCl 4 . The combination of the chemical reactivity of SiCld (d: dangling bond) and SiHCl complexes and the release of the disorder-induced stress near the growing surface tightly correlate with the phase transitionity of SiCld and SiHCl complexes near the growing surface with the aid of atomic hydrogen, which induce higher degree of disorder in the a-Si network. These features are most prominent in the SiCl 4 compared with those of SiH 2 Cl 2 and SiH 4 , which preferentially enhance the nanocrystalline Si formation

  4. Study of the structure and phase composition of nanocrystalline silicon oxynitride films synthesized by ICP-CVD

    Fainer, N.I.; Kosinova, M.L.; Maximovsky, E.A.; Rumyantsev, Yu.M.; Kuznetsov, F.A.; Kesler, V.G.; Kirienko, V.V.

    2005-01-01

    Thin nanocrystalline silicon oxynitride films were synthesized for the first time at low temperatures (373-750 K) by inductively coupled plasma chemical vapor deposition (ICP-CVD) using gas mixture of oxygen and hexamethyldisilazane Si 2 NH(CH 3 ) 6 (HMDS) as precursors. Single crystal Si (1 0 0) wafers 100 mm in diameter were used as substrates. Physicochemical properties of the thin films were examined using ellipsometry, IR spectroscopy, Auger electron and X-ray photoelectron spectroscopy and XRD using synchrotron radiation (SR). The studies of the phase composition of nanocrystalline films of silicon oxynitride showed that in the case of oxygen excess in the initial gas mixture, they contain a mixture of hexagonal phases: h-SiO 2 and α-Si 3 N 4 . These phases consist of oriented nanocrystals of 2-3 nm size. In case of decrease of oxygen concentration in the initial gas mixture, the fraction of the α-Si 3 N 4 phase increases

  5. Study of the structure and phase composition of nanocrystalline silicon oxynitride films synthesized by ICP-CVD

    Fainer, N.I. [Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentjev Pr., Novosibirsk 630090 (Russian Federation)]. E-mail: nadezhda@che.nsk.su; Kosinova, M.L. [Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentjev Pr., Novosibirsk 630090 (Russian Federation); Maximovsky, E.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentjev Pr., Novosibirsk 630090 (Russian Federation); Rumyantsev, Yu.M. [Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentjev Pr., Novosibirsk 630090 (Russian Federation); Kuznetsov, F.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentjev Pr., Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Institute of Semiconductor Physics SB RAS, Acad. Lavrentjev pr., 13, Novosibirsk 630090 (Russian Federation); Kirienko, V.V. [Institute of Semiconductor Physics SB RAS, Acad. Lavrentjev pr., 13, Novosibirsk 630090 (Russian Federation)

    2005-05-01

    Thin nanocrystalline silicon oxynitride films were synthesized for the first time at low temperatures (373-750 K) by inductively coupled plasma chemical vapor deposition (ICP-CVD) using gas mixture of oxygen and hexamethyldisilazane Si{sub 2}NH(CH{sub 3}){sub 6} (HMDS) as precursors. Single crystal Si (1 0 0) wafers 100 mm in diameter were used as substrates. Physicochemical properties of the thin films were examined using ellipsometry, IR spectroscopy, Auger electron and X-ray photoelectron spectroscopy and XRD using synchrotron radiation (SR). The studies of the phase composition of nanocrystalline films of silicon oxynitride showed that in the case of oxygen excess in the initial gas mixture, they contain a mixture of hexagonal phases: h-SiO{sub 2} and {alpha}-Si{sub 3}N{sub 4}. These phases consist of oriented nanocrystals of 2-3 nm size. In case of decrease of oxygen concentration in the initial gas mixture, the fraction of the {alpha}-Si{sub 3}N{sub 4} phase increases.

  6. Study of irradiation effects in the silicon carbide cubic polytype by photoluminescence and electron spin resonance spectroscopies

    Lefevre, J.

    2008-01-01

    This experimental work has consisted in the study of point defects induced by an electronic irradiation in the cubic crystallographic structure of silicon carbide with low temperature photoluminescence and electron spin resonance spectroscopies. The first one of these measurement tools has allowed to estimate the displacement threshold energy in the silicon sub-lattice and then to analyze the thermal stability of the irradiation defects in the low temperature range: (10-300 K) and then in the high temperature range: (300-1400 K). Besides, on the base of a recent theoretical model, this thesis has confirmed the proposition of the isolated silicon antisite for the D1 center whose running beyond the nominal running temperature of fission nuclear reactors (generation IV), for which SiC is in part intended, seems to be particularly problematic. Measurements carried out by ESR under lighting have at last allowed to detect a new defect in its metastable spin state S=1, possibly associated to a silicon interstitial configuration. (O.M.)

  7. Nanocrystalline Sr{sub 2}CeO{sub 4} thin films grown on silicon by laser ablation

    Perea, Nestor [Posgrado en Fisica de Materiales, CICESE-UNAM, Km. 107 Carretera Tijuana-Ensenada, Ensenada, B.C., 22860 (Mexico); Hirata, G.A. [Centro de Ciencias de la Materia Condensada-UNAM, Km. 107 Carretera Tijuana Ensenada, Ensenada, B.C. 22860 (Mexico)]. E-mail: hirata@ccmc.unam.mx

    2006-02-21

    Blue-white luminescent Sr{sub 2}CeO{sub 4} thin films were deposited by using pulsed laser ablation ({lambda} = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr{sub 2}CeO{sub 4} grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr{sub 2}CeO{sub 4} however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems.

  8. Photoluminescence studies of cubic phase GaN grown by molecular beam epitaxy on (001) silicon covered with SiC layer

    Godlewski, M.; Ivanov, V.Yu.; Bergman, J.P.; Monemar, B.; Barski, A.; Langer, R.

    1997-01-01

    In this work we evaluate optical properties of cubic phase GaN epilayers grown on top of (001) silicon substrate prepared by new process. Prior to the growth Si substrate was annealed at 1300-1400 o C in propane. The so-prepared substrate is covered within a thin (∼ 4 nm) SiC wafer, which allowed a successful growth of good morphological quality cubic phase GaN epilayers. The present results confirm recent suggestion on smaller ionization energies of acceptors in cubic phase GaN epilayers. (author)

  9. Growth of nanocrystalline silicon thin film with layer-by-layer technique for fast photo-detecting applications

    Lin, C.-Y.; Fang, Y.-K.; Chen, S.-F.; Lin, P.-C.; Lin, C.-S.; Chou, T.-H; Hwang, J.S.; Lin, K.I.

    2006-01-01

    High mobility nanocrystalline silicon (nc-Si) films with layer-by-layer technique for fast photo-detecting applications were studied. The structure and morphology of films were studied by means of XRD, micro-Raman scattering, SEM and AFM. The Hall mobility and absorption properties have been investigated and found they were seriously affected by the number of layers in growing, i.e., with increasing of layer number, Hall mobility increased but absorption coefficient decreased. The optimum layer number of nc-Si films for fast near-IR photo-detecting is 7 with film thickness of 1400 nm, while that for fast visible photo-detecting is 17 with film thickness of 3400 nm

  10. Ultrathin nanocrystalline diamond films with silicon vacancy color centers via seeding by 2 nm detonation nanodiamonds

    Stehlík, Štěpán; Varga, Marián; Štenclová, Pavla; Ondič, Lukáš; Ledinský, Martin; Pangrác, Jiří; Vaňek, O.; Lipov, J.; Kromka, Alexander; Rezek, Bohuslav

    2017-01-01

    Roč. 9, č. 44 (2017), s. 38842-38853 ISSN 1944-8244 R&D Projects: GA MŠk(CZ) LD15003; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : detonation nanodiamond * surface chemistry * hydrogenation * zeta potential * nucleation density * nanocrystalline diamond * SiV center Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 7.504, year: 2016

  11. Thermodynamics of face-centered-cubic silicon nucleation at the nanoscale from laser ablation

    Hu Shengliang; Li Wuhong; Liu Wei; Dong Yingge; Cao Shirui; Yang Jinlong

    2011-01-01

    The thermodynamic nucleation and the phase transition of the face-centered-cubic structure of Si (fcc-Si) on the nanoscale are performed by taking the effect of nanosize-induced additional pressure on the fcc-Si formation under the conditions generated by laser ablation in liquid into account. The thermodynamic analyses showed that the formation of fcc-Si nanocrystals with sizes of 2-6 nm would take place prior to that of large fcc-Si nanocrystals, and the phase transition probability from diamond-like structure Si (d-Si) to fcc-Si is rather high, up to 10 -3 -10 -2 , under the conditions created by laser ablation of an Si target in water. These theoretical results suggest that laser ablation in liquid would be an effective industrial route to prepare ultrasmall fcc-Si nanocrystals.

  12. On the potential of Hg-Photo-CVD process for the low temperature growth of nano-crystalline silicon (Topical review)

    Barhdadi, A.

    2005-08-01

    Mercury-Sensitized Photo-Assisted Chemical Vapor Deposition (Hg-Photo-CVD) technique opens new possibilities for reducing thin film growth temperature and producing novel semiconductor materials suitable for the future generation of high efficiency thin film solar cells onto low cost flexible plastic substrates. This paper provides an overview of this technique, with the emphasis on its potential in low temperature elaboration of nano-crystalline silicon for the development of thin films photovoltaic technology. (author)

  13. Formation of continuous nanocrystalline diamond layer on glass and silicon at low temperatures

    Kromka, Alexander; Rezek, Bohuslav; Remeš, Zdeněk; Michalka, M.; Ledinský, Martin; Zemek, Josef; Potměšil, Jiří; Vaněček, Milan

    2008-01-01

    Roč. 14, 7-8 (2008), s. 181-186 ISSN 0948-1907 R&D Projects: GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR KAN400100652; GA MŠk(CZ) 1M06002 Grant - others:Marie Curie RTN DRIVE(XE) MRTN-CT-2004-512224 Institutional research plan: CEZ:AV0Z10100521 Keywords : AFM * low temperature growth * nanocrystalline diamond * SEM * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.483, year: 2008

  14. Basic mechanisms of atomic displacement production in cubic silicon carbide: A molecular dynamics study

    Malerba, L.; Perlado, J.M.

    2002-01-01

    Studying the effects of radiation in silicon carbide (SiC) is important for its possible use in both nuclear and electronic technology. One of the most important parameters to describe radiation damage in a material is the threshold displacement energy (TDE). In this paper, the computational technique known as molecular dynamics (MD) is used to determine the TDE's along different crystallographic directions for Si and C atoms in SiC, also allowing for irradiation temperature effects, and to study in detail the mechanisms of atomic displacement production in this material. For this purpose, the widely tested Tersoff potential, implemented in a MD code optimized to study the interaction of high-energy ions with crystals, is used to describe the interatomic forces in SiC. It is found that it is difficult to define a single threshold for this material. Instead, the introduction of two thresholds, upper and lower, becomes necessary. These two thresholds delimit an uncertainty band, within which the displacement may or may not be produced, because the Frenkel pairs generated in such a transferred-kinetic-energy range are metastable. The Arrhenius law expressing the lifetime of one of these metastable defects has also been deduced from the simulation. Finally, on the basis of the results of the simulation, possible values for the recombination distance and the average threshold energy (E d,Si and E d,C ) in SiC are proposed and discussed

  15. Plane shock loading on mono- and nano-crystalline silicon carbide

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-03-01

    The understanding of the nanoscale mechanisms of shock damage and failure in SiC is essential for its application in effective and damage tolerant coatings. We use molecular-dynamics simulations to investigate the shock properties of 3C-SiC along low-index crystallographic directions and in nanocrystalline samples with 5 nm and 10 nm grain sizes. The predicted Hugoniot in the particle velocity range of 0.1 km/s-6.0 km/s agrees well with experimental data. The shock response transitions from elastic to plastic, predominantly deformation twinning, to structural transformation to the rock-salt phase. The predicted strengths from 12.3 to 30.9 GPa, at the Hugoniot elastic limit, are in excellent agreement with experimental data.

  16. Nanocrystalline silicon as the light emitting material of a field emission display device

    Biaggi-Labiosa, A; Sola, F; Resto, O; Fonseca, L F; Gonzalez-BerrIos, A; Jesus, J De; Morell, G

    2008-01-01

    A nanocrystalline Si-based paste was successfully tested as the light emitting material in a field emission display test device that employed a film of carbon nanofibers as the electron source. Stable emission in the 550-850 nm range was obtained at 16 V μm -1 . This relatively low field required for intense cathodoluminescence (CL) from the PSi paste may lead to longer term reliability of both the electron emitting and the light emitting materials, and to lower power consumption. Here we describe the synthesis, characterization, and analyses of the light emitting nanostructured Si paste and the electron emitting C nanofibers used for building the device, including x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The corresponding spectra and field emission curves are also shown and discussed

  17. Dependence of Fracture Toughness on Crystallographic Orientation in Single-Crystalline Cubic (β) Silicon Carbide

    Pharr, M.; Katoh, Y.; Bei, H.

    2006-01-01

    Along with other desirable properties, the ability of silicon carbide (SiC) to retain high strength after elevated temperature exposures to neutron irradiation renders it potentially applicable in fusion and advanced fission reactors. However, properties of the material such as room temperature fracture toughness must be thoroughly characterized prior to such practical applications. The objective of this work is to investigate the dependence of fracture toughness on crystallographic orientation for single-crystalline β-SiC. X-ray diffraction was first performed on the samples to determine the orientation of the crystal. Nanoindentation was used to determine a hardness of 39.1 and 35.2 GPa and elastic modulus of 474 and 446 GPa for the single-crystalline and polycrystalline samples, respectively. Additionally, crack lengths and indentation diagonals were measured via a Vickers micro-hardness indenter under a load of 100 gf for different crystallographic orientations with indentation diagonals aligned along fundamental cleavage planes. Upon examination of propagation direction of cracks, the cracks usually did not initiate and propagate from the corners of the indentation where the stresses are concentrated but instead from the indentation sides. Such cracks clearly moved along the {1 1 0} family of planes (previously determined to be preferred cleavage plane), demonstrating that the fracture toughness of SiC is comparatively so much lower along this set of planes that the lower energy required to cleave along this plane overpowers the stress-concentration at indentation corners. Additionally, fracture toughness in the <1 1 0> direction was 1.84 MPa·m1/2, lower than the 3.46 MPa·m1/2 measured for polycrystalline SiC (which can serve as an average of a spectrum of orientations), further demonstrating that single-crystalline β-SiC has a strong fracture toughness anisotropy.

  18. Magnetic oxide heterostructures. EuO on cubic oxides and on silicon

    Caspers, Christian

    2013-01-01

    In the thesis at hand, we explore fundamental properties of ultrathin europium oxide (EuO) films. EuO is a model system of a localized 4f Heisenberg ferromagnet, in which the ferromagnetic coupling. provided a high crystalline quality. can be tuned by biaxial lattice strain. Moreover, the magnetic oxide EuO is perfectly suited as a spin-functional tunnel contact for silicon spintronics. However, up to now a challenging bulk and interface chemistry of EuO and Si has hampered a seamless integration into functional silicon heterostructures. In order to investigate fundamental aspects of the magnetic and electronic structure of ultrathin EuO, in the first part of this thesis, we synthesize EuO thin films on conductive YSZ substrates from bulklike thicknesses down to one nanometer by oxide molecular beam epitaxy (MBE). The EuO thin films are of textbook-like single-crystalline quality, and show bulk-like magnetic properties. We control the stoichiometry of buried EuO thin films by hard X-ray photoemission spectroscopy (HAXPES); even a 1 nm ultrathin EuO film exhibits no valence change or interface shifts. Furthermore, we conduct an advanced magnetic characterization by the magnetic circular dichroism (MCD) of Eu core-levels in photoemission, this gives us insight into the intra-atomic exchange coupling of EuO thin films. The MCD reveals large asymmetries of up to 49% in the well-resolved Eu 4d photoemission multiplet. Thus, ultrathin EuO coherently grown on conductive YSZ allows us to explore fundamental magnetic and electronic properties of a 4f magnetic oxide. Biaxial lateral strain applied to single-crystalline EuO is of fundamental interest, since it alters the electronic structure and magnetic coupling in a controlled way. We apply +4.2% tensile biaxial strain to EuO by epitaxial EuO/LaAlO 3 (100) heterostructures. EuO seamlessly adapts the lateral lattice parameter of LaAlO 3 , while the perpendicular parameter of EuO is the unchanged EuO bulk value, thus the

  19. High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump–probe reflectivity measurements

    He, Wei [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Yurkevich, Igor V. [Aston University, Nonlinearity and Complexity Research Group, Birmingham B4 7ET (United Kingdom); Zakar, Ammar [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Kaplan, Andrey, E-mail: a.kaplan.1@bham.ac.uk [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)

    2015-10-01

    We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump–probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820 nm, whereas the probe wavelength spanned 770 to 810 nm. The pump fluence was fixed at 0.6 mJ/cm{sup 2}. We show that at a fixed delay time of 300 fs, the conductivity of the excited electron–hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell–Boltzmann distribution, while Fermi–Dirac statics is not suitable. This is corroborated by values retrieved from pump–probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas. - Highlights: • We study high‐frequency conductivity of excited hydrogenated nanocrystalline silicon. • Reflectance change was measured as a function of pump and probe wavelength. • Maxwell–Boltzmann transport theory was used to retrieve the conductivity. • The conductivity decreases monotonically as a function of the pump wavelength.

  20. Very high frequency plasma deposited amorphous/nanocrystalline silicon tandem solar cells on flexible substrates

    Liu, Y.|info:eu-repo/dai/nl/304831743

    2010-01-01

    The work in this thesis is to develop high quality intrinsic layers (especially nc-Si:H) for micromorph silicon tandem solar cells/modules on plastic substrates following the substrate transfer method or knows as the Helianthos procedure. Two objectives are covered in this thesis: (1) preliminary

  1. Spectroscopy and structural properties of amorphous and nanocrystalline silicon carbide thin films

    Halindintwali, Sylvain; Knoesen, D.; Julies, B.A.; Arendse, C.J.; Muller, T. [University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Gengler, Regis Y.N.; Rudolf, P.; Loosdrecht, P.H.M. van [Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen (Netherlands)

    2011-09-15

    Amorphous SiC:H thin films were grown by hot wire chemical vapour deposition from a SiH{sub 4}/CH{sub 4}/H{sub 2} mixture at a substrate temperature below 400 C. Thermal annealing in an argon environment up to 900 C shows that the films crystallize as {mu}c-Si:H and SiC with a porous microstructure that favours an oxidation process. By a combination of spectroscopic tools comprising Fourier transform infrared, Raman scattering and X-rays photoelectron spectroscopy we show that the films evolve from the amorphous SiH{sub x}/SiCH{sub 2} structure to nanocrystalline Si and SiC upon annealing at a temperature of 900 C. A strong RT photoluminescence peak of similar shape has been observed at around 420 nm in both as-deposited and annealed samples. Time-resolved luminescence measurements reveal that this peak is fast decaying with lifetimes ranging from 0.5 to {proportional_to}1.1 ns. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Artificial neural systems using memristive synapses and nano-crystalline silicon thin-film transistors

    Cantley, Kurtis D.

    Future computer systems will not rely solely on digital processing of inputs from well-defined data sets. They will also be required to perform various computational tasks using large sets of ill-defined information from the complex environment around them. The most efficient processor of this type of information known today is the human brain. Using a large number of primitive elements (˜1010 neurons in the neocortex) with high parallel connectivity (each neuron has ˜104 synapses), brains have the remarkable ability to recognize and classify patterns, predict outcomes, and learn from and adapt to incredibly diverse sets of problems. A reasonable goal in the push to increase processing power of electronic systems would thus be to implement artificial neural networks in hardware that are compatible with today's digital processors. This work focuses on the feasibility of utilizing non-crystalline silicon devices in neuromorphic electronics. Hydrogenated amorphous silicon (a-Si:H) nanowire transistors with Schottky barrier source/drain junctions, as well as a-Si:H/Ag resistive switches are fabricated and characterized. In the transistors, it is found that the on-current scales linearly with the effective width W eff of the channel nanowire array down to at least 20 nm. The solid-state electrolyte resistive switches (memristors) are shown to exhibit the proper current-voltage hysteresis. SPICE models of similar devices are subsequently developed to investigate their performance in neural circuits. The resulting SPICE simulations demonstrate spiking properties and synaptic learning rules that are incredibly similar to those in biology. Specifically, the neuron circuits can be designed to mimic the firing characteristics of real neurons, and Hebbian learning rules are investigated. Finally, some applications are presented, including associative learning analogous to the classical conditioning experiments originally performed by Pavlov, and frequency and pattern

  3. High-pressure condition of SiH{sub 4}+Ar+H{sub 2} plasma for deposition of hydrogenated nanocrystalline silicon film

    Parashar, A.; Kumar, Sushil; Dixit, P.N.; Gope, Jhuma; Rauthan, C.M.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Hashmi, S.A. [Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India)

    2008-10-15

    The characteristics of 13.56-MHz discharged SiH{sub 4}+Ar+H{sub 2} plasma at high pressure (2-8 Torr), used for the deposition of hydrogenated nanocrystalline silicon (nc-Si:H) films in a capacitively coupled symmetric PECVD system, has been investigated. Plasma parameters such as average electron density, sheath field and bulk field are extracted from equivalent circuit model of the plasma using outputs (current, voltage and phase) of RF V-I probe under different pressure conditions. The conditions of growth in terms of plasma parameters are correlated with properties of the hydrogenated nanocrystalline silicon films characterized by Raman, AFM and dc conductivity. The film deposited at 4 Torr of pressure, where relatively low sheath/bulk field ratio is observed, exhibits high crystallinity and conductivity. The crystalline volume fraction of the films estimated from the Raman spectra is found to vary from 23% to 79%, and the trend of variation is similar to the RF real plasma impedance data. (author)

  4. Design Approaches for Enhancing Photovoltaic Performance of Silicon Solar Cells Sensitized by Proximal Nanocrystalline Quantum Dots

    Shafiq, Natis

    Energy transfer (ET) based sensitization of silicon (Si) using proximal nanocrystal quantum dots (NQDs) has been studied extensively in recent years as a means to develop thin and flexible Si based solar cells. The driving force for this research activity is a reduction in materials cost. To date, the main method for determining the role of ET in sensitizing Si has been optical spectroscopic studies. The quantitative contribution from two modes of ET (namely, nonradiative and radiative) has been reported using time-resolved photoluminescence (TRPL) spectroscopy coupled with extensive theoretical modelling. Thus, optical techniques have established the potential for utilizing ET based sensitization of Si as a feasible way to develop novel NQD-Si hybrid solar cells. However, the ultimate measure of the efficiency of ET-based mechanisms is the generation of electron-hole pairs by the impinging photons. It is therefore important to perform electrical measurements. However, only a couple of studies have attempted electrical quantification of ET modes. A few studies have focused on photocurrent measurements, without considering industrially relevant photovoltaic (PV) systems. Therefore, there is a need to develop a systematic approach for the electrical quantification of ET-generated charges and to help engineer new PV architectures optimized for harnessing the full advantages of ET mechanisms. Within this context, the work presented in this dissertation aims to develop an experimental testing protocol that can be applied to different PV structures for quantifying ET contributions from electrical measurements. We fabricated bulk Si solar cells (SCs) as a test structure and utilized CdSe/ZnS NQDs for ET based sensitization. The NQD-bulk Si hybrid devices showed ˜30% PV enhancement after NQD deposition. We measured external quantum efficiency (EQE) of these devices to quantify ET-generated charges. Reflectance measurements were also performed to decouple contributions of

  5. Thermal post-deposition treatment effects on nanocrystalline hydrogenated silicon prepared by PECVD under different hydrogen flow rates

    Amor, Sana Ben, E-mail: sana.benamor1@gmail.com [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia); University of Applied Medical Sciences of Hafr El Baten (Saudi Arabia); Meddeb, Hosny; Daik, Ridha; Othman, Afef Ben; Slama, Sonia Ben; Dimassi, Wissem; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-01-01

    Graphical abstract: At high annealing temperatures, many atoms do not suffer the attraction of surface species due to the thermal agitation and consequently few atoms are adsorbed. As the temperature is lowered the adsorption is more efficient to the point that is no more atoms in the gas phase. Indeed at relatively low temperatures, the atoms have too little energy to escape from the surface or even to vibrate against it. They lost their degree of freedom in the direction perpendicular to the surface. But this does not prevent the atoms to diffuse along the surface. As a result, the layer's thickness decrease with increasing the annealing temperature. - Highlights: The results extracted from this work are: • The post-deposition thermal treatment improves the crystallinity the film at moderate temperature (500 °C). • The higher annealing temperature can lead to decrease the silicon–hydrogen bonds and increase the Si–Si bonds. • Moderate annealing temperature (700 °C) seems to be crucial for obtaining high minority carrier life times. • Hydrogen effusion phenomenon start occurring at 500–550 °C and get worsen at 900 °C. - Abstract: In this paper, hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited on mono-crystalline silicon substrate by plasma enhanced chemical vapor deposition (PECVD) under different hydrogen flow rates followed by a thermal treatment in an infrared furnace at different temperature ranging from 300 to 900 °C. The investigated structural, morphological and optoelectronic properties of samples were found to be strongly dependent on the annealing temperature. Raman spectroscopy revealed that nc-Si:H films contain crystalline, amorphous and mixed structures as well. We find that post-deposition thermal treatment may lead to a tendency for structural improvement and a decrease of the disorder in the film network at moderate temperature under 500 °C. As for annealing at higher temperature up to 900

  6. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok; Yoo, Suk Jae; Lee, Bonju; Hong, MunPyo

    2011-01-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  7. Investigation of the agglomeration and amorphous transformation effects of neutron irradiation on the nanocrystalline silicon carbide (3C-SiC) using TEM and SEM methods

    Huseynov, Elchin M., E-mail: elchin.h@yahoo.com [Department of Nanotechnology and Radiation Material Science, National Nuclear Research Center, Inshaatchilar pr. 4, AZ 1073 Baku (Azerbaijan); Institute of Radiation Problems of Azerbaijan National Academy of Sciences, B.Vahabzade 9, AZ 1143 Baku (Azerbaijan)

    2017-04-01

    Nanocrystalline 3C-SiC particles irradiated by neutron flux during 20 h in TRIGA Mark II light water pool type research reactor. Silicon carbide nanoparticles were analyzed by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) devices before and after neutron irradiation. The agglomeration of nanoparticles was studied comparatively before and after neutron irradiation. After neutron irradiation the amorphous layer surrounding the nanoparticles was analyzed in TEM device. Neutron irradiation defects in the 3C-SiC nanoparticles and other effects investigated by TEM device. The effect of irradiation on the crystal structure of the nanomaterial was studied by selected area electron diffraction (SAED) and electron diffraction patterns (EDP) analysis.

  8. Alkaline earth metal, silicon, chlorine, hydrogen. A reaction system for the heterogeneous hydrodehalogenation of silicon tetrachloride to nanocrystalline silicon; Erdalkalimetall-Silicium-Chlor-Wasserstoff. Das Reaktionssystem fuer die heterogene Hydrodehalogenierung von Siliciumtetrachlorid bis zum nanokristallinen Silicium

    Fiedler, Katja

    2012-02-17

    Reactions of an alkaline earth metal with a SiCl{sub 4}-H{sub 2} result in a quaternary system with a metastable quaternary phase which separates into the metal chloride and nanocrystalline silicon upon cooling. The present study was dedicated to a making a detailed characterisation of the quaternary phase. For this purpose the properties of the quaternary system were derived from those of the six binary and four ternary systems. The first ever characterisation of the surface by means of photoelectron spectroscopy was undertaken. It also proved possible for the first time to follow the formation reaction by measuring the potential difference across the reaction system. Using the results of the characterisation the author presents first steps towards identifying the formation mechanism involved. [German] Im quaternaeren System Erdalkalimetall-Silicium-Chlor-Wasserstoff bildet sich bei der Umsetzung des Metalls mit einer SiCl{sub 4}-H{sub 2}-Atmosphaere eine quaternaere Phase. Diese metastabile Phase zerfaellt beim Abkuehlen in das Metallchlorid und Silicium in nanokristalliner Form. Die vorliegende Arbeit hat sich mit der tiefergehenden Charakterisierung der quaternaeren Phase beschaeftigt. Dazu wurden die Eigenschaften des quaternaeren Systems aus den Eigenschaften der sechs binaeren und vier ternaeren Systemen abgeleitet. Die Oberflaeche wurde erstmals mit Photoelektronenspektroskopie charakterisiert. Zusaetzlich gelang erstmalig die Verfolgung der Bildungsreaktion durch Messung des Spannungsabfalls ueber das Reaktionssystem. Erste Ansaetze zur Aufklaerung des Bildungsmechanismus ausgehend von den Ergebnissen der Charakterisierung wurden zusaetzlich aufgezeigt.

  9. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  10. Silicon carbide modified carbon materials. Formation of nanocrystalline SiC from thermochemical processes in the system coal tar pitch/poly(carbosilane)

    Czosnek, C.; Janik, J.F.; Olejniczak, Z. [Stanislaw Staszic University of Mining & Meterology, AGH, Krakow (Poland)

    2002-12-01

    Poly(carbosilane) or PCS, (-CH{sub 2}-SiH(CH{sub 3})-){sub n}, is used as a Si-bearing precursor in combination with a coal tar pitch to study thermally induced transformations toward SiC-modified carbon composites. Following mixing of the components in the molten pitch at 160{sup o}C, the mixture is heated under argon atmosphere at 500{sup o}C yielding a solid carbonizate that is further subjected to separate pyrolysis experiments at 1300{sup o}C or 1650{sup o}C. At temperatures up to 500{sup o}C, the PCS reacts with suitable pitch components as well as undergoing decomposition reactions. At higher temperatures, clusters of prevailingly nanocrystalline beta-SiC are confirmed after the 1650{sup o}C pyrolysis step with indications that the formation of the compound starts at 1300{sup o}C. Si-29 MAS NMR, XRD, FT-IR, XPS, and elemental analysis are used to characterize each pyrolysis step, especially, from the viewpoint of transformation of silicon species to silicon carbide in the carbon matrix evolved from the pitch.

  11. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    Conde, J.C., E-mail: jconde@uvigo.es [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Martin, E. [Dpto. Mecanica, Maquinas, Motores Termicos y Fluidos, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Stefanov, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Alpuim, P. [Departamento de Fisica, Universidade do Minho, 4800-058 Guimaraes (Portugal); Chiussi, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. Black-Right-Pointing-Pointer UV-ELA technique causes a rapid heating that provokes the H{sub 2} desorption from the Si surface and bulk material. Black-Right-Pointing-Pointer Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. Black-Right-Pointing-Pointer These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO{sub 2}. Black-Right-Pointing-Pointer To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. Black-Right-Pointing-Pointer The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25

  12. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    Conde, J.C.; Martín, E.; Stefanov, S.; Alpuim, P.; Chiussi, S.

    2012-01-01

    Highlights: ► nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. ► UV-ELA technique causes a rapid heating that provokes the H 2 desorption from the Si surface and bulk material. ► Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. ► These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO 2 . ► To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. ► The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25 ns pulse length and energy densities ranging from 50 mJ/cm 2 to 400 mJ/cm 2 have been calculated. Numerical results allowed us to estimate the dehydrogenation

  13. Rectification properties of n-type nanocrystalline diamond heterojunctions to p-type silicon carbide at high temperatures

    Goto, Masaki; Amano, Ryo; Shimoda, Naotaka [Graduate School of Automotive Science, Kyushu University, Nishiku, Fukuoka 819-0395 (Japan); Kato, Yoshimine, E-mail: yoshimine.kato@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Kyushu University, Nishiku, Fukuoka 819-0395 (Japan); Teii, Kungen [Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-04-14

    Highly rectifying heterojunctions of n-type nanocrystalline diamond (NCD) films to p-type 4H-SiC substrates are fabricated to develop p-n junction diodes operable at high temperatures. In reverse bias condition, a potential barrier for holes at the interface prevents the injection of reverse leakage current from the NCD into the SiC and achieves the high rectification ratios of the order of 10{sup 7} at room temperature and 10{sup 4} even at 570 K. The mechanism of the forward current injection is described with the upward shift of the defect energy levels in the NCD to the conduction band of the SiC by forward biasing. The forward current shows different behavior from typical SiC Schottky diodes at high temperatures.

  14. Twinning interactions induced amorphisation in ultrafine silicon grains

    Cao, Y. [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Zhang, L.C., E-mail: liangchi.zhang@unsw.edu.au [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Zhang, Y. [School of Mechatronics Engineering, Harbin Institute of Technology (China)

    2016-03-21

    Detailed transmission electron microscopy analysis on a severely deformed Al-Si composite material has revealed that partial dislocation slips and deformation twinning are the major plastic deformation carriers in ultrafine silicon grains. This resembles the deformation twinning activities and mechanisms observed in nano-crystalline face-centred-cubic metallic materials. While deformation twinning and amorphisation in Si were thought unlikely to co-exist, it is observed for the first time that excessive twinning and partial dislocation interactions can lead to localised solid state amorphisation inside ultrafine silicon grains.

  15. Nanocrystalline solids

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  16. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

    Ghanaati Shahram

    2013-01-01

    Full Text Available Abstract Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP or an hydroxyapatite/silicon dioxide (HA/SiO2-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.

  17. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    Hydrogen profiling, i.e., decreasing the H2 dilution during deposition, is a well-known technique to maintain a proper crystalline ratio of the nanocrystalline (nc-Si:H) absorber layers of plasma-enhanced chemical vapor-deposited (PECVD) thin film solar cells. With this technique a large increase in

  18. On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals

    Gurses, Ercan; El Sayed, Tamer S.

    2010-01-01

    We present a physically motivated computational study explaining the tension/compression (T/C) asymmetry phenomenon in nanocrystalline (nc) and ultrafine-grained (ufg) face centered cubic (fcc) metals utilizing a variational constitutive model where

  19. Nanocrystalline ceramic materials

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  20. Effects of precursors on the crystal structure and photoluminescence of CdS nanocrystalline

    Fu Zuoling; Zhou Shihong; Shi Jinsheng; Zhang Siyuan

    2005-01-01

    A series of cadmium sulfide (CdS) nanocrystalline were synthesized by precipitation from a mixture of aqueous solutions of cadmium salts and sulfur salts without adding any surface-termination agent. Their crystal structures and particle sizes were determined by X-ray diffraction (XRD). The CdS nanocrystalline precipitated from different precursors exhibited three cases: cubic phase, hexagonal phase and a hybrid of cubic and hexagonal phases. The photoluminescence (PL) of cadmium salt precursors and CdS nanocrystalline is also analyzed. Similar spectral band structure of cadmium salt precursors and CdS nanocrystalline is found. The PL of 3.4, 2.4 and 2.0 nm sized CdS nanocrystalline with the same crystal structure indicated quantum confinement effect

  1. Hardness enhancement and oxidation resistance of nanocrystalline TiN/Mo xC multilayer films

    Liu, Q.; Wang, X.P.; Liang, F.J.; Wang, J.X.; Fang, Q.F.

    2006-01-01

    In this paper the influence of the layer's microstructure on the hardness enhancement in multilayer nanocrystalline films and the oxidation resistance are studied. The TiN/Mo x C multilayer films at different modulation period, and Mo x C and TiN monolayer films were deposited on the (0 0 1) silicon wafers and molybdenum sheets by rf and dc magnetron sputtering. The monolayer TiN films with a thickness of about 2 μm are of pure face-center cubic TiN phase, while the monolayer Mo x C films consist of two phases, one of which is body-center cubic Mo and the other is hexagonal Mo 2 C as determined by XRD. The coarse columnar grains of about 200 nm in the monolayer TiN films become much smaller or disappear in the multilayer films. The hardness enhancement of the multilayer films takes place at the modulation period of 320 nm, which can reach to 26 GPa and is much higher than the values of Mo x C and TiN monolayer films. This enhancement in hardness can be explained as the decrease in the size and/or disappearance of columnar grains in the TiN layer. The Young's modulus in the temperature range from 100 to 400 deg. C increases with decreasing modulation period. It is found that about 100 nm thick TiN films can increase largely the oxidation resistance of Mo x C films

  2. Thermally Stable Nanocrystalline Steel

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  3. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The

  4. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  5. Ag diffusion in cubic silicon carbide

    Shrader, David; Khalil, Sarah M.; Gerczak, Tyler; Allen, Todd R.; Heim, Andrew J.; Szlufarska, Izabela; Morgan, Dane

    2011-01-01

    The diffusion of Ag impurities in bulk 3C-SiC is studied using ab initio methods based on density functional theory. This work is motivated by the desire to reduce transport of radioactive Ag isotopes through the SiC boundary layer in the Tristructural-Isotropic (TRISO) fuel pellet, which is a significant concern for the Very High Temperature Reactor (VHTR) nuclear reactor concept. The structure and stability of charged Ag and Ag-vacancy clusters in SiC are calculated. Relevant intrinsic SiC defect energies are also determined. The most stable state for the Ag impurity in SiC is found to be a Ag atom substituting on the Si sub-lattice and bound to a C vacancy. Bulk diffusion coefficients are estimated for different impurity states and values are all found to have very high activation energy. The impurity state with the lowest activation energy for diffusion is found to be the Ag interstitial, with an activation energy of approximately 7.9 eV. The high activation energies for Ag diffusion in bulk 3C-SiC cause Ag transport to be very slow in the bulk and suggests that observed Ag transport in this material is due to an alternative mechanism (e.g., grain boundary diffusion).

  6. Solid state synthesis of water-dispersible silicon nanoparticles from silica nanoparticles

    Kravitz, Keren; Kamyshny, Alexander; Gedanken, Aharon; Magdassi, Shlomo

    2010-01-01

    A solid state synthesis for obtaining nanocrystalline silicon was performed by high temperature reduction of commercial amorphous nanosilica with magnesium powder. The obtained silicon powder contains crystalline silicon phase with lattice spacings characteristic of diamond cubic structure (according to high resolution TEM), and an amorphous phase. In 29 Si CP MAS NMR a broad multicomponent peak corresponding to silicon is located at -61.28 to -69.45 ppm, i.e. between the peaks characteristic of amorphous and crystalline Si. The powder has displayed red luminescence while excited under UV illumination, due to quantum confinement within the nanocrystals. The silicon nanopowder was successfully dispersed in water containing poly(vinyl alcohol) as a stabilizing agent. The obtained dispersion was also characterized by red photoluminescence with a band maximum at 710 nm, thus enabling future functional coating applications. - Graphical abstract: High temperature reduction of amorphous nanosilica with magnesium powder results in the formation of powder containing crystalline silicon phase The powder displays red luminescence while excited under UV illumination, due to quantum confinement within the Si nanocrystals, and can be successfully dispersed in water containing poly(vinyl alcohol) as a stabilizing agent. The obtained dispersion was also characterized by red photoluminescence, thus enabling future functional coating applications.

  7. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  8. Transformation from amorphous to nano-crystalline SiC thin films ...

    Administrator

    phous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering ... Auger electron spectroscopy showed that the carbon incorporation in the .... with a 514 nm Ar+ laser excitation source and the laser.

  9. Trapping of cubic ZnO nanocrystallites at ambient conditions

    Decremps, F.; Pellicer-Porres, J.; Datchi, F.

    2002-01-01

    Dense powder of nanocrystalline ZnO has been recovered at ambient conditions in the metastable cubic structure after a heat treatment at high pressure (15 GPa and 550 K). Combined x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) experiments have been performed to probe both long......-range order and local crystallographic structure of the recovered sample. Within uncertainty of these techniques (about 5%), all the crystallites are found to adopt the NaCl structure. From the analysis of XRD and XAS spectra, the cell volume per chemical formula unit is found to be 19.57(1) and 19...

  10. Guarded Cubical Type Theory

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive...

  11. Guarded Cubical Type Theory

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality...

  12. Study of irradiation effects in the silicon carbide cubic polytype by photoluminescence and electron spin resonance spectroscopies; Etude des effets d'irradiation dans le polytype cubique du carbure de silicium par les techniques spectroscopiques de photoluminescence et de resonance paramagnetique electronique

    Lefevre, J

    2008-01-15

    This experimental work has consisted in the study of point defects induced by an electronic irradiation in the cubic crystallographic structure of silicon carbide with low temperature photoluminescence and electron spin resonance spectroscopies. The first one of these measurement tools has allowed to estimate the displacement threshold energy in the silicon sub-lattice and then to analyze the thermal stability of the irradiation defects in the low temperature range: (10-300 K) and then in the high temperature range: (300-1400 K). Besides, on the base of a recent theoretical model, this thesis has confirmed the proposition of the isolated silicon antisite for the D1 center whose running beyond the nominal running temperature of fission nuclear reactors (generation IV), for which SiC is in part intended, seems to be particularly problematic. Measurements carried out by ESR under lighting have at last allowed to detect a new defect in its metastable spin state S=1, possibly associated to a silicon interstitial configuration. (O.M.)

  13. Nanocrystalline SiC film thermistors for cryogenic applications

    Mitin, V. F.; Kholevchuk, V. V.; Semenov, A. V.; Kozlovskii, A. A.; Boltovets, N. S.; Krivutsa, V. A.; Slepova, A. S.; Novitskii, S. V.

    2018-02-01

    We developed a heat-sensitive material based on nanocrystalline SiC films obtained by direct deposition of carbon and silicon ions onto sapphire substrates. These SiC films can be used for resistance thermometers operating in the 2 K-300 K temperature range. Having high heat sensitivity, they are relatively low sensitive to the magnetic field. The designs of the sensors are presented together with a discussion of their thermometric characteristics and sensitivity to magnetic fields.

  14. Mesostructured germanium with cubic pore symmetry

    Armatas, G S; Kanatzidis, M G [Michigan State Univ., Michigan (United States), Dept. of Chemistry

    2006-11-15

    Regular mesoporous oxide materials have been widely studied and have a range of potential applications, such as catalysis, absorption and separation. They are not generally considered for their optical and electronic properties. Elemental semiconductors with nanopores running through them represent a different form of framework material with physical characteristics contrasting with those of the more conventional bulk, thin film and nanocrystalline forms. Here we describe cubic meso structured germanium, MSU-Ge-l, with gyroidal channels containing surfactant molecules, separated by amorphous walls that lie on the gyroid (G) minimal surface as in the mesoporous silica MCM-48. Although Ge is a high-meltin covalent semiconductor that is difficult to prepare from solution polymerization, we succeeded in assembling a continuous Ge network using a suitable precursor for Ge{sup 4-} atoms. Our results indicate that elemental semiconductors from group 14 of the periodic table can be made to adopt meso structured forms such as MSU-Ge-1, which features two three-dimensional labyrinthine tunnels obeying la3d space group symmetry and separated by a continuous germanium minimal surface that is otherwise amorphous. A consequence of this new structure for germanium, which has walls only one nanometre thick, is a wider electronic energy bandgap (1.4 eV versus 0.66 eV) than has crystalline or amorphous Ge. Controlled oxidation of MSU-Ge-1 creates a range of germanium suboxides with continuously varying Ge:O ratio and a smoothly increasing energy gap. (author)

  15. Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells

    Stuckelberger, J.; Nogay, G.; Wyss, P.; Jeangros, Q.; Allebe, Ch.; Debrot, F.; Niquille, X.; Ledinský, Martin; Fejfar, Antonín; Despeisse, M.; Haug, F.J.; Löper, P.; Ballif, C.

    2016-01-01

    Roč. 158, Dec (2016), s. 2-10 ISSN 0927-0248 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : surface passivation * passivating contact * nanostructure * silicon oxide * nanocrystalline * microcrystalline * poly-silicon * crystallization * Raman * transmission line measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.784, year: 2016

  16. Influence of sample oxidation on the nature of optical luminescence from porous silicon

    Coulthard, I.; Antel, W. J. Jr.; Freeland, J. W.; Sham, T. K.; Naftel, S. J.; Zhang, P.

    2000-01-01

    Site-selective luminescence experiments were performed upon porous-silicon samples exposed to varying degrees of oxidation. The source of different luminescence bands was determined to be due to either quantum confinement in nanocrystalline silicon or defective silicon oxide. Of particular interest is the defective silicon-oxide luminescence band found at 2.1 eV, which was found to frequently overlap with a luminescence band from nanocrystalline silicon. Some of the historical confusion and debate with regards to the source of luminescence from porous silicon can be attributed to this overlap. (c) 2000 American Institute of Physics

  17. Interpolation of natural cubic spline

    Arun Kumar

    1992-01-01

    Full Text Available From the result in [1] it follows that there is a unique quadratic spline which bounds the same area as that of the function. The matching of the area for the cubic spline does not follow from the corresponding result proved in [2]. We obtain cubic splines which preserve the area of the function.

  18. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  19. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  20. Synthesis and luminescence properties of nanocrystalline LiF:Mg,Cu,P phosphor

    Sahare, P.D., E-mail: pdsahare@physics.du.ac.i [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Bakare, J.S. [SSGM College of Engineering, Amravati University, Shegaon 444 203, Maharashtra (India); Dhole, S.D. [Department of Physics, University of Pune, Ganeshkhind, Pune 411 007 (India); Ingale, N.B. [Department of Physics, Professor Ram Meghe Institute of Technology and Research, Badnera-Amravati 444 605, Maharashtra (India); Rupasov, A.A. [P. N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr-t 53, Moscow (Russian Federation)

    2010-02-15

    Nanocrystalline LiF:Mg,Cu,P phosphor material of different shapes and sizes (microcrystalline cubic shape, nanorod shape and nanocrystalline cubical shaped) have been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and other dosimetric characteristics of the phosphor are studied and presented here. The formation of the materials was confirmed by the X-ray diffraction (XRD). Its shapes and sizes were also observed using scanning electron microscope (SEM). The TL glow curve of the microcrystalline powder shows a prominent single peak at 408 K along with another peak of lesser intensity at around 638 K. On the contrary, the nanocrystalline rod shaped particles show a peak of low intensity at 401 K and a prominent peak around 700 K while the nanocrystalline particles in cubical shapes again show two peaks, one at around 407 K and the other at around 617 K, of which the lower temperature (407 K) peak is more prominent. The glow curve structure changes at very high doses (100 kRad) and some new peaks appear at around 525 and 637 K also the first peak appearing at around 401 K becomes prominent. The observed changes in TL due to the change in the shape and sizes of the nanophosphor have been reported. The PL has also been studied and various excitation and emission peaks observed due to the presence of various impurities are explained. The observed results have been explained in the light of asymmetrical crystal field effects due to asymmetrical shapes of the nanocrystalline phosphor. The comparison of these properties with the microcrystalline material prepared by the same co-precipitation method is also done.

  1. Silicon based light-emitting materials and devices

    Chen Weide

    1999-01-01

    Silicon based light-emitting materials and devices are the key to optoelectronic integration. Recently, there has been significant progress in materials engineering methods. The author reviews the latest developments in this area including erbium doped silicon, porous silicon, nanocrystalline silicon and Si/SiO 2 superlattice structures. The incorporation of these different materials into devices is described and future device prospects are assessed

  2. Preparation of nanocrystalline Ni doped ZnS thin films by ammonia-free chemical bath deposition method and optical properties

    Sahraei, Reza, E-mail: r.sahraei@ilam.ac.ir; Darafarin, Soraya

    2014-05-01

    Nanocrystalline Ni doped ZnS thin films were deposited on quartz, silicon, and glass substrates using chemical bath deposition method in a weak acidic solution containing ethylenediamine tetra acetic acid disodium salt (Na{sub 2}EDTA) as a complexing agent for zinc ions and thioacetamide (TAA) as a sulfide source at 80 °C. The films were characterized by energy-dispersive X-ray spectrometer (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible spectrophotometry, and photoluminescence (PL) spectroscopy. UV–vis transmission data showed that the films were transparent in the visible region. The X-ray diffraction analysis showed a cubic zinc blend structure. FE-SEM revealed a homogeneous morphology and dense nanostructures. The PL spectra of the ZnS:Ni films showed two characteristic bands, one broad band centered at 430 and another narrow band at 523 nm. Furthermore, concentration quenching effect on the photoluminescence intensity has been observed. - Highlights: • Nanocrystalline ZnS:Ni thin films were prepared by the chemical bath deposition method. • The size of ZnS:Ni nanocrystals was less than 10 nm showing quantum size effect. • SEM images demonstrated a dense and uniform surface that was free of pinholes. • The deposited films were highly transparent (>70%) in the visible region. • The PL spectra of ZnS:Ni thin films showed two emission peaks at 430 and 523 nm.

  3. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  4. The planar cubic Cayley graphs

    Georgakopoulos, Agelos

    2018-01-01

    The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.

  5. An Abel type cubic system

    Gary R. Nicklason

    2015-07-01

    Full Text Available We consider center conditions for plane polynomial systems of Abel type consisting of a linear center perturbed by the sum of 2 homogeneous polynomials of degrees n and 2n-1 where $n \\ge 2$. Using properties of Abel equations we obtain two general systems valid for arbitrary values on n. For the cubic n=2 systems we find several sets of new center conditions, some of which show that the results in a paper by Hill, Lloyd and Pearson which were conjectured to be complete are in fact not complete. We also present a particular system which appears to be a counterexample to a conjecture by Zoladek et al. regarding rational reversibility in cubic polynomial systems.

  6. Cubication of conservative nonlinear oscillators

    Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  7. Numbers for reducible cubic scrolls

    Israel Vainsencher

    2004-12-01

    Full Text Available We show how to compute the number of reducible cubic scrolls of codimension 2 in (math blackboard symbol Pn incident to the appropriate number of linear spaces.Mostramos como calcular o número de rolos cúbicos redutíveis de codimensão 2 em (math blackboard symbol Pn incidentes a espaços lineares apropriados.

  8. Randomized Block Cubic Newton Method

    Doikov, Nikita; Richtarik, Peter

    2018-01-01

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\cal O}(1/\\epsilon)$, ${\\cal O}(1/\\sqrt{\\epsilon})$ and ${\\cal O}(\\log (1/\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  9. Randomized Block Cubic Newton Method

    Doikov, Nikita

    2018-02-12

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\\\cal O}(1/\\\\epsilon)$, ${\\\\cal O}(1/\\\\sqrt{\\\\epsilon})$ and ${\\\\cal O}(\\\\log (1/\\\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  10. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  11. Nanocrystalline diamond films for biomedical applications

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  12. Strength and structure of nanocrystalline titanium

    Noskova, N.I.; Pereturina, I.A.; Elkina, O.A.; Stolyarov, V.V.

    2004-01-01

    Investigation results on strength and plasticity of nanocrystalline titanium VT-1 are presented. Specific features of plastic deformation on tension of this material specimens in an electron microscope column are studied in situ. It is shown that nanocrystalline titanium strength and plasticity at room temperature are dependent on the structure and nanograin size. It is revealed that deformation processes in nanocrystalline titanium are characterized by activation of deformation rotational modes and microtwinning [ru

  13. Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides

    Remeš, Zdeněk; Babchenko, Oleg; Varga, Marián; Stuchlík, Jiří; Jirásek, Vít; Prajzler, Václav; Nekvindová, P.; Kromka, Alexander

    2016-01-01

    Roč. 618, Nov (2016), s. 130-133 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-05053S Grant - others:AV ČR(CZ) MOST-15-04 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : hydrogenated amorphous silicon * nanocrystalline diamond * planar waveguides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.879, year: 2016

  14. Cubic colloids : Synthesis, functionalization and applications

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  15. Silicon Nanocrystal Synthesis in Microplasma Reactor

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with grains smaller than 5 nm are widely recognized as a key material in optoelectronic devices, lithium battery electrodes, and bio-medical labels. Another important characteristic is that silicon is an environmentally safe material that is used in numerous silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. In this study, we explore the possibility of microplasma technologies for efficient production of mono-dispersed nanocrystalline silicon particles on a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using a very-high-frequency (144 MHz) power source in a capillary glass tube with volume of less than 1 μl. Fundamental plasma parameters of the microplasma were characterized using optical emission spectroscopy, which respectively indicated electron density of 1015 cm-3, argon excitation temperature of 5000 K, and rotational temperature of 1500 K. Such high-density non-thermal reactive plasma can decompose silicon tetrachloride into atomic silicon to produce supersaturated silicon vapor, followed by gas-phase nucleation via three-body collision: particle synthesis in high-density plasma media is beneficial for promoting nucleation processes. In addition, further growth of silicon nuclei can be terminated in a short-residence-time reactor. Micro-Raman scattering spectra showed that as-deposited particles are mostly amorphous silicon with a small fraction of silicon nanocrystals. Transmission electron micrography confirmed individual 3-15 nm silicon nanocrystals. Although particles were not mono-dispersed, they were well separated and not coagulated.

  16. Synthesis of Silicon Nanocrystals in Microplasma Reactor

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with a grain size of at least less than 10 nm are widely recognized as one of the key materials in optoelectronic devices, electrodes of lithium battery, bio-medical labels. There is also important character that silicon is safe material to the environment and easily gets involved in existing silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. We explore the possibility of microplasma technologies for the efficient production of mono-dispersed nanocrystalline silicon particles in a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using very high frequency (VHF = 144 MHz) power source in a capillary glass tube with a volume of less than 1 μ-liter. Fundamental plasma parameters of VHF capacitively coupled microplasma were characterized by optical emission spectroscopy, showing electron density of approximately 1015 cm-3 and rotational temperature of 1500 K, respectively. Such high-density non-thermal reactive plasma has a capability of decomposing silicon tetrachloride into atomic silicon to produce supersaturated atomic silicon vapor, followed by gas phase nucleation via three-body collision. The particle synthesis in high-density plasma media is beneficial for promoting nucleation process. In addition, further growth of silicon nuclei was able to be favorably terminated in a short-residence time reactor. Micro Raman scattering spectrum showed that as-deposited particles were mostly amorphous silicon with small fraction of silicon nanocrystals. Transmission electron micrograph confirmed individual silicon nanocrystals of 3-15 nm size. Although those particles were not mono-dispersed, they were

  17. Nanocrystalline diamond coatings for machining

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany)

    2007-07-01

    This history of CVD diamond synthesis goes back to the fifties of the last century. However, the scientific and economical potential was only gradually recognized. In the eighties, intensive worldwide research on CVD diamond synthesis and applications was launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. This article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  18. High surface area silicon materials: fundamentals and new technology.

    Buriak, Jillian M

    2006-01-15

    Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.

  19. Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique

    Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan

    2018-05-01

    Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.

  20. Cubic metaplectic forms and theta functions

    Proskurin, Nikolai

    1998-01-01

    The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.

  1. Cathodoluminescence of cubic boron nitride

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  2. Cs and Ag co-incorporation in cubic silicon carbide

    Londono-Hurtado, Alejandro; Heim, Andrew J.; Kim, Sungtae; Szlufarska, Izabela; Morgan, Dane

    2013-08-01

    Understanding the diffusion of fission products Cs and Ag through the SiC layer of TRISO particles is of particular interest for the progress and improvement of the High Temperature Gas Reactor (HTGR) technologies. Although the SiC layer acts as a barrier for fission products, there is experimental evidence of Cs and Ag diffusion through this layer. Previous considerations of Ag and Cs in SiC have focused on the element interacting with SiC, but have not considered the possibility of co-incorporation with another species. This paper presents a ab initio study on the co-incorporation of Cs and Ag with an anion (Iodine (I) or Oxygen (O)) into SiC as an alternative incorporation mechanism. It is found that for crystalline SiC, Ag co-incorporation with Iodine (I) and Oxygen (O) into SiC is not energetically favorable, while Cs co-incorporation with O is a preferred mechanism under some oxygen partial pressures of interest. However, Cs-O co-incorporation into the crystalline portion of SiC is not sufficiently strong to enable a Cs solubility that accounts for the Cs release observed in some experiments. Formation energies are a function of the chemical potential of Si and C. Calculations in this paper are performed for Si-rich and C-rich conditions, which constitute the boundaries for which the formation energies are allowed to vary. Calculation of the electronic potential shift is required in order to ensure that the Fermi level in a defected cell is defined with respect to the same valence band level in the undefected cell [21,23]. The potential shift is calculated by aligning low energy levels in the total density of states (DOS) [24]. Spurious interactions between images of the charged defects make it necessary to correct for unphysical electrostatic interactions. Both the monopole-monopole and monopole-quadrupole Makov Payne corrections are used for this purpose. However, strain and incompletely corrected electrostatic interactions can still lead to significant finite size effects [25]. Based on finite size scaling studies of our largest charged cluster (CsC-OC-2VSi)4-, we estimate these effects lead to errors on the scale of 1.9 eV. Due to the fact that DFT formalism is unable to reproduce experimental band gaps in materials, underestimation of the band gap is expected. This can have an effect on the calculation of the charged defect formation energies. Therefore, the energetics and charge states of the defects must be treated as somewhat approximate. In this work, the value of the Fermi level is taken to be at the conduction band minimum, a choice that is consistent with an n-type material. This is justified by the fact that as-prepared SiC is generally n-type, with a low concentration of electron carriers [26-29]. It is also important to note that, even if SiC had an intrinsically lower Fermi level, under irradiation conditions long lived electronic excitations might provide effectively higher Fermi levels in the system. Irradiation induced defects such as vacancies and interstitials have been reported to lead to Fermi levels at the middle of the band gap [30,31]. For the case of negatively charged defects, having a Fermi level closer to the middle of the band gap will result in lower defect formation energies. This aspect is not critical for our study since our goal is not to calculate highly accurate formation energies or defect charge states but to compare these energies to identify qualitative trends of co-incorporate for the different defect clusters. Based on the above comments, results presented in this paper can be expected to have some quantitative inaccuracies but the conclusions drawn from these results are still of qualitative value. Furthermore, as will be shown in the result section, formation energy differences between competing energy clusters are above 1 eV for most cases. The main goals of this work are to identify whether Cs and Ag co-incorporation with O and I into SiC can lead to more stable defects than those calculated for simple Cs and Ag defect clusters in SiC and to identify the most stable Cs/Ag-O-V defect clusters in SiC. Although some error will be associated with the formation energies due the limitations discussed above, these do not undermine the qualitative objectives of this work.Oxygen and Iodine chemical potential: In order to calculate the formation energies for Cs/Ag-O defect clusters, it is necessary to define the reference states that will be used in Eq. (1). We make the approximation that the reference for Cs and Ag is their pure metal form. The reference cancels from all comparisons between direct and co-incorporation and therefore only plays a role when considering formation energies for estimating solubility. These reference states can be justified as a bounding case for solubility calculations since it can be argued that if Ag and Cs are not in metal form in the TRISO particle, it is because they are in a more stable state. Therefore, by choosing the metal form of Cs and Ag as the reference, formation energies can be viewed as an upper bound of their chemical potential. As a consequence, formation energies calculated using this reference provide the lower bound for the true formation energy (i.e., the true formation energy would be more positive, leading to lower solubility) [11]. For the anions O and I we use the gas phase O2 and I2 molecules as the reference states, which are calculated as follows:The chemical potential of O is calculated as proposed by Lee et al. [32]: μ={1}/{2}EOVASP+ΔhO0+[H(T,P0)-H(T0,P0)]-TS(T,P0)+kTln(P/P0) where EOVASP is the T = 0 K energy as obtained from the DFT calculations, ΔhO0 is the correction for errors of the oxygen energy in O2 molecules vs. a solid, H is the O2 gas enthalpy, S is the O2 gas entropy, P is the oxygen partial pressure (P0 = 1 atm), T is the temperature (T0 = 298.15 K), and k is the Boltzman constant. The term [H(T,P0)-H(T0,P0)]-TS(T,P0) constitutes the free energy per O of O2 gas relative to the gas enthalpy at P = P0 and T = T0. This term is evaluated based on experimental data from Ref. [33]. Eqs. (1) and (2) are employed to calculate the defect formation energies of oxygen co-incorporation with Cs and Ag into SiC as a function of partial pressure. This approach treats the enthalpy at P0 and T0 as equal to the VASP energy at T = 0 K and further, does not include vibrational terms in the adsorbed species that will be contributing to the gas phase. However, we believe that the contributions of these terms to the chemical potential are small enough for the systems used in our analysis that leaving it out of the model is consistent with the qualitative goals of this work.An analogous approach can be used to treat I2, which gives the relations: μI={1}/{2}EIVASP+ΔhI0+[H(T,P0)-H(T0,P0)]-TS(T,P0)+kTln(P/P0) where EIVASP is the T = 0 K energy as obtained from the DFT calculations, ΔhI0 is the correction for errors of the oxygen energy in I2 molecules vs. a solid, H is the I2 gas enthalpy, S and is the I2 gas entropy. However, we will use a simplified reference for the I chemical potential, which can be justified as follows. It is observed from Eq. (3) that the overall effect of enthalpy and entropy is to decrease the absolute value of the I2 chemical potential for any reasonable P and T that might be encountered under reactor conditions. Furthermore, we will assume that HI2 is small on the scale of the co-incorporation energies (see below), and does not have a significant impact on the overall energetics. With this approximation we see that by choosing the EIVASP as our reference, we are calculating the upper bound of the true formation energy. As will be presented in Section 3, formation energies calculated for the case Ag/Cs-I co-incorporation using the isolated I2 molecule in vacuum at 0 K as the reference state were found to be 5.6 eV or higher than the most stable incorporation defect. While this result does not correct for possible enthalpy errors (the ΔhI0 term), the term accounting for entalphy errors is very unlikely to be on the scale of a few eV. Therefore, we see that even with an upper bound of the chemical potential for I, we can rule out I co-incorporation. As a consequence, we simply take the chemical potential of I to be {1}/{2}EIVASP, and no further refining of the chemical potential was pursued using Eq. (3).

  3. Structure and thermal stability of nanocrystalline materials

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  4. Cathodoluminescence of cubic boron nitride

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  5. Martensitic cubic → tetragonal transition

    Schumann, H.

    1983-01-01

    Indium-thallium alloys containing 14 to 30% At. Tl have a cubic face-centred beta phase wich changes into a tetragonal face-centred alpha martensite during solidification. The martensite contains twin crystals that are large enough to be seen by means of a light microscope. The phenomenological crystallographic martensite theory was used to calculate Miller's index of the habit plane, the formation of the surface relief, the orientation relations and the critical thickness ratio of the twins. In a beta monocrystal frequently only one of the 24 crystallographic possible habit planes are formed at one end of the sample and migrate through the whole crystal when the temperature drops. Externally applied tension and compression influence in different ways the direction in which the habit plane moves and can even destroy the twinned structure, i.e. they can modify the substructure of the martensite crystal. This induces superelasticity, an effect that has also been described quantitatively. (author)

  6. Colloidal solutions of luminescent porous silicon clusters with different cluster sizes

    Herynková, Kateřina; Podkorytov, E.; Šlechta, Miroslav; Cibulka, Ondřej; Leitner, J.; Pelant, Ivan

    2014-01-01

    Roč. 9, č. 1 (2014), 1-5 ISSN 1931-7573 Institutional support: RVO:68378271 Keywords : nanocrystalline silicon * porous silicon * cluster size * luminescent markers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.524, year: 2012

  7. Plasma deposition of thin film silicon at low substrate temperature and at high growth rate

    Verkerk, A.D.|info:eu-repo/dai/nl/304831719

    2009-01-01

    To expand the range of applications for thin film solar cells incorporating hydrogenated amorphous silicon (a-Si:H) and hydrogenated nanocrystalline silicon (nc-Si:H), the growth rate has to be increased 0.5 or less to several nm/s and the substrate temperature should be lowered to around 100 C. In

  8. Dynamic recovery in nanocrystalline Ni

    Sun, Z.; Van Petegem, S.; Cervellino, A.; Durst, K.; Blum, W.; Van Swygenhoven, H.

    2015-01-01

    The constant flow stress reached during uniaxial deformation of electrodeposited nanocrystalline Ni reflects a quasi-stationary balance between dislocation slip and grain boundary (GB) accommodation mechanisms. Stress reduction tests allow to suppress dislocation slip and bring recovery mechanisms into the foreground. When combined with in situ X-ray diffraction it can be shown that grain boundary recovery mechanisms play an important role in producing plastic strain while hardening the microstructure. This result has a significant consequence for the parameters of thermally activated glide of dislocations, such as athermal stress and activation volume, which are traditionally derived from stress/strain rate change tests

  9. Muonium states in silicon carbide

    Patterson, B.D.; Baumeler, H.; Keller, H.; Kiefl, R.F.; Kuendig, W.; Odermatt, W.; Schneider, J.W.; Estle, T.L.; Spencer, D.P.; Savic, I.M.

    1986-01-01

    Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e - ). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a signal crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu * state in diamond and silicon. (orig.)

  10. Nanocrystalline diamond in carbon implanted SiO{sub 2}.

    Tsoi, K.A.; Prawer, S.; Nugent, K.W.; Walker, R. J.; Weiser, P.S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently, it was reported that nanocrystalline diamond can be produced via laser annealing of a high dose C implanted fused quartz (SiO{sub 2}) substrate. The aim of this investigation is to reproduce this result on higher C{sup +} dose samples and the non-implanted silicon sample, as well as optimise the power range and annealing time for the production of these nanocrystals of diamond. In order to provide a wide range of laser powers the samples were annealed using an Ar ion Raman laser. The resulting annealed spots were analysed using scanning electron microscopy (SEM) and Raman analysis. These techniques are employed to determine the type of bonding produced after laser annealing has occurred. 4 refs., 5 figs.

  11. Nanocrystalline diamond in carbon implanted SiO{sub 2}.

    Tsoi, K A; Prawer, S; Nugent, K W; Walker, R J; Weiser, P S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Recently, it was reported that nanocrystalline diamond can be produced via laser annealing of a high dose C implanted fused quartz (SiO{sub 2}) substrate. The aim of this investigation is to reproduce this result on higher C{sup +} dose samples and the non-implanted silicon sample, as well as optimise the power range and annealing time for the production of these nanocrystals of diamond. In order to provide a wide range of laser powers the samples were annealed using an Ar ion Raman laser. The resulting annealed spots were analysed using scanning electron microscopy (SEM) and Raman analysis. These techniques are employed to determine the type of bonding produced after laser annealing has occurred. 4 refs., 5 figs.

  12. Synthesis and characterization of a nanocrystalline diamond aerogel

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  13. Nanocrystalline diamond film as cathode for gas discharge sensors

    Jou, Shyankay, E-mail: sjou@mail.ntust.edu.t [Graduate Institute of Materials Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Huang, Bohr-Ran [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Wu, Meng-Chang [Department of Electronic Engineering, National Yunlin University of Science and Technology, Touliu 640, Taiwan (China)

    2010-05-31

    Nanocrystalline diamond (NCD) film was deposited on a silicon substrate utilizing microwave plasma-enhanced chemical vapor deposition in a mixed flow of methane, hydrogen and argon. The deposited film had a cauliflower-like morphology, and was composed of NCD, carbon clusters and mixed sp{sup 2}- and sp{sup 3}-bonded carbon. Electron field emission (EFE) in vacuum and electrical discharges in Ar, N{sub 2} and O{sub 2} using the NCD film as the cathode were characterized. The turn-on field for EFE and the geometric enhancement factor for the NCD film were 8.5 V/{mu}m and 668, respectively. The breakdown voltages for Ar, N{sub 2} and O{sub 2} increased with pressures from 1.33 x 10{sup 4} Pa to 1.01 x 10{sup 5} Pa, following the right side of the normal Paschen curve.

  14. Agglomeration of luminescent porous silicon nanoparticles in colloidal solutions

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-01-01

    Roč. 11, Aug (2016), s. 1-5, č. článku 367. ISSN 1556-276X Grant - others:AV ČR(CZ) DAAD-16-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : nanocrystalline silicon * porous silicon * nanoparticles * colloids * agglomeration Subject RIV: BO - Biophysics Impact factor: 2.833, year: 2016

  15. Topics in Cubic Special Geometry

    Bellucci, Stefano; Roychowdhury, Raju

    2011-01-01

    We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbit...

  16. The radiation response of mesoporous nanocrystalline zirconia thin films

    Manzini, Ayelén M.; Alurralde, Martin A. [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Giménez, Gustavo [Instituto Nacional de Tecnología Industrial - CMNB, Av. General Paz 5445, 1650 San Martín, Provincia de Buenos Aires (Argentina); Luca, Vittorio, E-mail: vluca@cnea.gov.ar [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina)

    2016-12-15

    The next generation of nuclear systems will require materials capable of withstanding hostile chemical, physical and radiation environments over long time-frames. Aside from its chemical and physical stability, crystalline zirconia is one of the most radiation tolerant materials known. Here we report the first ever study of the radiation response of nanocrystalline and mesoporous zirconia and Ce{sup 3+}-stabilized nanocrystalline zirconia (Ce{sub 0.1}Zr{sub 0.9}O{sub 2}) thin films supported on silicon wafers. Zirconia films prepared using the block copolymer Brij-58 as the template had a thickness of around 60–80 nm. In the absence of a stabilizing trivalent cation they consisted of monoclinic and tetragonal zirconia nanocrystals with diameters in the range 8–10 nm. Films stabilized with Ce{sup 3+} contained only the tetragonal phase. The thin films were irradiated with iodine ions of energies of 70 MeV and 132 keV at low fluences (10{sup 13} - 10{sup 14} cm{sup −2}) corresponding to doses of 0.002 and 1.73 dpa respectively, and at 180 keV and high fluences (2 × 10{sup 16} cm{sup −2}) corresponding to 82.4 dpa. The influence of heavy ion irradiation on the nanocrystalline structure was monitored through Rietveld analysis of grazing incidence X-ray diffraction (GIXRD) patterns recorded at angles close to the critical angle to ensure minimum contribution to the diffraction pattern from the substrate. Irradiation of the mesoporous nanocrystalline zirconia thin films with 70 MeV iodine ions, for which electronic energy loss is dominant, resulted in slight changes in phase composition and virtually no change in crystallographic parameters as determined by Rietveld analysis. Iodine ion bombardment in the nuclear energy loss regime (132–180 keV) at low fluences did not provoke significant changes in phase composition or crystallographic parameters. However, at 180 keV and high fluences the monoclinic phase was totally eliminated from the GIXRD

  17. Cubical local partial orders on cubically subdivided spaces - existence and construction

    Fajstrup, Lisbeth

    The geometric models of Higher Dimensional Automata and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes, such ...... that the underlying geometry of an HDA may be quite complicated....

  18. Cubical local partial orders on cubically subdivided spaces - Existence and construction

    Fajstrup, Lisbeth

    2006-01-01

    The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...... that the underlying geometry of an HDA may be quite complicated....

  19. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  20. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals

    Dao, M.; Lu, L.; Asaro, R.J.; Hosson, J.T.M. de; Ma, E.

    2007-01-01

    Focusing on nanocrystalline (nc) pure face-centered cubic metals, where systematic experimental data are available, this paper presents a brief overview of the recent progress made in improving mechanical properties of nc materials, and in quantitatively and mechanistically understanding the underlying mechanisms. The mechanical properties reviewed include strength, ductility, strain rate and temperature dependence, fatigue and tribological properties. The highlighted examples include recent experimental studies in obtaining both high strength and considerable ductility, the compromise between enhanced fatigue limit and reduced crack growth resistance, the stress-assisted dynamic grain growth during deformation, and the relation between rate sensitivity and possible deformation mechanisms. The recent advances in obtaining quantitative and mechanics-based models, developed in line with the related transmission electron microscopy and relevant molecular dynamics observations, are discussed with particular attention to mechanistic models of partial/perfect-dislocation or deformation-twin-mediated deformation processes interacting with grain boundaries, constitutive modeling and simulations of grain size distribution and dynamic grain growth, and physically motivated crystal plasticity modeling of pure Cu with nanoscale growth twins. Sustained research efforts have established a group of nanocrystalline and nanostructured metals that exhibit a combination of high strength and considerable ductility in tension. Accompanying the gradually deepening understanding of the deformation mechanisms and their relative importance, quantitative and mechanisms-based constitutive models that can realistically capture experimentally measured and grain-size-dependent stress-strain behavior, strain-rate sensitivity and even ductility limit are becoming available. Some outstanding issues and future opportunities are listed and discussed

  1. Bilirubin adsorption on nanocrystalline titania films

    Yang Zhengpeng; Si Shihui; Fung Yingsing

    2007-01-01

    Bilirubin produced from hemoglobin metabolism and normally conjugated with albumin is a kind of lipophilic endotoxin, and can cause various diseases when its concentration is high. Bilirubin adsorption on the nanocrystalline TiO 2 films was investigated using quartz crystal microbalance, UV-vis and IR techniques, and factors affecting its adsorption such as pH, bilirubin concentration, solution ionic strength, temperature and thickness of TiO 2 films were discussed. The amount of adsorption and parameters for the adsorption kinetics were estimated from the frequency measurements of quartz crystal microbalance. A fresh surface of the nanocrystalline TiO 2 films could be photochemically regenerated because holes and hydroxyl radicals were generated by irradiating the nanocrystalline TiO 2 films with UV light, which could oxidize and decompose organic materials, and the nanocrystalline TiO 2 films can be easily regenerated when it is used as adsorbent for the removal of bilirubin

  2. Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers

    Mertens, M., E-mail: michael.mertens@uni-ulm.de [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Mohr, M.; Brühne, K.; Fecht, H.J. [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Łojkowski, M.; Święszkowski, W. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Łojkowski, W. [Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw (Poland)

    2016-12-30

    Highlights: • Hydrophobic and hydrophilic properties on fluorine-, hydrogen- and oxygen- terminated ultra-nanocrystalline diamond films. • Micropatterned - multi-terminated layers with both hydrophobic and hydrophilic areas on one sample. • Visualization of multi-terminated surfaces by e.g. SEM and LFM. • Roughness and friction investigations on different terminated surfaces. • Smooth and biocompatible surfaces with same roughness regardless of hydrophobicity for microbiological investigations. - Abstract: In this work, we show that ultra nanocrystalline diamond (UNCD) surfaces have been modified to add them hydrophobic and hydrophilic properties. The nanocrystalline diamond films were deposited using the hot filament chemical vapor deposition (HFCVD) technique. This allows growing diamond on different substrates which can be even 3D or structured. Silicon and, for optical applications, transparent quartz glass are the preferred substrates for UNCD layers growth. Fluorine termination leads to strong hydrophobic properties as indicated by a high contact angle for water of more than 100°. Hydrogen termination shows lesser hydrophobic behavior. Hydrophilic characteristics has been realised with oxygen termination. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) measurements confirm the oxygen and fluorine- termination on the nanocrystalline diamond surface. Further, by micropatterning using photolithography, multi-terminated layers have been created with both hydrophobic and hydrophilic areas. In addition, we have shown that retermination is achieved, and the properties of the surface have been changed from hydrophobic to hydrophilic and vice versa. Micro- roughness and stress in the grown film influences slightly the wetting angle as well. The opportunity to realize local differences in hydrophobicity on nanocrystalline diamond layers, in any size or geometry, offers interesting applications for example in

  3. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of photovoltaic (PV) devices which deploy the chemical-vapor-deposited hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) and their alloys as the absorber layers and doped ...

  4. Synthesis and characterization of electrochemically deposited nanocrystalline CdTe thin films

    Singh, Ragini Raj, E-mail: raginirajsingh@gmail.com [Department of Physics, Bhopal University, Bhopal-462026 (India); Department of Physical Electronics, Iby and Aladar Fleishman Faculty of Engineering, Tel-Aviv University, Tel-Aviv-69978 (Israel); Painuly, Diksha [Centre for Nanoscience and Nanotechnology, University of Kerala, Thiruanantpuram, Kerala (India); Pandey, R.K. [Department of Physics, Bhopal University, Bhopal-462026 (India)

    2009-07-15

    Electrodeposition is emerging as a method for the synthesis of semiconductor thin films and nanostructures. In this work we prepared the nanocrystalline CdTe thin films on indium tin oxide coated glass substrate from aqueous acidic bath at the deposition temperature 50 {+-} 1 deg. C. The films were grown potentiostatically from -0.60 V to -0.82 V with respect to saturated calomel reference electrode. The structural, compositional, morphological and optical properties were investigated using X-ray diffraction (XRD), energy dispersive analysis by X-rays (EDAX), atomic force microscopy (AFM), and UV-vis spectroscopy respectively and cyclic voltammetery. The structural and optical studies revealed that films are nanocrystalline in nature and possess cubic phase, also the films are preferentially oriented along the cubic (1 1 1) plane. The effect of cadmium composition on the deposited morphology was also investigated. The size dependent blue shift in the experimentally determined absorption edge has been compared with the theoretical predictions based on the effective mass approximation and tight binding approximation. It is shown that the experimentally determined absorption edges depart from the theoretically calculated values.

  5. Mechanisms of Superplastic Deformation of Nanocrystalline Silicon Carbide Ceramics

    2012-08-01

    0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing ...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information...NM 87110 1 INTERNATIONAL RSRCH ASSOCIATES INC D ORPHAL CAGE 06EXO 5274 BLACKBIRD DR PLEASANTON CA 94566 1 BOB SKAGGS

  6. Cubical sets as a classifying topos

    Spitters, Bas

    Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De...... Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’. This provides us with a topos with an internal ‘interval’. Using this interval we construct a model of type theory following van den Berg and Garner. We are currently investigating the precise relation...

  7. Generalized Vaidya spacetime for cubic gravity

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  8. Silicone metalization

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  9. Complete three-dimensional photonic bandgap in a simple cubic structure

    Lin, Shawn-Yu; Fleming, J. G.; Lin, Robin; Sigalas, M. M.; Biswas, R.; Ho, K. M.

    2001-01-01

    The creation of a three-dimensional (3D) photonic crystal with simple cubic (sc) symmetry is important for applications in the signal routing and 3D waveguiding of light. With a simple stacking scheme and advanced silicon processing, a 3D sc structure was constructed from a 6-in. silicon wafer. The sc structure is experimentally shown to have a complete 3D photonic bandgap in the infrared wavelength. The finite size effect is also observed, accounting for a larger absolute photonic bandgap

  10. Synthesis of nanocrystalline Y2O3 in a specially designed atmospheric pressure radio frequency thermal plasma reactor

    Dhamale, G. D.; Mathe, V. L.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Ghorui, S.

    2015-01-01

    Synthesis of yttrium oxide nanoparticles in a specially designed radio frequency thermal plasma reactor is reported. Good crystallinity, narrow size distribution, low defect state concentration, high purity, good production rate, single-step synthesis, and simultaneous formation of nanocrystalline monoclinic and cubic phases are some of the interesting features observed. Synthesized particles are characterized through X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermo-luminescence (TL), and Brunauer–Emmett–Teller surface area analysis. Polymorphism of the nanocrystalline yttria is addressed in detail. Synthesis mechanism is explored through in-situ emission spectroscopy. Post-synthesis environmental effects and possible methods to eliminate the undesired phases are probed. Defect states are investigated through the study of TL spectra

  11. Cubic Pencils and Painlev\\'e Hamiltonians

    Kajiwara, Kenji; Masuda, Tetsu; Noumi, Masatoshi; Ohta, Yasuhiro; Yamada, Yasuhiko

    2004-01-01

    We present a simple heuristic method to derive the Painlev\\'e differential equations from the corresponding geometry of rational surafces. We also give a direct relationship between the cubic pencils and Seiberg-Witten curves.

  12. A Note on Cubic Convolution Interpolation

    Meijering, E.; Unser, M.

    2003-01-01

    We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.

  13. Cubical version of combinatorial differential forms

    Kock, Anders

    2010-01-01

    The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.......The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry....

  14. Structural elucidation of nanocrystalline biomaterials

    Maltsev, S.

    2008-10-23

    Bone diseases, such as osteoporosis and osteoarthritis, are the second most prevalent health problem worldwide. In Germany approximately 5 millions people are affected by arthritis. Investigating biomineralization processes and bone molecular structure is of key importance for developing new drugs for preventing and healing bone diseases. Nuclear magnetic resonance (NMR) was the primary technique used due to its advantages in characterising poorly ordered and disordered materials. Compared to all the diffraction techniques that widely applied in structural investigations, the usefulness of NMR is independent of long range molecular order. This makes NMR an outstanding technique for studies of complex/amorphous materials. Conventional NMR experiments (single pulse, spin-echo, cross polarization (CP), etc.) as well as their modifications and high-end techniques (2D HETCOR, REDOR, etc.) were used in this work. Combining the contributions from different techniques enhances the information content of the investigations and can increase the precision of the overall conclusions. Also XRD, TEM and FTIR were applied to different extent in order to get a general idea of nanocrystalline hydroxyapatite crystallite structure. Results: - A new approach named 'Solid-state NMR spectroscopy using the lost I spin magnetization in polarization transfer experiments' has been developed for measuring the transferred I spin magnetization from abundant nuclei, which is normally lost when detecting the S spin magnetization. - A detailed investigation of nanocrystalline hydroxyapatite core was made to prove that proton environment of the phosphates units and phosphorus environment of hydroxyl units are the same as in highly crystalline hydroxyapatite sample. - Using XRD it was found that the surface of the hydroxyapatite nanocrystals is not completely disordered, as it was suggested before, but resembles the hydroxyapatite structure with HPO{sub 4}{sup 2-} (and some CO{sub 3}{sup

  15. Structural elucidation of nanocrystalline biomaterials

    Maltsev, S

    2008-10-23

    Bone diseases, such as osteoporosis and osteoarthritis, are the second most prevalent health problem worldwide. In Germany approximately 5 millions people are affected by arthritis. Investigating biomineralization processes and bone molecular structure is of key importance for developing new drugs for preventing and healing bone diseases. Nuclear magnetic resonance (NMR) was the primary technique used due to its advantages in characterising poorly ordered and disordered materials. Compared to all the diffraction techniques that widely applied in structural investigations, the usefulness of NMR is independent of long range molecular order. This makes NMR an outstanding technique for studies of complex/amorphous materials. Conventional NMR experiments (single pulse, spin-echo, cross polarization (CP), etc.) as well as their modifications and high-end techniques (2D HETCOR, REDOR, etc.) were used in this work. Combining the contributions from different techniques enhances the information content of the investigations and can increase the precision of the overall conclusions. Also XRD, TEM and FTIR were applied to different extent in order to get a general idea of nanocrystalline hydroxyapatite crystallite structure. Results: - A new approach named 'Solid-state NMR spectroscopy using the lost I spin magnetization in polarization transfer experiments' has been developed for measuring the transferred I spin magnetization from abundant nuclei, which is normally lost when detecting the S spin magnetization. - A detailed investigation of nanocrystalline hydroxyapatite core was made to prove that proton environment of the phosphates units and phosphorus environment of hydroxyl units are the same as in highly crystalline hydroxyapatite sample. - Using XRD it was found that the surface of the hydroxyapatite nanocrystals is not completely disordered, as it was suggested before, but resembles the hydroxyapatite structure with HPO{sub 4}{sup 2-} (and some CO{sub 3}{sup 2

  16. Electrical properties of pressure quenched silicon by thermal spraying

    Tan, S.Y.; Gambino, R.J.; Sampath, S.; Herman, H.

    2007-01-01

    High velocity thermal spray deposition of polycrystalline silicon film onto single crystal substrates, yields metastable high pressure forms of silicon in nanocrystalline form within the deposit. The phases observed in the deposit include hexagonal diamond-Si, R-8, BC-8 and Si-IX. The peculiar attribute of this transformation is that it occurs only on orientation silicon substrate. The silicon deposits containing the high pressure phases display a substantially higher electrical conductivity. The resistivity profile of the silicon deposit containing shock induced metastable silicon phases identified by X-ray diffraction patterns. The density of the pressure induced polymorphic silicon is higher at deposit/substrate interface. A modified two-layer model is presented to explain the resistivity of the deposit impacted by the pressure induced polymorphic silicon generated by the thermal spraying process. The pressure quenched silicon deposits on the p - silicon substrate, with or without metastable phases, display the barrier potential of about 0.72 eV. The measured hall mobility value of pressure quenched silicon deposits is in the range of polycrystalline silicon. The significance of this work lies in the fact that the versatility of thermal spray may enable applications of these high pressure forms of silicon

  17. Thermoluminescent properties of ZnS:Mn nanocrystalline powders

    Ortiz-Hernández, Arturo Agustín; Méndez García, Víctor Hugo; Pérez Arrieta, María Leticia; Ortega Sígala, José Juan

    2015-01-01

    Thermoluminescent ZnS nanocrystals doped with Mn 2+ ions were synthesized by chemical co-precipitation method. From X-ray diffraction studies it was observed that the synthesized nanoparticles have cubic zinc blende structure with average sizes of about 40–50 nm. Morphology was analyzed by TEM. Photoluminescence studies showed two transitions, one of them close to 396 nm and other close to 598 nm, which is enhanced with increasing dopant concentration, this behavior was also observed in the cathodoluminescence spectrum. The thermoluminescence gamma dose-response has linear behavior over dose range 5–100 mGy, the glow curve structure shows two glow peaks at 436 K and at 518 K that were taken into account to calculate the kinetic parameters using the Computerized Glow Curve Deconvolution procedure. - Highlights: • Nanocrystals in powder of ZnS:Mn were synthesized using the co-precipitation method. • The integrated TL spectra has a linear behavior on the dose range 5–100 mGy of γ-radiation. • The kinetic parameters were obtained by the CGCD procedure. • Results support the possible use of nanocrystalline ZnS:Mn as a new γ-dose nanoTLD

  18. Optical characterization of nanocrystals in silicon rich oxide superlattices and porous silicon

    Agocs, E.; Petrik, P.; Milita, S.; Vanzetti, L.; Gardelis, S.; Nassiopoulou, A.G.; Pucker, G.; Balboni, R.; Fried, M.

    2011-01-01

    We propose to analyze ellipsometry data by using effective medium approximation (EMA) models. Thanks to EMA, having nanocrystalline reference dielectric functions and generalized critical point (GCP) model the physical parameters of two series of samples containing silicon nanocrystals, i.e. silicon rich oxide (SRO) superlattices and porous silicon layers (PSL), have been determined. The superlattices, consisting of ten SRO/SiO 2 layer pairs, have been prepared using plasma enhanced chemical vapor deposition. The porous silicon layers have been prepared using short monopulses of anodization current in the transition regime between porous silicon formation and electropolishing, in a mixture of hydrofluoric acid and ethanol. The optical modeling of both structures is similar. The effective dielectric function of the layer is calculated by EMA using nanocrystalline components (nc-Si and GCP) in a dielectric matrix (SRO) or voids (PSL). We discuss the two major problems occurring when modeling such structures: (1) the modeling of the vertically non-uniform layer structures (including the interface properties like nanoroughness at the layer boundaries) and (2) the parameterization of the dielectric function of nanocrystals. We used several techniques to reduce the large number of fit parameters of the GCP models. The obtained results are in good agreement with those obtained by X-ray diffraction and electron microscopy. We investigated the correlation of the broadening parameter and characteristic EMA components with the nanocrystal size and the sample preparation conditions, such as the annealing temperatures of the SRO superlattices and the anodization current density of the porous silicon samples. We found that the broadening parameter is a sensitive measure of the nanocrystallinity of the samples, even in cases, where the nanocrystals are too small to be visible for X-ray scattering. Major processes like sintering, phase separation, and intermixing have been

  19. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  20. Plasma deposition of cubic boron nitride films from non-toxic material at low temperatures

    Karim, M.Z.; Cameron, D.C.; Murphy, M.J.; Hashmi, M.S.J.

    1991-01-01

    Boron nitride has become the focus of a considerable amount of interest because of its properties which relate closely to those of carbon. In particular, the cubic nitride phase has extreme hardness and very high thermal conductivity similar to the properties of diamond. The conventional methods of synthesis use the highly toxic and inflammable gas diborane (B 2 H 6 ) as the reactant material. A study has been made of the deposition of thin films of boron nitride (BN) using non-toxic material by the plasma-assisted chemical vapour deposition technique. The source material was borane-ammonia (BH 3 -NH 3 ) which is a crystalline solid at room temperature with a high vapour pressure. The BH 3 -NH 3 vapour was decomposed in a 13.56 MHz nitrogen plasma coupled either inductively or capacitively with the system. The composition of the films was assessed by measuring their IR absorption when deposited on silicon and KBr substrates. The hexagonal (graphitic) and cubic (diamond-like) allotropes can be distinguished by their characteristic absorption bands which occur at 1365 and 780 cm -1 (hexagonal) and 1070 cm -1 (cubic). We have deposited BN films consisting of a mixture of hexagonal and cubic phases; the relative content of the cubic phase was found to be directly dependent on r.f. power and substrate bias. (orig.)

  1. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  2. Nanocrystalline permanent magnets with enhanced properties

    Leonowicz, M.

    2002-01-01

    Parameters of permanent magnets result from the combination of intrinsic properties such as saturation magnetization, magnetic exchange, and magnetocrystalline energy, as well as microstructural parameters such as phase structure, grain size, and orientation. Reduction of grain size into nanocrystalline regime (∼ 50 nm) leads to the enhanced remanence which derives from ferromagnetic exchange coupling between highly refined grains. In this study the fundamental phenomena, quantities, and structure parameters, which define nanophase permanent magnets are presented and discussed. The theoretical considerations are confronted with experimental data for nanocrystalline Sm-Fe-N type permanent magnets. (author)

  3. Direct Coating of Nanocrystalline Diamond on Steel

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  4. Purely cubic action for string field theory

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  5. Nonlinear dynamics of quadratically cubic systems

    Rudenko, O V

    2013-01-01

    We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)

  6. Chemical vapor deposition of nanocrystalline diamond films

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  7. Synthesis and characterization of nanocrystalline zinc ferrite

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  8. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  9. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  10. Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates

    Sobaszek, M.; Bogdanowicz, R.; Pluciński, J.; Siuzdak, K.; Skowroński, Ł.

    2016-01-01

    Fabrication process of optically transparent boron nanocrystalline diamond (B- NCD) electrode on silicon and quartz substrate was shown. The B-NCD films were deposited on the substrates using Microwave Plasma Assisted Chemical Vapor Deposition (MWPACVD) at glass substrate temperature of 475 °C. A homogenous, continuous and polycrystalline surface morphology with high sp 3 content in B-NCD films and film thickness depending from substrate in the range of 60-300 nm was obtained. The high refraction index and transparency in visible (VIS) wavelength range was achieved. Moreover, cyclic voltammograms (CV) were recorded to determine reaction reversibility at the B-NCD electrode. CV measurements in aqueous media consisting of 1 mM K 3 [Fe(CN) 6 ] in 0.5 M Na 2 SO 4 demonstrated relatively fast kinetics expressed by a redox peak splitting below 503 mV for B-NCD/silicon and 110 mv for B-NCD/quartz

  11. Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes

    Bogdanowicz, Robert; Sobaszek, Michał; Ficek, Mateusz; Kopiec, Daniel; Moczała, Magdalena; Orłowska, Karolina; Sawczak, Mirosław; Gotszalk, Teodor

    2016-04-01

    Fabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. B-NCD films were deposited using microwave plasma assisted chemical vapour deposition method. The variation in B-NCD morphology, structure and optical parameters was particularly investigated. The use of truncated cone-shaped substrate holder enabled to grow thin fully encapsulated nanocrystalline diamond film with a thickness of approx. 60 nm and RMS roughness of 17 nm. Raman spectra present the typical boron-doped nanocrystalline diamond line recorded at 1148 cm-1. Moreover, the change in mechanical parameters of silicon cantilevers over-coated with boron-doped diamond films was investigated with laser vibrometer. The increase of resonance to frequency of over-coated cantilever is attributed to the change in spring constant caused by B-NCD coating. Topography and electrical parameters of boron-doped diamond films were investigated by tapping mode AFM and electrical mode of AFM-Kelvin probe force microscopy (KPFM). The crystallite-grain size was recorded at 153 and 238 nm for boron-doped film and undoped, respectively. Based on the contact potential difference data from the KPFM measurements, the work function of diamond layers was estimated. For the undoped diamond films, average CPD of 650 mV and for boron-doped layer 155 mV were achieved. Based on CPD values, the values of work functions were calculated as 4.65 and 5.15 eV for doped and undoped diamond film, respectively. Boron doping increases the carrier density and the conductivity of the material and, consequently, the Fermi level.

  12. Dipaths and dihomotopies in a cubical complex

    Fajstrup, Lisbeth

    2005-01-01

    In the geometric realization of a cubical complex without degeneracies, a $\\Box$-set, dipaths and dihomotopies may not be combinatorial, i.e., not geometric realizations of combinatorial dipaths and equivalences. When we want to use geometric/topological tools to classify dipaths on the 1-skeleton...

  13. Some elements go cubic under pressure

    Legut, Dominik

    2007-01-01

    Roč. 60, č. 10 (2007), s. 17-17 ISSN 0031-9228 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio * polonium * cubic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.133, year: 2007

  14. The Exact Limit of Some Cubic Towers

    Anbar Meidl, Nurdagül; Beelen, Peter; Nguyen, Nhut

    2017-01-01

    Recently, a new explicit tower of function fields was introduced by Bassa, Beelen, Garcia and Stichtenoth (BBGS). This resulted in currently the best known lower bound for Ihara’s constant in the case of non-prime finite fields. In particular over cubic fields, the tower’s limit is at least as go...

  15. Nanocrystalline LiMn2O4 thin film cathode material prepared by polymer spray pyrolysis method for Li-ion battery

    Karthick, S.N.; Richard Prabhu Gnanakan, S.; Subramania, A.; Kim, Hee-Je

    2010-01-01

    Nanocrystalline cubic spinel lithium manganese oxide thin film was prepared by a polymer spray pyrolysis method using lithium acetate and manganese acetate precursor solution and polyethylene glycol-4000 as a polymeric binder. The substrate temperature was selected from the thermogravimetric analysis by finding the complete crystallization temperature of LiMn 2 O 4 precursor sample. The deposited LiMn 2 O 4 thin films were annealed at 450, 500 and 600 o C for 30 min. The thin film annealed at 600 o C was found to be the sufficient temperature to form high phase pure nanocrystalline LiMn 2 O 4 thin film. The formation of cubic spinel thin film was confirmed by X-ray diffraction study. Scanning electron microscopy and atomic force microscopy analysis revealed that the thin film annealed at 600 o C was found to be nanocrystalline in nature and the surface of the films were uniform without any crack. The electrochemical charge/discharge studies of the prepared LiMn 2 O 4 film was found to be better compared to the conventional spray pyrolysed thin film material.

  16. Constitutive modeling of stress-driven grain growth in nanocrystalline metals

    Gürses, Ercan

    2013-02-08

    In this work, we present a variational multiscale model for grain growth in face-centered cubic nanocrystalline (nc) metals. In particular, grain-growth-induced stress softening and the resulting relaxation phenomena are addressed. The behavior of the polycrystal is described by a conventional Taylor-type averaging scheme in which the grains are treated as two-phase composites consisting of a grain interior phase and a grain boundary-affected zone. Furthermore, a grain-growth law that captures the experimentally observed characteristics of the grain coarsening phenomena is proposed. To this end, the grain size is not taken as constant and varies according to the proposed stress-driven growth law. Several parametric studies are conducted to emphasize the influence of the grain-growth rule on the overall macroscopic response. Finally, the model is shown to provide a good description of the experimentally observed grain-growth-induced relaxation in nc-copper. © 2013 IOP Publishing Ltd.

  17. On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals

    Gurses, Ercan

    2010-12-01

    We present a physically motivated computational study explaining the tension/compression (T/C) asymmetry phenomenon in nanocrystalline (nc) and ultrafine-grained (ufg) face centered cubic (fcc) metals utilizing a variational constitutive model where the nc-metal is modeled as a two-phase material consisting of a grain interior phase and a grain boundary affected zone (GBAZ). We show that the existence of voids and their growth in GBAZ renders the material pressure sensitivity due to porous plasticity and that the utilized model provides a physically sound mechanism to capture the experimentally observed T/C asymmetry in nc- and ufg-metals. © 2010 Elsevier B.V. All rights reserved.

  18. Effect of Temperature on Nucleation of Nanocrystalline Indium Tin Oxide Synthesized by Electron-Beam Evaporation

    Shen, Yan; Zhao, Yujun; Shen, Jianxing; Xu, Xiangang

    2017-07-01

    Indium tin oxide (ITO) has been widely applied as a transparent conductive layer and optical window in light-emitting diodes, solar cells, and touch screens. In this paper, crystalline nano-sized ITO dendrites are obtained using an electron-beam evaporation technique. The surface morphology of the obtained ITO was studied for substrate temperatures of 25°C, 130°C, 180°C, and 300°C. Nano-sized crystalline dendrites were synthesized only at a substrate temperature of 300°C. The dendrites had a cubic structure, confirmed by the results of x-ray diffraction and transmission electron microscopy. The growth mechanism of the nano-crystalline dendrites could be explained by a vapor-liquid-solid (VLS) growth model. The catalysts of the VLS process were indium and tin droplets, confirmed by varying the substrate temperature, which further influenced the nucleation of the ITO dendrites.

  19. Preparation of nanocrystalline ZnS by a new chemical bath deposition route

    Sartale, S.D. [Department of Heterogeneous Material Systems (SE2), Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Sankapal, B.R. [Department of Heterogeneous Material Systems (SE2), Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Lux-Steiner, M. [Department of Heterogeneous Material Systems (SE2), Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Ennaoui, A. [Department of Heterogeneous Material Systems (SE2), Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany)]. E-mail: ennaoui@hmi.de

    2005-06-01

    We report a new chemical bath deposition route for the preparation of dense, compact and uniform nanocrystalline ZnS thin films, where thiourea acts as a complexing agent as well as a source of sulfide ions. The structural and morphological characterizations suggest that the film and the residual powder in the bath are formed by the aggregation of clusters of ZnS, namely cluster-by-cluster growth mechanism. X-ray diffraction (XRD) and HRTEM analyses indicate that the film and powder formed in the bath have cubic zinkblende structure. The films have high transmittance of about 75% in the visible region. Post-deposition annealing in Ar slightly improves the crystallinity and decreases the optical bandgap with increasing the annealing temperature.

  20. Preparation of nanocrystalline ZnS by a new chemical bath deposition route

    Sartale, S.D.; Sankapal, B.R.; Lux-Steiner, M.; Ennaoui, A.

    2005-01-01

    We report a new chemical bath deposition route for the preparation of dense, compact and uniform nanocrystalline ZnS thin films, where thiourea acts as a complexing agent as well as a source of sulfide ions. The structural and morphological characterizations suggest that the film and the residual powder in the bath are formed by the aggregation of clusters of ZnS, namely cluster-by-cluster growth mechanism. X-ray diffraction (XRD) and HRTEM analyses indicate that the film and powder formed in the bath have cubic zinkblende structure. The films have high transmittance of about 75% in the visible region. Post-deposition annealing in Ar slightly improves the crystallinity and decreases the optical bandgap with increasing the annealing temperature

  1. Silicon detectors

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  2. Thermoluminescent properties of nanocrystalline ZnTe thin films: Structural and morphological studies

    Rajpal, Shashikant; Kumar, S. R.

    2018-04-01

    Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.

  3. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    Toparli, Cigdem [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf (Germany); Ebin, Burçak [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Nuclear Chemistry and Industrial Material Recycling, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, S-412 96 Gothenburg (Sweden); Gürmen, Sebahattin, E-mail: gurmen@itu.edu.tr [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey)

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size. - Highlights: • Ternary FeNiCo alloy nanocrystalline particles were synthesized in a single step. • Cubic crystalline structure and spherical morphology was observed by XRD, SEM and TEM investigations. • The analysis of magnetic properties indicates the soft magnetic features of particles.

  4. Structural and transport properties of nanocrystalline MnFe/sub 2/O/sub 4/ synthesized by co-precipitation method

    Akhtar, M.J.; Younas, M.

    2012-01-01

    The nanocrystalline ferrites with spinel structures have been the focus of scientific investigation and received continuous interest in recent decades. The structural and electrical properties of these materials have become an important area of research and are attracting considerable interest due to broad range of applications. Spinel ferrites have been shown to exhibit interesting dielectric properties in the nanocrystalline form in comparison to the corresponding bulk materials. Structural and electrical properties of nanocrystalline MnFe/sub 2/O/sub 4/ were investigated. X-ray diffraction and X-ray absorption fine structure spectroscopy results showed that nanocrystalline MnFe/sub 2/O/sub 4/ had cubic symmetry with 80% inversion. shows the X-ray absorption near edge structure (XANES) spectra of MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/, used as model compounds. The electrical transport properties were investigated by employing impedance spectroscopy. It was observed that the dielectric constant decreased with the increase in frequency. The effects of frequency on dielectric properties were more prominent in the low frequency region, where dielectric constant increased as temperature was increased. (Orig./A.B.)

  5. Integrable peakon equations with cubic nonlinearity

    Hone, Andrew N W; Wang, J P

    2008-01-01

    We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon equation derived by Zhijun Qiao. (fast track communication)

  6. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-25

    We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

  7. HRTEM studies of dislocations in cubic BN

    Nistor, L.C.; Tendeloo, G. van; Dinca, G.

    2004-01-01

    The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. HRTEM studies of dislocations in cubic BN

    Nistor, L.C. [National Institute for Materials Physics, P.O. Box MG-7 Magurele, 077125 Bucharest (Romania); Tendeloo, G. van [University of Antwerp, EMAT, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Dinca, G. [Dacia Synthetic Diamond Factory, Timisoara av. 5, P.O. Box 58-52, 077350 Bucharest (Romania)

    2004-09-01

    The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Minimal knotted polygons in cubic lattices

    Van Rensburg, E J Janse; Rechnitzer, A

    2011-01-01

    In this paper we examine numerically the properties of minimal length knotted lattice polygons in the simple cubic, face-centered cubic, and body-centered cubic lattices by sieving minimal length polygons from a data stream of a Monte Carlo algorithm, implemented as described in Aragão de Carvalho and Caracciolo (1983 Phys. Rev. B 27 1635), Aragão de Carvalho et al (1983 Nucl. Phys. B 215 209) and Berg and Foester (1981 Phys. Lett. B 106 323). The entropy, mean writhe, and mean curvature of minimal length polygons are computed (in some cases exactly). While the minimal length and mean curvature are found to be lattice dependent, the mean writhe is found to be only weakly dependent on the lattice type. Comparison of our results to numerical results for the writhe obtained elsewhere (see Janse van Rensburg et al 1999 Contributed to Ideal Knots (Series on Knots and Everything vol 19) ed Stasiak, Katritch and Kauffman (Singapore: World Scientific), Portillo et al 2011 J. Phys. A: Math. Theor. 44 275004) shows that the mean writhe is also insensitive to the length of a knotted polygon. Thus, while these results for the mean writhe and mean absolute writhe at minimal length are not universal, our results demonstrate that these values are quite close the those of long polygons regardless of the underlying lattice and length

  10. Radiation influence on properties of nanocrystalline alloy

    Holkova, D.; Sitek, J.; Novak, P.; Dekan, J.

    2016-01-01

    Our work is focused on the studied of structural changes amorphous and nanocrystalline alloys after irradiation with electrons. For the analysis of these alloy we use two spectroscopic methods: Moessbauer spectroscopy and XRD. Measurements of nanocrystalline (Fe 3 Ni 1 ) 81 Nb 7 B 12 samples before and after electrons irradiation by means of Moessbauer spectroscopy and XRD showed that the electrons causes changes in magnetic structure which is reflected changes of direction of net magnetic moment. Structural changes occurs in the frame of error indicated by both spectroscopic methods. We can confirm that this kind alloys a resistive again electrons irradiation up to doses of 4 MGy. We observed in this frame only beginning of the radiation damage. (authors)

  11. Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior

    Cheng Fukui; He Chun; Shu Dong; Chen Hongyu; Zhang Jie; Tang Shaoqing; Finlow, David E.

    2011-01-01

    Highlights: ► Organic nitridizing agent was employed for preparation of nanocrystalline VN. ► The supercapacitive behavior of VN was studied by electrochemical method. ► The supercapacitive behavior of VN was studied in three kinds of electrolyte. ► The specific capacitance of VN was determined as 273 F g −1 in 1.0 M KOH. ► The supercapacitive mechanism and involved factor on capacitance were analyzed. - Abstract: An organic nitridizing reagent was employed in the preparation of nanocrystalline VN at 800 °C under a N 2 atmosphere. The prepared VN was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and its supercapacitive behavior was studied by cyclic voltammetry (CV) in three different types of aqueous electrolyte, 0.5 M H 2 SO 4 , 2.0 M NaNO 3 and 1.0 M KOH. The XRD results indicate that prepared VN has a cubic structure with space group Fm3m and a lattice parameter of 4.139 Å. The nanocrystalline structure of VN with a low degree of crystallinity was confirmed by TEM imaging. The presence of oxygen on the VN surface was detected by FTIR and XPS, and its molecular composition was determined to be VN 1.02 O 0.1 . The specific capacitances of nanocrystalline VN were determined to be 114, 45.7 and 273 F g −1 in 0.5 M H 2 SO 4 , 2.0 M NaNO 3 and 1.0 M KOH, respectively. Thus, the KOH solution was considered the best aqueous electrolyte for the capacitive performance of VN. The supercapacitive mechanism and the factor that influenced the specific capacitance are also analyzed in this paper.

  12. Solubility of Carbon in Nanocrystalline -Iron

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  13. Neutrosophic Cubic MCGDM Method Based on Similarity Measure

    Surapati Pramanik

    2017-06-01

    Full Text Available The notion of neutrosophic cubic set is originated from the hybridization of the concept of neutrosophic set and interval valued neutrosophic set. We define similarity measure for neutrosophic cubic sets and prove some of its basic properties.

  14. Spinning solitons in cubic-quintic nonlinear media

    Spinning solitons in cubic-quintic nonlinear media ... features of families of bright vortex solitons (doughnuts, or 'spinning' solitons) in both conservative and dissipative cubic-quintic nonlinear media. ... Pramana – Journal of Physics | News.

  15. Characterization of amorphous and nanocrystalline carbon films

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  16. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  17. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    Hall, Aaron Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sarobol, Pylin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diantonio, Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  18. An investigation on the preparation of nanocrystalline hydrous zirconia from zirconium tungstate

    Antunes, M.; Perottoni, C. A.; Gouvêa, D.; Machado, G.; Zorzi, J. E.

    2018-02-01

    Hydrous nanocrystalline zirconia was prepared from an unusual precursor—the bimetallic oxide zirconium tungstate (ZrW2O8)—in alkaline medium. Different experimental conditions (NaOH concentration, time and temperature) were used to investigate the effects on crystallographic, morphological, chemical and thermal characteristics of the products. The resulting materials are composed of particles with a crystal structure similar to that of cubic ZrO2 (or a mixture of tetragonal and cubic phases, depending on the synthesis conditions), with particle size around 5 nm and crystallites around 3 nm in diameter. These particles form high surface area agglomerates, exhibiting mesoporosity and capacity for adsorption of water and carbon dioxide. The synthesis mechanism appears to be constituted, first, by a chemical substitution reaction between the WO4 tetrahedra and hydroxyl ions, with subsequent solubilization of the structure. Indeed, excess hydroxyls in the medium form colloidal zirconium ions which polymerize/condense, generating crystalline nuclei in a process facilitated by heterogeneous nucleation and supersaturation. The presence of residual tungsten in all samples appears to be a key element for stabilizing the size and crystalline structure of the materials produced.

  19. Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC

    Swaminathan, N.; Kamenski, Paul J.; Morgan, Dane; Szlufarska, Izabela

    2010-01-01

    Cascade simulations in single crystal and nanocrystalline SiC have been conducted in order to determine the role of grain boundaries and grain size on defect production during primary radiation damage. Cascades are performed with 4 and 10 keV silicon as the primary knock-on atom (PKA). Total defect production is found to increase with decreasing grain size, and this effect is shown to be due to increased production in grain boundaries and changing grain boundary volume fraction. In order to consider in-grain defect production, a new mapping methodology is developed to properly normalize in-grain defect production rates for nanocrystalline materials. It is shown that the presence of grain boundaries does not affect the total normalized in-grain defect production significantly (the changes are lower than ∼20%) for the PKA energies considered. Defect production in the single grain containing the PKA is also studied and found to increase for smaller grain sizes. In particular, for smaller grain sizes the defect production decreases with increasing distance from the grain boundary while for larger grain sizes the presence of the grain boundaries has negligible effect on defect production. The results suggest that experimentally observed changes in radiation resistance of nanocrystalline materials may be due to long-term damage evolution rather than changes in defect production rates from primary damage.

  20. Optimization of chemical displacement deposition of copper on porous silicon.

    Bandarenka, Hanna; Redko, Sergey; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2012-11-01

    Copper (II) sulfate was used as a source of copper to achieve uniform distribution of Cu particles deposited on porous silicon. Layers of the porous silicon were formed by electrochemical anodization of Si wafers in a mixture of HF, C3H7OH and deionized water. The well-known chemical displacement technique was modified to grow the copper particles of specific sizes. SEM and XRD analysis revealed that the outer surface of the porous silicon was covered with copper particles of the crystal orientation inherited from the planes of porous silicon skeleton. The copper crystals were found to have the cubic face centering elementary cell. In addition, the traces of Cu2O cubic primitive crystalline phases were identified. The dimensions of Cu particles were determined by the Feret's analysis of the SEM images. The sizes of the particles varied widely from a few to hundreds of nanometers. A phenomenological model of copper deposition was proposed.

  1. Magnetic behavior of nanocrystalline nickel ferrite

    Nathani, H.; Gubbala, S.; Misra, R.D.K.

    2005-01-01

    In the previous papers [R.D.K. Misra, A. Kale, R.S. Srivatsava, O. Senkov, Mater. Sci. Technol. 19 (2003) 826; R.D.K. Misra, A. Kale, B. Hooi, J.Th. DeHosson, Mater. Sci. Technol. 19 (2003) 1617; A. Kale, S. Gubbala, R.D.K. Misra, J. Magn. Magn. Mater. 277 (2004) 350; S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Phys. B 348 (2004) 317; R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff, Mater. Sci. Eng. B. 111 (2004) 164], we reported the synthesis, structural characterization and magnetic behavior of nanocrystalline ferrites of inverse and mixed spinel structure made by reverse micelle technique that enabled a narrow particle size distribution to be obtained. In the present paper, the reverse micelle approach has been extended to synthesize nanocrystalline ferrites with varying surface roughness of 8-18 A (the surface roughness was measured by atomic force microscopy) and the magnetic behavior studied by SQUID magnetometer. Two different kinds of measurement were performed: (a) zero-field cooling (ZFC) and field cooling (FC) magnetization versus temperature measurements and (b) magnetization as a function of applied field. The analysis of magnetic measurement suggests significant influence of surface roughness of particles on the magnetic behavior. While the superparamagnetic behavior is retained by the nanocrystalline ferrites of different surface roughness at 300 K, the hysteresis loop at 2 K becomes non-squared and the coercivity increases with increase in surface roughness. This behavior is discussed in terms of broken bonds and degree of surface spin disorder

  2. Transparent nanocrystalline diamond coatings and devices

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  3. Simulations of intergranular fracture in nanocrystalline molybdenum

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2004-01-01

    Using molecular dynamics simulations we investigate the plastic deformation of nanocrystalline molybdenum with a grain size of 12 nm at high strain rates. The simulations are performed with an interatomic potential which is obtained through matching of atomic forces to a database generated...... with density-functional calculations. The simulations show the plastic deformation to involve both grain boundary processes and dislocation migration which in some cases lead to twin boundary formation. A large component of the strain is accommodated through the formation of cracks in the grain boundaries...

  4. Photoluminescence properties of sol-gel derived SiO.sub.2./sub. layers doped with porous silicon

    Švrček, Vladimír; Pelant, Ivan; Rehspringer, J. L.; Gilliot, P.; Ohlmann, D.; Crégut, O.; Hönerlage, B.; Chvojka, T.; Valenta, J.; Dian, J.

    2002-01-01

    Roč. 19, - (2002), s. 233-236 ISSN 0928-4931 R&D Projects: GA AV ČR IAA1010809; GA AV ČR IAB2949101; GA AV ČR IAB1112901 Grant - others:GA UK(XC) 144/2000/B/FYZ Institutional research plan: CEZ:AV0Z1010914 Keywords : nanocrystalline silicon * photoluminescence * porous silicon Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.734, year: 2002

  5. Cu and Zn substituted silicon clathrates with the cubic type-II structure. Synthesis and characterization of Cs{sub 8}Na{sub 16}Cu{sub 3.8}Si{sub 132.2} and Cs{sub 8}Na{sub 16}Zn{sub 6.9}Si{sub 129.1}

    Schaefer, Marion C.; Bobev, Svilen [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE (United States)

    2017-12-13

    Studies in the systems Cs-Na-Cu-Si and Cs-Na-Zn-Si yielded the novel clathrates Cs{sub 8}Na{sub 16}(Cu,Si){sub 136} and Cs{sub 8}Na{sub 16}(Zn,Si){sub 136}, both with the cubic type-II structure [space group Fd anti 3m (no. 227), Pearson symbol cF160]. The structures of the title compounds were established from single-crystal X-ray diffraction methods, confirming the complete ordering of the Cs and Na guest atoms. The framework-building Si atoms are found to be randomly substituted by Cu atoms on framework site 96g, exclusively. In the structure of Cs{sub 8}Na{sub 16}(Zn,Si){sub 136}, the refinements indicate that the Zn and Si atoms co-occupy two of the three framework sites with notable preference for site 96g over site 32e. The corresponding refined compositions and unit cell parameters are as follows: Cs{sub 8}Na{sub 16}Cu{sub 3.8}Si{sub 132.2(1)} [a = 14.7583(15) Aa]; Cs{sub 8}Na{sub 16}Zn{sub 6.9}Si{sub 129.1(1)} [a = 14.7682(5) Aa], respectively. The type-II clathrates can be obtained only from experiments employing both Na and Cs, whereas work in the ternary Cs-Cu-Si, Cs-Zn-Si, Na-Cu-Si, and Na-Zn-Si systems failed to yield any clathrate phases. At the same conditions, exploratory studies in the K-Zn-Si and Rb-Zn-Si systems provided evidence that type-I clathrates are favored. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Catastrophic degradation of the interface of epitaxial silicon carbide on silicon at high temperatures

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca [Queensland Micro and Nanotechnology Centre and Environmental Futures Research Institute, Griffith University, Nathan QLD 4111 (Australia); Boeckl, John J. [Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433 (United States); Hellerstedt, Jack; Fuhrer, Michael S. [Monash Centre for Atomically Thin Materials, Monash University, Monash, VIC 3800 (Australia)

    2016-07-04

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurements indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.

  7. Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    Verveniotis Elisseos

    2011-01-01

    Full Text Available Abstract We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems.

  8. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures.

    Amaral, M; Dias, A G; Gomes, P S; Lopes, M A; Silva, R F; Santos, J D; Fernandes, M H

    2008-10-01

    Nanocrystalline diamond (NCD) has a great potential for prosthetic implants coating. Nevertheless, its biocompatibility still has to be better understood. To do so, we employed several materials characterization techniques (SEM, AFM, micro-Raman spectroscopy) and cell culture assays using MG63 osteoblast-like and human bone marrow cells. Biochemical routines (MTT assays, Lowry's method, ALP activity) supported by SEM and confocal microscopy characterization were carried out. We used silicon nitride (Si3N4) substrates for NCD coatings based on a previous demonstration of the superior adhesion and tribological performance of these NCD coated ceramics. Results demonstrate an improved human osteoblast proliferation and the stimulation of differentiated markers, like ALP activity and matrix mineralization, compared with standard polystyrene tissue culture plates. The nanometric featuring of NCD, associated to its chemical affinity are key points for bone regeneration purposes.

  9. Black holes in a cubic Galileon universe

    Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr, E-mail: tetiana.moskalets@th.u-psud.fr [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.

  10. Cubic phase control of ultrashort laser pulses

    Mecseki, K.; Erdelyi, M.; Kovacs, A.P.; Szabo, G.

    2006-01-01

    Complete test of publication follows. The temporal shape of an ultrashort laser pulse may change upon propagating through a linear dispersive medium having a phase shift ψω. The change can be characterized by the Taylor-coefficients of the phase shift which are calculated around the central frequency ω 0 of the pulse. Measurements and independent control of the group delay dispersion (GDD, ψ'(ω 0 )) and the third order dispersion (TOD, ψ'(ω 0 )) are important in several research fields, particularly in the generation of ultrashort laser pulses by chirped pulse amplification (CPA) and pulse shaping for molecular control. The GDD and the TOD of an ideal pulse compressor are equal to the negative of the corresponding dispersion coefficients of the medium. However, in the case of prism-pair and grating-pair compressor is different from the ratio of the coefficients of the medium to be compensated for. Therefore it is necessary to develop so-called cubic compressors that are able to control the TOD of the pulse, yet, do not affect the GDD. In this paper a new cubic compressor setup is investigated theoretically and experimentally, which resembles the set-up proposed by White, however, we control the GDD and the TOD by the position of a birefringent, semi-cylinder crystal place around the focal point of an achromatic lens. For the evaluation of the phase shift introduced by the proposed cubic compressor, a ray tracing program was written. The program allows optimizing the compressor parameters, such as the radius of the crystal, magnification of the lens etc. Calcite was applied because it is a strong birefringent material. Calculations showed that there is a trajectory, along which shifting the crystal the TOD can be tuned independently of the GDD. The value of the TOD changed in a relatively wide range between -3.15 x 10 5 fs 3 and -1.67 x 10 5 fs 3 . Although the defocus also affects the angular dispersion of the pulse leaving the compressor, if does not exceed

  11. Cubic martensite in high carbon steel

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  12. Expansion into lattice harmonics in cubic symmetries

    Kontrym-Sznajd, G.

    2018-05-01

    On the example of a few sets of sampling directions in the Brillouin zone, this work shows how important the choice of the cubic harmonics is on the quality of approximation of some quantities by a series of such harmonics. These studies led to the following questions: (1) In the case that for a given l there are several independent harmonics, can one use in the expansion only one harmonic with a given l?; (2) How should harmonics be ordered: according to l or, after writing them in terms of (x4 + y4 + z4)n (x2y2z2)m, according to their degree q = n + m? To enable practical applications of such harmonics, they are constructed in terms of the associated Legendre polynomials up to l = 26. It is shown that electron momentum densities, reconstructed from experimental data for ErGa3 and InGa3, are described much better by harmonics ordered with q.

  13. Microhardness studies of nanocrystalline lead molybdate

    Anandakumar, V.M.; Abdul Khadar, M.

    2009-01-01

    Nanocrystalline lead molybdate (PbMoO 4 ) of four different grain sizes were synthesized through chemical precipitation technique and the grain sizes and crystal structure are determined using the broadening of X-ray diffraction patterns and transmission electron microscopy. The microhardness of nanocrystalline lead molybdate (PbMoO 4 ) with different grain sizes were measured using a Vicker's microhardness tester for various applied loads ranging from 0.049 to 1.96 N. The microhardness values showed significant indentation size effect at low indentation loads. The proportional specimen resistance model put forward by Li and Bradt and energy balance model put forward by Gong and Li were used to analyze the behaviour of measured microhardness values under different indentation loads. The microhardness data obtained for samples of different grain sizes showed grain size dependent strengthening obeying normal Hall-Petch relation. The dependence of compacting pressure and annealing temperature on microhardness of the nanostructured sample with grain size of ∼18 nm were also studied. The samples showed significant increase in microhardness values as the compacting pressure and annealing time were increased. The variation of microhardness of the material with pressure of pelletization and annealing time are discussed in the light of change of pore size distribution of the samples.

  14. Grain growth studies on nanocrystalline Ni powder

    Rane, G.K.; Welzel, U.; Mittemeijer, E.J.

    2012-01-01

    The microstructure of nanocrystalline Ni powder produced by ball-milling and its thermal stability were investigated by applying different methods of X-ray diffraction line-profile analysis: single-line analysis, whole powder-pattern modelling and the (modified) Warren–Averbach method were employed. The kinetics of grain growth were investigated by both ex-situ and in-situ X-ray diffraction measurements. With increasing milling time, the grain-size reduction is accompanied by a considerable narrowing of the size distribution and an increase in the microstrain. Upon annealing, initial, rapid grain growth occurs, accompanied by the (almost complete) annihilation of microstrain. For longer annealing times, the grain-growth kinetics depend on the initial microstructure: a smaller microstrain with a broad grain-size distribution leads to linear grain growth, followed by parabolic grain growth, whereas a larger microstrain with a narrow grain-size distribution leads to incessant linear grain growth. These effects have been shown to be incompatible with grain-boundary curvature driven growth. The observed kinetics are ascribed to the role of excess free volume at the grain boundaries of nanocrystalline material and the prevalence of an “abnormal grain-growth” mechanism.

  15. Forming of nanocrystal silicon films by implantation of high dose of H+ in layers of silicon on isolator and following fast thermal annealing

    Tyschenko, I.E.; Popov, V.P.; Talochkin, A.B.; Gutakovskij, A.K.; Zhuravlev, K.S.

    2004-01-01

    Formation of nanocrystalline silicon films during rapid thermal annealing of the high-dose H + ion implanted silicon-on-insulator structures was studied. It was found, that Si nanocrystals had formed alter annealings at 300-400 deg C, their formation being strongly limited by the hydrogen content in silicon and also by the annealing time. It was supposed that the nucleation of crystalline phase occurred inside the silicon islands between micropores. It is conditioned by ordering Si-Si bonds as hydrogen atoms are leaving their sites in silicon network. No coalescence of micropores takes place during the rapid thermal annealing at the temperatures up to ∼ 900 deg C. Green-orange photoluminescence was observed on synthesized films at room temperature [ru

  16. Broadband infrared photoluminescence in silicon nanowires with high density stacking faults.

    Li, Yang; Liu, Zhihong; Lu, Xiaoxiang; Su, Zhihua; Wang, Yanan; Liu, Rui; Wang, Dunwei; Jian, Jie; Lee, Joon Hwan; Wang, Haiyan; Yu, Qingkai; Bao, Jiming

    2015-02-07

    Making silicon an efficient light-emitting material is an important goal of silicon photonics. Here we report the observation of broadband sub-bandgap photoluminescence in silicon nanowires with a high density of stacking faults. The photoluminescence becomes stronger and exhibits a blue shift under higher laser powers. The super-linear dependence on excitation intensity indicates a strong competition between radiative and defect-related non-radiative channels, and the spectral blue shift is ascribed to the band filling effect in the heterostructures of wurtzite silicon and cubic silicon created by stacking faults.

  17. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 ...

    Abstract. Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route .... is controlled by the iron oxide film in case of alloys with ..... the surface is covered, thus, producing effective protection of.

  18. Optimization of nanocrystalline γ-alumina coating for direct spray ...

    Modifications of the partial gas percentage influences the optical properties and composition ... O2 flow in the Ar ambient and substrate temperature on struc- ture and properties of ..... nism to explain mechanical behaviour of nanocrystalline.

  19. Tailoring and patterning the grain size of nanocrystalline alloys

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  20. Amorphous and nanocrystalline materials preparation, properties, and applications

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  1. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  2. Effect of nanocrystalline surface of substrate on microstructure and ...

    surface layers or bulk nanocrystalline metals and alloys more effectively. ... severe plastic deformation on surface layers of bulk met- als at high strains and strain rates. .... scanning electron microscopy (SEM) (Zeiss, model: Sigma. VP), energy ...

  3. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  4. Electrochemistry of Inorganic Nanocrystalline Electrode Materials for Lithium Batteries

    C. W. Kwon

    2003-01-01

    much different from that of traditional crystalline ones because of their significant ‘surface effects’. In connection with that, the nanocrystalline cathode materials are reported to have an enhanced electrochemical activity when the first significative electrochemical step is insertion of Li ions (discharge process. The “electrochemical grafting” concept will be given as a plausible explanation. As illustrative examples, electrochemical behaviors of nanocrystalline manganese oxydes are presented.

  5. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  6. Composition and properties of nanocrystalline Zn S thin films prepared by a new chemical bath deposition route

    Sahraei, R.; Goudarzi, A.; Ahmadpoor, H.; Motedayen Aval, Gh.

    2006-01-01

    Zinc sulfide nanocrystalline thin films were prepared by a new chemical bath deposition route on soda lime glass and quartz substrates using a weak acidic bath, in which disodium salt of ethylenediaminetetraacetic acid (EDTA) acts as a complexing agent and thioacetamide acts as a source of sulfide ions. The thickness of the films varied from a few nm to 500 nm. The chemical composition of films was studied by energy-dispersive X-ray analyzer and Fourier transform infrared spectroscopy. The films are very close to Zinc sulfide stoichiometry and we did not observed any organic compounds in the impurity form in them. X-ray diffraction indicates that the film and powder formed in the same reaction bath have cubic zinc blende structure. The films have high transmittance of about 75% in the visible region. The optical band-gap energy (E g ) was determined to be 3.75 eV from the absorption spectrophotometry measurements.

  7. Room-temperature synthesis of ultraviolet-emitting nanocrystalline GaN films using photochemical vapor deposition

    Yamazaki, Shunsuke; Yatsui, Takashi; Ohtsu, Motoichi; Kim, Taw-Won; Fujioka, Hiroshi

    2004-01-01

    We fabricated UV-emitting nanocrystalline gallium nitride (GaN) films at room temperature using photochemical vapor deposition (PCVD). For the samples synthesized at room temperature with V/III ratios exceeding 5.0x10 4 , strong photoluminescence peaks at 3.365 and 3.310 eV, which can be ascribed to transitions in a mixed phase of cubic and hexagonal GaN, were observed at 5 K. A UV emission spectrum with a full width at half-maximum of 100 meV was observed, even at room temperature. In addition, x-ray photoelectron spectroscopy measurement revealed that the film deposited by PCVD at room temperature was well nitridized

  8. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  9. Topological Oxide Insulator in Cubic Perovskite Structure

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  10. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Mishra, Varun [Department of Physics, Lovely Professional University, Phagwara 144 402, Punjab (India); Biggs, M.M.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Terblans, J.J. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Swart, H.C., E-mail: swarthc.sci@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2010-01-01

    Green luminescence and degradation of Ce{sup 3+} doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 {mu}A electron beam in an O{sub 2} environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 {+-} 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce{sup 3+} nanocrystalline phosphors during electron bombardment in an O{sub 2} environment. The effect of different oxygen pressures ranging from 1 x 10{sup -8} to 1 x 10{sup -6} Torr on the CL intensity was also investigated. A CaSO{sub 4} layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 x 10{sup -6} Torr oxygen pressure after an electron dose of 50 C/cm{sup 2}. The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  11. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    Kumar, Vinay; Mishra, Varun; Biggs, M.M.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Terblans, J.J.; Swart, H.C.

    2010-01-01

    Green luminescence and degradation of Ce 3+ doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 μA electron beam in an O 2 environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 ± 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce 3+ nanocrystalline phosphors during electron bombardment in an O 2 environment. The effect of different oxygen pressures ranging from 1 x 10 -8 to 1 x 10 -6 Torr on the CL intensity was also investigated. A CaSO 4 layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 x 10 -6 Torr oxygen pressure after an electron dose of 50 C/cm 2 . The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  12. Nanocrystalline Steels’ Resistance to Hydrogen Embrittlement

    Skołek E.

    2015-04-01

    Full Text Available The aim of this study is to determine the susceptibility to hydrogen embrittlement in X37CrMoV5-1 steel with two different microstructures: a nanocrystalline carbide-free bainite and tempered martensite. The nanobainitic structure was obtained by austempering at the bainitic transformation zone. It was found, that after hydrogen charging, both kinds of microstructure exhibit increased yield strength and strong decrease in ductility. It has been however shown that the resistance to hydrogen embrittlement of X37CrMoV5-1 steel with nanobainitic structure is higher as compared to the tempered martensite. After hydrogen charging the ductility of austempered steel is slightly higher than in case of quenched and tempered (Q&T steel. This effect was interpreted as a result of phase composition formed after different heat treatments.

  13. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  14. Stability of nanocrystalline electrochemically deposited layers

    Pantleon, Karen; Somers, Marcel A. J.

    2009-01-01

    have different microstructure and properties compared to bulk materials and the thermodynamic non-equilibrium state of as-deposited layers frequently results in changes of the microstructure as a function of time and/or temperature. The evolving microstructure affects the functionality and reliability......The technological demand for manufacturing components with complex geometries of micrometer or sub-micrometer dimensions and ambitions for ongoing miniaturization have attracted particular attention to electrochemical deposition methods. Thin layers of electrochemically deposited metals and alloys...... of electrodeposited components, which can be beneficial, as for the electrical conductivity of copper interconnect lines, or detrimental, as for reduced strength of nickel in MEMS applications. The present work reports on in-situ studies of the microstructure stability of as-deposited nanocrystalline Cu-, Ag- and Ni...

  15. Application Potential of Nanocrystalline Ribbons Still Pending

    Butvin, Pavol; Butvinová, Beata; Švec, Peter; Sitek, Jozef

    2010-09-01

    Nanocrystalline soft-magnetic ribbons promised a wide-spread practical use when introduced at the beginning of nineties. After 20 years of extensive research there are still unclear material problems which are thought to be the principal reason why these materials show but marginal use. Poorly controllable magnetic anisotropy due to spontaneous intrinsic macroscopic stress that comes from an inevitable heterogeneity of the ribbon materials is pointed to in this work. Certain stress-based mechanisms are shown to induce the unintended anisotropy in the already familiar Finemets as well as in the newer Hitperms. Hysteresis loops, domain structure and power loss is used to reveal the anisotropy consequences and particular connected but still unanswered questions are pinpointed.

  16. Reinforced plastics and aerogels by nanocrystalline cellulose

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T., E-mail: john.luong@cnrc-nrc.gc.ca [National Research Council Canada (Canada)

    2013-05-15

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  17. Nanocrystalline diamond coatings for mechanical seals applications.

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM).

  18. Arsenic removal by magnetic nanocrystalline barium hexaferrite

    Patel, Hasmukh A.; Byun, Jeehye; Yavuz, Cafer T.

    2012-01-01

    Nanoscale magnetite (Fe 3 O 4 ) ( 12 O 19 , BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 ± 0.52 nm synthesized by thermolysis method at 320 °C do not show hexagonal phase, however, subsequent annealing at 750 °C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

  19. Bifurcation of limit cycles for cubic reversible systems

    Yi Shao

    2014-04-01

    Full Text Available This article is concerned with the bifurcation of limit cycles of a class of cubic reversible system having a center at the origin. We prove that this system has at least four limit cycles produced by the period annulus around the center under cubic perturbations

  20. Kinks in systems with cubic and quartic anharmonicity

    Kashcheev, V.N.

    1988-01-01

    For a classical system of interacting particles with on-site cubic or quartic anharmonicity explicit analytic solutions of the d'Alembert equation are obtained in the form of kinks in the presence of dissipation (viscous or Rayleigh) and a constant force. These kinks will be asymptotically stable in the case of quartic anharmonicity and unstable in the case cubic anharmonicity

  1. Functionalization of nanocrystalline diamond films with phthalocyanines

    Petkov, Christo [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Reintanz, Philipp M. [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Kulisch, Wilhelm [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Degenhardt, Anna Katharina [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Weidner, Tobias [Max Planck Institute for Polymer Research, Mainz (Germany); Baio, Joe E. [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR (United States); Merz, Rolf; Kopnarski, Michael [Institut für Oberflächen- und Schichtanalytik (IFOS), Kaiserslautern (Germany); Siemeling, Ulrich [Institute of Chemistry, Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Reithmaier, Johann Peter [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany); Popov, Cyril, E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics (INA), Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel (Germany)

    2016-08-30

    Highlights: • Grafting of phthalocyanines on nanocrystalline diamond films with different terminations. • Pc with different central atoms and side chains synthesized and characterized. • Attachment of Pc on H- and O-terminated NCD studied by XPS and NEXAFS spectroscopy. • Orientation order of phthalocyanine molecules on NCD surface. - Abstract: Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.

  2. Room temperature mechanosynthesis and microstructure characterization of nanocrystalline Si{sub 0.9}Al{sub 0.1}C

    Bandyopadhyay, S. [Department of Physics, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal (India); Dutta, H. [Department of Physics, Vivekananda College, Burdwan, 713103, West Bengal (India); Kar, T. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Department of Physics, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal (India)

    2016-02-01

    This article reports the synthesis and microstructure characterization of nanocrystalline Si{sub 0.9}Al{sub 0.1}C powder obtained by mechanical milling the mixture of Si, Al and graphite powders at room temperature under inert atmosphere. XRD patterns of ball-milled powders clearly reveal the nucleation of Si{sub 0.9}Al{sub 0.1}C phase after 5 h of milling and the stoichiometric cubic Si{sub 0.9}Al{sub 0.1}C is formed after 10 h of milling with crystallite size of ∼3 nm. Microstructure of ball-milled powders in terms of different lattice imperfections is characterized by employing both Rietveld's method of structure refinement using XRD data and high resolution transmission electron microscope (HRTEM). HRTEM micrographs of 10 h milled powder substantiate the formation of nanocrystalline Si{sub 0.9}Al{sub 0.1}C compound without any contamination and confirm the findings of Rietveld analysis using XRD data. - Highlights: • Cubic Si{sub 0.9}Al{sub 0.1}C is formed after 5 h of milling of Si, Al and graphite powders. • Nanocrystalline Si{sub 0.9}Al{sub 0.1}C with particle size ∼3 nm is obtained after 10 h milling. • Average particle size of Si{sub 0.9}Al{sub 0.1}C from XRD analysis and HRTEM is very close.

  3. Formation of metastable cubic phase in Ce{sub 100−x}Al{sub x} (x=45, 50) alloys and their thermal and magnetic properties

    Idzikowski, Bogdan, E-mail: idzi@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Śniadecki, Zbigniew [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Puźniak, Roman [Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa (Poland); Kaczorowski, Dariusz [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2017-01-01

    Ce{sub 100−x}Al{sub x} (x=45 and 50) alloys were synthesized by rapid quenching technique in the form of ribbons composed of nanocrystalline phase of CeAl with the ClCs-type structure (Pm-3m space group) embedded in an amorphous matrix. The cubic CeAl phase is known as metastable with random distribution of Ce and Al atoms in the unit cell. The crystalline volume fraction is about 7.5% in Ce{sub 55}Al{sub 45} and 3% in Ce{sub 50}Al{sub 50}. The alloy Ce{sub 55}Al{sub 45} shows better thermal stability than Ce{sub 50}Al{sub 50}, indicated by higher effective activation energy and higher crystallization temperature. Small off-stoichiometry in Ce{sub 55}Al{sub 45} results in degrading the glass forming ability and promotes formation of the cubic CeAl phase, as confirmed by magnetic measurements. In both alloys, the Ce ions are in stable trivalent state and order magnetically near 20 K. Another magnetic phase transition close to 10 K was found for Ce{sub 50}Al{sub 50} and was attributed to the presence of the well-known stable orthorhombic CeAl phase. To the best of our knowledge, the magnetic behavior of the CeAl cubic phase is reported here for the first time. - Highlights: • Synthesis of metastable cubic CeAl phase by rapid quenching. • The Ce ions in Ce{sub 55}Al{sub 45} and Ce{sub 50}Al{sub 50} are in stable trivalent state. • Magnetic transition near 10 K connected with the orthorhombic CeAl phase. • Phase transition at about 20 K originates from the cubic CeAl phase.

  4. Neutron Dose Measurement Using a Cubic Moderator

    Sheinfeld, M.; Mazor, T.; Cohen, Y.; Kadmon, Y.; Orion, I.

    2014-01-01

    The Bonner Sphere Spectrometer (BSS), introduced In July 1960 by a research group from Rice University, Texas, is a major approach to neutron spectrum estimation. The BSS, also known as multi-sphere spectrometer, consists of a set of a different diameters polyethylene spheres, carrying a small LiI(Eu) scintillator in their center. What makes this spectrometry method such widely used, is its almost isotropic response, covering an extraordinary wide range of energies, from thermal up to even hundreds of MeVs. One of the most interesting and useful consequences of the above study is the 12'' sphere characteristics, as it turned out that the response curve of its energy dependence, have a similar shape compared with the neutron's dose equivalent as a function of energy. This inexplicable and happy circumstance makes it virtually the only monitoring device capable providing realistic neutron dose estimates over such a wide energy range. However, since the detection mechanism is not strictly related to radiation dose, one can expect substantial errors when applied to widely different source conditions. Although the original design of the BSS included a small 4mmx4mmO 6LiI(Eu) scintillator, other thermal neutron detectors has been used over the years: track detectors, activation foils, BF3 filled proportional counters, etc. In this study we chose a Boron loaded scintillator, EJ-254, as the thermal neutron detector. The neutron capture reaction on the boron has a Q value of 2.78 MeV of which 2.34 MeV is shared by the alpha and lithium particles. The high manufacturing costs, the encasement issue, the installation efficiency and the fabrication complexity, led us to the idea of replacing the sphere with a cubic moderator. This article describes the considerations, as well as the Monte-Carlo simulations done in order to examine the applicability of this idea

  5. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    Ghrib, M., E-mail: mondherghrib@yahoo.fr [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Gaidi, M.; Ghrib, T.; Khedher, N. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Ben Salam, M. [L3M, Department of Physics, Faculty of Sciences of Bizerte, 7021 Zarzouna (Tunisia); Ezzaouia, H. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia)

    2011-08-15

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  6. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    Ghrib, M.; Gaidi, M.; Ghrib, T.; Khedher, N.; Ben Salam, M.; Ezzaouia, H.

    2011-01-01

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  7. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    Siddiq, A.; El Sayed, Tamer S.

    2013-01-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline

  8. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    Park, Joong-Hyun; Han, Sang-Myeon; Park, Sang-Geun; Han, Min-Koo; Shin, Moon-Young

    2006-01-01

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiN X ) and silicon dioxide (SiO 2 ), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,λ=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiN X buffer layer is wider than SiO 2 and the maximum grain size slightly increased

  9. Silicon Qubits

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  10. Origin and chemical composition of the amorphous material from the intergrain pores of self-assembled cubic ZnS:Mn nanocrystals

    Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile

    2017-12-01

    We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.

  11. Shape Preserving Interpolation Using C2 Rational Cubic Spline

    Samsul Ariffin Abdul Karim

    2016-01-01

    Full Text Available This paper discusses the construction of new C2 rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters αi, βi, and γi. The sufficient conditions for the positivity are derived on one parameter γi while the other two parameters αi and βi are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with C2 continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and C2 continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives di, i=1,…,n-1. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new C2 rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is ft∈C3t0,tn is also investigated in detail.

  12. Synthesis of nanocrystalline Cu1-xTax composites using physical vapor deposition

    Savage, H.S.; Wang, H.; Rigsbee, J.M.

    1993-01-01

    Physical vapor deposition (PVD) processes provide the capability for creating new types of metallic, ceramic, and polymeric composites by allowing atomic-scale engineering of structure and chemistry. Because PVD processes provide the capacity for circumventing thermodynamic factors, such as solubility limits, it is possible to produce nonequilibrium alloys and materials with unique mixtures of phases. The ease by which PVD produces materials with nanocrystalline microstructures is an added benefit of these processes. This paper describes ion plating, a plasma-assisted PVD process, and its application for the development of a new class of nanoscale dispersion-strengthened Cu 1-x Ta x alloys. Copper-tantalum was selected as a model system because the extensive liquid miscibility gap and nearly zero mutual solid solubilities prevent creation of Cu-Ta alloys by conventional or rapid solidification processes. Microchemical analyses of the family of Cu 1-x Ta x alloys indicate that PVD can produce materials with any desired level of Ta. X-ray diffraction and transmission electron microscopy analyses show that the as-deposited microstructures consist generally of a Cu matrix supersaturated with Ta and containing a uniform dispersion of Ta particles with diameters below 10 nm. The Ta particles are face centered cubic (exceptionally large Ta particles, larger than ∼100 nm, are body centered cubic) and are oriented identically with the Cu matrix. Particle coarsening studies, at temperatures up to 900C and for times as long as 100 hours, indicate an extreme degree of microstructural stability. The Ta particles also appear highly effective at maintaining a submicron Cu matrix grain size even after annealing at 900C

  13. High-speed jet electrodeposition and microstructure of nanocrystalline Ni-Co alloys

    Qiao Guiying; Jing Tianfu; Wang Nan; Gao Yuwei; Zhao Xin; Zhou Jifeng; Wang Wei

    2005-01-01

    The jet electrodeposition from watts baths with a device of electrolyte jet was carried out to prepare nano-crystalline cobalt-nickel alloys. The influence of the concentration of Co 2+ ions in the electrolyte and electrolysis parameters, such as the cathodic current density, the temperature as well as the electrolyte jet speed, on the chemistry and microstructure of Ni-Co-deposit alloys were investigated. Experimental results indicated that increasing the Co 2+ ions concentration in the bath, the electrolyte jet speed and decreasing of the cathodic current density and decrease of the electrolyte temperature all results in an increase of cobalt content in the alloy. Detailed microstructure changes upon the changes of alloy composition and experimental conditions were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD results show the Ni-Co solid solution was formed through the jet electrodeposition. Phase constitution of solid solution changes progressively under different electrolyte concentration. Alloys with low Co concentration exhibit single phase of face-centered cubic (fcc) structure; The Co concentration over 60.39 wt.%, the alloys are composed of face-centered cubic (fcc) phase and hexagonal close-packed (hcp) phase. Furthermore, the formation of the nanostructured Ni-Co alloy deposit is investigated. Increasing the Co 2+ ions concentration in the bath, the cathodic current density, the electrolyte temperature and the electrolyte jet speed all result in the finer grains in the deposits. Additives such as saccharin in the electrolyte also favor the formation of the finer grains in the alloy deposits

  14. On q-power cycles in cubic graphs

    Bensmail, Julien

    2017-01-01

    In the context of a conjecture of Erdos and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning...... the remaining case q = 2 (which corresponds to the conjecture of Erdos and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have length 4 only, or 8 only....

  15. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  16. Thermodynamic and experimental study on phase stability in nanocrystalline alloys

    Xu Wenwu; Song Xiaoyan; Lu Nianduan; Huang Chuan

    2010-01-01

    Nanocrystalline alloys exhibit apparently different phase transformation characteristics in comparison to the conventional polycrystalline alloys. The special phase stability and phase transformation behavior, as well as the essential mechanisms of the nanocrystalline alloys, were described quantitatively in a nanothermodynamic point of view. By introducing the relationship between the excess volume at the grain boundary and the nanograin size, the Gibbs free energy was determined distinctly as a function of temperature and the nanograin size. Accordingly, the grain-size-dependence of the phase stability and phase transformation characteristics of the nanocrystalline alloy were calculated systematically, and the correlations between the phase constitution, the phase transformation temperature and the critical nanograin size were predicted. A series of experiments was performed to investigate the phase transformations at room temperature and high temperatures using the nanocrystalline Sm 2 Co 17 alloy as an example. The phase constitution and phase transformation sequence found in nanocrystalline Sm 2 Co 17 alloys with various grain-size levels agree well with the calculations by the nanothermodynamic model.

  17. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  18. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin

    Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present study explores the potential of bicontinous cubic liquid crystalline nanoparticles (LCNPs) for improving therapeutic potential of doxorubicin. METHODS: Phytantriol based Dox-LCNPs were prepared using hydrotrope method, optimized for various formulation components, process...

  19. Structural investigations on nanocrystalline Ni-W alloy films by transmission electron microscopy

    Klimenkov, M. [Institut fuer Materialforschung, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Bade, K., E-mail: klaus.bade@imt.fzk.d [Institut fuer Mikrostrukturtechnik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)

    2009-10-30

    Electrodeposited Ni-W alloys have been investigated in the as-deposited state by transmission electron microscopy in order to investigate the microstructural features in dependence of the tungsten content. Within the tungsten content range from 7 at.% up to 12 at.%, the microstructure is nanocrystalline characterized by a bimodal grain size distribution, consisting out of 20 to 200 nm sized grains and also larger grains with several 100 nm characteristic dimension. No clear trend in microstructure formation is visible with W content or deposition conditions in the investigated W content range. Only solid solution phase characteristics were observed. The lattice constant is 0.360 nm for 12 at.% W as derived from electron diffraction for the solid solution face centered cubic structure. Larger grains show twinning and stacking faults. Voids with diameter of a few nm were detected along with some multiple twinned particles, indicating high stress level during growth. About 2 at.% difference in the alloy composition from grain to grain was measured.

  20. Catalytic nanocrystalline coordination polymers as an efficient peroxidase mimic for labeling and optical immunoassays

    Čunderlová, Veronika; Hlaváček, Antonín; Horňáková, Veronika; Peterek, Miroslav; Němeček, Daniel; Skládal, Petr; Hampl, Aleš; Eyer, Luděk

    2016-01-01

    We report that nanocrystalline Prussian blue of the type Fe 4 [Fe(CN) 6 ] 3 is a powerful peroxidase mimic for use in labeling of biomolecules. The cubic nanocrystals typically have a diameter of 15 nm and are capable of catalyzing the oxidation of colorless 3,3′,5,5′-tetramethylbenzidine in the presence of H 2 O 2 to form an intensively colored product with an absorption maximum at 662 nm. The determined pseudo turnover number is ∼20,000 s −1 which is the highest value reported for nanoparticles of a size comparable to common proteins. We also present a method for the biotinylation of the surface of these nanocrystals, and show their use in competitive bioaffinity based assays of biotin and human serum albumin. The limits of detection are 0.35 and 0.27 μg mL −1 , respectively. The results prove the applicability of coordination polymers for signal amplification and also their compatibility with the format of enzyme linked immunosorbent assays. (author)

  1. Spinor bose gases in cubic optical lattice

    Mobarak, Mohamed Saidan Sayed Mohamed

    2014-01-01

    In recent years the quantum simulation of condensed-matter physics problems has resulted from exciting experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice. In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the global U (1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transformation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and particle number density in the superfluid phase. We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves to extremize only the effective Ginzburg-Landau action with respect to the order parameters. Without external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic (ferromagnetic) interactions, i.e. only the

  2. Nanodefects in ultrahard crystalline cubic boron nitride

    Nistor, S. V.; Stefan, M.; Goovaerts, E.; Schoemaker, D.

    2002-01-01

    Cubic boron nitride (cBN), the second hardest known material after diamond, exhibits high thermal conductivity and an excellent ability to be n or p doped, which makes it a strong candidate for the next generation of high-temperature micro optical and micro electronic devices. According to recent studies, cBN exhibits a better resistance to radiation damage than diamond, which suggests potential applications in extreme radiation environments. Crystalline cBN powders of up to 0.5 mm linear size is obtained in a similar way as diamond, by catalytic conversion of hexagonal BN (hBN) to cBN at even higher pressures (> 5GPa) and temperatures (∼ 1900 K). Considering the essential role played by the nanodefects (point defects and impurities) in determining its physical properties, it is surprising how limited is the amount of published data concerning the properties of nanodefects in this material, especially by Electron Paramagnetic Resonance (EPR) spectroscopy, the most powerful method for identification and characterization of nanodefects in both insulators and semiconductors. This seems to be due mainly to the absence of natural cBN gems and the extreme difficulties in producing even mm 3 sized synthetic crystals. We shall present our recent EPR studies on cBN crystalline powders, performed in a broad temperature range from room temperature (RT) down to 1.2 K on several sorts of large size cBN powder grits of yellow and amber color for industrial applications. Previous multifrequency (9.3 GHz and 95 GHz) EPR studies of brown to black cBN crystallites prepared with excess of boron, resulted in the discovery of two new types of paramagnetic point defects with different spectral properties, called the D1 and D2 centers. Our X(9.3 GHz)-band EPR investigations resulted in the observation in amber cBN crystalline powders of a spectrum with a strong temperature dependence of the lineshape. It was found that for high and low temperatures, respectively, the numerical

  3. The Combinatorial Rigidity Conjecture is False for Cubic Polynomials

    Henriksen, Christian

    2003-01-01

    We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995.......We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995....

  4. Interaction of dispersed cubic phases with blood components

    Bode, J C; Kuntsche, Judith; Funari, S S

    2013-01-01

    The interaction of aqueous nanoparticle dispersions, e.g. based on monoolein/poloxamer 407, with blood components is an important topic concerning especially the parenteral way of administration. Therefore, the influence of human and porcine plasma on dispersed cubic phases was investigated. Part...... activity of cubic phases based on monoolein and poloxamer 188, on soy phosphatidylcholine, glycerol dioleate and polysorbate 80 or the parenteral fat emulsion Lipofundin MCT 20%....

  5. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    Mallik, P K; Swain, P.K.; Patnaik, S.C

    2016-01-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles. (paper)

  6. Thermally Stimulated Currents in Nanocrystalline Titania

    Mara Bruzzi

    2018-01-01

    Full Text Available A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K, in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.

  7. Arsenic removal by magnetic nanocrystalline barium hexaferrite

    Patel, Hasmukh A.; Byun, Jeehye; Yavuz, Cafer T., E-mail: yavuz@kaist.ac.kr [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST) (Korea, Republic of)

    2012-07-15

    Nanoscale magnetite (Fe{sub 3}O{sub 4}) (<15 nm) is known to remove arsenic efficiently but is very difficult to separate or require high magnetic fields to separate out from the waste water after treatment. Anisotropic hexagonal ferrite (BaFe{sub 12}O{sub 19}, BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 {+-} 0.52 nm synthesized by thermolysis method at 320 Degree-Sign C do not show hexagonal phase, however, subsequent annealing at 750 Degree-Sign C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

  8. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  9. Nanocrystalline and ultrafine grain copper obtained by mechanical attrition

    Rodolfo Rodríguez Baracaldo

    2010-01-01

    Full Text Available This article presents a method for the sample preparation and characterisation of bulk copper having grain size lower than 1 μm (ultra-fine grain and lower than 100 nm grain size (nanocrystalline. Copper is initially manufactured by a milling/alloying me- chanical method thereby obtaining a powder having a nanocrystalline structure which is then consolidated through a process of warm compaction at high pressure. Microstructural characterisation of bulk copper samples showed the evolution of grain size during all stages involved in obtaining it. The results led to determining the necessary conditions for achieving a wide range of grain sizes. Mechanical characterisation indicated an increase in microhardness to values of around 3.40 GPa for unconsolida- ted nanocrystalline powder. Compressivee strength was increased by reducing the grain size, thereby obtaining an elastic limit of 650 MPa for consolidated copper having a ~ 62 nm grain size.

  10. Creep behavior of a nanocrystalline Fe-B-Si alloy

    Xiao, M.; Kong, Q.P.

    1997-01-01

    The research of nanocrystalline materials has attracted much attention in the world. In recent years, there have been several studies on their creep behavior. Among these, the authors have studied the tensile creep of a nanocrystalline Ni-P alloy (28 nm) at temperatures around 0.5 Tm (Tm is the melting point). The samples were prepared by the method of crystallization of amorphous ribbon. Based on the data of stress exponent and activation energy, they suggested that the creep was controlled by boundary diffusion; while the creep of the same alloy with a larger grain size (257 nm) was controlled by a different mechanism. In the present paper, the authors extend the research to the creep of a nanocrystalline Fe-B-Si alloy. The samples are also prepared by crystallization of amorphous ribbon. The samples such prepared have an advantage that the interfaces are naturally formed without artificial compaction and porosity

  11. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Remes, Zdenek [Institute of Physics ASCR v.v.i., Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Varga, Marian [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, Hsiung [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan (China); Kromka, Alexander [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Horak, Pavel [Nuclear Physics Institute, 250 68 Rez (Czech Republic)

    2015-11-15

    The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure. - Highlights: • Nitrogen implanted nanocrystalline diamond films exhibit ferromagnetism at room temperature. • Nitrogen implants made a Raman deviation from the typical nanocrystalline diamond films. • The ferromagnetism induced from the structure distortion is dominant at low temperature.

  12. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    Abbas, Y.M., E-mail: ymabbas@live.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Mansour, S.A.; Ibrahim, M.H. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Ali, Shehab E., E-mail: shehab_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt)

    2011-11-15

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: > The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. > The transmission electronic microscope analysis confirmed the X-ray results. > The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  13. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    Abbas, Y.M.; Mansour, S.A.; Ibrahim, M.H.; Ali, Shehab E.

    2011-01-01

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: → The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. → The transmission electronic microscope analysis confirmed the X-ray results. → The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  14. Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals

    Song Xiaoyan; Zhang Jiuxing; Li Lingmei; Yang Keyong; Liu Guoquan

    2006-01-01

    We investigated the correlation of thermodynamics and grain growth kinetics of nanocrystalline metals both theoretically and experimentally. A model was developed to describe the thermodynamic properties of nanograin boundaries, which could give reliable predictions in the destabilization characteristics of nanograin structures and the slowing down of grain growth kinetics at a constant temperature. Both the temperature-varying and isothermal nanograin growth behaviors in pure nanocrystalline Co were studied to verify the thermodynamic predictions. The experimental results showing that discontinuous nanograin growth takes place at a certain temperature and grain growth rate decreases monotonically with time confirm our thermodynamics-based description of nanograin growth characteristics. Therefore, we propose a thermodynamic viewpoint to explain the deviation of grain growth kinetics in nanocrystalline metals from those of polycrystalline materials

  15. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  16. Local photoconductivity of microcrystalline silicon thin films measured by conductive atomic force microscopy

    Ledinský, Martin; Fejfar, Antonín; Vetushka, Aliaksi; Stuchlík, Jiří; Rezek, Bohuslav; Kočka, Jan

    2011-01-01

    Roč. 5, 10-11 (2011), s. 373-375 ISSN 1862-6254 R&D Projects: GA MŠk(CZ) LC06040; GA MŠk(CZ) MEB061012; GA AV ČR KAN400100701; GA MŠk LC510 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous silicon * nanocrystalline silicon * thin films * atomic force microscopy * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.218, year: 2011

  17. Characteristics of exciton photoluminescence kinetics in low-dimensional silicon structures

    Sachenko, A V; Manojlov, E G; Svechnikov, S V

    2001-01-01

    The time-resolved visible photoluminescence of porous nanocrystalline silicon films obtained by laser ablation have been measured within the temperature range 90-300 K. A study has been made of the interrelationship between photoluminescence characteristics (intensity, emission spectra, relaxation times, their temperature dependencies and structural and dielectric properties (size and shapes of Si nanocrystals, oxide phase of nanocrystal coating, porosity). A photoluminescence model is proposed that describes photon absorption and emission occurring in quantum-size Si nanocrystals while coupled subsystems of electron-hole pairs and excitons take part in the recombination. Possible excitonic Auger recombination mechanism in low-dimensional silicon structures is considered

  18. Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al-7.5Mg alloy

    Lee, Z.; Witkin, D.B.; Radmilovic, V.; Lavernia, E.J.; Nutt, S.R.

    2005-01-01

    The microstructure, mechanical properties and deformation response of bimodal structured nanocrystalline Al-7.5Mg alloy were investigated. Grain refinement was achieved by cryomilling of atomized Al-7.5Mg powders, and then cryomilled nanocrystalline powders blended with 15 and 30% unmilled coarse-grained powders were consolidated by hot isostatic pressing followed by extrusion to produce bulk nanocrystalline alloys. Bimodal bulk nanocrystalline Al-7.5Mg alloys, which were comprised of nanocrystalline grains separated by coarse-grain regions, show balanced mechanical properties of enhanced yield and ultimate strength and reasonable ductility and toughness compared to comparable conventional alloys and nanocrystalline metals. The investigation of tensile and hardness test suggests unusual deformation mechanisms and interactions between ductile coarse-grain bands and nanocrystalline regions

  19. Texture-dependent twin formation in nanocrystalline thin Pd films

    Wang, B.; Idrissi, H.; Shi, H.; Colla, M.S.; Michotte, S.; Raskin, J.P.; Pardoen, T.; Schryvers, D.

    2012-01-01

    Nanocrystalline Pd films were produced by electron-beam evaporation and sputter deposition. The electron-beam-evaporated films reveal randomly oriented nanograins with a relatively high density of growth twins, unexpected in view of the high stacking fault energy of Pd. In contrast, sputter-deposited films show a clear 〈1 1 1〉 crystallographic textured nanostructure without twins. These results provide insightful information to guide the generation of microstructures with enhanced strength/ductility balance in high stacking fault energy nanocrystalline metallic thin films.

  20. Engineering of giant magnetoimpedance effect of amorphous and nanocrystalline microwires

    V. Zhukova

    2016-12-01

    Full Text Available We present our studies of the factors affecting soft magnetic properties and giant magnetoimpedance effect in thin amorphous and nanocrystalline microwires. We showed that the magnetoelastic anisotropy is one of the most important parameters that determine magnetic softness and GMI effect of glass-coated microwires  and annealing can be very effective for manipulation the magnetic properties of amorphous ferromagnetic glass-coated microwires. Considerable magnetic softening and increasing of the GMI effect is observed in Fe-rich nanocrystalline FINEMET-type glass-coated microwires after the nanocrystallization.

  1. Inter- and intra-agglomerate fracture in nanocrystalline nickel.

    Shan, Zhiwei; Knapp, J A; Follstaedt, D M; Stach, E A; Wiezorek, J M K; Mao, S X

    2008-03-14

    In situ tensile straining transmission electron microscopy tests have been carried out on nanocrystalline Ni. Grain agglomerates (GAs) were found to form very frequently and rapidly ahead of an advancing crack with sizes much larger than the initial average grain size. High-resolution electron microscopy indicated that the GAs most probably consist of nanograins separated by low-angle grain boundaries. Furthermore, both inter- and intra-GA fractures were observed. The observations suggest that these newly formed GAs may play an important role in the formation of the dimpled fracture surfaces of nanocrystalline materials.

  2. High-pressure structural behaviour of nanocrystalline Ge

    Wang, H; Liu, J F; He, Y; Wang, Y; Chen, W; Jiang, J Z; Olsen, J Staun; Gerward, L

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition pressure and the bulk modulus

  3. Production of nanocrystalline metal powders via combustion reaction synthesis

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  4. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-03

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  5. Tribological properties of nanocrystalline diamond films

    Erdemir, A.; Fenske, G.R.; Krauss, A.R.; Gruen, D.M.; McCauley, T.; Csencsits, R.T. [Argonne National Lab., IL (United States). Energy Technology Div.

    1999-11-01

    In this paper, we present the friction and wear properties of nanocrystalline diamond (NCD) films grown in Ar-fullerene (C{sub 60}) and Ar-CH{sub 4} microwave plasmas. Specifically, we will address the fundamental tribological issues posed by these films during sliding against Si{sub 3}N{sub 4} counterfaces in ambient air and inert gases. Grain sizes of the films grown by the new method are very small (10-30 nm) and are much smoother (20-40 nm, root mean square) than those of films grown by the conventional H{sub 2}-CH{sub 4} microwave-assisted chemical vapor deposition process. Transmission electron microscopy (TEM) revealed that the grain boundaries of these films are very sharp and free of nondiamond phases. The microcrystalline diamond films grown by most conventional methods consist of large grains and a rough surface finish, which can cause severe abrasion during sliding against other materials. The friction coefficients of films grown by the new method (i.e. in Ar-C{sub 60} and Ar-CH{sub 4} plasmas) are comparable with those of natural diamond, and wear damage on counterface materials is minimal. Fundamental tribological studies indicate that these films may undergo phase transformation during long-duration, high-speed and/or high-load sliding tests and that the transformation products trapped at the sliding interfaces can intermittently dominate friction and wear performance. Using results from a combination of TEM, electron diffraction, Raman spectroscopy, and electron energy loss spectroscopy, we describe the structural chemistry of the debris particles trapped at the sliding interfaces and elucidate their possible effects on friction and wear of NCD films in dry N{sub 2}. Finally, we suggest a few potential applications in which NCD films can improve performance and service lives. (orig.)

  6. Air annealing induced transformation of cubic CdSe microspheres into hexagonal nanorods and micro-pyramids

    Kale, Rohidas B., E-mail: rb_kale@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400032, M.S. (India); Lu, Shih-Yuan, E-mail: sylu@mx.nthu.edu.tw [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30013, Taiwan (China)

    2015-08-15

    Highlights: • Nanocrystalline CdSe thin films were deposited using inexpensive CBD method. • Air annealing induced structural and interesting morphological transformation. • The as-deposited CdSe thin films showed a blue shift in its optical spectra. • The films showed a red shift in their optical spectra after annealing. - Abstract: CdSe thin films have been deposited onto glass substrates using a chemical bath deposition method at relatively low temperatures (40 °C). The precursors used for the deposition of the thin films are cadmium nitrate hexahydrate, freshly prepared sodium selenosulfate solution and aqueous ammonia solution as a complex as well as pH adjusting reagent. In order to study the influence of air annealing on their physicochemical properties, the as-deposited CdSe thin films were further annealed at 200 °C and 400 °C for 3 h in air atmosphere. Significant changes in the morphology and photonic properties were clearly observed after the thermal annealing of the CdSe thin films. The as-deposited CdSe films grow with the cubic phase that transforms into mixed cubic and hexagonal wurtzite phase with improved crystalline quality of the films after the air annealing. Morphological observation reveals that the as-deposited thin films grow with multilayer that consists of network or mesh like structure, uniformly deposited on the glass substrate over which microspheres are uniformly distributed. After air annealing, CdSe nanorods emerged from the microspheres along with conversion of few microspheres into micro-pyramids. The UV–visible study illustrates that the as-deposited thin film shows blue shifts in its optical spectrum and the spectrum was red-shifted after annealing the CdSe thin films. The band gap of the CdSe thin films were found to be decreased after the thermal treatment.

  7. Fast response time alcohol gas sensor using nanocrystalline F

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol–gel method. Sarbani Basu Yeong-Her Wang C Ghanshyam Pawan Kapur. Volume 36 Issue 4 August 2013 pp 521-533 ...

  8. High-pressure structural behavior of nanocrystalline Ge

    Wang, H.; Liu, J. F.; Yan, H.

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transi...

  9. Induced anisotropy effect in nanocrystalline cores for GFCBs

    Waeckerle, T. E-mail: thierry.waeckerle@imphy.usinor.com; Verin, Ph.; Cremer, P.; Gautard, D

    2000-06-02

    Nanocrystalline materials are very efficient for GFCB cores with flat hysteresis loop, especially if permeability may be raised in keeping low the remanent induction. This can be achieved with peculiar field annealing . A thermodynamic model is proposed to explain the experimental evidence.

  10. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was .... 94·37% CaCO3, hence in order to prepare 1 M Ca2+ ion solu- ... requires an acid or base catalyst hence the pH of the solu-.

  11. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanoparticles of different grain size.

  12. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was used as a reductant or fuel and nitrate ions present in metal nitrate acts as an oxidizer. The phase purity of the wollastonite was ...

  13. New route to the fabrication of nanocrystalline diamond films

    Varshney, Deepak; Morell, Gerardo; Palomino, Javier; Resto, Oscar; Gil, Jennifer; Weiner, Brad R.

    2014-01-01

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production

  14. Quartz crystal microbalance gas sensor with nanocrystalline diamond sensitive layer

    Varga, Marián; Laposa, A.; Kulha, Pavel; Kroutil, J.; Husák, M.; Kromka, Alexander

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2591-2597 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : gas sensor * nanocrystalline diamond * quartz resonator * thickness shear mode Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 1.522, year: 2015

  15. Transparent nanocrystalline ZnO films prepared by spin coating

    Berber, M. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany)]. E-mail: mete.berber@sustech.de; Bulto, V. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Kliss, R. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Hahn, H. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Forschungszentrum Karlsruhe, Institute for Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Joint Research Laboratory Nanomaterials, TU Darmstadt, Institute of Materials Science, Petersenstr. 23, 64287 Darmstadt (Germany)

    2005-09-15

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents.

  16. Transparent nanocrystalline ZnO films prepared by spin coating

    Berber, M.; Bulto, V.; Kliss, R.; Hahn, H.

    2005-01-01

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents

  17. Nanocrystalline spinel ferrites by solid state reaction route

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  18. Electrodeposited nanocrystalline bronze alloys as replacement for Ni

    Hovestad, A.; Tacken, R.A.; Mannetje, H.H.'t

    2008-01-01

    Nanocrystalline white-bronze, CuSn, electroplating was investigated as alternative to Ni plating as undercoat for noble metals in jewellery applications. A strongly acidic plating bath was developed with an organic additive to suppress hydrogen evolution and obtain bright coatings. Polarization

  19. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  20. Adhesion of osteoblasts on chemically patterned nanocrystalline diamonds

    Kalbáčová, M.; Michalíková, Lenka; Barešová, V.; Kromka, Alexander; Rezek, Bohuslav; Kmoch, S.

    2008-01-01

    Roč. 245, č. 10 (2008), s. 2124-2127 ISSN 0370-1972 R&D Projects: GA AV ČR KAN400100701 Institutional research plan: CEZ:AV0Z10100521 Keywords : cell growth * nanocrystalline diamond * surface termination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.166, year: 2008

  1. Oxygen reduction on nanocrystalline ruthenia-local structure effects

    Abbott, Daniel F.; Mukerjee, Sanjeev; Petrykin, Valery

    2015-01-01

    Nanocrystalline ruthenium dioxide and doped ruthenia of the composition Ru1-xMxO2 (M = Co, Ni, Zn) with 0 ≤ x ≤ 0.2 were prepared by the spray-freezing freeze-drying technique. The oxygen reduction activity and selectivity of the prepared materials were evaluated in alkaline media using the RRDE ...

  2. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor

    Ižák, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 129, May (2015), 95-99 ISSN 0927-7765 R&D Projects: GA ČR GAP108/12/0996 Grant - others:AVČR(CZ) M100101209 Institutional support: RVO:68378271 Keywords : field-effect transistors * nanocrystalline diamond * osteoblastic cells * leakage currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.902, year: 2015

  3. Luminescence of nanocrystalline ZnSe:Mn2+

    Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A.

    2000-01-01

    The luminescence properties of nanocrystalline ZnSe:Mn^(2+) prepared via an inorganic chemical synthesis are described. Photoluminescence spectra show distinct ZnSe and Mn^(2+) related emissions, both of which are excited via the ZnSe host lattice. The Mn^(2+) emission wavelength and the

  4. Geochemistry of silicon isotopes

    Ding, Tiping; Li, Yanhe; Gao, Jianfei; Hu, Bin [Chinese Academy of Geological Science, Beijing (China). Inst. of Mineral Resources; Jiang, Shaoyong [China Univ. of Geosciences, Wuhan (China).

    2018-04-01

    Silicon is one of the most abundant elements in the Earth and silicon isotope geochemistry is important in identifying the silicon source for various geological bodies and in studying the behavior of silicon in different geological processes. This book starts with an introduction on the development of silicon isotope geochemistry. Various analytical methods are described and compared with each other in detail. The mechanisms of silicon isotope fractionation are discussed, and silicon isotope distributions in various extraterrestrial and terrestrial reservoirs are updated. Besides, the applications of silicon isotopes in several important fields are presented.

  5. Protective silicon coating for nanodiamonds using atomic layer deposition

    Lu, J.; Wang, Y.H.; Zang, J.B.; Li, Y.N.

    2007-01-01

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH 4 ). The coating was performed by sequential reaction of SiH 4 saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability

  6. Protective silicon coating for nanodiamonds using atomic layer deposition

    Lu, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Wang, Y.H. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Zang, J.B. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China) and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)]. E-mail: diamondzjb@163.com; Li, Y.N. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)

    2007-01-30

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH{sub 4}). The coating was performed by sequential reaction of SiH{sub 4} saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability.

  7. [Multimodal medical image registration using cubic spline interpolation method].

    He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-12-01

    Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.

  8. Deformation of the cubic open string field theory

    Lee, Taejin, E-mail: taejin@kangwon.ac.kr

    2017-05-10

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  9. Deformation of the cubic open string field theory

    Taejin Lee

    2017-05-01

    Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  10. Cubic interactions of Maxwell-like higher spins

    Francia, Dario [Scuola Normale Superiore and INFN,Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Monaco, Gabriele Lo [Dipartimento di Fisica, Università di Pisa,Piazza Fibonacci, 3, I-56126, Pisa (Italy); Dipartimento di Fisica, Università di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Mkrtchyan, Karapet [Max Planck Institut für Gravitationsphysik,Am Mühlenberg 1, Potsdam 14476 (Germany)

    2017-04-12

    We study the cubic vertices for Maxwell-like higher-spins in flat and (A)dS background spaces of any dimension. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among different particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.

  11. Deformation of the cubic open string field theory

    Lee, Taejin

    2017-01-01

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  12. Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation

    Varam, Sreedevi; Rajulapati, Koteswararao V., E-mail: kvrse@uohyd.ernet.in; Bhanu Sankara Rao, K.

    2014-02-05

    Nanocrystalline aluminium powder synthesized using high energy ball milling process was characterized by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The studies indicated the powder having an average grain size of ∼42 nm. The consolidation of the powder was carried out by high-pressure compaction using a uni-axial press at room temperature by applying a pressure of 1.5 GPa. The cold compacted bulk sample having a density of ∼98% was subjected to nanoindentation which showed an average hardness and elastic modulus values of 1.67 ± 0.09 GPa and 83 ± 8 GPa respectively at a peak force of 8000 μN and a strain rate of 10{sup −2} s{sup −1}. Achieving good strength along with good ductility is challenging in nanocrystalline metals. When enough sample sizes are not available to measure ductility and other mechanical properties as per ASTM standards, as is the case with nanocrystalline materials, nanoindentation is a very promising technique to evaluate strain rate sensitivity. Strain rate sensitivity is a good measure of ductility and in the present work it is measured by performing indentation at various loads with varying loading rates. Strain rate sensitivity values of 0.024–0.054 are obtained for nanocrystalline Al which are high over conventional coarse grained Al. In addition, Scanning Probe Microscopy (SPM) image of the indent shows that there is some plastically flown region around the indent suggesting that this nanocrystalline aluminium is ductile.

  13. Generalized Born-Infeld actions and projective cubic curves

    Ferrara, S. [Department of Physics, CERN Theory Division, CH - 1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044, Frascati (Italy); Porrati, M. [CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY, 10003 (United States); Sagnotti, A. [Department of Physics, CERN Theory Division, CH - 1211 Geneva 23 (Switzerland); Stora, R. [Department of Physics, CERN Theory Division, CH - 1211 Geneva 23 (Switzerland); Laboratoire d' Annecy-le-Vieux de Physique Theorique (LAPTH), F-74941, Annecy-le-Vieux, Cedex (France); Yeranyan, A. [INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044, Frascati (Italy); Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89A, 00184, Roma (Italy)

    2015-04-01

    We investigate U(1){sup n} supersymmetric Born-Infeld Lagrangians with a second non-linearly realized supersymmetry. The resulting non-linear structure is more complex than the square root present in the standard Born-Infeld action, and nonetheless the quadratic constraints determining these models can be solved exactly in all cases containing three vector multiplets. The corresponding models are classified by cubic holomorphic prepotentials. Their symmetry structures are associated to projective cubic varieties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. 3D confocal imaging in CUBIC-cleared mouse heart

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-07-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  15. Eisenstein Series Identities Involving the Borweins' Cubic Theta Functions

    Ernest X. W. Xia

    2012-01-01

    Full Text Available Based on the theories of Ramanujan's elliptic functions and the (p, k-parametrization of theta functions due to Alaca et al. (2006, 2007, 2006 we derive certain Eisenstein series identities involving the Borweins' cubic theta functions with the help of the computer. Some of these identities were proved by Liu based on the fundamental theory of elliptic functions and some of them may be new. One side of each identity involves Eisenstein series, the other products of the Borweins' cubic theta functions. As applications, we evaluate some convolution sums. These evaluations are different from the formulas given by Alaca et al.

  16. Regularizing cubic open Neveu-Schwarz string field theory

    Berkovits, Nathan; Siegel, Warren

    2009-01-01

    After introducing non-minimal variables, the midpoint insertion of Y Y-bar in cubic open Neveu-Schwarz string field theory can be replaced with an operator N ρ depending on a constant parameter ρ. As in cubic open superstring field theory using the pure spinor formalism, the operator N ρ is invertible and is equal to 1 up to a BRST-trivial quantity. So unlike the linearized equation of motion Y Y-bar QV = 0 which requires truncation of the Hilbert space in order to imply QV = 0, the linearized equation N ρ QV = 0 directly implies QV = 0.

  17. 3D confocal imaging in CUBIC-cleared mouse heart

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-01-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  18. Total Positivity of the Cubic Trigonometric Bézier Basis

    Xuli Han

    2014-01-01

    Full Text Available Within the general framework of Quasi Extended Chebyshev space, we prove that the cubic trigonometric Bézier basis with two shape parameters λ and μ given in Han et al. (2009 forms an optimal normalized totally positive basis for λ,μ∈(-2,1]. Moreover, we show that for λ=-2 or μ=-2 the basis is not suited for curve design from the blossom point of view. In order to compute the corresponding cubic trigonometric Bézier curves stably and efficiently, we also develop a new corner cutting algorithm.

  19. Superconductivity in heavily boron-doped silicon carbide

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  20. Structural, magnetic and electrical characterization of Mg–Ni nano-crystalline ferrites prepared through egg-white precursor

    Gabal, M.A., E-mail: mgabalabdonada@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al Angari, Y.M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Zaki, H.M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt)

    2014-08-01

    Soft Ni–Mg nano-crystalline ferrites with the general formula Ni{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} (0≤x≤1) were synthesized through egg-white method. The precursor decomposition was followed by thermal analysis techniques. The obtained ferrites were characterized by X-ray diffraction, Fourier transform infrared and transmission electron microscopy measurements. X-ray diffraction showed the cubic spinel structure with crystallite size variation within the range 20–45 nm. The different structural data obtained were discussed in the view of ionic radii of the entire ions and their distribution within the lattice. The appropriate suggested cation distribution was then confirmed through Fourier transform infrared as well as electrical and magnetic properties measurements. Transmission electron microscopy exhibited a nano-crystal aggregation phenomenon. The observed size of the spherical particles agrees well with that obtained by X-ray diffraction. Hysteresis loop measurements revealed dilution in the obtained magnetic parameters by Mg-substitution due to the preferential occupancy of Mg{sup 2+} ions by the octahedral sites. Ac-electrical conductivity as a function of temperature and frequency exhibited a semi-conducting behavior with conductivity decreases by increasing Mg-content. The change in the slope of the curve indicates the changing in the conduction mechanism from electron hopping to polaron mechanism by increasing temperature. The obtained structural, electrical and magnetic properties were explained based on the cation distribution among tetrahedral and octahedral sites. - Highlights: • Ni–Mg nano-crystalline ferrites were synthesized through egg-white method. • An appropriate cation distribution was suggested. • Conductivity revealed a change in conduction mechanism by increasing temperature. • The effect of Mg-substitution on different properties was studied.

  1. NATO Advanced Research Workshop on Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors

    Idzikowski, Bogdan; Miglierini, Marcel

    2005-01-01

    Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the aver...

  2. Visible and infrared photoluminescence from erbium-doped silicon nanocrystals produced by rf sputtering

    Cerqueira, M.F.; Alpuim, P. [Departamento de Fisica, Universidade do Minho, Braga (Portugal); Losurdo, M. [Plasma Chemistry Research Center, CNR, Bari (Italy); Monteiro, T.; Soares, M.J.; Peres, M. [Departamento de Fisica, Universidade de Aveiro, Aveiro (Portugal); Stepikova, M. [Institute for Physics of Microstructures RAS, 603600 Nizhnij Novgorod GSP-105 (Russian Federation)

    2007-06-15

    Erbium-doped low-dimensional Si films with different microstructures were deposited by reactive magnetron sputtering on glass substrates by varying the hydrogen flow rate during deposition. Amorphous, micro- and nanocrystalline samples, consisting of Si nanocrystalls embedded in silicon-based matrices with different structures, were achieved with optical properties in the visible and IR depending on nanocrystalline fraction and matrix structure and chemical composition. Structural characterization was performed by X-ray diffraction in the grazing incidence geometry and Raman spectroscopy. The chemical composition was studied using RBS/ERD techniques. Spectroscopic ellipsometry was combined with the previous techniques to further resolve the film microstructure and composition. In particular, the distribution along the film thickness of the volume fractions of nanocrystalline/amorphous silicon and SiO{sub x} phases has been obtained. In this contribution we discuss visible and infrared photoluminescence as a function of sample microstructure and of the oxygen/hydrogen concentration ratio present in the matrix. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  4. Specific heat of the simple-cubic Ising model

    Feng, X.; Blöte, H.W.J.

    2010-01-01

    We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions

  5. Higher-Order Approximation of Cubic-Quintic Duffing Model

    Ganji, S. S.; Barari, Amin; Babazadeh, H.

    2011-01-01

    We apply an Artificial Parameter Lindstedt-Poincaré Method (APL-PM) to find improved approximate solutions for strongly nonlinear Duffing oscillations with cubic-quintic nonlinear restoring force. This approach yields simple linear algebraic equations instead of nonlinear algebraic equations...

  6. C2-rational cubic spline involving tension parameters

    preferred which preserves some of the characteristics of the function to be interpolated. In order to tackle such ... Shape preserving properties of the rational (cubic/quadratic) spline interpolant have been studied ... tension parameters which is used to interpolate the given monotonic data is described in. [6]. Shape preserving ...

  7. Initial post dynamic buckling of a quadratic-cubic column ...

    In this investigation, we determine the dynamic buckling load of an imperfect finite column resting on a mixed quadratic-cubic nonlinear elastic foundation trapped by an explicitly time dependent sinusoidally slowly varying dynamic load .The resultant coefficients are dynamically slowly varying and the formulation contains ...

  8. Phonons in face-centred cubic calcium and strontium

    Singh, S.P.; Rathore, R.P.S.

    1984-01-01

    The axially symmetric and unpaired forces are employed to analyse the phonon dispersion and elastic behaviour of face centred cubic calcium and strontium which have so far not been studied adequately. The model with three parameters predicts the results which agree marvellously with the recently measured data. (author)

  9. One billion cubic meters of gas produced in Kikinda area

    Vicicevic, M; Duric, N

    1969-10-01

    The Kikinda gas reservoir has just passed a milestone in producing one billion cubic meters of natural gas. The reservoir was discovered in 1962, and its present production amounts to 26 million cu m. One of the biggest problems was formation of hydrates, which has successfully been solved by using methanol. Four tables show production statistics by years and productive formations.

  10. Physical vapor deposition of cubic boron nitride thin films

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  11. Particle Creation in Oscillating Cavities with Cubic and Cylindrical Geometry

    Setare, M. R.; Dinani, H. T.

    2008-04-01

    In the present paper we study the creation of massless scalar particles from the quantum vacuum due to the dynamical Casimir effect by oscillating cavities with cubic and cylindrical geometry. To the first order of the amplitude we derive the expressions for the number of the created particles.

  12. Global Well-Posedness for Cubic NLS with Nonlinear Damping

    Antonelli, Paolo

    2010-11-04

    We study the Cauchy problem for the cubic nonlinear Schrödinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions. © Taylor & Francis Group, LLC.

  13. Influence of strontium on the cubic to ordered hexagonal phase

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 23; Issue 6. Influence of strontium on the cubic to ordered hexagonal phase transformation in barium magnesium niobate. M Thirumal A K Ganguli. Phase Transitions Volume 23 Issue 6 December 2000 pp 495-498 ...

  14. Exact solutions for the cubic-quintic nonlinear Schroedinger equation

    Zhu Jiamin; Ma Zhengyi

    2007-01-01

    In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions

  15. Estimating the board foot to cubic foot ratio

    Steve P. Verrill; Victoria L. Herian; Henry N. Spelter

    2004-01-01

    Certain issues in recent softwood lumber trade negotiations have centered on the method for converting estimates of timber volumes reported in cubic meters to board feet. Such conversions depend on many factors; three of the most important of these are log length, diameter, and taper. Average log diameters vary by region and have declined in the western United States...

  16. Temperature dependence of critical resolved shear stress for cubic metals

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  17. A Unified Approach to Teaching Quadratic and Cubic Equations.

    Ward, A. J. B.

    2003-01-01

    Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

  18. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  19. Vibrational thermodynamics of Fe90Zr7B3 nanocrystalline alloy from nuclear inelastic scattering

    Stankov, S.; Miglierini, M.; Chumakov, A. I.

    2010-01-01

    Recently we determined the iron-partial density of vibrational states (DOS) of nanocrystalline Fe(90)Zr(7)B(3) (Nanoperm), synthesized by crystallization of an amorphous precursor, for various stages of nanocrystallization separating the DOS of the nanograins from that of the interfaces [S. Stank......, vibrational entropy, and lattice specific heat as the material transforms from amorphous, through nanocrystalline, to fully crystallized state. The reported results shed new light on the previously observed anomalies in the vibrational thermodynamics of nanocrystalline materials....

  20. HRTEM analysis on nanocrystalline BaTiO3 and PbTiO3: size effects on ferroelectric phase transition temperature

    Bursill, L.A.; Jiang, B.; Peng, J.L.; Zhong, W.L.; Zhang, P.L.

    1997-01-01

    High-Resolution Transmission Electron Microscopic studies of nanocrystaline particles of BaTiO 3 and PbTiO 3 are reported. There are characteristic differences observed for BaTiO 3 prepared using sol gel (SG) and steric acid gel (SAG) methods. The former exhibit a critical size below which there is no paraelectric/ferroelectric phase transition, whereas BaTiO 3 prepared via the SAG route remained cubic for all conditions. The SAG preparations always showed chemical intergrowth defects whereas the SG preparations were single phase. Atomic resolution images of both varieties showed interesting surface steps and surface relaxations/reconstructions of some facets. Nanocrystalline PbTiO 3 prepared by the SG route remains tetragonal, albeit with decreasing c/a ratio, down to 25nm diameter. HRTEM observations of nanocrystalline PbTiO 3 are also presented. X-ray diffraction, dielectric and Raman scattering measurements also demonstrate pronounced size effects. The relationship between the observed nanostructures and size effects on the physical properties is discussed. 6 refs., 1 tab., 6 figs

  1. Silicon Thin-Film Solar Cells

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  2. Cationic Phospholipids Forming Cubic Phases: Lipoplex Structure and Transfection Efficiency

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C. (NWU)

    2008-10-29

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl-sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl-sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  3. Cationic phospholipids forming cubic phases: lipoplex structure and transfection efficiency.

    Koynova, Rumiana; Wang, Li; Macdonald, Robert C

    2008-01-01

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl- sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl- sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 degrees C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 degrees C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl- sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  4. INVESTIGATION OF CURVES SET BY CUBIC DISTRIBUTION OF CURVATURE

    S. A. Ustenko

    2014-03-01

    Full Text Available Purpose. Further development of the geometric modeling of curvelinear contours of different objects based on the specified cubic curvature distribution and setpoints of curvature in the boundary points. Methodology. We investigate the flat section of the curvilinear contour generating under condition that cubic curvature distribution is set. Curve begins and ends at the given points, where angles of tangent slope and curvature are also determined. It was obtained the curvature equation of this curve, depending on the section length and coefficient c of cubic curvature distribution. The analysis of obtained equation was carried out. As well as, it was investigated the conditions, in which the inflection points of the curve are appearing. One should find such an interval of parameter change (depending on the input data and the section length, in order to place the inflection point of the curvature graph outside the curve section borders. It was determined the dependence of tangent slope of angle to the curve at its arbitrary point, as well as it was given the recommendations to solve a system of integral equations that allow finding the length of the curve section and the coefficient c of curvature cubic distribution. Findings. As the result of curves research, it is found that the criterion for their selection one can consider the absence of inflection points of the curvature on the observed section. Influence analysis of the parameter c on the graph of tangent slope angle to the curve showed that regardless of its value, it is provided the same rate of angle increase of tangent slope to the curve. Originality. It is improved the approach to geometric modeling of curves based on cubic curvature distribution with its given values at the boundary points by eliminating the inflection points from the observed section of curvilinear contours. Practical value. Curves obtained using the proposed method can be used for geometric modeling of curvilinear

  5. Interaction of Light with Metallized Ultrathin Silicon Membrane

    Shome, Krishanu

    Freestanding metallized structures, a few tens of nanometer thick, show promise in creating flow-through sensors, single molecule detectors and novel solar cells. In this thesis we study test structures that are a step towards creating such devices. Finite- difference time-domain simulations have been used to understand and predict the interaction of light with such devices. Porous nanocrystalline silicon membrane is a novel freestanding layer structure that has been used as a platform to fabricate and study sensors and novel slot nanohole devices. Optical mode studies of the sensing structures, together with the method of fabrication inspired the creation of ultrathin freestanding hydrogenated amorphous silicon p-i-n junctions solar cells. All the freestanding structures used in this thesis are just a few tens of nanometers in thicknesses. In the first part of the thesis the sensing properties of the metallized porous nanocrystalline structure are studied. The surprising blueshift associated with the sensing peak is observed experimentally and predicted theoretically with the help of simulations. Polarization dependence of the membranes is predicted and confirmed for angled deposition of metal on the membranes. In the next part, a novel slot structure is fabricated and modeled to study the slot effect in nanohole metal-insulator-metal structures. Atomic layer deposition of alumina is used to conformally deposit alumina within the nanohole to create the slot structure. Simulation models were used to calculate the lowest modal volume of 4x10-5 mum3 for an optimized structure. In the last part of the thesis, freestanding solar cells are fabricated by effectively replacing the porous nanocrystalline silicon layer of the membranes with a hydrogenated amorphous silicon p-i-n junction with metal layers on both sides of the p-i-n junction. The metal layers act both as electrical contacts as well as mirrors for a Fabry Perot cavity resonator. This helps in tuning the

  6. Buried oxide layer in silicon

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  7. Synthesis characterization and luminescence studies of gamma irradiated nanocrystalline yttrium oxide

    Shivaramu, N. J.; Lakshminarasappa, B. N.; Nagabhushana, K. R.; Singh, Fouran

    2016-02-01

    Nanocrystalline Y2O3 is synthesized by solution combustion technique using urea and glycine as fuels. X-ray diffraction (XRD) pattern of as prepared sample shows amorphous nature while annealed samples show cubic nature. The average crystallite size is calculated using Scherrer's formula and is found to be in the range 14-30 nm for samples synthesized using urea and 15-20 nm for samples synthesized using glycine respectively. Field emission scanning electron microscopy (FE-SEM) image of 1173 K annealed Y2O3 samples show well separated spherical shape particles and the average particle size is found to be in the range 28-35 nm. Fourier transformed infrared (FTIR) and Raman spectroscopy reveals a stretching of Y-O bond. Electron spin resonance (ESR) shows V- center, O2- and Y2 + defects. A broad photoluminescence (PL) emission with peak at 386 nm is observed when the sample is excited with 252 nm. Thermoluminescence (TL) properties of γ-irradiated Y2O3 nanopowder are studied at a heating rate of 5 K s- 1. The samples prepared by using urea show a prominent and well resolved peak at 383 K and a weak one at 570 K. It is also found that TL glow peak intensity (Im1) at 383 K increases with increase in γ-dose up to 6.0 kGy and then decreases with increase in dose. However, glycine used Y2O3 shows a prominent TL glow with peaks at 396 K and 590 K. Among the fuels, urea used Y2O3 shows simple and well resolved TL glows. This might be due to fuel and hence particle size effect. The kinetic parameters are calculated by Chen's glow curve peak shape method and results are discussed in detail.

  8. Paramagnetic centers in nanocrystalline TiC/C system

    Guskos, N.; Bodziony, T.; Maryniak, M.; Typek, J.; Biedunkiewicz, A.

    2008-01-01

    Electron paramagnetic resonance is applied to study the defect centers in nanocrystalline titanium carbide dispersed in carbon matrix (TiC x /C) synthesized by the non-hydrolytic sol-gel process. The presence of Ti 3+ paramagnetic centers is identified below 120 K along with a minor contribution from localized defect spins coupled with the conduction electron system in the carbon matrix. The temperature dependence of the resonance intensity of the latter signal indicates weak antiferromagnetic interactions. The presence of paramagnetic centers connected with trivalent titanium is suggested to be the result of chemical disorder, which can be further related to the observed anomalous behavior of conductivity, hardness, and corrosion resistance of nanocrystalline TiC x /C

  9. Electrophoretic Nanocrystalline Graphene Film Electrode for Lithium Ion Battery

    Kaprans, Kaspars; Bajars, Gunars; Kucinskis, Gints; Dorondo, Anna; Mateuss, Janis; Gabrusenoks, Jevgenijs; Kleperis, Janis; Lusis, Andrejs

    2015-01-01

    Graphene sheets were fabricated by electrophoretic deposition method from water suspension of graphene oxide followed by thermal reduction. The formation of nanocrystalline graphene sheets has been confirmed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrochemical performance of graphene sheets as anode material for lithium ion batteries was evaluated by cycling voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. Fabricated graphene sheets exhibited high discharge capacity of about 1120 mAh·g −1 and demonstrated good reversibility of lithium intercalation and deintercalation in graphene sheet film with capacity retention over 85 % after 50 cycles. Results show that nanocrystalline graphene sheets prepared by EPD demonstrated a high potential for application as anode material in lithium ion batteries

  10. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production

    Hashimoto, K.; Sasaki, T.; Meguro, S.; Asami, K.

    2004-01-01

    Tailoring active nickel alloy cathodes for hydrogen evolution in a hot concentrated hydroxide solution was attempted by electrodeposition. The carbon addition to Ni-Mo alloys decreased the nanocrystalline grain size and remarkably enhanced the activity for hydrogen evolution, changing the mechanism of hydrogen evolution. The Tafel slope of hydrogen evolution was about 35 mV per decade. This suggested that the rate-determining step is desorption of adsorbed hydrogen atoms by recombination. As was distinct from the binary Ni-Mo alloys, after open circuit immersion, the overpotential, that is, the activity of nanocrystalline Ni-Mo-C alloys for hydrogen evolution was not changed, indicating the sufficient durability in the practical electrolysis

  11. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  12. Grain boundary and triple junction diffusion in nanocrystalline copper

    Wegner, M., E-mail: m.wegner@uni-muenster.de; Leuthold, J.; Peterlechner, M.; Divinski, S. V., E-mail: divin@uni-muenster.de [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Song, X., E-mail: xysong@bjut.edu.cn [College of Materials Science and Engineering, Beijing University of Technology, 100124 Beijing (China); Wilde, G. [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai (China)

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.

  13. Size dependence of the optical spectrum in nanocrystalline silver

    Taneja, Praveen; Ayyub, Pushan; Chandra, Ramesh

    2002-01-01

    We report a detailed study of the optical reflectance in sputter-deposited, nanocrystalline silver thin films in order to understand the marked changes in color that occur with decreasing particle size. In particular, samples with an average particle size in the 20 to 35 nm range are golden yellow, while those with a size smaller than 15 nm are black. We simulate the size dependence of the observed reflection spectra by incorporating Mie's theory of scattering and absorption of light in small particles, into the bulk dielectric constant formalism given by Ehrenreich and Philipp [Phys. Rev. 128, 1622 (1962)]. This provides a general method for understanding the reflected color of a dense collection of nanoparticles, such as in a nanocrystalline thin film. A deviation from Mie's theory is observed due to strong interparticle interactions

  14. Electrochemical passivation behaviour of nanocrystalline Fe 80 Si ...

    Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route is studied and compared with that of the commercial pure iron and cast Fe80Si20 in sodium borate buffer solution at two different pH values (7.7 and 8.4). The coating reveals single passivation at a pH of 7.7 and ...

  15. A study of the structure and crystallisation of nanocrystalline zirconia

    Tucker, M.

    1999-12-01

    Nanocrystalline zirconia, prepared via, calcination of the hydroxide, has been studied using a variety of experimental techniques. Two chemical routes, a precipitation and a sol-gel route, were used to prepare the hydroxide. Neutron and X-ray diffraction, EXAFS, NMR and SANS have been used to study the structure and crystallisation, during in-situ and ambient condition measurements. The structural information from the diffraction data has been complimented by the other techniques to provide information on the short, medium and longer range structure of nanocrystalline zirconia. Pure and yttrium doped samples were studied, this enabled the affects of doping and preparation routes to be investigated. The amorphous hydroxide was found to have a, monoclinic-like structure for all samples, independent of preparation route or yttrium content. The crystallisation temperature was lowest for the pure precipitation sample and was increased by the addition of yttrium or by preparation via, the sol-gel route. For the precipitation samples, in addition to the crystallisation temperature being raised, doping with yttrium also had an effect on the size of the crystallites obtained at high temperatures. Due to the different incorporation method of the yttrium into the sol-gel samples the effect on crystallite size and crystallisation temperature, as seen for the precipitation samples, were not evident for the sol-gel samples. The neutron and NMR data clearly show hydrogen remains in the samples well after crystallisation has become evident. The structural picture of nanocrystalline zirconia consisting of small crystallites surrounded by material containing, or terminated by, hydroxyl groups, is supported by all the results and methods used in this thesis. The in-situ and ambient conditions data is combined into a coherent growth picture of the nanocrystalline material from the hydroxide until at high enough temperatures the bulk or polycrystalline material is formed. (author)

  16. Critical currents and fields of disordered nanocrystalline superconductors

    Yavary, H.; Shahzamanian, M.A.; Rabbani, H.

    2007-01-01

    Full text: There is an enormous effort directed at increasing the upper critical field of the superconducting materials because this upper critical field provides a fundamental limit to the maximum field a magnet system can produce. High-energy particle accelerators and medical resonance imaging body scanners are limited by the for NbTi (10 T). Gigahertz class nuclear-magnetic-resonance and high field laboratory magnets are limited by for Nb 3 Sn (23 T) [1]. However, the values of critical current density are too low for industrial use, possibly because of degraded or nonsuperconducting phases, such as MoS 2 or Mo 2 S 3 , at the grain boundaries or because the pinning site density is not high enough. It has long been known that decreasing the grain size of low-temperature superconducting (LTS) materials, such as Nb 3 Sn, increases the density of flux pinning sites and hence. Nanocrystalline materials are characterized by ultrafine grains and a high density of grain boundaries [2]. Hence nanocrystalline materials can exhibit unusual physical, chemical, and mechanical properties with respect to conventional polycrystalline materials. The purpose of this paper is to investigate the structure of currents and fields in disordered nanocrystalline superconducting materials by the use of quasiclassical many body techniques. The Keldish Greens functions are used to calculate the current density of the system. Since the disorder and microstructure of these nanocrystalline materials are on a sufficiently short length scale as to increase both the density of pinning site and the upper critical field. (authors)

  17. Investigation of microstructure thermal evolution in nanocrystalline Cu

    Zhou Kai; Li Hui; Pang Jinbiao; Wang Zhu

    2011-01-01

    The microstructure of nanocrystalline Cu prepared by compacting nanoparticles (50-60 nm in diameter) under high pressures has been studied by means of positron lifetime spectroscopy and X-ray diffraction. These nanoparticles were produced by two different methods. We found that there are order regions interior to the grains and disorder regions at the grain boundaries with a wide distribution of interatomic distances. The mean grain sizes of the nanocrystalline Cu samples decrease after being annealed at 900 o C and increase during aging at 180 o C, which are observed by X-ray diffraction, revealing that the atoms exchange between the two regions. The positron lifetime results clearly indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder grain growth when the samples age at 180 o C, and the vacancy clusters inside the disorder regions, which are related to Cu 2 O, need longer aging time to decompose. The disorder regions remain after the heat treatment in this work, in spite of the grain growth, which will be good for the samples keeping the properties of nanocrystalline material. -- Research highlights: → We use a digital positron lifetime spectrometer correlated with XRD to study the microstructure evolution of nanocrystalline Cu during thermal treatment. → An atomic scale microstructure of grain boundary is characterized. Further, the surface oxidation of the nanoparticles is considered. → The disorder regions remain after the heat treatment in this work, in spite of grain growth.

  18. Stress-induced magnetic anisotropy in nanocrystalline alloys

    Varga, L.K.; Gercsi, Zs.; Kovacs, Gy.; Kakay, A.; Mazaleyrat, F.

    2003-01-01

    Stress-annealing experiments were extended to both nanocrystalline alloy families, Finemet and Nanoperm (Hitperm), and, for comparison, to amorphous Fe 62 Nb 8 B 30 alloy. For both Finemet and bulk amorphous, stress-annealing results in a strong induced transversal anisotropy (flattening of hysteresis loop) but yields longitudinal induced anisotropy (square hysteresis loop) in Nanoperm and Hitperm. These results are interpreted in terms of back-stress theory

  19. Possible origin of superior corrosion resistance for electrodeposited nanocrystalline Ni

    Roy, I.; Yang, H.W.; Dinh, L.; Lund, I.; Earthman, J.C.; Mohamed, F.A.

    2008-01-01

    We present here for the first time observations that grain boundaries in electrodeposited (ED) nanocrystalline (nc) Ni are predominantly of Σ3 character. The results presented are based on orientation imaging microscopy (OIM) performed to produce electron backscatter diffraction (EBSD) maps. This large volume fraction of coherent low sigma coincidence site lattice (CSL) boundaries appears to be consistent with the superior corrosion resistance of ED nc-Ni in comparison with its coarse-grained counterpart

  20. Thermoelectric nanocrystalline YbCoSb laser prepared layers

    Jelínek, Miroslav; Zeipl, Radek; Kocourek, Tomáš; Remsa, Jan; Navrátil, Jiří

    2016-01-01

    Roč. 122, č. 3 (2016), s. 1-5, č. článku 155. ISSN 0947-8396 R&D Projects: GA ČR(CZ) GA13-33056S Institutional support: RVO:68378271 ; RVO:61389013 Keywords : nanocrystalline YbCoSb * thermoelectric layers * pulsed laser deposition Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UMCH-V) Impact factor: 1.455, year: 2016

  1. Microwave PECVD of nanocrystalline diamond with rf induced bias nucleation

    Frgala, Z.; Jašek, O.; Karásková, M.; Zajíčková, L.; Buršíková, V.; Franta, D.; Matějková, Jiřina; Rek, Antonín; Klapetek, P.; Buršík, Jiří

    2006-01-01

    Roč. 56, Suppl. B (2006), s. 1218-1223 ISSN 0011-4626 R&D Projects: GA ČR(CZ) GA202/05/0607 Institutional research plan: CEZ:AV0Z20650511; CEZ:AV0Z20410507 Keywords : nanocrystalline diamond * plasma enhanced chemical vapor deposition * self-bias Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  2. Quantum transport in boron-doped nanocrystalline diamond

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Kindl, Dobroslav; Nesládek, Miloš

    2008-01-01

    Roč. 14, č. 7-8 (2008), s. 161-172 ISSN 0948-1907 R&D Projects: GA ČR GA202/07/0525; GA AV ČR IAA1010404; GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond film * ballistic transport * superconductivity * Josephson’s effects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.483, year: 2008

  3. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Remeš, Zdeněk; Sun, S. J.; Varga, M.; Chou, H.; Hsu, H.S.; Kromka, A.; Horák, Pavel

    2015-01-01

    Roč. 394, Nov (2015), s. 477-480 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LD14011 EU Projects: European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:68378271 ; RVO:61389005 Keywords : diamond * nonmetallic ferromagnetic materials * fine-particle systems * nanocrystalline materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  4. Electrodeposition and characterization of nanocrystalline CoNiFe films

    Chen, Y.; Wang, Q.P. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cai, C. [School of Chemistry and chemical engineering, Ningxia University, Yinchuan 750021 (China); Yuan, Y.N. [Department of Materials and Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cao, F.H. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Z., E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, J.Q. [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2012-02-29

    Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} films have been fabricated using cyclic voltammetry technique from the solutions containing sulfate, then characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer. Meanwhile, Electrochemical Impedance Spectroscopy technique has been employed to probe into the nucleation/growth behavior of Co{sub 45}Ni{sub 10}Fe{sub 24} films. The results show that, the obtained Co{sub 45}Ni{sub 10}Fe{sub 24} film possesses low coercivity of 973.3 A/m and high saturation magnetic flux density of 1.59 Multiplication-Sign 10{sup 5} A/m. Under the experimental conditions, the nucleation/growth process of Co{sub 45}Ni{sub 10}Fe{sub 24} films is mainly under activation control. With the increase of the applied cathodic potential bias, the charge transfer resistance for CoNiFe deposition decreases exponentially. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} film is obtained using cyclic voltammetry technique. Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} possesses low coercivity of 973.3 A/m. Black-Right-Pointing-Pointer Nanocrystalline Co{sub 45}Ni{sub 10}Fe{sub 24} possesses high saturation magnetic flux density. Black-Right-Pointing-Pointer The nucleation/growth process of CoNiFe films is mainly under activation control. Black-Right-Pointing-Pointer The charge transfer resistance for CoNiFe deposition decreases exponentially.

  5. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    2016-02-24

    film deposited just like the pick-up of a turn-table music player. The contact pads provide the electrical contacts to the starting and end point of...anisotropy using the geometry of the thin toroid. We have shown experimentally that the thin film toroid calculations may be applicable to up to millimeter...thin film as well as bulk devices. 15. SUBJECT TERMS Micromagnetic Calculations, Nanocrystalline cobalt-iron, Thin Film Toroids 16. SECURITY

  6. Uncertainty propagation in a multiscale model of nanocrystalline plasticity

    Koslowski, M.; Strachan, Alejandro

    2011-01-01

    We characterize how uncertainties propagate across spatial and temporal scales in a physics-based model of nanocrystalline plasticity of fcc metals. Our model combines molecular dynamics (MD) simulations to characterize atomic-level processes that govern dislocation-based-plastic deformation with a phase field approach to dislocation dynamics (PFDD) that describes how an ensemble of dislocations evolve and interact to determine the mechanical response of the material. We apply this approach to a nanocrystalline Ni specimen of interest in micro-electromechanical (MEMS) switches. Our approach enables us to quantify how internal stresses that result from the fabrication process affect the properties of dislocations (using MD) and how these properties, in turn, affect the yield stress of the metallic membrane (using the PFMM model). Our predictions show that, for a nanocrystalline sample with small grain size (4 nm), a variation in residual stress of 20 MPa (typical in today's microfabrication techniques) would result in a variation on the critical resolved shear yield stress of approximately 15 MPa, a very small fraction of the nominal value of approximately 9 GPa. - Highlights: → Quantify how fabrication uncertainties affect yield stress in a microswitch component. → Propagate uncertainties in a multiscale model of single crystal plasticity. → Molecular dynamics quantifies how fabrication variations affect dislocations. → Dislocation dynamics relate variations in dislocation properties to yield stress.

  7. XRD and HREM studies of nanocrystalline Cu and Pd

    Nieman, G.W.; Weertmen, J.R.; Siegel, R.W.

    1991-01-01

    Consolidated powders of nanocrystalline Cu and Pd have been studied by x-ray diffraction (XRD) and high resolution electron microscopy (HREM) as part of an investigation of the mechanical behavior of nanocrystalline pure metals. XRD line broadening measurements were made to estimate rain size, qualitative grain size distribution and average long range strains in a number of samples. Mean grain sized range from 4-60 nm and have qualitatively narrow grain size distributions. Long range lattice strains are of the order of 0.2-3% in consolidated samples. These strains apparently persist and even increase in Cu samples after annealing at 0.35 Tm (498K) for 2h, accompanied by an apparent increase in grain size of ≥2x. Grain size, grain size distribution width and internal strains vary somewhat among samples produced under apparently identical processing conditions. HREM studies show that twins, stacking faults and low-index facets are abundant in as-consolidated nanocrystalline Cu samples. In this paper methodology, results and analysis of XRD and HREM experiments are presented

  8. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  9. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films

    Liskova J

    2015-01-01

    Full Text Available Jana Liskova,1 Oleg Babchenko,2 Marian Varga,2 Alexander Kromka,2 Daniel Hadraba,1 Zdenek Svindrych,1 Zuzana Burdikova,1 Lucie Bacakova1 1Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Nanocrystalline diamond (NCD films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination or oxygen atoms (O-termination. Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix

  10. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers

    Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-01-01

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiN x /SiN y multilayers with high on/off ratio of 10 9 . High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  11. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers

    Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-09-01

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiNx/SiNy multilayers with high on/off ratio of 109. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  12. Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer

    Chao-Chun Wang

    2012-01-01

    Full Text Available The nanocrystalline silicon-germanium (nc-SiGe thin films were deposited by high-frequency (27.12 MHz plasma-enhanced chemical vapor deposition (HF-PECVD. The films were used in a silicon-based thin film solar cell with graded-dead absorption layer. The characterization of the nc-SiGe films are analyzed by scanning electron microscopy, UV-visible spectroscopy, and Fourier transform infrared absorption spectroscopy. The band gap of SiGe alloy can be adjusted between 0.8 and 1.7 eV by varying the gas ratio. For thin film solar cell application, using double graded-dead i-SiGe layers mainly leads to an increase in short-circuit current and therefore cell conversion efficiency. An initial conversion efficiency of 5.06% and the stabilized efficiency of 4.63% for an nc-SiGe solar cell were achieved.

  13. UV-laser treatment of nanodiamond seeds - a valuable tool for modification of nanocrystalline diamond films properties

    Vlček, J; Fitl, P; Vrňata, M; Fekete, L; Taylor, A; Fendrych, F

    2013-01-01

    This work aimed to study the UV-laser treatment of precursor (i.e. nanodiamond (ND) seeds on silicon substrates) and its influence on the properties of grown nanocrystalline diamond (NCD) films. Pulsed Nd:YAG laser operating at the fourth harmonic frequency (laser fluence E L = 250 mJ cm -2 , pulse duration 5 ns) was used as a source, equipped with an optical system for focusing laser beam onto the sample, allowing exposure of a local spot and horizontal patterning. The variable parameters were: number of pulses (from 5 to 400) and the working atmosphere (He, Ar and O 2 ). Ablation and/or graphitization of seeded nanodiamond particles were observed. Further the microwave plasma-enhanced chemical vapour deposition was employed to grow NCD films on exposed and non-exposed areas of silicon substrates. The size, shape and density distribution of laser-treated nanodiamond seeds were observed by atomic force microscopy (AFM) and their chemical composition by x-ray photoelectron spectroscopy (XPS) analysis. The resulting NCD films (uniform thickness of 400 nm) were characterized by: Raman spectroscopy to analyse occurrence of graphitic phase, and AFM to observe morphology and surface roughness. The highest RMS roughness (∼85 nm) was achieved when treating the precursor in He atmosphere. Horizontal microstructures of diamond films were fabricated.

  14. Plasma simulation with the Differential Algebraic Cubic Interpolated Propagation scheme

    Utsumi, Takayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    A computer code based on the Differential Algebraic Cubic Interpolated Propagation scheme has been developed for the numerical solution of the Boltzmann equation for a one-dimensional plasma with immobile ions. The scheme advects the distribution function and its first derivatives in the phase space for one time step by using a numerical integration method for ordinary differential equations, and reconstructs the profile in phase space by using a cubic polynomial within a grid cell. The method gives stable and accurate results, and is efficient. It is successfully applied to a number of equations; the Vlasov equation, the Boltzmann equation with the Fokker-Planck or the Bhatnagar-Gross-Krook (BGK) collision term and the relativistic Vlasov equation. The method can be generalized in a straightforward way to treat cases such as problems with nonperiodic boundary conditions and higher dimensional problems. (author)

  15. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  16. Polarization Change in Face-Centered Cubic Opal Films

    Wolff, Christian; Romanov, Sergei; Küchenmeister, Jens; Peschel, Ulf; Busch, Kurt

    2011-10-01

    Artificial opals are a popular platform for investigating fundamental properties of Photonic Crystals (PhC). In this work, we provide a theoretical analysis of polarization-resolved transmission experiments through thin opal films. Despite the full cubic symmetry of the PhC, this system provides a very efficient mechanism for manipulating the polarization state of light. Based on band structure calculations and Bloch mode analysis, we find that this effect closely resembles classical birefringence. Due to the cubic symmetry, however, a description using tensorial quantities is not possible. This indicates fundamental limitations of effective material models for Photonic Crystals and demonstrates the importance of accurately modelling the microscopic geometry of such systems.

  17. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    Suteewong, Teeraporn; Sai, Hiroaki; Cohen, Roy; Wang, Suntao; Bradbury, Michelle; Baird, Barbara; Gruner, Sol M.; Wiesner, Ulrich

    2011-01-01

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  18. Trace spaces in a pre-cubical complex

    Raussen, Martin

    2009-01-01

    In directed algebraic topology, directed irreversible (d)-paths and spaces consisting of d-paths are studied from a topological and from a categorical point of view. Motivated by models for concurrent computation, we study in this paper spaces of d-paths in a pre-cubical complex. Such paths...... are equipped with a natural arc length which moreover is shown to be invariant under directed homotopies. D-paths up to reparametrization (called traces) can thus be represented by arc length parametrized d-paths. Under weak additional conditions, it is shown that trace spaces in a pre-cubical complex...... are separable metric spaces which are locally contractible and locally compact. Moreover, they have the homotopy type of a CW-complex....

  19. A local cubic smoothing in an adaptation mode

    Dikoussar, N.D.

    2001-01-01

    A new approach to a local curve approximation and the smoothing is proposed. The relation between curve points is defined using a special cross-ratio weight functions. The coordinates of three curve points are used as parameters for both the weight functions and the tree-point cubic model (TPS). A very simple in computing and stable to random errors cubic smoother in an adaptation mode (LOCUS) is constructed. The free parameter of TPS is estimated independently of the fixed parameters by recursion with the effective error suppression and can be controlled by the cross-ratio parameters. Efficiency and the noise stability of the algorithm are confirmed by examples and by comparison with other known non-parametric smoothers

  20. 3D Medical Image Interpolation Based on Parametric Cubic Convolution

    2007-01-01

    In the process of display, manipulation and analysis of biomedical image data, they usually need to be converted to data of isotropic discretization through the process of interpolation, while the cubic convolution interpolation is widely used due to its good tradeoff between computational cost and accuracy. In this paper, we present a whole concept for the 3D medical image interpolation based on cubic convolution, and the six methods, with the different sharp control parameter, which are formulated in details. Furthermore, we also give an objective comparison for these methods using data sets with the different slice spacing. Each slice in these data sets is estimated by each interpolation method and compared with the original slice using three measures: mean-squared difference, number of sites of disagreement, and largest difference. According to the experimental results, we present a recommendation for 3D medical images under the different situations in the end.

  1. Perfect 3-colorings of the cubic graphs of order 10

    Mehdi Alaeiyan

    2017-10-01

    Full Text Available Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect m-coloring of a graph G with m colors is a partition of the vertex set of G into m parts A_1, A_2, ..., A_m such that, for all $ i,j \\in \\lbrace 1, ... , m \\rbrace $, every vertex of A_i is adjacent to the same number of vertices, namely, a_{ij} vertices, of A_j. The matrix $A=(a_{ij}_{i,j\\in \\lbrace 1,... ,m\\rbrace }$, is called the parameter matrix. We study the perfect 3-colorings (also known as the equitable partitions into three parts of the cubic graphs of order 10. In particular, we classify all the realizable parameter matrices of perfect 3-colorings for the cubic graphs of order 10.

  2. Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem

    Xiaomei Zhang

    2012-01-01

    Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.

  3. Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy

    Bonilla, F.J., E-mail: fbonilla@cicenergigune.com; Lacroix, L.-M.; Blon, T., E-mail: thomas.blon@insa-toulouse.fr

    2017-04-15

    Flower and easy-axis vortex states are well-known magnetic configurations that can be stabilized in small particles. However, <111> vortex (V<111>), i.e. a vortex state with its core axis along the hard-axis direction, has been recently evidenced as a stable configuration in Fe nanocubes of intermediate sizes in the flower/vortex transition. In this context, we present here extensive micromagnetic simulations to determine the different magnetic ground states in ferromagnetic nanocuboids exhibiting cubic magnetocrystalline anisotropy (MCA). Focusing our study in the single-domain/multidomain size range (10–50 nm), we showed that V<111> is only stable in nanocuboids exhibiting peculiar features, such as a specific size, shape and magnetic environment, contrarily to the classical flower and easy-axis vortex states. Thus, to track experimentally these V<111> states, one should focused on (i) nanocuboids exhibiting a nearly perfect cubic shape (size distorsion <12%) made of (ii) a material which combines a zero or positive MCA and a high saturation magnetization, such as Fe or FeCo; and (iii) a low magnetic field environment, V<111> being only observed in virgin or remanent states. - Highlights: • The <111> vortex is numerically determined in nanocubes of cubic anisotropy. • It constitutes an intermediate state in the single-domain limit. • Such a vortex can only be stabilized in perfect or slightly deformed nanocuboids. • It exists in nanocuboids made of materials with zero or positive cubic anisotropy. • The associated magnetization reversal is described by a rotation of the vortex axis.

  4. Synthesis and Optical Properties of Cubic Gold Nanoframes

    Au, Leslie; Chen, Yeechi; Zhou, Fei; Camargo, Pedro H. C.; Lim, Byungkwon; Li, Zhi-Yuan; Ginger, David S.; Xia, Younan

    2008-01-01

    This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl2−. A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single na...

  5. Orientational anharmonicity of interatomic interaction in cubic monocrystals

    Belomestnykh, Vladimir N.; Tesleva, Elena P.

    2010-01-01

    Anharmonicity of interatomic interaction from a position of physical acoustics under the standard conditions is investigated. It is shown that the measure of anharmonicity of interatomic interaction (Grilneisen parameter) is explicitly expressed through velocities of sound. Calculation results of orientation anharmonicity are shown on the example of 116 cubic monocrystals with different lattice structural type and type of chemical bond. Two types of anharmonicity interatomic interaction anisotropy are determined. Keywords: acoustics, orientational anharmonicity, Gruneisen parameter, velocity of sound

  6. Light scattering by cubical particle in the WKB approximation

    redouane lamsoudi

    2017-11-01

    Full Text Available In this work, we determined the analytical expressions of the form factor of a cubical particle in the WKB approximation. We adapted some variables (size parameter, refractive index, the scattering angle and found the form factor in the approximation of Rayleigh-Gans-Debye (RGD, Anomalous Diffraction (AD, and determined the efficiency factor of the extinction. Finally, to illustrate our formalism, we analyzed some numerical examples

  7. Bifurcation of rupture path by linear and cubic damping force

    Dennis L. C., C.; Chew X., Y.; Lee Y., C.

    2014-06-01

    Bifurcation of rupture path is studied for the effect of linear and cubic damping. Momentum equation with Rayleigh factor was transformed into ordinary differential form. Bernoulli differential equation was obtained and solved by the separation of variables. Analytical or exact solutions yielded the bifurcation was visible at imaginary part when the wave was non dispersive. For the dispersive wave, bifurcation of rupture path was invisible.

  8. Effects of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by a chemical reduction method

    Chokprasombat, Komkrich, E-mail: komkrich28@gmail.com [Department of Physics, Faculty of Science, Thaksin University, Phatthalung 93210 Thailand (Thailand); Pinitsoontorn, Supree [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand (Thailand)

    2016-05-01

    Magnetic properties of Fe–Co–Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe{sub 50}Co{sub 50−x}Ni{sub x} nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe{sub 50}Ni{sub 50} nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe–Co–Ni alloys could be adjusted by varying the Ni content. - Highlights: • We prepared nanocrystalline Fe–Co–Ni alloys by a novel chemical reduction process. • Elemental compositions could be well controlled by the molar ratio of metal sources. • Particle size and magnetic properties clearly depended on the Ni contents. • Fe{sub 50}Co{sub 10}Ni{sub 40} exhibited high saturation magnetization of 126.3 emu/g.

  9. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

    Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.

    2002-01-01

    Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application

  10. Preparation of nanocrystalline VN by the melamine reduction of V{sub 2}O{sub 5} xerogel and its supercapacitive behavior

    Cheng Fukui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); He Chun [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Shu Dong, E-mail: dshu@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Base of Production, Education and Research on Energy Storage and Power Battery of Guangdong Higher Education Institutes, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Chen Hongyu, E-mail: hychen@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Base of Production, Education and Research on Energy Storage and Power Battery of Guangdong Higher Education Institutes, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Zhang Jie; Tang Shaoqing; Finlow, David E. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Organic nitridizing agent was employed for preparation of nanocrystalline VN. Black-Right-Pointing-Pointer The supercapacitive behavior of VN was studied by electrochemical method. Black-Right-Pointing-Pointer The supercapacitive behavior of VN was studied in three kinds of electrolyte. Black-Right-Pointing-Pointer The specific capacitance of VN was determined as 273 F g{sup -1} in 1.0 M KOH. Black-Right-Pointing-Pointer The supercapacitive mechanism and involved factor on capacitance were analyzed. - Abstract: An organic nitridizing reagent was employed in the preparation of nanocrystalline VN at 800 Degree-Sign C under a N{sub 2} atmosphere. The prepared VN was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and its supercapacitive behavior was studied by cyclic voltammetry (CV) in three different types of aqueous electrolyte, 0.5 M H{sub 2}SO{sub 4}, 2.0 M NaNO{sub 3} and 1.0 M KOH. The XRD results indicate that prepared VN has a cubic structure with space group Fm3m and a lattice parameter of 4.139 Angstrom-Sign . The nanocrystalline structure of VN with a low degree of crystallinity was confirmed by TEM imaging. The presence of oxygen on the VN surface was detected by FTIR and XPS, and its molecular composition was determined to be VN{sub 1.02}O{sub 0.1}. The specific capacitances of nanocrystalline VN were determined to be 114, 45.7 and 273 F g{sup -1} in 0.5 M H{sub 2}SO{sub 4}, 2.0 M NaNO{sub 3} and 1.0 M KOH, respectively. Thus, the KOH solution was considered the best aqueous electrolyte for the capacitive performance of VN. The supercapacitive mechanism and the factor that influenced the specific capacitance are also analyzed in this paper.

  11. Photogating effect as a defect probe in hydrogenated nanocrystalline silicon solar cells

    Li, H. B. T.; Schropp, R.E.I.; Rubinelli, F.A.

    2010-01-01

    The measurement of the spectrally resolved collection efficiency is of great importance in solar cell characterization. Under standard conditions the bias light is a solar simulator or a light source with a similar broadband irradiation spectrum. When a colored blue or red bias light is used

  12. Accumulation and recovery of defects in ion-irradiated nanocrystalline gold

    Chimi, Y. E-mail: chimi@popsvr.tokai.jaeri.go.jp; Iwase, A.; Ishikawa, N.; Kobiyama, M.; Inami, T.; Okuda, S

    2001-09-01

    Effects of 60 MeV {sup 12}C ion irradiation on nanocrystalline gold (nano-Au) are studied. The experimental results show that the irradiation-produced defects in nano-Au are thermally unstable because of the existence of a large volume fraction of grain boundaries. This suggests a possibility of the use of nanocrystalline materials as irradiation-resistant materials.

  13. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    Sarah C. Larson; Vicki H. Grassian

    2006-01-01

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO x ) and ammonia (NH 3 ) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO 2 was observed at room temperature in the presence of NH 3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO 2 reduction with NH 3 relative to nanocrystalline NaY

  14. Effect of grain size on corrosion of nanocrystalline copper in NaOH solution

    Luo Wei; Xu Yimin; Wang Qiming; Shi Peizhen; Yan Mi

    2010-01-01

    Research highlights: → Coppers display an active-passive-transpassive behaviour with duplex passive film. → Grain size variation has little effect on the overall corrosion behaviour of Cu. → Little effect on corrosion may be due to duplex passivation in NaOH solution. → Bulk nanocrystalline Cu show bamboo-like flake corrosion structure. - Abstract: Effect of grain size on corrosion of bulk nanocrystalline copper was investigated using potentiodynamic polarization measurements in 0.1 M NaOH solution. Bulk nanocrystalline copper was prepared by inert gas condensation and in situ warm compress (IGCWC) method. The grain sizes of all bulk nanocrystalline samples were determined to be 48, 68 and 92 nm using X-ray diffraction (XRD). Results showed that bulk coppers displayed an active-passive-transpassive behaviour with duplex passive films. From polycrystalline to nanocrystalline, grain size variation showed little effect on the overall corrosion resistance of copper samples.

  15. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  16. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron

    Nie, F L; Zheng, Y F; Wei, S C; Hu, C; Yang, G

    2010-01-01

    Bulk nanocrystalline pure iron rods were fabricated by the equal channel angular pressure (ECAP) technique up to eight passes. The microstructure and grain size distribution, natural immersion and electrochemical corrosion in simulated body fluid, cellular responses and hemocompatibility were investigated in this study. The results indicate that nanocrystalline pure iron after severe plastic deformation (SPD) would sustain durable span duration and exhibit much stronger corrosion resistance than that of the microcrystalline pure iron. The interaction of different cell lines reveals that the nanocrystalline pure iron stimulates better proliferation of fibroblast cells and preferable promotion of endothelialization, while inhibits effectively the viability of vascular smooth muscle cells (VSMCs). The burst of red cells and adhesion of the platelets were also substantially suppressed on contact with the nanocrystalline pure iron in blood circulation. A clear size-dependent behavior from the grain nature deduced by the gradual refinement microstructures was given and well-behaved in vitro biocompatibility of nanocrystalline pure iron was concluded.

  17. Effect of Dy3+ substitution on structural and magnetic properties of nanocrystalline Ni-Cu-Zn ferrites

    Kabbur, S. M.; Ghodake, U. R.; Nadargi, D. Y.; Kambale, Rahul C.; Suryavanshi, S. S.

    2018-04-01

    Nanocrystalline Ni0.25Cu0.30Zn0.45DyxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1 and 0.125 mol.) ferrimagnetic oxides have been synthesized by sol-gel autocombustion route. X-ray diffraction study reveals the formation of spinel cubic structure with an expansion of the unit cell by Dy addition. Bertaut method was employed to propose the site occupancy i.e. cation distribution for elements at A-tetrahedral and B-octahedral sites of spinel lattice. The intrinsic vibrational absorption bands i.e. υ1 (712-719 cm-1) and υ2 (496-506 cm-1) are observed for tetrahedral and octahedral sites respectively. The microstructural aspect confirms the formation of an average grain size (∼7-99 nm) with presence of expected elements. Magnetization studies reveal that the magnetic moments are no longer linear but exhibit canting effect due to spin frustration. The frequency dispersion spectrum of initial permeability has been explained based on grain size, saturation magnetization and anisotropy constant. Thermal hysteresis curve (initial permeability versus temperature) indicates magnetic disordering to paramagnetic state at Néel temperature (TN). High values of TN show that the present ferrite samples are cation-ordered with d-electrons contributing towards the magnetic interaction at the sublattice.

  18. Cellulose-precursor synthesis of nanocrystalline Co0.5Cu0.5Fe2O4 spinel ferrites

    Ounnunkad, Kontad; Phanichphant, Sukon

    2012-01-01

    Highlights: ► Synthesis of spinel copper cobalt nanoferrite particles from a cellulose precursor for the first time. Control of nanosize and properties of nanoferrites can take place by varying the calcining temperature. The simple, low cost, easy cellulose process is a choice of nanoparticle processing technology. -- Abstract: Nanocrystalline Cu 0.5 Co 0.5 Fe 2 O 4 powders were prepared via a metal-cellulose precursor synthetic route. Cellulose was used as a fuel and a dispersing agent. The resulting precursors were calcined in the temperature range of 450–600 °C. The phase development of the samples was determined by using Fourier transform infrared (FT-IR) spectroscopy and powder X-ray diffraction (XRD). The field-dependent magnetizations of the nanopowders were measured by vibrating sample magnetometer (VSM). All XRD patterns are of a spinel ferrite with cubic symmetry. Microstructure of the ferrites showed irregular shapes and uniform particles with agglomeration. From XRD data, the crystallite sizes are in range of 16–42 nm. Saturation magnetization and coercivity increased with increasing calcining temperature due to enhancement of crystallinity and reduction of oxygen vacancies.

  19. Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre

    2011-01-01

    Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl 3 , SnCl 4 and NH 3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ∼ 40-1160 nm. After calcination at 550 o C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.

  20. Structural and optical properties of silicon-carbide nanowires produced by the high-temperature carbonization of silicon nanostructures

    Pavlikov, A. V., E-mail: pavlikov@physics.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Latukhina, N. V.; Chepurnov, V. I. [Samara National Researh University (Russian Federation); Timoshenko, V. Yu. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    Silicon-carbide (SiC) nanowire structures 40–50 nm in diameter are produced by the high-temperature carbonization of porous silicon and silicon nanowires. The SiC nanowires are studied by scanning electron microscopy, X-ray diffraction analysis, Raman spectroscopy, and infrared reflectance spectroscopy. The X-ray structural and Raman data suggest that the cubic 3C-SiC polytype is dominant in the samples under study. The shape of the infrared reflectance spectrum in the region of the reststrahlen band 800–900 cm{sup –1} is indicative of the presence of free charge carriers. The possibility of using SiC nanowires in microelectronic, photonic, and gas-sensing devices is discussed.

  1. Silicon: electrochemistry and luminescence

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  2. Silicon heterojunction transistor

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  3. The chemistry of silicon

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  4. Silicon Microspheres Photonics

    Serpenguzel, A.

    2008-01-01

    Electrophotonic integrated circuits (EPICs), or alternatively, optoelectronic integrated circuit (OEICs) are the natural evolution of the microelectronic integrated circuit (IC) with the addition of photonic capabilities. Traditionally, the IC industry has been based on group IV silicon, whereas the photonics industry on group III-V semiconductors. However, silicon based photonic microdevices have been making strands in siliconizing photonics. Silicon microspheres with their high quality factor whispering gallery modes (WGMs), are ideal candidates for wavelength division multiplexing (WDM) applications in the standard near-infrared communication bands. In this work, we will discuss the possibility of using silicon microspheres for photonics applications in the near-infrared

  5. X-Ray Elastic Constants for Cubic Materials

    Malen, K

    1974-10-15

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  6. Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices

    Cramer, M.; Eisert, J.; Illuminati, F.

    2004-01-01

    We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices

  7. Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.

    Cramer, M; Eisert, J; Illuminati, F

    2004-11-05

    We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.

  8. Universal centers in the cubic trigonometric Abel equation

    Jaume Giné

    2014-02-01

    Full Text Available We study the center problem for the trigonometric Abel equation $d \\rho/ d \\theta= a_1 (\\theta \\rho^2 + a_2(\\theta \\rho^3,$ where $a_1(\\theta$ and $a_2(\\theta$ are cubic trigonometric polynomials in $\\theta$. This problem is closely connected with the classical Poincaré center problem for planar polynomial vector fields. A particular class of centers, the so-called universal centers or composition centers, is taken into account. An example of non-universal center and a characterization of all the universal centers for such equation are provided.

  9. X-Ray Elastic Constants for Cubic Materials

    Malen, K.

    1974-10-15

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  10. X-Ray Elastic Constants for Cubic Materials

    Malen, K.

    1974-10-01

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  11. Synthesis and Optical Properties of Cubic Gold Nanoframes.

    Au, Leslie; Chen, Yeechi; Zhou, Fei; Camargo, Pedro H C; Lim, Byungkwon; Li, Zhi-Yuan; Ginger, David S; Xia, Younan

    2008-12-01

    This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl(2) (-). A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single nanoparticle spectroscopy. With their hollow and open structures, the Au nanoframes represent a novel class of substrates for applications including surface plasmonics and surface-enhanced Raman scattering.

  12. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  13. The cyclicity of a cubic system with nonradical Bautin ideal

    Levandovskyy, Viktor; Romanovski, Valery G.; Shafer, Douglas S.

    We present a method for investigating the cyclicity of an elementary focus or center of a polynomial system of differential equations by means of complexification of the system and application of algorithms of computational algebra, showing an approach to treating the case that the Bautin ideal B of focus quantities is not a radical ideal (more precisely, when the ideal B is not radical, where B is the ideal generated by the shortest initial string of focus quantities that, like the Bautin ideal, determines the center variety). We illustrate the method with a family of cubic systems.

  14. Multi-dimensional cubic interpolation for ICF hydrodynamics simulation

    Aoki, Takayuki; Yabe, Takashi.

    1991-04-01

    A new interpolation method is proposed to solve the multi-dimensional hyperbolic equations which appear in describing the hydrodynamics of inertial confinement fusion (ICF) implosion. The advection phase of the cubic-interpolated pseudo-particle (CIP) is greatly improved, by assuming the continuities of the second and the third spatial derivatives in addition to the physical value and the first derivative. These derivatives are derived from the given physical equation. In order to evaluate the new method, Zalesak's example is tested, and we obtain successfully good results. (author)

  15. Method of forming an abrasive compact of cubic boron nitride

    Bell, F.R.

    1976-01-01

    This patent concerns an abrasive compact comprising diamond or cubic boron nitride or mixtures thereof held in a matrix of a refractory substance and a substance which dissolves the abrasive particle to at least a limited extent. The compact may be made by subjecting a powdered mixture of the ingredients to conditions of temperature and pressure at which the abrasive particle is crystallographically stable and the solvent substance acts to dissolve the abrasive particle. The refractory substance and solvent substance are preferably so chosen that during compact manufacture there is interaction resulting in the formation of a hard material

  16. Cubic Plus Association Equation of State for Flow Assurance Projects

    dos Santos, Leticia Cotia; Abunahman, Samir Silva; Tavares, Frederico Wanderley

    2015-01-01

    Thermodynamic hydrate inhibitors such as methanol, ethanol, (mono) ethylene glycol (MEG), and triethylene glycol (TEG) are widely used in the oil and gas industry. On modeling these compounds, we show here how the CPA equation of state was implemented in an in-house process simulator as an in......-built model: To validate the implementation, we show calulations for binary systems containing hydrate inhibitors and water or hydrocarbons using the Cubic Plus Association (CPA) and Soave-Redlich-Kwong (SRK) equation of states, also comparing against experimental data. For streams containing natural gas...

  17. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  18. Soliton interaction in quadratic and cubic bulk media

    Johansen, Steffen Kjær; Bang, Ole

    2000-01-01

    Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...

  19. Bistable Helmholtz solitons in cubic-quintic materials

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2007-01-01

    We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations

  20. About the optical properties of oxidized black silicon structures

    Pincik, E.; Brunner, R.; Kobayashi, H.; Mikula, M.; Kučera, M.; Švec, P.; Greguš, J.; Vojtek, P.; Zábudlá, Z.; Imamura, K.; Zahoran, M.

    2017-02-01

    The paper deals with the optical and morphological properties of thermally oxidized black silicon (OBSi) nano-crystalline specimens produced by the surface structure chemical transfer method (SSCT). This method can produce a nano-crystalline Si black color layer on c-Si with a range of thickness of ∼50 nm to ∼300 nm by the contact of c-Si immersed in chemical solutions HF + H2O2 with a catalytic mesh. We present and discuss mainly the photoluminescence properties of both polished c-Si and OBSi structures, respectively. The similar photoluminescence (PL) behaviors recorded at liquid helium (6 K) and room temperatures on both polished crystalline Si and OBSi samples, respectively, indicate the similar origin of recorded luminescence light. As the positions of PL maxima of OBSi structures are mainly related to the size of Si nanocrystallites and SiO(x), we therefore suppose that the size of the dominant parts of the luminated OBSi nanostructure is pre-determined by the used polishing Si procedure, and/or the distribution function of the number of formed crystallites on their size is very similar. The blue shift of both PL spectra reaching almost value of 0.40 eV observed after the decrease of the sample temperature to 6 K we relate also with the change of the semiconductor band gap width.

  1. Nanocrystalline CdTe thin films by electrochemical synthesis

    Ramesh S. Kapadnis

    2013-03-01

    Full Text Available Cadmium telluride thin films were deposited onto different substrates as copper, Fluorine-doped tin oxide (FTO, Indium tin oxide (ITO, Aluminum and zinc at room temperature via electrochemical route. The morphology of the film shows the nanostructures on the deposited surface of the films and their growth in vertical direction. Different nanostructures developed on different substrates. The X-ray diffraction study reveals that the deposited films are nanocrystalline in nature. UV-Visible absorption spectrum shows the wide range of absorption in the visible region. Energy-dispersive spectroscopy confirms the formation of cadmium telluride.

  2. Preparation of porous ceramics from nanocrystalline zirconia and its microstructure

    Nikitin, D.S.; Zhukov, V.A.; Kul'kov, S.N.; Perkov, V.V.; Buyakova, S.P.

    2004-01-01

    The behaviour of ZrO 2 (Y) nanocrystalline powder under pressing, the effect of forming pressure, the temperature and the time of sintering on the structure of the sintered porous ceramics are under study. It is shown that on pressing the fracturing of powder particles and their agglomerates takes place even at low pressures (≅50 MPa). The change of densification mechanisms is revealed - from quasi-liquid displacement of powder particles at the beginning of mechanical action to fracture of coarse structural elements. It is established that a strong skeleton responsible for needed porosity is formed even at the initial stage of sintering [ru

  3. Nanocrystalline iron nitride films with perpendicular magnetic anisotropy

    Gupta, Ajay; Dubey, Ranu; Leitenberger, W.; Pietsch, U.

    2008-01-01

    Nanocrystalline α-iron nitride films have been prepared using reactive ion-beam sputtering. Films develop significant perpendicualr magnetic anisotropy (PMA) with increasing thickness. A comparison of x-ray diffraction patterns taken with scattering vectors in the film plane and out of the film plane provides a clear evidence for development of compressive strain in the film plane with thickness. Thermal annealing results in relaxation of the strain, which correlates very well with the relaxation of PMA. This suggests that the observed PMA is a consequence of the breaking of the symmetry of the crystal structure due to the compressive strain

  4. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  5. Elemental separation in nanocrystalline Cu-Al alloys

    Wang, Y. B.; Liao, X. Z.; Zhao, Y. H.; Cooley, J. C.; Horita, Z.; Zhu, Y. T.

    2013-06-01

    Nanocrystallization by high-energy severe plastic deformation has been reported to increase the solubility of alloy systems and even to mix immiscible elements to form non-equilibrium solid solutions. In this letter, we report an opposite phenomenon—nanocrystallization of a Cu-Al single-phase solid solution by high-pressure torsion separated Al from the Cu matrix when the grain sizes are refined to tens of nanometers. The Al phase was found to form at the grain boundaries of nanocrystalline Cu. The level of the separation increases with decreasing grain size, which suggests that the elemental separation was caused by the grain size effect.

  6. Tailoring the wettability of nanocrystalline TiO 2 films

    Liang, Qiyu; Chen, Yan; Fan, Yuzun; Hu, Yong; Wu, Yuedong; Zhao, Ziqiang; Meng, Qingbo

    2012-01-01

    The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.

  7. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  8. Stacking fault-mediated ultrastrong nanocrystalline Ti thin films

    Wu, K.; Zhang, J. Y.; Li, G.; Wang, Y. Q.; Cui, J. C.; Liu, G.; Sun, J.

    2017-11-01

    In this work, we prepared nanocrystalline (NC) Ti thin films with abundant stacking faults (SFs), which were created via partial dislocations emitted from grain boundaries and which were insensitive to grain sizes. By employing the nanoindentation test, we investigated the effects of SFs and grain sizes on the strength of NC Ti films at room temperature. The high density of SFs significantly strengthens NC Ti films, via dislocation-SF interactions associated with the reported highest Hall-Petch slope of ˜20 GPa nm1/2, to an ultrahigh strength of ˜4.4 GPa, approaching ˜50% of its ideal strength.

  9. Electron holography of Fe-based nanocrystalline magnetic materials (invited)

    Shindo, Daisuke; Park, Young-Gil; Gao, Youhui; Park, Hyun Soon

    2004-01-01

    Magnetic domain structures of nanocrystalline magnetic materials were extensively investigated by electron holography with a change in temperature or magnetic field applied. In both soft and hard magnetic materials, the distribution of lines of magnetic flux clarified in situ by electron holography was found to correspond well to their magnetic properties. An attempt to produce a strong magnetic field using a sharp needle made of a permanent magnet, whose movement is controlled by piezo drives has been presented. This article demonstrates that the attempt is promising to investigate the magnetization process of hard magnetic materials by electron holography

  10. Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system

    Greijer, Helena; Karlson, Lennart; Lindquist, Sten-Eric; Hagfeldt, Anders

    2001-01-01

    A Life Cycle Assessment, LCA, of a nanocrystalline dye sensitised solar cell (ncDSC) system has been performed, according to the ISO14040 standard. In brief, LCA is a tool to analyse the total environment impact of a product or system from cradle to grave. Six different weighing methods were used to rank and select the significant environmental aspects to study further. The most significant environmental aspects according to the weighing methods are emission of sulphur dioxide and carbon dioxide. Carbon dioxide emission was selected as the environmental indicator depending on the growing attention on the global warming effect. In an environmental comparison of electricity generation from a ncDSC system and a natural gas/combined cycle power plant, the gas power plant would result in 450 g CO 2 /kWh and the ncDSC system in between 19-47 g CO 2 /wWh. The latter can be compared with 42 g CO 2 /kWh, according to van Brummelen et al. 'Life Cycle Assessment of Roof Integrated Solar Cell Systems, (Report: Department of Science, Technology and Society, Utrecht University, The Netherlands, 1994)' for another thin film solar cell system made of amorphous silicon. The most significant activity/component contributing to environmental impact over the life cycle of the ncDSC system is the process energy for producing the solar cell module. Secondly comes the components; glass substrate, frame and junction box. The main improvement from an environmental point of view of the current technology would be an increase in the conversion efficiency from solar radiation to electricity generation and still use low energy demanding production technologies. Also the amount of material in the solar cell system should be minimised and designed to maximise recycling. (Author)

  11. EXAFS and XRD studies of nanocrystalline cerium oxide: the effect of preparation method on the microstructure

    Savin, S.L.P.; Chadwick, A.V.; Smith, M.E.; O'Dell, L.A.

    2007-01-01

    There is considerable interest in nanocrystalline materials due to their unusual properties, such as enhanced ionic conductivity in the case of nanocrystalline ionic solids. This has potential commercial applications, particularly for oxide ion conductors. However, a detailed knowledge of the microstructure is important in fully understanding the novel properties exhibited by nanocrystalline materials. The final microstructure of a material is dependent on the preparation method used, for example, sol-gel and ball-milling methods are commonly used in the preparation of nanocrystalline oxides. Additionally, there is a problem in maintaining the materials in nanocrystalline form when they are subjected to elevated temperatures. We have been exploring strategies to restrict the growth of nanocrystalline oxides and have found that adding a small amount of an inert material, e.g. SiO 2 or Al 2 O 3 , is particularly effective. We will report XRD and EXAFS studies of nanocrystalline ceria prepared by sol-gel, sol-gel pinned and ball-milling methods and the effect of preparation method on the final microstructure. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Silicon transport in sputter-deposited tantalum layers grown under ion bombardment

    Gallais, P.; Hantzpergue, J.J.; Remy, J.C.; Roptin, D.

    1988-01-01

    Tantalum was sputter deposited on (111) Si substrate under low-energy ion bombardment in order to study the effects of the ion energy on the silicon transport into the Ta layer. The Si substrate was heated up to 500 0 C during growth. For ion energies up to 180 eV silicon is not transported into tantalum and the growth temperature has no effect. An ion bombardment energy of 280 eV enhances the transport of silicon throughout the tantalum layer. Growth temperatures up to 300 0 C have no effect on the silicon transport which is mainly enhanced by the ion bombardment. For growth temperatures between 300 and 500 0 C, the silicon transport is also enhanced by the thermal diffusion. The experimental depth distribution of silicon is similar to the theoretical depth distribution calculated for the case of an interdiffusion. The ion-enhanced process of silicon transport is characterized by an activation energy of 0.4 eV. Silicon into the layers as-grown at 500 0 C is in both states, amorphous silicide and microcrystalline cubic silicon

  13. Plastic deformation of cubic zirconia single crystals at 1400 C

    Baufeld, B.; Baither, D.; Bartsch, M.; Messerschmidt, U.

    1998-01-01

    Cubic zirconia single crystals stabilized with 11 mol% yttria were deformed in air at 1400 C and around 1200 C at different strain rates along [1 anti 12] and [100] compression directions. The strain rate sensitivity of the flow stress was determined by strain rate cycling and stress relaxation tests. The microstructure of the deformed specimens was investigated by transmission high-voltage electron microscopy, including contrast extinction analysis for determining the Burgers vectors as well as stereo pairs and wide-angle tilting experiments to find the active slip planes. At deformation along [1 anti 12], the primary and secondary slip planes are of {100} type. Previous experiments had shown that the dislocations move easily on these planes in an athermal way. During deformation along [100], mainly dislocations on {100} planes are activated, which move in a viscous way by the aid of thermal activation. The discussion of the different deformation behaviours during deformation along [1 anti 12] and [100] is based on the different dynamic properties of dislocations and the fact that recovery is an essential feature of the deformation of cubic zirconia at 1400 C. The results on the shape of the deformation curve and the strain rate sensitivity of the flow stress are partly at variance with those of previous authors. (orig.)

  14. Efficient LBM visual simulation on face-centered cubic lattices.

    Petkov, Kaloian; Qiu, Feng; Fan, Zhe; Kaufman, Arie E; Mueller, Klaus

    2009-01-01

    The Lattice Boltzmann method (LBM) for visual simulation of fluid flow generally employs cubic Cartesian (CC) lattices such as the D3Q13 and D3Q19 lattices for the particle transport. However, the CC lattices lead to suboptimal representation of the simulation space. We introduce the face-centered cubic (FCC) lattice, fD3Q13, for LBM simulations. Compared to the CC lattices, the fD3Q13 lattice creates a more isotropic sampling of the simulation domain and its single lattice speed (i.e., link length) simplifies the computations and data storage. Furthermore, the fD3Q13 lattice can be decomposed into two independent interleaved lattices, one of which can be discarded, which doubles the simulation speed. The resulting LBM simulation can be efficiently mapped to the GPU, further increasing the computational performance. We show the numerical advantages of the FCC lattice on channeled flow in 2D and the flow-past-a-sphere benchmark in 3D. In both cases, the comparison is against the corresponding CC lattices using the analytical solutions for the systems as well as velocity field visualizations. We also demonstrate the performance advantages of the fD3Q13 lattice for interactive simulation and rendering of hot smoke in an urban environment using thermal LBM.

  15. Defect ordering in aliovalently doped cubic zirconia from first principles

    Bogicevic, A.; Wolverton, C.; Crosbie, G.M.; Stechel, E.B.

    2001-01-01

    Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species. For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound δ-Zr 3 Y 4 O 12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y 2 O 3 - and Sc 2 O 3 -stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In 2 O 3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations

  16. A popular metastable omega phase in body-centered cubic steels

    Ping, D.H., E-mail: ping.de-hai@nims.go.jp [National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047 (Japan); Geng, W.T., E-mail: geng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    Steel remains to be one of the most common structural materials in the world as human civilization advances from the Iron Age to the ongoing Silicon Age. Our knowledge of its microstructure evolution and structure–performance relationship is nevertheless still incomplete. We report the observation and characterization of a long ignored metastable phase formed in steels with body-centered cubic (bcc) structure using both transmission electron microscopy and density functional theory calculations. This ω phase has a hexagonal structure and coherent interface with the matrix: a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. It is 3.6% smaller in volume and 0.18 eV higher in energy than bcc-Fe, with atoms in alternating close- and loose-packed layers couple anti-ferromagnetically. Carbon plays a crucial role in promoting bcc to ω transformation. At a concentration higher than 4 at.% they tend to segregate from the bcc matrix to the ω-phase; at about 14 at.%, they can induce bcc to ω transformation; and finally at 25 at.%, they stabilize the ω phase as ω-Fe{sub 3}C. The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms, leading to improved resistance of martensitic steels to irradiation damage. - Highlights: ► A long-ignored metastable ω phase in body-centered cubic (bcc) steel. ► The ω phase has hexagonal structure with lattice parameters a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. ► Carbon enrichment is found to play a crucial role on the bcc-to-ω phase transformation. ► The ω phase is strongly related to the martensitic transformation and twinning structure. ► The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms.

  17. Piezoresistive silicon thin film sensor array for biomedical applications

    Alpuim, P.; Correia, V.; Marins, E.S.; Rocha, J.G.; Trindade, I.G.; Lanceros-Mendez, S.

    2011-01-01

    N-type hydrogenated nanocrystalline silicon thin film piezoresistors, with gauge factor - 28, were deposited on rugged and flexible polyimide foils by Hot-wire chemical vapor deposition using a tantalum filament heated to 1750 o C. The piezoresistive response under cyclic quasi-static and dynamical (up to 100 Hz) load conditions is reported. Test structures, consisting of microresistors having lateral dimensions in the range from 50 to 100 μm and thickness of 120 nm were defined in an array by reactive ion etching. Metallic pads, forming ohmic contacts to the sensing elements, were defined by a lift-off process. A readout circuit for the array consisting in a mutiplexer on each row and column of the matrix is proposed. The digital data will be processed, interpreted and stored internally by an ultra low-power micro controller, also responsible for the communication of two-way wireless data, e.g. from inside to outside the human body.

  18. Magnetic properties of nanocrystalline pyrrhotite prepared by high-energy milling

    Balaz, P.; Godocikova, E.; Alacova, A.

    2004-01-01

    The nanocrystalline pyrrhotite was prepared by high-energy milling of lead sulphide with elemental Fe acting as reducing element. X-ray diffractometry, Mossbauer spectroscopy and VSM magnetometry were used to determine the properties of nanocrystalline iron sulphide prepared by the corresponding...... mechanochemical reaction. Pyrrhotite Fe1-xS together with the residual Fe metal were identified by the X-ray diffractometry. The kinetic studies performed by Mossbauer spectroscopy and VSM magnetometry allowed us to follow in more details the progress of the nanocrystalline magnetic phase formation during...

  19. Syntheses of nanocrystalline BaTiO3 and their optical properties

    Yu, J.; Chu, J.; Zhang, M.

    Stoichiometric and titanium-excess nanocrystalline barium titanates were synthesized using a hydrothermal process at various hydrothermal temperatures and with further heat treatment at 500 °C and 900 °C. Owing to the different process conditions, the excess titanium exists in different states and configurations within the nanocrystalline BaTiO3 matrix; this was demonstrated by X-ray diffraction, Raman scattering, and photoluminescence. In these nanocrystalline BaTiO3, the 590, 571, 543 and 694 nm light emission bands were observed; mechanisms leading to such emissions were also discussed.

  20. Interface effects on effective elastic moduli of nanocrystalline materials

    Wang Gangfeng; Feng Xiqiao; Yu Shouwen; Nan Cewen

    2003-01-01

    Interfaces often play a significant role in many physical properties and phenomena of nanocrystalline materials (NcMs). In the present paper, the interface effects on the effective elastic property of NcMs are investigated. First, an atomic potential method is suggested for estimating the effective elastic modulus of an interface phase. Then, the Mori-Tanaka effective field method is employed to determine the overall effective elastic moduli of a nanocrystalline material, which is regarded as a binary composite consisting of a crystal or inclusion phase with regular lattice connected by an amorphous-like interface or matrix phase. Finally, the stiffening effects of strain gradients are examined on the effective elastic property by using the strain gradient theory to analyze a representative unit cell. Our analysis shows two physical mechanisms of interfaces that influence the effective stiffness and other mechanical properties of materials. One is the softening effect due to the distorted atomic structures and the increased atomic spacings in interface regions, and another is the baffling effect due to the existence of boundary layers between the interface phase and the crystalline phase

  1. A variational multiscale constitutive model for nanocrystalline materials

    Gurses, Ercan

    2011-03-01

    This paper presents a variational multi-scale constitutive model in the finite deformation regime capable of capturing the mechanical behavior of nanocrystalline (nc) fcc metals. The nc-material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary effected zone (GBAZ). A rate-independent isotropic porous plasticity model is employed to describe the GBAZ, whereas a crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The constitutive models of both phases are formulated in a small strain framework and extended to finite deformation by use of logarithmic and exponential mappings. Assuming the rule of mixtures, the overall behavior of a given grain is obtained via volume averaging. The scale transition from a single grain to a polycrystal is achieved by Taylor-type homogenization where a log-normal grain size distribution is assumed. It is shown that the proposed model is able to capture the inverse HallPetch effect, i.e., loss of strength with grain size refinement. Finally, the predictive capability of the model is validated against experimental results on nanocrystalline copper and nickel. © 2010 Elsevier Ltd. All rights reserved.

  2. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    Graetzel, M. [Institut de Chimie Physique, Ecole Polytechnique Federal de Lausanne (Switzerland)

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  3. Mechanical properties of nanocrystalline palladium prepared by magnetron sputtering

    Castrup, Anna; Hahn, Horst [Forschungszentrum Karlsruhe (Germany); Technical University of Darmstadt (Germany); Scherer, Torsten; Ivanisenko, Yulia; Choi, In-Suk; Kraft, Oliver [Forschungszentrum Karlsruhe (Germany)

    2009-07-01

    Nanocrystalline metals and alloys with grain sizes well below 100 nm often demonstrate unique deformation behaviour and therefore attract a great interest in material science. The understanding of deformation mechanisms operating in nanocrystalline materials is important to predict their mechanical properties. In the present study Pd films of 1{mu}m thickness were prepared using UHV rf magnetron sputtering on dog bone shaped Kapton substrates and on Si/SiO2 wafers. The films were sputtered using multilayer technology with an individual layer thickness of 10 nm. This resulted in grain sizes of about 20 nm. Initial microstructure and texture were characterized using conventional XRD measurements and transmission electron microscopy (TEM) in both cross section- and plane view. The mechanical properties were investigated using tensile testing and nanoindentation at several strain rates. An increased hardness and strength as compared to coarse grained Pd was observed, as well as high strain rate sensitivity. The microstructure in the gauge section after tensile testing was again analyzed using TEM in order to reveal signatures of deformation mechanisms like dislocation motion or twinning.

  4. Visualizing decoupling in nanocrystalline alloys: A FORC-temperature analysis

    Rivas, M.; Martínez-García, J. C.; Gorria, P.

    2016-02-01

    Devitrifying ferromagnetic amorphous precursors in the adequate conditions may give rise to disordered assemblies of densely packed nanocrystals with extraordinary magnetic softness well explained by the exchange coupling among multiple crystallites. Whether the magnetic exchange interaction is produced by direct contact or mediated by the intergranular amorphous matrix has a strong influence on the behaviour of the system above room temperature. Multi-phase amorphous-nanocrystalline systems dramatically harden when approaching the amorphous Curie temperature (TC) due to the hard grains decoupling. The study of the thermally induced decoupling of nanosized crystallites embedded in an amorphous matrix has been performed in this work by the first-order reversal curves (FORCs) analysis. We selected a Fe-rich amorphous alloy with TC = 330 K, in order to follow the evolution of the FORC diagrams obtained below and above such temperature in samples with different percentages of nanocrystalline phase. The existence of up to four regions exhibiting unlike magnetic behaviours is unambiguously determined from the temperature evolution of the FORC.

  5. Nanocrystalline functional materials and nanocomposites synthesis through aerosol routes

    Milošević Olivera B.

    2003-01-01

    Full Text Available This paper represents the results of the design of functional nanocrystalline powders and nanocomposites using chemical reactions in aerosols. The process involves ultrasonic aerosol formation (mist generators with the resonant frequencies of 800 kHz, 1.7 and 2.5 MHz from precursor salt solutions and control over the aerosol decomposition in a high-temperature tubular flow reactor. During decomposition, the aerosol droplets undergo evaporation/drying, precipitation and thermolysis in a single-step process. Consequently, spherical, solid, agglomerate-free submicronic particles are obtained. The particle morphology, revealed as a composite structure consisting of primary crystallites smaller than 20 nm was analysed by several methods (XRD, DSC/DTA, SEM, TEM and discussed in terms of precursor chemistry and process parameters. Following the initial attempts, a more detailed aspect of nanocrystalline particle synthesis was demonstrated for the case of nanocomposites based on ZnO-MeO (MeO=Bi Cr+, suitable for electronic applications, as well as an yttrium-aluminum base complex system, suitable for phosphorus applications. The results imply that parts of the material structure responsible for different functional behaviour appear through in situ aerosol synthesis by processes of intraparticle agglomeration, reaction and sintering in the last synthesis stage.

  6. New atom probe approaches to studying segregation in nanocrystalline materials

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J.; Cao, Y.; Liao, X.Z.; Cairney, J.M.

    2013-01-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess

  7. Nanocrystalline zinc oxide for the decontamination of sarin

    Mahato, T.H. [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India); Prasad, G.K., E-mail: gkprasad@lycos.com [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India); Singh, Beer; Acharya, J.; Srivastava, A.R.; Vijayaraghavan, R. [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India)

    2009-06-15

    Nanocrystalline zinc oxide materials were prepared by sol-gel method and were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry, nitrogen adsorption and infrared spectroscopy techniques. The data confirmed the formation of zinc oxide materials of zincite phase with an average crystallite size of {approx}55 nm. Obtained material was tested as destructive adsorbent for the decontamination of sarin and the reaction was followed by GC-NPD and GC-MS techniques. The reaction products were characterized by GC-MS and the data explored the role of hydrolysis reaction in the detoxification of sarin. Sarin was hydrolyzed to form surface bound non-toxic phosphonate on the surface of nano-zinc oxide. The data also revealed the values of rate constant and half-life to be 4.12 h{sup -1} and 0.16 h in the initial stages of the reaction and 0.361 h{sup -1} and 1.9 h at the final stages of the reaction for the decontamination reaction on nanocrystalline ZnO.

  8. Nanocrystalline zinc oxide for the decontamination of sarin

    Mahato, T.H.; Prasad, G.K.; Singh, Beer; Acharya, J.; Srivastava, A.R.; Vijayaraghavan, R.

    2009-01-01

    Nanocrystalline zinc oxide materials were prepared by sol-gel method and were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry, nitrogen adsorption and infrared spectroscopy techniques. The data confirmed the formation of zinc oxide materials of zincite phase with an average crystallite size of ∼55 nm. Obtained material was tested as destructive adsorbent for the decontamination of sarin and the reaction was followed by GC-NPD and GC-MS techniques. The reaction products were characterized by GC-MS and the data explored the role of hydrolysis reaction in the detoxification of sarin. Sarin was hydrolyzed to form surface bound non-toxic phosphonate on the surface of nano-zinc oxide. The data also revealed the values of rate constant and half-life to be 4.12 h -1 and 0.16 h in the initial stages of the reaction and 0.361 h -1 and 1.9 h at the final stages of the reaction for the decontamination reaction on nanocrystalline ZnO.

  9. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  10. Magnetic induction heating of FeCr nanocrystalline alloys

    Gómez-Polo, C.; Larumbe, S.; Pérez-Landazábal, J.I.; Pastor, J.M.; Olivera, J.; Soto-Armañanzas, J.

    2012-01-01

    In this work the thermal effects of magnetic induction heating in (FeCr) 73.5 Si 13.5 Cu 1 B 9 Nb 3 amorphous and nanocrystalline wires were analyzed. A single piece of wire was immersed in a glass capillary filled with water and subjected to an ac magnetic field (frequency, 320 kHz). The initial temperature rise enabled the determination of the effective Specific Absorption Rate (SAR). Maximum SAR values are achieved for those samples displaying high magnetic susceptibility, where the eddy current losses dominate the induction heating behavior. Moreover, the amorphous sample with Curie temperature around room temperature displays characteristic features of self-regulated hyperthermia. - Highlights: ► Amorphous and nanocrystalline Fe based alloys with tailored Curie temperature of the amorphous phase. ► Induction heating effects under the action of a ac magnetic field. ► Self-regulated characteristics based on the control of the Curie temperature. ► Dominant role of the eddy-current losses in the self-heating phenomena.

  11. Magnetotransport in nanocrystalline SmB6 thin films

    Jie Yong

    2015-07-01

    Full Text Available SmB6 has been predicted to be a prototype of topological Kondo insulator (TKI but its direct experimental evidence as a TKI is still lacking to date. Here we report on our search for the signature of a topological surface state and investigation of the effect of disorder on transport properties in nanocrystalline SmB6 thin films through longitudinal magnetoresistance and Hall coefficient measurements. The magnetoresistance (MR at 2 K is positive and linear (LPMR at low field and become negative and quadratic at higher field. While the negative part is understood from the reduction of the hybridization gap due to Zeeman splitting, the positive dependence is similar to what is observed in other topological insulators (TI. We conclude that the LPMR is a characteristic of TI and is related to the linear dispersion near the Dirac cone. The Hall resistance shows a sign change around 50K. It peaks and becomes nonlinear around 10 K then decreases below 10 K. This indicates that carriers with opposite signs emerge below 50 K. These properties indicate that the surface states are robust and probably topological in our nanocrystalline films.

  12. New atom probe approaches to studying segregation in nanocrystalline materials

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Cao, Y.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess.

  13. New atom probe approaches to studying segregation in nanocrystalline materials.

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Mechanically alloyed PrFeB nanocrystalline magnets

    Kaszuwara, W.; Leonowicz, M.

    1998-01-01

    Mechanically alloyed PrFeB nanocrystalline magnets were prepared by extensive ball milling of Pr, Fe and Fe 80 B 20 powders, followed by diffusion annealing. After milling, the material consisted of nanocrystalline α-Fe crystallites embedded in amorphous Pr-rich matrix. Thermomagnetic and calorimetric investigations of the transformations which occurred during annealing showed that the amorphous phase crystallised at 240 C, leading to the formation of crystalline Pr having lattice constants 10% greater than those shown in the ASTM data. This fact indicated that mechanical alloying and low temperature annealing led to the formation of a solid solution of either Fe or B in Pr, which does not exist in the equilibrium state. The Pr 2 Fe 14 B phase was subsequently formed within a temperature range of 420-620 C. The magnetic properties of magnets depend on the phase structure and grain size. Milling time appears to be a decisive processing parameter for the tailoring of the magnetic properties. Depending on the phase structure, the coercivities varied from 100 to 1200 kA/m and, respectively, the remanences from 0.98 T to 0.6 T. The highest maximum energy product was 80 kJ/m 3 . (orig.)

  15. Investigation of nanocrystalline Gd films loaded with hydrogen

    Hruška, Petr; Čí žek, Jakub; Dobroň, Patrik; Anwand, Wolfgang; Mü cklich, Arndt; Gemma, Ryota; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid

    2015-01-01

    The present work reports on microstructure studies of hydrogen-loaded nanocrystalline Gd films prepared by cold cathode beam sputtering on sapphire (112¯0) substrates. The Gd films were electrochemically step-by-step charged with hydrogen and the structural development with increasing concentration of absorbed hydrogen was studied by transmission electron microscopy and in-situ   X-ray diffraction using synchrotron radiation. The relaxation of hydrogen-induced stresses was examined by acoustic emission measurements. In the low concentration range absorbed hydrogen occupies preferentially vacancy-like defects at GBs typical for nanocrystalline films. With increasing hydrogen concentration hydrogen starts to occupy interstitial sites. At the solid solution limit the grains gradually transform into the ββ-phase (GdH2). Finally at high hydrogen concentrations xH>2.0xH>2.0 H/Gd, the film structure becomes almost completely amorphous. Contrary to bulk Gd specimens, the formation of the γγ-phase (GdH3) was not observed in this work.

  16. Neutron irradiation induced amorphization of silicon carbide

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  17. Eu3+-doped (Y0.5La0.5)2O3: new nanophosphor with the bixbyite cubic structure

    Đorđević, Vesna; Nikolić, Marko G.; Bartova, Barbora; Krsmanović, Radenka M.; Antić, Željka; Dramićanin, Miroslav D.

    2013-01-01

    New red sesquioxide phosphor, Eu3+-doped (Y0.5La0.5)2O3, was synthesized in the form of nanocrystalline powder with excellent structural ordering in cubic bixbyite-type, and with nanoparticle sizes ranging between 10 and 20 nm. Photoluminescence measurements show strong, Eu3+ characteristic, red emission ( x = 0.66 and y = 0.34 CIE color coordinates) with an average 5D0 emission lifetime of about 1.3 ms. Maximum splitting of the 7F1 manifold of the Eu3+ ion emission behaves in a way directly proportional to the crystal field strength parameter, and experimental results show perfect agreement with theoretical values for pure cubic sesquioxides. This could be used as an indicator of complete dissolution of Y2O3 and La2O3, showing that (Y0.5La0.5)2O3:Eu3+ behaves as a new bixbyite structure oxide, M2O3, where M acts as an ion having average ionic radius of constituting Y3+ and La3+. Emission properties of this new phosphor were documented with detailed assignments of Eu3+ energy levels at 10 K and at room temperature. Second order crystal field parameters were found to be B 20 = -66 cm-1 and B 22 = -665 cm-1 at 10 K and B 20 = -78 cm-1 and B 22 = -602 cm-1 at room temperature, while for the crystal field strength the value of 1495 cm-1 was calculated at 10 K and 1355 cm-1 at room temperature.

  18. Mechanochemical Synthesis of Nanocrystalline CdS in a Laboratory and Industrial Mill

    Eberhard Gock

    2004-12-01

    Full Text Available Nanocrystalline materials have been of interest of more than 20 years and this interest is still increasing. The preparation and characterization of different chalcogenides have attracted a considerable attention due to their important nonlinear properties, luminiscent properties and other important physical and chemical properties. The main cause is in their unusual properties based on the high concentration of atoms in interfacial structures and the relatively simple ways of their preparation. Nanoparticles of semiconductors have many potential applications in the area of advanced materials. These materials can be synthesized via solid state reactions where the recovery degree can be strongly enhanced by the intervention of mechanical activation. Mechanochemical synthesis belongs among the synthesis route which can effectively control and regulate the course of solid state reactions.This paper describes structural and surface properties of cadmium sulphide nanoparticles synthesized in a planetary mill and in an eccentric vibratory mill. The main aim of this paper was to illustrate the potential of this technique for the large-scale production of CdS nanopowder.CdS nanoparticles were successfully synthesized by the mechanochemical route from the cadmium acetate and natrium sulphide. Structure properties of the as-prepared products were characterized by X-ray powder diffraction. X-ray diffraction patterns reveal the crystalline nature of CdS nanoparticles. Hexagonal ƒ¿-CdS greenockite together with cubic hawleyite ƒÀ-CdS are present among the products of mechanochemical synthesis. The methods of SEM, particle size analysis and low temperature nitrogen sorption were used to analyze the surface composition. The SEM measurements show the aggregates of small nanocrystals in which particle sizes of 5-9 nm were estimated by ScherrerLs formula.The cadmium sulphide nanoparticles are obtained in the simple step, making the process attractive for

  19. Hairy black holes in cubic quasi-topological gravity

    Dykaar, Hannah [Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Department of Physics, McGill University,3600 rue University, Montreal, QC, H3A 2T8 (Canada); Hennigar, Robie A.; Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)

    2017-05-09

    We construct a class of five dimensional black hole solutions to cubic quasi-topological gravity with conformal scalar hair and study their thermodynamics. We find these black holes provide the second example of black hole λ-lines: a line of second order (continuous) phase transitions, akin to the fluid/superfluid transition of {sup 4}He. Examples of isolated critical points are found for spherical black holes, marking the first in the literature to date. We also find various novel and interesting phase structures, including an isolated critical point occurring in conjunction with a double reentrant phase transition. The AdS vacua of the theory are studied, finding ghost-free configurations where the scalar field takes on a non-zero constant value, in notable contrast to the five dimensional Lovelock case.

  20. Bifurcation diagram of a cubic three-parameter autonomous system

    Lenka Barakova

    2005-07-01

    Full Text Available In this paper, we study the cubic three-parameter autonomous planar system $$displaylines{ dot x_1 = k_1 + k_2x_1 - x_1^3 - x_2,cr dot x_2 = k_3 x_1 - x_2, }$$ where $k_2, k_3$ are greater than 0. Our goal is to obtain a bifurcation diagram; i.e., to divide the parameter space into regions within which the system has topologically equivalent phase portraits and to describe how these portraits are transformed at the bifurcation boundaries. Results may be applied to the macroeconomical model IS-LM with Kaldor's assumptions. In this model existence of a stable limit cycles has already been studied (Andronov-Hopf bifurcation. We present the whole bifurcation diagram and among others, we prove existence of more difficult bifurcations and existence of unstable cycles.

  1. Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion

    Sannomiya, Noriaki; Katsura, Hosho; Nakayama, Yu

    2017-03-01

    We introduce a lattice fermion model in one spatial dimension with supersymmetry (SUSY) but without particle number conservation. The Hamiltonian is defined as the anticommutator of two nilpotent supercharges Q and Q†. Each supercharge is built solely from spinless fermion operators and depends on a parameter g . The system is strongly interacting for small g , and in the extreme limit g =0 , the number of zero-energy ground states grows exponentially with the system size. By contrast, in the large-g limit, the system is noninteracting and SUSY is broken spontaneously. We study the model for modest values of g and show that under certain conditions spontaneous SUSY breaking occurs in both finite and infinite chains. We analyze the low-energy excitations both analytically and numerically. Our analysis suggests that the Nambu-Goldstone fermions accompanying the spontaneous SUSY breaking have cubic dispersion at low energies.

  2. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    Przemyslaw Nogly

    2015-03-01

    Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

  3. A cubic autocatalytic reaction in a continuous stirred tank reactor

    Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang Malaysia (Malaysia)

    2015-10-22

    In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.

  4. The electric field of a uniformly charged cubic shell

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  5. Quantum-Carnot engine for particle confined to cubic potential

    Sutantyo, Trengginas Eka P., E-mail: trengginas.eka@gmail.com; Belfaqih, Idrus H., E-mail: idrushusin21@gmail.com; Prayitno, T. B., E-mail: teguh-budi@unj.ac.id [Department of Physics, State University of Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta Timur 13220 (Indonesia)

    2015-09-30

    Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.

  6. Quantum-Carnot engine for particle confined to cubic potential

    Sutantyo, Trengginas Eka P.; Belfaqih, Idrus H.; Prayitno, T. B.

    2015-01-01

    Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system

  7. Quantum corrections for the cubic Galileon in the covariant language

    Saltas, Ippocratis D. [Institute of Astrophysics and Space Sciences, Faculty of Sciences, Campo Grande, PT1749-016 Lisboa (Portugal); Vitagliano, Vincenzo, E-mail: isaltas@fc.ul.pt, E-mail: vincenzo.vitagliano@ist.utl.pt [Multidisciplinary Center for Astrophysics and Department of Physics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2017-05-01

    We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach in this context is discussed, while all calculations are explicitly presented.

  8. Explosive attractor solutions to a universal cubic delay equation

    Sanz-Orozco, D.; Berk, H. L.

    2017-05-01

    New explosive attractor solutions have been found in a universal cubic delay equation that has been studied in both the plasma and the fluid mechanics literature. Through computational simulations and analytic approximations, it is found that the oscillatory component of the explosive mode amplitude solutions are described through multi-frequency Fourier expansions with respect to a pseudo-time variable. The spectral dependence of these solutions as a function of a system parameter, ϕ , is studied. The mode amplitude that is described in the explosive regime has two main features: a well-known envelope ( t 0 - t ) - 5 / 2 , with t0 the blow-up time of the amplitude, and a spectrum of discrete oscillations with ever-increasing frequencies, which may give experimental information about the properties of a system's equilibrium.

  9. THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE

    T. O. Parashchuk

    2016-07-01

    Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.

  10. Perbaikan Metode Penghitungan Debit Sungai Menggunakan Cubic Spline Interpolation

    Budi I. Setiawan

    2007-09-01

    Full Text Available Makalah ini menyajikan perbaikan metode pengukuran debit sungai menggunakan fungsi cubic spline interpolation. Fungi ini digunakan untuk menggambarkan profil sungai secara kontinyu yang terbentuk atas hasil pengukuran jarak dan kedalaman sungai. Dengan metoda baru ini, luas dan perimeter sungai lebih mudah, cepat dan tepat dihitung. Demikian pula, fungsi kebalikannnya (inverse function tersedia menggunakan metode. Newton-Raphson sehingga memudahkan dalam perhitungan luas dan perimeter bila tinggi air sungai diketahui. Metode baru ini dapat langsung menghitung debit sungaimenggunakan formula Manning, dan menghasilkan kurva debit (rating curve. Dalam makalah ini dikemukaan satu canton pengukuran debit sungai Rudeng Aceh. Sungai ini mempunyai lebar sekitar 120 m dan kedalaman 7 m, dan pada saat pengukuran mempunyai debit 41 .3 m3/s, serta kurva debitnya mengikuti formula: Q= 0.1649 x H 2.884 , dimana Q debit (m3/s dan H tinggi air dari dasar sungai (m.

  11. Experimental core electron density of cubic boron nitride

    Wahlberg, Nanna; Bindzus, Niels; Bjerg, Lasse

    as well as experimental result. The redistribution of electron density will, if not accounted for, result in increased thermal parameters. It is estimated that 1.7-2 electrons is transferred from boron to nitrogen. [1]: N. Bindzus, T. Straasø, N. Wahlberg, J. Becker, L. Bjerg, N. Lock, A.-C. Dippel, and B......Experimental core electron density of cubic boron nitride Nanna Wahlberg*, Niels Bindzus*, Lasse Bjerg*, Jacob Becker*, and Bo B. Iversen* *Aarhus University, Department of Chemistry, CMC, Langelandsgade 140, 8000 Århus, Denmark The resent progress in powder diffraction provides data of quality...... obtained. The displacement parameters reported here are significantly lower than those previously reported, stressing the importance of an adequate description of the core density. The charge transfer from boron to nitrogen clearly affects the inner electron density, which is evident from theoretical...

  12. Electron–soliton dynamics in chains with cubic nonlinearity

    Sales, M O; Moura, F A B F de

    2014-01-01

    In our work, we consider the problem of electronic transport mediated by coupling with solitonic elastic waves. We study the electronic transport in a 1D unharmonic lattice with a cubic interaction between nearest neighboring sites. The electron-lattice interaction was considered as a linear function of the distance between neighboring atoms in our study. We numerically solve the dynamics equations for the electron and lattice and compute the dynamics of an initially localized electronic wave-packet. Our results suggest that the solitonic waves that exist within this nonlinear lattice can control the electron dynamics along the chain. Moreover, we demonstrate that the existence of a mobile electron–soliton pair exhibits a counter-intuitive dependence with the value of the electron-lattice coupling. (paper)

  13. Scattering of quantized solitary waves in the cubic Schrodinger equation

    Dolan, L.

    1976-01-01

    The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states

  14. Point defects in cubic boron nitride after neutron irradiation

    Atobe, Kozo; Honda, Makoto; Ide, Munetoshi; Yamaji, Hiromichi; Matsukawa, Tokuo; Fukuoka, Noboru; Okada, Moritami; Nakagawa, Masuo.

    1993-01-01

    The production of point defects induced by reactor neutrons and the thermal behavior of defects in sintered cubic boron nitride are investigated using the optical absorption and electron spin resonance (ESR) methods. A strong structureless absorption over the visible region was observed after fast neutron irradiation to a dose of 5.3 x 10 16 n/cm 2 (E > 0.1 MeV) at 25 K. This specimen also shows an ESR signal with g-value 2.006 ± 0.001, which can be tentatively identified as an electron trapped in a nitrogen vacancy. On examination of the thermal decay of the signal, the activation energy for recovery of the defects was determined to be about 1.79 eV. (author)

  15. Spatial 't Hooft loop to cubic order in hot QCD

    Giovannangeli, P.

    2002-01-01

    Spatial 't Hooft loops of strength k measure the qualitative change in the behaviour of electric colour flux in confined and deconfined phase of SU (N) gauge theory. They show an area law in the deconfined phase, known analytica lly to two loop order with a ``k-scaling'' law k(N-k). In this paper we comput e the O(g^3) correction to the tension. It is due to neutral gluon fields that get their mass through interaction with the wall. The simple k-scaling is lost in cubic order. The generic problem of non-convexity shows up in this order an d the cure is provided. The result for large N is explicitely given. We show tha t nonperturbative effects appear at O(g^5).

  16. Bistable dark solitons of a cubic-quintic Helmholtz equation

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2010-01-01

    We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.

  17. G2 cubic transition between two circles with shape control

    Habib, Zulfiqar; Sakai, Manabu

    2009-01-01

    This paper describes a method for joining two circles with an S-shaped or with a broken back C-shaped transition curve, composed of at most two spiral segments. In highway and railway route design or car-like robot path planning, it is often desirable to have such a transition. It is shown that a single cubic curve can be used for blending or for a transition curve preserving G2 continuity with local shape control parameter and more flexible constraints. Provision of the shape parameter and flexibility provide freedom to modify the shape in a stable manner which is an advantage over previous work by Meek, Walton, Sakai and Habib.

  18. Dynamic Displacement Disorder of Cubic BaTiO3

    Paściak, M.; Welberry, T. R.; Kulda, J.; Leoni, S.; Hlinka, J.

    2018-04-01

    The three-dimensional distribution of the x-ray diffuse scattering intensity of BaTiO3 has been recorded in a synchrotron experiment and simultaneously computed using molecular dynamics simulations of a shell model. Together, these have allowed the details of the disorder in paraelectric BaTiO3 to be clarified. The narrow sheets of diffuse scattering, related to the famous anisotropic longitudinal correlations of Ti ions, are shown to be caused by the overdamped anharmonic soft phonon branch. This finding demonstrates that the occurrence of narrow sheets of diffuse scattering agrees with a displacive picture of the cubic phase of this textbook ferroelectric material. The presented methodology allows one to go beyond the harmonic approximation in the analysis of phonons and phonon-related scattering.

  19. Principal spectra describing magnetooptic permittivity tensor in cubic crystals

    Hamrlová, Jana [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Legut, Dominik [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Veis, Martin [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Pištora, Jaromír [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Hamrle, Jaroslav, E-mail: jaroslav.hamrle@vsb.cz [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Department of Physics, VSB – Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic)

    2016-12-15

    We provide unified phenomenological description of magnetooptic effects being linear and quadratic in magnetization. The description is based on few principal spectra, describing elements of permittivity tensor up to the second order in magnetization. Each permittivity tensor element for any magnetization direction and any sample surface orientation is simply determined by weighted summation of the principal spectra, where weights are given by crystallographic and magnetization orientations. The number of principal spectra depends on the symmetry of the crystal. In cubic crystals owning point symmetry we need only four principal spectra. Here, the principal spectra are expressed by ab initio calculations for bcc Fe, fcc Co and fcc Ni in optical range as well as in hard and soft x-ray energy range, i.e. at the 2p- and 3p-edges. We also express principal spectra analytically using modified Kubo formula.

  20. Structure and energetics of nanotwins in cubic boron nitrides

    Zheng, Shijian, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn; Ma, Xiuliang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Ruifeng, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn [School of Materials Science and Engineering, and International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191 (China); Huang, Rong [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062 (China); Taniguchi, Takashi [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ikuhara, Yuichi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656 (Japan); Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-08-22

    Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.